
Detecting Web Bugs With Bugnosis:

Privacy Advocacy Through Education ?

Adil Alsaid1 and David Martin2

1 Saudi Arabian Monetary Agency

The Institute of Banking

aalsaid@cs.du.edu

2 Boston University

Computer Science Department

dm@cs.bu.edu

Abstract. This article is a case study in the design, implementation,

and deployment of the Bugnosis privacy enhancing tool. Downloaded and

installed by over 100,000 users to date, Bugnosis contributes to network

privacy indirectly | without any technical protection measures such as

�ltering or anonymization | by raising awareness about Web bugs and

arming users with speci�c information about current Web site practices.

1 Introduction

Bugnosis is an add-on for Internet Explorer that detects Web bugs during Web
sur�ng and alerts the browser operator to their presence. In this article we
highlight the most interesting questions and challenges we faced as Bugnosis
grew from a summer afternoon exercise into an independent study project and
then a full-blown distribution.

We de�ne the Bugnosis notion of Web bugs in section 3.1. Briey, Web bugs
are invisible third party images added to a Web page so that the third party
receives notice of the page viewing event. (The name \bug" comes from the term
\electronic bug," which is slang for a tiny, hidden microphone. It has nothing to
do with a \bug in a program." Web bugs are also variously called Web beacons,
pixel tags, and clear GIFs.) A third-party cookie is often associated with the
Web bug transaction, which may allow the third party to recognize the user's
Web browser uniquely. Web bugs are controversial because not only are they
often used to gather information about user behavior without user consent, but
they also trick Web browsers into assisting with this surveillance by claiming
that an image is required as part of a Web page when in fact the image has no
content bene�tting the user.

? This work was supported by the Privacy Foundation, the University of Denver, and

Boston University. Most of this work was done at the University of Denver Computer

Science Department.

Fig. 1. Screen shot of Bugnosis announcing its discovery of a Web bug. The areas

labeled #1, #2, and #3 identify information provided by Bugnosis.

Bugnosis' operation is straightforward. During installation, it attaches itself
to Internet Explorer so that it is automatically invoked whenever IE runs. Bug-
nosis keeps a low pro�le while the user browses the Web, but it silently examines
each viewed Web page for the presence of Web bugs. If it �nds a Web bug, it
alerts the user with a cute sound (\uh-oh!") and displays information about the
Web bug in a separate pane.

Figure 1 shows an Internet Explorer window after Bugnosis has identi�ed
a Web bug. In addition to the usual IE paraphernalia, three new areas on the
screen are visible and indicated by number. Area #1 is the toolbar Bugnosis
control, consisting of a drop-down control menu, a bug-shaped pane visibility
toggle switch, a severity meter, and text information about the page. The severity
meter progresses from yellow to red. In the original color image, the �rst three
severity bars are lit up, making this a \medium severity" Web bug. The text
shows that Bugnosis has analyzed 17 images on the page, found one Web bug,
and no merely \suspicious" images. Until a Web bug has been discovered, this
toolbar line is the only indication that Bugnosis is present. (Bugnosis 1.1, the
currently available version, displays only the visibility toggle switch.)

When Bugnosis discovered the Web bug on the page, it replaced the normally
invisible pixels of the bug image with the 18x18 pixel cartoonish image of a bug
labeled #2 in the middle area of the screen. On-screen, the bug ashes mildly
and gallops along so that the user can spot it easily.

The bottom pane on the screen, labeled #3, shows details about the Web bug
itself, such as the URL of the image, the technical properties that lead Bugnosis
to consider it a Web bug, and clickable icons. The information here is arranged
in a table, but since only one Web bug was discovered, only one row is visible.

2 Philosophy and Strategy

Bugnosis is designed to recognize invisible images served from 3rd-party servers
as Web bugs, while excluding those images that seem to be used only for align-
ment purposes. See sections 3.1 and 3.2 for detailed de�nitions of Web bugs.

