
8 UMPOwn
by Alex Ionescu

With the introduction of new mitigation tech-
nologies such as DeviceGuard, Windows 10 makes
it increasingly harder for attackers to enter the ker-
nel through Ring 0 drivers (which are now subject to
even stricter code integrity / signing verification) or
exploits (as increased mitigations and PatchGuard
validations are used to detect these). However, even
the best-written operating system with the best-
intentioned team of developers will encounter vul-
nerabilities that mitigations may be unable to stop.

Therefore, the last key element needed in de-
fending the security boundaries of the operating
system is a sane response to quickly patch such
vulnerabilities—without one, the entire defensive
strategy falls apart. Incorrectly dismissing vulnera-
bilities as “too hard to exploit” or misunderstanding
the security boundaries of the operating system can
lead to unfixed vulnerabilities, which can then be
used to work around the large amount of resources
that were developed in creating new security de-
fences.

In this article, we’ll take a look at an extremely
challenging exploit—given a kernel function to sig-
nal an event (KeSetEvent), can reliable code exe-
cution from user-mode be achieved, if all that the
attacker controls is the pointer to the event, which
can be set to any arbitrary value? We’ll need to take
a deep look at the Windows scheduler, understand
the semantics and code flows of event signaling, and
ultimately reveal a low-level scheduler attack that
can result in arbitrary ROP-based exploitation of
the kernel.

8.1 ACT I. Controlling RIP and RSP
8.1.1 Wait Object Signaling

To understand event signaling in the NT kernel, one
must first understand that two types of events, and
their corresponding wake logic mechanisms:

1. Synchronization Events, which have a wake
one semantic

2. Notification Events, which have a wake any /
wake all semantic

The difference between these two types of events
is encoded in the Type field of the DISPATCHER_-
HEADER of the event’s KEVENT data structure, which

is how the kernel internally represents these objects.
As such, when an event is signaled, either KiSig-
nalNotificationObject or KiSignalSynchroniz-
ationObject is used, which will wake up one wait-
ing thread, or all waiting threads respectively.

How does the kernel associate waiting threads
with their underlying synchronization objects? The
answer lies in the KWAIT_BLOCK data structure.
Within which we find: the type of wait that the
thread is performing and a pointer to the thread it-
self (known as a KTHREAD structure). The two types
of wait that a thread can make are known as wait
any and wait all, and they determine if a single sig-
naled object is sufficient to wake up a thread (OR),
or if all of the objects that the thread is waiting on
must be signaled (AND). In Windows 8 and later, a
thread can also asynchronously wait on an object—
and associate an I/O Completion Port, or a KQUEUE
as it’s known in the kernel, with a wait block. For
this scenario, a new wait type was implemented:
wait notify.

Wait
Block

Header

Event

Object

Wait
Block

Thread 1

Object

Thread 2

Object

Stack

Stack

Object

Therefore, simply put, a notification event will
cause the iteration of all wait blocks—and the wak-
ing of each thread, or I/O completion port, based
on the wait type—whereas a synchronization event
will do the same, but only for a single thread. How
are these wait blocks linked you ask? On Windows 8
and later they are guaranteed to all be allocated in a
single, flat array, with a field in the KTHREAD, called
WaitBlockCount, storing the number of elements.
In Windows 7 and earlier, each wait block has a

63

pointer to the next (NextWaitBlock), and the final
wait block points back to the first, creating a circu-
lar singly-linked list. Finally, the KTHREAD structure
also has a WaitBlockList pointer, which serves as
the head of the list or array.

8.1.2 Internals Intermezzo

Let’s step back for a moment. We, from user mode,
control the pointer to an arbitrary KEVENT, which we
can construct in any way we want, and our goal is to
obtain code execution in kernel mode. Based on the
description we’ve seen so far, what are some ideas
that come to mind? Certainly, we could probably
cause some memory corruption or denial of service
activity, by creating incorrect wait blocks or an infi-
nite list. We could cause out-of-bounds memory ac-
cess and maybe even flip certain bits in kernel-mode
memory. But if the ultimate possibility (given the
right set of constraints and linked data structures) is
that a call to KeSetEvent will cause a thread to be
woken, are we able to control this thread, and more
importantly, can we get it to execute arbitrary code,
in kernel mode? Let’s keep digging into the internals
to find out more.

