
17:05 Up close and personal with Ethernet.
by Andrew D. Zonenberg,

because real hackers don’t need PHYs or NICs!

If you’re reading this, you’ve almost certainly
used Ethernet on a PC by means of the BSD sockets
API. You’ve probably poked around a bit in Wire-
shark and looked at the TCP/IP headers on your
packets. But what happens after the kernel pushes a
completed Ethernet frame out to the network card?

A PC network card typically contains three main
components. These were separate chips in older de-
signs, but many modern cards integrate them all
into one IC. The bus controller speaks PCIe, PCI,
ISA, or some other protocol to the host system, as
well as generating interrupts and handling DMA.
The MAC (Media Access Controller) is primarily
responsible for adding the Ethernet framing to the
outbound packet. The MAC then streams the out-
bound packet over a “reconciliation sublayer” inter-
face to the PHY (physical layer), which converts the
packet into electrical or optical impulses to travel
over the cabling. This same process runs in the op-
posite direction for incoming packets.

In an embedded microcontroller or SoC plat-
form, the bus controller and MAC are typically in-
tegrated on the same die as the CPU, however the
PHY is typically a separate chip. FPGA-based sys-
tems normally implement a MAC on the FPGA and
connect to an external PHY as well; the bus con-
troller may be omitted if the FPGA design sends
data directly to the MAC. Although the bus con-
troller and its firmware would be an interesting tar-
get, this article focuses on the lowest levels of the
stack.

MII and Ethernet framing

The reconciliation sublayer is the lowest (fully digi-
tal) level of the Ethernet protocol stack that is typ-
ically exposed on accessible PCB pins. For 10/100
Ethernet, the base protocol is known as MII (Media
Independent Interface). It consists of seven digital
signals each for the TX and RX buses: a clock (2.5
MHz for 10Base-T, 25 MHz for 100Base-TX), a data
valid flag, an error flag, and a 4-bit parallel bus con-
taining one nibble of packet data. Other commonly
used variants of the protocol include RMII (reduced-
pin MII, a double-data-rate version, which uses less
pins), GMII (gigabit MII, that increases the data
width to 8 bits and the clock to 125 MHz), and
RGMII (a DDR version of GMII using less pins). In
all of these interfaces, the LSB of the data byte/nib-
ble is sent on the wire first.

An Ethernet frame at the reconciliation sublayer
consists of a preamble (seven bytes of 0x55), a start
frame delimiter (SFD, one byte of 0xD5), the 6-byte
destination and source MAC addresses, a 2-byte
EtherType value indicating the upper layer protocol
(for example 0x0800 for IPv4 or 0x86DD for IPv6),
the packet data, and a 32-bit CRC-32 of the packet
body (not counting preamble or SFD). The byte val-
ues for the preamble and SFD have a special signifi-
cance that will be discussed in the following section.

10Base-T Physical Layer

The simplest form of Ethernet still in common use
is known as 10Base-T (10 Mbps, baseband signal-
ing, twisted pair media). It runs over a cable con-
taining two twisted pairs with 100 ohm differential
impedance. Modern deployments typically use Cat-
egory 5 cabling, which contains four twisted pairs.
The orange and green pairs are used for data (one
pair in each direction), while the blue and brown
pairs are unused.

When the line is idle, there is no voltage dif-
ference between the positive (white with stripe) and
negative (solid colored) wires in the twisted pair. To
send a 1 or 0 bit, the PHY drives 2.5V across the
pair; the direction of the difference indicates the bit
value. This technique allows the receiver to reject
noise coupled into the signal from external electro-

21

magnetic fields: since the two wires are very close to-
gether the induced voltages will be almost the same,
and the difference is largely unchanged.

Unfortunately, we cannot simply serialize the
data from the MII bus out onto the differential
pair; that would be too easy! Several problems can
arise when connecting computers (potentially sev-
eral hundred feet apart) with copper cables. First,
it’s impossible to make an oscillator that runs at ex-
actly 20 MHz, so the oscillators providing the clocks
to the transmit and receive NIC are unlikely to be
exactly in sync. Second, the computers may not
have the same electrical ground. A few volts offset
in ground between the two computers can lead to
high current flow through the Ethernet cable, po-
tentially destroying both NICs.