The fascinating thing about Web bugs is that they allow coherent discussion
of the well known third party tracking threat: namely, the observation that a
cookie-laden third party image provider with wide Internet coverage is capable
of gathering very detailed clickstream records about a user population. In the
case of Internet advertising �rms, this discussion about user tracking is clouded
by the fact that the �rms' objectives may be totally ful�lled by displaying an
advertising image in a Web browser. Although the �rms may be interested in
tracking their user population, the delivery of a third party image is not enough
to con�rm or deny this suspicion. But Web bugs, by de�nition, are used only to
gather information about users. The question is no longer \are they gathering
information?" but, by narrowing our interest to Web bug providers, \why are
they gathering information?" and \what will they do with it?"

2.1 Audience

Our intended audience for Bugnosis is neither whistle-blowers, nor the politically
oppressed, nor citizens of states with challenging privacy histories, nor overly
scrutinized corporate employees | none of the traditional audience for privacy
enhancing tools. Our true audience is journalists and policy makers. This is
why: the cookie-based third party tracking threat is just too hard to explain to
people. To get from the concept of \a tiny �le we store on your computer" all the
way to \the ability to track you between Web sites" requires a lot of otherwise
irrelevant discussion about Internet topology, HTTP, browser settings, database
index keys, and persistence; by then, most people have lost interest in the threat.
If journalists and policy makers do not understand the threat, then not much
hope remains for the rest of the users.

So our goal was to construct software that educates journalists and policy
makers about user tracking. Proceeding under the assumption that most of them
are comfortable with a Web browser, and that most probably use Microsoft In-
ternet Explorer for Web browsing and Microsoft Outlook or Outlook Express for

e-mail, we could not assume much about their technical sophistication. There-
fore, ease of installation and ease of use were absolutely critical to a successful
deployment.

2.2 No Web Bug Blocking

An important policy decision we faced was whether Bugnosis should \protect"
users by blocking those Web bugs that it identi�ed. Ultimately we decided
against it. Although implementation considerations also play into this, we even-
tually realized that blocking Web bugs had absolutely nothing to do with our
education goal. In fact, it would have distracted from our goal. If we had added
a blocking function, then Bugnosis would have been considered yet another tool
for those relatively few people who are so concerned about user tracking that
they are willing to invest the time to download, install, and maintain yet another
little piece of optional software. But helping a few users block their Web bugs
has no impact on the overall tracking regimen, and it only does a little for those
users anyway. Basically, adding a blocking feature to Bugnosis would support
the opt-out paradigm favored by those behind the tracking systems, precisely by
being an opt-out mechanism. Without the blocking feature, Bugnosis remains
agnostic on this point: it merely informs.

2.3 Low Resistance to Countermeasures

Web bugs are essentially covert channels. Therefore, it's pointless to try too
hard to spot them; an adversary that wants to evade Bugnosis can do so easily.
Bugnosis simply provides a useful snapshot of current Web site practices.

2.4 Expert Knowledge Database

Although we believe Bugnosis does a good job at identifying Web bugs by
their form alone, we recognized early on that an expert knowledge component
would provide an important safety valve. Bugnosis therefore incorporates a small
database of regular expressions and corresponding dispositions either forcing or
preventing matching URLs from being identi�ed as Web bugs. For example, one
rule in the database forces the URL http://tnps.trivida.com/tnps/track.fgi to
be identi�ed as a Web bug independently of other automated considerations1.
The database currently contains 23 such \positive" rules, all of which are derived
from patterns described by Richard M. Smith [2] in his early investigations of
Web bugs. In practice, these rules are seldom decisive; we found that 96% of
the Web bugs that Bugnosis identi�ed using these rules in a large sample would
have been identi�ed as Web bugs even if the rules had been missing [3].

The database currently contains only 6 \negative" rules preventing the iden-
ti�cation of Web bugs. Experience showed us that some certain image forms

1 TriVida Corp. was acquired by BeFree Inc. in March 2000; this URL appears to be

no longer in use, and so the rule is actually obsolete.

served by Yahoo and Akamai that had the formal characteristics of Web bugs
were so common that Bugnosis alerted us constantly, even though our inspection
of the relevant privacy policies suggested the risk was small. So these URLs are
on our negative list. We have to cringe a bit when we manipulate the list, but
we also believe that it is important for Bugnosis not to be too alarmist. We
have always been more concerned about the possibility of false positives than in
overlooking some of the Web bugs.

