
Audio Formats Reference

Brian Langenberger

April 19, 2010

Contents

1 Introduction 7

2 the Basics 9
2.1 Hexadecimal . 9
2.2 Signed integers . 10
2.3 Endianness . 11
2.4 Character Encodings . 11
2.5 PCM . 12

3 Waveform Audio File Format 13
3.1 the RIFF WAVE Stream . 13
3.2 the Classic ‘fmt’ Chunk . 13
3.3 the WAVEFORMATEXTENSIBLE ‘fmt’ Chunk 14
3.4 the ‘data’ Chunk . 14
3.5 Channel assignment . 15

4 Audio Interchange File Format 17
4.1 the AIFF file stream . 17
4.2 the COMM chunk . 17
4.3 the SSND chunk . 18

5 Sun AU 19
5.1 the Sun AU file stream . 19

6 Free Lossless Audio Codec 21
6.1 the FLAC file Stream . 21
6.2 FLAC Metadata Blocks . 22

6.2.1 STREAMINFO . 22
6.2.2 PADDING . 22
6.2.3 APPLICATION . 22
6.2.4 SEEKTABLE . 22
6.2.5 VORBIS COMMENT . 23
6.2.6 CUESHEET . 24
6.2.7 PICTURE . 24

6.3 FLAC Decoding . 25

3

Contents

6.3.1 CONSTANT subframe . 26
6.3.2 VERBATIM subframe . 26
6.3.3 FIXED subframe . 26
6.3.4 LPC Subframe . 27
6.3.5 the Residual . 28
6.3.6 Channels . 30
6.3.7 Wasted Bits per Sample . 30

6.4 FLAC Encoding . 31
6.4.1 the STREAMINFO metadata block 31
6.4.2 Frame header . 32
6.4.3 Channel assignment . 32
6.4.4 Subframe header . 32
6.4.5 the CONSTANT subframe . 33
6.4.6 the VERBATIM subframe . 33
6.4.7 the FIXED subframe . 33
6.4.8 the LPC subframe . 34
6.4.9 the Residual . 42
6.4.10 Checksums . 44

7 WavPack 47
7.1 the WavPack file stream . 47
7.2 the WavPack block header . 48

7.2.1 WavPack sub-block header . 49

8 Monkey’s Audio 51
8.1 the Monkey’s Audio file stream . 51
8.2 the Monkey’s Audio descriptor . 51
8.3 the Monkey’s Audio header . 51
8.4 the APEv2 tag . 52

8.4.1 the APEv2 tag header/footer . 53
8.4.2 the APEv2 flags . 53

9 MP3 55
9.1 the MP3 file Stream . 55

9.1.1 the Xing header . 56
9.2 ID3v1 tags . 57

9.2.1 ID3v1 . 57
9.2.2 ID3v1.1 . 57

9.3 ID3v2 tags . 58
9.3.1 ID3v2.2 . 58
9.3.2 ID3v2.3 . 61
9.3.3 ID3v2.4 . 64

4

Contents

10 M4A 67
10.1 the QuickTime file stream . 67

10.1.1 a QuickTime atom . 67
10.1.2 Container atoms . 67

10.2 M4A atoms . 68
10.2.1 the ftyp atom . 68
10.2.2 the mvhd atom . 68
10.2.3 the tkhd atom . 69
10.2.4 the mdhd atom . 69
10.2.5 the hdlr atom . 70
10.2.6 the smhd atom . 70
10.2.7 the dref atom . 70
10.2.8 the stsd atom . 71
10.2.9 the mp4a atom . 71
10.2.10 the stts atom . 72
10.2.11 the stsc atom . 72
10.2.12 the stsz atom . 72
10.2.13 the stco atom . 73
10.2.14 the meta atom . 73

11 Ogg Vorbis 75
11.1 Ogg file stream . 75

11.1.1 Ogg packets . 76
11.2 the Identification packet . 76
11.3 the Comment packet . 77
11.4 Channel assignment . 78

12 Ogg FLAC 79
12.1 the Ogg FLAC file stream . 79

13 Ogg Speex 81
13.1 the header packet . 81
13.2 the comment packet . 81

14 Musepack 83
14.1 the SV7 file stream . 83
14.2 the SV8 file stream . 84

14.2.1 the SH packet . 84
14.2.2 the SE packet . 85
14.2.3 the RG packet . 85
14.2.4 the EI packet . 85

5

Contents

15 FreeDB 87
15.1 Native Protocol . 87

15.1.1 the disc ID . 88
15.1.2 Initial greeting . 88
15.1.3 Client-server handshake . 89
15.1.4 Set protocol level . 89
15.1.5 Query database . 90
15.1.6 Read XMCD data . 91
15.1.7 Close connection . 91

15.2 Web protocol . 92
15.3 XMCD . 92

16 MusicBrainz 93
16.1 Searching releases . 93

16.1.1 the disc ID . 94
16.1.2 Server query . 95
16.1.3 Release XML . 95

16.2 MusicBrainz XML . 96

17 ReplayGain 103
17.1 Applying ReplayGain . 103
17.2 Calculating ReplayGain . 104

17.2.1 the equal loudness filter . 104
17.2.2 RMS energy blocks . 106
17.2.3 Statistical processing and calibration 106

Appendices 107

A References 109

B License 111
B.1 Definitions . 111
B.2 Fair Dealing Rights. 113
B.3 License Grant. 113
B.4 Restrictions. 114
B.5 Representations, Warranties and Disclaimer 116
B.6 Limitation on Liability. 117
B.7 Termination . 117
B.8 Miscellaneous . 117

6

1 Introduction

This book is intended as a reference for anyone who’s ever looked at their collection of audio
files and wondered how they worked. Though still a work-in-progress, my goal is to create
documentation on the full decoding/encoding process of as many audio formats as possible.

Though to be honest, the audience for this is myself. I enjoy figuring out the little details
of how these formats operate. And as I figure them out and implement them in Python
Audio Tools, I then add some documentation here on what I’ve just discovered. That way,
when I have to come back to something six months from now, I can return to some written
documentation instead of having to go directly to my source code.

Therefore, I try to make my documentation as clear and concise as possible. Otherwise,
what’s the advantage over simply diving back into the source? Yet this process often turns
into a challenge of its own; I’ll discover that a topic I thought I’d understood wasn’t so easy
to grasp once I had to simplify and explain it to some hypothetical future self. Thus, I’ll
have to learn it better in order to explain it better.

That said, there’s still much work left to do. Because it’s a repository of my knowledge,
it also illustrates the limits of my knowledge. Many formats are little more than “stubs”,
containing just enough information to extract such metadata as sample rate or bits-per-
sample. These are formats in which my Python Audio Tools passes the encoding/decoding
task to a binary “black-box” executable since I haven’t yet taken the time to learn how to
perform that work myself. But my hope is that as I learn more, this work will become more
fleshed-out and widely useful.

