
7 Lenticrypt: a Provably Plausibly Deniable Cryptosystem; or,
This Picture of Cats is Also a Picture of Dogs

by Evan Sultanik

Deniable cryptosystems allow their users to plausibly deny the
existence of the plaintext content of their encrypted data. There are
many existing technologies for accomplishing this (e.g., TrueCrypt),
which usually accomplish it by having multiple separate encrypted
volumes in the ciphertext that will decrypt to different plaintexts
depending on which decryption key is used. Key k1 will decrypt
to innocuous volume v1 whereas key k2 will decrypt to high-value
volume v2. If an adversary forces you to reveal your secret key, you
can simply reveal k1 which will decrypt to v1: the innocuous volume
full of back-issues of PoC‖GTFO and pictures of cats. On the other
hand, if the adversary somehow detects the existence of the high-
value volume v2 and furthermore gains access to its plaintext, the
jig is up and you can no longer plausibly deny its contents’ existence.
This is a serious limitation, since the high-value plaintext might be
incriminating.

An ideal deniable cryptosystem would allow the creator of the ciphertext to plausibly deny having created
the plaintext regardless of whether the true high-value plaintext is revealed. The obvious use-case is for
transmitting illegal content: Alice wants to encrypt and send her neighbor Bob a pirated copy of the
ColecoVision game George Plimpton’s Video Falconry. She doesn’t much care if the plaintext is revealed,
however, she does want to have a plausible legal argument in the event that she is prosecuted whereby she
can deny having sent that particular file, even if the high-value file is revealed. In the case of systems like
TrueCrypt, she can’t really deny having created the alternate hidden volume containing the video game since
the odds of it just randomly occurring there and a key happening to be able to decrypt it are astronomically
small. But what if, using our supposed “ideal” cryptosystem, she could plausibly claim that the existence of
the video game was due to pure random chance? It turns out that’s possible, and we have the PoC to prove
it!

Before we get to the details, let’s first dispel the apparent nefariousness of this concept by discussing
some more legitimate use-cases. For example, we could encrypt a high-value document such that it decrypts
to either a redacted or unredacted version depending on the key. If the recipients are not aware that they
have unique keys, one could deliver what appears to be a single encrypted message to multiple recipients
with individualized content. The individualization of the content could also be very subtle, allowing it
to be used as a unique watermark to identify the original source of a leaked document: a so-called “canary
trap.” Finally, “deep-inspection” filters could be evaded by encrypting an innocuous payload with a common,
guessable password.

7.1 Running Key Ciphers

A running key cipher is one of the most basic cryptosystems, yet, if used properly, it can be one of the most
secure. Being avid PoC‖GTFO readers, Alice and Bob both have a penchant for treatises with needlessly
verbose titles that are edited by Right Reverend Doctors. Therefore, for their secret key they choose to use
a copy of a seminal work on cryptography by the Rt. Revd. Dr. Lord Bishop John Wilkins FRS.

22

Mercury :
or the

Secret and Swift

Messenger.
s h e w i n g,

How a Man may with Privacy and
Speed communicate his Thoughts

to a Friend at any diõance.

T˙ Second Edition

By the Right Reverend Father in God,
J o h n W i l k i n s, late Lord

Bishop of C h e s t e r.
F�o�under �o�f �t�he R�o�ya�l S�o�ciet�y

L O N D O N,
Printed for Ri˜. Baldwin, near the

Oxford-Arms in Warwick-lane. .

They have agreed to start their running key on the first line of the book, which reads:

Every rational creature, being of an imperfe� and dependant Happiness, is
therefore naturally endowed with an Ability to communicate its own Thoughts
and Intentions ; that so by mutual Services, it might better promote it self in the
Prosecution of its own Well-being.

“
”

The encryption algorithm is then very simple: Each character from the running key is used as a rotation
to permute the associated character of the plaintext. For example, say that the first character of our plaintext
is “A”; we would take the first character of our running key, “E”, look up its numerical index in the alphabet,
and rotate the plaintext by that much to produce the ciphertext.

Plaintext: AN ADDRESS TO THE SECRET SOCIETY OF POC OR GTFO. . .
Running Key: EV ERY|RATI ON AL|C REATUR E|BEING|O F|A N|IM PE RFEC. . .

Ciphertext: EI EUBIELA HB TSG JICKYK WPGQRZM TF CWO DV XYJQ. . .

There are of course many other ways the plaintext could be combined with the running key, another common
choice being XORing the bits. If the running key is truly random then the result will almost always be what
is called a “one-time pad” and will have perfect secrecy. Of course, my expository example is nowhere near
secure since I preserved whitespace and used a running key that is nowhere near random. But, in practice,
this type of cryptosystem can be made very secure if implemented properly.