We included a mechanism to change the database over time. Bugnosis at-
tempts to acquire updated versions of the database every couple of weeks (with
the user's permission). This became useful a few weeks after deployment when
we discovered an unfortunate interaction between Bugnosis and the WebWasher
[4] and Adextinguisher [5] privacy-enhancing tools. These tools block third party
images by rewriting their URLs in a way that makes them look like Web bugs
to Bugnosis. In the case of WebWasher, the rewritten URL actually appeared
to some users to be transmitting information to the WebWasher company, even
though a closer look made it clear that this was not true. In early December
2001, we also worked with Google personnel to exclude a set of URLs containing
raw IP addresses. Since these URLs were being used only to measure network
delay, Google could not change them into a more Bugnosis-friendly form without
degrading their measurements. We were able to handle all three of these cases
simply by adding negative rules in the database; no other software update was
necessary.

The database also contains \neutral" rules that simply associate URL pat-
terns with Web site privacy policies and e-mail contact addresses. This is ex-
plained further in section 4.2. Altogether, the Bugnosis database currently con-
tains 45 entries.

3 Web Bugs De�ned

3.1 Current De�nitions

De�nition 1 (vague). A Web bug is any HTML element that is (1) present

at least partially for surveillance purposes, and (2) is intended to go unnoticed

by users.

In order to automatically identify Web bugs, we had to re�ne this vague
de�nition into something implementable. To get to the �rst speci�c Web bug
de�nition, we de�ne some properties that an HTML element may have.

Property 1 (hostdi�). An element has this property if the host named in its URL
is not exactly the same as the host named in the URL of the page containing
the element.

Property 2 (domaindi�). An element has this property if the host named in its
URL is third party with respect to the URL of the page containing the element.
Speci�cally, this means that their two highest DNS levels (i.e., rightmost two

dot-separated components) di�er. For example, www.bu.edu is third party to
www.du.edu, because bu.edu6=du.edu. (Although this de�nition is useful in the
generic domains, it does not properly capture the notion of third party in some
of the country code domains. We return to this issue in section 3.2.)

We are now able to present the two de�nitions used by other groups of
researchers.

De�nition 2 (Cy-ID). A Cy-ID Web bug is an HTML element such that (1)

the element is an image, (2) the image is 1x1 pixel large, and (3) the image has

the domaindi� property.

De�nition 3 (SS). An SS Web bug is an HTML element such that (1) the

element is automatically loaded, and (2) the element has the hostdi� property.

The Cy-ID de�nition describes the Web bugs identi�ed in the Cyveillance
study by Murray and Cowart [6] and those elements identi�ed as \invisible ob-
jects" in IDcide's Site Analyzer product [7]. This de�nition captures the notion
of \surreptitious" as meaning that the image contains only one pixel. The SS
de�nition, used in the SecuritySpace report by Reinke [8], essentially tags ev-
ery transaction involving a third party as a surveillance transaction. Since it
uses hostdi� rather than domaindi�, it has a very suspicious notion of what a
third party is: for instance, a page loaded from www.example.com that refer-
ences an image from imgs.example.com would be designated a Web bug under
this de�nition.

Stating the Bugnosis de�nition of Web bugs requires several more properties.

Property 3 (tiny). An image is tiny if it is 7 square pixels or less.

Property 4 (lengthy). Let imageURLs denote the list of all image URLs on
the page containing the image in question. An image is lengthy if either (1)
imageURLs contains one element and this image's URL contains more than 100
characters, or (2) imageURLs contains more than one element and this image's
URL length exceeds � + 0:75� characters, where � and � are the measured
mean and standard deviation of the imageURLs string sizes. An image with this
property appears to be communicating something unusual in its URL.

Property 5 (once). An image has this property if its URL appears only once in
the list of all image URLs on the page containing the image in question. An
image that appears only once on a page is more likely to be a tracking device
than an image that appears multiple times.