In the meantime, by including it with Python Audio Tools, my hope is that someone else
with some passing interest might also get some use out of what I’ve learned. And though
I strive for accuracy (for my own sake, at least) I cannot guarantee it. When in doubt,
consult the references on page 109 for links to external sources which may have additional
information.

7

1 Introduction

8

2 the Basics

2.1 Hexadecimal

I n order to understand hexadecimal, it’s important to re-familiarize oneself with decimal,
which everyone reading this should be familiar with. In ordinary decimal numbers, there
are a total of ten characters per digit: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. Because there are ten,
we’ll call it base-10. So the number 675 is made up of the digits 6, 7 and 5 and can be
calculated in the following way:

(6× 102) + (7× 101) + (5× 100) = 675 (2.1)

In hexadecimal, there are sixteen characters per digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D,
E and F. A, B, C, D, E and F correspond to the decimal numbers 10, 11, 12, 13, 14 and 15,
respectively. Because there are sixteen, we’ll call it base-16. So the number 2A3 is made
up of the digits 2, A and 3 and can be calculated in the following way:

(2× 162) + (10× 161) + (3× 160) = 675 (2.2)

Why use hexadecimal? The reason brings us back to binary file formats, which are
made up of bytes. Each byte is made up of 8 bits and can have a value from 0 to 255, in
decimal. Representing a binary file in hexadecimal means a byte requires exactly two digits
with values from 0 to FF. That saves us a lot of space versus trying to represent bytes in
decimal.

Hexadecimal has another important property when dealing with binary data. Because
each digit has 16 possible values, each hexadecimal digit represents exactly 4 bits (16 = 24).
This makes it very easy to go back and forth between hexadecimal and binary. For instance,
let’s take the byte 6A:

6A

0 1 1 0 1 0 1 0

0 1 1 0 1 0 1 0

6 A

Hex Binary Decimal Hex Binary Decimal
0 0 0 0 0 0 8 1 0 0 0 8
1 0 0 0 1 1 9 1 0 0 1 9
2 0 0 1 0 2 A 1 0 1 0 10
3 0 0 1 1 3 B 1 0 1 1 11
4 0 1 0 0 4 C 1 1 0 0 12
5 0 1 0 1 5 D 1 1 0 1 13
6 0 1 1 0 6 E 1 1 1 0 14
7 0 1 1 1 7 F 1 1 1 1 15

Going from binary
to hexadecimal is a simple matter of reversing the process.

9

2 the Basics

2.2 Signed integers

Signed integers are typically stored as “2’s-complement” values. To decode them, one needs
to know the integer’s size in bits, its topmost (most-signficant) bit value and the value of
its remaining bits.

signed value =

{
remaining bits if topmost bit = 0
remaining bits− (2integer size−1) if topmost bit = 1

(2.3)

For example, take an 8-bit integer whose bit values are 00000101. Since the topmost bit is
0, its value is simply 0000101, which is 5 in base-10 (22 + 20 = 5).

Next, let’s take an integer whose bit values are 11111011. Its topmost bit is 1 and its
remaining bits are 1111011, which is 123 in base-10 (26 + 25 + 24 + 23 + 21 + 20 = 123).
Therefore:

signed value = 123− 28−1 (2.4)
= 123− 128 (2.5)
= −5 (2.6)

Transforming a signed integer into its unsigned 2’s-complement value is a simple matter
of reversing the process.

unsigned value =

{
signed value if signed value ≥ 0
2integer size − (−signed value) if signed value < 0

(2.7)

For example, let’s convert the value -20 to a signed, 8-bit integer:

unsigned value = 28 − (−− 20) (2.8)
= 256− 20 (2.9)
= 236 (2.10)

which is 11101100 in binary (27 + 26 + 25 + 23 + 22 = 236).

10

2.3 Endianness

2.3 Endianness

You will need to know about endianness anytime a single value spans multiple bytes. As
an example, let’s take the first 16 bytes of a small RIFF WAVE file:

52 49 46 46 54 9b 12 00 57 41 56 45 66 6d 74 20

The first four bytes are the ASCII string ‘RIFF’ (0x52 0x49 0x46 0x46). The next four
bytes are a 32-bit unsigned integer which is a size value. Reading from left to right, that
value would be 0x549B1200. That’s almost 1.5 gigabytes. Since this file is nowhere near
that large, we’re clearly not reading those bytes correctly.

The key is that RIFF WAVE files are ‘little endian’. In plain English, that means we have
to read in those bytes from right to left. Thus, the value is actually 0x00129B54. That’s a
little over 1 megabyte, which is closer to our expectations.

Remember that little endian reverses the bytes, not the hexadecimal digits. Simply
reversing the string to 0x0021B945 is not correct.

When converting a signed, little-endian value to an integer, the 2’s-complement decoding
comes after one performs the endianness reversing. For example, given a signed 16-bit
little-endian value of 0xFBFF, one firsts reorders the bytes to 0xFFFB before decoding it to
a signed value (32763− 215 = −5).

Conversely, when converting a signed integer to a little-endian value, the endian reversing
comes after one performs the 2’s-complement encoding.

2.4 Character Encodings

Many audio formats store metadata, which contains information about the song’s name,
artist, album and so forth. This information is stored as text, but it’s important to know
what sort of text in order to read it and display it properly.

As an example, take the simple character é. In latin-1 encoding, it is stored as a single
byte 0xE9. In UTF-8 encoding, it is stored as the bytes 0xC3A9. In UTF-16BE encoding,
it is stored as the bytes 0x00E9.

Although decoding and encoding text is a complex subject beyond the scope of this
document, you must always be aware that metadata may not be 7-bit ASCII text and
should handle it properly in whatever encoding is supported by the metadata formats.
Look to your programming tools for libraries to assist in Unicode text handling.

11

2 the Basics

2.5 PCM

−40000

−30000

−20000

−10000

 0

 10000

 20000

 30000

 40000

 0 5 10 15 20 25 30

in
te

n
si

ty

time

A 16−bit Sine Audio Wave

PCM samples
original audio

Pulse-Code Modulation is a method for
transforming an analog audio signal into a
digital representation. It takes that signal,
‘samples’ its intensity at discrete intervals
and yields a stream of signed integer val-
ues. By replaying those values to a speaker
at the same speed and intensity, a close ap-
proximation of the original signal is pro-
duced.

Let’s take some example bytes from a CD-
quality PCM stream:

1B 00 43 FF 1D 00 45 FF 1C 00 4E FF 1E 00 59 FF

CD-quality is 16-bit, 2 channel, 44100Hz. 16-bit means those bytes are split into 16-bit
signed, little-endian samples. Therefore, our bytes are actually the integer samples:

27 -189 29 -187 28 -178 30 -167

The number of channels indicates how many speakers the signal supports. 2 channels
means the samples are sent to 2 different speakers. PCM interleaves its samples, sending
one sample to each channel simultaneously before moving on to the next set. In the case
of 2 channels, the first sample is sent to the left speaker and the second is sent to the right
speaker. So, our stream of data now looks like:

left speaker right speaker
27 -189
29 -187
28 -178
30 -167

44100Hz means those pairs of samples are sent at the rate of 44100 per second. Thus, our
set of 4 samples takes precisely 1/11025th of a second when replayed.

