
15:02 Pier Solar and the Great Reverser
by Brandon L. Wilson

Hello everyone!
I’m here to talk about dumping the ROM from

one of the most secure Sega Genesis game ever cre-
ated.

This is a story about the unusual, or even crazy
techniques used in reverse engineering a strange tar-
get. It demonstrates that if you want to do some-
thing, you don’t have to be the best or the most
qualified person to do it—you should do what you
know how to do, whatever that is, and keep at it
until it works, and eventually it will pay off.

First, a little background on the environment
we’re talking about here. For those who don’t know,
the Sega Genesis is a cartridge-based, 16-bit game
console made by Sega and released in the US in
1989. In Europe and Japan, it was known as the
Sega Mega Drive.

As you may or may not know, there were three
different versions of the Genesis. The Model 1 Gen-
esis is on the left of Figure 1. Some versions of this
model have an extension port, which is actually just
a third controller port. It was originally intended
for a modem add-on, which was later scrapped.

Some versions of the Model 1 (and all of the
Model 2 devices) started to include a cartridge pro-
tection mechanism called the TMSS, or TradeMark
Security System. Basically this was just some extra
logic to lock up some of the internal Genesis hard-
ware if the word “SEGA” didn’t appear at a certain
location in the ROM and if the ASCII bytes repre-
senting “S”, “E”, “G”, “A” weren’t written to a certain
hardware register. Theoretically only people with
official Sega documentation would know to put this
code in their games, thereby preventing unlicensed
games, but that of course didn’t last long

And then there’s the Model 3 of my childhood
living room, which generally sucked. It doesn’t sup-
port the Sega CD, Game Genie, or any other inter-
esting accessories.

There was also a not-as-well-known CD add-on
for the Genesis called the Sega CD, or the Mega
CD in Europe and Japan, released in 1992. It al-
lowed for slightly-nicer-looking CD-based games as
an attempt to extend the Genesis’ life, but like many
other attempts to do so, that didn’t really work out.

Sega CD has its own BIOS and Motorola 68k
processor, which gets executed if you don’t have a
cartridge in the main slot on top. That way you
can still play all your old Genesis games, but if you
didn’t have one of those games inserted, it would
boot off the Sega CD BIOS and then whatever CD
you inserted.

There were two versions of it, the first one was
shaped to fit the Model 1 Genesis, and while the
second was modeled for the shape of the Model 2
Genesis, although either would work on the other
Genesis. The Model 1 is rare and prone to failure, so
it’s much more difficult to find. I have the Model 2.

So finally we get to the game itself, a game called
Pier Solar. It was released in 2010 and is a “home-
brew” game, which means it was programmed by a
bunch of fans of the Genesis, not in any way licensed
by Sega. Rather than just playing it in an emula-
tor, they took the time to produce an actual plastic
cartridge just like real games, make the plastic case
for it, nice printed manual, everything just as if it

5

were a real game.
It’s unique in that it is the only game ever to

use the Sega CD add-on for an enhanced soundtrack
while you’re playing the game, and it has what they
refer to as a “high-density” cartridge, which means
it has an 8MB ROM, larger than any Genesis game
ever made.

It’s also unique in that its ROM had never been
successfully dumped by anyone, preventing folks
from playing it on an emulator. The lack of a ROM
dump was not from lack of trying, however.

Taking apart the cartridge, you can see that
they’re very, very protective of something. They
put some sort of black epoxy over the most interest-
ing parts of the board, to prevent analysis or direct
dumping of what is almost certainly flash memory.

Since they want to protect this, it’s our obliga-
tion to try and understand what it is and, if neces-
sary, defeat it. I can’t help it; I see something that
someone put a lot of effort into protecting, and I
just have to un-do it.

I have no idea how to get that crud off, and I
have to assume that since they put it on there, it’s
not easy to remove. We have to keep in mind, this
game and protection were created by people with a
long history of disassembling Genesis ROMs, writ-
ing Genesis emulators, and bypassing older forms of
copy protection that were used on clones and pirate
cartridges. They know what people are likely to try
in order to dump it and what would keep it secure
for a long time.

