
14:08 Control Panel Vulnerabilities
by Geoff Chappell

Back in 2010, as what I then feared might be
“the last new work that I will ever publish,” I wrote
The CPL Icon Loading Vulnerability18 about what
Microsoft called a Shortcut Icon Loading Vulnerabil-
ity.19 You likely remember this vulnerability. It was
notorious for having been exploited by the Stuxnet
worm to spread between computers via removable
media. Just browsing the files on an infected USB
drive was enough to get the worm loaded and exe-
cuting.

Years later, over drinks at a bar in the East Vil-
lage, I brought up this case to support a small provo-
cation that the computer security industry does not
rate the pursuit of detail as highly as it might—
or even as highly as it likes to claim. Thus did
I recently reread my 2010 article, which I always
was unhappy to have put aside in haste, and looked
again at what others had written. To my surprise—
or not, given that I had predicted “the defect may
not be properly fixed”—I saw that others had re-
visited the issue too, in 2015 while I wasn’t look-
ing. As reported by Dave Weinstein in Full details
on CVE-2015-0096 and the failed MS10-046 Stuxnet
fix,20 Michael Heerklotz showed that Microsoft had
not properly fixed the vulnerability in 2010. Numer-
ous others jumped on the bandwagon of scoffing at
Microsoft for having needed a second go. I am writ-
ing about this vulnerability now because I think we
might do well to have a third look!

Don’t get too excited, though. It’s not that
Microsoft’s second fix, of a DLL Planting Remote
Code Execution Vulnerability,21 still hasn’t com-
pletely closed off the possibilities for exploitation.
I’m not saying that Microsoft needs a third attempt.
I will show, however, that the exploitation that mo-
tivated the second fix depends on some extraordi-
narily quirky behaviour that this second fix left in
place. It is not credibly retained for backwards com-
patibility. That it persists is arguably a sign that we
still have a long way to go for how the computer se-
curity industry examines software for vulnerabilities
and for how software manufacturers fix them.

CVE-2010-2568
You’d hope that Stuxnet’s trick has long been un-
derstood in detail by everyone who ever cared, but
let’s have a quick summary anyway. Among the
browsed files is a shortcut (.LNK) file that presents
as its target a Control Panel item whose icon is to
be resolved dynamically. Browsing the shortcut in-
duces Windows to load and execute the correspond-
ing CPL module to ask it which icon to show. This
may be all well and good if the CPL module ac-
tually is registered, so that its Control Panel items
would show when browsing the Control Panel. The
exploitation is simply that the target’s CPL module
is (still) not registered but is (instead) malware.

Chances are that you remember CVE-2010-2568
and its exploitation differently. After all, Microsoft
had it that the vulnerability “exists because Win-
dows incorrectly parses shortcuts” and is exploited
by “a specially crafted shortcut.” Some malware an-
alysts went further and talked of a “malformed .LNK
file.”

But that’s all rubbish! A syntactically valid .LNK
file for the exploitation can be created using nothing
but the ordinary user interface for creating a short-
cut to a Control Panel item. Suppose an attacker
has written malware in the form of a CPL module
that hosts a Control Panel item whose icon is to be
resolved dynamically. Then all the attacker has to
do at the attacker’s computer is as follows.

• First copy this CPL module to the USB drive;

• register this CPL module so that it will show
in the Control Panel;

• open the Control Panel and find the Control
Panel item; and,

• Ctrl-Shift drag this item to the USB drive to
create a .LNK file.

