
5 A Crisis of Existential Import; or,
Putting the VM in M/o/Vfuscator

by Chris Domas

mov esi, offset ops

loop:

mov ebx, [esi]

mov ebx, [ebx]

add ebx, [esi+4]

mov ebx, [ebx]

mov edx, [esi+8]

mov edx, [edx]

add edx, [esi+0Ch]

mov [edx], ebx

add esi, 10h

jmp short loop

AES

mov esi, offset ops

loop:

mov ebx, [esi]

mov ebx, [ebx]

add ebx, [esi+4]

mov ebx, [ebx]

mov edx, [esi+8]

mov edx, [edx]

add edx, [esi+0Ch]

mov [edx], ebx

add esi, 10h

jmp short loop

Minesweeper
A programmer writes code. That is his purpose:

to define the sequence of instructions that must be
carried out to perform a desired action. Without
code, he serves no purpose, fulfills no need. What
then would be the effect on our existential selves if
we found that all code was the same, that every pro-
gram could be written and executed exactly as every
other? What if the net result of our century of work
was precisely . . . nothing?

Here, we demonstrate that all programs, on all
architectures,32 can be reduced to the same instruc-
tion stream; that is, the sequence of instructions
executed by the processor can be made identical
for every program. On careful analysis, it is nec-
essary to observe that this is subtly distinct from
prior classes of research. In an interpreter, we might
say that the same instructions (those that compose
the VM) can execute multiple programs, and this is
correct; however, in an interpreter the sequence of
the instructions executed by the processor changes
depending on the program being executed—that is,
the instruction streams differ. Alternatively, we note
that it has been shown that the x86 MMU is itself
Turing-complete, allowing a program to run with no
instructions at all.33

In this sense, on x86, we could argue that any
program, compiled appropriately, could be reduced
to no instructions—thereby inducing an equivalence
in their instruction streams. However, this peculiar-

ity is unique to x86, and it could be argued that the
MMU is then performing the calculations, even if
the processor core is not—different calculations are
being performed for different programs, they are just
being performed “elsewhere.”

Instead, we demonstrate that all programs, on
any architecture, could be simplified to a single,
universal instruction stream, in which the compu-
tations performed are precisely equivalent for every
program—if we look only at the instructions, rather
than their data.

In our proof of concept, we will illustrate reduc-
ing any C program to the same instruction stream on
the x86 architecture. It should be straightforward to
understand the adaptation to other languages and
architectures.

We begin the reduction with a rather ridiculous
tool called the M/o/Vfuscator. The M/o/Vfusca-
tor allows us to compile any C program into only
x86 mov instructions. That is not to say the in-
structions are all the same—the registers, operands,
addressing modes, and access sizes vary depending
on the program—but the instructions are all of the
mov variety. What would be the point of such a
thing? Nothing at all, but it does provide a useful
beginning for us—by compiling programs into only
mov instructions, we greatly simplify the instruc-
tion stream, making further reduction feasible. The
mov instructions are executed in a continuous loop,
and compiling a program34 produces an instruction
stream as follows:

1 s t a r t :
mov . . .

3 mov . . .
mov . . .

5 . . .
mov . . .

7 mov . . .
mov . . .

9 jmp s t a r t

32Perhaps it is necessary to specify, Turing-complete architecture.
33See The Page-Fault Weird Machine: Lessons in Instruction-less Computation by Julian Bangert et al., USENIX WOOT’13

or the 29C3 talk “The Page Fault Liberation Army or Gained in Translation” by Bangert & Bratus
34movcc -Wf–no-mov-loop program.c -o program

28

But our mov instructions are of all varieties—
from simple mov eax, edx to complex mov dl,
[esi+4*ecx+0x19afc09], and everything in be-
tween. Many architectures will not support such
complex addressing modes (in any instruction), so
we further simplify the instruction stream to pro-
duce a uniform variety of movs. Our immediate goal
is to convert the diverse x86 movs to a simple, 4-byte,
indexed addressing varieties, using as few registers
as possible. This will simplify the instruction stream
for further processing and mimic the simple load and
store operations found on RISC type architectures.
As an example, let us assume 0x10000 is a 4-byte
scratch location, and esi is kept at 0. Then

1 mov eax , edx

can be converted to

1 mov [0 x10000+e s i] , edx
mov eax , [0 x10000+e s i]

We have replaced the register-to-register mov va-
riety with a standard 4-byte indexed memory read
and write. Similarly, if we pad our data so that an
oversized memory read will not fault, and pad our
scratch space to allow writes to spill, then

mov al , [0 x20000]

can be rewritten

1 mov [0 x10000+e s i] , eax
mov edi , [0 x20000−3+e s i]

3 mov [0 x10000−3+e s i] , ed i
mov eax , [0 x10000+e s i]

For more complex addressing forms, such as mov
dx, [eax+4*ebx+0xdeadbeef], we break out the
extra bit shift and addition using the same technique
the M/o/Vfuscator uses—a series of movs to perform
the shift and sum, allowing us to accumulate (in the
example) eax+4*ebx into a single register, so that
the mov can be reduced back to an indexed address-
ing eax+0xdeadbeef.

