
16:11 Rescuing Orphans and their Parents with Rules of Thumb2
by Travis Goodspeed KK4VCZ,

concerning Binary Ninja and the Tytera MD380.

Howdy y’all,
It’s a common problem when reverse engineering

firmware that an auto-analyzer will recognize only a
small fraction of functions, leaving the majority un-
recognized because they are only reached through
function pointers. In this brief article, I’ll show you
how to extend Binary Ninja to recognize nearly all
functions in a threaded MicroC-OS/II firmware im-
age for ARM Cortex M4. This isn’t a polished plu-
gin or anything as fancy as the internal functions
of Binary Ninja; rather, it’s a story of how to kick
a high brow tool with some low level hints to effi-
ciently carve up a target image.

We’ll begin with the necessary chore of loading
our image to the right base address and kicking off
the auto-analyzer against the interrupt vector han-
dlers. That will give us main() and its direct chil-
dren, but the auto-analyzer will predictably choke
when it hits the function that kicks off the threads,
which are passed as function pointers.

Next, we’ll take some quick theories about the
compiler’s behavior, test them for correctness, and
then use these rules of thumb to reverse engineer real
binaries. These rules won’t be true for every possi-
ble binary, but they happen to be true for Clang and
GCC, the only compilers that matter.

Loading Firmware
Binary Ninja has excellent loaders for PE and ELF
files, but raw firmware images require either conver-
sion or a custom loader script. You can find a full
loader script in the md380tools repository,34 but an
abbreviated version is shown in Figure 5.

The loader will open the firmware image, as well
as blank regions for SRAM and TCRAM. For full
reverse engineering, you will likely want to also load
an extracted core dump of a live device into SRAM.

Detecting Orphaned Function Calls
Unfortunately, this loader script will only identify
227 functions out of more than a thousand.35

1 >>> len (bv . f unc t i on s)
227

The majority of functions are lost because they
are only called from within threads, and the threads
are initialized through function pointers that the
autoanalyzer is unable to recognize. Given a sin-
gle image to reverse engineer, we might take the
time to hunt down the init_threads() function
and manually defined each thread entry point as
a function, but that quickly becomes tedious. In-
stead, let’s script the auto-analyzer to identify par-
ents from known child functions, rather than just
children from known parent functions.

Thumb2 uses a bl instruction, branch and link,
to call one function from another. This instruction
is 32 bits long instead of the usual 16, and in the
Thumb1 instruction set was actually two distinct
16-bit instructions. To redirect function calls, the
re-linking script of MD380Tools searches for every
32-bit word which, when interpreted as a bl, calls
the function to be hooked; it then overwrites those
words with bl instructions that call the new func-
tion’s address.

34git clone https://github.com/travisgoodspeed/md380tools
35Hit the backquote button to show the python console, just a like one o’ them vidya games.

52

c lass MD380View(BinaryView) :
2 """This c l a s s implements a view of the loaded firmware , fo r any image

tha t might be a firmware image for the MD380 or r e l a t e d radios loaded
4 to 0x0800C000 .

"""
6

def __init__(s e l f , data) :
8 BinaryView . __init__(s e l f , f i le_metadata = data . f i l e , parent_view = data)

s e l f . raw = data
10

@classmethod
12 def i s_valid_for_data (s e l f , data) :

hdr = data . read (0 , 0x160)
14 i f len (hdr) < 0x160 or len (hdr)>0x100000 :

return False
16 i f ord (hdr [0 x3]) != 0x20 :

Fir s t word i s the i n i t i a l s tack pointer , must be in SRAM around 0x20000000 .
18 return False

i f ord (hdr [0 x7]) != 0x08 :
20 # Second word i s the r e s e t vector , must be in Flash around 0x08000000 .

return False
22 return True

24 def init_common (s e l f) :
s e l f . p lat form = Arch i t ec ture ["thumb2"] . standalone_platform

26 s e l f . hdr = s e l f . raw . read (0 , 0x100001)

28 def init_thumb2 (s e l f , adr=0x08000000) :
try :

