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Abstract—As DRAM has been scaling to increase in density,
the cells are less isolated from each other. Recent studies have
found that repeated accesses to DRAM rows can cause random
bit flips in an adjacent row, resulting in the so calledRowhammer
bug. This bug has already been exploited to gain root privileges
and to evade a sandbox, showing the severity of faulting single
bits for security. However, these exploits are written in native
code and use special instructions to flush data from the cache.

In this paper we present Rowhammer.js, a JavaScript-based
implementation of the Rowhammer attack. Our attack uses an
eviction strategy found by a generic algorithm that improves the
eviction rate compared to existing eviction strategies from 95.2%

to 99.99%. Rowhammer.js is the first remote software-induced
hardware-fault attack. In contrast to other fault attacks i t does
not require physical access to the machine, or the executionof
native code or access to special instructions. As JavaScript-based
fault attacks can be performed on millions of users stealthily
and simultaneously, we propose countermeasures that can be
implemented immediately.

I. I NTRODUCTION

Hardware-fault attacks have been a security threat since
the first attacks in 1997 by Boneh et al. [1] and Biham et al.
[2]. Fault attacks typically require physical access to the
device under attack to expose it to physical conditions which
are outside the device specification. This includes high or
low temperature, radiation, as well as laser on dismantled
microchips. However, software-induced hardware faults are
also possible, if the device under attack can be brought to
the border or out of the specified operation conditions using
software.

Recently, Kim et al. [3] showed that frequently accessing
specific memory locations can cause random bit flips in DRAM
chips. These random bit flips can even be triggered by software
by flushing the memory location from the cache and reloading
it. In early 2015, Seaborn [4] demonstrated how an attacker
can exploit such bit flips to get access to the physical memory
of the machine from inside the Chromium sandbox or from an
unprivileged user program. However, these exploits are written
in native code and use special instructions to flush data from
the cache. A recent tech report by Xuanwu Labs [5] suggests
that this is not possible because the attacker can not trigger
the flush instruction appropriately from scripting languages.

In this paper, we present an implementation of the
Rowhammer attack that is independent of the instruction set
of the CPU. Our attack is the first remote software-induced

hardware-fault attack. It is implemented in JavaScript in Fire-
fox 39, but our attack technique is generic and can be applied
to any architecture, programming language and runtime envi-
ronment that allows producing an efficient stream of memory
access instructions. The main challenges to perform this attack
are finding an optimal eviction strategy as replacement for
the flush instruction and retrieving sufficient informationon
the physical addresses of data structures in JavaScript to find
address pairs efficiently.

We describe an algorithm to find an optimal eviction
strategy for an unknown cache replacement policy. Existing
eviction strategies focus on the pseudo-LRU cache replace-
ment policy as implemented in Sandy Bridge [6], [7]. On
Haswell and Ivy Bridge CPUs these eviction strategies show
a significantly lower eviction rate. While the LRU eviction
strategy achieves an eviction rate of95.2% on our Haswell test
machine, our optimal eviction strategy improves the eviction
rate to 99.99%. Furthermore, our eviction strategy is more
efficient in terms of additional memory accesses and time
consumption. Both are crucial to successfully exploit the
Rowhammer bug.

As a proof of concept we implement our attack in
JavaScript. JavaScript is a scripting language implemented in
all modern browsers to create interactive elements on websites.
We do not exploit any weaknesses in JavaScript or the browser.
Rowhammer.js is possible because today’s JavaScript imple-
mentations are well optimized and achieve almost native code
performance for our use case. JavaScript is strictly sandboxed
and the language provides no possibility to retrieve virtual or
physical addresses. However, the usage of large pages by the
malloc implementation that is used by the JavaScript engine
in Firefox on Linux allows determining parts of the physical
address.

We compared our implementations of the Rowhammer
attack on the three different machines shown in Table I.
While two are susceptible to the Rowhammer attack using
the flush instruction, one of them was also vulnerable against
the Rowhammer attack without the flush instruction. The third
machine was only vulnerable to the Rowhammer attack with
an increased refresh rate. The probability of a bit flip is
significantly higher when using the flush instruction on all
three machines. However, comparing our native code (without
the flush instruction) and JavaScript implementation we found
a negligible difference in the probability of a bit flip. Thisresult
suggests that if bit flips can be observed using our native code
implementation the system is vulnerable to remote JavaScript-
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TABLE I. EXPERIMENTAL SETUPS.

