
15:07 In Which a PDF is a Git Repository
Containing its own LATEX Source
and a Copy of Itself

by Evan Sultanik

Have you ever heard of the git bundle com-
mand? I hadn’t. It bundles a set of Git objects—
potentially even an entire repository—into a single
file. Git allows you to treat that file as if it were
a standard Git database, so you can do things like
clone a repo directly from it. Its purpose is to easily
sneakernet pushes or even whole repositories across
air gaps.

·——· ——— —·—· ——— ·—· ——· — ·–—· ———

Neighbors, it’s possible to create a PDF that is
also a Git repository.

$ git clone PDFGitPolyglot.pdf foo
Cloning into ’foo’...
Receiving objects: 100% (174/174), 103.48 KiB, done.
Resolving deltas: 100% (100/100), done.
$ cd foo
$ ls
PDFGitPolyglot.pdf PDFGitPolyglot.tex

15:07.1 The Git Bundle File Format

The file format for Git bundles doesn’t appear to
be formally specified anywhere, however, inspecting
bundle.c reveals that it’s relatively straightforward:

v2 git bundle ←↩
Git Bundle Signature

3aa340a2e3d125ab6703e5c9bdfede2054a9c0c5
refs/heads/master ←↩

3aa340a2e3d125ab6703e5c9bdfede2054a9c0c5
refs/remotes/origin/master ←↩

4146cfe2fe9249fc14623f832587efe197ef5d2d
refs/stash ←↩

babdda4735ef164b7023be3545860d8b0bae250a
HEAD ←↩

D
igest

←↩

PACK. . .
Git Packfile

Git has another custom format called a Packfile that
it uses to compress the objects in its database, as
well as to reduce network bandwidth when pushing
and pulling. The packfile is therefore an obvious
choice for storing objects inside bundles. This of

course raises the question: What is the format for a
Git Packfile?

Git does have some internal documentation in

Documentation/technical/pack-format.txt

however, it is rather sparse, and does not provide
enough detail to fully parse the format. The docu-
mentation also has some “observations” that suggest
it wasn’t even written by the file format’s creator
and instead was written by a developer who was
later trying to make sense of the code.

Luckily, Aditya Mukerjee already had to reverse
engineer the file format for his GitGo clean-room
implementation of Git, and he wrote an excellent
blog entry about it.27

‘P’ ‘A’ ‘C’ ‘K’ 00 00 00 02 # objects
magic version big-endian 4 byte int

one data chunk for each object
20-byte SHA-1 of all the previous data in the pack

Although not entirely required to understand the
polyglot, I think it is useful to describe the git pack-
file format here, since it is not well documented else-
where. If that doesn’t interest you, it’s safe to skip
to the next section. But if you do proceed, I hope
you like Soviet holes, dear neighbor, because chasing
this rabbit might remind you of Кольская.

27https://codewords.recurse.com/issues/three/unpacking-git-packfiles

60

Right, the next step is to figure out the “chunk”
format. The chunk header is variable length, and
can be as small as one byte. It encodes the object’s
type and its uncompressed size. If the object is a
delta (i.e., a diff, as opposed to a complete object),
the header is followed by either the SHA-1 hash of
the base object to which the delta should be ap-
plied, or a byte reference within the packfile for the
start of the base object. The remainder of the chunk
consists of the object data, zlib-compressed.

The format of the variable length chunk header
is pictured in Figure 4. The second through fourth
most significant bits of the first byte are used to
store the object type. The remainder of the bytes
in the header are of the same format as bytes two
and three in this example. This example header
represents an object of type 112, which happens
to be a git blob, and an uncompressed length of
(1002 << 14) + (10101102 << 7) + 10010012 = 76,617
bytes. Since this is not a delta object, it is imme-
diately followed by the zlib-compressed object data.
The header does not encode the compressed size of
the object, since the DEFLATE encoding can de-
termine the end of the object as it is being decom-
pressed.

At this point, if you found The Life and Opin-
ions of Tristram Shandy to be boring or frustrating,
then it’s probably best to skip to the next section,
’cause it’s turtles all the way down.

To come at the exa� weight of things in
the scientific õeel-yard, the fulchrum, [Wal-
ter Shandy] would say, should be almoõ in-
visible, to avoid all fri�ion from popular
tenets;—without this the minutiæ of philos-
ophy, which should always turn the balance,
will have no weight at all. Knowledge, like
matter, he would affirm, was divisible in
infinitum;—that the grains and scruples were
as much a part of it, as the gravitation of the
whole world.

