
6 Dumping Firmware from Tamagotchi Friends by Power Glitching
by Natalie Silvanovich, Tamagotchi Merchant of Death

with the kindest of thanks to Mr. Blinky.

Figure 5: These sprites were among many dumped from the Tamagotchi Friends ROM.

The Tamagotchi Friends is the latest addition to the Tamagotchi series of virtual pet toys. Released
on Boxing Day of 2013, it features NFC messaging and games as a part of a traditional Tamagotchi toy.
Recently, I used glitching to dump the code of the Tamagotchi Friends.

The code for the Tamagotchi Friends is stored in mask ROM internal to its GeneralPlus GPLB series
LCD controller. In the previous Tamagotchi version (the Tamatown Tama-Go), I used a vulnerability in the
processing of external data from a flash accessory to dump the code, but this is not possible for the Tamagotchi
Friends, as it does not support flash accessories. In fact, the Tamagotchi Friends has a substantially reduced
attack surface compared to the Tamatown Tama-Go, as it also does not support infrared communications.
The only available inputs on the Tamagotchi Friends are the buttons, the EEPROM (which is used to store
important persistent data, like the number of slices of carrot cake your Tamagotchi has on hand) and NFC.

After eavesdropping on and simulating the NFC, and dumping and rewriting the EEPROM, I determined
that they both had limited potential to contain exploitable bugs. They did both appear to fill buffers in
RAM with user-controlled data in the course of normal operation though, which meant they both could be
useful for creating shellcode buffers in the case that there was a bug that allowed the program counter to be
moved to the buffer.

One possible way to move the program counter was glitching, basically driving unexpected signals into
the microcontroller and hoping that they would somehow cause that program counter to change and by
chance land in the shell code buffer. Considering that memory space of the microcontroller is 65,536 bytes,
and the largest buffer I could fill with a NOP slide is roughly 60 non-contiguous bytes this sounds like a long
shot, but the 6502 architecture used by the microcontroller has some properties that makes random program
counter corruption more likely to lead to code execution compared to other architectures. To start, it has no
memory validation, so any access of any address will succeed, regardless of whether any memory is mapped
to the location. This means that execution will not stop even if an invalid address is accessed. Also, invalid

19

opcodes on 6502 are guaranteed to execute in a finite amount of time8 with undefined behaviour, so they
also will not stop execution. Together, these properties make it very unlikely that execution will ever stop
on a 6502 processor, giving shellcode a lot of chances to get executed in the case that the program counter
is corrupted.

Another useful feature of this particular microcontroller is that the
RAM starts at address zero, and the lowest hundred bytes or so of RAM
is used by the SPU and is often zero. In 6502, zero is the opcode for
BRK, which acts like NOP if a debugger is not attached, so this RAM
could potentially act as a NOP slide. In addition, in the Tamatown Tama-
Go (and I assumed the Tamagotchi Friends), the EEPROM is copied
to address 0x300, which is still fairly low in RAM addresses. So if the
program counter got set to zero, there is a possibility it could slide through
RAM up to the EEPROM. Of course, not every value in RAM before
0x300 is zero, but if enough are, it is likely that the other values will be
interpreted as instructions that don’t alter the program counter’s course
some portion of the time.

Since setting the program counter to zero seemed especially likely to
cause code execution, I started by glitching the input power, as this had
the potential to clear the program counter. The Tamagotchi Friends
has three types of volatile memory: registers like the program counter,
DPRAM (used for the LCD) and SRAM. DPRAM and SRAM both have
fairly long persistence after they stop being powered, so I hoped if I cut the
power to the microcontroller for a short period of time, it would corrupt
the registers, but not the RAM, and resume execution with the program
counter at address zero.

