
7 Reverse Engineering the LoRa PHY
by Matt Knight

It’s 2016, and everyone’s favorite inescapable buz-
zword is IoT, or the “Internet of Things.” The mere
mention of this phrase draws myriad reactions, de-
pending on who you ask. A marketing manager
may wax philosophical about swarms of connected
cars eradicating gridlock forever, or the inevitability
of connected rat traps intelligently coordinating to
eradicate vermin from midtown Manhattan,18 while
a security researcher may just grin and relish in the
plethora of low-power stacks and new attack surfaces
being applied to cyber-physical applications.

IoT is marketing speak for connected embedded
devices. That is, inexpensive, low power, resource
constrained computers that talk to each other, possi-
bly on the capital-I Internet, to exchange data and
command and control information. These devices
are often installed in hard to reach places and can
be expected to operate for years. Thus, easy to con-
figure communication interfaces and extreme power
efficiency are crucial design requirements. While 2G
cellular has been a popular mechanism for connect-
ing devices in scenarios where a PAN or wired tech-
nology will not cut it, AT&T’s plans to sunset 2G
on January 1, 2017 and LTE-M Rel 13’s distance
to widespread adoption presents an opportunity for
new wireless specifications to seize market share.

LoRa is one such nascent wireless technology
that is poised to capture this opportunity. It is a
Low Power Wide Area Network (LPWAN), a class of
wireless communication technology designed to con-
nect low power embedded devices over long ranges.
LoRa implements a proprietary PHY layer; there-
fore the details of its modulation are not published.

This paper presents a comprehensive blind sig-
nal analysis and resulting details of LoRa’s PHY,
chronicles the process and pitfalls encountered along
the way, and aspires to offer insight that may assist
security researchers as they approach their future
unknowns.

7.1 Casing the Job

I first heard of LoRa in December 2015, when it
and other LPWANs came up in conversation among
neighbors. Collectively we were intrigued by its ad-
vertised performance and unusual modulation, thus
I was motivated to track it down and learn more.
In the following weeks, I occasionally scanned the
900 MHz ISM spectrum for signs of its distinctive
waveform (more on that soon), however searches in
the New York metropolitan area, Boston, and a col-
league’s search in San Francisco yielded no results.

Sometime later I found myself at an IoT security
meetup in Cambridge, MA that featured representa-
tives from Senet and SIGFOX, two major LPWAN
players. Senet’s foray into LoRa started when they
sought to remotely monitor fluid levels in home heat-
ing oil tank measurement sensors to improve the ex-
isting process of sending a guy in a truck to read it
manually. Senet soon realized that the value of this
infrastructure extended far beyond the heating oil
market and has expanded their scope to becoming
a IoT cellular data carrier of sorts. While following
up on the company I happened upon one of their
marketing videos online. A brief segment featured a
grainy shot of a coverage map, which revealed just
enough to suggest the presence of active infrastruc-
ture in Portsmouth, NH. After quick drive with my
Ettus B210 Software Defined Radio, I had my first
LoRa captures.

7.2 First Observations and OSINT

LoRa’s proprietary PHY uses a unique chirp spread
spectrum (CSS) modulation scheme, which encodes
information into RF features called chirps. A chirp

18LoRaWan in the IoT Industrial Panel, presentation by Jun Wen of Cisco.

48



Figure 11. Spectrogram of a LoRa packet.

is a signal whose frequency is increasing or decreas-
ing at a constant rate, and they are unmistakable
within the waterfall. A chirp-based PHY is shown
in Figure 11.

Contrasted with FSK or OFDM, two common
PHYs, the differences are immediately apparent.

Modulation aside, visually inspecting a spectro-
gram of LoRa’s distinct chirps reveals a PHY struc-
ture that is similar to essentially all other digital
radio systems: the preamble, start of frame delim-
iter, and then the data or payload.

Since LoRa’s PHY is proprietary, no PHY layer
specifications or reference materials were available.
However, thorough analysis of open source and read-
ily available documentation can greatly abbreviate
reverse engineering processes. When I conducted
this investigation, a number of useful documents
were available.

First, the Layer 2+ LoRaWAN stack is pub-
lished, containing clues about the PHY.

