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by Craig Heffner

In this article, we’ll look at some handy tricks for detecting the difference between real MIPS hardware
and the Qemu emulator. First, in Section 6.1, we’ll look at special function registers whose values in the
emulator reveal the use of Qemu. Then, in Section 6.2, we’ll intentionally run code which has a pending
overwrite in the data cache to determine whether the instruction and data caches are synchronized with one
other, as they are in Qemu but are not in real hardware. The techniques presented in this article were tested
on Qemu v2.0.1.

6.1 Detection through hardware registers

Qemu can be identified with a reasonable level of certainty by examining discrepancies in the MIPS CP0
(Coprocessor0) registers. The most obvious register to examine is the PRId (Processor ID) register, shown
in Figure 4.

+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
2 |Company Options | Company ID | CPU ID | Rev i s ion |

+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
4 QEMU |0 0 0 0 0 0 0 0 |0 0 0 0 0 0 0 1 |1 0 0 0 0 0 1 1 |0 0 0 0 0 0 0 0 |

+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
6 Atheros AR7240 SoC |0 0 0 0 0 0 0 0 |0 0 0 0 0 0 0 1 |1 0 0 1 0 0 1 1 |0 1 1 1 0 1 0 0 |

+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
8 Ralink RT3352F SoC |0 0 0 0 0 0 0 0 |0 0 0 0 0 0 0 1 |1 0 0 1 0 1 1 0 |0 1 0 0 1 1 0 0 |

+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+

Company Options Reserved for use by the manufacturer.
Company ID Uniquely identifies the manufacturer, but is set to 0 for older

processors as it was not defined in the MIPS specification.
CPU ID Identifies the specific MIPS CPU type.

(MIPS 4KC, MIPS 24K, etc)
Revision Used to specify the CPU core revision number.

Figure 4: Processor ID (PRId) Register

The PRId register can be read using the mfc0 (move from coprocessor0) instruction.

1 mfc0 $t0 , $15 ; Move CP0 r e g i s t e r 15 (PRId) in to genera l purpose r e g i s t e r $t0

Figure 4 also shows the differences between Qemu and two common system-on-chip devices that are found
in real hardware. Note in particular the differences in the Revision field. Qemu sets this field to all zeros
regardless of which MIPS core is being emulated, but most real-world systems will have this field set to a
non-zero value representing the major/minor/patch version of the MIPS core in use by that CPU.9

It is also useful to examine the Config register. Much like PRId, the Config register can be read using
the mfc0 instruction.

mfc0 $t0 , $16 ; Move CP0 r e g i s t e r 16 ( Config ) in to genera l purpose r e g i s t e r $t0

9Programming the MIPS32 24K Core Family, Section 2.2
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1 +−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
| | |B| | | | |V| |

3 |M| Impl |E | AT| AR | MT |0 0 0 | I | K0 |
+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+

5 Qemu | 1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 | 0 0 | 0 0 0 |0 1 1 |0 0 0 | 0 | 0 1 0 |
+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+

7 Atheros 7240 SoC : | 1 | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1 | 0 0 | 0 0 1 |0 0 1 |0 0 0 | 0 | 0 1 1 |
+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+

9 Ralink RT3352F SoC : | 1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 | 0 | 0 0 | 0 0 1 |0 0 1 |0 0 0 | 0 | 0 1 1 |
+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+

M 1 if there is another config register. (Config1)
Impl implementation specific.

BE 1 if the processor is big endian, 0 for little endian.
AT Specifies whether the processor supports MIPS32 (0) or MIPS64

(1 == MIPS32 address map; 2 == full address map) encoding.
AR Architecture Revision level (0 == MIPS32/64 release 1; 1 == MIPS32/64 release 2).
MT Specifies the MMU type.

0 0 0 Unused
VI Set to 1 if the L1 instruction cache uses virtual tagging.
K0 Specifies the MIPS kseg0 memory region’s caching behavior.

Figure 5: Config register

Again, we can find some general differences in register values between different CPUs, which are shown
in Figure 5. Most notably, Impl is zero in Qemu, while the Atheros and Ralink chips have this field set
to non-zero values. The PIC32 datasheet also notes that it uses these bits to store information regarding
segment caching and the SRAM bus interface.10

These register variations are generally reliable, and are particularly applicable if you expect to only run
on one particular CPU, such as an exploit for a specific target.

6.2 Detection in Linux user space
Examining CPU hardware registers requires execution in kernel mode. But, for many Linux based MIPS
devices, you may be executing from Linux user space. Here, you may simply examine /proc/cpuinfo, which
in Qemu typically looks something like the following:

1 root@qemu:~# cat /proc / cpu in fo
system type : MIPS Malta

3 p ro c e s s o r : 0
cpu model : MIPS 24Kc V0. 0 FPU V0.0

5 BogoMIPS : 2097.15
wait i n s t r u c t i o n : yes

7 microsecond t imers : yes
t l b_en t r i e s : 16

9 ext ra i n t e r r up t vec to r : yes
hardware watchpoint : yes , count : 1 , address / irw mask : [ 0 x0 f f 8 ]

11 ASEs implemented : mips16
shadow r e g i s t e r s e t s : 1

13 core : 0
VCED except i ons : not a v a i l a b l e

15 VCEI except i on s : not a v a i l a b l e

10PIC32 Reference Manual, 61113E.pdf
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First, most real MIPS systems will set system type to reflect the SoC vendor, such as “Ralink SoC”
or “Broadcom BCM5357 chip rev 2”. It would be extremely unlikely to see MIPS Malta on a production
system.

More importantly, BogoMIPS as reported in Qemu is a reflection of the host machine’s CPU speed. 2,097
BogoMIPS would be insane for a real MIPS processor, which typically clocks in around 400MHz. More
realistic BogoMIPS values for MIPS CPUs would be in the 200-300 range.

