
9 Davinci Seal: Self-decrypting Executables
by Ryan O’Neill,

who also publishes as Elfmaster

In the pursuit of creativity and fun, I recently had the idea of creating self-protecting files. That is to say,
any type of data that you want protected from analysis, with the ability to decrypt its own content when
provided the correct key. The use cases for such a capability are debatable, but the idea is nevertheless fun,
and only took an afternoon to implement. The goal was to create a program that can transform any file
into an ELF executable whose sole purpose is protecting the file data embedded within its own body. I call
these Davinci Seals.

9.1 Protection
The output executable should be able to protect the embedded data from static analysis and resist runtime
analysis and ptrace-based debugging. An attacker should not be able to extract the content by setting
breakpoints and reading the decrypted content from memory; thus, detection of such attacks should be in
place. The executable should also be resistant to attackers modifying code or replacing anti-debug code with
NOP instructions; this can be mostly prevented by using code watermarking. There are forms of dynamic
analysis such as dynamic instrumentation with Pin, or using an IDA Emulator plugin, which Davinci does
not mitigate, but we briefly discuss viable methods for protection against them.

9.2 Example of creating a Davinci seal

1 $ cat msg . txt

3 | The sp i c e must f low |
−−−−−−−−−−−−−−−−−−−−−

5
$. / dav inc i msg . txt msg . dvs p4ssw0rd −r

7 [+] The user who execute s msg . dvs must supply password : p4ssw0rd
[+] Encoding payload data

9 [+] Encoding payload s t r u c t
[+] Bui ld ing msg program

11 [+] (Optional) u t i l s / s t r i p x ex i s t s , so us ing i t to s t r i p s e c t i o n headers o f f o f DRM arch ive
Su c c e s s f u l l y c r ea ted msg . dvs

13
∗∗ NOTE: msg . txt was transformed in to an ELF executab l e (A dav inc i s e a l) named msg . dvs

15
$ r e a d e l f − l msg . dvs

17
E l f f i l e type i s EXEC (Executable f i l e)

19 Entry po int 0x400492
There are 5 program headers , s t a r t i n g at o f f s e t 64

21
Program Headers :

23 Type Of f s e t VirtAddr PhysAddr
F i l e S i z MemSiz Flags Align

25 LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
0x0000000000000918 0x0000000000000918 R E 200000

27 LOAD 0x0000000000001000 0x0000000000601000 0x0000000000601000
0x0000000000800324 0x0000000000800338 RW 200000

29 NOTE 0x0000000000000158 0x0000000000400158 0x0000000000400158
0x0000000000000024 0x0000000000000024 R 4

31 GNU_EH_FRAME 0x00000000000006c0 0x00000000004006c0 0x00000000004006c0
0x000000000000007c 0x000000000000007c R 4

33 GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 RW 10

35

41

$. /msg . dvs
37 This message r e qu i r e s that you supply a key to decrypt

39 $. /msg . dvs p4ssw0rd

41 | The sp i c e must f low |
−−−−−−−−−−−−−−−−−−−−−

Voila! Our msg.txt file was transformed into msg.dvs, an ELF executable which lives and breathes only
to protect the data within it, and reveal that data when supplied the encryption key.

9.3 Implementation
9.3.1 ELF stub and payload packaging

The goal here is to transform a file containing arbitrary data into an ELF executable whose sole purpose is
to protect the data. The executable should decrypt and write the data to stdout if the proper password/key
is supplied.

Our project consists of two parts. The first is the Protector, which creates the output program from the
second, which we’ll call the Stub.

The protector program takes an input file and generates a stub executable that contains the encrypted
input file within it, as well as metadata describing the size and location of the data. The stub executable that
it generates is written mostly in C, then compiled into bytecode and stored within the protector executable.
To fully understand the protector, we must first understand the stub.