Call the result a “specially crafted shortcut” if
you want, but it looks to me like a very ordinary
shortcut created by very ordinary steps. When the
USB drive is browsed on the victim’s computer,

18http://www.geoffchappell.com/notes/security/stuxnet/ctrlfldr.htm
19MS10-046 and CVE-2010-2568
20HP Enterprise, March 2015
21MS15-020, CVE-2015-0096

37



attacker’s .LNK file on the USB drive is correctly
parsed to discover that it’s a shortcut to a Con-
trol Panel item that’s hosted by the attacker’s CPL
module on the USB drive. Though this CPL mod-
ule is not registered for execution as a CPL module
on the victim’s computer, it does get executed. The
cause of this unwanted execution is entirely that the
Control Panel is credulous that what is said to be a
Control Panel item actually is one. What the Con-
trol Panel was vulnerable to was not a parsing error
but a spoof.22

Microsoft certainly understood this at the time,
for even though the words Control Panel do not
appear in Microsoft’s description of the vulnerabil-
ity (except in boilerplate directions for such things
as applying patches and workarounds), the essence
of the first fix was the addition to shell32.dll
of a routine that symbol files tell us is named
CControlPanelFolder::_IsRegisteredCPLApplet.

Control Panel Icons

This CControlPanelFolder class is the shell’s im-
plementation of the COM class that is creatable
from the Control Panel’s well-known CLSID. Asking
which icon to show for a Control Panel item starts
with a call to this class’ GetUIObjectOf method to
get an IExtractIcon interface to a temporary ob-
ject that represents the given item. Calling this in-
terface’s GetIconLocation method then gets direc-
tions for where to load the icon from.

The input to GetUIObjectOf is a binary pack-
aging of the item’s basic characteristics, which I’ll
refer to collectively as the item ID. The important
ones for our purposes are: a pathname to the CPL
module that hosts the item; an index for the item’s
icon among the module’s resources; and a display
name for the item. The case of interest is that when
the icon index is zero, the icon is not cached from
any prior execution of the CPL module, but is to
be resolved dynamically, i.e., by asking the CPL
module. Proceeding to GetIconLocation causes the
CPL module to be loaded, called and unloaded.

This is all by design. It’s a design with more
moving parts than some would like, especially for
just this one objective. But it fits the generality of
shell folders so that highly abstracted and widely
varying shell folders can present a broadly consis-
tent user interface, while meeting a particular goal
for the Control Panel. It’s what lets a Control Panel
item, or a shortcut to one, change its icon according
to the current state of whatever the item exists to
control.

I stress this because more than a few commenta-
tors blame the vulnerability on what they say was a
bad design decision decades ago to load icons from
DLLs, as if this of itself risks getting the DLL to
execute. What happens is instead much more spe-
cific. Though CPL modules are DLLs and do have
icons among their resources, the reason a CPL mod-
ule may get executed for its icon is not to get the

22Although parser bugs have a special place in Pastor’s heart, it’s good to be reminded occasionally that not every bug is a
parser bug, and that there are other buggy things besides parsers!—PML

38



icon but to ask explicitly which icon to get.
Note that I have not tied down who calls

GetUIObjectOf or where the item ID comes from.
The usual caller is SHELL32 itself, as a consequence
of opening the Control Panel, e.g., in the Windows
Explorer, to browse it for items to show. Each item
ID is in this case being fed back to the class, having
been produced by other methods while enumerating
the items. In Stuxnet’s exploit the caller is again
SHELL32, but in response to browsing a shortcut to
one Control Panel item. The item ID is in this case
parsed from a shortcut (.LNK) file. Another way the
call can come from within SHELL32 is automatically
when starting the shell if a Control Panel item has
been pinned to the Start Menu. The item ID is in
this case parsed from registry data. More generally,
the call can come from just about anywhere, and the
item ID can come from just about anywhere, too.

One thing is common to all these cases, however,
because the binary format of this item ID is docu-
mented only as being opaque to everyone but the
Control Panel. If everyone plays by the rules, any
item ID that the Control Panel’s GetUIObjectOf
ever receives can only have been obtained from some
earlier interaction with the Control Panel. (Though
not necessarily the same Control Panel!)

Input Validation

As security researchers, we’ve all seen this movie
before—in multiple re-runs, even. Among the lax
practices that were common once but which we now
regard as hopelessly naive is that a program trusts
what it reads from a file or a registry value, etc., on
the grounds that the storage was private to the pro-
gram or anyway won’t have gotten messed with. Not
very long ago, programs routinely didn’t even check
that such input was syntactically valid. Nowadays,
we expect programs to check not just the syntax of
their input but the meaning, so that they are not
tricked into actions for which the present provider
is not authorised (or ought to not even know how to
ask).