30 s e l f . init_common ()
s e l f . thumb2_offset = 0

32 s e l f . arm_entry_addr = s t ru c t . unpack ("<L" , s e l f . hdr [0 x4 : 0 x8]) [0]
s e l f . thumb2_load_addr = adr #s t ru c t . unpack("<L" , s e l f . hdr [0 x38 :0x3C]) [0]

34 s e l f . thumb2_size = len (s e l f . hdr) ;

36 code f l a g s=SegmentFlag . SegmentReadable | SegmentFlag . SegmentExecutable ;
ramf lags=code f l a g s | SegmentFlag . SegmentWritable ;

38
Add segment for SRAM, not backed by f i l e contents

40 s e l f . add_auto_segment (0 x20000000 , 0x20000 , #128K at address 0x20000000 .
0 , 0 , ramf lags)

42 # Add segment for TCRAM, not backed by f i l e contents
s e l f . add_auto_segment (0 x10000000 , 0x10000 , #64K at address 0x10000000 .

44 0 , 0 , ramf lags)
#Add a segment for t h i s Flash app l i ca t i on .

46 s e l f . add_auto_segment (s e l f . thumb2_load_addr , s e l f . thumb2_size ,
s e l f . thumb2_offset , s e l f . thumb2_size ,

48 code f l a g s)

50 #Define the RESET vector entry point .
s e l f . define_auto_symbol (Symbol (SymbolType . FunctionSymbol ,

52 s e l f . arm_entry_addr&~1, "RESET"))
s e l f . add_entry_point (s e l f . arm_entry_addr&~1)

54
#Define other en t r i e s o f the In te r rup t Vector Table (IVT)

56 for i v t index in range (8 ,0 x184+4 ,4) :
i v e c t o r=s t ru c t . unpack ("<L" , s e l f . hdr [i v t index : i v t index +4]) [0]

58 i f i v ec to r >0:
#Create the symbol , then the entry point .

60 s e l f . define_auto_symbol (Symbol (SymbolType . FunctionSymbol ,
i v e c t o r &~1, "vec_%x"%iv e c t o r))

62 s e l f . add_function (i v e c t o r &~1) ;
return True

64 except :
l og_error (traceback . format_exc ())

66 return False
def perform_is_executable (s e l f) :

68 return True

70 def perform_get_entry_point (s e l f) :
return s e l f . arm_entry_addr

72
c lass MD380AppView(MD380View) :

74 """MD380 Appl icat ion loaded to 0x0800C000 . """
name = "MD380"

76 long_name = "MD380 Flash Appl i cat ion "

78 def i n i t (s e l f) :
return s e l f . init_thumb2 (0 x0800c000)

80
MD380AppView . r e g i s t e r ()

Figure 5. MD380 Firmware Loader for Binary Ninja

53

To detect orphaned function calls, which exist in
the binary but have not been declared as code func-
tions, we can search backward from known function
entry points, just as the re-linker in MD380Tools
searches backward to redirection function calls!

Let’s begin with the code that calculates a bl in-
struction from a source address to a target. Notice
how each 16-bit word of the result has an F for its
most significant nybble. MD380Tools uses this same
trick to ignore function calls when comparing func-
tions to migrate symbols between target firmware
revisions.

def c a l c b l (adr , t a r g e t) :
2 """ Ca l cu l a t e s the Thumb code to branch

to a t a r g e t . """
4 o f f s e t = ta rg e t − adr

o f f s e t −= 4 # PC po in t s to next ins .
6 o f f s e t = (o f f s e t >> 1) # LSBit ignored

8 # Hi address s e t t e r , but at lower adr .
hi = 0xF000 | ((o f f s e t&0x3 f f 800)>>11)

10 # Low adr s e t t e r goes next .
l o = 0xF800 | (o f f s e t & 0 x7 f f)

12
word = ((l o << 16) | h i)

14 return word

This handy little function let us compare every
32-bit word in memory to the 32-bit word that would
be a bl from that address to our target function.
This works fine in Python because a typical Thumb2
firmware image is no more than a megabyte; we
don’t need to write a native plugin.