Property 6 (protocols). An image has the protocols property if its URL contains
more than one substring from the set `http:', `https:', `ftp:', `�le:'. For example,
an image with the URL http://track.example.com/log/ftp://www.source.com
would have this property. This property indicates that its URL may contain
some tracking information.

Property 7 (tpcookie). An image has the tpcookie (\third party cookie") prop-
erty if it has the domaindi� property and the Web browser has a cookie stored
for the image's domain.

Property 8 (positive). An image has this property if its URL matches an entry
in the \positive" database (see section 2.4).

Property 9 (negative). An image has this property if its URL matches an entry
in the \negative" database (see section 2.4).

Given these extra properties, we can now de�ne the Bugnosis notion of a
Web bug.

De�nition 4 (Bugnosis). An HTML element is a Bugnosis Web bug if (1)

the element is an image, and either (2) it has the positive property, or (3) does

not have the negative property but does have the tiny, domaindi�, and at least

one additional property other than hostdi�.

Basically, in order to consider an image a Web bug, Bugnosis requires it to
be surreptitious, third-party, and to carry some additional evidence that it is
unusual. In practice this means that Bugnosis does not consider tiny images
used for spacing purposes as Web bugs, nor does it automatically consider all
third party content to be Web bugs.

3.2 Discussion

Although it is certainly possible to obtain perfectly satisfactory surveillance
capabilities by using HTML elements other than images, there is no way to
distinguish between, say, a JavaScript program that is fetched only in order to
trigger a log entry, and one that actually has some \meaningful" content. So
Bugnosis only examines images, where it has a hope of telling the di�erence.

There are only two ways for an image to be considered a Bugnosis Web bug
but not a Cy-ID or SS Web bug: (1) if it matches our \positive" database, or
(2) if it is just a few pixels too big to be a Cy-ID Web bug. The former case
doesn't any introduce error, because our database is built to be consistent with
our primary de�nition 1. The latter case is a possible source of error: we chose
to identify images 7 square pixels or smaller to be tiny by just gazing at the
screen and determining that images that size were not terribly useful for graphic
content, even though they certainly can be visible. Although we haven't observed
any problems with our de�nition | we have indeed seen Bugnosis accurately
identify some 1x2 and 2x2 images as Web bugs | 7 square pixels may have been
overkill.

We believe the Bugnosis de�nition of Web bugs is as strong as any other
Web bug de�nition in use. Even so, subsequent Bugnosis versions will make it
tighter:

De�nition 5 (NG). An HTML element is a (next generation) Bugnosis Web

bug if (1) the element is an image, and either (2) it has the positive property, or

(3) does not have the negative property but does have the tiny, strong-domaindi�,

tpcookie, and once properties.

Note that this de�nition says nothing about the \lengthy" and \protocols"
properties. These properties are no longer central to the Web bug identi�cation
process; however, once a Web bug has been found, they are used to sort the Web
bugs by severity.

We used this tightened de�nition in our survey of Web bug use [3]. It includes
three improvements over the de�nition used in the currently available Bugnosis
release. First, we decided that third party sites that did not use cookies were
unlikely to be tracking users individually, since they would have no practical
way to distinguish users. (We are not aware of any non-cookie identi�cation
techniques in common practice.) On the other hand, although the presence of a
third party cookie may indicate individual tracking, it may also be benign, or
even privacy enhancing: a cookie that says \TextOnly=true" is a handy way to
record a user preference without requiring a full blown registration procedure.
Still, since de�nition 4 also checked for third party cookies, this addition only
causes us to identify fewer Web bugs than before.

The second improvement is the requirement of the \once" property, rather
than simply taking \once" as some positive evidence of a Web bug. An image
whose URL occurs multiple times on the page (and therefore not \once") is
clearly not a Web bug: the second URL request would probably not even make
it out of the browser's cache, and even if it did, the origin server would end
up with two practically identical log entries. No Web designer would naturally
repeat a URL as part of a tracking scheme.