The basic principle of the stub is that it contains an encrypted file. This encrypted data must be stored
somewhere with information about it. The best way to implement this is to append the data to the data
segment of the stub executable, or even within the text segment using a reverse extension method. Both
methods are common in virus infection and executable packers, but for the sake of POC and simplicity we
will pre-allocate a fixed size within the initialized data section of the stub executable.
/∗ From dav inc i . h ∗/

2 #define KEY_BUF_LEN 256
#define MAX_PAYLOAD_SIZE ((1024 ∗ 1024) ∗ 8)

4
typedef struct payload_meta {

6 uint64_t payload_len ; /∗ Length o f the encrypted f i l e data ∗/
uint32_t keylen ; /∗ Length o f the key used to encrypt ∗/

8 uint8_t key [KEY_BUF_LEN] ; /∗ The key used to encrypt / decrypt ∗/
uint8_t data [MAX_PAYLOAD_SIZE] ; /∗ The f i l e data i t s e l f ∗/

10 } payload_meta_t ;

12 /∗ From stub . c ∗/
payload_meta_t payload __attribute__ ((s e c t i o n (" . data"))) = {0x0 } ;

Since the data and metadata will be stored in the structure above, the protector can resolve the payload
symbol to find where it needs to store the file data and key data within the stub.

1 −− I l l u s t r a t i o n o f the work f low :

3 [input f i l e (msg . txt)] /∗ The input f i l e can be anything ∗/
|

5 v
[p r o t e c t o r] /∗ This program transforms msg . t x t in to msg . e l f ∗/

7 |
v

9 [output f i l e (msg . e l f)] /∗ The output i s a compiled s tub . c , instrumented with the encrypted
input f i l e , and metadata ∗/

42

9.3.2 Anti-analysis protection

The goal is to transform an input file into an output executable that protects it. The input file is encrypt-
ed/obfuscated and embedded within an ELF executable that serves as a defensive shell. This defensive shell
will decrypt the data if supplied the correct key, and write it to standard output. If you choose, you may
tell the protector to store an obfuscated copy of the key within the binary so that it decrypts itself without
a supplied password. This offers no real protection, of course, but may still have some application.

Our defensive shell, being an executable and all, is inherently vulnerable to reverse engineering, static
analysis, and debugging (dynamic analysis) attacks. It would behoove the defending binary to have some
protection against some of these attacks. We have three protections against static analysis:

1.) The body of the input file is encrypted within the output executable, though just with weak XOR for
this proof of concept. The payload_meta_t structure is also encrypted, on top of the payload.data buffer.
If Davinci is to become more than just a proof of concept, a real cipher must be used.

2.) The section header table is stripped from the ELF executable. String tables are zeroed out, and the
symbol table is discarded.

This by itself makes the output executable far more difficult to navigate with a disassembler, since there
is no information provided about symbols or specific sections. The program headers are suitable for loading
and running a program, but without section headers, the program is more difficult to analyze, even for IDA
Pro.

Stripping the ELF section headers effectively disables any tools that rely on section headers. It is an old
and simple technique used by many neighbors.

1 −−Prevents objdump disassembly
$ objdump −D msg . dvs

3 msg . dvs : f i l e format e l f 6 4−x86−64
$

5
−−Prevents symbol lookups

7 $ r e a d e l f −s msg . dvs
$

3.) The output executable is further protected with UPX, the Ultimate Packer for eXecutables. This also
takes care of shrinking the executable from the wasteful fixed-size of our buffer.

This feature is primarily for shrinking the output executable, because the stub is by default fixed at a
large size. Initializing an 8 MB buffer in the .data section leaves room for files up to 8 MB. As mentioned
earlier, another method, such as appending to the data segment, would be a better long-term design decision
and would result in the executable growing in proportion to the input file size. For the sake of POC, we used
the method of initializing fixed space in the .data section, which allows us to focus more on the principles
and less on the implementation.

9.3.3 Anti-debugging tricks

Most debuggers, such as GDB, rely on the ptrace system call. If ptrace-based debugging can be prevented,
we eliminate the most common types of dynamic analysis tools. strace, gdb, dumping /proc/$pid/mem,
and other tricks will all break.

Anti-Ptrace Protection A process is only allowed to have one tracer. This means that we can simply
use ptrace within our stub executable, so that it traces itself, preventing any other debuggers/tracers from
attaching. If a debugger is attached before our stub calls ptrace(), then our call to ptrace() will return
-1 and we can abort the process.

43

The enable_anti_debug() function will prevent gdb and strace from analyzing our ELF executable.

/∗
2 ∗ Notice t ha t we use our own wrapper f o r the p trace s y s c a l l .
∗ This i s good p ra c t i c e to prevent LD_PRELOAD bypasses −−

4 ∗ even though our s tub i s compiled −no s t d l i b (in which case
∗ an LD_PRELOAD bypass would not work anyway) .