So for each word, we calculate a branch from
that address to our function entry point, and then
by comparison we have found all of the bl calls to
that function.

Knowing the source of a bl branch, we can then
check to see if it is in a function by asking Binary
Ninja for its basic block. If the basic block is None,
then the bl instruction is outside of a function, and
we’ve found an orphaned call.

prevfuncadr=
2 v . get_previous_funct ion_start_before (

s t a r t+i)
4 prevfunc=

v . get_function_at (prevfuncadr)
6 ba s i cb l o ck=

prevfunc . get_basic_block_at (s t a r t+i)

To catch data references to executable code, we
also look for data words with the function’s entry
address, which will catch things like interrupt vec-
tors and thread handlers, whose addresses are in a
constant pool, passed as a parameter to the function
that kicks of a new thread in the scheduler.

See Figure 6 for a quick and dirty plugin that
identifies orphaned function calls to currently se-
lected function. It will print the addresses of all or-
phaned called (those not in a known function) and
also data references, which are terribly handy for
recognizing the sources of callback functions.36

Detecting Starts of Functions

Now that we can identify orphaned function calls,
that is, bl instructions calling known functions from
outside of any known function, it would be nice
to identify where the function call’s parent begins.
That way, we could auto-analyze the firmware im-
age to identify all parents of known functions, letting
Binary Ninja’s own autoanalyzer identify the other
children of those parents on its own.

With a little luck, we can could crawl from a few
I/O functions all the way up to the UI code, then
all the way back down to leaf functions, and back to
all the code that calls them. This is especially im-
portant for firmware with an RTOS, as the thread
scheduling functions confuse an auto-analyzer that
only recognizes child functions.

First, we need to know what functions begin
with. To do that, we’ll just write a quick plugin
that prints the beginning of each function. I ran
this on a project with known symbols, to get a feel
for how the compiler produces functions.

1 #Exports func t i on p r e f i x e s to a f i l e .
def export funct ionpreambles (view) :

3 for fun in view . f unc t i on s :
print "%08x : %s %s" % (fun . s t a r t ,

5 hexdump(view . read (fun . s ta r t , 4)) ,
view . get_disassembly (fun . s ta r t ,

7 Arch i t e c tu r e ["thumb2"]))

9 PluginCommand . r e g i s t e r (
"Export Function Preambles " ,

11 " Pr in t s f our bytes f o r each func t i on . " ,
export funct ionpreambles) ;

36As I write this, Binary Ninja seems to only recognize data references which are themselves used in a known function or that
function’s constant pool. It’s handy to manually search beyond that range, especially when a core dump of RAM is available.

54

1 def thumb2f indorphanedca l l s (view , fun) :
i f fun . arch . name!="thumb2" :

3 print "Sorry , t h i s only works f o r thumb2 , not f o r %s . " % fun . arch . name ;
return ;

5 print " Search ing f o r c a l l s to %s at 0x%x . " % (fun . name , fun . s t a r t) ;

7 #Fix the se to match the image .
s t a r t=view . s t a r t ;

9 count=None ;

11 #I f we ’ re lucky , the branch i s in a segment , which we can use as a
#range .

13 for seg in view . segments :
i f seg . s t a r t <fun . s t a r t and seg . end>fun . s t a r t :

15 count=seg . end−s t a r t ;
i f count==None :

17 print "Abandoned search f o r orphaned c a l l s to %s as out o f range . " % fun . name ;

19 print " Search ing from 0x%08x to 0x%08x . " % (s ta r t , s t a r t+count)
data=view . read (s ta r t , count) ;

21 count=len (data) ;

23 for i in xrange (0 , count −2 ,2) :
word=(ord (data [i])

25 | (ord (data [i +1])<<8)
| (ord (data [i +2])<<16)

27 | (ord (data [i +3])<<24)) ;
i f word==ca l c b l (s t a r t+i , fun . s t a r t) :

29 prevfuncadr=view . get_previous_funct ion_start_before (s t a r t+i) ;
prevfunc=view . get_function_at (prevfuncadr)

31 ba s i cb l o ck=prevfunc . get_basic_block_at (s t a r t+i) ;
i f ba s i cb l o ck !=None :

33 #We’ re in a func t i on .
print "%08x : %s " % (s t a r t+i , prevfunc . name) ;

35 i f prevfunc . s t a r t !=beginningofthumb2funct ion (view , s t a r t+i) :
print "ERROR: Does the func t i on s t a r t at %x or %x?" % (

37 prevfunc . s t a r t ,
beg inningofthumb2funct ion (view , s t a r t+i)) ;

39 else :
#We’ re not in a func t i on .