Second, several application notes were available
for Semtech’s commercial LoRa modules.19 These
were not specs, but they did reference some PHY-
layer components and definitions.

Third, a European patent filing from Semtech
described a CSS modulation that could very well be
LoRa.

Finally, neighbors who came before me had
produced open-source prior art in the form of
a partial rtl-sdrangelove implementation and
a wiki page,20 however in my experience the
rtl-sdrangelove attempt was piecemeal and ne-
glected and the wiki contained only high level ob-
servations. These were not enough to decode the
packets that I had captured in New Hampshire.

7.3 Demodulation

OSINT gathering revealed a number of key defi-
nitions that informed the reverse engineering pro-
cess. A crucial notion is that of the spreading fac-
tor (SF): the spreading factor represents the num-
ber of bits packed into each symbol. A symbol,
for the unordained, is a discrete RF energy state
that represents some quantity of modulated infor-
mation (more on this later.) The LoRaWAN spec
revealed that the chirp bandwidth, that is the width
of the channel that the chirps traverse, is 125 kHz,

19Semtech AN1200.18, AN1200.22.
20Decoding LoRa on the RevSpace Wiki

49



250 kHz, or 500 kHz within American deployments.
The chirp rate, which is intuitively the first deriva-
tive of the signal’s frequency, is a function of the
spreading factor and the bandwidth: it is defined as
bandwidth/2(spreading_factor). Additionally, the
absolute value of the downchirp rate is the same as
the upchirp rate.21

Back to the crucial concept of symbols. In LoRa,
symbols are modulated onto chirps by changing the
instantaneous frequency of the signal – the first
derivative of the frequency, the chirp rate, remains
constant, while the signal itself “jumps” through-
out its channel to represent data. The best way
to intuitively think of this is that the modulation
is frequency-modulating an underlying chirp. This
is analogous to the signal alternating between two
frequencies in a 2FSK system, where one frequency
represents a 0 and the other represents a 1. The
underlying signal in that case is a signal of constant
frequency, rather than a chirp, and the number of
bits per symbol is 1. How many data bits are en-
coded into each frequency jump within LoRa? This
is determined by the spreading factor.

The first step to extracting the symbols is to de-
chirp the received signal. This is done by channeliz-
ing the received signal to the chirp’s bandwidth and
multiplying the result against a locally-generated
complex conjugate of whichever chirp is being ex-
tracted.

A locally generated chirp might look like this.

Since both upchirps and downchirps are present
in the modulation, the signal should be multiplied
against both a local upchirp and downchirp, which
produces two separate IQ streams. Why this works
can be reasoned intuitively, since waves obey su-
perposition, multiplying a signal with frequency f0
against a signal with frequency −f0 results in a sig-
nal with frequency 0, or DC. If a chirp is multiplied
against a copy of itself, it will result in a signal of
2 ∗ f0, which will spread its energy throughout the
band. Thus, generating a local chirp at the nega-
tive chirp rate of whichever chirp is being processed

21See Semtech AN1200.22.

50



results in RF features with constant frequency that
can be handled nicely.

In following examples, the left image shows de-
chirped upchirps while the right shows de-chirped
downchirps:

This de-chirped signal may be treated similarly
to MFSK, where the number of possible frequen-
cies is M = 2(spreading_factor). The Fast Fourier
Transform (FFT) is the tool used to perform the
actual symbol measurement. Fourier analysis shows
that a signal can be modeled as a summed series of
basic periodic functions (i.e., a sine wave) at various
frequencies. A FFT decomposes a signal into the fre-
quency components that comprise it, returning the
power and phase of each component present. Each
component to be extracted is colloquially called a
“bin;” the number of bins is specified as the “FFT
size” or “FFT width.”

Thus, by taking an M -bin wide FFT of each IQ
stream, the symbols may be resolved by finding the
argmax, which is the bin with the most powerful
component of each FFT. This works out nicely be-
cause a de-chirped CSS symbol turns into a signal
with constant frequency; all of the symbol’s energy
should fall into a single bin.22

With the signal de-chirped, the remainder of
the demodulation process can be described in three
steps. These steps mimic the process required for
essentially all digital radio receivers.