Platform CPU Architecture RAM
Lenovo T420 i5-2540M Sandy Bridge Corsair DDR3-1333 8 GB
Lenovo x230 i5-3320M Ivy Bridge Samsung DDR3-1600 4 GB (2×)
Asus H97-Pro i7-4790 Haswell Kingston DDR3-1600 8 GB

based attacks.

We still need to investigate how many systems are vulner-
able to Rowhammer.js. Since the attack can be performed on
an arbitrary number of victim machines simultaneously and
stealthily it poses an enormous security threat. Furthermore,
future work has to show whether Rowhammer.js can be
exploited for sandbox escaping or privilege escalation. We
suggest countermeasures to be implemented immediately to
prevent possible attacks.

Summarizing, our key contributions are:

• We describe an algorithm to find an optimal eviction
strategy for an unknown cache replacement policy. We
verified that it finds an optimal eviction strategy on Sandy
Bridge, Ivy Bridge and Haswell CPUs.

• We built a native code implementation of the Rowhammer
attack which only uses memory accesses. We verified that
the attack is successful on Ivy Bridge and Haswell CPUs.

• We developed a tool to translate JavaScript array indices
to physical addresses in order to trigger bit flips on known
physical memory locations from JavaScript.

• We built a pure JavaScript implementation which scans
the memory efficiently for vulnerable addresses.

• We discuss how a JavaScript-based Rowhammer attack
can be used by a remote attacker to gain access to the
physical memory of a system.

• We propose countermeasures to be implemented immedi-
ately to prevent attacks on millions of users.

The remaining paper is organized as follows. In Sec-
tion II, we provide background information on DRAM and
the Rowhammer bug, as well as modern CPU caches and
cache attacks. We describe the adaptive eviction strategy
algorithm in Section III. In Section IV, we evaluate the optimal
eviction strategy on Haswell by analyzing the eviction rateand
performing a Rowhammer attack in native code without the
flush instruction. In Section V, we describe the JavaScript im-
plementation and compare it to the native code implementation
and the original implementation with the flush instruction.We
discuss countermeasures against our attack in Section VII and
future work in Section VIII. Finally, we provide conclusions
in Section IX.

II. BACKGROUND AND RELATED WORK

In this section, we give an introduction to DRAM and the
Rowhammer bug. Furthermore, we describe how CPU caches
in modern Intel CPUs work and related work on cache attacks.

A. DRAM

A memory system can have a singlechannelor multiple
channels, that are physical links between the DRAM memory
and the memory controller. Multi-channel memory architecture
increases the transfer speed of data. A channel consists of

multiple Dual Inline Memory Modules(DIMMs), that are the
physical modules plugged into the motherboard. Each DIMM
contains one or tworanks, that correspond to the sides of
the physical module. Each rank is a collection ofchips, that
are further composed ofbanks, typically 8 on recent DRAM.
Accesses to different banks can be served concurrently. Each
bank is a two-dimensional array of capacitor-based cells. Acell
is either in a charged or discharged state, which representsa
binary data value. The bank is thus represented as a collection
of rows, typically214 to 217.

Each bank has a row buffer where the memory accesses
are served from. The charge from the cells is read into the row
buffer on request and written back as soon as another row is
requested. Thus, access to the DRAM is done in three steps:

1) opening a row,
2) accessing the data by reading and/or writing any column,
3) closing the row, which also clears the row buffer before

a new row can be opened.

DRAM is volatile memory and discharges over time. To
prevent data corruption, each row is refreshed in a certain
interval, called therefresh interval. Refreshing a row is the
same operation as opening the row,i.e., it reads and restores
the charge of the cells. DDR3 DRAM specifications require
refreshing all rows in a 64ms time window [3].

The selection of channel, rank, bank and row is done
by a subset of physical address bits. AMD documents the
addressing function used by its processors, but Intel does not.
This function can vary between different systems and sys-
tem configurations. The mapping for one Intel Sandy Bridge
machine in one configuration has been reverse engineered by
Seaborn [8].

B. The Rowhammer bug

The increase of DRAM density has led to physically
smaller cells, thus capable of storing smaller charges. As a
result, the cells have a lower noise margin, and cells can
interact electrically with each other although they should
be isolated. The so calledRowhammer bugconsists in the
corruption of data, not in rows that are directly accessed, but
rather in rows nearby the one accessed.

DRAM and CPU manufacturers have known the Rowham-
mer bug since at least 2012, date of the filing of several
patent applications by Intel [9], [10]. In fact, hammering a
DRAM chip is one of the quality assurance tests applied to
modules. As refreshing DRAM cells consumes time, DRAM
manufacturers optimize the refresh rate to the lowest valuethat
still has a probability of virtually zero for bit flips to occur
accidentally.