6 ∗/

8 stat ic long _ptrace (long request , long pid , void ∗addr , void ∗data) {
long r e t ;

10
__asm__ volat i le (

12 "mov %0, %%rd i \n"
"mov %1, %%r s i \n"

14 "mov %2, %%rdx\n"
"mov %3, %%r10 \n"

16 "mov $101 , %%rax\n"
" s y s c a l l " : : "g" (r eque s t) , "g" (pid) , "g" (addr) , "g" (data)) ;

18 asm("mov %%rax , %0" : "=r " (r e t)) ;

20 return r e t ;
}

22
void bai l_out (void) {

24 _write (1 , "The gate s o f heaven remain c l o s ed \n" , 34) ;
_k i l l (_getpid () , SIGKILL) ;

26 __exit(−1) ;
}

28
void enable_anti_debug (void) {

30 i f (_ptrace (PTRACE_TRACEME, 0 , NULL, NULL) < 0)
bai l_out () ; // i f a debugger i s a l ready a t tached we b a i l out

32 // a marker showing t ha t an a t t a c k e r didn ’ t j u s t jump over enable_anti_debug ()
data_watermark++;

34 }

Now what happens when we try to debug msg.dvs with gdb?

$ gdb −q msg . dvs
2 Reading symbols from msg . dvs . . . (no debugging symbols found) . . . done .

(gdb) run
4 S ta r t i ng program : /home/ryan/dev/ dav inc i /msg . dvs

The gate s o f heaven remain c l o s ed
6 Program terminated with s i g n a l SIGKILL , K i l l e d .

The program no longe r e x i s t s .
8 (gdb)

If an attacker wants to bypass the anti-ptrace code, there are several techniques that are commonly
used.

1. LD_PRELOAD can be used to preload a library. This loads the specified library before any others, and
any of its symbols will take precedence over subsequently loaded libraries. Attackers have used this to
preload a custom shared library with a dummy ptrace that simply returns success and does nothing.
In our stub executable we do not use dynamic linking, and therefore no shared libraries can even be
loaded. We also use a syscall wrapper for ptrace, so that even if our stub did use dynamic linking, our
calls to ptrace would not go through the PLT/GOT and therefore could not be hijacked with another
shared library call. Always use syscall wrappers in binary hardening code, and stay away from glibc.

44

2. An attacker could modify the stub’s binary code so that the enable_anti_debug() code is never called,
or simply jumped over. An attacker could also overwrite the code in enable_anti_debug() so that it
doesn’t actually do anything to prevent debugging. We use a simple form of code watermarking to try
to prevent this, which we will discuss in Section 9.3.4.

/proc/<pid>/mem Dump Protection It is a common practice for reverse engineers/attackers to dump
a hardened binary from memory. This can be done by attaching to the process and reading /proc/<pid>/mem.
If the process is already stopped, then attaching to the process isn’t necessary, and a simple read() suffices.
Fortunately, Linux has a neat syscall called prctl(), which allows us to change the characteristics of our
running programs, but must be issued by the program itself.

int p r c t l (int option , unsigned long arg2 , unsigned long arg3 ,
2 unsigned long arg4 , unsigned long arg5) ;

4 OPTION: PR_SET_DUMPABLE (s i n c e Linux 2 . 3 . 2 0)
Se t t i ng arg2 to 0

6 prevents p roce s s from dumping a CORE f i l e ,
prevents p roce s s from being attached to with ptrace , and

8 prevents p roce s s from being dumped from /proc/<pid>/mem.

The PR_SET_DUMPABLE option applies several very neat and useful anti-debugging features. We use this
to add even more resistance to ptrace, while also preventing core dumps and memory dumps of our process.

