
16:03 Saving My ’97 Chevy by Hacking It
by Brandon L. Wilson

Hello everyone!
Today I tell a story of both joy and woe, a story

about a guy stumbling around and trying to fix
something he most certainly does not understand. I
tell this story with two goals in mind: first to enter-
tain you with the insane effort that went into fixing
my car, then also to motivate you to go to insane
lengths to accomplish something, because in my ex-
perience, the crazier it is and the crazier people tell
you that you are to attempt it, the better off you’ll
be when you go ahead and try it.

Let me start by saying, though: do not hack your
car, at least not the car that you actually drive. I
cannot stress that enough. Do keep in mind that you
are messing with the code that decides whether the
car is going to respond to the steering wheel, brakes,
and gas pedal. Flip the wrong bit in the firmware
and you might find that YOU have flipped, in your
car, and are now in a ditch. Don’t drive a car run-
ning modified code unless you are certain you know
what you’re doing. Having said that, let’s start from
the beginning.

Once upon a time, I came into the possession
of a manual transmission 1997 Chevrolet Cavalier.
This car became a part of my life for the better part
of 315,000 miles.2 One fine day, I got in to take
off somewhere, turned the key, heard the engine fire
up—and then immediately cut off.

Let me say up front that when it comes to cars, I
know basically nothing. I know how to start a car, I
know how to drive a car, I know how to put gas in a
car, I know how to put oil in a car, but in no way am
I an expert on repairing cars. Before I could even
begin to understand why the car wouldn’t start, I
had to do a lot of reading to understand the basics
on how this car runs, because every car is different.

In the steering column, behind the steering wheel
and the horn, you have two components physically
locked into each other: the ignition lock cylinder and
the ignition switch. First, the key is inserted into
the ignition lock cylinder. When the key is turned,
it physically rotates inside the ignition lock cylin-
der, and since the ignition switch is locked into it,
turning the key also activates the ignition switch.
The activation of that switch supplies power from
the battery to everywhere it needs to go for the car
to actually start.

But that’s not the end of the story: there’s still
the anti-theft system to deal with. On this car, it’s
something called the PassLock security system. If
the engine is running, but the computer can’t de-
tect the car was started legitimately with the orig-
inal key, then it disables the fuel injectors, which
causes the car to die.

Since the ignition switch physically turning and
supplying battery power to the right places is what
makes the car start, stealing a car would normally
be as simple as detaching the ignition switch, stick-
ing a screwdriver in there, and physically turning it
the same way the key turns it, and it’ll fire right
up.3

So the PassLock system needs to prevent that
from working somehow. The way it does this starts
with the ignition lock cylinder. Inside is a resistor of
a certain resistance, known by the instrument panel
cluster, which is different from car to car. When
physically turning the cylinder, that certain resis-

2Believe it or not, those miles were all on the original clutch. You can see why I might want to save it.
3This is helpfully described by Deviant Ollam on page 17. –PML

7

tance is applied to a wire connected to the instru-
ment panel cluster. As the key turns, a signal is
sent to the instrument panel cluster. The cluster
knows whether that resistance is correct, and if and
only if the resistance is correct, it sends a password
to the PCM (Powertrain Control Module), other-
wise known as the main computer. If the engine has
started, but the PCM hasn’t received that “pass-
word” from the instrument panel cluster, it makes
the decision to disable the fuel injectors, and then il-
luminate the “CHECK ENGINE” and “SECURITY”
lights on the instrument panel cluster, with a diag-
nostic trouble code (DTC) that indicates the secu-
rity system disabled the car.

So an awful lot of stuff has to be working cor-
rectly in order for the PCM to have what it needs
to not disable the fuel injectors. The ignition
lock cylinder, the instrument panel cluster, and the
wiring that connects those to each other and to the
PCM all has to be correct, or the car can’t start.

Since the engine in my car does turn over (but
then dies), and the “SECURITY” warning light on
the instrument panel cluster lights up, that means
something in the whole chain of the PassLock sys-
tem is not functioning as it should.