In order to fix these problems, an additional line
coding layer is used: Manchester coding. This is
a simple 1:2 expansion that replaces a 0 bit with
01 and a 1 bit with 10, increasing the raw data rate
from 10 Mbps (100 ns per bit) to 20 Mbps (50 ns per
bit). This results in a guaranteed 1–0 or 0–1 edge
for every data bit, plus sometimes an additional edge
between bits.

Since every bit has a toggle in the middle of it,
any 100 ns period without one must be the space be-
tween bits. This allows the receiver to synchronize
to the bit stream; and then the edge in the middle
of each bit can be decoded as data and the receiver
can continually adjust its synchronization on each
edge to correct for any slight mismatches between
the actual and expected data rate. This property of
Manchester code is known as self clocking.

Another useful property of the Manchester code
is that, since the signal toggles at a minimum rate of
10 MHz, we can AC couple it through a transformer
or (less commonly) capacitors. This prevents any
problems with ground loops or DC offsets between
the endpoints, as only changes in differential voltage
pass through the cables.

We now see the purpose of the 55 55 ... D5
preamble: the 0x55’s provide a steady stream of
meaningless but known data that allows the receiver
to synchronize to the bit clock, then the 0xD5 has
a single bit flipped at a known position. This al-
lows the receiver to find the boundary between the
preamble and the packet body.

That’s it! This is all it takes to encode and de-
code a 10Base-T packet. Figure 6 shows what this
waveform actually looks like on an oscilloscope.

One last bit to be aware of is that, in between
packets, a link integrity pulse (LIT) is sent every 16
milliseconds of idle time. This is simply a +2.5V
pulse about 100 ns long, to tell the remote end, “I’m
still here.” The presence or absence of LITs or data
traffic is how the NIC decides whether to declare the
link up.

By this point, dear reader, you’re probably
thinking that this doesn’t sound too hard to bit-
bang — and you’d be right! This has in fact been
done, most notably by Charles Lohr on an ATTiny
microcontroller.13 All you need is a pair of 2.5V
GPIO pins to drive the output, and a single input
pin.

100Base-TX Physical Layer

The obvious next question is, what about the next
step up, 100Base-TX Ethernet? A bit of Googling
failed to turn up anyone who had bit-banged it. How
hard can it really be? Let’s take a look at this pro-
tocol in depth!

First, the two ends of the link need to decide
what speed they’re operating at. This uses a clever
extension of the 10Base-T LIT signaling: every 16
ms, rather than sending a single LIT, the PHY sends
17 pulses – identical to the 10Base-T LIT, but re-
named fast link pulse (FLP) in the new standard
– at 125 µs spacing. Each pair of pulses may op-
tionally have an additional pulse halfway between
them. The presence or absence of this additional
pulse carries a total of 16 bits of data.

Since FLPs look just like 10Base-T LITs, an
older PHY which does not understand Ethernet
auto-negotiation will see this stream of pulses as
a valid 10Base-T link and begin to send packets.
A modern PHY will recognize this and switch to
10Base-T mode. If both ends support autonego-
tiation, they will exchange feature descriptors and
switch to the fastest mutually-supported operating
mode.

Figure 7 shows an example auto-negotiation
frame. The left 5 data bits indicate this is an 802.3
base auto-negotiation frame (containing the feature
bitmask); the two 1 data bits indicate support for
100Base-TX at both half and full duplex.

Supposing that both ends have agreed to operate
at 100Base-TX, what happens next? Let’s look at
the journey a packet takes, one step at a time from
the sender’s MII bus to the receiver’s.

13git clone https://github.com/cnlohr/ethertiny || unzip pocorgtfo17.pdf ethertiny.zip

22

Figure 6. 10Base-T Waveform

Figure 7. Autonegotiation Frame

First, the 4-bit nibble is expanded into 5 bits by
a table lookup. This 4B/5B code adds transitions to
the signal just like Manchester coding, to facilitate
clock synchronization at the receiver. Additionally,
some additional codes (not corresponding to data
nibbles) are used to embed control information into
the data stream. These are denoted by letters in the
standard.

The first two nibbles of the preamble are then
replaced with control characters J and K. The re-
maining nibbles in the preamble, SFD, packet, and
CRC are expanded to their 5-bit equivalents. Con-
trol characters T and R are appended to the end of
the packet. Finally, unlike 10Base-T, the link does
not go quiet between packets; instead, the control
character I (idle) is continuously transmitted.