So we’re going to have to get creative to dump
this ROM.

There are two methods of dumping Sega Genesis
ROMs. The first would be to use a device dedicated
to that purpose, such as the Retrode. Essentially
it pretends to be a Sega Genesis and retrieves each
byte of the ROM in order until it has it all.

Unfortunately, when other people applied this to
the 8MB Pier Solar, they reported that it just pro-
duces the same 32KB over and over again. That’s
obviously not right, so they must have some hard-
ware under that black crud that ensures it’s actually
running in a Sega Genesis.

So, we turn to the other main method of dump-
ing Genesis ROMs, which involves running a pro-
gram on the Genesis itself to read the inserted car-
tridge’s data and output it through one of the con-
troller ports, which as I mentioned before is actually
just a serial port. The people with the ability to do
this also reported the same 32KB mirrored over and
over again, so that doesn’t work either.

Where’s the rest of the ROM data? Well, let’s
take a step back and think about how this works.
When we do a little Googling, we find that “large”
ROMs are not a new thing on the Genesis. Plenty
of games would resort to tricks to access more data
than the Genesis could normally.

Figure 1. From left to right, Sega Genesis models 1, 2, and 3.

6

The system only maps four megabytes of car-
tridge memory, probably because Sega figured, “-
Four megs is enough ROM for anybody!” So it’s
impossible for it to directly reference memory be-
yond this region. However some games, such as Su-
per Street Fighter 2, are actually larger than that.
That game in particular is five megabytes.

They get access to the rest of the ROM by using
a really old trick called bank switching. Since they
know they can only address 4MB, they just change
which 4MB is visible at any one time, using external
hardware in the cartridge. That external hardware
is called a memory mapper, because it “maps” vari-
ous sections of the ROM into the addressable area.
It’s a poor man’s MMU.

So the game itself can communicate with the car-
tridge and tell the mapper “Hey, I need access to part
of that last megabyte. Put it at address 0x300000
for me.” When you access the data at 0x300000,
you’re really accessing the data at, say, 0x400000,
which would normally be just outside of the address-
able range.

0x000000

0x300000

0x380000

0x3fffff

All this is documented online, of course. I found
it by Googling about Genesis homebrew and pro-
gramming your own games.

So where does this memory mapper live? It’s in
the game cartridge itself. Since the game runs from
the Genesis CPU, it needs a way to communicate
with the cartridge to tell it what memory to map
and where.

All Genesis I/O is memory-mapped, meaning
that when you read from or write to a specific mem-
ory address, something happens externally. When
you write to addresses 0xA130F3 through 0xA130FF,
the cartridge hardware can detect that and take
some kind of action. So for Super Street Fighter
2, those addresses are tied to the memory map-
per hardware, which swaps in blocks of memory as
needed by the game.

Pier Solar does the same thing, right? Not ex-
actly; loading up the first 32KB in IDA Pro reveals
no reads or writes here, nor to anywhere else in the
0xA130xx range for that matter. So now what?

Well, and this is something important that we
have to keep in mind, if the game’s code can access
all the ROM data, then so can our code. Right? If
they can do it, we can do it.

– — — – — — — — – — –
So the question becomes, how do we run code on

a Sega Genesis? The same way others tried dump-
ing the ROM—through what’s called the Sega CD
transfer cable. This is an easy-to-make cable linking
a PC’s parallel port with one of the Genesis’ con-
troller ports, which as I said before is just a serial
port. There are no resistors, capacitors, or anything
like that. It’s literally just the parallel port connec-
tor, a cut-up controller cable, and the wire between
them. The cable pinout and related software are
publicly available online.1

As I mentioned before, while the Sega CD is at-
tached, the Genesis boots from the top cartridge
slot only if a game is inserted. Otherwise, it uses
the BIOS to boot from the CD.

