
bq803xx ROM API v 3.0

User's Guide

October 2005 PMP Portable Power

SLUU225

bq803xx ROM API v 3.0

User's Guide

Literature Number: SLUU225

October 2005

Contents

Preface ... 5

1 Interrupt Vectors and Hooks .. 7
1.1 Introduction .. 8

1.2 Making Calls to the ROM .. 9

1.3 C Function Parameter Passing ... 9

2 ROM Library Functions ... 11
2.1 SMBus Routines... 12

2.2 Flash Memory Access Routines... 32

2.3 Flash Program Memory Routines ... 33

2.4 Flash Data Memory Routines.. 37

2.4.1 Math Library Routines ... 41

2.5 Math Routines Called by the Compiler ... 54

2.6 I2C Functions .. 57

3 boot-ROM Routines .. 63
3.1 boot-ROM Routines ... 64

3.1.1 Smb_FlashWrAddr ... 64

3.1.2 Smb_FlashRdWord .. 64

3.1.3 Smb_FlashRdRow ... 64

3.1.4 Smb_FlashRowCheckSum ... 64

3.1.5 Smb_FlashProgWord .. 64

3.1.6 Smb_FlashProgRow ... 65

3.1.7 Smb_FlashEraseRow.. 65

3.1.8 Smb_FlashMassErase... 65

3.1.9 FlashExecute ... 65

3.1.10 SetAddr .. 65

3.1.11 PokeByte... 65

3.1.12 PeekByte... 66

3.1.13 ReadRAMBlk .. 66

3.1.14 Version ... 66

3.1.15 Smb_FdataChecksum.. 66

3.1.16 Smb_FdataProgWord .. 66

3.1.17 Smb_FdataProgRow ... 66

3.1.18 Smb_FdataEraseRow.. 67

3.1.19 Smb_FdataMassErase... 67

A ROM Entry Points ... 69

SLUU225–October 2005 Contents 3

Contents4 SLUU225–October 2005

Preface
SLUU225–October 2005

Read This First

The bq802xx contains 6K of mask ROM code, consisting of boot-ROM code and library
routines. The boot-ROM code executes at reset and detects whether the bq802xx is
configured to boot into the application program in flash memory. If not, the boot ROM
makes available a set of SMBus-accessible routines for flash programming and
verification, and reading or writing the data memory space (including hardware
registers). The ROM also contains library routines, which can be called from
applications programs running in flash memory. This document describes the method
of accessing library routines, the library services available, and the boot-ROM routines
available at system reset.

This document describes

• Use of library services
• Boot ROM routines available at system reset

Notational Conventions

This document uses the following conventions:
• Program listings, program examples, and interactive displays are shown in a special typeface similar to

a typewriter's. Examples use a bold version of the special typeface for emphasis; interactive displays
use a bold version of the special typeface to distinguish commands that you enter from items that the
system displays (such as prompts, command output, error messages, etc.).

• Here is a sample program listing:
0011 0005 0001 .field 1, 2

0012 0005 0003 .field 3, 4

0013 0005 0006 .field 6, 3

0014 0006 .even

Here is an example of a system prompt and a command that you might enter:
C: csr -a /user/ti/simuboard/utilities

• In syntax descriptions, the instruction, command, or directive is in a bold typeface font and
parameters are in an italic typeface. Portions of a syntax that are in bold should be entered as shown;
portions of a syntax that are in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect
"section name", address

.asect is the directive. This directive has two parameters, indicated by section name and address.
When you use .asect, the first parameter must be an actual section name, enclosed in double quotes;
the second parameter must be an address.

• Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you
specify the information within the brackets; you do not enter the brackets themselves. Here is an
example of an instruction that has an optional parameter:

LALK
16-bit constant [, shift]

SLUU225–October 2005 Read This First 5

www.ti.com

FCC Warning

The LALK instruction has two parameters. The first parameter, 16-bit constant, is required. The second
parameter, shift, is optional. As this syntax shows, if you use the optional second parameter, you must
precede it with a comma.
Square brackets are also used as part of the pathname specification for VMS pathnames; in this case,
the brackets are actually part of the pathname (they are not optional).

• Braces ({ and }) indicate a list. The symbol | (read as or) separates items within the list. Here is an
example of a list:

{ * | *+ | *- }

This provides three choices: *, *+, or *-.
Unless the list is enclosed in square brackets, you must choose one item from the list.

• Some directives can have a varying number of parameters. For example, the .byte directive can have
up to 100 parameters. The syntax for this directive is:

.byte
value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but you have the option of
supplying additional value parameters, separated by commas.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can
radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable
protection against radio frequency interference. Operation of this equipment in other environments may
cause interference with radio communications, in which case the user at his own expense will be required
to take whatever measures may be required to correct this interference.

Read This First6 SLUU225–October 2005

Chapter 1
SLUU225–October 2005

Interrupt Vectors and Hooks

This chapter describes the operation of the interrupt vectors and hooks in the bq802xx
ROM.

Topic .. Page

1.1 Introduction ... 8
1.2 Making Calls to the ROM ... 9
1.3 C Function Parameter Passing ... 9

SLUU225–October 2005 Interrupt Vectors and Hooks 7

www.ti.com

1.1 Introduction

Introduction

The reset and interrupt vectors of the bq802xx are populated with JUMP instructions. They are defined in
the assembly support file crt0.s and are arranged in flash program memory as follows:
0x0000: jump main ; flash "reset" vector

0x0001: jump xinHandler ; external interrupt handler

0x0002: jump pinHandler ; peripheral interrupt handler

0x0003: jump cinHandler ; communications interrupt handler

0x0004: jump smbWaitIntr ; "wait" for next smb event

The operation of the three interrupt vectors can be modified by symbols defined at assembly time. The xin
and pin interrupts can be redirected by defining an assembler symbol, ROM_INT, to use interrupt prologue
and epilogue code (stacking and restoring registers, RETI instruction). To conserve flash program
memory, this code is in ROM. In this case, the vectors to the user-provided interrupt service routine bodies
are at 0x0007 and 0x0008:
0x0007: jump xinHandler ; external interrupt handler body

0x0008: jump cinHandler ; communications interrupt han body

The interrupt service routines bodies can then be written as C functions, which return with RETS, or in
assembler. Besides saving program memory space, this eliminates the danger of writing a C interrupt
handler which saves data on the stack before the registers can be saved.

The cinHandler and smbWaitIntr vectors can also be redirected using the assembler symbol SCHED_CIN.
This uses the communications interrupt handler and scheduler provided in ROM. The ROM
communications interrupt handler simply sets the communications process (process 0) to ACTIVE, then
calls the scheduler. All the work is done by the process code. See the document Gas Gauge Example
with AFE for instructions and examples for configuring the compiler and assembler. The ROM scheduler
theory of operation is described in the document Scheduler Operation.

The ROM also provides routines to perform i2c accesses to an external device, such as a serial
EEPROM. This is a software-driven serial access, which does not use the SMBus engine in the bq802xx.
The user must provide low-level i/o access to the pins selected for i2c access.
;---
; hooks to user-provided i2c routines
;---
0x0009: jump i2c_clockhi
0x000a: jump i2c_clocklo
0x000b: jump i2c_wait_clockhi
0x000c: jump i2c_datahi
0x000d: jump i2c_datalo
0x000e: jump i2c_datain
0x000f: jump i2c_wait_quarter_bit

If you are programming in assembly language, you must ensure that the vectors from i2c_clockhi to
i2c_wait_quarter_bit jump to subroutines that ultimately return with a RETS instruction. Also,
i2c_wait_clockhi and i2c_datain returns a value in r2. See the section on i2c library routines for details.

The vector main_init is the reset vector. Control is transferred here by the boot ROM when it finds the
flash integrity word defined as 0x155454 at address 0x0005.
.ifdef INTEGRITY

.byte 0x00,0x15,0x54,0x54; flash integrity word good
.else

.byte 0x00,0x3f,0xff,0xff; flash integrity word bad
.endif

The integrity word should be undefined (anything except 0x155454) while you are developing code, so
that a power-on reset causes the bq802xx to return to the boot ROM. From boot ROM you can erase and
reprogram the part. If you do set the integrity word to 0x155454, the part jumps from boot ROM to flash at
reset.

Interrupt Vectors and Hooks8 SLUU225–October 2005

www.ti.com

1.2 Making Calls to the ROM

1.3 C Function Parameter Passing

Making Calls to the ROM

It may be necessary to program the integrity word and boot to flash for testing. In this case you should
provide a function that allows you to return to the boot ROM by calling the library function
flash_execute()-without this function you must invoke the hardware fail-safe feature to return to boot ROM
to reprogram the part.

To invoke the hardware fail-safe feature you should tie ra3 and ra7 together. The hardware fail-safe
signals the boot-ROM code to ignore the integrity word and continue to execute from boot ROM.

The security word at address location 0x0006 is used to prevent unauthorized access and is undefined
when it is 0x3fffff. Any other value in that location is considered defined and disables the hardware
fail-safe feature. TI recommends that the security word be used with caution and only on production code.
During development,. leave the security word undefined.

In addition, the following RAM locations may be used by the ROM code to exchange information with flash
program code:
; RAM locations
smb_ctl = 0x0000
smb_errno = 0x0001
i2c_errno = 0x0002
process_list = 0x0003, 0x0004
process_ptr = 0x0005, 0x0006
num_proc = 0x0007
halt_mode = 0x0008
peek_poke address = 0x0009, 0x000a

The locations of these variables must remain constant in order for the ROM code to use them, so other
variables must not be allocated on top of them, if the ROM library SMBus or i2c routines are used.

For C programs, the configuration for the vector and RAM allocation, and other initializations, are
controlled by the cstart file crt0.s. See the readme file in the support files for detailed instructions for
configuring the cstart file.

In order to use the ROM library routines, you must make a software call (CALLS) to the listed entry point
for the routine, and pass parameters and retrieve return values in accordance with the function prototypes
listed in this document. The entry points to the library routines are contained in the library files included in
the development environment. The source code refers to the library functions by name and the linker
provides the physical address. Inclusion of the appropriate header files in C programs, or declaration of
the function name as a global in assembly programs, provides the compiler or assembler with the
symbolic reference.