First, we’ll identify the start of the packet by
finding a preamble. Then, we’ll synchronize with
the start of the packet, so that we may conclude in
demodulating the payload by measuring its aligned
symbols.

7.3.1 Finding the Preamble

A preamble is a feature included in modulation
schemes to announce that a packet is soon to fol-
low. By visual inspection, we can infer that LoRa’s
preamble is represented by a series of continuous
upchirps. Once de-chirped and passed through an
FFT, all of the preamble’s symbols wind up resid-
ing within the same FFT bin. Thus, a preamble is
detected if enough consecutive FFTs have the same
argmax.

7.3.2 Synchronizing with the SFD

With our receiver aware that it’s about to receive
a packet, the next step is to accurately synchronize
with it so that symbols can be resolved accurately.
To facilitate this, modern radio systems often adver-
tise the start of the packet’s data unit with a Start of

22It may be possible to do this using FM demodulation rather than FFTs, however using FFTs preserves power information
that is useful for framing the packet without knowing its definitive length.

51



Frame Delimiter, or SFD, which is a known symbol
distinct from the preamble that receivers are pro-
grammed to look for. For LoRa, this is where the
downchirps come in.

The SFD is composed of two and one quarter
downchirps, while all the other symbols are repre-
sented by upchirps. With preamble having been
found, our receiver should look for two consecutive
downchirps to synchronize against. It looks some-
thing like the following:

Accurate synchronization is crucial to properly
resolving symbols. If synchronization is off by
enough samples, when FFTs are taken each sym-
bol’s energy will be divided between two adjacent
FFTs. Until now, the FFT process used to resolve
the symbols processed 2(spreading_factor) samples
per FFT with each sample being processed exactly
once, however after a few trial runs it became evi-
dent that this coarse synchronization would not be
sufficiently accurate to guarantee good fidelity.

Increasing the time-based FFT resolution was
found to be a reliable method for achieving an ac-
curate sync. This is done by shifting the stream of
de-chirped samples through the FFT input buffer,
processing each sample multiple times, to “overlap”
adjacent FFTs. This increases the time-based res-
olution of the FFT process at the expense of be-
ing more computationally intensive. Thus, overlap-
ping FFTs are only used to frame the SFD; non-
overlapped FFTs with each sample being processed
exactly once are taken otherwise to balance accuracy
and computational requirements.

Technically there’s also a sync word that pre-
cedes the SFD, but my demodulation process de-
scribed in this article does not rely on it.

7.3.3 Demodulating the Payload

Now synchronized against the SFD, we are able
to efficiently demodulate the symbols in the pay-
load by using the original non-overlapping FFT
method. However, since our receiver’s locally gen-
erated chirps are likely out of phase with the chirp
used by the transmitter, the symbols appear offset
within the set range [0 : 2(spreading_factor)−1] by
some constant. It was surmised that the preamble
would be a reliable element to represent symbol 0,
especially given that the aforementioned sync word’s
value is always referenced from the preamble. A sim-
ple modulo operation to normalize the symbol value
relative to the preamble’s zero-valued bin produces
the true value of the symbols, and the demodulation
process is complete.

7.4 Decoding, and its Pitfalls

Overall, demodulation proved to not be too difficult,
especially when you have someone like Balint See-
ber feeding you advice and sagely wisdom. However,
decoding is where the fun (and uncertainty) really
began.

First, why encode data? In order to increase
over the air resiliency, data is encoded before it is
sent. Thus, the received symbols must be decoded
in order to extract the data they represent.

The documentation I was able to gather on LoRa
certainly suggested that figuring out the decoding
would be a snap. The patent application describ-
ing a LoRa-like modulation described four decoding
steps that were likely present. Between the patent
and some of Semtech’s reference designs, there were
documented algorithms or detailed descriptions of
every step. However, these documents slowly proved
to be lies, and my optimism proved to be misplaced.