Naturally, I start replacing parts to see what
happens. First, the ignition lock cylinder might be
bad – so I looked up various guides online about
how to “bypass” the PassLock system. People do
that by installing their own resistor on the wires
that lead to the instrument panel cluster, then trig-
gering a thirty-minute “relearn” procedure so that
the instrument panel cluster will accept the new re-
sistor value.4 Doing that didn’t seem to help at all.
Just in case I messed that up somehow, I decided
to buy a brand new ignition lock cylinder and give
that a try. Didn’t help.

Then I thought maybe the ignition switch is bad,
so I put a new one of those in as well. Didn’t help.
Then I thought maybe the clutch safety switch had
gone bad (the last stop for battery power on its way
from the ignition switch to the rest of the car) –
checking the connections with a multi-meter indi-
cated it was functioning properly.

I even thought that maybe the computer had
somehow gone bad. Maybe the pins on it had cor-
roded or something – who knows, anything could be
causing it not to get the password it needs from the
instrument panel cluster. There is a major problem
with replacing this component however, and that is

that the VIN, Vehicle Identification Number, unique
to this particular car, is stored in the PCM. Not only
that, but this password that flies around between
the PCM and instrument panel cluster is generated
from the VIN number. The PCM and panel are
therefore “married” to each other; if you replace one
of them, the other needs to have the matching VIN
number in it or it’ll cause the same problem that I
seem to be experiencing.

Fortunately, one can buy replacement PCMs on
eBay, and the seller will actually pre-flash it with the
VIN number that the buyer specifies. I bought from
eBay and slapped it in the car, but it still didn’t
work.

At this point, I have replaced the ignition lock
cylinder, the ignition switch, even the computer it-
self, and still nothing. That only leaves the instru-
ment panel cluster, which is prohibitively expensive,
or the wiring between all these components. There
are dozens upon dozens of wires connecting all this
stuff together, and usually when there’s a loose con-
nection somewhere, people give up and junk the
whole car. These bad connections are almost im-
possible to track down, and even worse, I have no
idea how to go about doing it.

So I returned all the replacement parts, except
for the PCM from eBay, and tried to think about
what to do next. I have a spare PCM that only
works with my car’s VIN number. I know that
the PCM disables the fuel injectors whenever it de-
tects an unauthorized engine start, meaning it didn’t
get the correct password from the instrument panel
cluster. And I also know that the PCM contains
firmware that implements this detection, and I know
that dealerships upgrade this firmware all the time.
If that’s the case, what’s to stop me from modifying
the firmware and removing that check?

Tune In and Drop Out

I began reading about a community of car tuners,
people who modify firmware to get the most out of
their cars. Not only do they tweak engine perfor-
mance, but they actually disable the security sys-
tem of the firmware, so that they can transplant
any engine from one car to the body of another car.
That’s exactly what I want to do; I want to disable
that feature entirely so that the computer doesn’t
care what’s going on outside it. If they can do it, so
can I.

4This is how old remote engine start kits work.

9

How do other people disable this check? Accord-
ing to the internet, people “tune” their cars by load-
ing up the firmware image in an application called,
oddly enough, TunerPro. Then they load up what’s
called an XDF file, or a definition file, which de-
fines the memory addresses for configuration flags
for all sorts of things – including, of course, the en-
abling and disabling of the anti-theft functionality.
Then all they have to do is tell TunerPro “hey, turn
this feature off”, and it knows which bits or bytes to
change from the XDF file, including any necessary
checksums or signatures. Then it saves the firmware
image back out, and tuners just write that firmware
image back to the car.

It sounds easy enough – assuming the car pro-
vides an easy mechanism for updating the firmware.
Most tuners and car dealerships will update the
firmware through the OBD2 diagnostic port under
the steering column, which is on all cars manufac-
tured after 1996 (yay for me). Unfortunately, each
car manufacturer uses different protocols and differ-
ent tools to actually connect to and use the diag-
nostic port. For example, General Motors, which
is what I need to deal with, has a specific device
called a Tech2 scan tool, which is like a fancy code
reader, which can be plugged into the OBD2 port.
It’s capable of more than just reading diagnostic
trouble codes, though; it can upload and download
the firmware in the PCM. There’s just one prob-
lem: it’s ridiculously expensive. This thing runs
anywhere from a few hundred for the Chinese clone
to several thousands of dollars!