7.2 Book Ciphers

Perhaps the most basic type of cryptosystem—one that we’ve all likely independently discovered in our early
childhood—is the substitution cipher: Each letter in the alphabet is statically mapped to another. The most
common substitution cipher is ROT13, in which the letters of the alphabet are rotated 13 steps.

23

a b c d e f g h i j k l m n o p q r s t u v w x y z

o p q r s t u v w x y z a b c d e f g h i j k l m n

In fact, we can think of the running key cipher we described above as a sort of substitution cipher in which
the alphabet mapping changes for each byte based off of the key.

Book Ciphers marry some of the ideas of substitution ciphers and running key ciphers. First, Alice and
Bob decide on a shared secret, much like the book they chose as a running key above. The shared secret needs
to have enough entropy in order to have at least one instance of every possible byte in the plaintext. For
each byte in the shared secret, they create a lookup table mapping all 256 possible bytes to lists containing
all indexes (i.e., file offsets) of the occurrences of that byte in the secret:

with open(s e c r e t_key_f i l e) as s :
indexes = dict ([(b , []) for b in range (2 5 6)])
for i , b in enumerate(map(ord , s . read ())) :

indexes [b] . append (i)

Then, for each byte encountered in the plaintext, the ciphertext is simply the index of an equivalent byte in
the secret key:

def encrypt (p l a in t ex t , indexes) :
for b in map(ord , p l a i n t e x t) :

print random . cho i c e (indexes [b]) ,

To decrypt the ciphertext, we simply look up the byte at the specified index in the secret key:

def decrypt (c iphe r t ex t , s e c r e t_key_f i l e) :
with open(s e c r e t_key_f i l e) as s :

for index in map(int , c i ph e r t e x t . s p l i t ()) :
s . seek (index)
sys . s tdout . wr i t e (s . read (1))

In effect, what is happening is that Alice opens her book (the secret key), finds indexes of characters that
match the characters she has in her plaintext, writes those indexes down as her ciphertext, and sends it to
Bob. When Bob receives the ciphertext, he opens up his identical copy of the book, and for each index he
simply looks up the letter in the book and writes that down the letter into the decrypted plaintext. There
are various optimizations that can be made, vi&., using variable-length codes within the key similar to LZ77
compression (e.g., using words from the book instead of individual characters).

7.3 Lenticular Book Ciphers

In the previous section, I showed how a book cipher can be used to encrypt plaintext p1 to ciphertext c using
secret key k1. In order for this to be useful as a plausibly deniable cryptosystem, we will need to ensure
that given some other secret key k2, the same ciphertext c will decrypt to a totally different plaintext p2.
In this section I’ll discuss an extension to the book cipher which achieves just that. I call it a “Lenticular
Book Cipher,” inspired by the optical device that can present different images to the viewer depending on
the lens that is used. I was unable to find any description of this type of cryptosystem in the literature,
likely because it is very naïve and practically useless . . . except for in the context of our specific motivating
scenarios!

Given a set of plaintexts P = {p1, p2, . . . , pn} and a set of keys K = {k1, k2, . . . , kn}, we want to find
a ciphertext c such that decrypt(c,ki) 7→ pi for all i from 1 to n. To accomplish this, let’s consider an
individual byte within each of the plaintexts in P . Let pi[j] represent the jth byte of plaintext i. Similarly,
let’s define ki[j] and c[j] to refer to the jth byte of a key or the ciphertext. In order to encrypt the first byte

24

of all of the plaintexts, we need to find an index m such that ki[m] = pi[0] for i from 1 to n. In general, c[`]
can be any unsigned integer m such that

∀i ∈ 1, . . . , n : ki[m] = pi[`].

We can relatively efficiently find such an m by modifying the way we build the indexes lookup table:

def build_index (secret_keys) :
indexes = {}
for i , key_bytes in enumerate(zip (∗ secret_keys)) :

key_bytes = tuple (map(ord , key_bytes))
i f key_bytes not in i ndexes :

indexes [key_bytes] = [i]
else :

i ndexes [key_bytes] . append (i)
return i ndexes

Encryption then happens similarly to the regular book ciper:

def encrypt (p l a i n t ex t s , secret_keys) :
indexes = build_index (secret_keys)
for text_bytes in zip (∗ p l a i n t e x t s) :

text_bytes = tuple (map(ord , text_bytes))
print random . cho i c e (indexes [text_bytes]) ,