8.1.3 Thread Waking

Suppose there exists a synchronization event, with
a single waiter (thus, a single wait block). This
waiter is currently blocked in a wait any fashion on
the event and has no other objects that it is wait-
ing on (the astute reader will note this is irrelevant,
due to the nature of wait any). The call to KeSet-
Event will follow the following pattern: KeSetEvent
→ KiSignalSynchronizationObject → KiTryUn-
waitThread → KiSignalThread

At the end of this chain, the thread’s state will
have changed, going from what should be its cur-
rent Waiting state to its new DeferredReady state,
indicating that it is, in a way, ready to be prepped
for execution. For it to be found in this state, it will
be added to the queue of DeferredReady threads for
the current processor, which lives in the KPRCB’s
DeferredReadyListHead lock-free stack list. Mean-
while, the wait block’s state, which should have been
set to WaitBlockActive, will now migrate to Wait-
BlockInactive, indicating that this is no longer a
valid wait—the thread is ready to be awakened.

Waiting

StandbyRunning

DeferredReady

KeSetEvent

KiDeferredReadyThread

KiUpdateThreadState

One of the most unique things about the NT
scheduler is that it does not rely on a scheduler tick
or other external event in order to kick off schedul-
ing operations and pre-emption. In fact, any time
a function has the possibility to change the state
of a thread, it must immediately react to possi-
ble system-wide scheduler changes that this state
transition has caused. Such functions implement
this logic by calling the KiExitDispatcher function,
with some hints as to what operation just occurred.
In the case of KeSetEvent, the AdjustUnwait hint
is used to indicate that one or more threads have
potentially been woken.

8.1.4 One Does Not Simply Exit the Dis-
patcher . . .

Once inside KiExitDispatcher, the scheduler first
checks if DeferredReady threads already exist in the
KPRCB’s queue. In our scenario, we know this will
be the case, so let’s see what happens next. A call to
KiProcessThreadWaitList is made, which iterates
over each thread in the DeferredReadyListHead,
and for each one, a subsequent call to KiUnlink-
WaitBlock occurs, which unlinks all wait blocks as-
sociated with this thread that are in WaitBlock-
Active state. Then, the AdjustReason field in the
KTHREAD structure is set to the hint value we refer-
enced earlier (AdjustUnwait here), and a potential
priority boost, or increment, is added in the Adjust-
Increment field of the KTHREAD. For events, this will
be equal to EVENT_INCREMENT, or 1.

8.1.5 Standby! Get Ready for My Thread

As each thread is processed in this way, a call to
KiReadyThread is finally performed. This routine’s
job is to check whether or not the thread’s kernel
stack is currently resident, as the NT kernel has
an optimization that automatically causes the evic-
tion (and even potential paging out) of the kernel
stack of any user-mode waiting thread after a cer-
tain period of time (typically 4-6 seconds). This is
exposed through the KernelStackResident field in
the KTHREAD. In Windows 10, a process’ set of kernel
stacks can also be evicted when a process is frozen

64

as part of new behaviour for Modern (Metro) ap-
plications, so another flag, ProcessStackCountDec-
remented is also checked. For our purposes, let’s as-
sume the thread has a fully-resident kernel stack. In
this case, we move onto KiDeferredReadyThread,
which will handle the DeferredReady → Ready (or
Standby) transition.

Unlike a DeferredReady thread, which can be
ready on an arbitrary processor queue, a Ready
thread must be on the proper processor queue
(and/or shared queue, in Windows 8 and later). Ex-
plaining the selection algorithms is beyond the scope
of this article, but suffice it to say that the kernel will
attempt to find the best possible processor among:
idle cores, parked cores, heterogeneous vs. homoge-
neous cores, and busy cores, and balance that with
the hard affinity, soft affinity/ideal processor, and
group scheduling ranks and weights. Once a proces-
sor is chosen, the NextProcessor field in KTHREAD
is set to its index. Ultimately, the following possi-
bilities exist:

1. An idle processor was chosen. The KiUpdate-
ThreadState routine executes and sets the
thread’s state to Standby and sets the Next-
Thread field in the KPRCB to the selected
KTHREAD. The thread will start executing im-
minently.

2. An idle processor was chosen, which already
had a thread selected as its NextThread. The
same operations as above happen, but the ex-
isting KTHREAD is now pre-empted and must be
dealt with. The thread will start executing
imminently.