In general, the ROM routines are called from C programs. In this case, all that is necessary is to conform
to the C function prototypes. For assembly language programs, the calls to the ROM library routines must
pass parameters and retrieve function return values exactly as a C program would. For this, follow the
parameter-passing conventions used by the compiler: In mixed C/assembly programs, it is important to
remember to preserve the stack pointer, i3, and registers i2 and ip, across the assembly subroutine call,
because the C compiler expects them to remain intact.

The C compiler uses the index register i3 as a stack pointer and the registers r0,r1,r2,r3 to carry out the
exchange of parameters. Some examples :

extern char as_byte(char u);
The parameter u is carried in by r3 and the return value by r2

extern char as_byte(char i, char u);
The parameter i is carried out by r3 and u by r2 and the return value by r2

extern int as_byte (char i, char u);
The parameter i is carried out by r3 and u by r2 and the return value by r2 and r3 (r2=lsb and
r3=msb)

extern int as_getbit(short x, short i);

SLUU225–October 2005 Interrupt Vectors and Hooks 9

www.ti.com

C Function Parameter Passing

The parameter x is carried out by r3,r2 (r2=lsb and r3=msb) and i by r1,r0 (r0=lsb and r1=msb)
and the return value by r2 and r3 (r2=lsb and r3=msb)

extern int as_getbit(long x, short i);
The parameter x is carried out by r3,r2,r1,r0 (r0=lsb and r3=msb) and i by the stack (i3,0) and
(i3,1) and the return value by r2 and r3.

Stack depths as reported for the individual functions are the depth of stack used after the routine is
entered. Some parameters are passed to the routine on the stack, and others are passed in registers, but
the previous contents of these registers may need to be saved on the stack. These would all be saved by
the calling function before the call to the library function. In addition, ip is used for the call, and must be
preserved by the calling routine, but may already have been saved due to a previous call in the calling
routine. These variable stack uses must be added to the reported stack depth to gauge accurately the
effect on the stack of the library call.

Interrupt Vectors and Hooks10 SLUU225–October 2005

Chapter 2
SLUU225–October 2005

ROM Library Functions

This chapter describes the ROM Library Functions of the bq802xx.

Topic .. Page

2.1 SMBus Routines ... 12
2.2 Flash Memory Access Routines.. 32
2.3 Flash Program Memory Routines .. 33
2.4 Flash Data Memory Routines.. 37
2.5 Math Routines Called by the Compiler... 54
2.6 I2C Functions ... 57

SLUU225–October 2005 ROM Library Functions 11

www.ti.com

2.1 SMBus Routines

SMBus Routines

The SMBus ROM routines provide easy access to the SMBus engine in the bq802xx. These routines send
or receive multiple bytes over the SMBus. Because the SMBus hardware handles the clocking of
individual bits in or out, CPU action is normally required only when each byte is to be transferred to or
from the SMBus hardware. In order to avoid needlessly tying up the CPU, the ROM routines can be made
to relinquish the CPU while they are waiting for the SMBus hardware to finish clocking a byte in or out. If
the user sets the SMB_FLASH bit in the smb_ctl byte in RAM, these routines jump to the user's flash code
through the smbWaitIntr vector in flash program memory when waiting for more data. The user's code
may then perform other processing, usually by yielding to the scheduler, and return to the SMBus ROM
code when the next SMBus event occurs. If the user does not set the SMB_FLASH bit, the SMBus ROM
code uses polling, and thus retains control of the CPU until the entire SMBus transaction is complete.

The SMBus ROM routines share two RAM locations with the user's flash routines, to exchange status and
configuration information. They contain bit flags for control and status as follows:

smb_ctl at address 0x00 contains configuration information for SMB

enum Smb_Ctl {

SMB_FLA = 0x01, //yield to flash
SH

SMB_PEC = 0x02, //use PEC in master mode
EN

RESERVE = 0x04 //reserved
D

RESERVE 0x08 //reserved
D2

I2C_NO_A = 0x10 //I2C routines do not require an ACK
CK

SMB_PEC = 0x20 //SMB routines return error if PEC not used
_DET

};

smb_errno at address 0x01 contains error code of last SMBus transaction

enum Smb_Err {

SMB_OK,
SMB_Busy
,

SMB_Reserved,

SMB_Unsupported,

SMB_AccessDenied,

SMB_Overflow,

SMB_Bad
Size,

SMB_Unkn
ownError

};

ROM Library Functions12 SLUU225–October 2005

www.ti.com

SMBus Routines

Not all of these error codes are used by the ROM code. smb_errno should be set to SMB_OK (zero) by
the application program before calling the SMBus ROM routine. The SMbus routine returns 1 if there is no
error; otherwise, it returns 0.

When SMB_FLASH is set, the ROM code jumps to flash through a vector every time it must wait for
further SMBus activity. It jumps to smbWaitIntr(), provided by the user, to yield to the scheduler. This
allows other useful work to be done while waiting for the next SMBus event. This is the anticipated normal
mode of operation. See the document Scheduler Operation for further explanation.

When SMB_PECEN is set, master mode transactions uses a PEC (packet error checking) byte. In slave
mode, the PEC is appended to the transmission if the master requests it by sending an ACK after the last
data byte, and can be checked if the master sends it. The PEC is generated and checked by the SMBus
hardware.

When SMB_PEC_DET is set, the smbSlave functions indicates an error by returning zero if a PEC was
not used in the slave transaction. In the SMBus specification, the slave device is required to behave the
same independent of whether a PEC is used or not; so, this bit is for users who wish to operate without
complete conformance to the SMBus specification.

When I2C_NO_ACK is set, the I2C routines returns no error even if data has not been acknowledged by
the slave device.

In slave mode, the SMBus engine acknowledges its own address, set in the SMBus target register at
0x8006. When the command word arrives from the bus master, the SMBus engine sets SMSTA_DRDY or
SMBSTA_DREG true and generates an interrupt (if enabled). At this point, it is the responsibility of the
application code to take the appropriate action. See the document Gas Gauge Example for further details.

In order to avoid ambiguity in the following descriptions, the description of the SMBus protocol as read and
write are always from the perspective of the bus master, i.e., they are master read and master write. The
function names of the SMBus ROM library routines reflect the direction from the perspective of the
bq802xx in its role as bus master or slave. Thus a master send word (smbMasterWrWord) is an SMBus
write word protocol, but a slave send word (smbSlaveSndWord) is an SMBus read word protocol.
Consequently, although sending a word with smbMasterWrWord() necessarily implies receiving it
somewhere else with smbSlaveRcvWord(), the transaction's protocol is called a write word protocol,
because the master is writing.

The bq802xx can act as either the master or the slave in an SMBus transaction. This transaction can fail
in one of several ways:

cause of failure smb_erro master slave

loss of arbitration unchanged X

SMBus is busy unchanged X X

SMBus transaction times out unchanged X X

no ACKnowledgment unchanged X X

packet error check fails SMB_UnknownError X X

unexpected SMBSTA_DRDY SMB_AccessDenied X

block size too large SMB_BadSize X

command not found SMB_Unsupported X

SLUU225–October 2005 ROM Library Functions 13

www.ti.com

smbMasterRdWord — smb Master Read Word

smbMasterRdWord smb Master Read Word

function prototype int smbMasterRdWord (unsigned char address, unsigned char command, int *data);

description This function is used for SMBus Read Word protocol. smbMasterRdWord sends a slave
address, a command byte and then reads a word (two bytes, lsb first) from the selected
slave when called. It yields to the scheduler between bytes.

Input: smbMasterRdWord has 3 inputs

address device address of slave

command command byte for slave

data pointer to storage for word to be read from slave.

Output smbMasterRdWord has 2 outputs

function return: 0 = fail (busy, timeout, no acknowledgment, packet error check
fail)

1 = success

side effects: global variable smb_errno contains code for error:
SMB_UnknownError if a PEC is detected.

Stack depth: 13

example unsigned char address, command;

int target;

int *data;

data = (int *)

address = SLAVEADDRESS;

command = RETURN_WORD;

.

.

status=smbMasterRdWord(address,command,data);

if(!status) {

//do error-handling

}

//now word has been read from slave

ROM Library Functions14 SLUU225–October 2005

www.ti.com

smbMasterWrWord — smb Master WriteWord

smbMasterWrWord smb Master WriteWord

function prototype int smbMasterWrWord (unsigned char address, unsigned char command, int data);

description This function is used for SMBus Write Word protocol. smbMasterWrWord sends a slave
address, a command byte and then a word (two bytes, lsb first) to the selected slave
when called. It yields to the scheduler between bytes.

Input: smbMasterWrWord has 3 inputs

address device address of slave

command command byte for slave

data the word to be read from slave over SMBus.

Output smbMasterRdWord has 2 outputs

function return: 0 = fail (busy, timeout, no acknowledgment, packet error check
fail)

1 = success

side effects: none

Stack depth: 12

example: unsigned char address, command;

int data;

address = SLAVEADDRESS;

command = DO_THIS;

data = somevalue;

.

.

status=smbMasterWrWord(address,command,data);

if(!status) {

//do error-handling

}

//now word has been read from slave

SLUU225–October 2005 ROM Library Functions 15

www.ti.com

smbMasterRdBlock — smb Master Read Block

smbMasterRdBlock smb Master Read Block

function prototype: int smbMasterRdBlock (unsigned char address, unsigned char command, unsigned char
*byte_cnt, unsigned char *block);

description This function is used for SMBus Read Block protocol. smbMasterRdBlock sends a slave
address, a command byte, a maximum block length, and then reads a block length,
followed by a block of up to *byte_cnt bytes from the selected slave into a RAM buffer
when called. If the slave attempts to return more than *byte_cnt bytes, it fails with an
SMB_BadSize error. Otherwise, *byte_cnt contains the number of bytes actually read. It
yields to the scheduler between bytes.

Input: smbMasterRdBlock has 4 inputs

address: device address of slave

command: command byte for slave

byte_cnt: pointer to max block length in bytes

block: pointer to storage for block to be read from slave.

Output: smbMasterRdBlock has 2 outputs

function return: 0 = fail (busy, timeout, no acknowledgment, packet error check
fail)

1 = success

*byte_cnt contains number of bytes actually read

side effects: global variable smb_errno contains code for error:
SMB_UnknownError if a PEC error is detected.

