
14:09 Postscript that shows its own MD5
by Gregor “Greg” Kopf

Introduction

Playing with file formats to produce unexpected re-
sults has been a hacker past-time for quite a while.
These odd results often include self-referencing code
or data structures, such as zip bombs, self-hosting
compilers, or programs that print their own source
code–called quines. Quines are often posed as brain
teasers for people learning new programming lan-
guages.

In the light of recent attacks on the crypto-
graphic hash functions MD5 and SHA-1, it is natural
to ask a related question: Is there a program that
prints out its own MD5 or SHA-1 hash? A similar
question has been posed on Twitter by Melissa.30

Melissa
@0xabad1dea

Trick I want to see: a document in a
conventional format (such as PDF) which
mentions its own MD5 or SHA1 hash in the text
and is right
8:55 AM 9 Aug 2013

The original tweet is from 2013. It appears that
since then nobody provided a convincing solution
because in March 2017 Ange Albertini declared that
the challenge was still open. This brought the prob-
lem to my attention—the perfect little Sunday morn-
ing challenge.

A Bit of Context

Melissa’s challenge asks whether there is a document
in a conventional format that prints its own MD5
or SHA-1 hash. At the first glance this question
might appear to be a bit stronger than the question
for a program that prints its own MD5 or SHA-1
hash. However, it is well known that several doc-
ument formats actually allow for Turing-complete
computations. Proving the Turing-completeness of
exotic programming languages (such as Postscript
files or the x86 mov instruction) is in fact another
area that appears to attract the attention of sev-
eral hackers. Considering that Postscript is Turing-

complete, could build a program that prints out its
own MD5 or SHA-1 hash?

The problem of building such a program can be
viewed from (at least) two different angles. One
could view this hypothetical program as a modified
quine: instead of printing its own source code, the
program prints the hash of its own source code. If
you are familiar with how quines can be generated,
you can easily see that the following program is in-
deed a solution to the question:

1 a=[’ from hash l i b import ∗ ’ , ’ n=chr (10) ’ ,
’ p r i n t md5(" a="+s t r (a)

3 +n+n . j o i n (a)+n) . hexd ige s t () ’]
from hash l i b import ∗

5 n=chr (10)
print md5("a="+str (a)+n+n . j o i n (a)+n) .

hexd ige s t ()

While this method can likely be applied to
Postscript documents as well, I did not like it very
much. Computing the MD5 hash of the program at
runtime felt like cheating.

The desired file is a modified fixpoint of the used
hash function, in the same sense that this program
is a modified quine. A plain fixpoint would be a
value x where x = h(x). Here, h denotes the hash
function. This problem has not yet, so far as I know,
been solved constructively. (Statistics reveals that
such fixpoints exist with a certain probability, how-
ever.)

30https://twitter.com/0xabad1dea/status/365863999520251906

46

Fortunately, we are looking for something a lit-
tle easier. We are looking for an x that satis-
fies x = encode(h(x)) for some encoding function
encode(). I decided to chase this idea: constructing
such a value x, using MD5 as hash function h() and
a function that builds a Postscript file as encode().

The Basics

When Wang et al., broke MD5 in 2005, there was
considerable interest in what one could do with a
chosen-prefix MD5 collision attack. Sotirov et al.,
have demonstrated in 2008 that one could exploit
Wang’s work in order to build a rogue X.509 CA
certificate—the final nail in MD5’s coffin.

But there is another—even simpler—trick one can
perform given the ability to create colliding MD5 in-
puts. One can create two executables with the same
MD5 hash but with different semantics. The general
idea is to generate two colliding MD5 inputs a and
b. We can then write a program like the following.

print ’Hi , my message i s : ’
2 i f a == b :

print "He l lo World"
4 else :

print "Oh noez , I ’ ve been hacked ! ! 1 "

And another program like this:

1 print ’Hi , my message i s : ’
i f b == b :

3 print "He l lo World"
else :

5 print "Oh noez , I ’ ve been hacked ! ! 1 "

Both programs will have the same MD5 hash; in
the second program, we only replaced a with b.

But why does this work? There are two things
one needs to pay attention to. Firstly, we have to
understand that while the inputs a and b might col-
lide under MD5, the strings "foo"+a and "foo"+b
may not necessarily collide. Fortunately, Wang’s at-
tack allows us to rectify this. The attack does not
only generate colliding MD5 inputs, it also allows to
generate collisions that start with an arbitrary com-
mon prefix. (This is what the term chosen-prefix
is about.) This is precisely what is required, and
we can now generate MD5 inputs that collide under
MD5 and share the following prefix.

