
8 Tetranglix: This Tetris is a Boot Sector
by Juhani Haverinen, Owen Shepherd, and Shikhin Sethi

Since Dakarand in a 512-byte boot sector would have been too easy, and
since both Tetris and 512-byte boot sectors are the perfect ingredients to a
fun evening, the residents of #osdev-offtopic on FreeNode took to writing
a Tetris clone in the minimum number of bytes possible. This tetris game
is available by unzipping this PDF file, through Github,6 by typing the hex
from page 32, or by scanning the barcode on page 31.

There’s no fun doing anything without a good challenge. This project
presented plenty, a few of which are described in this article.

To store each tetramino, we used 32-bit words as bitmaps. Each
tetramino, at most, needed a 4 by 4 array for representation, which could
easily be flatenned into bitmaps.

; All tetraminos in bitmap format.
tetraminos:

dw 0b0000111100000000 ; I -Z-- -S-- -O--
dw 0b0000111000100000 ; J
dw 0b0000001011100000 ; L 0000 0000 0000
dw 0b0000011001100000 ; O 0110 0011 0110
dw 0b0000001101100000 ; S 0011 0110 0110
dw 0b0000111001000000 ; T 0000 0000 0000
dw 0b0000011000110000 ; Z

Instead of doing bound checks on the current position of the tetramino, to ensure the user can’t move it
out of the stack, we simply restricted the movement by putting two-block wide boundaries on the playing
stack. The same also added to the esthetic appeal of the game.

To randomly determine the next tetramino to load, our implementation also features a Dakarand-style
random number generator between the RTC and the timestamp counter.

; Get random number in AX.
rdtsc ; The timestamp counter.
xor ax, dx

; (INTERMEDIATE CODE)

; Yayy, more random.
add ax, [0x046C] ; And the RTC (updated via BIOS).

The timestamp counter also depends on how much input the user provided. In this way, we ensure that
the user adds to the entropy by playing the game.

Apart from such obvious optimizations, many nifty tricks ensure a minimal byte count, and these are
what make our Tetranglix code worth reading. For example, the same utility function is used both to blit
the tetramino onto the stack and to check for collision. Further optimization is achieved by depending upon
the results of BIOS calls and aggressive use of inlining.

While making our early attempts, it looked impossible to fit everything in 512 bytes. In such moments of
desperation, we attempted compression with a simplified variant of LZSS. The decompressor clocked at 41
bytes, but the compressor was only able to reduce the code by 4 bytes! We then tried LZW, which, although
saved 21 bytes, required an even more complicated decompression routine. In the end, we managed to make
our code dense enough that no compression was necessary.

6https://github.com/Shikhin/tetranglix

30



Since the project was written to meet a strict deadline, we couldn’t spend more time on optimization
and improvement. Several corners had to be cut.

The event loop is designed such that it waits for the entirety of two PIT (programmable interval timer)
ticks—109.8508mS–—before checking for user input. This creates a minor lag in the user interface, something
that could be improved with a bit more effort.

Several utility functions were first written, then inlined. These could be rewritten to coexist more
peacefully, saving some more space.

As a challenge, the authors invite clever readers to clean up the event loop, and with those bytes shaved
off, to add support for scoring. A more serious challenge would be to write a decompression routine that
justifies its existence by saving more bytes than it consumes.

; IT’S A SECRET TO EVERYBODY.
db "ShNoXgSo"

31



Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
0000_0000 ea 05 7c 00 00 31 db 8e d3 bc 00 7c 8e db 8e c3
0000_0010 fc bf 04 05 b9 b6 01 31 c0 f3 aa b0 03 cd 10 b5
0000_0020 26 b0 03 fe c4 cd 10 b8 00 b8 8e c0 31 ff b9 d0
0000_0030 07 b8 00 0f f3 ab be 2a 05 66 b8 db db db db 66
0000_0040 89 44 fd 89 44 01 83 c6 10 81 fe ba 06 76 f0 30
0000_0050 d2 be 24 05 bf b8 7d fb 8b 1e 6c 04 83 c3 02 39
0000_0060 1e 6c 04 75 fa 84 d2 75 37 fe c2 60 0f 31 31 d0
0000_0070 31 d2 03 06 6c 04 b9 07 00 f7 f1 89 d3 d0 e3 8b
0000_0080 9f e8 7d bf 04 05 be db 00 b9 10 00 30 c0 d1 e3
0000_0090 0f 42 c6 88 05 47 e2 f4 61 c7 04 06 00 e9 a5 00
0000_00a0 b4 01 cd 16 74 59 30 e4 cd 16 8b 1c 80 fc 4b 75
0000_00b0 06 fe 0c ff d7 72 46 80 fc 4d 75 06 fe 04 ff d7
0000_00c0 72 3b 80 fc 48 75 38 31 c9 fe c1 60 06 1e 07 be
0000_00d0 04 05 b9 04 00 bf 13 05 01 cf b2 04 a4 83 c7 03
0000_00e0 fe ca 75 f8 e2 ef be 14 05 bf 04 05 b1 08 f3 a5
0000_00f0 07 61 e2 d7 ff d7 73 07 b9 03 00 eb ce 89 1c fe
0000_0100 44 01 ff d7 73 3f fe 4c 01 30 d2 60 06 1e 07 ba
0000_0110 99 7d e8 87 00 31 c9 be 2a 05 b2 10 30 db ac 84
0000_0120 c0 0f 44 da fe ca 75 f6 84 db 75 0b fd 60 89 f7
0000_0130 83 ee 10 f3 a4 61 fc 83 c1 10 81 f9 90 01 72 da
0000_0140 07 61 e9 f1 fe 60 bf 30 00 be 2a 05 b9 10 00 ac
0000_0150 aa 47 aa 47 e2 f9 83 c7 60 81 ff a0 0f 72 ed 61
0000_0160 60 8a 44 01 b1 50 f6 e1 0f b6 3c d1 e7 83 c7 18
0000_0170 01 c7 d1 e7 b1 10 be 04 05 b4 0f 84 c9 74 16 fe
0000_0180 c9 ac 84 c0 26 0f 44 05 ab ab f6 c1 03 75 ec 81
0000_0190 c7 90 00 eb e6 61 e9 bf fe 08 05 c3 60 e8 35 00
0000_01a0 b1 10 84 c9 74 10 fe c9 ac ff d2 47 f6 c1 03 75
0000_01b0 f1 83 c7 0c eb ec 61 c3 60 f8 ba c2 7d e8 dc ff
0000_01c0 61 c3 3c db 75 0e 81 ff ba 06 73 04 3a 05 75 04
0000_01d0 83 c4 12 f9 c3 0f b6 44 01 c1 e0 04 0f b6 1c 8d
0000_01e0 78 06 01 c7 be 04 05 c3 00 0f 20 0e e0 02 60 06
0000_01f0 60 03 40 0e 30 06 53 68 4e 6f 58 67 53 6f 55 aa

This is a complete Tetris game.

32