I spent some time looking into what protocol it
uses, so that I could do what it does myself – but
no such luck. It seems to use some sort of propri-
etary obfuscated algorithm so the PCM has to be
“unlocked” before it can be read from or written to.
GM really doesn’t want me doing myself what this
tool does. Even worse, after doing a little googling,
it seems there is no XDF file for my particular car,
so I have to find these memory addresses myself.

The first step is to get at the firmware. If I can’t
simply plug into the OBD2 port and read or write
the firmware, I’m going to have to get physical. I
find the PCM, unplug it from the car, unscrew the
top cover, and start starting at what’s underneath.

Luckily, there appears to be a 512KB flash chip
on board. I know from googling about TunerPro
and others’ experience with firmware from the late
nineties that this is exactly the right size to hold
the PCM firmware image. Fortunately, I have man-
aged to physically extract chips like this before, so I
de-soldered the chip, inserted it into an old Willem
EEPROM programmer, and managed to dump the
entire 512KB of memory. What now?

Thankfully, Google has come to the rescue and
presented me with a series of forum posts that tell
me how to interpret this firmware dump. These old

10

posts were pretty much the only help I could find on
the subject, so I had to decipher some guy’s notes
and do the best I could.

Apparently the processor in this PCM and oth-
ers of its era is a Motorola 68332. I just so happen to
have a history with the Motorola 68K series CPUs.
Ever since high school I have messed with BASIC
and assembly programming for Texas Instruments
graphing calculators, some of which have a Motorola
68K CPU, and I enjoy collecting and tinkering with
old game consoles, which is good because the Sega
Genesis just so happens to have a Motorola 68K
CPU.

It sure would be nice to confirm in some way
if this file really was dumped correctly and this re-
ally is Motorola 68K firmware being executed by
this PCM. There ought to be a vector table at the
beginning of memory, containing handler addresses
that the CPU executes in response to certain events.
For example, when the CPU first gets power, it has
to start executing from the value at address 0x00-
0004, which holds what is called the Reset Vector.
Looking at that address, I see 00 00 40 04. I fire
up IDA Pro, go to address 0x4004, and hit C to
start analyzing code at that address – but I get to-
tal garbage.

That’s strange – since that didn’t pan out, I start
looking for human-readable strings. I find only one,
which appears to be a 17-character VIN number,
except that it’s not a VIN number.

1 St r ing : 1G1J11C72V24767321
Actual VIN : 1G1JC1272V7476231

I stared at this until I realized that if I swap every
two characters, or bytes, in the actual VIN number,
I get the string from the disassembly. It seems the
image is a little jumbled up – googling for meaning
behind this reveals that the image is byte-swapped.
This is how the bytes are actually stored on the chip,
but this isn’t what I want – I want the bytes back in
the original order, the way they’re being executed.
After swapping every pair of bytes and then looking
at address 0x000004, I don’t see 00 00 40 04 – I
see 00 00 04 40. If I go to 0x440 in IDA Pro and
start analyzing, I see an explosion of readable code.
In fact, I see a beautiful graph of how cleanly this
file disassembled.

I’m ecstatic that I have a clean and proper
firmware image loaded into IDA Pro, but what now?
It would take years for me to properly and truly un-

derstand all this code.
I have to remind myself that my goal is to dis-

able the check on whether we’ve received the pass-
word or not from the instrument panel cluster – but
I have absolutely no idea where in the firmware that
check is. There doesn’t seem to exist an XDF file
for my 1997 Chevrolet Cavalier. But – maybe one
does exist for a very similar car. If I can know the
memory address I want to change in somebody else’s
firmware image, and it’s similar enough to mine,
maybe that’ll give me clues to finding the memory
address in my own image.

After doing lots. . . and lots. . . of googling, the
closest firmware image I could find which had a
matching XDF file was for the 2001 Pontiac Trans
Am. I load up this firmware image in TunerPro
along with the corresponding XDF file, and a partic-
ular setting jumps out at me called “Option byte for
vehicle theft deterrent” – with a memory address of
0x1E5CC. I fire up IDA Pro against the 2001 Pontiac
Trans Am image and go to that memory address,
which puts me in the middle of a bunch of bytes that
are referenced all over the place in the code. This is
some sort of “configuration” area, which controls all
the features of the car’s computer. If I change this
byte in TunerPro and save the firmware image, it up-
dates two things: one, this option byte at 0x1E5CC,
and also a checksum word (two bytes) that protects
the configuration area from corruption or tamper-
ing. So to turn off the anti-theft system, I have to
flip a bit, update the checksums, write those changes
back to the car computer, and voila, I’m done. Now
all that’s left is to find the same code that uses that
bit in my 1997 Chevrolet Cavalier firmware image.
Sounds simple enough.