A channel-independent block of samples is commonly referred to as a ‘frame’. In this
example, we have a total of 4 PCM frames. However, the term ‘frame’ appears a lot in
digital audio. It is important not to confuse a PCM frame with a CD frame (a block of
audio 1/75th of a second long), an MP3 frame, a FLAC frame or any other sort of frame.

12

3 Waveform Audio File Format

The Waveform Audio File Format is the most common form of PCM container. What
that means is that the file is mostly PCM data with a small amount of header data to
tell applications what format the PCM data is in. Since RIFF WAVE originated on Intel
processors, everything in it is little-endian.

3.1 the RIFF WAVE Stream

ID (‘RIFF’ 0x52494646)
0 31

Chunk Size (file size - 8)
32 63

Chunk Data
64

Type (‘WAVE’ 0x57415645)
64 95

Chunk₁
96

Chunk₂ ...

Chunk ID (ASCII text)
0 31

Chunk Size
32 63

Chunk Data
64

‘Chunk Size’ is the total size of the chunk, minus 8 bytes for the chunk header.

3.2 the Classic ‘fmt’ Chunk

Wave files with 2 channels or less, and 16 bits-per-sample or less, use a classic ‘fmt’ chunk
to indicate its PCM data format. This chunk is required to appear before the ‘data’ chunk.

Chunk ID (‘fmt ’ 0x666D7420)
0 31

Chunk Size (16)
32 63

Compression Code (0x0001)
64 79

Channel Count
80 95

Sample Rate
96 127

Average Bytes per Second
128 159

Block Align
160 175

Bits per Sample
176 191

Average Bytes per Second =
Sample Rate× Channel Count× Bits per Sample

8
(3.1)

Block Align =
Channel Count× Bits per Sample

8
(3.2)

13

3 Waveform Audio File Format

3.3 the WAVEFORMATEXTENSIBLE ‘fmt’ Chunk

Wave files with more than 2 channels or more than 16 bits-per-sample should use a WAVE-
FORMATEXTENSIBLE ‘fmt’ chunk which contains additional fields for channel assign-
ment.

Chunk ID (‘fmt ’ 0x666D7420)
0 31

Chunk Size (40)
32 63

Compression Code (0xFFFE)
64 79

Channel Count
80 95

Sample Rate
96 127

Average Bytes per Second
128 159

Block Align
160 175

Bits per Sample
176 191

CB Size (22)
192 207

Valid Bits per Sample
208 223

Front Right of Center
224

Front Left of Center
225

Rear Right
226

Rear Left
227

LFE
228

Front Center
229

Front Right
230

Front Left
231

Top Back Left
232

Top Front Right
233

Top Front Center
234

Top Front Left
235

Top Center
236

Side Right
237

Side Left
238

Back Center
239

Undefined
240 245

Top Back Right
246

Top Back Center
247

Undefined
248 255

Sub Format (0x0100000000001000800000aa00389b71)
256 383

Note that the ‘Average Bytes per Second’ and ‘Block Align’ fields are calculated the same
as a classic fmt chunk.

3.4 the ‘data’ Chunk

Chunk ID (‘data’ 0x64617461)
0 31

Chunk Size
32 63

PCM Data
64

‘PCM Data’ is a stream of PCM samples stored in little-endian format.

14

3.5 Channel assignment

3.5 Channel assignment

Channels whose bits are set in the WAVEFORMATEXTENSIBLE ‘fmt’ chunk appear in
the following order:

Index Channel Mask Bit
1 Front Left 0x1
2 Front Right 0x2
3 Front Center 0x4
4 LFE 0x8
5 Back Left 0x10
6 Back Right 0x20
7 Front Left of Center 0x40
8 Front Right of Center 0x80
9 Back Center 0x100

10 Side Left 0x200
11 Side Right 0x400
12 Top Center 0x800
13 Top Front Left 0x1000
14 Top Front Center 0x2000
15 Top Front Right 0x4000
16 Top Back Left 0x8000
17 Top Back Center 0x10000
18 Top Back Right 0x20000

For example, if the file’s channel mask is set to 0x33, it contains the channels ‘Front Left’,
‘Front Right’, ‘Back Left’ and ‘Back Right’, in that order.

15

3 Waveform Audio File Format

16

4 Audio Interchange File Format

AIFF is the Audio Interchange File Format. It is popular on Apple computers and is a
precursor to the more widespread WAVE format. All values in AIFF are stored as big-
endian.

4.1 the AIFF file stream

ID (‘FORM’ 0x464F524D)
0 31

Chunk Size (file size - 8)
32 63

Chunk Data
64

Type (‘AIFF’ 0x41494646)
64 95

Chunk₁
96

Chunk₂ ...

Chunk ID (ASCII text)
0 31

Chunk Size
32 63

Chunk Data
64

4.2 the COMM chunk

Chunk ID (`COMM' 0x434F4D4D)
0 31

Chunk Size (18)
32 63

Channels
64 79

Total Sample Frames
80 111

Sample Size
112 127

Sample Rate
128 207

Sign
0

Exponent
1 15

Mantissa
16 79

The Sample Rate field is an 80-bit IEEE Standard 754 floating point value instead of the
big-endian integers common to all the other fields.

Value = (−)
Mantissa

263
× 2Exponent−16383 (4.1)

17

4 Audio Interchange File Format

For example, given a sign bit of 0, an exponent value of 0x400E and a mantissa value of
0xAC44000000000000:

Value =
12413046472939929600

263
× 216398−16383 (4.2)

= 1.3458251953125× 215 (4.3)
= 44100.0 (4.4)

4.3 the SSND chunk

Chunk ID (`SSND' 0x53534E44)
0 31

Chunk Size
32 63

Offset
64 95

Block Size
96 127

PCM Data
128

18

5 Sun AU

The AU file format was invented by Sun Microsystems and also used on NeXT systems. All
values in AU are stored as big-endian. It supports a wide array of data formats, including
µ-law logarithmic encoding, but can also be used as a PCM container.