Stack depth: 14

example unsigned char address, command; byte_cnt;

unsigned char *block;

address = SLAVEADDRESS;

command = RETURN_BLOCK;

byte_cnt = LENGTH;

block = (unsigned char *)MY_BUFFER;

.

.

status=smbMasterRdBlock(address,command,& byte_cnt, block);

if(!status) {

//do error-handling

}

//now word has been read into ram buffer

ROM Library Functions16 SLUU225–October 2005

www.ti.com

smbMasterWrBlock — smb Master Write Block

smbMasterWrBlock smb Master Write Block

function prototype: int smbMasterWrBlock (unsigned char address, unsigned char command, unsigned char
byte_cnt, unsigned char *block);

description This function is used for SMBus Write Block protocol. smbMasterWrBlock sends a slave
address, a command byte, a block length, and then a block of data from a RAM buffer to
the selected slave when called. It yields to the scheduler between bytes.

Input: smbMasterWrBlock has 4 inputs

address: device address of slave

command: command byte for slave

byte_cnt: block length in bytes

block: pointer to the block to be read from slave

Output: smbMasterRdBlock has 2 outputs

function return: 0 = fail (busy, timeout, no acknowledgment)

1 = success

side effects: none

Stack depth: 13

example unsigned char address, command; byte_cnt;

unsigned char *block;

address = SLAVEADDRESS;

command = RETURN_BLOCK;

byte_cnt = LENGTH;

block = (unsigned char *)MY_BUFFER_OF_DATA;

.

.

status=smbMasterWrBlock(address,command, byte_cnt, block);

if(!status) {

//do error-handling

}

//now word has been sent from ram buffer to slave

SLUU225–October 2005 ROM Library Functions 17

www.ti.com

SMBus Routines

smbSlaveCmd smb Slave Command

function prototype: int smbSlave Cmd (unsigned char cmd, unsigned char size, unsigned *table)());

description This function is used to execute a command via a table lookup in a user-defined jump
table in flash program memory. smbSlaveCmd ACKs the command word, enables the
bus free interrupt and executes a command in the command table when called, after it
has determined that the host's command word is in the user's command table. If the
command is not found, the command is NACKed.

Input: smbSlaveCmd has 3 inputs

cmd: an index to command table for command to be executed

size: command table size

table: pointer to command table

Output: smbSlaveCmd has 2 outputs

function return: 0 = fail command not in table

other = success, return value determined by selected command

side effects: global variable smb_errno contains code for error:
SMB_Unsupported.

Stack depth: 5 plus stack depth of called function

example: extern unsigned char (*MY_COMMAND_TABLE[]) ();

.

.

if(SMB->sta & SMB_DATA_RDY) {

cmd = SMB->da;

if (cmd >= FIRST_COMMAND && cmd <= LAST COMMAND) {;

status=smbSlaveCmd(cmd,TABLE_SIZE,;

MY_COMMAND_TABLE);

}

if(!status) {

}

//now command successfully executed

ROM Library Functions18 SLUU225–October 2005

www.ti.com

smbSlaveRcvWord — smb Slave Receive Word

smbSlaveRcvWord smb Slave Receive Word

function prototype: int smbSlave RcvWord (int*data);

description This function is used for SMBus Write Word protocol. smbSlaveRcvWord receives a
word (two bytes, lsb first) from the host (master) when called, after the user program has
determined from the host's command word that a slave receive is required. It yields to
the scheduler between bytes.

Input: smbSlaveRcvWord has 1 input

data: a pointer to storage for the word to be received from SMBus

Output: smbSlaveRcvWord has 2 outputs

function return: 0 = fail (timeout, no acknowledgment, packet error check fail)

1 = success

side effects: global variable smb_errno contains code for error:
SMB_UnknownErrorif a PEC error is detected

Stack depth: 13

example: int data;

if(SMB->sta & SMBSTA_DRDY) {

if ((cmd=SMB->da) == ReadThisWord) {;

smb_ACK ();

status=smbSlaveRcvWord(&data);

}

if(!status) {

//do error-handling {

}

//now word has been read and is stored in data

SLUU225–October 2005 ROM Library Functions 19

www.ti.com

smbSlaveSndWord — smb Slave Send Word

smbSlaveSndWord smb Slave Send Word

function prototype: int smbSlaveSndWord (int data);

description This function is used for SMBus Read Word protocol. smbSlaveSndWord sends a word
to the host (master) when called, after the user program has determined from the host's
command word that a slave send is required.

Input: smbSlaveSndWord has 1 input

data: the word to be sent over SMBus

Output: smbSlaveSndWord has 2 outputs

function return: 0 = fail (timeout, no acknowledgment)

1 = success

side effects: global variable smb_errno contains code for error:
SMB_AccessDenied if the Master tries to read data.

Stack depth: 17

example: unsigned char data

data = somevalue;

.

.

if (SMB->sta & SMBSTA_DRDY)

if((cmd=SMB->da == SendThisWord) {

smb_Ack ();

status=smbSlaveSndWord (data);

}

if (!status) {

//do error-handling {

}

//now byte has been sent

ROM Library Functions20 SLUU225–October 2005

www.ti.com

smbSlaveSndBlock — smb Slave Send Block

smbSlaveSndBlock smb Slave Send Block

function prototype: int smbSlaveSndBlock (unsigned char byte_cnt, unsigned char *block);

description This function is used for SMBus Read Block protocol. smbSlaveSndBlock sends a block
length, followed by a block of bytes, to the host (master) when called, after the user
program has determined from the host's command word that a slave block send is
required. It yields to the scheduler between bytes.

Input: smbSlaveSndBlock has 2 inputs

byte_cnt: the number of bytes in block

block: a pointer to the block to be sent over SMBus.

Output: smbSlaveSndBlock has 2 outputs

function return: 0 = fail (timeout, no acknowledgment)

1 = success

side effects: global variable smb_errno contains code for error:
SMB_AccessDenied if the Master tries to read data.

Stack depth: 19

example: unsigned char *block;

unsigned char len;

len = BLOCKLEN;

//fill block with data to send

.

.

if (SMB->sta & SMBSTA_DRDY)

if((cmd=SMB->da == SendThisBlock) {

smb_Ack ();

status=smbSlaveSndBlock (byte_cnt, block);

}

if (!status) {

//do error-handling {

}

//now block has been sent

SLUU225–October 2005 ROM Library Functions 21

www.ti.com

smbSlaveRcvBlock — smb Slave Receive Block

smbSlaveRcvBlock smb Slave Receive Block

function prototype: int smbSlaveRcvBlock (unsigned char *byte_cnt, unsigned char *block);

description This function is used for SMBus Write Block protocol. smbSlaveRcvBlock receives a
block length, followed by a block of bytes from the host (master) when called, after the
user program has determined from the host's command word that a slave block receive
is required. It yields to the scheduler between bytes.

Input: smbSlaveRcvBlock has 2 inputs

block: a pointer to storage for the block to be read from SMBus.

byte_cnt: a pointer to the maximum number of bytes in block

Output: smbSlaveRcvBlock has 3 outputs

function return: 0 = fail (timeout, no acknowledgment, bad size, packet error
check fail)

1 = success

*block: contains bytes received

side effects: global variable smb_errno contains code for error:
SMB_BadSize or SMB_UnknownError. byte_cnt contains the
number of bytes actually received

Stack depth: 21

example: unsigned char *block;

unsigned char len;

len = BLOCKLEN;

//fill block with data

.

.

if (SMB->sta & SMBSTA_RDY)

if((cmd=SMB->da == SendThisBlock) {

smb_Ack ();

status=smbSlaveRcvBlock (&len,block);

}

if (!status) {

//do error-handling {

}

//now block has been read and is stored at block

ROM Library Functions22 SLUU225–October 2005

www.ti.com

smbSlaveWord — smb Slave Word

smbSlaveWord smb Slave Word

function prototype: int smbSlaveWord (unsigned char *datardy, int *data);

description This function is used for SMBus Read Word and SMBus Write Word protocol. It sends or
receives a word depending on whether the Master requests a read or a write. Because
the data direction is unknown at the time of the call, valid data should be set up
beforehand. The datardy flag indicates whether the data was read by the host or
overwritten. This would typically be used to access a variable the master would read but
also sometimes update. It yields to the scheduler between bytes.

Input: smbSlaveSlaveWord has 2 inputs

datardy: a pointer to a flag indicating read/write direction

data: a pointer to the word to be read or written

Output: smbSlaveWord has 3 outputs

function return: 0 = fail (timeout, no acknowledgment, packet error check fail)

1 = success

*block: contains word sent or received

side effects: global variable smb_errno contains code for error:
SMB_UnknownError if a PEC error is detected. datardy
indicates host read (0) or host write (1)

Stack depth: 19

example: unsigned char read_write;

unsigned int *data;

data = readwritedata; // point to target data);

//Sends or receives word depending on Master

//read_write = 1 if receive

.

.

if (SMB->sta & SMBSTA_DRDY)

if((cmd=SMB->da == ReadorWriteThisWord) {

smb_Ack ();

status=smbSlaveWord (&read_write, data);

}

if (!status) {

//do error-handling {

}

//now word has been either read or written as master requested

if (read_write) { // if data was sent by host

//read_write data has changed, take appropriate action

}

SLUU225–October 2005 ROM Library Functions 23

www.ti.com

smbSlaveBlock — smb Slave Block

smbSlaveBlock smb Slave Block

function prototype: int smbSlaveBlock (unsigned char *datardy, unsigned char *byte_cnt, unsigned char
max_cnt, unsigned char *block);

description This function is used for SMBus Read Block and SMBus Write Block protocol. It sends
or receives a block depending on whether the Master requests a read or a write.
Because the data direction is unknown at the time of the call, valid data should be set up
beforehand. The datardy flag indicates whether the data was read by the host or
overwritten. byte_cnt is set to the number of bytes to be sent if the master performs a
read, max_cnt is the maximum number of bytes which can be received if the master
performs a write. This function would typically be used to access a block of data the
master would read but also sometimes update. It yields to the scheduler between bytes.

