
T U T O R I A L S

CryptoTutorials
by Israel Torres

PART 4
Cryptography fundamentals:
Crypto Tools

CryptoTutorials

PART 4 Cryptography fundamentals:
Crypto Tools

CryptoTutorials

PART 4 Cryptography fundamentals:
Crypto Tools

CryptoTutorials
By: Israel Torres

Creating algorithms for encrypting/encoding/
enciphering can be a timely task. Especially if
creating them from scratch and implementing

them on the fly. Sometimes what may seem like a fine
idea ends up being a waste of time due to implementation
flaws/limits unforeseen during the design phase. This
tutorial demonstrates a handy set of tools to help quickly
test cipher systems you’ve implemented.

We’ll be using a simple demo C program created just
for this tutorial (Listing 1). As the comments explain
once compiled this application will encrypt/decrypt text
strings respectively using the -e/-d parameters.

Most basic ciphers use a symmetric algorithm
(deciphering the encipherment is simply the reverse
process of enciphering without use of external keys).
This specific one uses the uppercase limitation/filter
of A-Z (ASCII 65 – 90). This means if the input is not
in between the 26 letter alphabet of A through Z it is
skipped. Otherwise the letter position is incremented
by a value of one. For example if the input letter is A
the result will be B, B becomes C, C becomes D. As
you’ve probably noticed this is a simple Caesar shift
cipher. Thus inversely to decipher C becomes B, B
becomes A.

This implementation is purposely flawed so there is
no wrap-around; however as some folks getting into
programming and crypto may not realize there needs to
be a modulo (%) component (shown in the code below)
implemented for what happens when the alphabet
needs to wrap around. This case becomes evident
when the letter Z is shifted up by one (or more). Adding
1 to the ASCII value of Z (90) turns it into 91 which in
turn is represented by the left square bracket (not a
letter in the alphabet at all). The intended shift in this
cipher is actually the letter A (ASCII value 65). Here’s a
way to handle it in C:

 printf(„IN\tS+1\t(S+1)MOD\n”);

 char string[]=”XYZ”, tmp; int x = 0;

 for (;x<strlen(string);x++){

 if (string[x] >= ‘Z’)

What you will learn...
crypto fundamentals, building and testing algorithms quickly

What you should know...
basic programming for programmatic implementation

Listing 1. Source demo algorithm implementation

// demo.c cc demo.c -o demo && ./demo -e test

// Mac OS X 10.7.1 Lion using (GCC) 4.2.1

#include <stdio.h>

#include <string.h>

void e(char test[20]){ // -e encrypt

 int x=0; for (;x<strlen(test);x++)

 if ((test[x]>=65) && (test[x]<=90))

 printf("%c",test[x]+1);

}

void d(char test[20]){ // -d decrypt

 int x=0; for (;x<strlen(test);x++)

 if ((test[x]>=65) && (test[x]<=90))

 printf("%c",test[x]-1);

} // this demo app shifts string 1 char right

int main (int argc, char * argv[]){

 if (argc == 3) {

 if (strcmp(argv[1],"-e")==0)

 e(argv[2]);

 if (strcmp(argv[1],"-d")==0)

 d(argv[2]);

 }else{

 printf("usage: demo [-e|-d] 'text'");

 return -1;

 }

 return 0;

} // EOF

CryptoTutorials

PART 4 Cryptography fundamentals:
Crypto Tools

CryptoTutorials

PART 4 Cryptography fundamentals:
Crypto Tools

 tmp=(string[x])%’Z’+’A’;

 else

 tmp=string[x]+1;

 printf(„%c\t%c\t%c\n”,string[x],string[x]+1,tmp);

 }

which when compiled and ran runs the following result:

IN S+1 (S+1)MOD

X Y Y

Y Z Z

Z [A

... in the initial output (S+1) demonstrates what
demo.c will output and is expected to fail the test for
a successful algorithm as it does not meet the criteria
of only allowing uppercase letters for input. The
secondary output (S+1)MOD handles the wraparound
to match correctly when the tolerance is met/
exceeded.

Someone not savvy in this may miss it and only start
to notice anomalies if not tested correctly. Homebrew
test strings may not reach this test case and may go into
production unnoticed until it is too late.

In the past I would run line by line tests then gather the
output and rerun the tests using the gathered output and

Listing 2. Source ctestio

#!/bin/bash

./ctestio.sh

Israel Torres <hakin9@israeltorres.org>

Tue Aug 23 18:16:59 PDT 2011

"CryptoTutorials 4: Crypto Tools"

this shell script tests the encoder/decoder

functions

- displays input and output character ratio

- verfies that the hashes match

./ctestio.sh 'ALGORITHM' 'PLAINTEXT'

created and tested on:

Mac OS X 10.7.1 Lion using GNU bash 3.2.48(1)-

release

#

if [! $# -ne 2]; then

TESTAPP=$1; PLAIN=$2; TSTMP=$(DATE +%s)

PSHA1=$(echo -n $PLAIN | shasum | cut -d ' ' -f 1)