IsVATSPresent_IThinkD0NZIfPresent :
2 7a754 : cmpi . b #2, (VATS_type) . l

7 a75c : sne d0
4 7a75e : neg . b d0

7a756 : and . b (byte_FFFF8BE5) .w, d0
6 7a764 : r t s

The byte at 0x1E5CC is referenced all over the
place – but there’s only one place in particular with
a small subroutine that looks at the specific bit we
care about. If I can find this same subroutine in my
own firmware image, I’m in business.

I look for these exact instructions in my own
firmware image, but they isn’t there. I look for any
comparison to bit 2 of a particular byte, but there
are none. I look for “sne d0” followed by “neg.b

11

d0” – but no dice. I look for the same instructions
acting on any register at all – but no matches. I try
dozens and dozens of other code matching patterns
– but no matches.

I thought it would be really simple to look for
the same or a similar code pattern in my firmware
image and I’d have no trouble finding it, but ap-
parently not. These TunerPro XDF definition files
get created by somebody, right? How do they find
all these memory addresses of interest, so they can
build these XDF files?

According to the forum posts I found,5 they first
look for a particular piece of functionality: the han-
dling of OBD2 code reader requests. The PCM is
what’s responsible for receiving the commands from
a code reader, generating a response, and then send-
ing it back over the OBD2 port to the code reader
tool. Somewhere in this half-megabyte mess is all
the code that handles these requests.

These OBD2 tools are capable of retrieving more
than just diagnostic trouble codes. Not only can
they upload and download firmware images for the
PCM, but they can also retrieve all sorts of real-
time engine information, telling you exactly what
the computer’s doing and how well it’s doing it. It
can also return the anti-theft system status. So if
I can understand the OBD2 communication code, I
can find my way to the option flag in the 2001 Pon-
tiac Trans Am firmware. And if I can navigate my
way to the option flag in that firmware, then I can
just apply that same logic to my own firmware.

How can I find the code that handles these re-
quests? According to the “PCM hacking 101” forum
guide, I should start by looking for the code that
actually interacts with the OBD2 port.

So how does a Motorola 68K CPU interact with
the OBD2 port, or any hardware for that matter?
It uses something called memory-mapped I/O. In
other words, the hardware is wired in such a way,
that when reading from or writing to a particu-
lar memory address, it isn’t accessing bytes in the
firmware on the flash chip or in RAM; it’s manipu-
lating actual hardware.

In any given device, there is usually a range
of address space dedicated just to interacting with
hardware. I know it has to be outside the range of
where the firmware exists, and I know it has to be
outside the range of where the RAM exists.

I know how big the firmware is, and since it dis-

assembled so cleanly, I know it starts out at address
0, so that means the firmware goes from 0 all the
way up to 0x07FFFF.

I also know from poking around in the disassem-
bly that the RAM starts at 0xFF0000, but I don’t
know how big it is or where it ends. As a quick and
dirty way of getting close to an answer, I use IDA
Pro to export a .asm file, then have sed rip out the
memory addresses accessed by certain instructions,
then sort that list of memory addresses.

This way, I discover that typical RAM accesses
only go up to a certain point, and then things start
getting weird. I start seeing loops on reading val-
ues contained at certain memory addresses, and
no other references to writes at those memory ad-
dresses. It wouldn’t make sense to keep reading
the same area over and over, expecting something
to change, unless that address represents a piece of
hardware that can change. When I see code like
that, the only explanation is that I’m dealing with
memory-mapped I/O. So while I don’t have a com-
plete memory map just yet, I know where the hard-
ware accesses are likely to be.

Consulting the forum guide again, I learn that
one of the chips on the PCM circuit board is respon-
sible for handling all the OBD2 port communica-
tion. I don’t mean it handles the high-level request;
I mean it deals with all the work of interpreting the
raw signals from the OBD2 pins and translating that
into a series of bytes going back and forth between
the firmware and the device plugged into the OBD2
port. All it does is tell the firmware “Hey, something
sent 5 bytes to us. Please tell me what bytes you
want me to send back,” and the firmware deals with
all the logic of figuring out what those bytes will be.