Input: smbSlaveSlaveBlock has 4 inputs

datardy: a pointer to a flag indicating read/write direction

byte_cnt: a pointer to the number of bytes to be sent

max_cnt: the maximum number of bytes to be received

block: a pointer to the data block to be sent or received

Output: smbSlaveBlock has 6 outputs

function return: 0 = fail (timeout, no acknowledgment, packet error check fail)

1 = success

*datardy: indicates direction (0=read, 1=write)

*byte_cnt: contains number of bytes received if host write

*block: contains word sent if host write

side effects: global variable smb_errno contains code for error:
SMB_UnknownError if a PEC error is detected. datardy
indicates host read (0) or host write (1)

Stack depth: 20

example: unsigned char read_write;

unsigned char byte_cnt;

unsigned char max_cnt;

unsigned char *block;

byte_cnt = max_cnt = DATA_BLOCK_SIZE; //;

block = (unsigned char *) &readwritedata

// point to target data

// Sends or receives block depending on Master

// read_write = 1 if receive

.

.

if (SMB->sta & SMBSTA_DRDY)

if((cmd=SMB->da == ReadorWriteThisBlock) {

smb_Ack ();

status=smbSlaveBlock (&read_write, &byte_cnt, max_cnt, block);

}

if (!status) {

//do error-handling {

}

//now block has been either read or written

ROM Library Functions24 SLUU225–October 2005

www.ti.com

smbSlaveBlock — smb Slave Block

if (read_write) { // if data was sent by host

//block data has changed, take appropriate action

}

SLUU225–October 2005 ROM Library Functions 25

www.ti.com

smbSlaveSndWordNoWait — smb Slave Send Word No Wait

smbSlaveSndWordNoWait smb Slave Send Word No Wait

function prototype: int smbSlaveSndWordNoWait (data);

description This function is used for SMBus Read Word protocol. It sends when an unexpected
master read occurs (not immediately preceded by a command word) so that SMBus
action is required immediately, not after waiting for the next SMBus event. In practice,
the slave would know what to send based on a previous command from the master. It
yields to the scheduler between bytes.

Input: smbSlaveSndWordNoWait has 3 inputs

data: the word to be sent

size: ??

table: ??

Output: smbSlaveSndWordNoWait has 3 outputs

function return: 0 = fail (timeout, no acknowledgment)

1 = success

side effects: none

Stack depth: 13

example: .

.

if (SMB->sta & SMBSTA_DREQ) { //master wants data right now

status=smbSlaveSndWordNoWait (standby_data);

}

if (!status) {

//do error-handling {

}

//now word has been sent to master

ROM Library Functions26 SLUU225–October 2005

www.ti.com

smbSlaveSndBlockNoWait — smb Slave Send Block No Wait

smbSlaveSndBlockNoWait smb Slave Send Block No Wait

function prototype: int smbSlaveSndBlockNoWait (unsigned char byte_cnt, unsigned char *block);

description This function is used for SMBus Read Block protocol. smbSlaveSndBlockNoWait sends
a block length followed by a block of bytes. It sends when an unexpected master read
occurs (not immediately preceded by a command word) so that SMBus action is required
immediately, not after waiting for the next SMBus event. In practice, the slave would
know what to send based on some earlier command from the master. It yields to the
scheduler between bytes.

Input: smbSlaveSndBlockNoWait has 3 inputs

byte_cmd: the block length

block: a pointer to the block to be sent

table: ??

Output: smbSlaveSndBlockNoWait has 3 outputs

function return: 0 = fail (timeout, no acknowledgment)

1 = success

side effects: none

Stack depth: 14

example: unsigned char *block;

unsigned char byte_cnt;

block = (unsigned char *) MYDATABLOCK;

byte_cnt = MYBLOCKLEN;

.

.

if (SMB->sta & SMBSTA_DREQ) { //give master the block now

status=smbSlaveSndBlockNoWait (byte_cnt, block);

}

if (!status) {

//do error-handling {

}

//now block has been sent as master requested

SLUU225–October 2005 ROM Library Functions 27

www.ti.com

smbACK — smb Acknowledgment

smbACK smb Acknowledgment

function prototype: void smb_ACK(void);

description This function writes a 1 to the SMBACK register, causing the SMBus engine to generate
an ACK on the SMBus. This acknowledgment allows the SMBus transaction to continue.
Conversely, withholding it (sending a NACK or allowing a timeout) aborts the SMBus
transaction. It is called by the ROM during mulitbyte transactions, but also by the user
when a received command from the host is determined to be valid, allowing the host to
continue.

Input: none

Output: smb_ACK has none

function return: none

side effects: none

Stack depth: 0

example: unsigned char cmd;

.

.

if (SMB->sta & SMBSTA_DRDY) {

cmd = SMB->da;

if (cmd < FIRST_COMMAND && cmd > LAST_COMMAND)

{

smb_NACK(); //command is not valid so abort

}

else {

smb_ACK(); //command is not valid

//take proper action for command

}

.

.

ROM Library Functions28 SLUU225–October 2005

www.ti.com

smbNACK — smb NACK

smbNACK smb NACK

function prototype: void smb_NACK(void);

description This function writes a 0 to the SMBACK register, causing the SMBus engine to abort the
current transaction, or in the case of bus master transactions, to signal the slave to send
no further data. It is called by the ROM in case of error or to terminate mulitbyte
transactions, but also by the user when a received command from the host is
determined to be invalid, signaling the host to abort the transaction.

Input: none

Output: smb_ACK has none

function return: none

side effects: none

Stack depth: 0

example: unsigned char cmd;

.

.

if (SMB->sta & SMBSTA_DRDY) {

cmd = SMB->da;

if (cmd < FIRST_COMMAND && cmd > LAST_COMMAND) {

smb_NACK(); //command is not valid so abort

}

else {

smb_ACK(); //command is valid

//take proper action for command

}

.

.

SLUU225–October 2005 ROM Library Functions 29

www.ti.com

smbSetBFI — smb Set Bus FreeI

smbSetBFI smb Set Bus FreeI

function prototype: void smb_SetBFI(void);

description This function activates the Bus Free interrupt for the SMBus engine, allowing the SMBus
engine to wake the SMB process when the bus becomes free. It is used internally by the
ROM code and can also be used by application programs when suspending a process to
ensure the process wakes again when one of the possible outcomes is an idle SMBus.

Input: none

Output: smb_ACK has none

function return: none

side effects: none

Stack depth: 0

example: unsigned char cmd;

.

.

if (SMB->sta & SMBSTA_DRDY)

if ((cmd=SMB->da) == ExecuteCommand) {

SMB->pec = SMBPEC_PEC_CHK;

smbSetBFI(); //wake up if bus becomes free

status=smbCheckPecSlave();

if (status) {

smb_ACK();

do_command();

}

else {

smb_NACK();

smbWaitBusFree();

//do error-handling

}

}

}

ROM Library Functions30 SLUU225–October 2005

www.ti.com

smbWaitBusFree — smb Wait Bus Free

smbWaitBusFree smb Wait Bus Free

function prototype: int smbWaitBusFree(char status);

description This function waits for the SMBus to become free by suspending its process while
waiting for SMBus interrupts, clearing unwanted SMBus interrupts by NACKing. It returns
when the SMBus is free. The bus free interrupt must be enabled before calling this
function, using the smbSetBFI function. This function is used internally by ROM code to
clear a failed transaction, and it could also be used by an application program.

Input: Status-error status of current SMBus transaction

Output: smb WaitBusFree has 2 outputs

function return: 0 = failed (either input status is zero or an interrupt occurred
which was not BUS_FREE)

1 = success (input status is one and first interrupt is
BUS_FREE)

side effects: clears SMBCTL_BFI_EN

Stack depth: 5

example: .

.

if (SMB->sta & SMBSTA_DRDY)

if ((cmd=SMB->da) == ExecuteCommand) {

SMB->pec = SMBPEC_PEC_CHK;

smbSetBFI(); //wake up if bus becomes free

status=smbCheckPecSlave();

if (status) {

smb_ACK();

do_command();

}

else {

smb_NACK();

smbWaitBusFree();

//do error-handling

}

}

}

SLUU225–October 2005 ROM Library Functions 31

www.ti.com

2.2 Flash Memory Access Routines

smbCheckPecSlave — smb Check PEC Slave

smbCheckPecSlave smb Check PEC Slave

function prototype: int smbCheckPecSlave(void);

description This function checks the Packet Error-checking Code sent by the master. It is used when
performing a slave SMBus write command transaction to verify the correctness of the
Packet Error-checking Code sent by the master. This guards against executing a garbled
command. smbCheckPecSlave returns pec okay if the PEC is correct, or if the master
does not send a PEC, but fails if the PEC is incorrect, or if the master is actually sending
other data, but the command byte has been garbled into a command-only code.

Input: none

Output: smbCheckPecSlave has 1 output

function return: error code (0=fail, 1=PEC okay)

side effects: none

Stack depth: 9

example: .

.

if (SMB->sta & SMBSTA_DRDY)

if ((cmd=SMB->da) == ExecuteCommand) {

SMB->pec = SMBPEC_PEC_CHK;

smbSetBFI(); //wake up if bus becomes free

status=smbCheckPecSlave();

if (status) {

smb_ACK();

do_command();

}

else {

smb_NACK();

smbWaitBusFree();

//do error-handling

}

}

}

There are two sections of flash memory in the bq803xx, reflecting the Harvard architecture of the CPU
core. The program flash is a 24k × 22 array starting at address 0x0000. All instructions are 22 bits long.
The 8-bit data memory space consists of 2048 bytes of flash data memory at address 0x4000. The top 64
bytes of data memory are reserved and can only be read. Both of these memory spaces are mapped to
their respective CPU address spaces and thus can be read directly by the CPU over its program or data
memory bus in normal operation. Writing to flash memory requires access through special hardware
registers. Because this access requires removing the flash from CPU memory space, no writes to flash
program memory can be performed directly from code running in flash program memory. These writes
must instead be performed by code running in ROM. The ROM library routines provide read, write, and
erase functions for flash program memory and flash data memory. The smallest unit that can be erased in
data flash is a row of 64 bytes, in program flash two rows (64 instruction words), and both can be mass
erased. The erased state for both is all ones.