Since they weren’t too concerned with CD piracy
way back in 1992, there is no protection at all
against simply burning a CD and booting it. We
burn a CD with a publicly-available ISO of a Sega
CD program that waits to receive a payload of code
to execute from a PC via the transfer cable. That
gives us a way of writing code on a PC, transferring
it to a Sega Genesis + Sega CD, running it, and
communicating back and forth with a PC. We now

1unzip pocorgtfo15.pdf comcable11.zip

7

have ourselves a framework for dumping the ROM.
Great, we found some documentation online

about how to send code to a Genesis and execute
it, now what?

Well, let’s start with trying to understand what
code for this thing would even look like. Wikipedia
tells us that it has two processors. The main pro-
cessor is a Motorola 68000 CPU running at 7.6MHz,
and which can directly access the other CPU’s
RAM.

The second CPU is a Zilog Z80 running at 4MHz,
whose sole purpose is to drive the Yamaha YM2612
FM sound chip. The Z80 has its own RAM, which
can be reset or controlled by the main Motorola
68000. It also has the ability to access cartridge
ROM—so typically a game would play sound by
transferring over to the Z80’s RAM a small program
that reads sound data from the cartridge and dumps
it to the Yamaha sound chip. So when the game
wanted to play a sound, the Motorola 68k would re-
set the Z80 CPU, which would start executing the
Z80 program and playing the sound.

So anyway, combined that’s 72KB of RAM:
64KB for the 68k and 8KB for the Z80.

Memory MAP
0X000000

0X400000

0Xa00000

0Xa10000

0Xc00000

0Xff0000

0Xffffff

Cartridge
ROM/RAM

reserved

z80 addressing
space

I/O

reserved

68000 RAM

0X0000

0X2000

0X4000

0X8000

0X10000

sound RAM

reserved

reserved

68000
memory bank

0Xa10002-0Xa10019
Controers

Documentation also tells us the memory map of
the Genesis. The first part we’ve already covered,
that we can access up to 0x400000, or 4MB, of the
cartridge memory. The next useful area starts at
0xA00000, which is where you would read from or
write to the Z80’s RAM.

After that is the most important area, starting
at 0xA10000, which is where all the Genesis hard-
ware is controlled. Here we find the registers for
manipulating the two controller ports, and the area
I mentioned earlier about communicating directly
with the hardware in the cartridge.

We also have 64KB of Motorola 68k RAM, start-
ing at address 0xFF0000. This should give you an
idea of what code would look like, essentially read-
ing from and writing to a series of memory mapped
I/O registers.

Reports online are that the standard Sega CD
transfer cable ROM dumping method doesn’t work,
but since we have the source code to it, let’s go ahead
and try it ourselves. To do that, I needed an older
Genesis and Sega CD. I went to a flea market and
picked up a Model 1 Sega Genesis and Model 2 Sega
CD for a few dollars, then soldered together a trans-
fer cable.

We now have the Sega Genesis attached to the
Sega CD and our boot CD inserted, we then cover
up the “cartridge detect” pin with tape, so that it
won’t detect an inserted cartridge. It will boot to
the Sega CD.

As the system turns on, the Sega CD and then
our burned boot CD starts up. Then the ROM
dumping program is transferred over from the PC
and executed on the Genesis.

The dump is transferred back to the PC via the
transfer cable. We take a look at it in a hex editor,
but the infernal thing is still mirrored.

Why is this happening? Well, we’re reading the
data off the cartridge using the Genesis CPU, the
same way the game runs, so maybe the cartridge
hardware requires a certain series of instructions to
execute first? I mean, a certain set of values might
need to be written to a certain address, or a certain
address might need to be read.

If that’s the case, maybe we should let the game
boot as much as possible before we try the dump.
But, if the game has booted, we’re going to need to
steal control away from it, which means we need to
change how it runs.

8

Enter the Game Genie, which you might remem-
ber from when you were a kid. You’d plug your
game into the cartridge slot on top of the Game Ge-
nie, then put that in your Genesis, turn it on, flip
through a code book and enter your cheat codes,
then hit START and cheat to your heart’s content.