5.1 the Sun AU file stream

Header
0 191

Info
192

Data

Magic Number (`.snd' 0x2e736e64)
0 31

Data Offset
32 63

Data Size
64 95

Encoding Format
96 127

Sample Rate
128 159

Channels
160 191

value encoding format
1 8-bit G.711 µ-law
2 8-bit linear PCM
3 16-bit linear PCM
4 24-bit linear PCM
5 32-bit linear PCM
6 32-bit IEEE floating point
7 64-bit IEEE floating point
8 Fragmented sample data
9 DSP program

10 8-bit fixed point
11 16-bit fixed point
12 24-bit fixed point
13 32-bit fixed point
18 16-bit linear with emphasis
19 16-bit linear compressed
20 16-bit linear with emphasis and compression
21 Music kit DSP commands
23 4-bit ISDN µ-law compressed using

the ITU-T G.721 ADPCM voice data encoding scheme
24 ITU-T G.722 ADPCM
25 ITU-T G.723 3-bit ADPCM
26 ITU-T G.723 5-bit ADPCM
27 8-bit G.711 A-law

19

5 Sun AU

20

6 Free Lossless Audio Codec

FLAC compresses PCM audio data losslessly using predictors and a residual. FLACs con-
tain checksumming to verify their integrity, contain comment tags for metadata and are
streamable.

Except for the contents of the VORBIS COMMENT metadata block, everything in FLAC
is big-endian.

6.1 the FLAC file Stream

Header (‘fLaC’)
0 31

Metadata₁
32

Metadata₂ ... Frame₁ Frame₂ ...

Last
0

Block Type
1 7

Block Length
8 31

Block Data
32

“Last” is 0 when there are no additional metadata blocks and 1 when it is the final block
before the the audio frames. “Block Length” is the size of the metadata block data to
follow, not including the header.

Block Type Block
0 STREAMINFO
1 PADDING
2 APPLICATION
3 SEEKTABLE
4 VORBIS COMMENT
5 CUESHEET
6 PICTURE

7-126 reserved
127 invalid

21

6 Free Lossless Audio Codec

6.2 FLAC Metadata Blocks

6.2.1 STREAMINFO

Minimum Block Size (in samples)
0 15

Maximum Block Size (in samples)
16 31

Minimum Frame Size (in bytes)
32 55

Maximum Frame Size (in bytes)
56 79

Sample Rate
80 99

Channels
100 102

Bits per Sample
103 107

Total Samples
108 143

MD5SUM of PCM Data
144 271

6.2.2 PADDING

PADDING is simply a block full of NULL (0x00) bytes. Its purpose is to provide extra
metadata space within the FLAC file. By having a padding block, other metadata blocks
can be grown or shrunk without having to rewrite the entire FLAC file by removing or
adding space to the padding.

6.2.3 APPLICATION

Application ID
0 31

Application Data
32

APPLICATION is a general-purpose metadata block used by a variety of different programs.
Its contents are defined by the ASCII Application ID value.

6.2.4 SEEKTABLE

Seekpoint₁
0 143

Seekpoint₂
144 287

...

Sample Number in Target Frame
0 63

Byte Offset to Frame Header
64 127

Samples in Frame
128 143

22

6.2 FLAC Metadata Blocks

6.2.5 VORBIS COMMENT

Vendor String Total Comments
0 31

Comment String₁ Comment String₂ ...

Vendor String Length
0 31

Vendor String
32

Comment String Length
0 31

Comment String
0

The length fields are all little-endian. The Vendor String and Comment Strings are all UTF-
8 encoded. Keys are not case-sensitive and may occur multiple times, indicating multiple
values for the same field. For instance, a track with multiple artists may have more than
one ARTIST.

ALBUM album name

ARTIST artist name, band name, composer, author, etc.

CATALOGNUMBER* CD spine number

COMPOSER* the work’s author

CONDUCTOR* performing ensemble’s leader

COPYRIGHT copyright attribution

DATE recording date

DESCRIPTION a short description

DISCNUMBER* disc number for multi-volume work

ENGINEER* the recording masterer

ENSEMBLE* performing group

GENRE a short music genre label

GUEST ARTIST* collaborating artist

ISRC ISRC number for the track

LICENSE license information

LOCATION recording location

OPUS* number of the work

ORGANIZATION record label

PART* track’s movement title

PERFORMER performer name, orchestra, actor, etc.

PRODUCER* person responsible for the project

PRODUCTNUMBER* UPC, EAN, or JAN code

PUBLISHER* album’s publisher

RELEASE DATE* date the album was published

REMIXER* person who created the remix

SOURCE ARTIST* artist of the work being performed

SOURCE MEDIUM* CD, radio, cassette, vinyl LP, etc.

SOURCE WORK* a soundtrack’s original work

SPARS* DDD, ADD, AAD, etc.

SUBTITLE* for multiple track names in a single file

TITLE track name

TRACKNUMBER track number

VERSION track version

Fields marked with * are proposed extension fields and not part of the official Vorbis com-
ment specification.

23

6 Free Lossless Audio Codec

6.2.6 CUESHEET

Catalog Number
0 1023

Lead-in Samples
1024 1087

is CDDA
1088

NULL
1089 3159

Track Count
3160 3167

Track₁
3168

...

Offset
0 63

Number
64 71

ISRC
72 167

Type
168

Pre-Emph.
169

NULL
170 279

Index Points
280 287

Index₁
288

...

Index Offset
0 63

Index Number
64 71

NULL
72 95

6.2.7 PICTURE

Picture Type
0 31

MIME
32

Description Width
0 31

Height
32 63

Depth
64 95

Count
96 127

Data
128

Length
0 31

String
32

Length
0 31

String
32

Length
0 31

Data
32

Picture Type Type
0 Other
1 32x32 pixels ‘file icon’ (PNG only)
2 Other file icon
3 Cover (front)
4 Cover (back)
5 Leaflet page
6 Media (e.g. label side of CD)
7 Lead artist / Lead performer / Soloist
8 Artist / Performer
9 Conductor

10 Band / Orchestra
11 Composer
12 Lyricist / Text writer
13 Recording location
14 During recording
15 During performance
16 Movie / Video screen capture
17 A bright coloured fish
18 Illustration
19 Band / Artist logotype
20 Publisher / Studio logotype

24

6.3 FLAC Decoding

6.3 FLAC Decoding

A FLAC stream is made up of individual FLAC frames, as follows:

Sync Code (0x3FFE)
0 13

Reserved (0)
14

Blocking Strategy
15

Block Size
16 19

Sample Rate
20 23

Channel Assignment
24 27

Bits per Sample
28 30

Padding
31

Sample/Frame Number
32 39-87

Block Size
0 0/7/15

Sample Rate
0 0/7/15

CRC-8
0 7

Subframe₁ Subframe₂ ... Padding CRC-16
0 15

Padding
0

Subframe Type
1 6

Wasted Bits per Sample
7

Subframe Data

Value Block Size Sample Rate Channels Assignment Bits per Sample Value
0000 STREAMINFO STREAMINFO 1 front center STREAMINFO 0000