ROM Library Functions32 SLUU225–October 2005

www.ti.com

2.3 Flash Program Memory Routines

Flash Program Memory Routines

These routines are used to store integers into the 22-bit flash program memory locations. They provide
additional nonvolatile storage (beyond the 2016 bytes of the flash data memory), which can be used when
the flash program memory is not filled with code. They cannot be used to write code to the flash program
memory, because they only access the low 16 bits of the flash program word.

Interrupts are disabled during the execution of these routines, because any attempt to execute flash
program code while the flash program memory is not mapped to the CPU address space would be
disastrous.

SLUU225–October 2005 ROM Library Functions 33

www.ti.com

FlashRdRow — Flash Read Row

FlashRdRow Flash Read Row

function prototype: void FlashRdRow(unsigned int xadr, unsigned char yadr,unsigned char cnt, int *data);

description This function reads integers from the low 16 bits of the words in a row of flash program
memory into a RAM buffer. If yadr + cnt exceeds row size, the read wraps to the
beginning of the row.

Input: FlashRdRow has 4 inputs

xadr: the flash row address

yadr: the flash column address

cnt: the number of integers to read from flash

Output: FlashRdRow has 2 outputs

function return: none

side effects: none

Stack depth: 1

example: unsigned char *buffer;

unsigned int xadr;

unsigned int yadr;

unsigned char cnt;

buffer = (unsigned char *) MYBUFFER;

cnt = 32; //the whole row

xadr = FLASH_DATA_ROW; //the row set aside for data storage

xadr = FLASH_DATA_COLUMN; //the start address in the row

.

.

FlashRdRow (xadr,yadr,cnt,buffer);//read flash data into ram buffer

//done

ROM Library Functions34 SLUU225–October 2005

www.ti.com

FlashEraseRow — Flash Erase Row

FlashEraseRow Flash Erase Row

function prototype: void FlashEraseRow(unsigned int xadr);

description This function erases two rows of flash program memory. The low bit of the input
parameter xadr is ignored; the even/odd row pair is erased. The erased state is all ones.

Input: FlashEraseRow has 1 input

xadr: the flash row start address

Output: FlashEraseRow has 2 outputs

function return: none

side effects: none

Stack depth: 2

example: unsigned int xadr;

xadr = FLASH_DATA_ROW; //the row pair to erase

xadr = FLASH_DATA_COLUMN; //the start address in the row

.

.

FlashEraseRow(xadr); //erase the even/odd row pair

//now flash row is ready for new data

//done

SLUU225–October 2005 ROM Library Functions 35

www.ti.com

FlashProgRow — Flash Prog Row

FlashProgRow Flash Prog Row

function prototype: void FlashProgRow(unsigned int xadr, unsigned char yadr,unsigned char cnt, int *data);

description This function stores integers from a ram buffer into the low 16 bits of a row of flash
program memory. If yadr + cnt exceeds row size, the write wraps to the beginning of the
row.

Input: FlashProgRow has 4 inputs

xadr: the flash row address

yadr: the flash column address

cnt: the number of integers to write to flash

data: a pointer to the ram buffer area

Output: FlashProgRow has 2 outputs

function return: none

side effects: none

Stack depth: 2

example: unsigned char *buffer;

unsigned int xadr;

unsigned int yadr;

unsigned char cnt;

buffer = (int *) MYBUFFER;

cnt = 32; //the whole row (twice)

xadr = FLASH_DATA_ROW; //the start row for data storage

yadr = FLASH_DATA_COLUMN; //the start column (column 0)

.

.

FlashEraseRow (xadr);//erase the rows first

FlashProgRow (xadr, cnt,buffer);//write ram buffer into flash

buffer += 32; //write second half of buffer

FlashProgRow (xadr, cnt,buffer);//write ram buffer into flash

//done

ROM Library Functions36 SLUU225–October 2005

www.ti.com

2.4 Flash Data Memory Routines

FlashChecksum — Flash Checksum

FlashChecksum Flash Checksum

function prototype: long FlashChecksum();

description This function returns the checksum of the instruction flash.

Input: takes no arguments

Output: FlashChecksum has 2 outputs

function return: long integer value of the checksum

side effects: none

Stack depth: 11

example: unsigned long Csum;

Csum=FlashChecksum();

These routines can be used to erase and write to flash data memory. Note that the writes can be block
writes within a page of memory, 64 bytes, but the smallest unit that can be erased is an entire row of
memory. In practice, this means that if the target area is not known to be erased, the entire row must be
preserved in a buffer, the necessary bytes written to that buffer, then the flash data memory row erased
and rewritten with the buffer contents. If the block to be written crosses a row boundary, this process must
be done twice. The function FdataWrBlock handles this necessary preservation; so, all that is required
when using it is to set up the block of data to be written.

SLUU225–October 2005 ROM Library Functions 37

www.ti.com

FlashProgRow — Flash Prog Row

FlashProgRow Flash Prog Row

function prototype: void FdataProgRow(unsigned char xadr, unsigned char yadr, unsigned char cnt,
unsigned char *data)

description This function stores bytes from a buffer into a selected row of flash data memory,
starting at a specified column. If yadr + cnt exceeds row size, the write wraps to the
beginning of the row. Erasure of the row, if necessary, must be done in a separate
operation, as well as preservation of contents of the row not included in the write.

Input: FdataProgRow has 4 inputs

xadr: the flash row address

yadr: the starting column in the row

cnt: the number of bytes to write to flash

data: a pointer to the buffer area

Output: FdataProgRow has 2 outputs

function return: none

side effects: none

Stack depth: 5

example: unsigned char *buffer;

unsigned char xadr, yadr;

unsigned char cnt;

buffer = (unsigned char *) MYBUFFER; //data to write

cnt = 32; //number of bytes to write

xadr = FLASH_DATA_ROW; //the row set aside for data storage

yadr = FLASH_DATA_COL; //the starting column for the write

.

.

FlashEraseRow (xadr);//erase the row first

FlashProgRow (xadr, yadr, cnt, buffer);//write ram buffer to flash

//done

ROM Library Functions38 SLUU225–October 2005

www.ti.com

FdataProgWord — Fdata Prog Word

FdataProgWord Fdata Prog Word

function prototype: void FdataProgWord(unsigned char *addr, unsigned char data)

description This function writes one byte to a selected flash data memory location in the range
0x4000–0x47bf. Writes outside the range are ignored. Bits can only be written to zero,
so the target byte should contain all ones (erased).

Input: FdataProgWord has 2 inputs

addr: a pointer to the data flash location to be written

data: the byte to be written

Output: FdataProgWord has 2 outputs

function return: none

side effects: none

Stack depth: 4

example: unsigned char data;

unsigned char *addr;

data = my_data_byte;
//setup data byte

FlashProgRow (addr, data);//write data to flash

//done

SLUU225–October 2005 ROM Library Functions 39

www.ti.com

FdataEraseRow — Fdata Erase Row

FdataEraseRow Fdata Erase Row

function prototype: void FdataEraseRow(unsigned char xadr)

description This function erases 64 bytes starting at the selected row. Note that one row is 32 bytes.
An xadr greater than 0x40 wraps to the beginning of flash data memory. Note that the
low bit of the row address is ignored. Reserved flash cannot be erased.

Input: FdataEraseRow has 1 input

xadr: the flash row address

Output: FdataEraseRow has 2 outputs

function return: none

side effects: none

Stack depth: 3

example: unsigned char *buffer;

unsigned char xadr,yadr;

unsigned char cnt;

cnt = 12; //number of bytes to write

xadr - FLASH_DATA_ROW; //the row set aside for data storage

yadr - FLASH_DATA_COL; //the starting column for the write

.

.

FdataEraseRow (xadr);//erase the row first

FdataProgRow (xadr,yadr,cnt,buffer);//write ram buffer to flash

//done

ROM Library Functions40 SLUU225–October 2005

www.ti.com

2.4.1 Math Library Routines

FdataMass Erase — Fdata Mass Erase

FdataMass Erase Fdata Mass Erase

function prototype: void FdataMassErase(void)

description This function erases all of flash data memory.

Input: none

Output: FdataMassErase has 2 outputs

function return: none

side effects: none

Stack depth: 7

example: unsigned char *buffer;

unsigned char xadr,yadr;

unsigned char cnt;

//get ready to put new info into flash data memory

.

.

//but first erase the whole thing;

FdataMassErase();

//done

//continue

Math routines accessible by function call

Calls to these routines are not generated automatically by the C compiler. They are special-purpose math
routines useful in some of the calculations commonly used in battery management.

SLUU225–October 2005 ROM Library Functions 41

www.ti.com

accumulate — accumulate

accumulate accumulate

function prototype: void Accumulate(Accum *accum, double val)

description Adds a double on the stack to an extended-precision (48 bit) integer pointed to by
accum. This extended-precision data type, called Accum, is used to hold the
accumulated charge in battery gas-gauging applications.

typedef struct {
unsigned char[6];

} Accum;

Input: accumulate has 2 inputs

accum: pointer to accumulator

val: value to be added

Output: value is added to Accum

Stack depth: 1

example: accum total_charge;

double charge_increment;

charge_increment = get_charge(); //pick up charge increment

Accumulate (&total_charge, charge_increment); //add to total

.

.

//done

ROM Library Functions42 SLUU225–October 2005

www.ti.com

exp — double exp (double d)

exp double exp (double d)

function prototype: double exp (double d)

description Returns a double that is 2=2.718 to power defined by input parameter.

Input: accumulate has 2 inputs

accum: d: pointer to accumulator

Output: result of raising e to said power.

Stack depth: 13

example: double mVolts, dTemp;

double c1 = 1.24;

mVolts = getAD(TS1) ;

dTemp = C1* exp(mVolts);

SLUU225–October 2005 ROM Library Functions 43

www.ti.com

log — double log (double f)

log double log (double f)

function prototype: double log (double f)

description Returns a double that is the natural logarithm of the input parameter.

Input: f: value of which to compute the logarithm.

Output: result as a double of computing the natural logarithm of the input
parameter.

Stack depth: 20

example: double edv;

double temp;

temp = ReadAD();

edv = log(temp);

ROM Library Functions44 SLUU225–October 2005

www.ti.com

long abs_long — long abs_long (long li)

long abs_long long abs_long (long li)

function prototype: long abs_long (long li)

description returns the absolute value of a long integer (4-byte).