The encoded parallel data stream is serialized to
a single bit at 125 Mbps, and scrambled by XOR-
ing it with a stream of pseudorandom bits from a
linear feedback shift register, using the polynomial
x11 + x9 + 1. If the data were not scrambled, pat-
terns in the data (especially the idle control char-
acter) would result in periodic signals being driven
onto the wire, potentially causing strong electromag-
netic interference in nearby equipment. By scram-
bling the signal these patterns are broken up, and
the radiated noise emits weakly across a wide range
of frequencies rather than strongly in one.

Finally, the scrambled data is transmitted using

a rather unusual modulation known as MLT-3. This
is a pseudo-sine waveform which cycles from 0V to
+1V, back to 0V, down to −1V, and then back to
0 again. To send a 1 bit the waveform is advanced
to the next cycle; to send a 0 bit it remains in the
current state for 8 nanoseconds. The following is an
example of MLT-3 coded data transmitted by one
of my Cisco switches, after traveling through sev-
eral meters of cable.

MLT-3 is used because it is far more spectrally
efficient than the Manchester code used in 10Base-
T. Since it takes four 1 bits to trigger a full cycle
of the waveform, the maximum frequency is 1/4 of
the 125 Mbps line rate, or 31.25 MHz. This is only
about 1.5 times higher than the 20 MHz bandwidth
required to transmit 10Base-T, and allows 100Base-
TX to be transmitted over most cabling capable of
carrying 10Base-T.

The obvious question is, can we bit-bang it? Cer-
tainly! Since I didn’t have a fast enough MCU, I
built a test board (Figure 8) around an old Spartan-
6 FPGA left over from an abandoned project years
ago.

23

Figure 8. Spartan-6 Test Board

24

Bit-Banging 100Base-TX

A block diagram of the PHY, randomly code-named
TRAGICLASER by @NSANameGen14, is shown in
Figure 9.

The transmit-side 4B/5B coding, serializing, and
LFSR scrambler are straightforward digital logic at
moderate to slow clock rates in the FPGA, so we
won’t discuss their implementation in detail.

Generating the signal requires creating three dif-
ferential voltages: 0, +1, and −1. Since most FPGA
I/O buffers cannot operate at 1.0V, or output neg-
ative voltages, a bit of clever circuitry is required.

We use a pair of 1K ohm resistors to bias the
center tap of the output transformer to half of the
3.3V supply voltage (1.65V). The two ends of the
transformer coil are connected to FPGA I/O pins.
Since each I/O pin can pull high or low, we have
a form of the classic H-bridge motor driver circuit.
By setting one pin high and the other low, we can
drive current through the line in either direction.
By tri-stating both pins and letting the terminating
resistor dissipate any charge built up in the cable
capacitance, we can create a differential 0 state.

Since we want to drive +/− 1V rather than 3.3V,
we need to add a resistor in series with the FPGA
pins to reduce the drive current such that the re-
ceiver sees 1V across the 100 ohm terminator. Ex-
perimentally, good results were obtained with 100
ohm resistors in series with a Spartan-6 FPGA pin
configured as LVCMOS33, fast slew, 24 mA drive.
For other FPGAs with different drive characteris-
tics, the resistor value may need to be slightly ad-
justed. This circuit is shown in Figure 10.

This produced a halfway decent MLT-3 wave-
form, and one that would probably be understood
by a typical PHY, but the rise and fall times as the
signal approached the 0V state were slightly slower
than the 5 ns maximum permitted by the 802.3 stan-
dard (see Figure 11).

The solution to this is a clever technique from
the analog world known as pre-emphasis. This is a
fancy way of saying that you figure out what dis-
tortions your signal will experience in transit, then
apply the reverse transformation before sending it.
In our case, we have good values when the signal is
stable but during the transitions to zero there’s not
enough drive current. To compensate, we simply
need to give the signal a kick in the right direction.

Luckily for us, 10Base-T requires a pretty hefty
dose of drive current. In order to ensure we could
drive the line hard enough, two more FPGA pins
were connected in parallel to each side of the TX-
side transformer through 16-ohm resistors. By par-
alleling these two pins, the available current is sig-
nificantly increased.