“

”
There are two types of delta objects: refer-

ences (object type 7) and offsets (object type 6).
Reference delta objects contain an additional
20 bytes at the end of the header before the zlib-
compressed delta data. These 20 bytes contain the
SHA-1 hash of the base object to which the delta
should be applied. Offset delta objects are exactly
the same, however, instead of referencing the base
object by its SHA-1 hash, it is instead represented
by a negative byte offset to the start of the ob-
ject within the pack file. Since a negative byte off-

set can typically be encoded in two or three bytes,
it’s significantly smaller than a 20-byte SHA-1 hash.
One must understand how these offset delta objects
are encoded if—say, for some strange, masochistic
reason—one wanted to change the order of objects
within a packfile, since doing so would break the
negative offsets. (Foreshadowing!)

One would think that git would use the same
multi-byte length encoding that they used for the
uncompressed object length. But no! This is what
we have to go off of from the git documentation:

n bytes with MSB set in all but the last one.
The offset is then the number constructed by
concatenating the lower 7 bit of each byte, and
for n >= 2 adding 2^7 + 2^14 + ... + 2^(7*(n-1))
to the result.

Right. Some experimenting resulted in the following
decoding logic that appears to work:

def decode_obj_ref(data):
bytes_read = 0
reference = 0
for c in map(ord, data):

bytes_read += 1
reference <<= 7
reference += c & 0b01111111
if not (c & 0b10000000):

break
if bytes_read >= 2:

reference += (1 << (7 * (bytes_read - 1)))
return reference, bytes_read

The rabbit hole is deeper still; we haven’t yet dis-
covered the content of the compressed delta objects,
let alone how they are applied to base objects. At
this point, we have more than sufficient knowledge
to proceed with the PoC, and my canary died ages
ago. Aditya Mukerjee did a good job of explaining
the process of applying deltas in his blog post, so I
will stop here and proceed with the polyglot.

15:07.2 A Minimal Polyglot PoC

We now know that a git bundle is really just a git
packfile with an additional header, and a git packfile
stores individual objects using zlib, which uses the
DEFLATE compression algorithm. DEFLATE sup-
ports zero compression, so if we can store the PDF
in a single object (as opposed to it being split into
deltas), then we could theoretically coerce it to be
intact within a valid git bundle.

Forcing the PDF into a single object is easy: We
just need to add it to the repo last, immediately
before generating the bundle.

61

1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1
first byte second byte third byte

object type

if the MSB is one,
then this is not
the last byte

first four
bits of

the length
(big-endian)

MSB is one,
so this is not the last byte

the next seven
bits of the length

(big-endian)

MSB is zero,
so this is the last byte

the next seven
bits of the length

(big-endian)

Figure 4. Format of the git packfile’s variable length chunk header.

Getting the object to be compressed with zero
compression is also relatively easy. That’s because
git was built in almost religious adherence to The
UNIX Philosophy: It is architected with hundreds of
sub commands it calls “plumbing,” of which the vast
majority you will likely have never heard. For ex-
ample, you might be aware that git pull is equiv-
alent to a git fetch followed by a git merge. In
fact, the pull code actually spawns a new git
child process to execute each of those subcommands.
Likewise, the git bundle command spawns a git
pack-objects child process to generate the packfile
portion of the bundle. All we need to do is inject
the --compression=0 argument into the list of com-
mand line arguments passed to pack-objects. This
is a one-line addition to bundle.c:

argv_array_pushl(
&pack_objects.args,
"pack-objects", "--all-progress-implied",
"--compression=0",
"--stdout", "--thin", "--delta-base-offset",
NULL);

Using our patched version of git, every object
stored in the bundle will be uncompressed!

$ export PATH=/path/to/patched/git:$PATH
$ git init
$ git add article.pdf
$ git commit article.pdf -m "added"
$ git bundle create PDFGitPolyglot.pdf --all

Any vanilla, un-patched version of git will be able to
clone a repo from the bundle. It will also be a valid
PDF, since virtually all PDF readers ignore garbage
bytes before and after the PDF.

15:07.3 Generalizing the PoC
There are, of course, several limitations to the min-
imal PoC given in the previous section:

1. Adobe, being Adobe, will refuse to open the
polyglot unless the PDF is version 1.4 or ear-
lier. I guess it doesn’t like some element of the
git bundle signature or digest if it’s PDF 1.5.
Why? Because Adobe, that’s why.

2. Leaving the entire Git bundle uncompressed is
wasteful if the repo contains other files; really,
we only need the PDF to be uncompressed.