7.4.1 OSINT Revisited

Perhaps the richest source of overall hints was
Semtech’s European patent application.23 The
patent describes a CSS-based modulation with an
uncanny resemblance to LoRa, and goes so far as
to walk step-by-step through the encoding elements
present in the PHY. From the encoder’s perspec-
tive, the patent describes an encoding pipeline of
forward error correction, a diagonal interleaver, data
whitening, and gray indexing, followed by the just-
described modulation process. The reverse process

23European Patent #13154071.8/EP20130154071

52



Figure 12. The top is pre-sync and non-overlapped, middle is pre-sync overlapped, bottom is synchronized
and non-overlapped.

53



would be performed by the decoder. The patent
even defines an interleaver algorithm, and Semtech
documentation includes several candidate whitening
algorithms.

The first thing to try, of course, was to imple-
ment a decoder exactly as described in the docu-
mentation. This involved, in order:

1. Undoing gray coding applied to the symbols.

2. Dewhitening using the algorithms defined in
Semtech’s documentation.

3. Deinterleaving using the algorithm defined in
Semtech’s patent.

4. Processing the Hamming forward error correc-
tion hinted at in Semtech’s documentation.

First, let’s review what we have learned about
each step listed above based on open-source re-
search, and what would be attempted as a result.

Gray Indexing Given the nomenclature ambigu-
ity in the Semtech patent, I also decided to test no
gray coding and reverse gray coding in addition to
forward gray coding. These were done using stan-
dard algorithms.

Data Whitening Data whitening was a colossal
question mark while looking at the system. An ideal
whitening algorithm is pseudorandom, thus an effec-
tive obfuscator for all following components of the
system. Luckily, Semtech appeared to have pub-
lished the algorithm candidates in Application Note
AN1200.18. Entitled “Implementing Data Whiten-
ing and CRC Calculation in Software on SX12xx
Devices,” it describes three different whitening algo-
rithms that were relevant to the Semtech SX12xx-
series wireless transceiver ICs, some of which sup-
port LoRa. The whitening document provided one
CCITT whitening sequences and two IBM methods
in C++. As with the gray indexing uncertainty, all
three were implemented and permuted.

Interleaver Interleaving refers to methods of de-
terministically scrambling bits within a packet. It
improves the effectiveness of Forward Error Correc-
tion, and will be elaborated on later in this text.
The Semtech patent application defined a diago-
nal interleaver as LoRa’s probable interleaver. It is
a block-style non-additive diagonal interleaver that

shuffles bits within a block of a fixed size. The in-
terleaver is defined as: Symbol(j, (i + j)%PPM) =
Codeword(i, j) where 0 <= i < PPM, 0 <= j <
4 + RDD In this case, PPM is set to the spreading
factor (or spreading_factor−2 for the PHY header
and when in low data rate modes), and RDD is set
to the number of parity bits used by the Forward
Error Correction scheme (ranging [1 : 4]).

There was only one candidate illustrated here,
so no iteration was necessary.

Forward Error Correction The Semtech patent
application suggests that Hamming FEC be used.
Other documentation appeared to confirm this. A
custom FEC decoder was implemented that orig-
inally just extracted the data bits from their stan-
dard positions within Hamming(8,4) codewords, but
early results were negative, so this was extended to
apply the parity bits to repair errors.

Using a Microchip RN2903 LoRa Mote, a transmit-
ter that was understood to be able to produce raw
frames, a known payload was sent and decoded us-
ing this process. However, the output that resulted
bore no resemblance to the expected payload. The
next step was to inspect and validate each of the
algorithms derived from documentation.

After validating each component, attempting ev-
ery permutation of supplied algorithms, and inspect-
ing the produced binary data, I concluded that
something in LoRa’s described encoding sequence
was not as advertised.

7.5 Taking Nothing for Granted
The nature of analyzing systems like this is that
beneath a certain point they become a black box.
Data goes in, some math gets done, RF happens,
said math gets undone, and data comes out. Sim-
ple enough, but when encapsulated as a totality it
becomes difficult to isolate and chase down bugs in
each component. Thus, the place to start was at the
top.

54



7.5.1 How to Bound a Problem

The Semtech patent describes the first stage of de-
coding as “gray indexing.” Gray coding is a process
that maps bits in such a way that makes it resilient
to off-by-one errors. Thus, if a symbol were to be
measured within ±1 index of the correct bin, the
gray coding would naturally correct the error. “Gray
indexing,” ambiguously referring to either gray cod-
ing or its inverse process, was initially understood
to mean forward gray coding.