For the Control Panel, the risk is that even if
the item ID has the correct syntax what actually
gets parsed from it may be stale. The specified
CPL module was perhaps registered for execution
some time ago but isn’t now. Or, perhaps, it is still
registered, but only for some other user or on some
other computer. And this is just what can go wrong

even though all the software that’s involved plays
by the rules. As hackers, we know very well that
not all software does play by the rules, and that
some deliberately makes mischief. That the format
of the item ID is not documented will not stop a
sufficiently skilled reverse engineer from figuring it
out, which opens up the extra risk that an item ID
may be confected. (Stick with me on this, because
we’ll do it ourselves later.)

Asking which icon to show for a Control Panel
item gives an object-lesson in how messy the
progress towards what we now think of as minimally
prudent validation can be. Not until Windows 2000
did the Control Panel implementation make even
the briefest check that an item ID it received was
syntactically plausible. Worse, even though Win-
dows NT 4.0 had introduced a second format, to
support Unicode, it differentiated the two without
questioning whether it had been given either. When
the check for syntax did come, it was only that the
item ID was not too small, and that the icon index
was within a supported range.

Checking that the module’s pathname and the
item’s display name, if present, were actually null-
terminated strings that lay fully within the received
data wasn’t even attempted until Windows 7. I say
attempted because this first attempt at coding it
was defective. A malformed item ID could induce
SHELL32 to read a byte from outside the item ID—
only as far as 10 bytes beyond, and thus unlikely
to access an invalid address, but outside nonethe-
less. Even a small bug in code for input validation
is surely not welcome, but what I want to draw at-
tention to is that this bug conspicuously was not
addressed by the fix of CVE-2010-2568. A serious
check of the supposed strings in the item ID came
soon, but not, as far as I know, until later in 2010
for Windows 7 SP1.

Please take this in for a moment. While Mi-
crosoft worked to close off the spoof by having
GetUIObjectOf check that the CPL module as
named in the item ID is one that can be allowed
to execute, Microsoft described the vulnerability as
a parsing error—yet did nothing about errors in pre-
existing code that checked the item ID for syntax!
Wouldn’t you think that if you’re telling the world
that the problem is a parsing error, then you’d want
to look hard into everything nearby that involves
any sort of parsing?

The suggestion is strong that Microsoft’s talk of
23I wonder what would happen if programmers got in the habit of taking the right approach—pitchforks applied to the protocol

39



a parsing error was only ever a sleight of hand. As
programmers, we’ve all written code with parsing
errors. So many edge cases!23 To have such an er-
ror in your otherwise well-written code is only in-
evitable. Software is hand-crafted, after all. To talk
of a parsing error is to appeal to the critics’ recogni-
tion of fallibility. A parsing error can be the sort of
an easy slip-up that gets you a 99 instead of a 100
on a test.

Falling for a spoof, however, seems more like a
conceptual design failure. It’s only natural that Mi-
crosoft directed attention to one rather than the
other. My only question for Microsoft is how de-
liberate was the misdirection. Why so many se-
curity researchers went along with it, I won’t ever
know. This, too, is a conceptual failure—–and not
just mine.

First Fix

Still, it’s a plus that fixing CVE-2010-2568 meant
not only getting the item ID checked ever so slightly
better for syntax, but also checking it for its mean-
ing, too. Checking, however, is only the start. What
do you do about a check that fails?

Were it up to me, thinking just of what I’d like
for my own use of my own computer, I’d have all
CControlPanelFolder methods that take an item
ID as input return an error if given any item ID
that specifies a CPL module that is not currently
registered. My view would be that even if the item
ID is only stale rather than confected (keep read-
ing!), then wherever or whenever the specified CPL
module is or was registered, it’s not registered now
for my use on this computer—and so it shouldn’t
show if I browsed the Control Panel. I’d rather not
accept it for any purpose at all, let alone run the
risk that it gets executed.