3. A busy processor was chosen, and this thread
is more important. The same operations as in
case #2 happen, with pre-emption again. The
thread will start executing imminently.

4. A busy processor was chosen, but this thread is
not more important. KiAddThreadToReady-
Queue is used instead, and the state will be
set to Ready instead. The thread will execute
at a later time.

8.1.6 Internals Secondo Intermezzo

It should now become apparent that, given a cus-
tom KTHREAD structure, we can fool the scheduler
into entering a scenario where that thread is selected
for immediate execution. To make things even sim-
pler, if we can force this thread to execute on the

current processor, we can pre-empt ourselves and
force an immediate switch to the new thread, with-
out disturbing other processors and worrying about
pre-empting other threads.

In order to go down this path, the KTHREAD we
create must have a single, fixed, hard affinity, which
will be set to our currently executing processor. We
can do this by manipulating the Affinity field of
the KTHREAD. This will ensure that the scheduler
does not look at any idle processors. It must also
have the current processor as its soft affinity, or ideal
processor, so that the scheduler does not look at any
other busy processors. By restricting all idle proces-
sors from selection and ignoring all other busy pro-
cessors, the scheduler will have no choice but to pick
the current processor.

Yet we still have to choose between path #3 and
#4 above, and get this new thread to appear “more
important”. This is easily done by ensuring that our
new thread’s priority (in the KTHREAD’s Priority)
field will be higher than the current thread’s.

8.1.7 Completing the Exit

Once KiDeferredReadyThread is done with its busi-
ness and returns to KiReadyThread, which returns
to KiProcessThreadWaitList, which returns to Ki-
ExitDispatcher, it’s time to act. The routine will
now verify if it’s possible to do so based on the IRQL
at the time the event was signalled—a level of DIS-
PATCH_LEVEL or above will indicate that nothing can
be done yet, so an interrupt will be queued, which
should fire as soon as the IRQL drops. Otherwise, it
will check if the NextThread field in the KPRCB is
populated, implying that a new thread was chosen
on the current processor.

At this point, NextThread will be set to NULL
(after capturing its value), and KiUpdateThread-
State will be called again, this time with the
new state set to Running, causing the KPRCB’s
CurrentThread field to now point to this thread
instead. The old thread, meanwhile, will be pre-
empted and added to the Ready list with KiQueue-
ReadyThread.

Once that’s done, it’s time to call KiSwapCon-
text. Once control returns from this function, the
new thread will actually be running (i.e., it will ba-
sically be returning from whatever had pre-empted
it to begin with), and KiDeliverApc will be called
as needed in order to deliver any Asynchronous Pro-
cedure Calls (APCs) that were pending to this new
thread.

65

KiExitDispatcher is done, and it returns back
to its caller—not KeSetEvent! As we are now on
a new thread, with a new stack, this will actually
probably return to a completely different API, such
as KeWaitForSingleObject.

8.1.8 Make It So—the Context Switch

To understand how KiSwapContext is able to change
to a totally different thread’s execution context, let’s
go inside the belly of the beast. The first oper-
ation that we see is the construction of the ex-
ception frame, which is done with the GENERATE_-
EXCEPTION_FRAME assembly macro, which is pub-
lic in kxamd64.inc. This essentially constructs a
KEXCEPTION_FRAME on the stack, storing all the non-
volatile register contents. Then, the SwapContext
function is called.

Inside of SwapContext, a second structure is
built on the stack, known as the KSWITCH_FRAME
structure, it is documented in the ntosp.h header
file (but not in the public symbols). Inside of the
routine, the following key actions are taken on an
x64 processor (similar, but uniquely different actions
are taken on other CPU architectures):

1. The Running field is set to 1 inside of the new
KTHREAD.

2. Runtime CPU Cycles start accumulating
based on the KPRCB’s StartCycles and
CycleTime fields.

3. The count of context switches is incremented
in KPRCB’s ContextSwitches field.

4. The NpxState field is checked to see if
FPU/XSAVE state must be captured for the
old thread.

5. The current value of the stack pointer RSP,
is stored in the old thread’s KernelStack
KTHREAD field.

6. RSP is updated based on the new thread’s
KernelStack value.

7. A new LDT is loaded if the process owning
the new thread is different than the old thread
(i.e., a process switch has occurred).