The whitening sequence was next in line. Data
whitening is a process applied to transmitted data
to induce randomness into it. To whiten data, the
data is XORed against a pseudorandom string that
is known to both the transmitter and the receiver.
This does good things from an RF perspective, since
it induces lots of features and transitions for a re-
ceiver to perform clock recovery against. This is
functionally analogous to line coding schemes such
as Manchester encoding, but whitening offers one
pro and one con relative to line coding: data whiten-
ing does not impact the effective bit rate as Manch-
ester encoding does,24 but this comes at the expense
of legibility due to the pseudorandom string.

At this point, it is important to address some of
the assumptions and inferences that were made to
frame the following approach. While the four de-
coding stages were thrown into question by virtue
of the fact that at least one of the well-described
algorithms was not correct, certain implied proper-
ties could be generalized for each class of algorithm,
even if the implementation did not match exactly.

I made a number of assumptions at this point,
which I’ll describe in turn.

First, the interleaver in use is non-additive. This
means that while it will reorder the bits within each
interleaving block, it will not cause any additional
bits to be set or unset. This was a reasonable

assumption because many block-based interleavers
are non-additive, and the interleaver defined in the
patent is non-additive as well. Even if the interleaver
used a different algorithm, such as a standard block
interleaver or a different type of diagonal interleaver,
it could still fit within this model.

Second, the forward error correction in use is
Hamming FEC, with 4 data bits and 1-4 parity bits
per codeword. FEC can be thought of as super-
charged parity bits. A single parity bit can indicate
the presence of an error, but if you use enough of
them they can collectively identify and correct er-
rors in place, without re-transmission. Hamming is
specifically called out by the European patent, and
the code rate parameter referenced throughout ref-
erence designs fits nicely within this model. The use
of Hamming codes, as opposed to some other FEC
or a cyclic coding scheme, was fortuitous because
of a property of the Hamming code words. Ham-
ming codeword mapping is deterministic based on
the nybble that is being encoded. Four bits of data
provide 16 possible codewords. When looking at
Hamming(8,4) (which is the inferred FEC for LoRa
code rate 4/8), 14 of the 16 codewords contain four
set bits (1s) and four unset bits (0s). However, the
code words for 0b0000 and 0b1111 are 0b00000000
and 0b11111111, respectively.

Thus, following on these two assumptions, if a
payload containing all 0x00s or 0xFFs were sent,
then the interleaving and forward error correction
should cancel out and not affect the output at all.
This reduces our unknown stages in the decoding
chain from four to just two, with the unknowns be-
ing gray indexing and whitening, and once those are
resolved then the remaining two can be solved for!

Since “gray indexing” likely refers to gray cod-
ing, reverse gray coding, or no coding should it be
omitted, this leaves only three permutations to try
while solving for the data whitening sequence.

The first step was to take a critical look at
the data whitening algorithms provided by Semtech
AN1200.18. Given the detail and granularity in
which they are described, plus the relevance of
having come straight from a LoRa transceiver
datasheet, it was almost a given that one of the three
algorithms would be the solution. With the inter-
leaver and FEC effectively zeroed out, and “gray in-
dexing” reduced to three possible states, it became
possible to test each of the whitening algorithms.

Testing each whitening algorithm was fairly
24Manchester’s effective bit rate is 1/2 baud rate.

55



straightforward. A known payload of all 0x00s or
0xFFs (to cancel out interleaving and FEC) was
transmitted from the Microchip LoRa Technology
Mote and then decoded using each whitening al-
gorithm and each of the possible “gray indexing”
states. This resulted in 9 total permutations. A
visual diff of the decoded data versus the expected
payload resulted in no close matches. This was re-
placed with a diff script with a configurable toler-
ance for bits that did not match. This also resulted
in no matches as well. One final thought was to
forward compute the whitening algorithms in case
there was a static offset or seed warm-up, as can
be the case with other PRNG algorithms. Likewise,
this did not reveal any close matches. This meant
that either none of the given whitening algorithms
in the documentation were utilized, or the assump-
tions that I made about the interleaver and FEC
were not correct.