Microsoft’s view, whether for a good reason or
bad, was nothing like this firm. First, it regarded
the problem case as more narrow, not just that the
specified CPL module is not currently registered (so
that the item ID is at least stale, if not actually
faked), but also that the specified icon index is zero
(this being, we hope, the only route to unwanted ex-
ecution) and anyway only for GetUIObjectOf when
queried for an IExtractIcon interface. Second, the
fix didn’t reject but sanitised.24 It let the problem
case through, but as if the icon index were given as

-1 instead of 0.
Perhaps this relaxed attitude was motivated just

by a general (and understandable) desire for the
least possible change. Perhaps there was a known
case that had to be supported for backwards com-
patibility. I can’t know either way, but what I hope
you’ve already woken to is the following contrast be-
tween rejection and sanitisation. To reject suspect
input may be more brutal than you need, but it has
the merit of certainty. The suspect input goes no
further, and any innocent caller should at least have
anticipated that you return an error. To “sanitise”
suspect input and proceed as if all will now be fine
is to depend on the deeper implementation—which,
as you already know, had not checked this input for
itself!

What Lies Beneath

By deeper implementation I mean to remind you
that GetUIObjectOf is just the entry point for ask-
ing which icon to show. There is still a long, long
way to go: first for the temporary object that sup-
plies the GetIconLocation method for the given
item; and then, though apparently only if the pre-
ceding stage has zero for the icon index, to the more
general support for loading and calling CPL mod-
ules. Moreover, this long, long way goes through old,
old code, with all the problems that can come from
that. To depend on any of it for fixing a bug, es-
pecially one that you know real-world attackers are
probing for edge cases, seems—at best—foolhardy.

To sense how foolhardy, let’s have some demon-
strations of where this deeper implementation can
go wrong. An attacker whose one goal is to see
if the first fix can be worked around would most
easily follow the execution from GetUIObjectOf
down. Many security researchers would follow, too—
perhaps mumbling that their lot is always to be re-
acting to the attackers and never getting ahead. One
way to get ahead is to study in advance as much of
the general as you can so that you’re better pre-
pared whenever you have to look into the specific.
This is why, when I examine what might go wrong
with trying to fix CVE-2010-2568 by letting sani-
tised input through to the deeper implementation,
I work in what you may think is the reverse of the
natural direction.

designers—to address the root cause of these edge cases. —PML.
24When neighbors whose software you’d like to trust tell you proudly that they “sanitize” input and “fix” it, so that inputs

coming in as invalid would still be used—run. You’ll thank us later. —PML

40



Loading and Calling

Where we look at first into the deeper implementa-
tion is therefore the general support for loading and
calling of CPL modules, but particularly of a CPL
module that hosts a Control Panel item whose icon
is to be resolved dynamically. For my 2010 article,
I presented such a simple example.25

Whenever this CPL module is loaded, the first
call to its exported CPlApplet function produces a
message box that asks “Did you want me?”, and
whose title shows the CPL module’s pathname.
That much is done so that we can see when the
CPL module gets loaded. What makes this CPL
module distinctively of the sort we want to under-
stand is that when we call to CPlApplet for the
CPL_INQUIRE message, the answer for the icon in-
dex is zero.

Install There are several ways to register a
CPL module for execution, but the easiest is done
through—–wait for it—–the registry. Save the CPL
module as test.cpl in some directory whose path,
for simplicity and definiteness, contains no spaces
and is not ridiculously long. Then create the follow-
ing registry value shown in Figure 9.

To test, open the Control Panel so that it shows
a list of items, not categories, and confirm that you
don’t just see an item named Test, but also see its
message box. Yes, our CPL module gets loaded and
executed just for browsing the Control Panel. In-
deed, it gets loaded and executed multiple times.
(Watch out for extra message boxes lurking behind
the Control Panel.) Though it’s not necessary for
our purposes, you might, for completeness, confirm
that the Test item does launch. When satisfied with
the CPL module in this configuration as a base state,
close any message boxes that remain open, close the
Control Panel, too, and then try a few quick demon-
strations.