After a bit of tinkering, I discovered that by
configuring one of the 10Base-T drive pins as LVC-
MOS33, slow slew, 2 mA drive, and turning it on for
2 nanoseconds during the transition from the +/−1
state to the 0 state, I could provide just enough
of a shove that the signal reached the zero mark
quickly while not overshooting significantly. Since
the PHY itself runs at only 125 MHz, the Spartan-6
OSERDES2 block was used to produce a pulse last-
ing 1/4 of a PHY clock cycle. Figure 12 shows the
resulting waveforms.15

At this point sending the auto-negotiation wave-
forms is trivial: The other FPGA pin connected to
the 16 ohm resistor is turned on for 100 ns, then
off. With a Spartan-6 I had good results with LVC-
MOS33, fast slew, 24 mA drive for these pins. If ad-
ditional drive strength is required the pre-emphasis
drivers can be enabled in parallel, but I didn’t find
this to be necessary in my testing.

These same pins could easily be used for 10Base-
T output as well (to enable a dual-mode 10/100
PHY) but I didn’t bother to implement this. People
have already demonstrated successful bitbanging of
10Base-T, and it’s not much of a POC if the concept
is already proven.

That’s it, we’re done! We can now send 100Base-
TX signals using six FPGA pins and six resistors!

Decoding 100Base-TX

Now that we can generate the signals, we have to
decode the incoming data from the other side. How
can we do this?

Most modern FPGAs are able to accept differ-
ential digital inputs, such as LVDS, using the I/O
buffers built into the FPGA. These differential in-
put buffers are essentially comparators, and can be
abused into accepting analog signals within the op-
erating range of the FPGA.

By connecting an input signal to the positive
input of several LVDS input buffers, and driving
the negative inputs with an external resistor ladder,

14https://twitter.com/NSANameGen/status/910628839566594050
15This wavefrom was captured with a 115 ohm drive resistor instead of 100, causing the output voltage to be closer to 0.9V

than the intended 1.0V. After correcting the resistor value, the amplitude was close to perfect.

25

Figure 9. TRAGICLASER Block Diagram

Figure 10. H-Bridge Schematic

26

Figure 11. Halfway-Decent Waveform

27

Figure 12. Waveform using Premphasis

we can create a low-resolution flash ADC! Since we
only need to distinguish between three voltage lev-
els (there’s no need to distinguish the +1 and +2.5,
or −1 and −2.5, states as they’re never used at the
same time) we can use two comparators to create an
ADC with approximately 1.5 bit resolution.

There’s just one problem: this is a single-ended
ADC with an input range from ground to Vdd, and
our incoming signal is differential with positive and
negative range. Luckily, we can work around this
by tying the center tap of the transformer to 1.65V
via equal valued resistors to 3.3V and ground, thus
biasing the signal into the 0–3.3V range. See Fig-
ure 13.

After we connect the required 100 ohm terminat-
ing resistor across the transformer coil, the voltages
at the positive and negative sides of the coil should
be equally above and below 1.65V. We can now con-
nect our ADC to the positive side of the coil only,
ignoring the negative leg entirely aside from the ter-
mination.

The ADC is sampled at 500 Msps using the
Spartan-6 ISERDES. Since the nominal data rate
is 125 Mbps, we have four ADC samples per unit
interval (UI). We now need to recover the MLT-3
encoded data from the oversampled data stream.

The MLT-3 decoder runs at 125 MHz and pro-

cesses 4 ADC samples per cycle. Every time the
data changes the decoder outputs a 1 bit. Every
time the data remains steady for one UI, plus an
additional sample before and after, the decoder out-
puts a 0 bit. (The threshold of six ADC samples was
determined experimentally to give the best bit error
rate.) The decoder nominally outputs one data bit
per clock however due to jitter and skew between
the TX and RX clocks, it occasionally outputs zero
or two bits.

The decoded data stream is then deserialized
into 5-bit blocks to make downstream processing
easier. Every 32 blocks, the last 11 bits from the
MLT-3 decoder are complemented and loaded into
the LFSR state. Since the 4B/5B idle code is
0x1F (five consecutive 1 bits), the complement of
the scrambled data between packets is equal to the
scrambler PRNG output. An LFSR leaks 1 bit of
internal state per output bit, so given N consecu-
tive output bits from a N-bit LFSR, we can recover
the entire state. The interval of 32 blocks (160 bits)
was chosen to be relatively prime to the 11-bit LFSR
state size.