8. In a similar vein to the above, the process affin-
ity is updated if needed, and a new CR3 value
is loaded, again in the case of a process switch.

9. The RSP0 is updated in the current Task State
Segment (TSS), which is indicated by the Tss-
Base field of the KPCR. The value is set to the
InitialStack field of the new KTHREAD.

10. The RspBase in the KPRCB is updated as per
the above as well.

11. The Running field is set to 0 in the old
KTHREAD.

12. The NpxField is checked to see if
FPU/XSAVE state must be restored for the
new thread.

13. The Compatibility Mode TEB Segment in
the GDT (stored in the GdtBase field of
the KPCR) is updated to point to the new
thread’s TEB, stored in the Teb field of the
KTHREAD.

14. The DS, ES, FS segments are loaded with their
canonical values if they were modified.

15. The GS value is updated in both MSRs by us-
ing the swapgs instruction and reloading the
GS segment in between.

16. The KPCR’s NtTib field is updated to point
to the new thread’s TEB, and WRMSR is used
to set MSR_GS_SWAP.

17. The count of context switches is incremented
in KTHREAD’s ContextSwitches field.

18. The switch frame is popped off the stack, and
control returns to the caller’s RIP address on
the stack.

Note that in Windows 10, steps 13-16 are only
performed if the new thread is not a system thread,
which is indicated by the SystemThread flag in the
KTHREAD.

Finally, now having returned back in KiSwap-
Context again, the RESTORE_EXCEPTION_FRAME
macro is used to pop off all non-volatile register state
from the stack frame.

66

8.1.9 Coda

With the sequence of steps performed by the con-
text switch now exposed, taking control of a thread
is an easy matter of controlling its KernelStack field
in the KTHREAD. As soon as the RSP value is set to
this location, the eventual ret instruction will get us
wherever we need to go, with full Ring 0 privileges,
as a typical ROP-friendly instruction.

Even more, if we return to KiSwapContext (as-
suming we have an information leak) we have the
RESTORE_EXCEPTION_FRAME macro, which will take
care of everything but RAX, RCX, and RDX for us. We
can of course return anywhere else we’d like and
build our own ROP chain.

8.1.10 PoC

Let’s look at the code that implements everything
we’ve just seen. First, we need to hard-code our cur-
rent user-mode thread to run only on the first CPU
of Group 0 (always CPU 0). The reason for this will
become obvious shortly:

a f f i n i t y . Group = 0 ;
2 a f f i n i t y .Mask = 1 ;

SetThreadGroupAff inity (
4 GetCurrentThread () , &a f f i n i t y , NULL) ;

Next, let us create an active wait any wait block,
associated with an arbitrary thread:

deathBlock .WaitType = WaitAny ;
2 deathBlock . Thread = &deathThread ;

deathBlock . BlockState = WaitBlockActive ;

Then we create a Synchronization Event, which
is currently tied to this wait block:

1 deathEvent . Header . Type =
EventSynchronizat ionObject ;

3 I n i t i a l i z e L i s tH e a d (
&deathEvent . Header . WaitListHead) ;

5 I n s e r tT a i l L i s t (
&deathEvent . Header . WaitListHead ,

7 &deathBlock . WaitListEntry) ;

All right! We now have our event and wait block.
It’s tied to the deathThread, so let’s go fill that out.
First, we give this thread the correct hard affinity
(i.e., the one we just set for ourselves) and soft affin-
ity (i.e., the ideal processor). Note that the ideal
processor is expressed as the raw processor index,

which is not available to user-mode. Therefore, by
forcing our thread to run on Group 0 earlier, we can
guarantee that the CPU Index 0 matches Processor
0.

1 deathThread . A f f i n i t y = a f f i n i t y ;
deathThread . I d ea lP ro c e s s o r = 0 ;

Now we know this thread will run on the same
processor we’re on, but we want to guarantee it will
pre-empt us. In other words, we need to bump up
its priority higher than ours. We could pick any
number higher than the current priority, but we’ll
pick 31 for two reasons. First, it’s practically guar-
anteed to pre-empt anything on this processor, and
second, it’s in the so-called real-time range which
means it’s not subject to priority adjustments and
quantum tracking, which will make the scheduler’s
job easier when getting this thread in a runnable
state (and avoid us having to define more state).

deathThread . P r i o r i t y = 31 ;