By the way—–I say it as if it’s incidental, even
though I can’t stress it enough—two of these demon-
strations begin by varying the circumstances as even
a novice mischief-maker might. Each depends on a
little extra step or rearrangement that you might
stumble onto, especially if your experimental tech-
nique is good, but which is very much easier to add
if its relevance is predicted from theoretical analysis.

If you doubt me, don’t read on right away, but in-
stead take my cue about putting spaces in the path-

name and see how easily you come up with suitably
quirky behaviour. Of course, theoretical analysis
takes hours of intensive work, and often comes to
nothing. There’s a trade-off, but for investigating
possibly subtle interactions with complex software
the predictive power of theoretical analysis surely
pays off in the long run.

But enough of my pleas to the computer security
industry for investing more in studying Windows!
Let us get on with the demonstrations.

Default File Extension? First, remove the file
extension from the registry data. Open the Con-
trol Panel and see that the Test item no longer
shows. Close the Control Panel. Rename test.cpl
to test.dll. Open the Control panel and see that
there’s still no Test item. Evidently, neither .cpl
nor .dll is a default file extension for CPL mod-
ules. Close the Control Panel. Why did I have you
try this? Create path\test itself as any file you like,
even as a directory. Open the Control Panel. Oh,
now it executes test.dll!

Yes, if the pathname in the registry does not have
a file extension, the Control Panel will load and ex-
ecute a CPL module that has .dll appended, as if
.dll were a default file extension—–but only if the
extension-free name also exists as at least some sort
of a file-system object. Isn’t this weird?

Spaces For our second variation, start undo-
ing the first. Close the Control Panel, remove
the subdirectory, and rename the CPL module to
test.cpl. Then, instead of restoring the registry
data to “path\test.cpl” make it “path\test.cpl
rubbish.” Open the Control Panel. Of course, the
Test item does not show. Close the Control Panel
and make a copy of the CPL module as “test.cpl
rubbish.” Open the Control Panel. See first that
the copy named “test.cpl rubbish” gets loaded
and executed. This, of course, is just what we’d
hope. The quirk starts with the next message box.
It shows that test.cpl gets loaded and executed,
too!

Yes, if the registry data contains a space, the
CPL module as registered executes as expected but
then there’s a surprise execution of something else.
The Control Panel finds a new name by truncating
the registered filename—the whole of it, including
the path—at the first space. And, yes, if the result of
the truncation has no file extension, then .dll gets

25unzip pocorgtfo14.pdf CPL/testcpl.zip

41



appended. (Though, no, the extension-free name
doesn’t matter now.)

Please find another Zen-friendly moment for tak-
ing this in. This quirky Wonderland surprise execu-
tion surely counts as a parsing error of some sort. It
means that to fix a case of surprise execution that
Microsoft presented as a parsing error, Microsoft
trusted old code in which a parsing error could cause
surprise execution. So it goes.

Length Finally, play with lengthening the path-
name to something like the usual limit of MAX_PATH
characters. That’s 260, but remember that it in-
cludes a terminating null. Close the Control Panel.
Make a copy of test.cpl with some long name and
edit the registry data to match the copy that has
this long name. Open the Control Panel. Repeat
until bored. Perhaps start with the 259 characters
of

1 c : \ temp\ c p l t e s t \1123456789 abcdef2123456789
abcdef3123456789abcdef4123456789abcdef . . . f

3 123456789 abcde . cp l

and work your way down—–or start with

1 c : \ temp\ c p l t e s t \ t e s t . cp l 9 abcdef2123456789
abcdef3123456789abcdef4123456789abcdef . . . f

3 123456789 abcdef012

if you want to stay with the curious configura-
tion where one CPL module is registered but two get
executed. (My naming convention is that after the
16 characters of my chosen path, the filename part
has each character show its 0-based index into the
pathname, modulo 16, except that where the index
is a multiple of 16 the character shows how many
multiples. The ellipses each hide 160 characters.)
Either way, for any version of Windows from the last
decade, the Test item does not show, and the CPL
module does not get loaded and executed—until you
bring the pathname down to 250 characters, not in-
cluding the terminating null.