Finally, the third change improves our ability to see Web bugs in a wider part
of the DNS space. As noted previously, the \domaindi�" notion of \third party"
only examined the top two layers of the hosts' DNS names. By this de�nition, the
University of Cambridge Web site www.cam.ac.uk and the University of Oxford
site www.ox.ac.uk seem to be in the same domain, which is clearly absurd. We
address this with the \strong-domaindi�" property and an auxiliary function
called reach[] that maps domain name suÆxes (com, net, etc.) to domain name
levels:

Property 10 (strong-domaindi�). Suppose an element E from the host named
H is embedded in a page served from an origin server named O. Let O' be the
longest suÆx of O such that reach[O'] is de�ned, and let n=reach[O'], or n = 3 if
no such O' exists. Then E has the strong-domaindi� property if the top n DNS
levels of H and O coincide.

The reach[] function is bundled with our expert knowledge database (section
2.4). For example, it speci�es reach[uk]=3, reach[com]=2, reach[net]=2, and so
on. Thus we are now able to distinguish Cambridge from Oxford, as well as
the New York Times from DoubleClick. This was the cleanest solution we could
�nd for the domain test that did not exclude large swaths of the DNS space.

The disadvantage is that by maintaining this mapping ourselves, we run the
risk of making mistakes. Fortunately, since the function is distributed with our
expert knowledge database, it too can be updated remotely without reinstalling
Bugnosis.

We also considered but decided against using the de�nition of \third party"
from RFC 2965 [9], the latest HTTP cookie speci�cation. The issue is that RFC
2965 considers the host \www.example.com" to be third party to the origin server
\www.sales.example.com". While this makes some sense within the DNS zone
delegation model, far too many sites use a single authority for everything under
their primary domain for this de�nition to work in Bugnosis. The average Web
user would only be confused by the claim that these two sites are substantially
di�erent.

RFC 2965 also exhibits some degenerate behavior with short domain names.
For example, \images.example.com" is considered third party to the origin server
\example.com", even though \images.example.com" is not considered third party
to \www.example.com".

4 Implementation Issues

4.1 Data Transport to and from Bugnosis

We considered using proxy approach in order to discover the images on a page,
but our previous experience with proxy-based content understanding [10] was
not encouraging. It is very hard to model a Web browser without writing a Web
browser. Besides, a central purpose of SSL is to prevent third party snooping,
so proxies cannot easily inspect the content of HTTPS pages. (It is possible,
though: a trusted proxy can install itself as a root certi�cation authority and
use a man-in-the-middle approach to obtain the cleartext [11].)

The Document Object Model (DOM) [12] is well supported by Internet Ex-
plorer and provides the hooks we needed. Instead of parsing HTML, Bugnosis
asks IE for a DOM representation of the current Web page and then traverses it
looking for images and their characteristics. In order to learn about changes in
the current document, Bugnosis uses IE's Browser Help Object [13] functionality
to sink relevant events. So Bugnosis sees everything that IE does, even the pages
delivered by SSL and those that load images using JavaScript long after the main
page has been rendered. In addition, Bugnosis sees the image dimensions as they
appear on the page, not as they are recorded in the delivered �le. This is appropri-
ate because the \tiny" property has to do with an image's perceptibility, not its
binary content. A 10x10 image �le can be made tiny on the screen by changing
its size with HTML attributes: <IMG SRC="http://example.com/10x10.gif"

HEIGHT="1" WIDTH="1">. (It is standard practice among Web designers to spec-
ify the height and width attributes with images; without them, the browser's
HTML layout engine has to continually redraw the page as images arrive and it
�gures out how big they are.)

Having obtained the list of images and their attributes, Bugnosis analyzes
all of the images on all of the frames of the Web page and creates an XML

representation of the analysis. This XML can be stored for subsequent use (as
we did in [3]) or converted immediately for display.

To display its results, Bugnosis creates its own secondary Web browser and
embeds it in an Explorer \Comm Band" | the lower pane in the IE window.
Bugnosis creates HTML directly (i.e., as text) and writes it into this object to
display results. Sticking with HTML is a big advantage here, because it provides
a familiar interface with hypertext support that can be easily printed, copied to
another window, or e-mailed.