As it turns out, this thing is actually very useful.
What it really does is patch the game by intercepting
attempts to read cartridge ROM, changing them be-
fore they make it to the console for execution. The
codes are actually address/value pairs. For exam-
ple, if there’s a check in a game to jump to a “you’re
dead” subroutine when your health is at zero, you
could simply NOP out that Motorola 68k assembly
instruction. It will never take that jump, and your
character will never die.

Those of you who grow up with this thing might
remember that some games had a “master” code that
was required before any other codes. That code
was for defeating the ROM checksum check that the
game does to make sure it hasn’t been tampered
with. So once you entered the master code, you
could make all the changes you wanted.

Since the code format is documented,2 we can
easily make a Game Genie code that will change
the value at a certain address to whatever we spec-
ify. We can make minor changes to the game’s code
while it runs.

Due to the way the Motorola 68k works, we can
only change one 16-bit word at a time, never just a
single byte. No big deal, but keep it in mind because
it limits the changes that we can make.

Well, that’s nice in theory, but can it really work
with this game? First we fire up the game with the

Game Genie plugged in, but don’t enter any codes,
just to see if the cartridge works while it’s attached.

Yes, it does, so next we fire up the game, again
with the Game Genie plugged in, but this time we
enter a code that, say, locks up hard. Now, that’s
not the best test in the world, since the code could
be doing something we don’t understand, but if the
game suddenly won’t boot, we know at least we’ve
made an impact.

Now, according to online documentation, the for-
mat of a Genesis ROM begins with a 256-byte inter-
rupt vector table of the Motorola 68k,followed by a
256-byte area holding all sorts of information about
the ROM, such as the name of the game, the author,
the ROM checksum, etc. Then finally the game’s
machine code begins at address 0x0200.

If we make a couple of Game Genie codes that
place the Motorola 68k instruction “jmp 0x0200” at
0x200, the game will begin with an infinite loop. I
tried it, and that’s exactly what happened. We can
lock the game up, and that’s a pretty strong indica-
tion that this technique might work.

Getting back to our theory: if the game needs
to execute a special set of instructions to make the
32KB mirroring stop, we need to let it run and then
take back control and dump the ROM. How do we
know when and where to do that? We fire up a
disassembler and take a look.

1 0x0ec6 2079000015de movea . l 0x15de . l , a0
0 x0ecc 317 c0001000a move .w 0x1 , 0xa (a0)

3 0x0ed2 588 f addq . l 0x4 , a7
0x0ed4 600 c bra . b 0xee2

5 0x0ed6 2079000015de movea . l 0x15de . l , a0
0x0edc 317 c0001000a move .w 0x1 , 0xa (a0)

7 0x0ee2 0839000000 c0 bt s t . b 0x0 , 0xc00005 . l
0 x0eea 670 e beq . b 0 xe fa

9 0 x0eec 2079000015de movea . l 0x15de . l , a0
0 x0e f2 317 c0bb80004 move .w 0xbb8 , 0x4 (a0)

11 0 x0e f8 600 c bra . b 0 xf06
0 x0e fa 2079000015de movea . l 0x15de . l , a0

13 0 x0f00 317 c0e100004 move .w 0xe10 , 0x4 (a0)
0 x0f06 2079000015de movea . l 0x15de . l , a0

15 0 x0f0c 0 c680001000a cmpi .w 0x1 , 0xa (a0)
0 x0f12 6608 bne . b 0 x f1c

17 0 x0f14 4 e f90000e000 jmp 0xe000 . l

2unzip pocorgtfo15.pdf MakingGenesisGGcodes.txt AdvancedGenGGtips.txt

9

It is at 0x000F14 that the code takes its first
jump outside of the first 32KB, to address 0x00E000.
So assuming this code executes properly, we know
that at the moment the game takes that jump, the
mirroring is no longer occurring. That’s the safest
moment to take control. We don’t yet have any idea
what happens once it jumps there, as this first 32KB
is all we have to study and work with.