This limit is deliberate. Starting with Windows
XP and its support for Side-By-Side (SxS) assem-
blies, the Control Panel anticipates loading CPL
modules in activation contexts. There are vari-
ous ways that a CPL module can affect the choice
of activation context. For one, the Control Panel
looks for a file that has the same name as the CPL
module, but with “.manifest” appended. Though
this manifest need not exist, the Control Panel has,
since Windows XP SP2, rejected any CPL module
whose pathname is already too long for the mani-
fest’s name to fit the usual MAX_PATH limit. (The
early builds of Windows XP just append without
checking. That they got away with it is a classic
example of a buffer overflow that turns out to be
harmless.)

Key: HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Control Panel\CPLs
Value: anything, e.g., Test
Type: REG_SZ or REG_EXPAND_SZ
Data: path\test.cpl

Figure 9. CPL Module Registry Entry

42



The Exec Name

As we move toward the specifics of loading and call-
ing a CPL module to ask which icon to show, it’s as
well to observe that this lower-level code for load-
ing and calling CPL modules in general is not just
quirky in some of its behaviors, but also in how it
gets its inputs. Reasons for that go back to an-
cient times and persist, so that CPL modules can
be loaded and executed via the RUNDLL32.EXE pro-
gram, the lower-level code for loading and calling
CPL modules that receives its specification of a Con-
trol Panel item as text–—as if it were supplied on a
command line. For this purpose, the text appears
to be known in Microsoft’s source code as the item’s
exec name. It is composed as the module’s path-
name between double-quotes, then a comma, and
then the item’s display name.

Perhaps this comes from wanting to reuse as
much legacy code as possible. The loading and ex-
ecuting of a CPL module specifically to ask which
icon to show for one of that module’s Control Panel
items—even though this task is no longer ever done
on its own from any command line—is handled as a
special case with a slightly modified exec name: the
module’s pathname, a comma, a (signed) decimal
representation of the icon index, another comma,
and the item’s display name.26

The absence of double-quotes around the mod-
ule’s pathname in this modified exec name is much
of the reason for the quirky behaviour demonstrated
above when the pathname contains a space. It goes
further than that, however.

I ask you again to take another Wonderland Zen
moment of reflection. The GetUIObjectOf method
receives the module’s pathname, the item’s icon
index, and the item’s display name—among other
things—in a binary package. It parses them out of
the package and then into this modified exec name,
i.e., as text, which the deeper implementation will
have to parse. What could go wrong with that?

The immediate answer is that the modified exec
name is composed in a buffer that allows for 0x022A
characters, but, until Microsoft’s second fix, only
MAX_PATH characters are allowed for the copy that’s
kept for the object that gets created to represent
the Control Panel item for the purpose of provid-
ing an IExtractIcon interface. This mismatch of
allowances is ancient. Worse, even though Windows
Server 2003 (chronologically, but Windows XP SP2,

by the version numbers) had seen Microsoft intro-
duce the mostly welcome StringCb and StringCch
families of helper routines for programmers to work
with strings more securely, this particular copying
of a string was not converted to these functions un-
til Windows Vista—and even then the programmer
could blow away much of its point by not checking
it for failure.

If the CPL module’s pathname is just long
enough, the saved exec name gets truncated so that
it keeps the comma but loses at least some of the
icon index. When the GetIconLocation method
parses the (truncated) exec name, it sees the comma
and infers that an icon index is present. If enough
of the icon index is retained such that digits are
present, including after a negative sign, then the
only consequence is that the inferred icon index is
numerically wrong. If the CPL module’s pathname
is exactly the “right” length, meaning 257 or 258
characters (not including a terminating null), then
the icon index looks to be empty or to be just a
negative sign, and is interpreted as zero.27

It’s time for another of those Wonderland mo-
ments. To defeat a spoof that Microsoft misrep-
resented as a parsing error, Microsoft dealt with a
suspect zero by proceeding as if the zero had been
-1, but then an actual parsing error in the deeper
implementation could turn the -1 back to zero!