4.2 Making Web Bugs Apparent

Once Bugnosis has identi�ed aWeb bug, it sounds an alert and makes its analysis
pane visible. In addition, it replaces the image URL in the DOM with a small
image of a bug: this immediately causes the bug to become visible in the main
IE window. By keeping the visible image small, Bugnosis attempts to leave the
page layout mostly intact. Making the bug visible is helpful because Web bugs
are often adjacent to other content that may provide a clue as to their purpose.
In Figure 1, for instance, the bug is visible next to a list of retailers that support
the site being visited; the Web bug probably has something to do with them.
Bugnosis also populates the image's ALT tag with summary information about
the bug.

The analysis pane shows the properties supporting Bugnosis' claims about
the image; in Figure 1, we see the tiny, once, domaindi�, and tpcookie properties
along with the bug's cookie value. The phrase \recognized site" means that the
site is in the database of known sites.

The Bugnosis database also associates privacy policy URLs and e-mail ad-
dresses with the sites it recognizes. Clicking on the home icon (when present)
navigates a new IE window to the privacy policy page for the Web bug provider.
Clicking on the e-mail icon (when present) launches the user's e-mail program
with a draft message addressed to the Web bug provider, which the user can
edit and send if desired.

This e-mail composition (see Figure 2) is by far the most \activist" feature
in Bugnosis. Obviously, we felt that Web bug disclosure practices were generally
inadequate when we designed this feature. Web bug disclosures may have im-
proved since then [14], but even as late as October 2001, we found that 29% of
popular Web sites that contain Web bugs in a U.S. Federal Trade Commission
sample say nothing that even hints at the possibility or implications of third
party content [3].

4.3 Technical Challenges

Object Soup We were not terribly familiar with COM, ATL, or ActiveX when
we began this project, and it turned out to be an excellent, if harrowing, learning
opportunity [15, 13]. Bugnosis is packaged as a dynamically linked library (DLL)
�le that exposes three main COM objects: a tool bar for controlling Bugnosis,
the Browser Helper Object for monitoring user-initiated browsing events, and a

Fig. 2. An e-mail message composed by Bugnosis when the user clicked on the e-mail

icon

Comm Band for displaying Bugnosis output. Installation merely adds references
to these objects to the system registry. The Bugnosis database is maintained
separately in an XML �le.

When IE is invoked, it consults the registry and creates these three Bugnosis
objects in an apparently unpredictable order, and without any reference to each
other. Our �rst challenge was to make these objects discover each other so they
can then share data about the current session. Ultimately we resorted to a global
map (shared by every process and thread that loads the Bugnosis DLL) in order
to cope with this. During a beta test period we also discovered that some versions
of IE for NT maintain a cache that needed to be ushed at installation time;
otherwise, IE would not create all three of the objects.

Once the Bugnosis objects have located each other, they create several addi-
tional objects: a subordinate Web browser object for displaying Bugnosis output,
an XML parser, an auxiliary event sink, and other minor objects. Many of these
objects contain references to each other, and this prevents COM's reference
counting architecture from freeing inaccessible resources at shutdown time with-
out programmer assistance. Indeed, this was still broken in Bugnosis 1.1; each
new IE window leaks some memory until all of the IE threads in that process
exit.

Special UI Behavior in the Bugnosis Analysis Pane Not all of the func-
tionality we desired in the Bugnosis output pane was achievable through HTML

and scripting alone. In particular, the standard mailto: protocol does not pro-
vide a way for a script to include an attachment in an e-mail message, but we
felt it was important to include the Bugnosis output when a user sent an e-mail
inquiry to a Web bug provider. We also wanted the main IE status line to display
appropriate information when the user moved the pointer over links within the
Bugnosis analysis window. (The main IE window knows only that the Bugnosis
DLL has part of the screen real estate down there | not that Bugnosis is using
it to display HTML.) Both issues were solved by attaching an object to the lower
pane to sink its events and handling or propagating them appropriately.

