
10 Doing Right by Neighbor O’Hara
by Andreas Bogk

Knight in the Grand Recursive Order of the Knights of the Lambda Calculus
Priest in the House of the Apostles of Eris

What good is a pulpit that can’t be occasionally shared with a neighborly itinerant preacher? In this fine
sermon, Sir Andreas warns us of the heresy that “input sanitation” will somehow protect you from injection
attacks, no matter what comes next for the inputs you’ve “sanitized”—and vouchsafes the true prophecy of
parsing and unparsing working together, keeping your inputs and outputs valid, both coming and going.
—PML

Brothers, Sisters, and Variations Thereupon!

Let me introduce you to a good neighbor. Her
name is O’Hara and she was born on January 1st
in the year 1970 in Dublin. She’s made quite an
impressive career, and now lives in a nice house in
Scunthorpe, UK, working remotely for AT&T.

I ask you, neighbors: would you deny our neigh-
bor O’Hara in the name of SQL injection preven-
tion? Or would you deny her date of birth, just
because you happen to represent it as zero in your
verification routine? Would you deny her place of
work, as abominable as it might be? Or would you
even deny her place of living, just because it contains
a sequence of letters some might find offensive?

You say no, and of course you’d say no! As her
name and date of birth and employer and place of
residence, they are all valid inputs. And thou shalt
not reject any valid input; that truly would not be
neighborly!

But wasn’t input filtering a.k.a. “sanitization”
the right thing to do? Don’t characters like ’ and &
wreak unholy havoc upon your backend SQL inter-
preter or your XHTML generator?

So where did we go wrong by the neighbor
O’Hara?

There is a false prophesy making the rounds
that you can protect against undesirable injection
into your system by “input sanitization,” no matter
where your “sanitized” inputs go from there, and no
matter how they then get interpreted or rendered.
This “sanitization” is а heathen fetish, neighbors,
and the whole thing is dangerous foolery that we
need to drive out of the temple of proper input-
handling.

Indeed, is the apostrophe character so inherently
dirty and evil, that we need to “sanitize” them out?
Why, then, are we using this evil character at all?

Is the number 0 evil and unclean, no matter what,
despite historians of mathematics raving about its
invention? Are certain sounds unspeakable, regard-
less of where and when one may speak them?

No, no, and no—for all bytes are created equal,
and their interpretation depends solely on the con-
text they are interpreted in. As any miracle cure,
this snake oil of “sanitization” claims a grain of
truth, but entirely misses its point. No byte is in-
herently “dirty” so as to be “sanitized” as such—but
context and interpretation happeneth to them all,
and unless you know what these context and the in-
terpretations are, your “sanitization” is useless, nay,
harmful and unneighborly to O’Hara.

The point is, neighbors, that at the input time
you cannot possibly know the context of the output.
Your input sanitation scheme might work to protect
your backend for now—and then a developer comes
and adds an LDAP backend, and another comes and
inserts data into a JavaScript literal in your web
page template. Then another comes and adds an
additional output encoding layer for your input—
and what looked safe to you at the outset crumbles
to dust.

76



The ancient prophets of LISP knew that, for they
fully specified both what their machine read, and
what it printed, in the holy REPL, the Read-Eval-
Print Loop. The P is just as important as the R
or even the E—for without it everything falls to the
ground in the messy heaps that bring about XSS,
memory corruption, and packet-in-packet. Pretty-
printing may sound quaint, a matter unnecessary
for “real programmers,” but it is in fact deep and
subtle—it is unparsing, which produces the represen-
tation of parsed data suitable for the next context
it is consumed in. They knew to specify it precisely,
and so should you.

So what does the true prophecy look like? Verily
sanitize your input—to the validity expectations you
have of it. Yet be clear what this really means, and
treat the output with as much care as you treat the
input—because the output is a language too, and
must be produced according to its own grammar,
just as validating to the input grammar is the only
hope of keeping your handler from pwnage.

Sanity in input is important in structured data.
When you expect XML, you shall verify it is XML.
When you expect XML with a Schema, also verify
the schema. Expecting JSON? Make sure you got
handed valid JSON. Use a parser with the appro-
priate power, as LangSec commands. Yet, if your
program were to produce even a single byte of out-
put, ask—what is the context of that output? What
is the expected grammar? For verily you cannot
know it from just the input specification.

Any string of characters is likely to be a valid
name. There is nothing you should really do for
“sanitation,” except making sure the character en-
coding is valid. If your neighbor is called O’Hara,
or Tørsby, or Åke, make sure you can handle this

input—but also make sure you have the output cov-
ered!

This is the true meaning of the words of prophets:
input validation, however useful, cannot not prevent
injection attacks, the same way washing your hands
will not prevent breaking your leg. Your output is
a language too, and unless you generate it in full
understanding of what it is—that is, unparse your
data to the proper specification of whatever code
consumes it—that code is pwned.

Parsing and unparsing are like unto the two
wings of the dove. Neglect one, and you will not get
you an olive branch of safety—nay, it will never even
leave your ark, but will flap uselessly about. Do not
hobble it, neighbors, but let it fly true—doing right
by neighbors like O’Hara both coming and going!

EOL, EOF, and EOT!

77