41 print "%08x : ORPHANED! " % (s t a r t+i) ;
e l i f word==((fun . s t a r t) | 1) :

43 print "%08x : DATA! " % (s t a r t+i) ;

45
PluginCommand . r eg i s t e r_ fo r_ func t i on (

47 "Find Orphaned Ca l l s " ,
"Finds orphaned thumb2 c a l l s to t h i s func t i on . " ,

49 thumb2f indorphanedca l l s) ;

Figure 6. This finds all calls from unregistered functions to the selected function.

55

Running this script shows us that functions be-
gin with a number of byte pairs. As these convert
to opcodes, let’s play with the most common ones
in assembly language!

fff7 febf is an unconditional branch-to-self, or
an infinite while loop. You’ll find this at all of the
unused interrupt vector handlers, and as it has no
children, we can ignore it for the purposes of work-
ing backward to a function definition, as it never
calls another function. 7047 is bx lr, which sim-
ply returns to the calling function. Again, it has no
child functions, so we can ignore it.

80b5 is push {r7, lr}, which stores the link
register so that it can call a child function. Simi-
larly, 10b5 pushes r4 and lr so that it can call a
child function. f8b5 pushes r3, r4, r5, r6, r7, and
lr. In fact, any function that calls children will
begin by pushing the link register, and functions
generated by a C compiler seem to never push lr
anywhere except at the beginning.

So we can write a quick little function that walks
backward from any bl instruction that we find out-
side of known functions until it finds the entry point.
We can also test this routine whenever we have a
known function entry point, as a sanity check that
we aren’t screwing up the calculations somehow.

#I d e n t i f i e s the entry po in t o f a funct ion ,
2 #given an address .

def beginningofthumb2funct ion (view , adr) :
4 """ I d e n t i f i e s the s t a r t o f the thumb2

func t ion tha t inc lude adr . """
6 print " Search ing from %x . " % adr

8 a=adr ;
while a>view . s t a r t :

10 d i s=view . get_disassembly (a ,
Arch i t e c tu r e ["thumb2"])

12 i f "push" in d i s :
i f " l r " in d i s :

14 print "Found entry at 0x%08x"%a ;
return a ;

16 a−=2;

18 PluginCommand . r eg i s t e r_fo r_addre s s (
"Find Beginning o f Function" ,

20 "Find the beg inn ing o f a thumb2 fn . " ,
beg inningofthumb2funct ion) ;

This seems to work well enough for a few exam-
ples, but we ought to check that it works for every bl
address. After thorough testing it seems that this is
almost always accurate, with rare exceptions, such
as noreturn functions, that we’ll discuss later in this
paper. Happily, these exceptions aren’t much of a

problem, because the false positive in these cases is
still the starting address of some function, confus-
ing our plugin but not ruining our database with
unreliable entries.

– — — – — — — — – — –
So now that we can both identify orphaned calls

from parent functions to a child and the backward
reference from a child to its parent, let’s write a rou-
tine that registers all parents within Binary Ninja.

1 #We’ re not in a func t i on .
print "%08x : ORPHANED! " % (s t a r t+i) ;

3 #Reg i s t e r t ha t func t i on
adr=beginningofthumb2funct ion (view , s t a r t+i) ;

5 view . define_auto_symbol (
Symbol (SymbolType . FunctionSymbol ,

7 adr , "fun_%x"%adr))
view . add_function (adr) ;

And if we can do this for one function, why not
automate doing it for all known functions, to try
and crawl the database for every unregistered func-
tion in a few passes? A plugin to register parents of
one function is shown in Figure 6, and it can easily
be looped for all functions.