ENCODE=$($TESTAPP -e "$PLAIN")

DECODE=$($TESTAPP -d "$ENCODE")

DSHA1=$(echo -n $DECODE | shasum | cut -d ' ' -f 1)

PLAINLEN=$(echo -n $PLAIN | wc -c)

ENCODELEN=$(echo -n $ENCODE | wc -c)

DECODELEN=$(echo -n $DECODE | wc -c)

echo -ne "PLAIN:\t$PLAIN\nENCOD:\t$ENCODE\nDECOD:

\t$DECODE\nRATIO:\t"

echo $PLAINLEN$ENCODELEN$DECODELEN

if ["$PSHA1" = "$DSHA1"]; then

 echo -e "MATCH:\t[PASS]"

else

 echo -e "MATCH:\t[FAIL]"

fi

else

 echo "usage: $0 'ALGORITHM' 'PLAINTEXT'"

 echo "example: $0 ./2011-08-12-4 HELLOWORLD"

fi

#EOF

Listing 3. Source ctestio-tests

#!/bin/bash

./ctestio-tests.sh

Israel Torres <hakin9@israeltorres.org>

Wed Sep 7 07:52:29 PDT 2011

"CryptoTutorials 4: Crypto Tools"

this shell script runs a serial of ctestios

add test lines below and run w/ ./ctestio-tests.sh

created and tested on: (GCC) 4.2.1

Mac OS X 10.7.1 Lion using GNU bash 3.2.48(1)-

release

function hashline { # 80 column

for i in {1..79}; do echo -n "#"; done; echo "#"

}

compile demo algo

gcc demo.c -o demo # compile algorithm

if [$? -eq 0]; then # check if compile good

hashline # first hashline - next append with

;hashline

PUT TESTS HERE BEGIN

./ctestio.sh ./demo ABCDEF; hashline # simple test 1

./ctestio.sh ./demo GHIJKL; hashline # simple test 2

./ctestio.sh ./demo TUWXYZ; hashline # simple test 3

PUT TESTS HERE END!!

else # message to fix it

echo something went horribly wrong - fix it!

fi

#EOF

CryptoTutorials

PART 4 Cryptography fundamentals:
Crypto Tools

then manually validate the strings matched (eyeballing).
During the long hours things may have been missed
only to reappear later (and usually in compromising
circumstances).

Enter ctestio (short for crypto test input output). This
bash script runs a few features to help validate that the
algorithm is running as expected and brings notice when
failures occur during the test line. Specific features of
the output log for ctestio (Listing 2) are as follows:

• unique timestamp per test
• visualization of encoded result
• visualization of decoded result
• visualization of character count (plain, encoded,

decoded)
• visualization of sha1 hash result (match:PASS/

FAIL)

Such various methods of validations include visual
inspection as well as hash comparison. The only input
necessary is either the plaintext or the encrypted text.
ctestio runs the string against the algorithm and feeds
itself (via variable handling) the results to which it runs
the comparison against and gives the results in the
output. This really handy for testing what-if scenarios
as well as building test cases for past and future

Web Links and References
• http://en.wikipedia.org/wiki/Caesar_cipher
• http://en.wikipedia.org/wiki/ASCII

Notes
All source code created and tested on:
Mac OS X 10.7.1 11B26
Darwin Kernel Version 11.1.0
GNU bash, version 3.2.48(1)-release
(GCC) 4.2.1

ISRAEL TORRES
Israel Torres is a hacker at large with interests in the hacking
realm.
hakin9@israeltorres.org http://twitter.com/israel_torres
Got More Time Than Money?
Try this month’s crypto challenge:
http://hakin9.israeltorres.orgFigure 1. ctestio-tests script running test

algorithms which helps in finding algorithmic weak
points.

The variables also hold the output as-intended so even
if the output contains non-printable characters /multiline
output it will feed them back during the encoding/
decoding phase. You’ll need to be aware of this as this
normally wouldn’t be able to done via the console input
without special care. It also allows you to make filters for
this within your algorithm implementation so such cases
aren’t met (on purpose).

For the batch processing part ctestio is wrapped by
another shell script aptly named ctestio-tests. (Listing 3)
This is what runs the test cases in batch showing each
test separated by an 80 column hex line (Figure 1).

After the batch file has run and logged to file via
redirector (>) it is simple enough to search for the
string ‘[FAIL]’ via grep. If all went well there will be no
such string. Finding one is just another turn into finding
the string that triggered the error and understanding
what changes are necessary before running the batch
process again.

As CryptoTutorials develops we’ll be adding more
tools to help build, analyze, solve and break algorithms.
Such tools are best used with the full understanding
of how they work so they can be rewritten in other
languages other than bash and expanded upon for
useful purposes.

http://en.wikipedia.org/wiki/Caesar_cipher
http://en.wikipedia.org/wiki/ASCII
mailto:hakin9@israeltorres.org
http://twitter.com/israel_torres
http://hakin9.israeltorres.org