Input: long integer to be converted

Output: long integer result

Stack depth: 0

example: long liln, liOut;

liOut = abs_long(liln);

SLUU225–October 2005 ROM Library Functions 45

www.ti.com

int abs_int(int In) —

int abs_int(int In) function prototype: int abs_int(int In)

description Returns an integer that is the absolute value of the input integer.

Input: integer to be converted

Output: integer result of absolute value of input.

Stack depth: 0

example: int iln, iOut;

iOut = abs_int(iln);

ROM Library Functions46 SLUU225–October 2005

www.ti.com

int round (double x) — int round (double x)

int round (double x) int round (double x)

function prototype: int round (double x)

description Returns the rounded value of a signed double to a signed integer. If x is greater than
MAX_INT, then MAX_INT is returned. If x is less than MIN_INT is returned.

Input: x value to be converted to an integer.

Output: Result of conversion.

Stack depth: 6

example: int i;

double f;

i = round (f);

SLUU225–October 2005 ROM Library Functions 47

www.ti.com

int AB_div_C — int AB_div_C (int a, int b, int c)

int AB_div_C int AB_div_C (int a, int b, int c)

function prototype: int AB_div_C (int a, int b, int c)

description Returns the result of multiplying a by b and then dividing by c. The routine uses
intermediate long values to preserve the precision of the math.

Input: a, b, c signed integer operands.

Output: integer result of (a*b)/c.

Stack depth: 0

example: int iTemp;

int imVolt;

int iDeg;

int ipVolts;

iTemp = AB_div_C (imVolt, iDeg, ipVolts);

ROM Library Functions48 SLUU225–October 2005

www.ti.com

unsigned int unsigned_AB_div_C — (unsigned int a, unsigned int b, unsigned int c)

unsigned int unsigned_AB_div_C (unsigned int a, unsigned int b, unsigned int c)

function prototype: unsigned int unsigned_AB_div_C (unsigned int a, unsigned int b, unsigned int c)

description Returns the result as an unsigned integer of (a*b)/c where all operands are unsigned
integers. Internally, the function uses long math to retain precision.

Input: a, b, c unsigned math operands.

Output: result of (a*b)/c.

Stack depth: 13

example: unsigned int iTemp;

unsigned int imVolt;

unsigned int iDeg;

unsigned int ipVolts;

iTemp = unsigned_AB_div_C (imVolt, iDeg, ipVolts);

SLUU225–October 2005 ROM Library Functions 49

www.ti.com

unsigned int iRoot — unsigned int iRoot

unsigned int iRoot unsigned int iRoot

function prototype: unsigned int iRoot (iRoot(iRootFuncPtr func, unsigned int x1, unsigned int x2, int eq_val,
void*ptr)

description Find the integer root of the function 'func' between the x1 and x2 bounds.

Input: func - pointer to the function of the form: f(x, void*ptr), where the
pointer is typically to function coefficients, if needed.

x1 - unsigned integer lower bound for root
x2 - unsigned integer upper bound for root
eq_val - integer function equivalence, that is, the equation
solved is of the form: f(x) - eq_val = 0
ptr - see definition of the function above.

Output: unsigned integer root.

Stack depth: 16 + stack used by 'func'

example: static int tquad (unsigned int x, void *coef)

{ // linear function

return ((int)(4 *x) - 100);

}

int testiRoot(void)

{

int i=0;

i = iRoot(tquad, 10, 50, 0, (void *)0);

return i;

}

ROM Library Functions50 SLUU225–October 2005

www.ti.com

unsigned int calculate_percent — (unsigned int x, unsigned int max)

unsigned int calculate_percent (unsigned int x, unsigned int max)

function prototype: unsigned int calculate_percent (unsigned int x, unsigned int max)

description Returns (x/max) * 100 preserving integer precision.

Input: x - a partial amount

max - the maximum amount

Output: percent of x in max.

Stack depth: 17

example: unsigned int testcalculatepercent(void)

{

unsigned int p=30, x = 100;

return calclate_percent(p,x);

}

SLUU225–October 2005 ROM Library Functions 51

www.ti.com

unsigned int calculate_percent_of — (PercentWord p, unsigned int max)

unsigned int calculate_percent_of (PercentWord p, unsigned int max)

function prototype: unsigned int calculate_percent_of(PercentWord p, unsigned int max)

description Returns the result of computing p percent of x, a total: (p*x)/100.

Input: p - percentage of total value

x - total or full value.

Output: Percent of total value

Stack depth: 9

example: int testcalculateperof(void

{

int p=30, x = 90;

return calculate_percent_of(p,x);

}

ROM Library Functions52 SLUU225–October 2005

www.ti.com

void sha1_mac — (const uchar *AuthKey, unsigned long *sha1_digest)

void sha1_mac (const uchar *AuthKey, unsigned long *sha1_digest)

function prototype: void sha1_mac(const uchar *AuthKey, unsigned long *sha1_digest)

description This function is used to provide a response to a challenge for authentication of the part.
Host systems can use this to determine if a proper part has been added to the system.

Input: AuthKey - points to an array of value representing an
Authorization key.

sha1_digest - initially an array of value representing the
challenge code.

Output: sha1_digest - is written over to contain the proper response to
the initial challenge.

Stack depth: 89

example: int testSha1(void)

{

unsigned int AuthKey[8];

unsigned char sha1_digest[20];

sha1_digest[0] = 0x61;

sha1_digest[1] = 0x62;

sha1_digest[2] = 0x63;

sha1_digest[3] = 0x20;

sha1_digest[4] = 0x20;

sha1_digest[5] = 0x20;

sha1_digest[6] = 0x20;

sha1_digest[7] = 0x20;

sha1_digest[8] = 0x20;

sha1_digest[9] = 0x20;

sha1_digest[10] = 0x20;

sha1_digest[11] = 0x20;

sha1_digest[12] = 0x20;

sha1_digest[13] = 0x20;

sha1_digest[14] = 0x20;

sha1_digest[15] = 0x20;

sha1_digest[16] = 0x20;

sha1_digest[17] = 0x20;

sha1_digest[18] = 0x20;

sha1_digest[19] = 0x20;

AuthKey[0] = 0x0123;

AuthKey[1] = 0x4567;

AuthKey[2] = 0x89ab;

AuthKey[3] = 0xcdef;

AuthKey[4] = 0xfedc;

AuthKey[5] = 0xba98;

AuthKey[6] = 0x7654;

AuthKey[7] = 0x3210;

sha1_mac((unsigned char *)AuthKey, sha1_digest);

sha1_mac((unsigned char *)AuthKey, sha1_digest);

smbSlaveSndBlock(20, sha1_digest);

return1;

SLUU225–October 2005 ROM Library Functions 53

www.ti.com

2.5 Math Routines Called by the Compiler

Flash Data Memory Routines

The C compiler automatically generates calls to these routines to implement basic arithmetic functions.
They can also be called from assembly language code, using the CALL instruction, as long as the C
compiler's parameter-passing conventions are observed. Stack handling precautions must be observed:
stack parameter passing uses big-endian ordering on the stack. This means the msb of a parameter is at
the lower memory address. Parameters are pushed on the stack in the order given. The stack depths
reported are the pushes within the routine, so any pushes required to save registers or pass parameters
must be added.

mulhi3 description This function multiplies two signed integers.

Input: r3:r2: int a

r1:r0: int b

Output: r1:r0: int (a * b)

Stack depth: 0

mulhisi3 description This function multiplies two signed integers to a long.

Input: r3:r2: int a

r1:r0: int b

Output: r3:r2:r1:r0: long int (a * b)

Stack depth: 4

mulsi3 description This function multiplies two longs to a long. The result is truncated to a long.

Input: stack: long int a

stack: long int b

Output: r3:r2:r1:r0: long int (a * b)

Stack depth: 4

umulhisi3 description This function multiplies two unsigned ints to long.

Input: r3:r2: unsigned int a

r1:r0: unsigned int b

Output: r3:r2:r1:r0: long int (a * b)

Stack depth: 2

ROM Library Functions54 SLUU225–October 2005

www.ti.com

mulsf3 —

mulsf3 description This function multiplies two, 4-byte doubles.

Input: r3:r2:r1:r0: double a

stack: double b

Output: r3:r2:r1:r0: double (a * b)

Stack depth: 5

addsf3 description This function adds two (floating point), 4-byte doubles.

Input: r3:r2:r1:r0: double a

stack: double b

Output: r3:r2:r1:r0: double (a * b)

Stack depth: 2

floatqisf2 description This function converts a signed or unsigned char to a 4-byte double.

Input: 0: char to convert

Z: set if converting from unsigned char

Output: r3:r2:r1:r0: input char converted to double

Stack depth: 0

floathisf2 description This function converts a signed integer to a 4-byte double.

Input: r2:r1: the signed int to convert

Output: r3:r2:r1:r0: the converted double

Stack depth: 0

floatsisf2 description This function converts a long to a 4-byte double.

Input: r3:r2:r1:r0: the long int to convert

Output: r3:r2:r1:r0: the converted double

Stack depth: 2

fix_truncsfhi2 description This function converts a double to a signed integer. It does not round to the
nearest integer; it truncates.

Input: r3:r2:r1:r0: the double to convert

Output: r1:r0: the converted result

Stack depth: 0

SLUU225–October 2005 ROM Library Functions 55

www.ti.com

fixuns_truncsfhi2 —

fixuns_truncsfhi2 description This function converts a double to an unsigned integer. It does not round to
the nearest integer; it truncates.

Input: r3:r2:r1:r0: the double to convert

Output: r1:r0: the converted result

Stack depth: 0

fix_truncsfhi2 description This function converts a double to an signed integer.

Input: r3:r2:r1:r0: the double to convert

Output: r3:r2:r1:r0: the converted result

Stack depth: 2

fixuns_truncsfsi2 description This function converts a double to an unsigned long integer. It does not
round to the nearest integer, it truncates.

Input: r3:r2:r1:r0: the double to convert

Output: r3:r2:r1:r0: the converted result

Stack depth: 1

divmodhi4 description This function divides two signed integers. Returns the quotient a/b and the
remainder.

