
14:11 This GIF shows its own MD5!
by Kristoffer “spq” Janke

The recent successful attack on the SHA-1 hash
algorithm38 has led to a resurgence of interest in
hash collisions and their consequences.

A particularly well-broken hash algorithm is
MD5, which allows for a myriad of ways to play with
it. Here, we demonstrate how to assemble an ani-
mated GIF image that displays its own MD5 hash.39
$ md5sum md5.gif
f5ca4f935d44b85c431a8bf788c0eaca md5.gif

The GIF89a file format

A GIF89a file consists of concatenated blocks. A
parser can read these blocks from the file in a serial
fashion without needing to keep state.

A GIF file is made up of three parts.

Header Signature, Version and basic info like the
Canvas Size and (optional) Color Map.

Body Image, Comment, Text and Extension
blocks, in any order.

Trailer The byte 0x3b.

Of particular interest to us is the format of
comment blocks. They begin with the two bytes
0x21 0xfe, followed by any number of comment
chunks. Every chunk consists of one length byte
and <length> bytes of arbitrary data. The end of
the comment block is marked with a chunk having
zero length.

This means that, by controlling the length
bytes, we can make the parser skip any number of
non-displayable bytes in comment chunks. These
skipped bytes, of course, still affect the file’s MD5
hash. So two GIF files can show different content,
while their skipped bytes are manipulated to make

them have the same MD5 hash values. With some
careful stitching, here we’ll build just such files—
MD5 GIF collision pairs.

21 FE xx 00
extension introducer

comment label
(comment extension)

length

data

block terminator

MD5 collisions

For MD5, appending the same data to both collid-
ing files will still produce the same hash value. The
same is true for appending another collision pair. So
we can have four different files all having the same
MD5 hash with this method.

Or, instead of producing multiple files, we can
produce just one file but later change one of the col-
lisions in the produced file. This is the technique
we’ll use here.

Fastcoll is a MD5 collision generator, created
by Marc Stevens.40 From any input file, it gener-
ates two different output files, both having the same
MD5 hash.

These output files consist of the 64-byte aligned,
zero-padded input file, followed by 128 bytes of col-
lision data generated by Fastcoll. Every byte from
the generated collision data of both files appears to
be random. Comparing these last 128 bytes in both
output files, we can see that only nine bytes differ.
These bytes can be found at indices 19, 45, 46, 59,
83, 109, 110 and 123. While the bytes at 46 and
110 do not show any pattern, the other bytes differ
only and exactly in their most significant bit. This
can be used to construct GIF comment chunks of
different sizes.

Showing two different images

The GIF comment block format and the collisions
generated by Fastcoll allow for the creation of two
GIF files that have the same MD5 hash, but are
interpreted differently.

By constructing the GIF such that one of the
differing bytes in the collision data is interpreted as
the length of a comment chunk, the interpretation

38unzip pocorgtfo14.pdf shattered.pdf
39unzip pocorgtfo14.pdf md5.gif
40unzip pocorgtfo14.pdf fastcoll-v1.0.0.5-1.zip

53

00: .G .I .F .8 .9 .a 03 00 01 00 A1 00 00 FF 00 00

10: 00 FF 00 00 00 FF FF FF FF 2C 00 00 00 00 03 00

20: 01 00 00 02 02 44 54 00 3B

Header
Fields Values

Image
descriptor

 0 1 2 3 4 5 6 7 8 9 A B C D E F

minimum bits 2

per LZW code

block size 2

block data 0101 010 001 000 100

 end #2 #1 #0 start

block end 0

Trailer

separator 2C

width height 3 1

signature "GIF"

version "89a"

width 3

height 1

flags A1 (01 010 0 001)

 GCT true

 bpp 2+1

 GCT size 2^(1+1)

Global Color Table

 FF 00 00 00 FF 00

 00 00 FF FF FF FF

trailer 3B

Local screen
descriptor

of the remaining file will be different across the two
colliding files.

Here, we chose the last differing byte at position
123. Due to the most significant bit having been
flipped between the two collisions, the byte’s value
differs by 128. In order to align this byte to the
Length byte of comment chunk #2, the previous
comment chunk #1 needs to contain the first 123
bytes of the collision data. As the collision is 64-
byte aligned, the comment chunk #1 should con-
tain some padding bytes. We’ll refer to these two
colliding blocks as (X) and (Y).

One limitation arises when the value of the byte
controlling the length of #2 is smaller than 4. The
reason for this limitation is that the comment chunk
#2 needs to contain at least the remaining collision
data (four bytes) in both files. When this require-
ment is not met, a new collision needs to be gener-
ated.

We now have two files with different-sized com-
ment chunks, but the same MD5 hash. We can use
this in one of the collisions by ending the comment
block and starting an image block. The image block
is followed by another comment block, which is sized
such that it skips the remaining bytes of the dif-
ference to 128 and both collisions are aligned from
there.

54

The diagram to the right shows the contents of
the GIF file, which is interpreted differently depend-
ing upon which of the colliding blocks is found at
Point F.

The file with the collision block X will have the
body blocks B, I and N interpreted, while the file
with Y will only have B and N interpreted, with
I skipped over as part of a comment. In order to
yield two GIFs with completely different images, one
could use the blocks B and N for the two images and
one or more dummy image with very high animation
delay in block I. The result is a pair of animated GIF
files, both having the desired images as first and last
frames, but only the variant with X would have a
delay of multiple minutes between the two frames.

$ md5sum md5_avp_loop.gif
8895af74c2b5478c547cfb85f7475f0b md5_avp_loop.gif

header
common image data
comment block start
 comment chunk #1
 64 bytes align.
 collision block
 alignment
 comment chunk end
file 1 image data
comment block start
 comment chunk
 128 bytes align.
 comment chunk end
common image data
trailer

File 1
(X) File 2 (Y)

declares comment chunk #2
(length = byte 123)
highest bit flipped

12
8

by
te

s

(A)
(B)
(C)
(D)
(E)
(F)
(G)
(H)
(I)
(J)
(K)
(L)
(M)
(N)
(O)

Showing the MD5 hash
For my PoC, I decided to use 7-segment optics. For
displaying the MD5 hash, I need 32 digits, each hav-
ing seven segments. The background image with all
224 (32 × 7) segments visible is put into block (B),
block (N) can be left empty. We repeat the blocks
(D). . . (L) for every single segment and put an im-
age masking that segment into block (I). Generating
all 224 collisions required thirty minutes on my PC.
When the file is completely generated, we calculate
its MD5 hash. This will be the final hash, which the
GIF file itself should show.

Every masking image will only be shown when
the corresponding collision block is (X), otherwise a
parser will only see comment chunks. We can switch
between collision blocks (X) and (Y) for every image
masking one of the segments. This switch will not
change the MD5 hash value of the file but it allows
us to control what is displayed. Once we have the fi-
nal hash value, we choose the right collision for each
segment and replace it in the file.41

That’s it!42 :)

41unzip pocorgtfo14.pdf md5_avp_loop.gif
42Between this article’s writing and publication, a friendly neighbor Rogdham created his own PoC with detailed write-up and

script, which are available at http://www.rogdham.net/2017/03/12/gif-md5-hashquine.en and in this issue’s ZIP contents.

55