The practical trouble with this parsing error,
which is perhaps the reason it wasn’t noticed at the
time, is that it kicks in only if the CPL module’s
pathname is longer than the 250-character maxi-
mum that we demonstrated earlier. An item ID that
could trigger this parsing error isn’t ever going to be
created by the Control Panel. It can’t, for instance,
get fed to GetUIObjectOf from a shortcut file that
we created simply by a Ctrl-Shift drag. If we want
to demonstrate this parsing error without resorting
to a Windows version that’s so old that the Control
Panel doesn’t have the 250-character limit, the item
ID would need to be faked. We need a specially
crafted shortcut file after all.

Shortcut Crafting Making an uncrafted short-
cut file is straightforward if you’re already familiar
with programming the Windows shell. The shell
provides a creatable COM object for the job, with
interfaces whose methods allow for specifying what
the shortcut will be a shortcut to, and for saving

26At this point, you might feel exactly how Alice felt in Wonderland. The Cheshire Cat would approve. —PML
27And now we don’t even need to ask what the Caterpillar was smoking. —PML

43



the shortcut as a .LNK file. The target, being an
arbitrary item in the shell namespace, is specified
as a sequence of shell item identifiers that generalise
the pathname of a file-system object. To represent
a Control Panel item, we just need to start with
a shell item identifier for the Control Panel itself,
and append the item ID such as we’ve been talk-
ing about all along. Where crafting comes into it is
that we’ve donned hacker hats, so that the item ID
we append for the Control Panel item is confected.
But enough about the mechanism! You can read the
source code.28

To build, use the Windows Driver Kit (WDK)
for Windows 7. The 32-bit binary suffices for 64-
bit Windows. You may as well build for the oldest
supported version, which is Windows XP, but the
program does nothing that shouldn’t work even for
Windows 95.

To test, open a Command Prompt in some
directory, e.g., path, where you have a copy of
test.cpl from the earlier demonstrations of gen-
eral behaviour. Again, for simplicity and definite-
ness, start with a path that contains no spaces and
is not ridiculously long. To craft a shortcut to what
might be a Control Panel item named Test that’s
hosted by this test.cpl, run the command

1 l i n k c p l /module : path\ t e s t . cp l / i con : 0 /name :
Test t e s t . lnk

With the Windows Explorer, browse to this same
directory. If running on an earlier version than Win-
dows 7 SP1 without Microsoft’s first fix, you should
see the CPL module’s message box even without
having registered test.cpl for execution. For any
later Windows version or if the first fix is applied,
browsing the folder executes the CPL module only
if it’s been registered.

For full confidence in this base state, re-craft the
shortcut but specify any number other than zero
for the icon index. Confirm that browsing does not
cause any loading and executing unless the short-
cut records that the CPL module is of the sort that
always wants to be asked which icon to show.

Very Long Names The point to crafting the
shortcut is that we can easily use it to deliver to
GetUIObjectOf an item ID that we specify in detail.
Do note, however, that the shortcut is only conve-
nient, not necessary. We could instead have a pro-

gram confect the item ID, feed it to GetUIObjectOf
by calling directly, and then call GetIconLocation
and report the result.

Either way, the details that we want to spec-
ify are the module’s pathname and the icon index.
We’ll provide pathnames that are longer than the
Control Panel accepts when enumerating Control
Panel items, but which nonetheless result in the ex-
pected loading and execution when the icon index is
zero. Then, we’ll demonstrate that when the path-
name is just the right length, as predicted above,
the loading and execution happen even when the
icon index is non-zero. The assumption throughout
is that the Windows you try this on does not have
Microsoft’s second fix.

We know anyway not to bother with the very
longest possible name (except as a control case),
since the truncation loses the comma from the exec
name such that it will seem to have no icon index
at all. Instead make a copy of test.cpl that has a
258-character name such as

1 c : \ temp\ c p l t e s t \1123456789 abcdef2123456789
abcdef3123456789abcdef4123456789abcdef . . . f

3 123456789 abcd . cp l

Craft a /icon:0 shortcut that has this same long
name for the module’s pathname. If testing on a
Windows that has the first fix, also edit this long
name into the registry. Browse the directory that
contains the shortcut—and perhaps be a little dis-
appointed that the CPL module does not get loaded
and executed.