Input: r1:r0: int a

stack: int b

Output: r1:r0: quotient of (int a) / (int b)

r3:r2: remainder

Stack depth: 3

udivmodhi4 description This function divides two unsigned integers. Returns the quotient a/b and the
remainder.

Input: r1:r0: int a

stack: int b

Output: r1:r0: quotient of (unsigned int a) / (unsigned int b)

r3:r2: remainder

Stack depth: 1

ROM Library Functions56 SLUU225–October 2005

www.ti.com

2.6 I2C Functions

divmodsi4 —

divmodsi4 description This function divides two signed long integers. Returns the quotient a/b and
the remainder.

Input: r3:r2:r1:r0: long int a

stack: long int b

Output: r3:r2:r1:r0: quotient of (long int a) / (long int b)

stack: long remainder

Stack depth: 7

divsf3 description This function divides two doubles. Returns the quotient

Input: r3:r2:r1:r0: double a

stack: double b

Output: r3:r2:r1:r0: quotient of (double a) / (double b)

Stack depth: 4

These functions implement a software-driven i2c bus on the bq803xx, in addition to the SMBus engine
provided in hardware. This bus resides on pins determined by the user, who must also provide support
functions to manipulate the chosen pins. The user functions set clock and data pin states, read the states,
generate timing delays, and set timeouts for clock stretches. Because the I/O access is provided in the
user functions, the user determines whether they are polled or interrupt-driven, and whether they yield to
the scheduler.

The user must provide the following functions to support the higher-level functions in the library ROM:

extern void i2c_clockhi(void); // release the clock pin to high

extern void i2c_clocklo(void); / set the clock pin low

extern unsigned char i2c_wait_clockhi(void); //release clock pin and

//wait for clock hi, up to limit return 0 if clock is not high

extern void i2c_datahi(void); // release data pin to high

extern void i2c_datahi(void); // release data pin to high

extern void i2c_datalo(void); // set data pin low

extern unsigned char i2c_datain(void); //read data pin into bit 0

extern void i2c_wait_quarter_bit(void); // 1/4 of clock period

See the section on interrupt vectors and hooks for further information about linking these support functions
to the ROM i2c code.

In addition, the user's code must initialize the i2c bus by setting clock and data lines high and optionally
providing power to the i2c device, and optionally removing power after the transaction. These initialization
routines are provided by the user and called in the user's code. The ROM library routines assume the bus
has been properly initialized. These are declared (as a reminder) in i2c.h as:

extern void i2c_power_up(void);
extern void i2c_power_down(void);

SLUU225–October 2005 ROM Library Functions 57

www.ti.com

I2C Functions

Note that the reported stack depths depend on the stack depths of the user-provided, low-level functions
for accessing clock and data pins and providing timing. These depths vary, depending on the
implementation by the user. You must add the reported stack depth to the stack depth of the listed
user-provided, low-level function that has the greatest stack depth.

All of the i2c library functions return either a zero for failure or a 1 for success. In addition, the global error
variable i2c_errno is set to one of the following values:

enum i2c_errors {
ERR_NACKED = 1,
ERR_TIMEOUT,
ERR_SHORT, //bus is shortedERR_COMPARE
}

ROM Library Functions58 SLUU225–October 2005

www.ti.com

I2CReadBlock — I2C Read Block

I2CReadBlock I2C Read Block

function prototype: unsigned char I2CReadBlock (unsigned char addr, unsigned char cmd, unsigned char
cnt, unsigned char *data);

description This function reads a block on a selected i2c peripheral into a RAM buffer.

Input: I2CReadBlock has 4 input

addr: the address of the i2c peripheral (bits 7..1)

cmd: the command understood by the peripheral

cnt: the length of the data block to be read

data: a pointer to storage for the block received.

Output: I2CReadBlock has 2 outputs

function return: 1 = success

0 = fail

side effects: global variable i2c_errno contains code for error:
ERR_NACKED, ERR_TIMEOUT, or ERR_SHORT

Stack depth: 12 plus the max stack depth of:
datahi()
datalo()
clockhi()
clocklo()
waitclockhi()
waitquartersecond()
datain()

example: unsigned char *block;

unsigned char len;

unsigned char status;

len = BLOCKLEN;

//allocate ram buffer block

.

.

status=I2CReadBlock(EE,READ_BLK,byte_cnt, block);

if(!status) {

//do error-handling

}

//now block has been read

SLUU225–October 2005 ROM Library Functions 59

www.ti.com

I2CWriteBlock — I2C Write Block

I2CWriteBlock I2C Write Block

function prototype: unsigned char I2CWriteBlock (unsigned char addr, unsigned char cmd, unsigned char
cnt, unsigned char *data);

description This function writes a block from a buffer to a selected i2c peripheral.

Input: I2CWriteBlock has 4 input

addr: the address of the i2c peripheral (bits 7..1)

cmd: the command understood by the peripheral

cnt: the length of the data block to be written

data: a pointer to storage for the block sent.

Output: I2CWriteBlock has 2 outputs

function return: 1 = success

0 = fail

side effects: global variable i2c_errno contains code for error:
ERR_NACKED, ERR_TIMEOUT, or ERR_SHORT

Stack depth: 14 plus the max stack depth of:
datahi()
datalo()
clockhi()
clocklo()
waitclockhi()
waitquartersecond()
datain()

example: unsigned char *block;

unsigned char len;

unsigned char status;

len = BLOCKLEN;

//allocate and fill block with data to send

.

.

status=I2CWriteBlock(EE,READ_BLK,byte_cnt, block);

if(!status) {

//do error-handling

}

//now block has been sent

ROM Library Functions60 SLUU225–October 2005

www.ti.com

I2CDeviceAvail — I2C Device Avail

I2CDeviceAvail I2C Device Avail

function prototype: unsigned char I2CDeviceAval(unsigned char addr, unsigned int wait);

description This function attempts to get an address acknowledgment from a selected device, to
determine whether the device is present on the i2c bus. It continues until the device
acknowledges or the specified retry count is exceeded.

Input: I2CDeviceAvail has 2 input

addr: the address of the i2c peripheral (bits 7..1)

wait: number of times to try to address peripheral

Output: I2CDeviceAvail has 2 outputs

function return: 1 = success

0 = fail

side effects: global variable i2c_errno contains code for error:
ERR_NACKED, ERR_TIMEOUT, or ERR_SHORT

Stack depth: 10 plus the max stack depth of:
datahi()
datalo()
clockhi()
clocklo()
waitclockhi()
waitquartersecond()
datain()

example: unsigned char *block;

unsigned char len;

unsigned char status;

len = BLOCKLEN;

//allocate and fill block with data to send

.

.

//TEST WHETHER DEVICE IS PRESENT FIRST:

if (I2CDeviceAvail(EE,MY_TIMEOUT){

status=I2CWriteBlock(EE,READ_BLK,byte_cnt, block);

if(!status) {

//do error-handling

}

}

//now block has been sent

else

//can't find device

SLUU225–October 2005 ROM Library Functions 61

www.ti.com

I2CCompareBlock — I2C Compare Block

I2CCompareBlock I2C Compare Block

function prototype: unsigned char I2CCompareBlock(unsigned char addr, unsigned char cmd, unsigned
char cnt, unsigned char *data);

description This function compares a block of data in memory with a block of data read from a
selected i2c device.

Input: I2CCompareBlock has 4 input

addr: the address of the i2c peripheral (bits 7..1)

cmd: the command understood by the peripheral

cnt: the length of the data block to be compared

data: a pointer to storage for the block to be compared

Output: I2CCompareBlock has 2 outputs

function return: 1 = success

0 = fail

side effects: global variable i2c_errno contains code for error:
ERR_NACKED, ERR_TIMEOUT, ERR_SHORT, or
ERR_COMPARE

Stack depth: 15 plus the max stack depth of:
datahi()
datalo()
clockhi()
clocklo()
waitclockhi()
waitquartersecond()
datain()

example: unsigned char *block;

unsigned char len;

unsigned char status;

len = BLOCKLEN;

//allocate and fill block with data to send

.

.

status=I2CWriteBlock(EE,READ_BLK,byte_cnt, block);

if(!status) {

//do error-handling, block not written

}

}

//now block has been sent, verify the write:

status=I2CCompareBlock(EE,READ_BLK,byte_cnt, block);

if(!status) {

//do error-handling, block does not compare

}

//now block has been sent, and verified

ROM Library Functions62 SLUU225–October 2005

Chapter 3
SLUU225–October 2005

boot-ROM Routines

This chapter describes the boot-ROM routines for the bq803xx.

Topic .. Page

3.1 boot-ROM Routines ... 64

SLUU225–October 2005 boot-ROM Routines 63

www.ti.com

3.1 boot-ROM Routines

3.1.1 Smb_FlashWrAddr

3.1.2 Smb_FlashRdWord

3.1.3 Smb_FlashRdRow

3.1.4 Smb_FlashRowCheckSum

3.1.5 Smb_FlashProgWord

boot-ROM Routines

These routines are available immediately after system reset, when control is not transferred to the
program in flash memory (i.e., during development). They are accessible via the SMBus, by sending
commands to the bq803xx at address 0x16. These routines program, read, and erase flash, as well as
read and write RAM and the registers of hardware peripherals. They are implemented as a jump table in
ROM called when an SMBus command is detected by the boot-ROM code. Routines 0x01-0x07 are used
to program and erase the instruction flash memory. Routines 0x0e-0x12 program and erase data flash
memory.

SMBus protocol: — write block[3]

SMBus command: — 0x00

description: — This function writes a block of three bytes containing the row and column addresses
for a subsequent read from flash program memory. The first two bytes are row (lsb/msb); the third
byte is the column address.

SMBus protocol: — read block[3]

SMBus command: — 0x01

description: — This function reads a complete 22-bit flash memory word from the address previously
set by Smb_FlashWrAddr. The result is read as a 3-byte block, lsb first. It increments the column
address.

SMBus protocol: — read block[96]

SMBus command : — 0x02

description: — This function reads a complete row of 32, 22-bit flash memory words (96 bytes, greater
than allowed by the SMBus spec) from the row address previously set by Smb_FlashWrAddr. Each
22-bit word is returned in 3 bytes, lsb first.