1 print ’Hi , my message i s : ’
i f

Secondly, we also need to keep in mind that in
our programs we have appended some content af-
ter the colliding data. Fortunately, as MD5 is a
Merkle–Damg̊ard hash, given two colliding inputs a
and b, the hashes MD5(a+ x) and MD5(b+ x) will
also collide for all strings x. This property allows
us to append arbitrary content after the colliding
blocks.

47

Constructing the Target

Using the above technique allows us to encode a sin-
gle bit of information into a program without chang-
ing the program’s MD5 hash. Can we also encode
more than one bit into such a program? Unsurpris-
ingly, we can!

We start the same way that we have already seen,
by generating two MD5 collisions a and b that share
the following prefix.

print ’Hey , I can encode mu l t ip l e b i t s ! ’
2 r e s u l t = []

i f

This allows us to build two colliding programs
that look like the following. (Exchange a with b to
get the second program.)

1 print ’Hey , I can encode mu l t ip l e b i t s ! ’
r e s u l t = []

3 i f a == b :
r e s u l t . append (0)

5 else :
r e s u l t . append (1)

And from here, we simply iterate the process,
computing two colliding MD5 inputs c and d that
share this prefix.

print ’Hey , I can encode mu l t ip l e b i t s ! ’
2 r e s u l t = []

i f a == b :
4 r e s u l t . append (0)

else :
6 r e s u l t . append (1)

8 i f

This allows us to build a program with two bits
that might be adjusted without changing the hash.

print ’Hey , I can encode mu l t ip l e b i t s ! ’
2 r e s u l t = []

i f a == b :
4 r e s u l t . append (0)

else :
6 r e s u l t . append (1)

8 i f c == d :
r e s u l t . append (0)

10 else :
r e s u l t . append (1)

We can replace a with b, and we can replace c
with d. In total, this yields four different programs
with the same MD5 hash. If we add a statement like
print result at the end of each program, we have
four programs that output four different bit-strings
but share a common MD5 hash!

How does this enable us to generate a program
that outputs its own MD5 hash? We first generate a
program that we can encode 128 bits into. Knowing
that the MD5 hash of this program will not change
independently from what bits we encode into the
program. Therefore, we simply encode the 128 out-
put bits of MD5 into the program without altering
its hash value. In other words, the program prints
the 128 output bits of its own hash value.

Application to Postscript
This technique can directly be applied to Postscript
documents as Postscript is a simple, stack-based lan-
guage. Please consider the following code snippet.

1 (a)
(b)

3 eq
{

5 1
}{

7 0
} i f e l s e

48

While this may look a bit cryptic, the program
is in fact very simple. It compares the string literal
“a” to the string literal “b”, and if both strings are
equal, it pushes the numeric value 1 to the stack.
Otherwise, it pushes a 0.

This examples highlights the manner in which we
can build a Postscript file that we encode 128 bits
of information into without changing the file’s MD5
hash. The program will push these desired bits to
the stack. We can extend this program with a rou-
tine that pops 128 bits off the stack and encodes
them in hex. To demonstrate the feasibility of this
idea, we can inspect how one nibble of data would
be handled by this routine.
0 eq

2 {
0 eq

4 {
0 eq

6 {
0 eq

8 {
(0)

10 }{
(1)

12 } i f e l s e
}{

14 0 eq
{

16 (2)
}{

18 (3)
} i f e l s e

20 } i f e l s e
}{

22 . . .
show

This code excerpt will pop four bits off the stack.
If all bits are zero, the string literal “0” will be
pushed onto the stack. If the lowest bit is a one and
all other bits are zero, the string literal “1” will be
pushed, etc. The show statement at the end causes
the nibble to be popped off the stack and written to
the current page.

An example of such a Postscript document is
included in the feelies.31 If you want to build
such a document on your own, you could use the
python-md5-collision library32 to build MD5 col-
lisions with chosen prefixes.
$ md5sum poc.ps
768d9d89d2bc825a319eb8962ad30580 poc.ps

Closing Remarks
We have seen two approaches for generating pro-
grams that print out their own hash values. The
quine approach does not require a collision in the
used hash function, however this comes at the cost
of language complexity. In order to build such a
modified quine, the chosen language must allow for
self-referencing code as well as computing the se-
lected hash function.

The fixpoint approach is computationally more
expensive to implement, as several hash collisions
must be computed. However, these hash calcula-
tions can be performed in any programming envi-
ronment. With this approach, the target language
can be comparably simple: it just needs condition-
als, string comparison and some method to output
the result.

31unzip pocorgtfo14.pdf md5.ps
32git clone https://github.com/thereal1024/python-md5-collision

49

