
4 An Easter Egg in PCI Express
by Jacob Torrey

Dear Pastor Laphroaig,

Please consider the following submission to your church
newsletter. I hope you think it worthy of your holy parish-
ioners and readers.

Our friends at Intel are always providing Easter eggs for us
to enjoy, and having stumbled across a new one for x86, the
most neighborly option was naturally to share with all inter-
ested parties. This PoC is a weird quirk in which a newer x86
feature-set breaks invariants/security guarantees from older
version. Specifically, the newer PCI Express configuration
space access mechanism breaks virtual memory. Virtual mem-
ory is orchestrated by the CR3 register (storing the physical
address of the page tables) and the page tables themselves.
An issue with kernel shell-code and live memory forensics is
that unless the virtual address of the page tables is known, it
is impossible to map them (or any other physical address for
that matter) into virtual memory, resulting in a chicken-and-
egg problem. Luckily, most operating systems keep the page
tables at a known virtual address (0xC0000000 on many Win-
dows systems), but this Easter egg allows access to the page
tables on any OS.

In kernel space, CR3 can be read, providing the physical
address of the OS page tables; however, due to Intel’s virtual
memory protections, there is no way to create a recursive vir-
tual mapping to that physical address. All that is needed to do
so, is a way to write an arbitrary 32-bits (which will become a
PDE mapping in the page tables) to a known physical location.
This is the crux of the issue, and the security of virtual memory depends on it. Luckily, with the advent of
PCI Express, there is now the “Enhanced Configuration Access Mechanism” (ECAM), which shadows PCI
configuration space registers into physical memory at an address kept in the PCIEXPBAR register (D0:F0
offset: 0x60). This is typically enabled on all the systems the author has come across, but your mileage
may vary. With this ECAM, changes made to the configuration space via the legacy port I/O mechanism
(0xCF8/0xCFC) will be reflected in physical memory. Now all that is needed is a register in configuration
space that is at least 32-bits wide and can be changed to an arbitrary value without impacting the system.
Again, Intel is looking out for our church, and through their grace, they provide a “Scratchpad Data” register
(D0:F0 offset: 0xDC) that has no semantic meaning, just a location for software to store data. Now we have
the function ModifyPM() for physical memory. (This is for Windows 32-bit without PAE, running as driver
code.)

/∗∗
2 Sets up the PDE to map in the r e a l PDT using the MMIO ranges o f PCI

Conf igurat ion space
4 @return The PCIEXPBAR for comparison
∗/

6 ULONG ModifyPM()
{

8 ULONG MMIORange = 0 ;
__asm

10 {
pushad

11

12
// U t i l i z e the sc ra t ch pad r e g i s t e r as our mini−PDE

14 mov ebx , cr3
and ebx , 0xFFC00000 // This i s going to ho ld our new PDE (The b i t s in

16 // CR3 with the l e a s t s i g n i f i c a n t s t u f f removed)
or ebx , 0x83 // P | RW | PS

18
mov dx , 0 x0c f8

20 mov eax , 0x800000DC // Of f s e t 0x37 (0xDC / 4)
out dx , eax

22
mov dx , 0x0CFC

24 mov eax , ebx
out dx , eax // Write our PDE

26
// Determine where in phy s i c a l memory we can f ind the PDE

28 mov dx , 0 x0c f8
mov eax , 0x80000060

30 out dx , eax

32 mov dx , 0x0CFC
in eax , dx

34 mov MMIORange, eax // Save our va lue and BAM!

36 popad
}

38
i f (VDEBUG)

40 DbgPrint ("MMIO Base Address : %x" , MMIORange) ;

42 return MMIORange ;
}

Once the scratchpad register is primed and ready, and the physical address of the ECAM is known, the
next step is to treat the register as a PDE mapping in the OS page tables to add a recursive mapping at a
known location.