With such transforms, we are able to rewrite our
diverse-mov program so that all reads are of the form
mov esi/edi, [base + esi/edi] and all writes of
the form mov [base + esi/edi], esi/edi, where

29

base is some fixed address. By inserting dummy
reads and writes, we further homogenize the instruc-
tion stream so that it consists only of alternating
reads and writes. Our program now appears as (for
example):

s t a r t :
2 . . .

mov e s i , [0 x149823 + ed i]
4 mov [0 x9fba09 + e s i] , e s i

mov edi , [0 x401ab5 + ed i]
6 mov [0 x3719 f f + e s i] , ed i

. . .
8 jmp s t a r t

The only variation is in the choice of register and
the base address in each instruction. This simplifica-
tion in the instruction stream now allows us to more
easily apply additional transforms to the code. In
this case, it enables writing a non-branching mov in-
terpreter. We first envision each mov as accessing
“virtual,” memory-based registers, rather than CPU
registers. This allows us to treat registers as sim-
ple addresses, rather than writing logic to select be-
tween different registers. In this sense, the program
is now

s t a r t :
2 . . .
MOVE [_esi] , [0 x149823 + [_edi]]

4 MOVE [0 x9fba09 + [_esi]] , [_esi]
MOVE [_edi] , [0 x401ab5 + [_edi]]

6 MOVE [0 x3719 f f + [_esi]] , [_edi]
. . .

8 jmp s t a r t

where _esi and _edi are labels on 4-byte mem-
ory locations, and MOVE is a pseudo-instruction, ca-
pable of accessing multiple memory addresses. With
the freedom of the pseudo-instruction MOVE, we can
simplify all instructions to have the exact same form:

s t a r t :
2 . . .
MOVE [0 + [_esi]] , [0 x149823 + [_edi]]

4 MOVE [0 x9fba09 + [_esi]] , [0 + [_esi]]
MOVE [0 + [_edi]] , [0 x401ab5 + [_edi]]

6 MOVE [0 x3719 f f + [_esi]] , [0 + [_edi]]
. . .

8 jmp s t a r t

We can now define each MOVE by its tuple of
memory addresses:

{0 , _esi , 0x149823 , _edi}
2 {0 x9fba09 , _esi , 0 , _esi }

{0 , _edi , 0x401ab5 , _edi}
4 {0 x3719f f , _esi , 0 , _edi}

and write this as a list of operands:

operands :
2 . long 0 , _esi , 0x149823 , _edi

. long 0x9fba09 , _esi , 0 , _esi
4 . long 0 , _edi , 0x401ab5 , _edi

. long 0 x3719f f , _esi , 0 , _edi

We now write an interpreter for our pseudo-mov.
Let us assume the physical esi register now holds
the address of a tuple to execute:

1 ; a pseudo−move

3 ; Read the data from the source .
mov ebx , [e s i +0] ; Read the address o f the

5 ; v i r t u a l index r e g i s t e r .
mov ebx , [ebx] ; Read the v i r t u a l index

7 ; r e g i s t e r .
add ebx , [e s i +4] ; Add the o f f s e t and

9 ; index r e g i s t e r s to
; compute a source

11 ; address .
mov ebx , [ebx] ; Read the data from the

13 ; computed address .

15 ; Write the data to the d e s t i n a t i on .
mov edx , [e s i +8] ; Read the address o f the

17 ; v i r t u a l index r e g i s t e r .
mov edx , [edx] ; Read the v i r t u a l index

19 ; r e g i s t e r .
add edx , [e s i +12] ; Add the o f f s e t and

21 ; index r e g i s t e r s to
; compute a d e s t i n a t i on

23 ; address .
mov [edx] , ebx ; Write the data to the

25 ; d e s t i n a t i on address .

30

Finally, we execute this single MOVE interpreter
in an infinite loop. To each tuple in the operand
list, we append the address of the next tuple to ex-
ecute, so that esi (the tuple pointer) can be loaded
with the address of the next tuple at the end of each
transfer iteration. This creates the final system:

1 mov e s i , operands
loop :

3 mov ebx , [e s i +0]
mov ebx , [ebx]

5 add ebx , [e s i +4]
mov ebx , [ebx]

7 mov edx , [e s i +8]
mov edx , [edx]

9 add edx , [e s i +12]
mov [edx] , ebx

11 mov e s i , [e s i +16]
jmp loop

The operand list is generated by the compiler,
and the single universal program appended to it.
With this, we can compile all C programs down to
this exact instruction stream. The instructions are
simple, permitting easy adaptation to other archi-
tectures. There are no branches in the code, so the
precise sequence of instructions executed by the pro-
cessor is the same for all programs. The logic of
the program is effectively distilled to a list of mem-
ory addresses, unceremoniously processed by a mun-
dane, endless data transfer loop.

So, what does this mean for us? Of course, not so
much. It is true, all “code” can be made equivalent,
and if our job is to code, then our job is not so inter-
esting. But the essence of our program remains—it
had just been removed from the processor, diffused
instead into a list of memory addresses. So rather,
I suppose, that when all logic is distilled to noth-
ing, and execution has lost all meaning—well, then,
a programmer’s job is no longer to “code,” but rather
to “data!”

This project, and the proof of concept reduc-
ing compiler, can be found at Github35 and as an
attachment.36 The full code elaborates on the pro-
cess shown here, to allow linking reduced and non-
reduced code. Examples of AES and Minesweeper
running with identical instructions are included.

35git clone https://github.com/xoreaxeaxeax/reducto
36unzip pocorgtfo12.pdf reducto.tgz

31