/∗
2 ∗ Always implement a s y s c a l l wrapper when using s y s c a l l s f o r ant i−debugging
∗/

4 int _prct l (long option , unsigned long arg2 , unsigned long arg3 ,
unsigned long arg4 , unsigned long arg5) {

6 long r e t ;

8 __asm__ volat i le (
"mov %0, %%rd i \n"

10 "mov %1, %%r s i \n"
"mov %2, %%rdx\n"

12 "mov %3, %%r10 \n"
"mov $157 , %%rax\n"

14 " s y s c a l l \n" : : "g" (opt ion) , "g" (arg2) , "g" (arg3) ,
"g" (arg4) , "g" (arg5)) ;

16 asm("mov %%rax , %0" : "=r " (r e t)) ;
return (int) r e t ;

18 }

20 /∗
∗ Simply c a l l _prct l (PR_SET_DUMPABLE, 0 , 0 , 0 , 0) from your code .

22 ∗ (I d e a l l y from a g l i b c cons t ruc tor)
∗/

24
void anti_debug_dump(void) __attribute__ ((con s t ruc to r)) ;

26
void anti_debug_dump(void) {

28 _prct l (PR_SET_DUMPABLE, 0 , 0 , 0 , 0) ;
}

SIGTRAP Detection When breaking binaries, the attacker generally will set breakpoints in specific
areas of the code. With SIGTRAP detection we can detect breakpoints, as they generate a SIGTRAP signal.
Upon detection we can do whatever we like, ideally bail out and kill the program.

45

This can be done by creating a signal handler for SIGTRAP. If our signal handler catches the signal, then
it means there is no debugger attached. Since our stub is not linked to libc in any way, we must use our
own syscall wrapper for sigaction. Thanks to Jpanic for pointing out important caveats that must be
considered when doing this.

1 #define SA_RESTORER 0x04000000

3 /∗ s t r u c t s i g a c t i o n act . sa_res torer must po in t to a handler
∗ t ha t performs an r t_s i g re turn (0)−− normal ly t h i s i s done

5 ∗ by g l i b c .
∗/

7 int _sigreturn (unsigned long unused) {
unsigned long r e t ;

9 __asm__ volat i le (
"mov %0, %%rd i \n"

11 "mov $15 , %%rax\n"
" s y s c a l l " : : "g" (unused)) ;

13 __asm__("mov %%rax , %0" : "=r " (r e t)) ;
return (int) r e t ;

15 }

17 /∗ We increment trap_count i f we caught the s i g n a l ∗/
int trap_count = 0 ;

19
void s i g c a t ch (int s i g) {

21 trap_count++;
}

23
/∗ This func t i on s e t s up a s i g n a l handler f o r SIGTRAP

25 ∗ i f a debugger caught i t .
∗/

27
void i n s ta l l_trap_hand le r (void) {

29 struct s i g a c t i o n act , o ldac t ;
act . sa_handler = s i g c a t ch ;

31 act . sa_f lags = SA_RESTORER;
act . s a_re s to r e r = r e s t o r e ;

33 s igemptyset (&act . sa_mask) ;
s i g adds e t (&act . sa_mask , SIGTRAP) ;

35 // must pass s i z e o f (long) or ke rne l re turns −EINVAL
_sigact ion (SIGTRAP, &act , NULL, s izeof (long)) ;

37
}

39
void detect_debugger (void) {

41 __asm__ (" in t3 \n"
"nop") ;

43 i f (trap_count == 0)
bai l_out () ; // debugger caught the trap , b a i l out !

45 trap_count = 0 ;
}

There exist other anti-debugging techniques not used in this example. /proc/self/status can check if
a ptrace attachment exists. Junk or misaligned assembly code could be used to obfuscate the application
against a disassembler while keeping it functionally equivalent.

Advanced reverse engineers will go well beyond the use of ptrace()-based debuggers when attempting
dynamic analysis. Such engineers might use the Pin instrumentation framework, an emulator, or ERESI’s
e2dbg.

Detection of Pin hooking can be done by checking /proc/self/maps to see whether the mapping called
[vvar] exists after [vdso]. This happens when vdso has been partially remapped by Pin.

Emulation detection can also be performed by rtdsc timestamp checking.

46

9.3.4 Code and data watermarking

To enforce our anti-debugging code so that it is not easily circumvented, we have some simple code and data
watermarking in-place. As mentioned earlier, if someone were to modify the enable_anti_debug() code,
or simply jump over it, it would be rendered useless. We must therefore be prepared to detect when this
happens and act accordingly by exiting or killing the program before it is successfully cracked.

