
3 This OS is a Boot Sector

by Shikhin Sethi, Merchant of 3.5” Niftiness

Writing an Operating System is easy. Explaining how to
write one isn’t. Most introductory articles on the same obfus-
cate the workings of the necessary components of an OS with
design paradigms the writers feel best complement the OS. This
article, the first in my PoC‖GTFO series on just how a modern
OS works, is different—it tries to properly, yet succinctly, ex-
plain all the requisite components of an OS—in 512 bytes per
article.

The magic begins with the processor starting execution on
reset at the linear address 0xFFFFFFF0. This location contains
a jump to the Basic Input/Output System (BIOS) code, which
starts with the Power On Self Test (POST), followed by ini-
tialization of all requisite devices. In a predetermined order,
the BIOS then checks for any bootable storage medium in the
system. Except for optical drives, a bootable disk is indicated
via a 16-bit 0xAA55 identifier at the 510-byte mark (end of
first 512-byte sector).2

If a bootable medium is found, the first sector is loaded at
the linear address 0x7C00 and jumped to. If none is found, the
BIOS lovingly displays “Operating System not found.”3

3.1 Real Mode

The first ancestor of today’s x86 architecture was the 8086, introduced in 1978. The processor featured no
memory protection or privilege levels. By 1982, Intel had designed and released the 80286, which featured
hardware-level memory protection mechanisms, among other features. However, to maintain backward
compatibility, the processor started in a mode compatible with the 8086 and 80186, known as real mode.
(Feature wise, the mode lacks realness on all accounts.)

Real mode features a 20-bit address space and limited segmentation. The mode featuring memory
protection and a larger address space was called the protected mode.

Note that the 16-bit protected mode introduced with the 80286 was enhanced with the 80386 to form
32-bit protected mode. We will be targeting only the latter.

3.2 Segmentation

The 8086 had 16-bit registers, which were used to address memory. However, its address bus was 20-bit.
To take advantage of its full width and address the entire 1MiB physical address space, the scheme of
‘segmentation’ was devised.

In real-mode segmentation, 16-bit segment registers are used to derive the linear address. The registers
CS, DS, SS, and ES point to the current code segment, data segment, stack segment respectively, with ES
being an ‘extra’ segment.

The 80386 introduced the FS and GS registers as two more additional segment registers.

20xAA55 is representable as 0b1010101001010101. The alternating bit pattern, with 0x55 being an inversion of 0xAA, was
taken as an insurance against even extreme controller failure. The same identifier is also used in other parts of the BIOS
interface.

3There is no deep reason behind 0x7C00 being the load address. This is how programming usually works (and standards
proliferate).

5

The 16-bit segment selector in the segment register yields the 16 significant bits of the 20-bit linear
address. A 16-bit offset is added to this segment selector to yield the linear address. Thus, an address of the
form:

(Segment) : (Offset)

can be interpreted as,

(Segment << 8) +Offset

This, however, can yield multiple (Segment):(Offset) pairs for a linear address. This problem persists
during boot time, when the BIOS hands over control to the linear address 0x7C00, which can be represented
as either 0x0000:0x7C00 or 0x07C0:0x0000. (Even the very first address the processor starts executing
at reset is similarly ambiguous. In fact, 8086 and 80286 placed different values into CS and IP at reset,
0xFFFF:0x0000 and 0xF000:0xFFF0 respectively.) Therefore, our bootloader starts with a far jump to reset
CS explicitly, after which it initializes other segment registers and the stack.

; 16− b i t , 0x7C00 based code .
org 0x7C00
b i t s 16

; Far jump , r e s e t CS to 0 x0000.
; CS cannot be s e t v ia a ’mov ’ , and r e qu i r e s a f a r jump.
s t a r t :

jmp 0x0000 : seg_setup

seg_setup :
xor ax , ax
mov ds , ax
mov ss , ax

Stack

The x86 also offers a hardware stack (full-descending). SS:(E)SP points to the top of the stack, and the
instructions push/pop directly deal with it.

; S t a r t the s t a c k from beneath s t a r t (0 x7C00) .
mov esp , s t a r t

Flags

A direction flag in the (E)FLAGS register controls whether string operations decrement or increment their
source/destination registers. We clear this flag explicitly, which implies that all source/destination registers
should be incremented after string operations.

; Clear d i r e c t i o n f l a g .
cld

The A20 Line

On the original 8086, the last segment started at 0xFFFF0 (segment selector = 0xFFFF). Thus, with offset
greater than 0x000F, one could potentially access memory beyond the 1MiB mark. However, having only
20 addressing lines, such addresses wrapped around to the 0MiB mark. An access of 0xFFFF:0x0010 would
yield an access to 0x0000 (wrapped around from 0x10000) on the 8086.