The Rowhammer bug has only been studied recently in
academic research [3], [11], [12]. In particular, Kim et al.[3]
studied the vulnerability of off-the-shelf DRAM modules to
bit flips, on Intel and AMD CPUs. They built a program that
induces bit flips by software using theclflush instruction.
The clflush instruction flushes data from all cache levels,
forcing the CPU to serve the next memory access from the
DRAM instead of cache. Their proof-of-concept implemen-
tation frequently accesses and flushes two different memory
locations in a loop, causing bit flips in a third memory location.



Although they discussed how to exploit these bit flips for
privilege escalation attacks, they did not provide an exploit.

Seaborn implemented two attacks that exploit the Rowham-
mer bug [4]. The first one is a kernel privilege escalation on
a Linux system, caused by a bit flip in a page table entry.
By spraying the physical memory with page tables, a bit flip
in a page table has a high probability to replace the previous
mapping with the mapping of a process owned page table. If
a process can modify its own page table, it can access the
whole physical memory of the system. The second one targets
Native Client in Google Chrome [13]. Native Client allows
executing sandboxed native code – that included theclflush
instruction – through a website. The attack is an escape of
Native Client sandbox, from which an attacker could take
control over the system, caused by a bit flip in an instruction
sequence for indirect jumps.

At the hardware level, Kim et al. [14] proposed two
architectural mitigations to the Rowhammer bug. The first
solution uses a counter for the number of row activations.
A dummy activation is sent to neighboring rows to refresh
the cells when the counter exceeds a threshold. The second
solution performs, for each activation of a given row, a row
activation of the neighboring rows with a small probability.
However, these solutions can only be implemented in future
DRAM chips, and are not portable to currently deployed chips.

At the software level, theclflush instruction was re-
moved from the set of allowed instructions in Google Chrome
Native Client [15]. The removal of theclflush instruc-
tion from the instruction set was already suggested as a
countermeasure to cache attacks in native and virtualized
environments [16]. However, this instruction is not privileged,
thus any unprivileged and possibly sandboxed process can use
it. Moreover, it is unknown whether it is possible to disable
the instruction at least for unprivileged processes through a
microcode update and so far Intel has not released one.

However, as we show in this paper, cache eviction can
be used as an efficient replacement toclflush. Seaborn
and Birhanu have reported to be able to flip bits on Sandy
Bridge CPUs by means of cache eviction [17]. In August,
Seaborn [18] has published his implementation. However, we
provide an adaptive eviction strategy that works on more recent
CPUs like Haswell and Ivy Bridge as well. This shows that the
Rowhammer attack usingclflush was only one attack path,
while the underlying problem is a timing issue and therefore
independent of access to specific instructions.

C. CPU cache addressing

A modern CPU cache is a small and fast memory inside the
CPU. The CPU hides the latency of main memory by keeping
copies of frequently used data in the cache. In this document
we only discuss Intel processors, although parts of it applyto
other processors as well. Intel processors have 1 to 4 levelsof
cache, where L1 is the smallest and fastest cache and L4 the
slowest and largest cache. The L3 cache is an inclusive cache,
i.e., all data in L1 and L2 cache is also present in the L3
cache. The L3 cache is shared among all cores, thus memory
accesses and cache evictions directly influence the other cores.
This effect is exploited in cache side-channel attacks [16]. The
L4 cache is present in some Haswell and Broadwell CPUs,
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Fig. 1. Complex addressing scheme used in the LLC. The slice is given by
a hash function that takes as input a part of the physical address. The set is
directly addressed.

TABLE II. C OMPLEX ADDRESSING FUNCTION.

Address Bit
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕

4 cores
o0 ⊕ ⊕⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

o1 ⊕ ⊕ ⊕ ⊕ ⊕⊕ ⊕ ⊕ ⊕ ⊕ ⊕

used for video memory, as well as to hold data evicted from
the L3 cache.

All caches are organized in coherent blocks of 64 bytes,
called lines. As the CPU cache is much smaller than the main
memory, not all data can fit in the cache. The replacement
policy predicts which cache line is least likely to be accessed in
the near future. It thus decides which line to evict, and where to
place the new line. Current CPUs implementn-way associative
caches. It means that a line is loaded in a specific set depending
on its address only, in any of then lines. Common replacement
policies are random, Least Recently Used (LRU) or modified
variants of LRU. Intel has not disclosed the cache replace-
ment policy of their CPUs. However, the replacement policies
for some architectures have been reverse-engineered. Sandy
Bridge has a pseudo-LRU replacement policy and Ivy Bridge
a modification of the pseudo-LRU replacement policy [19].