Okay, so if we’re going to claim that our event
object is being waited on by this thread, we bet-
ter make the thread appear as if it’s in a committed
waiting state with one wait block—the one the event
is associated with:

1 deathThread . State = Waiting ;
deathThread . WaitRegister . State =

3 WaitCommitted ;
deathThread . WaitBlockList = &deathBlock ;

5 deathThread . WaitBlockCount = 1 ;

Excellent! For the context switch routine to work
correctly, we also need to make it look like this
thread is in the same process as the current thread.
Otherwise, our address space will become invalid,
and all sorts of other crashes will occur. In order
to do this, we need to know the kernel pointer of
the current process, or KPROCESS structure. Thank-
fully, there exists a variety of documented informa-
tion leaks in the kernel that will allow us to obtain
this information. One common technique is to open
a handle to our own process ID and then enumerate
our own handle table until we find a match for the
handle number. The Windows API will then con-
tain the kernel address of the object associated with
this handle (i.e., our very own process!).

67

1 deathThread . ApcState . Process = addrProcess ;

Last, but not least, we need to set up the
kernel stack, which should be pointing to a
KSWITCH_FRAME. And we need to confirm that the
stack truly is resident, as per our discoveries above.
The switch frame has a return address, which we are
free to set to any address we’d like to ROP into.

1 deathThread . Kerne lStackRes ident = TRUE;
deathThread . KernelStack =

3 &deathStack . SwitchFrame ;
deathStack . SwitchFrame . Return =

5 explo i tGadget ;

Actually, let’s not forget that we also need to
have a valid FPU stack, so that the FPU/XSAVE
restore can work when context switching. One easy
to way to do this is as follows:

1 _fxsave (deathFpuStack) ;
deathThread . StateSaveArea = deathFpuStack ;

Once all the above operations are done, we have
a fully exploitable event object, which will get us to
“exploitGadget”. But what should that be?

8.2 ACT II. The Right Gadget and
Cleanup

8.2.1 ROPing to User-Mode

User mode
stack

Kernel
image CPU state

payload

0xFF...34c
0x21480
0xFF..1088
0x10600

pop rcx
ret

mov cr4, rcx
ret

rcx = 0x21480

cr4 = 0x21480

User mode image

rip = 0x10000
CS = 0x10 (ring 0)

Once we’ve established control over RIP/RSP, it’s
time to actually extract some use out of this abil-
ity. As we’re not going to be injecting executable
code in the kernel (especially hard on Windows 8.1,
and even harder on Windows 10), the best place to
direct RIP is in user mode. Sadly, modern mitiga-
tions such as SMEP make this impossible, and any
attempt to execute our user-mode code will result in
a nasty crash. Fortunately, SMEP is a CPU feature

that must be enabled by software, and it relies on
a particular flag in the CR4 to be set. All we need
is the right ROP gadget to turn that flag off. As it
happens, the function to flush the current TLB is
inlined throughout the kernel, which results in the
following assembly sequence when it’s done at the
end of a function:

. t ex t :00000001401B874C mov cr4 , rcx
2 . t ex t :00000001401B874F retn

Well, now all that we’re missing is a gadget
to load the right value into RCX. This isn’t hard,
and for example, the KeRemoveQueueDpcEx function
(which is exported) has exactly what we need:

. t ex t :00000001400DB5B1 pop rcx
2 . t ex t :00000001400DB5B2 retn

With these two simple gadgets, we can control
and fill out the KEXCEPTION_FRAME that’s supposed
to be right on top of the KSWITCH_FRAME as follows:

deathStack . SwitchFrame . Return =
2 popRcxRopGadget ; // pop rcx . . .

deathStack . ExceptionFrame .P1Home =
4 des iredCr4Value ; // i . e . : , 0x506F8

deathStack . ExceptionFrame .P2Home =
6 cr4RopGadget ; // mov cr4 , rcx . . .

deathStack . ExceptionFrame .P3Home =
8 Stage1Payload ; // User RIP

8.2.2 Consistency and Recovery

Imagine yourself in Stage1Payload now. Your
KPRCB’s CurrentThread field points to a user-
mode KTHREAD inside of your own personal address
space. Your RSP (and your KTHREAD’s RSP and
TSS’s RSP0) are also pointing to some user-mode
buffer that’s only valid inside your address space.
All it takes is a another thread on another processor
scouring the CPU queues (trying to find out who
to pre-empt) and dereferencing the “deathThread”,
before a crash occurs. And let me tell you, that
happens. . . a lot! Our first order of business should
therefore be to allocate some sort of globally visi-
ble kernel memory where we can store the KTHREAD
we’ve built for ourselves. But the mere act of allo-
cating memory will take a relatively long time, and
chances are high we’ll crash early.