I tried this using an Arduino to switch the power on and off at differ-
ent speeds. For very fast speeds, the Tamagotchi didn’t react at all, and
for very slow speeds, it would reset every cycle. I eventually settled on
cycling every five milliseconds, which had a visible erratic impact on the
Tamagotchi after each cycle. At this rate, the toy was displaying an un-
expected image on the LCD, corrupting the LCD, playing Yankee Doodle
or screeching loudly.

I filled up the EEPROM with a large NOP slide and some code that
caused a write to the LCD screen, reset the Tamagotchi so the EEPROM
was downloaded into RAM, and cycled the power. Roughly one out of
every ten times, the code executed and wrote the LCD.

I then moved the code around to figure out the size of the available
code buffer. Two things limited the size. One is that only a small part of
the EEPROM is copied into RAM at once, and the rest is only loaded if
needed. The second is that some EEPROM addresses are validated. For
some of these addresses, containing very critical values, the EEPROM is wiped immediately if the Tamagotchi
detects an invalid value. These addresses couldn’t be used for code at all. Some other less critical values get
overwritten if they are invalid. For example, if a Tamagotchi is a child, but is married, the “is married” flag
will be reset to the correct value. These addresses could be changed, but there was no guarantee they would
stay the correct value, so I ended up jumping over them. This left exactly 54 bytes for code. It was tight,
but I was able to write code that dumped the ROM over SPI through the Tamagotchi buttons in that space

The following is the shellcode I used:

SEI ; d i s ab l e the low batte ry i n t e r r up t
LDA #$FF

8A few people have mentioned to me that there are certain versions 6502 processors for which this is not true, but this is
definitely the case for GeneralPlus controllers.

20

STA $3011 ; port d i r e c t i o n
STA $1109 ; LCD ind i c a t o r
STA $00C5
STA $00C6
LDX #$08
LDA ($C5) ,Y ; No room to i n i t i a l i z e Y. Worst case ,
ASL A ; i t w i l l be s e t to 0 at the end o f the loop .
LDY #$01
BCC $001A
LDY #$03
BNE $0020 ; These 4 bytes get a l t e r e d be f o r e execut ion . Jump over them .
NOP
NOP
NOP
NOP
NOP
STY $3012
LDY #$00
STY $3012
DEX
BNE $0013
INC $00C5
BNE $000F
INC $00C6
BNE $000F
LDA #$00
STA $3000
BNE $000F ; Branches are sho r t e r than jumps , so use impl i ed cond i t i on s .

In memory, this shellcode is as follows:

300 : 32 17 02 01 02 01 09 00 1A 00 1A 1A 1A 1A 1A 1A
310 : 20 FF 06 10 01 FF FF 02 77 77 77 77 77 77 77 77
320 : 77 77 77 77 77 05 04 FF 77 77 55 00 77 77 7F 00
330 : FF FF 40 EA EA EA EA EA 00 00 00 00 00 00 00 00
340 : 03 78 A9 FF 8D 11 30 8D 09 11 8D C5 00 8D C6 00
350 : A2 08 B1 C5 0A A0 01 90 02 A0 03 D0 04 EA 00 00
360 : 03 EA 8C 12 30 A0 00 8C 12 30 CA D0 E7 EE C5 00
370 : D0 DE EE C6 00 D0 D9 4C 4B 03 15 11 4C 38 00 00

The code begins at 341 and ends at 376, which are the bounds of the buffer copied from the EEPROM.
The surrounding values are typical values of the surrounding RAM which are not consistent across each time
code is executed. The 0x03 before the beginning of the code is written after the buffer, and is an undefined
instruction in 6502. Unfortunately, this means that there isn’t room for any NOP sled, the program counter
needs to end up at exactly the right address.

One useful feature of this shellcode is that the first seven instructions aren’t strictly necessary! The
registers are often the right value, or an acceptable value by chance, which gives the program counter a bit
more leeway in the case that it jumps a bit beyond the beginning of the code.

I dumped all thirty-two pages of ROM using this shellcode, and they appear to be accurate. Figure 5
shows the highlights of the dump, organized by cuteness in descending order.

21