Since the Nehalem microarchitecture, the L3 cache is
divided into as many slices as CPU cores. However, each core
can access every slice. The mapping from physical addressesto
cache slices is performed by a so calledcomplex addressing
function, that takes as an input part of the physical address
(see Figure 1). The complex addressing function is undocu-
mented, however researchers have worked towards its reverse
engineering. We have combined the results by Hund et al. [20]
and Seaborn [21] in Table II. The table shows how address bits
17 to 31 are xor’d into one or two output bitso0 and o1. In
case of a dual-core CPU, output bito0 determines to which of
the two cache slices the physical address maps. In case of a
quad-core CPU, output bitso1 and o0 are used to determine
to which of the four cache slices the physical address maps.

D. Cache attacks and cache eviction

Cache eviction has ever been a means to perform cache
side-channel attacks. Cache side-channel attacks exploittiming



differences between cache hits and cache misses. Cache attacks
were first mentioned by Kocher [22] and Kelsey et al. [23].
Later practical attacks on cryptographic algorithms have been
explored thoroughly [24]–[27]. They evict data from the cache
by accessing large memory buffers. In 2006 Osvik et al. [28]
proposed Prime+Probe, an attack technique that allows de-
termining which specific cache sets have been accessed by
a victim program. In order to do so, they determine which
addresses are congruent to each other. Priming a cache set
evicts all victim data stored on congruent addresses. The time
taken by the prime step is directly proportional to the number
of ways that have been replaced by other processes including
the victim process.

Attacks by Gullasch et al. [29] and Yarom and Falkner [16]
exploit shared memory and can thereby determine more ac-
curately the memory locations accessed by a victim program.
Their attack called Flush+Reload, works by frequently flushing
a cache line using theclflush instruction instead of evicting
it by means of memory accesses. By measuring the time it
takes to reload the data, they determine whether a process
under attack has reloaded the data in the meantime. Gruss et al.
[30] have demonstrated that the Flush+Reload attack is possi-
ble without theclflush instruction with only a small loss
in accuracy.

As shared memory is not always available between attacker
and victim process, recent cache attacks use the Prime+Probe
technique again. This allows performing attacks across virtual
machine borders, even if memory sharing between guests is
disabled. Powerful cross-VM side-channel attacks [6], [31]
and covert channels [32] have been presented in the last year.
At the same time, Oren et al. [7] successfully implemented a
Prime+Probe cache attack from within sandboxed JavaScript
to attack user-specific data like network traffic or mouse move-
ments. Both propose eviction strategies for pseudo-LRU cache
replacement policies. However, more recent CPUs like Ivy
Bridge and Haswell use adaptive cache replacement policies
which are only pseudo-LRU in corner cases. In the following
Section, we will show that our adaptive eviction achieves a
significantly higher accuracy on these new architectures.

III. A DAPTIVE CACHE EVICTION STRATEGY

Evicting data from the cache is crucial to cache attacks like
Flush+Reload. It is also crucial for the Rowhammer attack, to
serve memory accesses from the DRAM instead of cache. Both
use theclflush instruction for this purpose. Hund et al. [20]
described that it is possible to evict data from the cache by
filling a large memory buffer the size of the cache. However,
this takes significantly more time and memory accesses than
are necessary for the eviction of one specific cache line.

Our goal is to optimize cache eviction in terms of the
execution time of the eviction function, thus in terms of the
number of memory accesses (cache misses). That is, we want
to find a set of addresses which are congruent in cache, as
well as an access pattern which accesses a minimal number
of these addresses. This is done by first optimizing regarding
eviction and when the eviction rate is close to100% reducing
of the eviction addresses that do not lower the eviction rate.

The replacement policy influences the number and the
patterns of accesses needed for the eviction strategy. Sandy
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Fig. 2. Excerpt of optimal access pattern on Haswell.