68

CPU 0

Process A

1 copy thread
 0x7FFE0F00

3 register

 timer

2 Allocate

 pool memory

4 erase thread
 0xFFFFF78000000F00

KUSER_SHARED_DATA

KTHREAD

DPC

CPU n

KTHREAD
KERNELKERNEL

So we’ll take a page out of some very early NT
rootkits. Taking advantage of the fact that the
KUSER_SHARED_DATA structure has a fixed, global
address on all Windows machines and is visible in
all processes. It’s got just enough slack space to fit
our KTHREAD structure too! As soon as that’s done,
we want to update the KPRCB’s CurrentThread to
point to this new copy. The code looks something
like this:

PKTHREAD newThread =
2 SharedUserData+s izeof (∗ SharedUserData) ;

__movsq(newThread , &deathThread ,
4 s izeof (KTHREAD)/ s izeof (ULONG64)) ;

__writegsqword (
6 FIELD_OFFSET(KPRCB, CurrentThread) ,

newThread) ;

Although unlikely, a race condition is still pos-
sible right before the copy completes. One could
avoid this by creating a user-mode process that cre-
ates priority 31 threads on all processors but the
current one, spinning forever, until the exploit com-
pletes. That will remove any occurrences of proces-
sor queue scanning.

At this point, we can now attack the kernel in
any way we want, but once we’re done, what hap-
pens to this thread? We could attempt to terminate
it with PsTerminateSystemThread, but a number of
things are likely to go wrong—namely that we aren’t
a system thread (but we could fix that by setting
the right KTHREAD flag). Even beyond that, how-
ever, the API would attempt to access a number of
additional KTHREAD and KPROCESS fields, dereference
the thread object as an ETHREAD (which we haven’t
built), and require an amount of information leaks
so great that it is unlikely to ever work. Entering
a tight spin loop would fix these problems, but the
CPU would be pegged down forever, and a single-
core machine would simply lock up.

We’ve seen, however, that we have enough of a
KTHREAD to exit the scheduler and even be context-
switched in. Do we have enough to enter the sched-
uler and be context-switched out? The simplest
way to do so is to use the KeDelayExecutionThread
API and pass in an absurdly large timeout value—
guaranteeing our thread will be stuck in a wait state
forever.

Before doing so, however, we should remem-
ber that all dispatching operations happen at
DISPATCH_LEVEL, as we saw earlier. And normally,
the exit from SwapContext would’ve resulted in re-
turning back to some function that had raised the
IRQL, so that it could then lower it. We are not al-
lowed to re-enter the scheduler at this IRQL, so we’ll
first lower it back down to PASSIVE_LEVEL ourselves.
Our final cleanup code thus looks like this:

1 __writecr8 (PASSIVE_LEVEL) ;
t imeout . QuadPart = 0x800000007FFFFFFF ;

3 pKeDelayExecutionThread (KernelMode ,
FALSE, &timeout) ;

8.2.3 Enter PatchGuard

Readers of this magazine ought to know that skape
and skywing aren’t idiots—their PatchGuard tech-
nology embedded into the NT kernel will actually
actively scan for changes to KUSER_SHARED_DATA.
Any modification such as our addition of a ran-
dom KTHREAD in its tail will result in the famous
109 BSOD, with a code of “0”, or “Generic Data
Modifcation”.

Thus, we need to clear out our KTHREAD from
there—but that poses a problem since we can’t de-
stroy the KTHREAD before we call KeDelayExecut-
ionThread. One option is to allocate some non-
paged pool memory and copy our KTHREAD structure
in there, then modify the KPRCB CurrentThread
pointer yet again. But this means that we will be
leaking a KTHREAD in memory forever. Can we do
better?