After writing off the provided whitening algo-
rithms as fiction, the next course of action was to
attempt to derive the real whitening algorithm from
the LoRa transmitter itself. This approach was
based on the previous observations about the FEC
and interleaver and a fundamental understanding of
how data whitening works. In essence, whitening is
as simple as XORing a payload against a static pseu-
dorandom string, with the same string used by both
the transmitter and receiver. Since anything XORed
with zero is itself, passing in a string of zeroes causes
the transmitter to reveal a “gray indexed” version of
its whitening sequence.

This payload was received, then transformed into
three different versions of itself: one gray-coded, one
unmodified, and one reverse gray-coded. All three
were then tested by transmitting a set of 0xF data
nybbles and using each of the three “gray indexing”
candidates and received whitening sequence to de-
code the payload. The gray coded and unmodified
versions proved to be incorrect, but the reverse gray
coding version successfully produced the transmit-
ted nybbles, and thus in one fell swoop, I was able
to both derive the whitening sequence and discern
that “gray indexing” actually referred to the reverse
gray coding operation. With “gray indexing” and
whitening solved, I could turn my attention to the
biggest challenge: the interleaver.

7.5.2 The Interleaver

At this point we’ve resolved two of the four signal
processing stages, disproving their documentation

in the process. Following on this, the validity of the
interleaver definition provided in Semtech’s patent
was immediately called into question.

A quick test was conducted against a local im-
plementation of said interleaver: a payload com-
prised of a repeated data byte that would produce
a Hamming(8,4) codeword with four set and four
unset bits was transmitted and the de-interleaved
frame was inspected for signs of the expected code-
word. A few other iterations were attempted, in-
cluding reversing the diagonal offset mapping pat-
tern described by the patent and using the inverse
of the algorithm (i.e., interleaving the received pay-
load rather than de-interleaving it). Indeed, I was
able to conclude that the interleaver implemented by
the protocol is not the one suggested by the patent.
The next logical step is to attempt to reverse it.

Within a transmitter, interleaving is often ap-
plied after forward error correction in order to make
the packet more resilient to burst interference. In-
terleaving scrambles the FEC-encoded bits through-
out the packet so that if interference occurs it is
more likely to damage one bit from many codewords
rather than several bits from a single codeword. The
former error scenario would be recoverable through
FEC, the latter would result in unrecoverable data
corruption.

Block-based interleavers, like the one described
in the patent, are functionally straightforward.
The interleaver itself can be thought of as a two-
dimensional array, where each row is as wide as the
number of bits in each FEC codeword and the num-
ber of columns corresponds to the number of FEC
codewords in each interleaver block. The data is
then written in row-wise and read out column-wise;
thus the first output “codeword” is comprised of the
LSB (or MSB) of each FEC codeword. A diagonal
interleaver, as suggested in the patent, offsets the
column of the bit being read out as rows are tra-
versed.

Understanding the aforementioned fundamentals
of what the interleaver was likely doing was essen-
tial to approaching this challenge. Ultimately, given
that a row-column or row-diagonal relationship de-
fines most block-based interleavers, I anticipated
that patterns that could be revealed if approached
appropriately. Payloads were therefore constructed
to reveal the relationship of each row or codeword
with a corresponding diagonal or column. In order
to reveal said mapping, the Hamming(8,4) codeword
for 0xF was leveraged, since it would fill each row

56



0x0000000F 0x000000F0 0x00000F00 0x0000F000 0x000F0000 0x00F00000 0x0F000000 0xF0000000
00100011 11000000 00001001 11010000 00000011 01000100 01000001 00001000
00010011 00100101 00000111 00001001 00000011 00000011 10000010 01000101
00001001 00010001 00000011 00000101 01000001 00000000 00100001 10000011
00000111 00001101 00000011 00000110 10000010 01000101 00010010 00100011
00000000 00001100 01000010 00001000 00100010 10001001 00001010 00010011
00000100 00000000 10000001 01000010 00010001 00100010 00000111 00001011
01000011 00000001 00100001 10000000 00001001 00010000 00000011 00000111
10000101 01000111 00010000 00100101 00000000 00001111 00000101 00000111

Figure 13. Symbol Tests

with eight contiguous bits at a time. Payloads con-
sisting of seven 0x0 codewords and one 0xF code-
word were generated, with the nybble position of
0xF iterating through the payload. See Figure 13.