But now remember that delicious quirk in which
a space in the module’s pathname, within the 250-
character limit, induces the loading and executing of
two CPL modules, first as given and then as trun-
cated at the first space. Copy test.cpl as

1 c : \ temp\ c p l t e s t \ t e s t . cp l 9 abcdef2123456789
abcdef3123456789abcdef4123456789abcdef . . . f

3 123456789 abcdef01

Re-craft the shortcut by giving this name to the
/module switch in quotes. Update the registration
if appropriate. Still, the copy with the long name
doesn’t get loaded and executed—–but, as you might
have suspected, the copy we’ve left as test.cpl
does! Indeed, because the copy with the long name

28unzip pocorgtfo14.pdf CPL/linkcplsrc.zip CPL/linkscplbin.zip

44



doesn’t have to execute for this purpose, and be-
cause its Control Panel item won’t show in the Con-
trol Panel, it doesn’t need to be a copy. Even an
empty file suffices!

Edge Cases By repeating with ever shorter path-
names, but also trying non-zero values for the icon
index, we can now demonstrate that CVE-2010-2568
has its own edge cases, as predicted from theoretical
analysis. The general case has zero for the icon in-
dex. The edge cases are that if the pathname is very
long but contains a space in the first 250 characters,
then the icon index need not be zero. The following
table summarises the behaviour on a Windows that
does not have CVE-2010-2568 fixed.

The length does not include a terminating null.
The icon index is assumed to be syntactically valid:
negative means 0xFF000000 to 0xFFFFFFFF in-
clusive; positive means 0x00000001 to 0x00FFFFFF
inclusive. Execution is of the CPL module that is
named by truncating the very long pathname at its
first space. (Also, if this has no file extension, ap-
pending .dll as a default.)

Length Icon Index Exec? Remarks
259 Any No

258 Zero Yes
Non-Zero Yes Edge Case

257
Zero Yes
Negative Yes Edge Case
Positive No

Less Zero Yes If Registered29

Non-Zero No

CVE-2015-0096

The point to Microsoft’s first fix of CVE-2010-2568
was to avoid execution unless the pathname in the
item ID was that of a registered CPL module. But
the decision to test the registration only if the icon
index in the item ID was zero meant that the two
edge cases were completely unaffected. Worse, when
the icon index in the item ID was zero, changing the
zero to −1 would turn the suspect item ID not into
something harmless but into an edge case. Either
way, the pathnames had to be so long that the edge
cases turned into surprise execution only because of

a quirk even deeper into the code such that the CPL
module executes needed not to be the one specified.

CVE-2015-0096 appeared to be the first public
recognition of this, not that you would ever guess it
from the formal description or from anything that I
have yet found that Microsoft has published about
it. From Dave Weinstein’s explanation, it appears
that the incompleteness of the first fix was found by
following the mind of an attacker frustrated by the
first fix and seeking a way around it.

The second fix plausibly does end the exploitabil-
ity, at least for the purpose of using shortcuts to
Control Panel items as a way to spread a worm.
The edge cases exist only because of a parsing error
caused by a buffer overflow. The second fix increases
the size of the destination buffer so that it does not
overflow when receiving its copy of the exec name.
For good measure, it also tracks the icon index sep-
arately, so that it anyway does not get parsed from
that copy.

But the CPL module’s filename continues to be
parsed from that copy. If it contains a space, then
the Control Panel still can execute two CPL mod-
ules, one as given and one whose name is obtained
by truncating at the first space. Only because of this
were the edge cases ever exploitable. Yet even as late
as the original release of Windows 10—which is as
far as I have yet caught up to for my studies—it re-
mains true that if you can register “path\test.cpl
rubbish” or “path\space test.cpl” for execution
as a CPL module, then you can get path\test.cpl
or path\space.dll loaded and executed by sur-
prise. Is anyone actually happy about that?

Many ways seem to lead into this Wonderland,
but is there a way out?

29Since the first fix, this executes only if registered.

45