So we can make 16-bit changes to the game’s
code as it runs via the Game Genie, and separately,
we can run code on the Genesis and access at least
part of the cartridge’s ROM via the Sega CD. What
we really need is a way to combine the two tech-
niques.

So then I had an idea: What if we booted the
Sega CD and wrote some 68k code to embed a ROM
dumper at the end of 68k RAM, then insert the
Game Genie and game while the system is on, then
hit the RESET button on the console, which just
resets the main 68k CPU, which means our ROM
dumper at the end of 68k RAM is still there It should
then go to boot the Game Genie this time instead
of the Sega CD, since there’s now a cartridge in the
slot, then enter Game Genie codes to make the game
jump straight into 68k RAM, then boot the game,
giving us control?

That’s quite a mouthful, so let’s go over it one
more time.

• We write some 68k shellcode to read the ROM
data and push it out the controller port back
to the PC.

• To run this code, we boot the Sega CD, which
receives and executes a payload from the PC.

• This payload copies our ROM dumping code
to the end of 68k RAM, which the 32KB dump
doesn’t seem to use.

• We insert our Game Genie and game into the
Genesis. This makes the system lock up, but
that’s not necessarily a bad thing, as we’re
about to reset anyway.

• We hit the RESET button on the console. The
Genesis starts to boot, detects the Game Ge-
nie and game cartridge so it boots from those
instead of the CD.

• We enter our Game Genie codes for the game
to jump into 68k RAM and hit START to start
the game, aaaand. . .

• Attempting this technique, the system locks
up just as we should be jumping into the pay-
load left in RAM. But why?

I went over this over and over and over in my
head, trying to figure out what’s wrong. Can you
see what’s wrong with this logic?

Yeah, so, I failed to take into account anything
the Game Genie might be doing to mess with our
embedded ROM dumping code in the 68K’s RAM.
When you disassemble the Game Genie’s ROM, you
find that one of the first things it does is wipe out
all of the 68K’s RAM.

1 0x0294 41 f 9 00 f f 0 000 l e a . l 0 x f f 0000 . l , a0
0x029a 323 c 7 f f f move .w 0 x7 f f f , d1

3 0x029e 7000 moveq 0x0 , d0
0x02a0 30 c0 move .w d0 , (a0)+

5 0x02a2 51 c 9 f f f c dbra d1 , 0x2a0

We can’t leave code in main CPU RAM across a
reboot because of the very same Game Genie that
lets us patch the ROM to jump into our shellcode.
So what do we do?

We know we can’t rely on our code still being
in 68k RAM by the time the game boots, but we
need something, anything to persist after we reset
the console. Well, what about Z80’s RAM?

Studying the Game Genie ROM reveals that
it puts a small Z80 sound program in Z80 RAM,
for playing the code entry sound effects, like when
you’re selecting or deleting a character. This pro-
gram is rather small, and the Game Genie doesn’t
wipe out all of Z80 RAM first. It just copies this
little program, leaving the rest alone.

So instead of putting our code at the end of
68K RAM, we can instead put it at the end of
Z80 RAM, along with a little Z80 code to copy it
back into 68k RAM. We can make a sequence of
Game Genie codes that patches Pier Solar’s Z80 pro-
gram to jump right to the end of Z80 RAM, where
our Z80 code will be waiting. We’ll then be free to
copy our 68k code back into 68k RAM, hopefully
before the Game Genie makes the 68k jump there.

10

With this new arrangement, we get control of
the 68K CPU after the game has booted! But the
extracted data is still mirrored, even though we are
executing the same way the real game runs.

Okay, so what are the differences between the
game’s code and our code?

We’re using a Game Genie, maybe the game de-
tects that? This is unlikely, as the game boots fine
with it attached. If it had a problem with the Game
Genie, you’d think it wouldn’t work at all.

Well, we’re running from RAM, and the game is
running from ROM. Perhaps the cartridge can dis-
tinguish between instruction fetches of code running
from ROM and the data fetches that occur when
code is running from RAM?

Our only ability to change the code in ROM
comes from the Game Genie, which is limited to
five codes. A dumper just needs to write bytes in
order to 0xA1000F, the Controller 2 UART Transmit
Buffer, but code to do that won’t fit in five codes.