As one can see, by visualizing the results as they
would be generated by the block, patterns associ-
ated with each codeword’s diagonal mapping can be
identified. The diagonals are arbitrarily offset from
the corresponding row/codeword position. One im-
portant oddity to note is that the most significant
bits of each diagonal are flipped.

While we now know how FEC codewords map
into block diagonals, we do not know where each
codeword starts and ends within the diagonals, or
how its bits are mapped. The next step is to map
the bit positions of each interleaver diagonal. This
is done by transmitting a known payload comprised
of FEC codewords with 4 set and 4 unset bits and
looking for patterns within the expected diagonal.

1 Payload : 0xDEADBEEF
b i t 76543210

3 00110011
10111110

5 11111010
11011101

7 10000010
10000111

9 11000000
10000010

Reading out the mapped diagonals results in the
following table.

T Bot
D 1 0 1 0 0 0 0 1
E 0 1 1 1 0 1 0 0
A 0 1 0 1 1 0 0 0
D 1 0 1 1 0 0 0 0
B 1 1 0 0 0 0 1 0
E 0 1 1 1 0 1 0 0
E 0 1 1 1 0 1 0 0
F 1 1 1 1 1 1 1 1
While no matches immediately leap off the page,

manipulating and shuffling through the data begins

to reveal patterns. First, reverse the bit order of the
extracted codewords:

B Top
D 1 0 0 0 0 1 0 1
E 0 0 1 0 1 1 1 0
A 0 0 0 1 1 0 1 0
D 0 0 0 0 1 1 0 1
B 0 1 0 0 0 0 1 1
E 0 0 1 0 1 1 1 0
E 0 0 1 0 1 1 1 0
F 1 1 1 1 1 1 1 1
And then have a look at the last nybble for each

of the highlighted codewords:
B Top

D 1 0 0 0 0 1 0 1
E 0 0 1 0 1 1 1 0
A 0 0 0 1 1 0 1 0
D 0 0 0 0 1 1 0 1
B 0 1 0 0 0 0 1 1
E 0 0 1 0 1 1 1 0
E 0 0 1 0 1 1 1 0
F 1 1 1 1 1 1 1 1
Six of the eight diagonals resemble the data em-

bedded into each of the expected FEC encoded code-
words! As for the first and fifth codewords, it is
possible they were damaged during transmission, or
that the derived whitening sequence used for those
positions is not exact. That is where FEC proves its
mettle – applying Hamming(8,4) FEC would repair
any single bit errors that occurred in transmission.
The Hamming parity bits that are expected with
each codeword are calculated using the Hamming
FEC algorithm, or can be looked up for standard
schemes like Hamming(7,4) or Hamming(8,4).

Data (8 , 4 ) Par i ty Bi t s
2 0xD 1101 1000

0xE 1110 0001
4 0xA 1010 1010

0xD 1101 1000
6 0xB 1011 0100

0xE 1110 0001
8 0xE 1110 0001

0xF 1111 1111

57



While the most standard Hamming(8,4) bit or-
der is: p1, p2, d1, p3, d2, d3, d4, p4 (where p are
parity bits and d are data bits), after recognizing the
above data values we can infer that the parity bits
are in a nonstandard order. Looking at the diago-
nal codeword table and the expected Hamming(8,4)
encodings together, we can map the actual bit posi-
tions:

Bot Top
p1 p2 p4 p3 d1 d2 d3 d4

D 1 0 0 0 0 1 0 1
E 0 0 1 0 1 1 1 0
A 0 0 0 1 1 0 1 0
D 0 0 0 0 1 1 0 1
B 0 1 0 0 0 0 1 1
E 0 0 1 0 1 1 1 0
E 0 0 1 0 1 1 1 0
F 1 1 1 1 1 1 1 1
Note that parity bits three and four are swapped.