Data Watermarking For the data watermarking, we have a static initialized variable that is set to 0 and
only incremented after the enable_anti_debug() function successfully completes. Later on, we check the
value of this variable. If it has not been incremented, then we can assume that an attacker either jumped
over the anti-debug code or NOP’d it out.

void denied (void) {
2 bai l_out () ;

}
4

void accepted (void) {
6 __asm__ __volatile__ ("nop\n") ;

}
8

_start () {
10 uint64_t a [2] , x ;

void (∗ f) () ;
12 int r e t ;

14 . . . <code> . . .

16 a [0] = (uint64_t)&denied ; // a [0] po in t s to denied () address
a [1] = (uint64_t)&accepted ; // a [1] po in t s to accepted () address

18 x = a [! (! (data_watermark))] ; // conver t data_watermark to a boolean , 0 or 1
f = (void ∗) x ; // ass i gn func t i on po in t e r to e i t h e r accepted () or denied ()

20 f () ; // c a l l accepted () or denied ()

22 . . . <code> . . .
}

As we can see by the code snippet above, if data_watermark was not incremented it will still be 0, so we
can assume that an attacker jumped over the enable_anti_debug() code. So denied() would be called,
which calls bail_out() to kill the process. Otherwise, accepted() will be called, which does nothing, and
our binary goes on running untampered.

Code Watermarking For the code watermarking, we want to validate that the enable_anti_debug()
function has not been modified in any way. We do this by simply fingerprinting it.

1 /∗ From dav inc i . h ∗/
typedef struct code_watermark {

3 uint32_t code_size ;
uint8_t code_signature [CODE_CHUNK_SIZE] ;

5 } code_watermark_t ;

7
/∗ From dav inc i . c

9 ∗ NOTE: ’ uint8_t ∗mem i s a mapping o f the s tub e x e cu t a b l e ’
∗ This code w i l l c r ea t e the f i n g e r p r i n t o f enable_anti_debug () and s t o r e

11 ∗ i t w i th in the s tub e x e cu t a b l e
∗/

13 . . . <code> . . .

15 symval = resolve_symbol (" enable_anti_debug" , mem) ;

47

symsize = resolve_symbol_size (" enable_anti_debug" , mem) ;
17 o f f s e t = t ex tO f f s e t + (symval − textVaddr) ;

code_watermark = (code_watermark_t ∗) a l l o c a (s izeof (code_watermark_t)) ;
19 memcpy((uint8_t ∗) code_watermark−>code_signature , (uint8_t ∗)&mem[o f f s e t] , symsize) ;

code_watermark−>code_size = symsize ;
21 symval = resolve_symbol ("code_watermark" , mem) ;

symsize = resolve_symbol_size ("code_watermark" , mem) ;
23 o f f s e t = dataOf f s e t + (symval − dataVaddr) ;

memcpy((void ∗)&mem[o f f s e t] , (void ∗) code_watermark , s izeof (code_watermark_t)) ;
25 . . . <code> . . .

27 /∗ From stub . c
∗ We memcmp the enable_anti_debug () func t i on with code_watermark . code_signature .

29 ∗ I f t he re are any d i sc repanc i e s , we c a l l denied () , which b a i l s out and p r i n t s the message
∗ "The ga t e s o f heaven remain c l o s ed "

31 ∗/
. . . <code> . . .

33
a [0] = (uint64_t)&accepted ;

35 a [1] = (uint64_t)&denied ;
r e t = _memcmp((uint8_t ∗) code_watermark . code_signature , (uint8_t ∗) enable_anti_debug

, code_watermark . code_size) ;
37 x = a [! (! (r e t))] ;

f = (void ∗) x ;
39 f () ;

. . . <code> . . .

9.4 Getting Davinci
The Davinci source code tarball is stored in a davinci seal itself :)

chmod +x dav inc i . tgz . dvs
2 . / dav inc i . tgz . dvs d4v1nc1 > dav inc i . tgz

ta r zxvf dav inc i . tgz

48

“For the last time, Brian,” said Barbie, “$4C is absolute
jump and $6C is indirect jump. It’s like this: $4C is me

telling you that you’re an idiot; $6C is me pointing you to a
piece of paper that says, ‘You’re an idiot.’ And what the hell

are you smiling at, Steven? You’ve got code here that overwrites
the ROM monitor. Unless your last name is Wozniak, STFO out of

$F000 block.”

49