This chip has a name – the MC68HC58 data
link controller – and lucky for me, the datasheet
is readily available.6 It’s fairly comprehensive docu-
mentation on anything and everything I ever wanted
to know about how to interact with this controller.
It even describes the memory-mapped IO registers
which the firmware uses to communicate with it.
It tells me everything but the actual number, the
actual memory address the firmware is using to in-
teract with it, which is going to be unique for the
device in which it’s installed. That’s going to be up
to me to figure out.

After printing out the documentation for this
chip and some sleepless nights reading it, I figured

5https://www.thirdgen.org/forums/diy-prom/507563-pcm-hacking-101-step.html
6unzip pocorgtfo16.pdf mc68hc58.pdf

12

out some bytes that the firmware must be writing
to certain registers (to initialize the chip), otherwise
it can’t work, so I started hunting down where these
memory accesses were in the firmware. And sure
enough, I found them, starting at address 0xFFF6-
00.

So now that I’ve found the code that receives
a command from an OBD2 code reader, it should
be really easy to read the disassembly and get from
there to code that accesses our option flag, right?

I wish! The firmware actually buffers these re-
quests in RAM, and then de-queues them from that
buffer later on, when it’s able to get to it. And
then, after it has acted on the request and calcu-
lated a response, it buffers that for whenever the
firmware is able to get around to sending them back
to the plugged-in OBD2 device. This makes sense;
the computer has to focus on keeping the engine run-
ning smoothly, and not getting tied up with requests
on how well the engine is performing.

Unfortunately, while that makes sense, it also
makes it a nightmare to disassemble. The forum
guide does its best to explain it, but unfortunately
its information doesn’t apply 100% to my firmware,
and it’s just too difficult to extrapolate what I need
in order to find it. This is where things start getting
really nutty.

Emulation

If I can’t directly read the disassembly of the code
and understand it, then my only option is to execute
and debug it.

There are apparently people out there that ac-
tually do this by pulling the PCM out of the car
and putting it on a workbench, attaching a bunch
of equipment to it to debug the code in real-time
to see what it’s doing. But I have absolutely no
clue how to do that. I don’t have the pinouts for
the PCM, so even if I did know what I was doing,
I wouldn’t know how to interface with this specific
computer. I don’t know anything about the hard-
ware, I don’t know anything about the software –
all I know about is the CPU it’s running, and the
basics of a memory map for it. That is at least one
thing I have going for me – it’s extremely similar
to a very well-known CPU (the Motorola 68K), and
guaranteed to have dozens of emulators out there
for it, for games if nothing else.

Is it really possible I have enough knowledge
about the device to create or modify an emulator
to execute it? All I need the firmware to do is boot
just well enough that I can send OBD2 requests to
it and see what code gets executed when I do. It
doesn’t actually have to keep an engine running, I
just need to see how it gets from point A, which is
the data link controller code, to point B, which is
the memory access of the option flag.

If I’m going to seriously consider this, I have to
think about what language I’m going to do this in.
I think, live, breathe, and dream C] for my day job,
so that is firmly ingrained into my brain. If I’m re-
ally going to do this, I’m going to have to hack the
crap out of an existing emulator, I need to be able
to gut hardware access code, add it right back, and
then gut it again with great efficiency. So I want to
find a Motorola 68K emulator in C].

You know you’ve gone off the deep end when
you start googling for a Motorola 68K emulator in
a managed language, but believe it or not, one does

7https://www.codeproject.com/Articles/998595/CPS-NET-a-Csharp-based-CPS-MAME-emulator

13

exist. There is an old Capcom arcade system called
the CPS1, or Capcom Play System 1. It was used as
a hardware platform for Street Fighter II and other
classic games. Somebody went to the trouble of cre-
ating an emulator for this thing, with a full-featured
debugger, totally capable of playing the games with
smooth video and sound, right on Code Project.7

I began to heavily modify this emulator, com-
pletely gutting all the video-related code and display
hardware, and all the timers and other stuff unique
to the CPS1. I spent a not-insignificant amount of
time refactoring this application so it was just a Mo-
torola 68K CPU core, and with the ability to extend
it with details about the PCM hardware.8

Once I had this Motorola 68K emulator in C], it
was time to get it to boot the 2001 Pontiac Trans
Am image. I fire it up, and find that it immediately
encounters an illegal instruction. I can’t say I’m
very surprised – I proceed to take a look at what’s
at that memory address in IDA Pro.