After the LFSR is updated, the receiver begins
XOR-ing the scrambler output with the incoming
data stream and checks for nine consecutive idle
characters (45 bits). If present, we correctly guessed

28

Figure 13. Biasing Schematic

the location of an inter-packet gap and are locked to
the scrambler, with probability 1− (2−45) of a false
lock due to the data stream coincidentally match-
ing the LFSR output. If not present, we guessed
wrong and re-try every 32 data blocks until a lock
is achieved. Since 100Base-TX specifies a minimum
96-bit inter-frame gap, and we require 45 + 11 = 56
idle bits to lock, we should eventually guess right
and lock to the scrambler.

Once the scrambler is locked, we can XOR the
scrambler output (5 bits at a time) with the incom-
ing 5-bit data stream. This gives us cleartext 4B/5B
data, however we may not be aligned to code-word
boundaries. The idle pattern doesn’t contain any
bit transitions so there’s no clues to alignment there.
Once a data frame starts, however, we’re going to
see a J+K control character pair (11000 10001). The
known position of the zero bits allows us to shift the
data by a few bits as needed to sync to the 4B/5B
code groups.

Decoding the 4B/5B is a simple table lookup
that outputs 4-bit data words. When the J+K or
T+R control codes are seen, a status flag is set to
indicate the start or end of a packet.

If an invalid 5-bit code is seen, an error counter is
incremented. Sixteen code errors in a 256-codeword
window, or four consecutive packet times without
any inter-frame gap, indicate that we may have lost
sync with the incoming data or that the cable may
have been unplugged. In this case, we reset the en-
tire PHY circuit and attempt to re-negotiate a link.

The final 4-bit data stream may not be running
at exactly the same speed as the 25 MHz MII clock,
due to differences between TX and RX clock do-
mains. In order to rate match, the 4-bit data com-
ing off the 4B/5B decoder (excluding idle charac-

ters) is fed into an 32-nibble FIFO. When the FIFO
reaches a fill of 16 nibbles (8 bytes), the PHY be-
gins to stream the inbound packet out to the MII
bus. We can thus correct for small clock rate mis-
matches, up to the point that the FIFO underflows
or overflows during one packet time.

29

Test Results

In my testing, the TRAGICLASER PHY was able
to link up with both my laptop and my Cisco switch
with no issues through an approximately 2-meter
patch cable. No testing with longer cables was per-
formed because I didn’t have anything longer on
hand, however since the signal appears to pass the
802.3 eye mask I expect that the transmitter would
be able to drive the full 100m cable specified in the
standard with no difficulties. The receiver would
likely start to fail with longer cables since I’m not
doing equalization or adaptive thresholding, how-
ever I can’t begin to guess how much you could get
actually away with. If anybody decides to try, I’d
love to hear your results!

My test bitstream doesn’t include a full 10/100
MAC, so verification of incoming data from the LAN
was conducted with a logic analyzer on the RX-side
MII bus. (Figure 14.)

The transmit-side test sends a single hard-coded
UDP broadcast packet in a loop. I was able to pick
it up with Wireshark (Figure 15) and decode it. My
switch did not report any RX-side CRC errors dur-
ing a 5-minute test period sending at full line rate.

In my test with default optimization settings, the
PHY had a total area of 174 slices, 767 LUT6s, and
8 LUTRAMs as well as four OSERDES2 and two
ISERDES2 blocks. This is approximately 1/4 of the
smallest Spartan-6 FPGA (XC6SLX4) so it should
be able to comfortably fit into almost any FPGA
design. Additionally, twelve external resistors and
an RJ-45 jack with integrated isolation transformer
were required.

Further component reductions could be achieved
if a 1.5 or 1.8V supply rail were available on the
board, which could be used (along with two exter-
nal resistors) to inject the DC bias into the coupling
transformer taps at a savings of two resistors. An
enterprising engineer may be tempted to use the in-
ternal 100 ohm differential terminating resistors on
the FPGA to eliminate yet another passive at the
cost of two more FPGA pins, however I chose not to
go this route because I was concerned that dissipat-
ing 10 mW in the input buffer might overheat the
FPGA.