Luckily there is a cheat device called the Pro Ac-
tion Replay 2 which supports 99 codes. These are
extremely rare and were never sold in the States, but
I was able to buy one through eBay. Unfortunately,
the game doesn’t boot with it at all, even with no
codes. It just sits at a black screen, even though the
Action Replay works fine with other cartridges.

So now what? Well, we think that the CPU must
be actively running from ROM, but except for mi-
nor patches with the Game Genie, we know our code
can only run from RAM. Is there any way we can
do both? Well, as it turns out, we already have the
answer.

We have two processors, and we were already us-
ing both of them! We can use the Game Genie to
make the 68k spin its wheels in an infinite loop in
ROM, just like the very first thing we tried with it,
while we use the other processor to dump it.

We were overthinking the first (and second) at-
tempts to get control away from the game, as there’s
no reason the 68K has to be the one doing the dump-
ing. In fact, having the Z80 do it might be the only
way to make this work.

So the Z80 dumper does its thing, dumping car-
tridge data through the Sega CD’s transfer cable
while the 68K stays locked in an infinite loop, still
fetching instructions from cartridge hardware! As
far as the cartridge is concerned, the game is run-
ning normally.

And YES, finally, it works! We study the first
4MB in IDA Pro to see how the bank switching
works. As luck would have it, Pier Solar’s bank
switching is almost exactly the same as Super Street
Fighter 2.

Armed with that knowledge, we can modify the
dumper to extract the remaining 4MB via bank
switching, which I dumped out in sixteen pieces
very slowly, through lots and lots and lots of trigger-
ing this crazy boot procedure. I mean, I can’t tell
you how excited I was that this crazy mess actually
worked. It was like four o’clock in the morning, and
I felt like I was on top of the world. That’s why I
do this stuff; really, that payoff is so worth it. It’s
just indescribable.

11

Now that I had a complete dump, I looked for the
ROM checksum calculation code and implemented
it PC-side, and it actually matched the checksum
in the ROM header. Then I knew it was dumped
correctly.

Now starts the long process of studying the dis-
assembly to understand all the extra hardware. For
example, the save-state hardware is just a serial
EEPROM accessed by reads and writes to a cou-
ple of registers.

So now that we have all of it, what exactly can
we say was the protection? Well, I couldn’t tell you
how it works at a hardware level other than that it
appears to be an FPGA, but, disassembly reveals
these secrets from the software side.

The first 32KB is mirrored over and over until
specific accesses to 0x18010 occur. The mirroring
is automatically re-enabled by hardware if the sys-
tem isn’t executing from ROM for more than some
unknown amount of time.

The serial EEPROM, while it doesn’t require
a battery to hold its data, does prevent the game
from running in emulators that don’t explicitly sup-
port it. It also breaks compatibility with those flash
cartridges that people use for playing downloaded
ROMs on real consoles.

Once I got the ROM dumped, I couldn’t help
but try to get it working in some kind of emulator,
and at the time DGen was the easiest to understand
and modify, so I did the bare minimum to get that
working. It boots and works for the most part, but
it has a few graphical glitches here and there, prob-
ably related to VDP internals I don’t and will never
understand.3

Eventually somebody else came along and did it
better, with a port to MESS.

Don’t think anything is beyond your abilities:
use the skills you have, whatever they may be. Me,
I do TI graphing calculator programming and re-
verse engineering as a hobby. The two main proces-
sors those calculators use are the Motorola 68K and
Zilog Z80, so this project was tailor-made for me.
But as far as the hardware behind it, I had no clue;
I just had to make some guesses and hope for the
best.

“This isn’t the most efficient method” and “No-
body else would try this method.” are not reasons
to not work on something. If anything, they’re ac-
tually reasons to do it, because that means nobody
else bothered to try it, and you’re more likely to be
first. Crazy methods work, and I hope this little
endeavor has proven that.

3VDP is the display hardware in the Genesis.

12