Bridge uses a pseudo-LRU replacement policy. Consequently,
after accessing as many congruent locations as the number
of ways of the L3 cache (typically 12 or 16), the physical
address to evict is evicted with a high probability. However, Ivy
Bridge and following microarchitectures use a slightly different
replacement policy called Quad-Age LRU [33]. Wong [19]
observed that dual-pointer chasing can help to cause eviction
on Ivy Bridge with a similar probability as on Sandy Bridge.
However, his approach uses chained lists which have the draw-
back to be slow. Moreover, the algorithm is not applicable to
Haswell CPUs. Our measurements indeed show that accessing
a memory location twice is not sufficient to trick the CPU to
always keep it in the cache as long as possible. Both, on Ivy
Bridge and on Haswell CPUs the address is more likely to be
evicted if it is accessed three times.

Figure 2 shows the best eviction strategy we found for
Haswell CPUs. Although the adaptive algorithm finds similar
strategies with a similar access pattern, it results in more
randomized access patterns. The pattern uses two accesses to
the same physical address, then one access to a second physical
address and then a third access to the first physical address
again. The first two accesses per memory location avoid data
to be evicted immediately. The third access tricks the CPU to
keep the data in the cache, as it is frequently used. The first
address and the last address are not accessed as often, so they
are more likely to be evicted. Therefore, some ways of the
cache set remain occupied by the same data all the time and
a smaller number of cache misses occurs.

We found that this strategy works on Ivy Bridge and Sandy
Bridge as well, but it is not optimal for Sandy Bridge, as a
single access per address would already suffice. However, asall
accesses are cached it does not incur a significant performance
penalty compared to single accesses either. Liu et al. [6] and
Oren et al. [7] presented algorithms to find optimal eviction
sets on Sandy Bridge microarchitecture, by means of a timing
attack. Although these algorithms can work on Ivy Bridge
and Haswell under certain circumstances, they are not optimal
in the numbers of accesses (cache misses) as they do not
consider accessing addresses more than once to trick the cache
replacement policy. However, the probability of eviction is
significantly lower in case of the LRU eviction strategy than
with our adaptive eviction strategy, due to the new replacement
policy used since Ivy Bridge.

To quantify the advantage of our adaptive eviction strategy
we performed 12 million memory access on a fixed address
which is supposedly evicted. We compared eviction using the
LRU eviction strategy, our adaptive eviction strategy and for
comparison, theclflush instruction. Figure 3 shows the
access time histogram. On our test machine it takes more
than 200 cycles to fetch data from memory. Most accesses
in our test were fetched from memory, as can be seen from
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Fig. 3. Comparison of different eviction strategies on Haswell.

the peak at230 cycles and the access times above. We see
that in case of the flush instruction no memory accesses
are below230 cycles. That is, all accesses are fetched from
memory, no accesses are cached. In case of the LRU eviction
strategy577319 accesses (4.8%) had a timing significantly
below 230 cycles and therefore must have been cached. With
our adaptive eviction strategy, we measured891 accesses (less
than 0.0001%) with a timing significantly below230 cycles.
Thus, the LRU eviction strategy yields648 times as many
cache hits than our adaptive eviction strategy.

Algorithm 1: Adaptive Eviction Strategy Algorithm.
Input : Target addressp

Accessp
while cached(p) do

Choose random 64-byte-aligned addressr from
eviction buffer
Insertr into eviction set twicee at two random
positions

end
Setc = 0
while c < |e| and not cached(p) do

Choose random indexr in e

Store all indicesri wheree[r] = e[ri]
Replace alle[ri] with e[ri − 1]
if cached(p) then

Undo changes for all indicesri
Setc = c+ 1

else
Setc = 0

end
end
Setc = 0
while c < |e| and not cached(p) do

Remove random element frome
if cached(p) then

Undo changes
Setc = c+ 1

else
Setc = 0

end
end

Therefore, we designed the algorithm shown in Algo-
rithm 1 that finds an adaptive eviction set, regardless of
the replacement policy, by performing a timing attack. The

cached(p) function tries to evict using the current eviction
set and decides whether an access was cached or not based
on the access time. To achieve a high accuracy, between 16
and 1 million times tests (eviction and access) are performed.
If a single cache hit was measured, the function returns true
and false otherwise. While consuming more time, more tests
increase the accuracy of the binary decision, as eviction can
also happen accidentally and thus the function would returna
wrong result. Another benefit of performing a higher number
of tests is that lower accuracy timers can be used when using
the overall time consumed by the tests. Thus, countermeasures
proposed by Oren et al. [7], that have been adopted by the
W3 consortium [34] cannot prevent successful execution of
our algorithm.