We attempted to use IE's \DHTML Behaviors" [13] to automate some of
the UI. Behaviors are programmatic content that can be associated with HTML
elements in the same way that CSS assigns style information to HTML elements.
For instance, we wanted to make the pointer icon and the status line change when
the pointer crossed into the e-mail icon so the user would recognize that it is
clickable. In addition, we wanted hyperlinks (such as http://service.bfast.com in
Figure 1) to invoke a script when clicked, but we wanted them to otherwise look
and behave like ordinary links. After inventing a new style for these behaviors
and assigning the style to the appropriate objects, we were plagued with un-
predictable crashes. Ultimately we stopped using DHTML Behaviors altogether.
Instead, one of the DLL objects iterates through the elements and reassigns
event handlers whenever the output window changes content.

Finally, we felt it was important to be able to send Bugnosis analyses to
computers that did not have Bugnosis installed. Bugnosis therefore removes
all of the IE-speci�c material when preparing its analysis for export (such as
printing, saving, copying to the clipboard, etc.).

4.4 Installation and Uninstallation

Since Bugnosis is a collection of COM objects, we thought we would take the
ActiveX plunge and use a Web-based installation method. The idea is to provide
an installation page that includes an <OBJECT> tag. IE will recognize that this
tag refers to an ActiveX object that must be fetched and instantiated. Under
default settings, this will cause a familiar security dialog to appear asking if the
user trusts the software vendor before proceeding. Once instantiated, IE will
attempt to display it on the Web page containing the <OBJECT> tag. By then,
Bugnosis has modi�ed the registry for future IE sessions.

As part of this process it is important to give the user feedback. If anything
goes wrong during the ActiveX registration and instantiation, this needs to be
explicitly indicated; however, we are restricted to standard scripting techniques
for this, since Bugnosis is not yet installed. Our approach is to assume that in-
stallation always fails. After the installation page is �nished loading, IE switches
to a troubleshooting page | unless a certain JavaScript global variable has been
set. Meanwhile, whenever Bugnosis senses that the Bugnosis Web site is being
visited, it injects a script into the page that sets this variable. So if the Bugno-
sis installation actually succeeded, it changes the default course of action and
instead leads IE to an \installation successful" page.

When the user asks Bugnosis to uninstall itself, it simply disconnects itself
from the registry so it will no longer be invoked in later IE sessions. It does not
scrape the DLL o� the hard drive.

This deployment strategy has not worked as well as we had hoped. Some
users expecting the standard download/save/install procedure have complained
about unexpected installations even after clicking \install" in response to the
explicit security warning. Others feel that the presence of the DLL on the disk
after uninstallation was unsafe and requested a way to remove it. But describing
how to remove this �le is complicated because the precise directory that houses
downloaded ActiveX objects is not consistent across all Windows installations.
Even worse, the directory has unusual display semantics in Windows Explorer,
so it does not show up as expected on the desktop. Even the standard \�nd
�le" dialog does not locate it. Luckily, command-line sessions are able to �nd
and manipulate the �le. Finally, the installation method just does not work on
some systems. We have received many reports of users who saw the \installation
failed" page but then later found that Bugnosis was actually working. We clearly
have some more work to do here.

4.5 User Community Size

Bugnosis was built by two people with only part-time attention over a period
of several months. In the 4.5 months following the initial announcement, over
100,000 users have downloaded and installed Bugnosis. Our Web hosting service
quickly upgraded the site to a heavier-duty machine to deal with the initial burst
of interest at release time, but we have no good system to deal with the 1,200
e-mail messages we have received so far. Fortunately, much of the e-mail either
does not require a response or is covered in the Bugnosis FAQ. Unfortunately,
much of the rest simply does not get answered.

5 Plans

5.1 Web Bugs in E-mail

Web bugs are not limited to Web pages. Users equipped with an HTML-enabled
mail reader can also be tracked when they read e-mail. When the user views a
bugged message, the reader will fetch all of the required images, thereby inform-
ing a third party of the reading action, and possibly sending an identifying cookie
in the process. Web services exist that automate the construction of Web-bugged
e-mails [16, 17].