1 /∗∗
Sets up a r e cu r s i v e mapping to the OS page d i r e c t o r y

3 I commented i t very thorough ly because i t ’ s q u i t e complex .

5 Bas i c a l l y i t :
−> Saves the current (r e a l) CR3 va lue

7 −> Creates a new PDE to map in the (r e a l) PDT
−> Creates a v i r t u a l address us ing the (fake) PDE we in s e r t e d in ModifyPM

9 −> Switches to the (fake) CR3 and u t i l i z e s the cons t ruc ted v i r t u a l
address to i n s e r t the new recu r s i v e mapping in to the (r e a l) PDT

11 −> Switches the CR3 back and cont inues on smugly
∗/

13 ULONG recurMap ()
{

15 ULONG MMIORange = 0 ;
ULONG PDEBase = 0 ;

17 ULONG PDEoffset = 0 ;

19 // Sets up the (fake) PDE and
MMIORange = ModifyPM() ;

21 MMIORange &= 0xF0000000 ;

23 i f (VDEBUG)
DbgPrint ("Mapping PDT to i t s e l f ") ;

25
__asm {

12

27 c l i

29 pushad

31 // Save the current CR3, seems l i k e o v e r k i l l , but i t makes sense
mov ebx , cr3 // A copy to use to cons t ruc t our v i r t u a l address

33 mov ecx , cr3 // Save a copy so we don ’ t mess up t h in g s up too much

35 mov edx , MMIORange // Our new CR3 va l

37 // Setup our v i r t u a l address
and ebx , 0x003FFFFF // Gets us our o f f s e t in to s t u f f

39 or ebx , 0x0DC00000 // Reference the PDE o f f s e t o f (0 x37 << 22)
// EBX shou ld now have our v i r t u a l address :)

41
// Tests to see i f the PDE i s f r e e f o r use

43 test_pde :

45 add ebx , 0x4 // Of f s e t to unused PDE

47 // Keep the o f f s e t var up to date (but uint32 a l i gned , not u int8)
mov eax , PDEoffset

49 add eax , 0x1
mov PDEoffset , eax

51
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ BEGIN CRITICAL SECTION

53 mov cr3 , edx // In j e c t our new CR3

55 mov eax , [ebx] // Add our mi r t h f u l PDE entry which shou ld map in the PD
i nv lpg [ebx] // I n v a l i d a t e s the v i r t u a l address we used j u s t in

57 // case i t cou ld cause l a t e r problems .

59 mov cr3 , ecx // Restore eve ry th ing n i c e l y
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ END CRITICAL SECTION

61 cmp eax , 0 // Can we use t h i s entry ?
j e in ject_pde // Try the next one

63 jmp test_pde // Found an empty one , w00t !

65 // I n j e c t s our r e cu r s i v e PDE in to the PDT
in ject_pde :

67 // Setup our r e cu r s i v e PDE (again)
mov eax , cr3 // A copy to modify f o r our new recu r s i v e PDE

69 and eax , 0xFFC00000 // Only the most s i g n i f i c a n t b i t s s tay f o r 4M pages
or eax , 0x93 // P | RW | PS | PCD

71 // EAX now ho lds the same PDE to put in to the ’ r e a l ’ PDT
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ BEGIN CRITICAL SECTION

73 mov cr3 , edx // In j e c t our new CR3

75 mov [ebx] , eax // Add our mi r t h f u l PDE entry which shou ld map in the PD
i nv lpg [ebx] // I n v a l i d a t e s the v i r t u a l address we used j u s t in

77 // case i t cou ld cause l a t e r problems

79 mov cr3 , ecx // Restore eve ry th ing n i c e l y
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ END CRITICAL SECTION

81

83 // Determine the v i r t u a l address o f the base o f the PDT
// (remembering the d i f f e r e n c e s in al ignment)

85 mov eax , cr3 // A copy to modify f o r our new recu r s i v e PDE
and eax , 0x003FFFFF // Only the most s i g n i f i c a n t b i t s s tay f o r 4M pages

87 mov ebx , PDEoffset
s h l ebx , 22 // Of f s e t in to the PDT

89 or eax , ebx
mov PDEoffset , eax

91

13

popad
93

s t i
95 }

97 i f (VDEBUG)
DbgPrint ("Mapping complete should be mapped in at 0x%x ! " , PDEoffset) ;

99
return PDEoffset ;

101 }

The above, on a 32-bit non-PAE system, will return the virtual address that maps in the page directory
and allows you to map in arbitrary physical memory as a known location. It should be noted that kernel
privileges are needed (to access CR3) and to operate on a kernel page marked as Global so as to persist
through the CR3 changes. The author hopes you enjoyed this weird machine and remember to treat your
input data as formally as code, for only you can prevent vulnerabilities!

Sincerely,
@JacobTorrey

14