When going to the memory address of the ille-
gal instruction, I saw something I didn’t expect to
see. . . a TBLU instruction. What in the world? I
know I’ve never seen it before, certainly not in any
Sega Genesis ROM disassembly I’ve ever dealt with.
But, IDA Pro knew how to display it to me, so that
tells me it’s not actually an illegal instruction. So, I
look in the Motorola 68332 user manual,9 and look
up the TBLU instruction.

Without getting too into the weeds on instruc-
tion decoding, I’ll just say that this instruction basi-
cally performs a table lookup and calculates a value
based on precisely how far into the table you go, uti-
lizing both whole and fractional components. Why
in the world would a CPU need an instruction that
does this? Actually it’s very useful in exactly this
application, because it lets the PCM store complex
tables of engine performance information, and it can
quickly derive a precise value when communicating
with various pieces of hardware.

It’s all very fascinating I’m sure, but I just want
the emulator to not crash upon encountering this in-
struction, so I put a halfway-decent implementation
of that instruction into the C] emulator and move
on. Digging into Motorola 68K instruction decoding
enabled me to fix all sorts of bugs in the CPS1 em-
ulator that weren’t a problem for the games it was
emulating, but it was quite a problem for me.

6e328 : mov . b (byte_73dec) . l , ($FFFFFd48) .w
2 6e330 : mov . b (byte_73ded) . l , ($FFFFFd49) .w

6e338 : mov . b (byte_73dee) . l , ($FFFFFd4a) .w
4 6e340 : mov . b (byte_73dee) . l , ($FFFFFd4b) .w

6e348 : mov . b (byte_73dee) . l , ($FFFFFd4c) .w
6 6e350 : mov . b (byte_73dee) . l , ($FFFFFd4d) .w

6e358 : mov . b (byte_73def) . l , ($FFFFFd4e) .w
8 6e360 : mov . b (byte_73de4) . l , ($FFFFFc1a) .w

6e368 : mov . b (byte_73de8) . l , ($FFFFFc1c) .w
10 6e370 : andi . b #$F0 , ($FFFFFC1C) .w

6e376 : o r i . b #$E , ($FFFFFC1C) .w
12 6 e37c : b c l r #7, ($FFFFFC1F) .w

6e382 : bset #7, ($FFFFFC1A) .w
14 loop88 :

6 e388 : b t s t #7, ($FFFFFC1F) .w
16 6 e38e : beq . s loop88

6e390 : unlk a6
18 6e392 : r t s

Once I got past the instructions that the emu-
lator didn’t yet have support for, I’m now onto the
next problem. The emulator’s running. . . but now
it’s stuck in an infinite loop. The firmware appears
to keep testing bit 7 of memory address 0xFFFC1F
over and over, and won’t continue on until that bit
is set. Normally this code would make no sense,
since there doesn’t appear to be anything else in the
firmware that would make that value change, but
since 0xFFFC1F is within the range that I think is
memory-mapped I/O, this probably represents some
hardware register.

What this code does, I have no idea. Why we’re
waiting on bit 7 here, I have no idea. But, now that
I have an emulator, I don’t have to care one bit.10

8git clone https://github.com/brandonlw/pcmemulator
9unzip pocorgtfo16.pdf mc68332um.pdf

10We the editors politely apologize for this pun, which is entirely the fault of the author. –PML
11To be more accurate, I do this a few dozen more times and then happily move on.

14

I fix this by patching the emulator to always say
the bits are set when this memory address is ac-
cessed, and we happily move on.11 Isn’t emulation
grand?

else i f (address == 0xFFF70F)
2 return 0x02 | 0 x01 ;

else i f (address == 0xFFFC1F)
4 return −1; //0xFF

else i f (address == 0xFFF60E)
6 // . . .