Overall, I was quite surprised at how well the
PHY worked. Although I certainly hoped to get it
to the point that it would be able to link up with
another PHY and send packets, I did not expect the
TX waveform to be as clean as it was. Although
the RX likely does not meet the full 802.3 sensi-
tivity requirements, it is certainly good enough for
short-range applications. The component cost and
PCB space used by the external passives compare fa-
vorably with an external 10/100 PHY if standards
compliance or long range are not required.

Source code is available in my Antikernel
project.16

16git clone https://github.com/azonenberg/antikernel || unzip pocorgtfo17.zip antikernel.zip

30

Figure 14. Receiver Verification

Figure 15. Wireshark

31

17:06 The DIP Flip Whixr Trick:
An Integrated Circuit That Functions in Either Orientation

by Joe “Kingpin” Grand

Hardware trickery comes in many shapes and
sizes: implanting add-on hardware into a finished
product, exfiltrating data through optical, thermal,
or electromagnetic means, injecting malicious code
into firmware, BIOS, or microcode, or embedding
Trojans into physical silicon. Hackers, governments,
and academics have been playing in this wide open
field for quite some time and there’s no sign of things
slowing down.

This PoC, inspired by my friend Whixr of
#tymkrs, demonstrates the feasibility of an IC be-
having differently depending on which way it’s con-
nected into the system. Common convention states
that ICs must be inserted in their specified orien-
tation, assisted by the notch or key on the device
identifying pin 1, in order to function properly.

So, let’s defy this convention!
– — — – — — — — – — –

Most standard chips, like digital logic devices
and microcontrollers, place the power and ground
connections at corners diagonal from each other. If
one were to physically rotate the IC by 180 degrees,
power from the board would connect to the ground
pin of the chip or vice versa. This would typically
result in damage to the chip, releasing the magic
smoke that it needs to function. The key to this
PoC was finding an IC with a more favorable pin
configuration.

While searching through microcontroller data
sheets, I came across the Microchip PIC12F629.
This particular 8-pin device has power and GPIO
(General Purpose I/O) pins in locations that would
allow the chip to be rotated with minimal risk. Of
course, this PoC could be applied to any chip with
a suitable pin configuration.

In the pinout drawing, which shows the chip from
above in its normal orientation, arrows denote the
alternate functionality of that particular pin when
the chip is rotated around. Since power (VDD) is
normally connected to pin 1 and ground (VSS) is
normally connected to pin 8, if the chip is rotated,
GP2 (pin 5) and GP3 (pin 4) would connect to power
and ground instead. By setting both GP2 and GP3
to inputs in firmware and connecting them to power
and ground, respectively, on the board, the PIC will
be properly powered regardless of orientation.

– — — – — — — — – — –

I thought it would be fun to change the data
that the PIC sends to a host PC depending on its
orientation.

On power-up of the PIC, GP1 is used to detect
the orientation of the device and set the mode ac-
cordingly. If GP1 is high (caused by the pull-up
resistor to VCC), the PIC will execute the normal
code. If GP1 is low (caused by the pull-down re-
sistor to VSS), the PIC will know that it has been
rotated and will execute the alternate code. This
orientation detection could also be done using GP5,
but with inverted polarity.

The PIC’s UART (asynchronous serial) output
is bit-banged in firmware, so I’m able to reconfigure
the GPIO pins used for TX and RX (GP0 and GP4)
on-the-fly. The TX and RX pins connect directly to
an Adafruit FTDI Friend, which is a standard FTDI
FT232R-based USB-to-serial adapter. The FTDI
Friend also provides 5V (VDD) to the PoC.

In normal operation, the device will look for a
key press on GP4 from the FTDI Friend’s TX pin
and then repeatedly transmit the character ’A’ at
9600 baud via GP0 to the FTDI Friend’s RX pin.
When the device is rotated 180 degrees, the device
will look for a key press on GP0 and repeatedly
transmit the character ’B’ on GP4. As a key press
detector, instead of reading a full character from the
host, the device just looks for a high-to-low transi-
tion on the PIC’s currently configured RX pin. Since
that pin idles high, the start bit of any data sent
from the FTDI Friend will be logic low.

32