6.3 Execution-based detection

While the above detection methods are useful, they could easily be changed or patched, either by an end
user or in future Qemu releases. A far more reliable method of detection is through the use of fundamental
architecture features that are not properly emulated by Qemu and not easily implemented.

Qemu can be reliably detected by exploiting cache incoherency, which is inherent in MIPS CPUs but
absent from Qemu.11

The MIPS cache is divided into two sections: one for instructions, and one for data. When data is written
to memory, that data is first stored in the data cache, and is eventually written back to main memory at a
later time. Instructions, as you may well guess, are cached in the instruction cache.

This is a common issue during MIPS exploitation. Let’s say that we write some shellcode to a buffer; that
shellcode is treated as data, and cached in the data cache. If we try to jump into that shellcode, however,
the CPU will go looking for it in the instruction cache; since it is not cached there, the CPU then fetches
the instructions from main memory. But the shellcode isn’t in main memory, it’s in the data cache!

This problem is typically mitigated by first flushing the data cache back to main memory before jumping
into the buffer containing the shellcode. Cache flushes can be performed explicitly in MIPS through the
synci or cache instructions, or by simply waiting a bit (e.g., sleep(1)) and letting the kernel do a cache
flush, which will typically need to happen periodically anyway.

Qemu does not even try to emulate this cache behavior, and we can use that to our advantage by
1) writing a block of code to an address in memory,
2) executing synci to make sure the code is written back from the data cache to main memory,
3) writing a second block of code to the same address in memory, and then
4) immediately jumping to the memory address.

When running on MIPS hardware, the second code block is still sitting in the data cache, and the first
block of code will be fetched from main memory and executed. However, in Qemu, since caching is not
emulated, the second code block will overwrite the first, and the second block of code will be executed.

Thus, we can execute two completely different sets of code from the same memory address; one piece of
code will be executed when running in Qemu, and the other piece of code will be executed when running on
real MIPS hardware:

1 /∗
∗ PoC code which execu te s d i f f e r e n t p i e c e s o f code from the same address

3 ∗ in Qemu vs r e a l MIPS hardware .
∗

5 ∗ On rea l MIPS hardware , main shou ld re turn 1 .
∗ In Qemu, main shou ld re turn 2 .

7 ∗
∗ Tested aga ins t Qemu 2 .0 . 1 and a Broadcom BCM5357 (MIPS 74K) SoC .

9 ∗
∗ Requires a MIPS32r2 compliant compi ler .

11 ∗/

13 #include <s td i o . h>
#include <s t d l i b . h>

15 #include <s t r i n g . h>

17 #define CODE_SIZE 8

11Linux MIPS Wiki, Qemu Processor
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19 /∗
∗ re t1 conta ins a MIPS func t ion tha t re turns 1 .

21 ∗ re t2 conta ins a MIPS func t ion tha t re turns 2 .
∗/

23
/∗

25 ∗ Big endian
∗

27 char re t1 [CODE_SIZE] =
"\x03\xe0\x00\x08" // j r $ra

29 "\x24\x02\x00\x01 " ; // l i $v0 ,1
char re t2 [CODE_SIZE] =

31 "\x03\xe0\x00\x08" // j r $ra
"\x24\x02\x00\x02 " ; // l i $v0 ,2

33 ∗/

35 /∗ L i t t l e endian ∗/
char r e t1 [CODE_SIZE] =

37 "\x08\x00\xe0\x03" // j r $ra
"\x01\x00\x02\x24" ; // l i $v0 ,1

39 char r e t2 [CODE_SIZE] =
"\x08\x00\xe0\x03" // j r $ra

41 "\x02\x00\x02\x24" ; // l i $v0 ,2

43 int main (void ) {
int (∗ s ) (void ) ;

45 int r e t v a l = 0 ;
char buf [CODE_SIZE] = { 0 } ;

47
/∗ The s func t i on po in t e r po in t s to buf ∗/

49 s = (void ∗) &buf ;

51 /∗ 1 . Copy re t1 in to buf ( re t1 i s now in the data cache )
∗ 2 . Execute the sync i i n s t r u c t i on to f l u s h the data cache ( re t1 i s now in main memory)

53 ∗ 3 . Copy re t2 in to buf ( re t2 i s now in the data cache )
∗ 4 . Ca l l the func t ion l o ca t ed in buf ( shou ld f e t c h and execute re t1 from main memory)

55 ∗/
memcpy( buf , ret1 , s izeof ( buf ) ) ;

57 asm ( " sync i 0(%0)" : : " r " ( buf ) ) ;
memcpy( buf , ret2 , s izeof ( buf ) ) ;

59 r e t v a l = s ( ) ;

61 p r i n t f ( " r e t v a l = %d\n" , r e t v a l ) ;
return r e t v a l ;

63 }

Because synci is not a privileged instruction, this method can be used in both user and kernel space.
The only downside is that synci was not introduced until MIPS32r2, so older MIPS processors don’t support
that particular instruction. Since MIPS32r2 was introduced in 2003, it’s unlikely that this will be an issue
unless you’re dealing with an older processor; in such an event, you’ll need to use some alternate method of
flushing the cache. This can be done in kernel space with the cache instruction, or in Linux user space, you
can simply replace synci with a call to sleep(1).

It’s worth noting that in theory, the second block of code (ret2) could be executed when running on real
MIPS hardware if the kernel flushed the cache behind your back in between the time that ret2 is copied into
buf and the time that you actually call into buf. However, this would be a very unlucky edge case which I
have yet to encounter in practice, provided the time between the second memcpy to buf and the call to buf
is minimized. ret1 is never executed in Qemu.
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