In the first step the adaptive eviction set finding algorithm
continuously adds addresses to the eviction set. Each memory
address is accessed multiple times, to reduce the probability
of immediate eviction. We know that the eviction set is large
enough as soon as we can clearly measure the eviction of
the target physical address. We now seek to minimize this
eviction set. We replace all accesses to addresses which have
no influence on eviction with accesses to other addresses from
the eviction set. Thus, the number of memory accesses does
not decrease, but the number of different addresses decreases
to the minimum. This decreases the number of cache misses
and the execution time. In the final step we randomly remove
all accesses which do not influence eviction. The result of the
algorithm is an optimal access pattern for the system under
attack. As we find the access pattern dynamically, based on the
specific system, the strategy is adaptive to all cache eviction
schemes.

Using this algorithm, we can compute an optimal evic-
tion strategy and subsequently evict cache lines with a high
probability without using theclflush instruction. This
allows improving existing cache attacks which are based
on Prime+Probe, like the JavaScript-based cache attack by
Oren et al. [7] or the cross-VM cache attack by Liu et al.
[6] on newer CPUs significantly. Furthermore, we are able to
exploit the Rowhammer bug using this eviction strategy, as we
discuss in the next Section.

The current implementation of our algorithm is signifi-
cantly slower than the ones by Oren et al. [7] and Liu et al. [6].
However, it is necessary to achieve optimal eviction and as it is
executed before the hammering loop it does not influence the
attack itself. Therefore, in our proof-of-concept attack we use
it only to find optimal eviction strategies in a preprocessing
step.

IV. I MPLEMENTATION OF ROWHAMMER WITHOUT
CLFLUSH IN NATIVE CODE

We found on all our test machines a significantly
higher probability for bit flips in a rowN when ham-
mering its neighbor rowsN − 1 and N + 1. This tech-
nique is dubbed “double-sided hammering”. We extended the
double_sided_rowhammer program by Dullien [35] by
using the best eviction strategies we have found as well as
the adaptive eviction strategy. The twoclflush instruc-
tions were first replaced by the eviction code shown in List-
ing 1 on Haswell. The eviction sets are precomputed in the



1 f o r ( s i z e t i = 1 ; i < COUNT( f e v i c t ) ; i += 1)
2 {
3 ∗ f e v i c t [ i ] ;
4 ∗ s e v i c t [ i ] ;
5 ∗ f e v i c t [ i + 1 ] ;
6 ∗ s e v i c t [ i + 1 ] ;
7 ∗ f e v i c t [ i ] ;
8 ∗ s e v i c t [ i ] ;
9 ∗ f e v i c t [ i + 1 ] ;

10 ∗ s e v i c t [ i + 1 ] ;
11 }

Listing 1. Hand-crafted eviction loop on Haswell

1 f o r ( s i z e t i = 1 ; i < COUNT( f e v i c t ) ; i += 1)
2 {
3 ∗ f e v i c t [ i ] ;
4 ∗ s e v i c t [ i ] ;
5 }

Listing 2. Generic eviction loop on Haswell

f_evict ands_evict variables using the physical address
mapping and the complex addressing function published by
Maurice et al. [36]. We verified that the loop works on Ivy
Bridge equivalently.

We verified the probability of eviction by measuring the
access times on the two addresses to evict. The second variant
is shown in Listing 2. The variablesf_evict ands_evict
are computed by Algorithm 1 instead of physical addresses.
The memory access pattern stays similar to the one described
before, but is now represented in the array instead of the loop
code.

Using the adaptive eviction strategy, we were able to repro-
ducibly flip bits on our Ivy Bridge test machine. The machine
was operated in default configuration for the DRAM and was
mostly idle (Internet surfing) during our tests. However, we
only observed bit flips when the CPU was running at the
maximum frequency of 3.3GHz. We still have to do more
experiments on this machine to exactly find the preconditions
in terms of temperate ranges of the environment, the DRAM
chips and the CPU. As it is not possible to set the DRAM
refresh rate on this machine in the BIOS settings, we could
not examine the influence of the refresh rate on the number of
bit flips. Lenovo has released a BIOS update for this machine
doubling the refresh rate of the DDR3 module [37]. Future
work includes investigating whether the update successfully
prevents bit flips on this test machine. There are also reports
of users that a BIOS update did not solve the Rowhammer bug
on their machine [38].

On our Haswell test machine we were not able to repro-
ducibly flip bits with the default settings, not even with the
clflush instruction. However, as the BIOS configuration
allows setting a custom refresh rate, we were able to analyze
its influence. We reproducibly flipped bits using the optimal
Haswell eviction strategy at lower refresh rates. We used this
setup as a development platform for the proof of concept
Rowhammer implementation in JavaScript, as described in the
next Section.