SMBus protocol: — read block[4]

SMBus command: — 0x03

description: — This function reads the 4-byte checksum (lsb..msb) of a row of 32, 22-bit flash
memory words at the row address previously set by Smb_FlashWrAddr.

SMBus protocol: — write block[6]

SMBus command : — 0x04

description: — This function writes a 22-bit word to the specified row and column address. The block
sent is a 6-byte block, consisting of the row (lsb/msb) and column addresses, then the 22-bit word
to be programmed as a 3-byte block, lsb first.

boot-ROM Routines64 SLUU225–October 2005

www.ti.com

3.1.6 Smb_FlashProgRow

3.1.7 Smb_FlashEraseRow

3.1.8 Smb_FlashMassErase

3.1.9 FlashExecute

3.1.10 SetAddr

3.1.11 PokeByte

boot-ROM Routines

SMBus protocol: — write block

SMBus command : — 0x05[98]

description: — This function writes a complete row of 32, 22-bit words to the row address (lsb/msb)
set by the first 2 bytes of the block sent. This is then followed by 32 words to be written. Each 22-bit
word is sent as 3 bytes, lsb first.

SMBus protocol: — write word

SMBus command : — 0x06

description: — This function erases 2 rows of 32, 22-bit words at the row address contained in the
word written (lsb/msb). Note that address is a 32-word wide row address, but that 64 words are
erased starting from that address.

SMBus protocol: — write word

SMBus command : — 0x07

description: — This function erases the complete flash program memory. The word written must be
0x83de.

SMBus protocol: — send command

SMBus command : — 0x08

description: — This function transfers execution to the flash program memory by mapping the flash
program memory into the CPU address space and then jumping to the flash reset vector.

SMBus protocol: — write word

SMBus command : — 0x09

description: — This function writes the 16-bit address (lsb/msb) for a subsequent read or write to RAM
or I/O space

SMBus protocol: — write word

SMBus command : — 0x0a

description: — This function writes a single byte to RAM or I/O space at the address previously set by
SetAddr. The byte written is the lsb of the word sent over SMBus.

SLUU225–October 2005 boot-ROM Routines 65

www.ti.com

3.1.12 PeekByte

3.1.13 ReadRAMBlk

3.1.14 Version

3.1.15 Smb_FdataChecksum

3.1.16 Smb_FdataProgWord

3.1.17 Smb_FdataProgRow

boot-ROM Routines

SMBus protocol: — read word

SMBus command : — 0x0b

description: — This function reads a single byte of RAM or I/O space from the address previously set
by SetAddr and returns it as the lsb of the word read from SMBus.

SMBus protocol: — read block[32]

SMBus command : — 0x0c

description: — This function reads 32 bytes of RAM or I/O space from the address previously set by
SetAddr.

SMBus protocol: — read word

SMBus command : — 0x0d

description: — This function returns the ROM version number (lsb/msb). Major revision number is in
msb, minor revision number is in lsb.

SMBus protocol: — read word

SMBus command : — 0x0e

description: — This function returns the checksum for the data flash memory from 0x4000 to 0x47e0
(it does not include the 32 reserved data flash memory locations) in lsb/msb order.

SMBus protocol: — write block[3]

SMBus command : — 0x0f

description: — This function programs one byte of flash data memory. The block consists of the
memory address (lsb/msb) and the data to be written. It cannot be used to program the reserved
bytes.

SMBus protocol: — write block[33]

SMBus command : — 0x10

description: — This function programs an entire row of 32 bytes of flash data memory. The block
consists of the memory row address and 32 bytes of data to be written. If the row programmed is
the last row, the reserved bytes are not affected.

boot-ROM Routines66 SLUU225–October 2005

www.ti.com

3.1.18 Smb_FdataEraseRow

3.1.19 Smb_FdataMassErase

boot-ROM Routines

SMBus protocol: — write word

SMBus command : — 0x11

description: — This function erases 2 rows (64 bytes) of flash data memory. The word sent contains
the memory row address in the lsb. If the row erased is the last row, the reserved bytes are not
affected.

SMBus protocol: — write word

SMBus command : — 0x12

description: — This function erases the entire flash data memory. The word written must be 0x83de.
The reserved bytes are not affected.

SLUU225–October 2005 boot-ROM Routines 67

www.ti.com

boot-ROM Routines

boot-ROM Routines68 SLUU225–October 2005

Appendix A
SLUU225–October 2005

ROM Entry Points

4004 SMB ROM functions

4005 smbMasterWrWord

4006 smbMasterRdWord

4007 smbMasterRdBlock

4008 smbMasterWrBlock

4009 smbSlaveCmd

400a smbSlaveRcvWord

400b smbSlaveSndWord

400c smbSlaveSndBlock

400d smbSlaveRcvBlock

400e smbSlaveWord

400f smbSlaveBlock

4010 smbSlaveSndWordNoWait

4011 smbSlaveSndBlockNoWait

4012 smb_ACK

4013 smb_NACK

4014 FlashRdRow

4015 FlashProgRow

4016 FlashEraseRow

4017 SetAddr

4018 PokeByte

4019 PeekByte

401a ReadRAMBlk

401b mulhi3

401c mulhisi3

401d umulhisi3

401e (1) mulsi3

401f mulsf3

4020 divmodhi4

4021 udivmodhi4

4022 divmodsi4

4023 divsf3

4024 addsf3

4025 floatqisf2

4026 floathisf2

4027 fix_truncsfhi2

4028 fixuns_truncsfhi2

4029 accumulate

(1) The mulsi3 in v. 1.4 ROM does not work correctly. It cannot be called by its absolute address, but
should instead be called by name. The development tools links the call to the library copy, which is
placed in flash memory.

SLUU225–October 2005 ROM Entry Points 69

www.ti.com

boot-ROM Routines

402a exp

402b log

402c fix_truncsfsi2

402d fixuns_truncsfsi2

402e floatsisf2

4031 Reserved

4032 Reserved

4033 Reserved

4034 Reserved

4035 Reserved

4036 Reserved

4037 FdataProgRow

4038 FdataProgWord

4039 FdataEraseRow

403a FdataMassErase

403b I2CReadBlock

403c I2CWriteBlock

403d I2CDeviceAvail

403e I2CCompareBlock

403f Reserved

4040 Reserved

4041 smbCheckPecSlave

4042 smbSetBFI

4043 smbWaitBusFree

ROM entry points

8004 rom_execute

8005 smbMasterWrWord

8006 smbMasterRdWord

8007 smbMasterRdBlock

8008 smbMasterWrBlock

8009 smbSlaveCmd

800a smbSlaveRcvWord

800b smbSlaveSndWord

800c smbSlaveSndBlock

800d smbSlaveRcvBlock

800e smbSlaveWord

800f smbSlaveBlock

8010 smbSlaveSndWordNoWait

8011 smbSlaveSndBlockNoWait

8012 smb_ACK

8013 smb_NACK

;FLASH functions

8014 FlashRdRow

8015 FlashProgRow

8016 FlashEraseRow

;Peek Poke

8017 SetAddr

8018 PokeByte

8019 PeekByte

ROM Entry Points70 SLUU225–October 2005

www.ti.com

boot-ROM Routines

801a ReadRAMBlk

;Math functions, Table
entry

801b mulhi3

801c mulhisi3

801d umulhisi3

801e mulsi3

801f mulsf3

8020 divmodhi4

8021 udivmodhi4

8022 divmodsi4

8023 divsf3

8024 addsf3

8025 floatqisf2

8026 floathisf2

8027 fix_truncsfhi2

8028 fixuns_truncsfhi2

8029 accumulate

802a exp

802b log

802c fix_truncsfsi2

802d fixuns_truncsfsi2

802e floatsisf2

;FDATA functions

8037 FdataProgRow

8038 FdataProgWord

8039 FdataEraseRow

803a FdataMassErase

;I2C functions

803b I2CReadBlock

803c I2CWriteBlock

803d I2CDeviceAvail

803e I2CCompareBlock

;More SMB, Fdata functions

803f reserved

8040 reserved

8041 smbCheckPecSlave

8042 smbSetBFI

8043 smbWaitBusFree

8044 FlashChecksum

8045 FlashMassErase

;More math functions

;built-ins

8046 umodqi3

8047 udivmodsi4

8048 cmpsf3

8049 udivmodqi4

804a sqrt

;gauge math

SLUU225–October 2005 ROM Entry Points 71

www.ti.com

boot-ROM Routines

804b abs_long

804c abs_int

804d round

804e AB_div_C

804f unsigned_AB_div_C

8050 poly

8051 mul_shift16

8052 umul_shift16

8053 round_shift16

8054 iRoot

8055 calculate_percent

8056 calculate_percent_of

;new bq8030 FDATA function

8057 copy

8058 FdataFullErase

8059 sha1_mac

ROM Entry Points72 SLUU225–October 2005

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2005, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 Interrupt Vectors and Hooks
	1.1 Introduction
	1.2 Making Calls to the ROM
	1.3 C Function Parameter Passing

	2 ROM Library Functions
	2.1 SMBus Routines
	2.2 Flash Memory Access Routines
	2.3 Flash Program Memory Routines
	2.4 Flash Data Memory Routines
	2.4.1 Math Library Routines

	2.5 Math Routines Called by the Compiler
	2.6 I2C Functions

	3 boot-ROM Routines
	3.1 boot-ROM Routines
	3.1.1 Smb_FlashWrAddr
	3.1.2 Smb_FlashRdWord
	3.1.3 Smb_FlashRdRow
	3.1.4 Smb_FlashRowCheckSum
	3.1.5 Smb_FlashProgWord
	3.1.6 Smb_FlashProgRow
	3.1.7 Smb_FlashEraseRow
	3.1.8 Smb_FlashMassErase
	3.1.9 FlashExecute
	3.1.10 SetAddr
	3.1.11 PokeByte
	3.1.12 PeekByte
	3.1.13 ReadRAMBlk
	3.1.14 Version
	3.1.15 Smb_FdataChecksum
	3.1.16 Smb_FdataProgWord
	3.1.17 Smb_FdataProgRow
	3.1.18 Smb_FdataEraseRow
	3.1.19 Smb_FdataMassErase

	A ROM Entry Points