0001 192 88200 2 front left, front right 8 0001

0010 576 176400 3 f. left, f. right, f. center 12 0010

0011 1152 192000 4 f. left, f. right, back left, back right reserved 0011

0100 2304 8000 5 f. L, f. R, f. C, b. L, b. R 16 0100

0101 4608 16000 6 f. L, f. R, f. C, LFE, b. L, b. R 20 0101

0110 8 bits (+1) 22050 7 undefined 24 0110

0111 16 bits (+1) 24000 8 undefined reserved 0111

1000 256 32000 2 0 left, 1 difference 1000

1001 512 44100 2 0 difference, 1 right 1001

1010 1024 48000 2 0 average, 1 difference 1010

1011 2048 96000 reserved 1011

1100 4096 8 bits (in kHz) reserved 1100

1101 8192 16 bits (in Hz) reserved 1101

1110 16384 16 bits (in 10s of Hz) reserved 1110

1111 32768 invalid reserved 1111

Value Subframe Type
000000 SUBFRAME CONSTANT
000001 SUBFRAME VERBATIM
00001x reserved
0001xx reserved
001xxx SUBFRAME FIXED

xxx = predictor order
01xxxx reserved
1xxxxx SUBFRAME LPC

xxxxx = predictor order - 1

Sample/Frame Number is a UTF-8 coded value.
If the blocking strategy is 0, it decodes to a 32-
bit frame number. If the blocking strategy is
1, it decodes to a 36-bit sample number.

There is one Subframe per channel.
‘Wasted Bits Per Sample’ is typically a single

bit set to 0, indicating no wasted bits per sam-
ple. If set to 1, a unary-encoded value follows
which indicates how many bits are wasted per
sample.

Padding is added as needed between the final
subframe and CRC-16 in order to byte-align frames.

25

6 Free Lossless Audio Codec

6.3.1 CONSTANT subframe

This is the simplest possible subframe. It consists of a single value whose size is equal to
the subframe’s ‘Bits per Sample’. For instance, a 16-bit subframe would have CONSTANT
subframes 16 bits in length. The value of the subframe is the value of all samples the
subframe contains. An obvious use of this subframe is to store an entire subframe’s worth
of digital silence (samples with a value of 0) very efficiently.

6.3.2 VERBATIM subframe

Sample₁
0

Sample₂ Sample₃ ... Sampleₓ

This subframe’s length is equal to the subframe’s ‘Bits per Sample’ multiplied by the frame’s
‘Block Size’. Since it does no compression whatsoever and simply stores audio samples as-
is, this subframe is only suitable for especially noisy portions of a track where no suitable
predictor can be found.

6.3.3 FIXED subframe

Warm-Up Sample₁
0

Warm-Up Sample₂ ... Residual

The number of warm-up samples equals the ‘Predictor Order’ (which is encoded in the
‘Subframe Type’). Each warm-up sample is the same size as the subframe’s ‘Bits per
Sample’. These samples are sent out as-is; they are the subframe’s ‘starting point’ upon
which further samples build when decompressing the stream. Determining the value of
the current sample is then a matter of looking backwards at previously decoded samples
(or warm-up samples), applying a simple formula on their values (which depends on the
Predictor Order) and adding the residual.

Order Calculation

0 Samplei = Residuali
1 Samplei = Samplei−1 + Residuali
2 Samplei = (2 × Samplei−1) − Samplei−2 + Residuali
3 Samplei = (3 × Samplei−1) − (3 × Samplei−2) + Samplei−3 + Residuali
4 Samplei = (4 × Samplei−1) − (6 × Samplei−2) + (4× Samplei−3) − Samplei−4 + Residuali

Index Residual Sample
0 (warm-up) 10
1 1 10 + 1 = 11
2 2 11 + 2 = 13
3 -2 13 − 2 = 11
4 1 11 + 1 = 12
5 -1 12 − 1 = 11

Let’s run through a simple example in which the Predictor
Order is 1. Note that residual does not apply to warm-
up samples. How to extract the encoded residual will be
covered in a later section.

26

6.3 FLAC Decoding

6.3.4 LPC Subframe

Warm-Up Sample₁
0

Warm-Up Sample₂ ... Warm-Up Sampleₓ

QLP Precision
0 3

QLP Shift Needed
4 8

QLP Coefficient₁
9

QLP Coefficient₂ ...

Residual

The number of warm-up samples equals the ‘LPC Order’ (which is encoded in the ‘Subframe
Type’). The size of each QLP Coefficient is equal to ‘QLP Precision’ number of bits, plus 1.
‘QLP Shift Needed’ and the value of each Coefficient are signed two’s-complement integers.
The number of Coefficients equals the ‘LPC Order’.

Samplei =


Order−1∑
j=0

QLP Coeffcientj × Samplei−j−1

2QLP Shift Needed

+Residuali (6.1)

This simply means we’re taking the sum of the calculated values from 0 to Order - 1, bit-
shifting that sum down and added the residual when determining the current sample. Much
like the FIXED subframe, LPC subframes also contain warm-up samples which serve as our
calculation’s starting point.

In this example, the LPC Order is 5, the QLP Shift Needed is 9 and the encoded Coeffi-
cients are as follows:

QLP Coefficient0 1241
QLP Coefficient1 -944
QLP Coefficient2 14
QLP Coefficient3 342
QLP Coefficient4 -147

Index Residual Sample
0 (warm-up) 1053
1 (warm-up) 1116
2 (warm-up) 1257
3 (warm-up) 1423
4 (warm-up) 1529
5 11 (1241× 1529) + (−944× 1423) + (14× 1257) + (342× 1116) + (−147× 1053) = 798656

b798656÷ 29c = 1559 + 11 = 1570
6 79 (1241× 1570) + (−944× 1529) + (14× 1423) + (342× 1257) + (−147× 1116) = 790758

b790758÷ 29c = 1544 + 79 = 1623
7 24 (1241× 1623) + (−944× 1570) + (14× 1529) + (342× 1423) + (−147× 1257) = 855356

b855356÷ 29c = 1670 + 24 = 1694
8 -81 (1241× 1694) + (−944× 1623) + (14× 1570) + (342× 1529) + (−147× 1423) = 905859

b905859÷ 29c = 1769− 81 = 1688
9 -72 (1241× 1688) + (−944× 1694) + (14× 1623) + (342× 1570) + (−147× 1529) = 830571

b830571÷ 29c = 1622− 72 = 1550

In this instance, division should always round down and not towards zero.

27

6 Free Lossless Audio Codec

6.3.5 the Residual

Though the FLAC format allows for different forms of residual coding, two forms of par-
titioned Rice are the only ones currently supported. The difference between the two is
that when ‘Coding Method’ is 0, the Rice Parameter in each partition is 4 bits. When the
‘Coding Method’ is 1, that parameter is 5 bits.

Coding Method
0 1

Partition Order
2 5

Partition₁
6

Partition₂ ...