3. If the PDF is larger than 65,535 bytes—the
maximum size of an uncompressed DEFLATE
block—then git will inject 5-byte deflate block
headers inside the PDF, likely corrupting it.

4. Adobe will also refuse to open the polyglot
unless the PDF is near the beginning of the
packfile.28

The first limitation is easy to fix by instruct-
ing LATEX to produce a version 1.4 PDF by adding
\pdfminorversion=4 to the document.

The second limitation is a simple matter of soft-
ware engineering, adding a command line argument
to the git bundle command that accepts the hash
of the single file to leave uncompressed, and passing
that hash to git pack-objects. I have created a
fork of git with this feature.29

As an aside, while fixing the second limitation
I discovered that if a file has multiple PDFs con-
catenated after one another (i.e., a git bundle poly-
glot with multiple uncompressed PDFs in the repo),
then the behavior is viewer-dependent: Some view-
ers will render the first PDF, while others will ren-
der the last. That’s a fun way to generate a PDF
that displays completely different content in, say,
macOS Preview versus Adobe.

The third limitation is very tricky, and ulti-
mately why this polyglot was not used for the PDF

28Requiring the PDF header to start near the beginning of a file is common for many, but not all, PDF viewers.
29https://github.com/ESultanik/git/tree/UncompressedPack

62

of this issue of PoC‖GTFO. I’ve a solution, but it
will not work if the PDF contains any objects (e.g.,
images) that are larger than 65,535 bytes. A uni-
versal solution would be to break up the image into
smaller ones and tile it back together, but that is not
feasible for a document the size of a PoC‖GTFO is-
sue.

DEFLATE headers for uncompressed blocks are
very simple: The first byte encodes whether the fol-
lowing block is the last in the file, the next two bytes
encode the block length, and the last two bytes are
the ones’ complement of the length. Therefore, to
resolve this issue, all we need to do is move all of
the DEFLATE headers that zlib created to different
positions that won’t corrupt the PDF, and update
their lengths accordingly.

Where can we put a 5-byte DEFLATE header
such that it won’t corrupt the PDF? We could
use our standard trick of putting it in a PDF ob-
ject stream that we’ve exploited countless times be-
fore to enable PoC‖GTFO polyglots. The trouble
with that is: Object streams are fixed-length, so
once the PDF is decompressed (i.e., when a repo is
cloned from the git bundle), then all of the 5-byte
DEFLATE headers will disappear and the object
stream lengths would all be incorrect. Instead, I
chose to use PDF comments, which start at any oc-
currence of the percent sign character (%) outside a
string or stream and continue until the first occur-
rence of a newline. All of the PDF viewers I tested
don’t seem to care if comments include non-ASCII
characters; they seem to simply scan for a newline.
Therefore, we can inject “%\n” between PDF objects
and move the DEFLATE headers there. The only
caveat is that the DEFLATE header itself can’t con-
tain a newline byte (0x0A), otherwise the comment
would be ended prematurely. We can resolve that,
if needed, by adding extra spaces to the end of the
comment, increasing the length of the following DE-
FLATE block and thus increasing the length bytes
in the DEFLATE header and avoiding the 0x0A.
The only concession made with this approach is that
PDF Xref offsets in the deflated version of the PDF
will be off by a multiple of 5, due to the removed
DEFLATE headers. Fortunately, most PDF read-
ers can gracefully handle incorrect Xref offsets (at
the expense of a slower loading time), and this will
only affect the PDF contained in the repository, not
the PDF polyglot.

As a final step, we need to update the SHA-1 sum
at the end of the packfile (q.v. Section 15:07.1), since

we moved the locations of the DEFLATE headers,
thus affecting the hash.

At this point, we have all the tools necessary to
create a generalized PDF/Git Bundle polyglot for
almost any PDF and git repository. The only re-
maining hurdle is that some viewers require that the
PDF occur as early in the packfile as possible. At
first, I considered applying another patch directly to
the git source code to make the uncompressed ob-
ject first in the packfile. This approach proved to
be very involved, in part due to git’s UNIX design
philosophy and architecture of generic code reuse.
We’re already updating the packfile’s SHA-1 hash
due to changing the DEFLATE headers, so instead I
decided to simply reorder the objects after-the-fact,
subsequent to the DEFLATE header fix but before
we update the hash. The only challenge is that mov-
ing objects in the packfile has the potential to break
offset delta objects, since they refer to their base ob-
jects via a byte offset within the packfile. Moving
the PDF to the beginning will break any offset delta
objects that occur after the original position of the
PDF that refer to base objects that occur before the
original position of the PDF. I originally attempted
to rewrite the broken offset delta objects, which is
why I had to dive deeper into the rabbit hole of the
packfile format to understand the delta object head-
ers. (You saw this at the end of Section 15:07.1, if
you were brave enough to finish it.) Rewriting the
broken offset delta objects is the correct solution,
but, in the end, I discovered a much simpler way.