V. ROWHAMMER IN JAVA SCRIPT

Several challenges have to be addressed to trigger the
Rowhammmer bug from JavaScript. First, JavaScript has no
concept of virtual addresses or pointers. As a work around
we used large typed arrays. We observed that large typed
arrays in JavaScript in Firefox 39 on Linux are allocated on
anonymous 2MB pages. The reason for this lies in the memory
allocation mechanism used by Firefox in this case. Only by
knowing the offset in the array we know the lowest 21 bits
of the virtual and physical address. However, this leads to the
second problem: we cannot compute eviction sets based on
physical addresses in JavaScript. Instead we use our adaptive
algorithm from Section III. Third, memory access have to be
implemented in a way that they cannot be optimized out by
the just-in-time-compiler. However, we found that the access
pattern from native code is not optimized out.

As a first proof of concept we tried to reproduce bit flips
we found in JavaScript in Firefox 39. In order to do that we
built a tool which monitors the virtual address space of Firefox.
Each time a 2MB page is allocated we store the virtual address
and the time difference to the last allocation. This way we can
detect the beginning of the allocation in JavaScript. In a second
step we build an inverted page table for the Firefox process.
We then resolve the physical addresses we want to hammer
to offsets within the JavaScript array. These offsets are then
pasted into a field in the webpage to start hammering on the
JavaScript array.

The final JavaScript-based attack does not require any
outside computation and thus, runs entirely without user in-
teraction in the browser. It exploits the fact that large typed
arrays are allocated on 2MB pages. Thus, we know that each
2MB region of our array is divided into 16 row offsets of size
128KB (single channel). Some rows at the page borders cannot
be hammered as they have no neighbored rows on the same
2MB page. For each of the 14 possible row offsets all page
offset combinations are hammered. With 32 pages per row and
channel there are32 ·32 = 256 combinations to hammer pages
per row and channel. The eviction set is computed using the
adaptive eviction strategy finding algorithm from Section III.
Although it is slower than the ones by Liu et al. [6] and
Oren et al. [7], it finds a significantly better eviction strategy,
which is necessary for the attack. These are the only two
building blocks, resulting in the first remote JavaScript-based
hardware-fault attack.

VI. ATTACK EVALUATION

We have evaluated how different refresh rates influence
the number of bit flips (expected value based on our measure-
ments) in Figure 4 for a fixed address pair and a fixed time
interval in different setups. During the tests the system was
under slight usage (browsing, typing in an editor, etc.). We
see that theclflush instruction yields the highest number
of bit flips. Native code eviction and JavaScript eviction are
very close together and the difference between those two is
negligible. The number of rounds that have fit into the fixed 15
minutes interval have varied a bit for the test runs at different
refresh rates. The bit flips per round are shown in Figure 5.
We can see that the expected number of bit flips per round is
significantly lower in case of the eviction-based tests thanin
the tests withclflush.
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Fig. 4. Number of bit flips within 15 minutes (expected value based on our
measurements) on a fixed address pair for different refresh rates on Haswell in
the three different setups:clflush, native code eviction, JavaScript eviction.
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Fig. 5. Number of a bit flips per round (expected value based onour
measurements) on a fixed address pair for different refresh rates on Haswell in
the three different setups:clflush, native code eviction, JavaScript eviction.

We have observed that adding dummy instructions – that
only consume time – while hammering sometimes increases
the number of bit flips significantly. This effect occurred in
both JavaScript and native code. These instructions increase
the execution time of each hammering loop, which is coun-
terintuitive with the fact that the bit flips should occur more
often with a higher hammering rate. More attention should be
given to this phenomenon, and to whether it can be used for
countermeasures against the Rowhammer bug.

The probability for bit flips in JavaScript and in native
code is almost the same. Thus, if a machine is vulnerable
using our native code implementation it is vulnerable using
our JavaScript implementation as well. We performed most
tests on the Haswell machine as we were able to change the
refresh interval. However, a successful remote attack willonly
be possible on the Ivy Bridge laptop as it has a significantly
higher probability of bit flips withoutclflush in default
settings.