Now I’ve finally gotten to the point that the
firmware has entered its main loop, which means it’s
functioning as well as I can expect, and I’m ready
to begin adding code that emulates the behavior of
the data link controller chip. Since I now know what
memory addresses represent the hardware registers
of the data link controller, I simply add code that
pretends there is no OBD2 request to receive, until
I start clicking buttons to simulate one.

I enter the bytes that make up an OBD2 re-
quest, and tell the emulator to simulate the data
link controller sending those bytes to the firmware
for processing. Nothing happens. Imagine that, yet
another problem to solve!

I scratched my head on this one for a long time,
but I finally remembered something from the forum
guide: the routines that handle OBD2 requests are
executed by “main scheduling routines.” If the pro-
cessing of messages is on a schedule, then that im-
plies some sort of hardware timer. You can’t sched-
ule something without an accurate timer. That
means the firmware must be keeping track of the
number of accurate ticks that pass. So if I check the
vector table, where the handlers for all interrupts
are defined, I ought to find the handler that triggers
scheduling events.

move . b #1 ,(Inter ruptVector108Flag) .w
2 move . l (InterruptVector108FlagCounter) .w, d3

addq . l #1, d3
4 move . l d3 , (InterruptVector108FlagCoutner) .w

cmpi . l #$7FFFFFFF, d3
6 bne . s lov_2a18c

j s r (Stop2700) . l
8 loc_2a18c :

j s r DoLotsOfHardwareRegisterReadsWrites
10 t s t . b (byte_FFFFAE6E) .w

bne . s locret_2A19E
12 j s r sub_71FC2

locret_2A19E :
14 r t s

This routine, whenever a specific user interrupt
fires, will set a flag to 1, and then increment a
counter by 1. As it turns out, this counter is checked
within the main loop – this is actually the number
of ticks since the firmware has booted. The OBD2
request handling routines only fire when a certain
number of ticks have occurred. So all I have to do
is simulate the triggering of this interrupt periodi-
cally, say every few milliseconds. I don’t know or
care what the real amount of time is, just as long as
it keeps happening. And when I do this, I find that
the firmware suddenly starts sending the responses
to the simulated data link controller! Finally I can
simulate OBD2 requests and their responses.

Now all I need to do is throw together some code
to brute-force through all the possible requests, and
set a “breakpoint” on the code that accesses the op-
tion flag.

Many hours later, I have it! With an actual re-
quest to look at, I can do some googling and see
that it utilizes “mode $22,” which is where GM stuffs
non-standard OBD2 requests, stuff that can poten-
tially change over time and across models. Request
$1102 seems to return the option flag, among other
things.

15

Now that I’ve found the OBD2 request in the
2001 Pontiac Trans Am, I can emulate my own
firmware image and send the same request to it.
Once I see where the code takes me, I can mod-
ify the byte appropriately, recalculate the firmware
checksum, reflash the chip in my programmer, resol-
der it back into the PCM, reassemble it and reattach
it to the car, hop in, and turn the key and hope for
the best.

I’m sorry to say that this doesn’t work.
Why? Who can say for sure? There are several

possibilities. The most plausible explanation is that
I just screwed up the soldering. A flash chip’s pins
can only take so much abuse, especially when I’m
the one holding the iron.

Or, since I discovered that this anti-theft sta-
tus is returned via a non-standard OBD2 request,
it’s possible that the request might just do some-
thing different between the two firmware images. It
doesn’t bode well that the two images were so dif-
ferent that I couldn’t find any code patterns across
both of them. My Cavalier came out in 1997 when
OBD2 was brand new, so it’s entirely possible that
the firmware is older than when GM thought to even
return this anti-theft status over OBD2.

What do I do now? I finally decide to give up
and buy a new car. But if I could do it over again,
I would spend more time figuring out exactly how
to flash a firmware image through the OBD2 port.
With that, I would’ve been free to experiment and
try over and over again until I was sure I got it right.
When I have to repeatedly desolder and resolder the
flash chip several times for each attempt, the poten-
tial for catastrophe is very high.

If you take anything away from this story, I hope
it’s this: if you’re faced with a problem, and you
come up with a really crazy idea, don’t be afraid to
try it. You might be surprised, it just might work,
and you just might get something out of it. The car
may still be sitting in a garage collecting dust, but I
did manage to get a functioning car computer emu-
lator out of it. My faithful companion did not die in
vain. And who knows, maybe someday he will live
again.

16