Another possibility is to do the destruction of the
KTHREAD after the KeDelayExecutionThread has
executed. Nobody will ever need to look at, or touch
the structure, since we know it will never wake up
again. But how can we run after the endless delay?
Clearly, we need another activation point—and Win-
dows offers timer-based deferred procedure routines
(DPCs) as a solution. By allocating a nonpaged

69

pool buffer containing a KTIMER structure (initial-
ized with KeInitializeTimer) and a KDPC structure
(initialized with KeInitializeDpc), we can then use
KeSetTimer to force the execution of the DPC to,
say, 5 seconds later in time. This is easy to do as
shown below:

PSTAGE_TWO_DATA data ;
2 LARGE_INTEGER timeout ;

data = pExAllocatePool (NonPagedPool ,
4 s izeof (∗ data)) ;

__movsq(data−>Code , CleanDpc ,
6 s izeof (data−>Code) / s izeof (ULONG64)) ;

pKeIn i t i a l i z eDpc (&data−>Dpc ,
8 data−>Code , NULL) ;

(&data−>Timer) ;
10 timeout . QuadPart = −50000000;

pKeSetTimer(&data−>Timer , timeout ,
12 &data−>Dpc) ;

Inside of the CleanDpc routine, we simply de-
stroy the thread and free the data:

PKTHREAD newThread =
2 SharedUserData+s izeof (∗ SharedUserData) ;

data = CONTAINING_RECORD(
4 Dpc , STAGE_TWO_DATA, Dpc) ;

__stosq (newThread , 0 ,
6 s izeof (KTHREAD) / s izeof (ULONG64)) ;

pExFreePool (data) ;

With the KUSER_SHARED_DATA structure cleaned
up, we should never hear from PatchGuard again.
And so, the system is now restored back to sanity—
except for the case when a few seconds later, some
thread, on some arbitrary processor, inserts a new
timer in the tree of timers. The scheduler, after
computing a 256-based hash bucket handle for the
KTIMER entry, inserts it into the list of existing
KTIMER structures that share the same hash—that,
with a probability of 1/256, is the near-infinitely ex-
piring timer that KeDelayExecutionThread is us-
ing. Why is this a problem, you ask?

Well, as it happens, the kernel doesn’t want to
have to create a timer object whenever a wait is
done that involves a timeout. And so, any time
that a synchronization object is waited upon for a
fixed period of time, or any time that a Sleep/Ke-
DelayExecutionThread call is performed, an inter-
nal KTIMER structure that is preallocated in the
KTHREAD structure is used, under the field name
Timer. This also creates one of the NT kernel’s
best-designed features: the ability to wait on ob-
jects without requiring a single memory allocation.

Unfortunately for us as attackers, this means
that the timer table now contains a pointer to what
is essentially computable as KUSER_SHARED_DATA +
sizeof(KUSER_SHARED_DATA) + FIELD_OFFSET(-
KTHREAD, Timer))... a data structure that we
have completely zeroed out. That list of hash en-
tries will therefore hit a NULL pointer (Windows
lists are circular, not NULL- terminated) and crash.
We must do one more thing in the CleanDpc routine
then—remove this linkage, which we can do easily:

1 RemoveEntryList (
&newThread−>Timer . TimerListEntry) ;

8.2.4 PatchGuard Redux

Remember the part about Patchguard’s developers
not being stupid? Well, they’re certainly not go-
ing to let the corrupt, SMEP-disabled value of CR4
stand! And so it is, that after a few minutes (or
less), another 109 BSOD is likely to appear, this
time with code 15 (“Critical processor register modi-
fied”). Hence, this is one more thing that we’re going
to have to clean up, and yet again something that
we cannot do as part of our user-mode pre-KeDel-
ayExecutionThread call, because the very next in-
struction would then issue a SMEP violation. Good
thing we’ve got our 5-second timer-based DPC!

Except that things are never that easy, as readers
probably know. One of the great (or terrible) things
about DPCs is that they run in arbitrary thread con-
text and don’t have a particular affinity to a given
processor either, unless told otherwise. While in a
normal interrupt service routine environment, the
DPC will typically execute on the same processor it
was queued on, this is not the case with timer-based
DPCs. In fact, on most systems, these will execute
on CPU 0 at all times, whereas on others, they can
be distributed across processors based on utilization
and power needs. Why is this a problem? Because
we’ve disabled SMEP on one particular processor—
the one that ran our first-stage user-mode payload,
while the DPC can run on a completely different
processor.