Unfortunately, after running this naive imple-
mentation for seven minutes, only one hundred new
functions are identifies; a second run takes twenty
minutes, resulting in just a couple hundred more.
That is way too damned slow, so we’ll need to clean
it up a bit. The next sections cover those improve-
ments.

Better in Big-O
We are scanning all bytes for each known function,
when we ought to be scanning for all potential calls
and then white-listing the ones that are known to
be within functions. To fix that, we need to gen-
erate quick functions that will identify potential bl
instructions and then check to see if their targets
are in the known function database. (Again, we ig-
nore unknown targets because they might be false
positives.)

Recognizing a bl instruction is as easy as check-
ing that each half of the 32-bit word begins with an
F.

def i s b l (word) :
2 """Returns t rue i f the word might be

a BL in s t r u c t i on . """
4 return (word&0xF000F000)==0xF000F000 ;

56

We can then decode the absolute target of that
relative branch by inverting the calcbl() function
from page 54.

def decodebl (adr , word) :
2 """Decodes a Thumb BL in s t r u c t i on i t s

va lue and address . """
4

#Hi and Lo r e f e r to adr components .
6 #The Hi word comes f i r s t .

hi=word&0xFFFF;
8 l o=(word&0xFFFF0000)>>16

10 #Decode the word .
r h i=(h i&0x0FFF)<<11

12 r l o=(l o&0x7FF)
recovered=rh i | r l o ;

14
#Sign−extend backward r e f e r ence s .

16 i f (r ecovered&0x00200000) :
r ecovered |=0xFFC00000 ;

18
#Apply the o f f s e t and s t r i p over f l ow

20 o f f s e t=4+(recovered <<1) ;
return (o f f s e t+adr)&0xFFFFFFFF;

With this, we can now efficiently identify the tar-
gets of all potential calls, adding them to the func-
tion database if they both (1) are the target of a
bl and (2) begin by pushing the link register to the
stack. This finds sixteen hundred functions in my
target, in the blink of an eye and before looking at
any parents.

Then, on a second pass, we can register three
hundred parents that are not yet known after the
first pass. This stage is effective, finding nearly all
unknown functions that return, but it takes a lot
longer.

1 >>> len (bv . f unc t i on s)
1913

Patriarchs are Slow as Dirt
So why can the plugin now identify children so
quickly, while still slowing to molasses when identi-
fying parents? The reason is not the parents them-
selves, but the false negatives for the patriarch func-

tions, those that don’t push the link register at their
beginning because they never use it to return.

For every call from a function that doesn’t re-
turn, all 568 calls in my image, our tool is now
wasting some time to fail in finding the entry point
of every outbound function call.

But rather than the quick fix, which would be
to speed up these false calls by pre-computing their
failure through a ranged lookup table, we can use
them as an oracle to identify the patriarch functions
which never return and have no direct parents. They
should each appear in localized clumps, and each of
these clumps ought to be a single patriarch function.
Rather than the 568 outbound calls, we’ll then only
be dealing with a few not-quite-identified functions,
eleven to be precise.

These eleven functions can then be manually in-
vestigated, or ignored if there’s no cause to hook
them.

>>> len (bv . f unc t i on s)
2 1924

– — — – — — — — – — –
This paper has stuck to the Thumb2 instruction

set, without making use of Binary Ninja’s excellent
intermediate representations or other advanced fea-
tures. This makes it far easier to write the plugin,
but limits portability to other architectures, which
will violate the convenient rules that we’ve found for
this one. In an ideal world we’d do everything in the
intermediate language, and in a cruel world we’d do
all of our analysis in the local machine language, but
perhaps there’s a proper middle ground, one where
short-lived scripts provide hints to a well-engineered
back-end, so that we can all quickly tear apart tar-
get binaries and learn what these infernal machines
are really thinking?

You should also be sure to look at the IDA
Python Embedded Toolkit by Maddie Stone, whose
Recon 2017 talk helped inspire these examples.37

73 from Barcelona,
–Travis

37git clone https://github.com/maddiestone/IDAPythonEmbeddedToolkit

57