In order to prepare and send a bugged message, the sender must already
have the recipient's e-mail address. This bit of personal information is generally
not available to Web sites that place Web bugs. Since Web bugs in e-mail are
usually preserved when the e-mail is forwarded, a tracker may be able to learn
who a target's associates are. And with a little JavaScript, comments added to
a message when it is forwarded may even be intercepted by the tracker under

some circumstances [18]. For all of these reasons, the practice of bugging e-mails
is seen as more intrusive than bugging Web pages. We hope to include an e-mail
Web bug detector in a future release.

5.2 Platform for Privacy Preferences Project

Our ability to help the user contact those responsible for the Web bugs is severely
limited by our contact database. Without a contact entry, Bugnosis o�ers no
assistance and simply omits the Web page and e-mail icons in its analysis. Fur-
thermore, our database only contains entries about Web bug providers, i.e., the
third parties named in the Web bug URL. Thus in the example of Figure 1,
Bugnosis provides contact information for \bfast.com", but o�ers no assistance
for contacting \photo.net", even though both sites are necessarily involved in
the decision to place the Web bug.

The obvious solution is to use P3P policies [19] to search for both types of
contact information. This would allow us to eliminate most of the \neutral" Bug-
nosis database entries. In addition, we could allow Bugnosis to suppress warnings
about Web bugs that have acceptable disclosures. This type of functionality is
a high priority for future releases.

Acknowledgments

John Boak, Andy Cervantes, Stephen Keating, and Richard M. Smith also con-
tributed to the Bugnosis project.

References

1. Alsaid, A., Martin, D.: Bugnosis Web bug detector software (2001) http://www.

bugnosis.org/.

2. Smith, R.M.: Web bug search page (1999) http://www.computerbytesman.com

/privacy/wb�nd.htm.

3. Martin, D., Wu, H., Alsaid, A.: Hidden surveillance by Web sites: Web bugs in

contemporary use (2001) http://www.cs.bu.edu/fac/dm/pubs/draft-pt.pdf.

4. WebWasher: Webwasher �ltering software (2001) http://www.webwasher.com/.

5. AdExtinguisher: Adextinguisher �ltering software (2001) http://adext.

magenet.net/.

6. Murray, B.H., Cowart, J.J.: Web bugs: A study of the presence and growth

rate of Web bugs on the internet. Technical report, Cyveillance, Inc. (2001)

http://www.cyveillance.com/.

7. IDCide Inc.: Privacywall site analyzer software (2001) http://www.idcide.com/.

8. Reinke, T.: Web bug report. Technical report, E-Soft Inc. and SecuritySpace

(2001) http://www.securityspace.com/s survey/data/man.200110/webbug.html.

9. Kristol, D., Montulli, L.: HTTP state management mechanism. RFC 2965 (2000)

10. Martin, D., Rubin, A., Rajagopalan, S.: Blocking Java applets at the �rewall. In:

Proceedings of the 1997 Symposium on Network and Distributed System Security,

IEEE (1997) 16{26 See also http://www.cs.bu.edu/techreports.

11. Swiderski, F.: WebProxy auditing and editing tool (2002)

http://www.atstake.com/research/tools/index.html#WebProxy.

12. World Wide Web Consortium: Document object model (2001) http://www.

w3c.org/DOM/.

13. Microsoft Corp.: Microsoft developer network (2001) http://msdn.microsoft.com/.

14. Network Advertising Initiative: Web bug standards to be developed (2001)

http://www.networkadvertising.org/.

15. Roberts, S.: Programming Microsoft Internet Explorer 5. Microsoft Press (1999)

16. Postel Services Inc.: Con�rm.to e-mail tracking service (2001)

http://www.con�rm.to/.

17. ITraceYou.com: Itraceyou e-mail tracking service (2001) http://www.itrace

you.com/.

18. Smith, R.M., Martin, D.M.: E-mail wiretapping (2001) http://www.privacyfound

ation.org/privacywatch/report.asp?id=54&action=0.

19. World Wide Web Consortium: Platform for privacy preferences project (2000)

http://www.w3c.org/P3P/.