6

The 80286, however, featured twenty-four address bits. Delighted hackers, on the other hand, had already
exploited the wrap-around of addresses on the 80(1)86 to its fullest extent. Intel maintained backwards
compatibility by introducing a software programmable gate to enable or disable the twenty-first addressing
line (called the A20 line), known as the A20 gate. The A20 gate was disabled on-boot by the BIOS.

; Read the 0x92 p o r t .
in al , 0x92
; Enable f a s t A20.
or al , 2
; Bi t 0 i s used to s p e c i f y f a s t r e se t , ’ and ’ i t ou t .
and al , 0xFE
out 0x92 , al

3.3 Protected mode
Segmentation Revisited

The introduction of protected mode featured an extension to the segmentation model, to allow rudimentary
memory protection. With that extension, each segment register contains an offset into a table, known as
the global descriptor table (GDT). The entries in the table describe the segment base, limit, and other
attributes—including whether code in the segment can be executed, and what privilege level(s) can access
the segment.

At the same time, Intel introduced paging. The latter was much easier to use for fine-grained control
and different processes, and quickly superseded segmentation. All major operating systems setup ‘linear’
segmentation where each segment is a one-on-one mapping of the physical address space, after which they
ignore segmentation.

As paging was extended to cover most cases, segmentation was left with only an empty shell of its former
glory. However, it inspired OpenWall’s non-executable stack patch and PaX’s SEGMEXEC—both of which
couldn’t have been implemented with vanilla x86 paging.

Note that the new segment selectors are only valid for 32-bit protected mode, and we’ll reload them after
the switch to that mode.

; D i sab l e i n t e r r u p t s .
c l i
; Load the GDTR − the po in t e r to the GDT.
lgdt [gdtr]

; The GDT.
gdt :

; The f i r s t en try in the GDT i s supposed to be a
; n u l l entry , but we ’ l l s u b s t i t u t e i t wi th the
; ’ po in t e r to gd t ’ .
gdtr :

; S i z e o f GDT − 1 .
; 3 en t r i e s , each 8 b y t e s .
dw (0 x8 ∗ 3) − 1
; Pointer to GDT.
dd gdt
; Make i t 8 b y t e s .
dw 0x0000

; The code en t r y .
dw 0xFFFF ; F i r s t 16− b i t s o f l i m i t .

7

dw 0x0000 ; F i r s t 16− b i t s o f b a s e .
db 0x00 ; Next 8− b i t s o f b a s e .
db 0x9A ; Read/ wr i t a b l e , e xecu tab l e , p r e s en t .
db 0xCF ; 0 b11001111.

; The l e a s t s i g n i f i c a n t four b i t s are next four b i t s o f
; l i m i t .
; The most s i g n i f i c a n t two b i t s s p e c i f y t h a t t h i s i s f o r
; 32− b i t p ro t e c t ed mode , and t ha t the 20− b i t l im i t i s in
; 4KiB b l o c k s . Thus , the 20− b i t 0b11111111111111111111
; s p e c i f i e s a l im i t o f 0xFFFFFFFF.

db 0x00 ; Last 8− b i t s o f b a s e .

; The data en t r y .
dw 0xFFFF, 0x0000
db 0x00
db 0x92 ; Read/ wr i t a b l e , p r e s en t .
db 0xCF
db 0x00

No More Real (Mode)

The switch to protected mode is relatively easy, involving merely setting a bit in the CR0 register and then
reloading the CS register to specify 32-bit code.

mov eax , cr0
or eax , 1 ; Set the p ro t e c t i on enab l e b i t .
mov cr0 , eax
jmp 0x08 : protected_mode

b i t s 32
protected_mode :

; S e l e c t o r 0x10 i s the data s e l e c t o r o f f s e t .
mov ax , 0x10
mov ds , ax
mov es , ax
mov ss , ax

3.4 Paging
“Paging is called paging because you need to draw it on pages in your notebook to succeed at it.”

—Jonas ‘Sortie’ Termansen

Virtual Memory

The concept of virtual memory is to have per-process virtual address spaces, with particular virtual ad-
dresses automatically mapped onto physical addresses for each process. Compared with segmentation, such
a technique offers the illusion of contiguous physical memory and fine-grained privilege control.

To brush up the concept of virtual memory, follow along with the hand-drawn illustration in Figure 1.

Virtual Memory (x86)

On the x86, the task of mapping virtual addresses to physical addresses is managed via two tables: the page
directory and the page table. Each page directory contains 1024 32-bit entries, with each entry pointing to a

8

Figure 1: Virtual Memory

page table. Each page table contains 1024 32-bit entries, each pointing to a 4KiB physical frame. The page
table in entirety addresses 4MiB of physical address space. The page directory, thus, in entirety addresses
4GiB of physical address space, the limit of a 32-bit address space.