Method = 0 Rice Parameter
0 3

Escape Code
4 8

Encoded Residual

Method = 1 Rice Parameter
0 4

Escape Code
5 9

Encoded Residual

There are 2Partition Order number of Partitions. The number of decoded samples in a
Partition depends on the its position in the subframe. The first partition in the subframe
contains:

Total Samples =
Frame’s Block Size

2Partition Order
− Predictor Order (6.2)

Subsequent partitions contain:

Total Samples =
Frame’s Block Size

2Partition Order
(6.3)

Unless the Partition Order is 0. In that case:

Total Samples = Frame’s Block Size− Predictor Order (6.4)

since there is only one partition which takes up the entire block.

If all of the bits in ‘Rice Parameter’ are set, the partition is unencoded binary using
‘Escape Code’ number of bits per sample.

28

6.3 FLAC Decoding

Rice Encoding

The residual uses Rice coding to compress lots of mostly small values in a very small amount
of space. To decode it, one first needs the Rice parameter. Take a unary-encoded value1

from the bit stream, which are our most significant bits (MSB). Then take ‘parameter’
number of additional bits, which are our least significant bits (LSB). Combine the two sets
into our new value, making the MSB set as the high bits and the LSB set as the low bits.
Bit 0 of this new value is the sign bit. If it is 0, the actual value is equal to the rest of the
bits. If it is 1, the actual value is equal to the rest of the bits, multiplied by -1 and minus 1.

This is less complicated than it sounds, so let’s run through an example in which the Rice
parameter is 1:

0 1 0 1 1

value = −1 − 1

= −2

value = −0 − 1

= −1

start

value = 1
unary−encoded

1 0

LSBMSB

sign

bit
value

0 0 1 0

MSB LSB

unary−encoded
value = 2

1 0 0

0 1 1

unary−encoded
value = 1

1 1

0 1 0 0 0 1 0 0 1 1 1 1

unary−encoded
value = 0

end

0 1

The Bit Stream

value = 1 value = 2

Now, let’s run through another example in which the Rice parameter is 4:

start end

The Bit Stream

0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 0 1 1 1

0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 0 1 1

1 0 0 0 1 0 1 0 1 0 0 01 0 1 0 1

1

1 0 1 1 1

value = 4value = −0x22 − 1 = −35 value = −0xA − 1 = −11 value = −0xB − 1 = −12

value
sign

bit

1In this instance, unary-encoding is a simple matter of counting the number of 0 bits before the next 1 bit.
The resulting sum is the value.

29

6 Free Lossless Audio Codec

6.3.6 Channels

Since most audio has more than one channel, it is important to understand how FLAC
handles putting it back together. When channels are stored independently, one simply
interleaves them together in the proper order. Let’s take an example of 2 channel, 16-bit
audio stored this way:

Subframe 0 Subframe 1

Sample₀₋₀ Sample₀₋₁ Sample₀₋₂ Sample₁₋₀ Sample₁₋₁ Sample₁₋₂

Sample₀₋₀ Sample₁₋₀ Sample₀₋₁ Sample₁₋₁ Sample₀₋₂ Sample₁₋₂

This is the simplest case. However, in the case of difference channels, one subframe will
contain actual channel data and the other channel will contain signed difference data which
is applied to that actual data in order to reconstruct both channels. It’s very important
to remember that the difference channel has 1 additional bit per sample which will be
consumed during reconstruction. Why 1 additional bit? Let’s take an example where the
left sample’s value is -30000 and the right sample’s value is +30000. Storing this pair
as left + difference means the left sample remains -30000 and the difference is -60000
(−30000 − −60000 = +30000). -60000 won’t fit into a 16-bit signed integer. Adding that
1 additional bit doubles our range of values and that’s just enough to cover any possible
difference between two samples.

Assignment Channel 0 Channel 1 Left Channel Right Channel
1000 left difference left left− difference
1001 difference right right + difference right
1010 mid side (((mid� 1)|(side&1)) + side)� 1 (((mid� 1)|(side&1))− side)� 1

The mid channel case is another unusual exception. We’re prepending the mid channel
with bit 0 from the side channel, performing the addition/subtraction and then discarding
that bit before assigning the results to the left and right channels.

6.3.7 Wasted Bits per Sample

Though rare in practice, FLAC subframes support ‘wasted bits per sample’. Put simply,
these wasted bits are removed during subframe calculation and restored to the subframe’s
least significant bits as zero value bits when it is returned. For instance, a subframe with 1
wasted bit per sample in a 16-bit FLAC stream is treated as having only 15 bits per sample
when reading warm-up samples and then all through the rest of the subframe calculation.
That wasted zero bit is then prepended to each sample prior to returning the subframe.

30

6.4 FLAC Encoding

6.4 FLAC Encoding

For the purposes of discussing FLAC encoding, we’ll assume one has a stream of input
PCM values along with the stream’s sample rate, number of channels and bits per sample.
Creating a valid FLAC file is then a matter of writing the proper file header, metadata
blocks and FLAC frames.

Header (‘fLaC’)
0 31

Metadata₁
32

Metadata₂ ... Frame₁ Frame₂ ...

Metadata Header
0 31

Block Data
32

Frame Header
0 48-128

Subframe₁Subframe₂ ... CRC-16

Subframe Header
0 7

Subframe Data
8

bits value
1 0 if additional metadata blocks follow, 1 if not
7 0 for STREAMINFO, 1 for PADDING, 4 for VORBIS COMMENT, etc.

24 the length of the block data in bytes, not including the header

Figure 6.1: Metadata Header

6.4.1 the STREAMINFO metadata block

bits value
16 the minimum FLAC frame size, in PCM frames
16 the maximum FLAC frame size, in PCM frames
24 the minimum FLAC frame size, in bytes
24 the maximum FLAC frame size, in bytes
20 the stream’s sample rate, in Hz
3 the stream’s channel count, minus one
5 the stream’s bit-per-sample, minus one

36 the stream’s total number of PCM frames
128 an MD5 sum of the PCM stream’s bytes

This metadata block must come first and is the only required block in a FLAC file.
When encoding a FLAC file, many of these fields cannot be known in advance. Instead,

one must keep track of those values during encoding and then rewrite the STREAMINFO
block when finished.

31

6 Free Lossless Audio Codec

6.4.2 Frame header

bits value
14 0x3FFE sync code
1 0 reserved
1 0 if the header encodes the frame number, 1 if it encodes the sample number
4 this frame’s block size, as encoded PCM framesa

4 this frame’s encoded sample ratea

4 this frame’s encoded channel assignmenta

3 this frame’s encoded bits per samplea

1 0 padding
8-56 the frame number, or sample number, UTF-8 encoded and starting from 0

0/8/16 the number of PCM frames (minus one) in this FLAC frame
if block size is 0x6 (8 bits) or 0x7 (16 bits)

0/8/16 the sample rate of this FLAC frame
if sample rate is 0xC (8 bits), 0xD (16 bits) or 0xE (16 bits)

8 the CRC-8 of all data from the beginning of the frame header

aSee table on page 25

6.4.3 Channel assignment

If the input stream has a number of channels other than 2, one has no choice but to store
them independently. If the number of channels equals 2, one can try all four possible
assignments (left-difference, difference-right, mid-side and independent) and use the one
which takes the least amount of space.