As always, the NT kernel offers up an API as
a solution. By using KeSetTargetProcessorDpcEx,
we can make sure the DPC runs on the same pro-
cessor as our first stage payload (which should be
CPU 0, Group 0, but let’s do this in a more portable
way):

70

PROCESSOR_NUMBER procNumber ;
2 pKeGetCurrentProcessorNumberEx (

&procNumber) ;
4 pKeSetTargetProcessorDpcEx (

&data−>Dpc , &procNumber) ;

Success is now finally ours! By cleaning up
the KUSER_SHARED_DATA structure, eliminating the
KTHREAD’s timer from the timer list, and restoring
CR4 back to its original value, the system is now
fully restored in its original state, and we’ve even
freed the KDPC and KTIMER structures. There’s now
not a single trace of the thread left around, which
pretty much amounts to the initial idea of terminat-
ing the thread. From dust we made it, and to dust
it returned.

Of course, our payload hasn’t actually done any-
thing, other than clean up after itself. Obviously,
at this point, any number of actually real system
threads could be created, periodic timer DPCs could
be queued, work items can be queued, and all other
arbitrary kernel-mode operations are permitted, de-
pending on the ultimate goals of our exploit.

8.3 ACT III. Denoument
8.3.1 The Trigger

We have so far been operating in an imaginary world
where we can send the kernel an arbitrary Event
Object as a KEVENT and have the kernel attempt to
signal it. We now have shown that this scenario can
reliably lead to kernel execution. The next question
is, how can we trigger it?

As it happens, the kernel has a function called
PopUmpoProcessPowerMessage, which responds to
any message that is sent to the ALPC port that
it creates, called PowerPort. Such messages have
a simple 4-byte header indicating their type, and a
type of 7, which we’ll call PowerMessageNotifyLe-
gacyEvent, and is treated as follows:

1 eventObject =
PowerMessage−>NotifyLegacyEvent . Event ;

3 i f (eventObject)
KeSetEvent (eventObject , 0 , 0) ;

To send messages to this port, a complex se-
ries of actions and ALPC-specific setup, plus some-
how getting access to this port, must be performed.
Thankfully, we don’t need to do any of it, as the
UMPO.DLL library, which implements the User Mode

Power Manager, exports a handy UmpoAlpcSend-
PowerMessage function. By simply injecting a DLL
into the service, which contains all of the above code
implementation, we can execute the following se-
quence to trigger a Ring 3 to Ring 0 jump:
powerMessage . Type =

2 PowerMessageNotifyLegacyEvent ;
powerMessage . NotifyLegacyEvent . Event =

4 &deathEvent ;
UmpoAlpcSendPowerMessage (

6 &powerMessage , s izeof (powerMessage)) ;

8.4 Conclusion
As we’ve seen in this analysis, sometimes even the
most apparently non-exploitable data corruption/-
type confusion bugs can sometimes be busted open
with sufficient understanding of the underlying op-
erating system and rules around the particular data.
The author is aware of another vulnerability that re-
sults in control of a lock object—which, when fixed,
was assumed to be nothing more than a DoS. The
author posits that such a lock object could’ve also
been maliciously constructed to appear in an non-
acquired state, which would then cause the kernel to
make the thread acquire the lock—meanwhile, with
a race condition, the lock could’ve been made to ap-
pear contended, such as to cause the release path to
signal the contention even, and ultimately lead to
the same exploitation path as discussed here.

It is also important to note that such data cor-
ruption vulnerabilities, which can lead to stack piv-
oting and ROP into user mode will bypass technolo-
gies such as Device Guard, even if configured with
HyperVisor Code Integrity (HVCI)—due to the fact
that all pages executing here will be marked as exe-
cutable. All that is needed is the ability to redirect
execution to the UMPO function, which could be
done if User-Mode UMCI is disabled, or if Power-
Shell is enabled without script protection—one can
reflectively inject and redirect execution of the Sv-
chost.exe process. Note, however, that enabling
HVCI will activate HyperGuard, which protects the
CR4 register and prevents turning off SMEP. This
must be bypassed by a more complex exploit tech-
nique either affecting the PTEs or making the kernel
payload itself be full ROP.

Finally, Windows Redstone 14352 and later fix
this issue, just in time for the publication of the ar-
ticle. This bug will not be back-ported as it does
not meet the bulletin bar, however

71