With that resolved, we can use the parity bits to de-
code the forward error correction, resulting in four
bits being corrected, as shown in Figure 14.

That’s LoRa!
– — — – — — — — – — –

Having reversed the protocol, it is important to
look back and reflect on how and why this worked.
As it turned out, being able to make assumptions
and inferences about certain goings-on was crucial
for bounding the problem and iteratively verify-
ing components and solving for unknowns. Recall
that by effectively canceling out interleaving and
forward error correction, I was able to effectively
split the problem in two. This enabled me to solve
for whitening, even though “gray indexing” was un-
known there were only three permutations, and with
that in hand, I was able to solve for the interleaver,
since FEC was understood to some extent. Just like
algebra or any other scientific inquiry, it comes down
to controlling your variables. By stepping through
the problem methodically and making the right in-
ferences, we were able to reduce 4 independent vari-
ables to 1, solve for it, and then plug that back in
and solve for the rest.

7.6 Remaining Work
While the aforementioned process represents a com-
prehensive description of the PHY, there are a few
pieces that will be filled in over time.

The LoRa PHY contains an optional header with
its own checksum. I have not yet reversed the

header, and the Microchip LoRa module I’ve used
to generate LoRa traffic does not expose the option
of disabling the header. Thus I cannot zero those
bits out to calculate the whitening sequence applied
to it. It should be straightforward to fill in with the
correct hardware in hand.

The PHY header and service data unit/payload
CRCs have not been investigated for the same rea-
son. This should be easy to resolve through the use
of a tool like CRC RevEng once the header is known.

In my experience, for demodulation purposes
clock recovery has not been necessary beyond get-
ting an accurate initial sync on the SFD. However
should clock drift pose a problem, for example if
transmitting longer messages or using higher spread-
ing factors which have slower data rates/longer over-
the-air transmission times, clock recovery may be
desirable.

7.7 Shameless Plug

I recently published an open source GNU Radio
OOT module that implements a transceiver based
on this derived version of the LoRa PHY. It is pre-
sented to empower RF and security researchers to
investigate this nascent protocol.25

25git clone https://github.com/BastilleResearch/gr-lora
unzip pocorgtfo13.pdf gr-lora.tar.bz2

58



Top
p1 p2 p4 p3 d1 d2 d3 d4

D 1 0 0 0 1 1 0 1 1101 = 0xD
E 0 0 1 0 1 1 1 0 1110 = 0xE
A 1 0 0 1 1 0 1 0 1010 = 0xA
D 1 0 0 0 1 1 0 1 1101 = 0xD
B 0 1 0 0 1 0 1 1 1011 = 0xB
E 0 0 1 0 1 1 1 0 1110 = 0xE
E 0 0 1 0 1 1 1 0 1110 = 0xE
F 1 1 1 1 1 1 1 1 1111 = 0xF

Figure 14. Forward Error Corrected bits shown in bold

7.8 Conclusions and Key Takeaways
Presented here is the process that resulted in a com-
prehensive deconstruction of the LoRa PHY layer,
and the details one would need to implement the
protocol. Beyond that, however, is a testament to
the challenges posed by red herrings (or three of
them, all at once) encountered throughout the re-
verse engineering process. While open source in-
telligence and documentation can be a boon to re-
searchers – and make no mistake, it was enormously
helpful in debunking LoRa – one must remember
that even the most authentic sources may sometimes
lie!

Another point to take away from this is the im-
portance of bounding problems as you solve them,
including through making informed inferences in the
absence of perfect information. This of course must
be balanced with the first point about OSINT, is
knowing when to walk away from a source. How-
ever as illustrated above, drawing appropriate con-
clusions proved integral to reducing and solving for
each of the decoding elements within a black-box
methodology.

The final thought I will leave you with is that
wireless doesn’t just mean Wi-Fi anymore - it in-
cludes cellular, PANs, LPWANs, and everything in
between. Accordingly, a friendly reminder that se-
curity monitoring and test tools don’t exist until
someone creates them. Monitor mode and Wire-
shark weren’t always a thing, so don’t take them
for granted: it’s time to make the next generation
of wireless networks visible to researchers, because
know it or not it is already here and is here to stay.

59


