
9 This HTML page is also a PDF
which is also a ZIP
which is also a Ruby script
which is an HTTP quine; or,
The Treachery of Files

by Evan Sultanik
from a concept independently conceived by Ange Albertini
and with great technical assistance from Philippe Teuwen

Please rise and open your hymnal for the recitation of PoC‖GTFO 7:6.

“A file has no intrinsic meaning. The meaning of a file—its type, its validity, its contents—can be
different for each parser or interpreter. ”

You may be seated.
In the spirit of самиздат and the license of this publication, we thought it might be nifty to aid its

promulgation by enabling the PDF to mirror itself. That’s right, this PDF is an HTTP quine: it is a web
server that serves copies of itself.
$ ruby pocorgtfo11.pdf &
Listening for connections on port 8080.
To listen on a different port,
re-run with the desired port as a command-line argument.
$ curl -s http://localhost:8080/pocorgtfo11.pdf | diff -s - pocorgtfo11.pdf
A neighbor at 127.0.0.1 is requesting /pocorgtfo11.pdf
Files - and pocorgtfo11.pdf are identical

Utilisation de la canne. — 1. Canne-filet à papillons. — 2. Canne à toiser les chevaux. —
3. Canne-parapluie. — 4. Canne musicale. — 5. Ceci n’est pas une pipe.

33

This polyglot once again exploits the fact that
PDF readers ignore everything before the first in-
stance of “%PDF”. Coupled with Ruby’s __END__
token—which effectively halts interpretation—and
its __FILE__ token—which resolves to the path of
the file being interpreted—it’s actually quite easy to
make an HTTP quine by prepending the PDF with
the following:
r e qu i r e ’ socke t ’

2 s e r v e r = TCPServer . new(’ ’ , 8080)
loop do

4 socket = s e r v e r . accept
r eque s t = socket . g e t s

6 re sponse = F i l e . open (__FILE__) . read
socke t . p r i n t "HTTP/1 .1 200 OK\ r \n" +

8 "Content−Type : app l i c a t i on /
pdf \ r \n" +

"Content−Length : #{response .
by t e s i z e }\ r \n" +

10 "Connection : c l o s e \ r \n"
socke t . p r i n t "\ r \n"

12 socket . p r i n t re sponse
socke t . c l o s e

14 end
__END__

But why stop there? Ruby makes all of the bytes
in the script that occur after the __END__ token
available in the special “DATA” object. Therefore,
we can add additional content between __END__ and
%PDF that the script can serve.

1 r e qu i r e ’ socke t ’
s e r v e r = TCPServer . new(’ ’ , 8080)

3 html = DATA. read () . s p l i t (/<\/html>/) [0]+ "</
html>\n"

loop do
5 socket = s e r v e r . accept

i f socke t . g e t s . s p l i t (’ ’) [1] .
downcase . end_with? " . pdf " then

7 c = " app l i c a t i o n /pdf "
d = F i l e . open (__FILE__) . read

9 n = F i l e . s i z e (__FILE__)
else

11 c = " text /html"
d = html

13 n = html . l ength
end

15 socket . p r i n t "HTTP/1 .1 200 OK\ r \
nContent−Type : #{c}\ r \nContent−Length :
#{n}\ r \nConnection : c l o s e \ r \n\ r \n"+d

socket . c l o s e
17 end

__END__
19 <html>

<head>
21 <t i t l e >An HTTP Quine PoC</t i t l e >

</head>
23 <body>

<a hr e f=" pocorgt fo11 . pdf ">Download
pocorgt fo11 . pdf !

25 </body>
</html>

Any HTTP request with a URL that ends with .pdf
will result in a copy of the PDF; anything else will
result in the HTML index parsed from DATA.

Since the data between __END__ and %PDF. . . is
pure HTML already, it would be a shame not to
make this file a pure HTML polyglot, too (similar
to PoC‖GTFO 0x07). Doing so is relatively simple
by wrapping PDF in HTML comments:

INSERT RUBY WEB SERVER HERE
2 __END__
<html>

4 . . .
</html>

6 <!−−
INSERT RAW PDF HERE

8 −−>

This is valid Ruby, since Ruby does not interpret
anything after the __END__. The PDF does not af-
fect the validity of the HTML since it is commented.
There will be trouble if the byte sequence “-->” (2D
2D 3E) occurs anywhere within the PDF, but this is
very unlikely and has proven not to be a problem.