VII. C OUNTERMEASURES

Kim et al. [3] proposed several countermeasures which
should be implemented for new DRAM modules. One counter-
measure they propose is increasing the refresh rate. However,
to prevent bit flips caused by row hammering, the refresh rate
would need to be increased to 8 times its current value. While
the DRAM is currently busy refreshing up to4.5% of the
time, it would then consume up to35% of time, according
to Kim et al. [3]. Some hardware manufacturers have already

started to distribute BIOS updates. Most of these updates only
double the refresh rate to reduce the probability of a successful
attack. This solves the problem for most machines, however
on some machines the probability will still be high enough
to exploit. There is also the issue of whether end users will
actually patch their machines. A report shows that only30%
of Windows systems are up-to-date, although Windows comes
with an auto-update feature, which is enabled by default [39].
We assume that comparatively complicated BIOS updates will
only be deployed by a diminutive group of users.

We found several guides suggesting to decrease refresh
rates to gain higher system performance. Until now this might
have affected the stability of the system. Now, users cannot
do this anymore without risking a remote attacker performing
fault attacks against their systems.

To prevent attacks on millions of users, browsers need
to detect and prevent Rowhammer-based attacks. Part of this
can be detection using hardware performance counters as
suggested by Herath and Fogh [40] to stop suspicious scriptsor
detection whether the system is susceptible to rowhammering
with clflush and subsequently slowing down JavaScript
execution to prevent an attack. These countermeasures need
further evaluation before they can be brought to practice.

VIII. F UTURE WORK

Although we demonstrated how the Rowhammer bug can
be triggered from JavaScript, we do not provide a full root
exploit. One way to get root privileges is by spraying the
physical memory with page tables. Seaborn [4] built a root
exploit which first tries to find a memory location causing a
reproducible bit flip and then tries to fill the memory with its
own page tables. If now a bit flips in one of the page tables
the exploit notices that the file is not mapped anymore and as
it has filled the memory with its own page tables, it probably
has one of our its page tables mapped. If this is the case the
program has full access to physical memory.

To exploit bit flips in page tables using double sided
hammering, it is necessary to allocate 4KB pages. If this is
the case page tables can be in a row between the two rows
being hammered. As it is possible in JavaScript to get 4KB
pages and 2MB pages, we know that a root exploit must be
possible and we will investigate this next.

While we cannot memory map files in JavaScript, we ob-
served that if the operating system or hypervisor deduplicates
zero pages we can achieve a similar situation. By acquiring
a large number of zero pages we could fill the memory with
our own page tables like in the native code exploit. Having
access to our own page tables from JavaScript would enable
us to access and modify all physical memory, as in the native
code exploit by Seaborn [4].

Although our eviction-strategy-finding algorithm (pre-
sented in Section III) works on different Intel CPUs, it is
necessary to evaluate how it performs on non-Intel platforms,
e.g., AMD x86 or ARM CPUs. Modern smartphones have
fast DRAM modules integrated and should be examined for
potential security risks.

While we implemented a successful attack in JavaScript in
Firefox 39, the problem is bigger than that. First, we expectthe



attack to work in other browsers as well, if the JavaScript just-
in-time compilation is as efficient. More general, the presented
approach can be applied to any programming language and
any runtime environment. If the memory is accessed in the
same pattern and the frequency is high enough it will cause
bit flips as well. We chose JavaScript because it can easily be
executed by a remote attacker. However, other languages like
ActionScript or server-side scripting languages could also be
interesting targets for an attacker if they are translated to a
native instruction stream by a compiler or JIT-compiler.

IX. CONCLUSIONS

In this paper, we presented Rowhammer.js, an imple-
mentation of the Rowhammer attack using optimal cache
eviction through memory accesses. Although implemented in
JavaScript, the attack technique is independent of the specific
CPU microarchitecture, programming language and runtime
environment, as long as the stream of memory accesses is exe-
cuted fast enough. Rowhammer.js is the first remote hardware-
fault attack.

The optimal eviction strategy we used can be found for
an unknown CPU by a generic algorithm we propose. The
optimal eviction strategy we found improves the eviction rate
from 95.2% to 99.99% on our Haswell test system compared
to existing eviction strategies. This high accuracy is a crucial
to exploit the Rowhammer bug without the flush instruction.
Although the probability of a bit flip is significantly lower
than with the flush instruction on our test machines, we still
found that one machine is vulnerable to our attack with default
settings.

Our attack runs in sandboxed JavaScript which is present
and enabled by default in every modern browser. Therefore, it
can be launched from any website. We expect that a remote
attacker can gain root privileges by adapting existing Rowham-
mer bug exploits to our attack. Efficient countermeasures are
known but seem unlikely to be practical. Additionally, we
propose practical countermeasures which can be deployed in
web browsers immediately to avoid remote attacks on millions
of users.
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