6.4.4 Subframe header

bits value
1 0 padding

000000 SUBFRAME CONSTANT
000001 SUBFRAME VERBATIM
001xxx SUBFRAME FIXED (xxx = Predictor Order)
1xxxxx SUBFRAME LPC (xxxxx = Predictor Order - 1)

1 0 if no wasted bits per sample, 1 if a unary-encoded number follows
0+ the number of wasted bits per sample (minus one) encoded as unary

32

6.4 FLAC Encoding

6.4.5 the CONSTANT subframe

If all the samples in a subframe are identical, one can encode them using a CONSTANT
subframe, which is essentially a single sample value that gets duplicated ‘block size’ number
of times when decoded.

6.4.6 the VERBATIM subframe

This subframe simply stores all the samples as-is, with no compression whatsoever. It is a
fallback encoding method for when no other subframe makes one’s data any smaller.

6.4.7 the FIXED subframe

This subframe consists of ‘predictor order’ number of unencoded warm-up samples followed
by a residual. Determining which predictor order to use on a given set of input samples
depends on their minimum delta sum. This process is best explained by example:

index sample ∆0 ∆1 ∆2 ∆3 ∆4

0 -40
1 -41 -41
2 -40 -40 -1
3 -39 -39 -1 0
4 -38 -38 -1 0 0
5 -38 -38 0 -1 1 -1
6 -35 -35 -3 3 -4 5
7 -35 -35 0 -3 6 -10
8 -39 -39 4 -4 1 5
9 -40 -40 1 3 -7 8
10 -40 -40 0 1 2 -9
11 -39 -39 -1 1 0 2
12 -38 -38 -1 0 1 -1
13 -37 -37 -1 0 0 1
14 -33 -33 -4 3 -3 3
15 -36 -36 3 -7 10 -13
16 -35 -35 -1 4 -11 21
17 -31 -31 -4 3 1 -12
18 -32 -32 1 -5 8 -7
19 -33 -33 1 0 -5 13
|sum| 579 26 38 60 111

Note that the numbers in italics play a
part in the delta calculation to their right,
but do not figure into the delta’s absolute
value sum, below.

In this example, ∆1’s value of 26 is the
smallest. Therefore, when compressing this
set of samples in a FIXED subframe, it’s
best to use a predictor order of 1.

The predictor order indicates how many
warm-up samples to take from the PCM
stream. Determining the residual values
can then be done automatically based on
the current Samplei and previously encoded
samples, or warm-up samples.

In this example, warm-up sample is -40
and the residual values are: -1 1 1 1 0 3 0
-4 -1 0 1 1 1 4 -3 1 4 -1 -1

Order Calculation

0 Residuali = Samplei

1 Residuali = Samplei − Samplei−1

2 Residuali = Samplei − ((2× Samplei−1) − Samplei−2)
3 Residuali = Samplei − ((3× Samplei−1) − (3× Samplei−2) + Samplei−3)
4 Residuali = Samplei − ((4× Samplei−1) − (6× Samplei−2) + (4× Samplei−3) − Samplei−4)

33

6 Free Lossless Audio Codec

6.4.8 the LPC subframe

Unlike the FIXED subframe which required only input samples and a predictor order, LPC
subframes also require a list of QLP coefficients, a QLP precision value of those coefficients,
and a QLP shift needed value.

Warm-Up Sample₁
0

Warm-Up Sample₂ ... Warm-Up Sampleₓ

QLP Precision
0 3

QLP Shift Needed
4 8

QLP Coefficient₁
9

QLP Coefficient₂ ...

Residual

Determining these values for a given input PCM signal is a somewhat complicated process
which depends on whether one is performing an exhaustive LP coefficient order search or
not:

Compute

LP Coefficients

Compute

Autocorrelation

Windowing

Function

Quantize

Coefficients

LPC

Order

QLP

Coefficients

QLP Coefficient

Precision

Coefficients

LP

Best Order

Estimate

Input PCM

Max LPC Order + 1

Autocorrelated

Values

Max LPC Order

Windowed

Signal

Shift

Max LPC Order

LPC Error

Total Samples

Bits per Sample + 5

(a) non-exhaustive search

Compute

LP Coefficients

Compute

Autocorrelation

Windowing

Function

Quantize

Coefficients

LPC

Order

QLP

Coefficients

QLP Coefficient

Precision

Coefficients

LP

Input PCM

Max LPC Order + 1

Autocorrelated

Values

Max LPC Order

Windowed

Signal

Shift

Bits per SampleBest Order

Calculate

(b) exhaustive search

34

6.4 FLAC Encoding

Windowing

The first step in LPC subframe encoding is ‘windowing’ the input signal. Put simply, this is
a process of multiplying each input sample by an equivalent value from the window, which
are floats from 0.0 to 1.0. In this case, the default is a Tukey window with a ratio of 0.5.
A Tukey window is a combination of the Hann and Rectangular windows. The ratio of 0.5
means there’s 0.5 samples in the Hann window per sample in the Rectangular window.

hann(n) =
1
2

(
1− cos

(
2πn

sample count− 1

))
(6.5)

rectangle(n) = 1.0 (6.6)

The Tukey window is defined by taking a Hann window, splitting it at the halfway point,
and inserting a Rectangular window between the two.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

m
u
lt

ip
li

er

sample

the Hann Window

hann(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

m
u
lt

ip
li

er

sample

the Rectangular Window

rectangle(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

m
u
lt

ip
li

er

sample

the Tukey Window

tukey(x)

Let’s run through a short example with 20 samples:
input Tukey windowed

index sample window signal

0 -40 × 0.0000 = 0.00
1 -41 × 0.1464 = -6.00
2 -40 × 0.5000 = -20.00
3 -39 × 0.8536 = -33.29
4 -38 × 1.0000 = -38.00
5 -38 × 1.0000 = -38.00
6 -35 × 1.0000 = -35.00
7 -35 × 1.0000 = -35.00
8 -39 × 1.0000 = -39.00
9 -40 × 1.0000 = -40.00

10 -40 × 1.0000 = -40.00
11 -39 × 1.0000 = -39.00
12 -38 × 1.0000 = -38.00
13 -37 × 1.0000 = -37.00
14 -33 × 1.0000 = -33.00
15 -36 × 1.0000 = -36.00
16 -35 × 0.8536 = -29.88
17 -31 × 0.5000 = -15.50
18 -32 × 0.1464 = -4.68
19 -33 × 0.0000 = 0.00

35

6 Free Lossless Audio Codec

Computing autocorrelation

Once our input samples have been converted to a windowed signal, we then compute the
autocorrelation values from that signal. Each autocorrelation value is determined by mul-
tiplying the signal’s samples by the samples of a lagged version of that same signal, and
then taking the sum. The lagged signal is simply the original signal with ‘lag’ number of
samples removed from the beginning.