Decryption is identical to the regular book cipher.
So, in fewer than twenty lines of Python, we have coded a PoC of a cryptosystem that allows us to do

the following:

encrypt ([open(" p l a i n t ex t 1 ") . read () , open(" p l a i n t ex t 2 ") . read ()] ,
[open("key1") . read () , open("key2") . read ()])

If we pipe STDOUT to the file “cipher.enc”, we can decrypt it as follows:

with open(" c iphe r . enc") as enc :
decrypt (enc . read () , "key1") # This w i l l p r i n t out p l a i n t e x t 1
decrypt (enc . read () , "key2") # This w i l l p r i n t out p l a i n t e x t 2

There do seem to be a number of limitations to this cryptosystem, though. For example, what keys should
Alice use? The keys need to be long enough such that every possible combination of bytes that appears
across the plaintexts will occur in indexes; the length of the keys will need to increase exponentially with
respect to the number of plaintexts being encrypted. Fortunately, in practice, you’re not likely to ever need
to encrypt more than a few plaintexts into a single ciphertext. One possible source of publicly available keys
to use would be YouTube videos: Alice could simply download a video and use its raw byte stream as the
key. Then all she needs to do is communicate the name of or link to the video to Bill off-the-record.

I have created a complete and functional implementation of this cryptosystem, including some opti-
mizations (e.g., variable block length, compression, length checksums, error checking, &c.). It is available
here:

https://github.com/ESultanik/lenticrypt

7.4 Proving a Cat is Always Also a Dog
So far, I’ve gone through a lot of trouble to describe a cryptosystem of dubious information security9

whose apparent functionality is already available from tools like TrueCrypt. In this section I will make a
9While I do have a few letters after my name that suggest I know a thing or two about Computer Science, cryptography is

not my specific area of specialization.

25

mathematical argument that provides what I believe to be a legal basis for the plausible deniability provided
by lenticular book ciphers, enabling its use in our motivating scenarios.

Laws and contracts aren’t interpreted like computer programs; legal decisions are often dictated less by
the defendant’s actions than by his or her intent. In other words, if it appears that Alice intended to send
Bob a copy of Video Falconry, she will be found guilty of piracy, regardless of how she conveyed the software.

But what if Alice legitimately only knew that key k1 decrypted c to a picture of cats, and didn’t know
of its nefarious use to produce a copy of Video Falconry from k2? How likely would it be for k2 to produce
Video Falconry simply by coincidence?

For sake of this analysis, let’s assume that the keys are documents written in English. For example,
books from Project Gutenberg could be used as keys. I am also going to assume that each character in
a document is an independent random variable. This is a rather unrealistic assumption, but we shall see
that the asymptotic properties of the problem make the issue moot. (This assumption could be relaxed by
instead applying Lovász’s local lemma10.)

First, let’s tackle the problem of figuring out the probability that decrypt(c,k2) 7→ p2 completely by
chance. Let n be the length of the documents in characters and let m < n be the minimum required length
of a string for that text to be considered a copyright violation (i.e., outside of fair use). The probability that
decrypt(c,k2) contains no substrings of length at least m from p2 is

(1− qm)
(n−m+1)

,

where q is the probability that a pair of characters is equal. Here we have to take into account letter frequency
in English. Using a table from Wikipedia11, I calculate q to be roughly 6.5 percent (it’s the sum of squares
of the values in the table). According to Google, there are about 130 million books that have ever been
written12. Let’s be conservative and say that two million of them are in English. Therefore, the probability
that at least one pair of those books will produce a copyrighted passage from c is

1−
(
(1− qm)

(n−m+1)
)(20000002)

,

which is extremely close to 100% for all m < n� 2000000.
Therefore, for any ciphertext c produced by a lenticular book cipher, it is almost certain that there exists

a pair of books one can choose that will cause a copyright violation! Even though we don’t know what those
books might be, they must exist!

Proving that this is a valid legal argument—one that would hold up in a court of law—is left as an
exercise to the reader.

10Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. Infinite and
finite sets (Colloq., Keszthely, 1973; dedicated to Paul Erdős on his 60th birthday), Volume II, North-Holland, Amsterdam,
1975, pp. 609–627. Colloq. Math. Soc. János Bolyai, Volume 10.

11http://en.wikipedia.org/wiki/Letter_frequency#Relative_frequencies_of_letters_in_the_English_language
12Leonid Taycher. Books of the world, stand up and be counted! All 129,864,880 of you. August 5, 2010.

http://booksearch.blogspot.com/2010/08/books-of-world-stand-up-and-be-counted.html Retrieved March 21, 2014.

26