As a matter of fact, G-d just questioned my
judgment. He said, ‘Terry, are you worthy to
be the man who makes The Temple? If you
are, you must answer: Is this [dastardly], or
is this divine intellect?’

“

”
—Terry A. Davis, creator of TempleOS
self-proclaimed “smartest
programmer that’s ever lived”

Terry’s not the only one who’s written a com-
piler!

In the previous section, recall that we created
the minimal PoC by patching the command line
arguments to pack-objects. One of the com-
mand line arguments that is already passed by de-
fault is --delta-base-offset. Running git help
pack-objects reveals the following:

63

A packed archive can express the base object
of a delta as either a 20-byte object name
or as an offset in the stream, but ancient
versions of Git don’t understand the latter.
By default, git pack-objects only uses the
former format for better compatibility. This
option allows the command to use the latter
format for compactness. Depending on the
average delta chain length, this option
typically shrinks the resulting packfile by
3-5 per-cent.

So all we need to do is remove the
--delta-base-offset argument and git will not
include any offset delta objects in the pack!

·——· ——— —·—· ——— ·—· ——· — ·–—· ———

Okay, I have to admit something: There is
one more challenge. You see, the PDF stan-
dard (ISO 32000-1) says

The trailer of a PDF file enables a conform-
ing reader to quickly find the cross-reference
table and certain special objects. Conform-
ing readers should read a PDF file from its
end. The last line of the file shall contain
only the end-of-file marker, %%EOF.

“

”
Granted, we are producing a PDF that conforms to
version 1.4 of the specification, which doesn’t ap-
pear to have that requirement. However, at least as
early as version 1.3, the specification did have an im-
plementation note that Acrobat requires the %%EOF
to be within the last 1024 bytes of the file. Either
way, that’s not guaranteed to be the case for us, es-
pecially since we are moving the PDF to be at the
beginning of the packfile. There are always going to
be at least 20 trailing bytes after the PDF’s %%EOF
(namely the packfile’s final SHA-1 checksum), and
if the git repository is large, there are likely to be
more than 1024 bytes.

Fortunately, most common PDF readers don’t
seem to care how many trailing bytes there are, at
least when the PDF is version 1.4. Unfortunately,
some readers such as Adobe’s try to be “helpful,”
silently “fixing” the problem and offering to save the
fixed version upon exit. We can at least partially fix

the PDF, ensuring that the %%EOF is exactly 20 bytes
from the end of the file, by creating a second un-
compressed git object as the very end of the packfile
(right before the final 20 byte SHA-1 checksum).
We could then move the trailer from the end of the
original PDF at the start of the pack to the new git
object at the end of the pack. Finally, we could en-
capsulate the “middle” objects of the packfile inside
a PDF stream object, such that they are ignored by
the PDF. The tricky part is that we would have to
know how many bytes will be in that stream before
we add the PDF to the git database. That’s theoret-
ically possible to do a priori, but it’d be very labor
intensive to pull off. Furthermore, using this ap-
proach will completely break the inner PDF that is
produced by cloning the repository, since its trailer
will then be in a separate file. Therefore, I chose to
live with Adobe’s helpfulness and not pursue this fix
for the PoC.

·——· ——— —·—· ——— ·—· ——· — ·–—· ———

The feelies contain a standalone PDF of this ar-
ticle that is also a git bundle containing its LATEX
source, as well as all of the code necessary to regen-
erate the polyglot.30 Clone it to take a look at the
history of this article and its associated code! The
code is also hosted on GitHub31.

Thus—thus, my fellow-neighbours and as-
sociates in this great harveõ of our learn-
ing, now ripening before our eyes; thus it
is, by ôow õeps of casual increase, that our
knowledge physical, metaphysical, physiolog-
ical, polemical, nautical, mathematical, ænig-
matical, technical, biographical, romantical,
chemical, obõetrical, and polyglottical, with
fifty other branches of it, (moõ of ’em end-
ing as these do, in ical) have for these four laõ
centuries and more, gradually been creeping
upwards towards that Akme of their perfec-
tions, from which, if we may form a conjec-
ture from the advances of these laõ pages,
we cannot possibly be far off.

5

30unzip pocorgtfo15.pdf PDFGitPolyglot.pdf
31https://github.com/ESultanik/PDFGitPolyglot

64