Wrapping the Ruby webserver code in an HTML
comment would have been ideal, and does in fact
work for most PDF viewers. However, the pres-
ence of an HTML opening comment before the %PDF
causes Adobe’s parser to classify the file as HTML
and therefore refuse to open it.

Unfortunately, some web browsers interpret the
Ruby code as having an implied “<html>” preceding
it, adding all of that text to the DOM. This is reme-
died with Javascript in the HTML that sanitizes the
DOM if necessary.

As has become the norm, this PDF is also a
valid ZIP. This feat does not affect the Ruby/HTML
portion since the ZIP is embedded later in the file
as an object within the PDF (cf. PoC‖GTFO 1:5).
This presents an additional opportunity for the web-
server: if the script can unzip itself, then it can also
serve all of the contents of the ZIP. Unfortunately,
Ruby does not have a ZIP decompression facility
in its standard library. Therefore, the webserver
calls the unzip utility with the “-l” option, pars-
ing the output to determine the names and sizes
of the constituent files. Then, a call to unzip with
“-p” writes raw decompressed contents to STDOUT,
which the web server splits apart and stores in mem-
ory. Any HTTP request with a URL that matches a

34

file path within the ZIP is served that decompressed
file. This allows us to have images like a favicon
in the HTML. In the event that the PDF is inter-
preted as raw HTML—i.e., it was not served from
the Ruby script—a Javascript function conveniently
hides all of the ZIP access portions.

With all of this feature bloat, the Ruby/HTML
code that is prepended before the PDF started get-
ting quite large. Unfortunately, some PDF read-
ers like PDFium16 (the default PDF viewer shipped
with Chrom(e|ium)) fail unless they find “%PDF”
within the first 1024 characters. Therefore, the fi-
nal trick in this polyglot is to exploit Ruby’s mul-
tiline comment syntax (which, like the __END__ to-
ken, owes itself to Ruby’s Perl heritage). This allows
us to start the PDF header early, within a com-
ment that will not be interpreted. Within that PDF
header we open a dummy object stream that will
contain the remainder of the Ruby script and the
following HTML code before the start of the “real”
PDF.

r e qu i r e ’ socke t ’
2 =begin
%PDF−1.5

4 9999 0 obj
<<

6 /Length INSERT_#
_REMAINING_RUBY_AND_HTML_BYTES_HERE

>>
8 stream
=end

10 INSERT REMAINING RUBY CODE HERE
__END__

12 INSERT HTML HERE
<!−−

14 endstream
endobj

16 INSERT RAW PDF HERE WITH LEADING %. . . HEADER
REMOVED

−−>

Figure 5 describes the anatomy of the polyglot,
as interpreted in each file format.

16https://pdfium.googlesource.com/pdfium/

35

PDF Header

9999 0 obj
<<
/Length ?
>>

stream

=begin

=end

Multiline
Comment

require statements

Ruby Webserver

Parses the HTML

from DATA and calls

unzip on itself to

extract the ZIP con-

tent

__END__

Text occurring be-

fore <html>. Some

browsers will add

this to the DOM,

ignoring the fol-

lowing <html> and

<head>.

<!--

endstream

endobj

PDF Content

Replace ? with
the number of
bytes here

(i.e., between
stream and
endstream)

obj/stream

ZIP Content
as usual

(cf. PoC‖GTFO 1:5

and 9:12)

Central Directory

Archive Comment

endstream/endobj

PDF Footer
-->

Everything after
__END__ is

accessible from
Ruby’s special
DATA object

Ruby HTML PDF ZIP

HTML

Javascript to
remove
everything
between
“require. . . ” and
“__END__”
from the DOM, if
necessary

Figure 5 – Anatomy of the Ruby/HTML/PDF/ZIP polyglot. Green portions contain the main content of
their respective filetypes. White portions are for context and to illustrate modifications necessary to make
the polyglot work. Gray portions are not interpreted by their respective filetypes.

36