The first page table pointed to by the page directory maps the first 4MiB of the virtual address space to
physical addresses, the next to the next 4MiB, and so on.

The address of the page directory is loaded into a special register, the CR3.

Figure 2: X86 Paging

; 0x8000 w i l l be our page d i r e c t o ry , 0x9000 w i l l be the
; page t a b l e .

; From 0x8000 , c l e a r one 0x1000−l ong frame.
mov edi , 0x8000
mov cr3 , edi
xor eax , eax
mov ecx , (0 x1000 /4)

; S tore EAX − ECX numbers o f t ime .

9

rep stosd

; The page t a b l e address , present , read/ w r i t e .
mov dword [edi − 0x1000] , 0x9000 | (1 << 0) | (1 << 1)

; Map the f i r s t 4MiB onto i t s e l f .
; Each entry i s present , read/ w r i t e .
or eax , (1 << 0) | (1 << 1)
. setup_pagetab le :

stosd
add eax , 0x1000 ; Go to next p h y s i c a l add r e s s .
cmp edi , 0xA000
jb . s e tup_pagetab le

; Enable pag ing .
mov eax , cr0
or eax , 0x80000000
mov cr0 , eax

Extensions to the paging logic allowed 32-bit processors to access physical addresses larger than 4GiB,
in the form of Physical Address Extension (PAE). The same also added a NX bit to mark pages as non-
executable (and trap on instruction fetches from them).

Recursive Map

Figure 3: Recursive Page Mapping

In our simplistic case, the entire first 4 megabytes were mapped onto themselves, to so-called identity
map. In the Real WorldTM, however, it is often the case that the physical memory containing the page
directory/tables is not mapped into the virtual address space. Instead of creating a different page table to
point to the existing paging structures, a neat trick is deployed.

Before explaining the trick, note how the page directory and the page table has the exact same structure,
including the attributes. What happens, then, if an entry in the page directory were to point to itself? The
page directory will be interpreted as a page table. This ‘page table’ will have entries to actual page tables.

10

However, the CPU will interpret them as entries corresponding to page frames, allowing you to access them
via the virtual address the page directory was self-mapped to. If that makes your head hurt, the illustration
in Figure 3 might help.

Translation Lookaside Buffer (TLB)

When a virtual memory address is accessed, the CPU is required to walk through the page tables to determine
the page table entry for the specified virtual address. However, walking through the page tables is slow.
In the worst case, a walkthrough requires the processor to do a lookup from RAM for the page directory,
followed by a lookup from RAM for the page table, where a RAM lookup latency is in the order of 100
times that of a cache lookup latency. Instead, the CPU maintains a cache of the virtual address to physical
address translation, known as the Translation Lookaside Buffer (TLB).

When a virtual address is accessed, the CPU first determines if a mapping is present in the TLB. Only
if the CPU fails to find one there, it walks through the actual page tables and then populates the TLB with
the translation.

A problem with the TLB is that changes across the page table don’t get reflected in it automatically.4
On the x86, there exist two mechanisms to flush particular entries in the TLB:

1. The instruction ‘invlpg address‘ invalidates the TLB entry for the page that contains ‘address‘.

2. Reloading CR3 with the address of a page directory flushes all the entries in the TLB. 56

3.5 Till Next Time
The article got us through the backward-compatibility mess that defines the x86 boot process, into protected
mode with paging enabled. In the next issue, we’ll look at x86 interrupt handling, the programmable interrupt
timer, multiprocessor initialization, and then the local APIC timer. We’ll also answer some unanswered
questions (like what happens if a page table entry doesn’t exist) and conclude with a (hopefully) nifty
proof-of-code.

Till then,

hlt :
hlt
jmp hlt

poCoRgtfO

4This is how PaX’s PAGEEXEC emulates the NX bit by memory trapping with very little performance overhead: it sets
the page table entries for the “data” pages to always trap, but allows a data access (i.e., EIP not in the accessed page) to go
through. After this, it immediately resets the page table entry, but relies on the TLB for repeated page accesses to not trap.
Truly, it is a work of art! –PML

5CR3 is usually reloaded to change the process context (will be covered across future articles). However, a change of process
does not require that the entries for the kernel pages in the TLB get flushed. To avoid so, the global bit in the page table entry
can be set, and global pages can be enabled in CR4. Doing so ensures that the entry for the specific page in the TLB can only
be invalidated via a ‘invlpg‘.

6The x86-64 architecture saw the introduction of tags as a part of the TLB entry, in 2008. Thus, each TLB entry is associated
with a particular tag, and context switches can only involve changing of the current tag.

11