−39.0 −38.0 −37.0 −36.0−36.0−36.0−33.0−37.0 −35.0 −31.0 −32.0 −33.0

−39.0 −38.0 −37.0 −36.0−36.0−36.0−33.0−37.0 −35.0 −31.0 −32.0 −33.0

−39.0 −38.0 −37.0 −36.0−36.0−36.0−33.0−37.0 −35.0 −31.0 −32.0

−38.0 −37.0 −36.0−36.0−36.0−33.0−37.0 −35.0 −31.0 −32.0 −33.0

−39.0 −38.0 −37.0 −36.0−36.0−36.0−33.0−37.0 −35.0 −31.0

−37.0 −36.0−36.0−36.0−33.0−37.0 −35.0 −31.0 −32.0 −33.0

windowed signal

lag 0 signal

lag 1 signal

windowed signal

windowed signal

lag 2 signal

× × × × × × × × × × × ×

× × × × × × × × × × ×

× × × × × × × × × ×

lag 0 sum = 14979.0

lag 1 sum = 13651.0

lag 2 sum = 12405.0

The lagged sums from 0 to the maximum LPC order are our autocorrelation values. In
this example, they are 14979.0, 13651.0 and 12405.0.

LP coefficient calculation

Calculating the LP coefficients uses the Levinson-Durbin recursive method.2 Our inputs are
M , the maximum LPC order minus 1, and r autocorrelation values, from r(0) to r(M − 1).
Our outputs are a, a list of LP coefficient lists from a11 to a(M−1)(M−1), and E, a list of
error values from E0 to E(M−1). qm and κm are temporary values.

Initial values:

E0 = r(0) (6.7)

a11 = κ1 =
r(1)
E0

(6.8)

E1 = E0(1− κ1
2) (6.9)

2This algorithm is taken from http://www.engineer.tamuk.edu/SPark/chap7.pdf

36

http://www.engineer.tamuk.edu/SPark/chap7.pdf

6.4 FLAC Encoding

With m ≥ 2, the following recurive algorithm is performed:

Step 1. qm = r(m)−
m−1∑
i=1

ai(m−1)r(m− i) (6.10)

Step 2. κm =
qm

E(m−1)
(6.11)

Step 3. amm = κm (6.12)
Step 4. aim = ai(m−1) − κma(m−i)(m−1) for i = 1, i = 2,...,i = m− 1 (6.13)

Step 5. Em = Em−1(1− κm2) (6.14)
Step 6. If m < M then m← m+ 1 and goto step 1. If m = M then stop. (6.15)

Let’s run through an example in which M = 4, r(0) = 11018, r(1) = 9690, r(2) = 8443
and r(3) = 7280:

E0 = r(0) = 11018 (6.16)

a11 = κ1 =
r(1)

E0
=

9690

11018
= 0.8795 (6.17)

E1 = Eo(1− κ1
2) = 11018(1− 0.87952) = 2495 (6.18)

q2 = r(2)−
1X

i=1

ai1r(2− i) = 8443− (0.8795)(9690) = −79.35 (6.19)

κ2 =
q2

E1
=
−79.35

2495
= −0.0318 (6.20)

a22 = κ2 = −0.0318 (6.21)

a12 = a11 − κ2a11 = 0.8795− (−0.0318)(0.8795) = 0.9074 (6.22)

E2 = E1(1− κ2
2) = 2495(1−−0.03182) = 2492 (6.23)

q3 = r(3)−
2X

i=1

ai2r(3− i) = 7280− ((0.9074)(8443) + (−0.0318)(9690)) = −73.04 (6.24)

κ3 =
q3

E2
=
−73.04

2492
= −0.0293 (6.25)

a33 = κ3 = −0.0293 (6.26)

a13 = a12 − κ3a22 = 0.9074− (−0.0293)(−0.0318) = 0.9065 (6.27)

a23 = a22 − κ3a12 = −0.0318− (−0.0293)(0.9074) = −0.0052 (6.28)

E3 = E2(1− κ3
2) = 2492(1−−0.02932) = 2490 (6.29)

Our final values are:

a11 = 0.8795 (6.30)

a12 = 0.9074 a22 = −0.0318 (6.31)

a13 = 0.9065 a23 = −0.0052 a33 = −0.0293 (6.32)

E1 = 2495 E2 = 2492 E3 = 2490 (6.33)

These values have been rounded to the nearest significant digit and will not be an exact
match to those generated by a computer.

37

6 Free Lossless Audio Codec

Best order estimation

At this point, we have an array of prospective LP coefficient lists, a list of error values and
must decide which LPC order to use. There are two ways to accomplish this: we can either
estimate the total bits from the error values or perform an exhaustive search. Making the
estimation requires the total number of samples in the subframe, the number of overhead
bits per order (by default, this is the number of bits per sample in the subframe, plus 5),
and an error scale constant in addition to the LPC error values:

Error Scale =
ln(2)2

2× Total Samples
(6.34)

Once the error scale has been calculated, one can generate a ‘Bits per Residual’ estimation
function which, given an LPC Error value, returns what its name implies:

Bits per Residual(LPC Error) =
ln(Error Scale× LPC Error)

2× ln(2)
(6.35)

With this function, we can estimate how many bits the entire LPC subframe will take for
each LPC Error value and its associated Order:

Total Bits(LPC Error,Order) = Bits per Residual(LPC Error)× (Total Samples−Order) + (Order×Overhead bits)
(6.36)

Continuing with our example, we have 20 samples and now have the error values of 2495,
2492 and 2490. This gives us an error scale of: ln(2)2

2×20 = .69312

40 = .01201

At LPC order 1, our bits per residual are:

ln(.01201× 2495)
2× ln(2)

=
ln(29.96)

1.386
= 2.453 (6.37)

And our total bits are:

(2.453× (20− 1)) + (1× (16 + 5)) = 46.61 + 21 = 67.61 (6.38)

At LPC order 2, our bits per residual are:

ln(.01201× 2492)
2× ln(2)

=
ln(29.92)

1.386
= 2.452 (6.39)

And our total bits are:

(2.452× (20− 2)) + (2× (16 + 5)) = 44.14 + 42 = 86.14 (6.40)

38

6.4 FLAC Encoding

At LPC order 3, our bits per residual are:

ln(.01201× 2490)
2× ln(2)

=
ln(29.90)

1.386
= 2.451 (6.41)

And our total bits are:

(2.451× (20− 3)) + (3× (16 + 5)) = 41.67 + 63 = 104.7 (6.42)

Therefore, since the total bits for order 1 are the smallest, the best order for this group of
samples is 1.

Though as you’ll notice, the bits per residual for order 3 were the smallest. So if this
group of samples was very large, it’s likely that order 3 would prevail since the residuals
multiplied by a smaller bits per residual would counteract the relatively fixed overhead bits
per order value.

Best order exhaustive search

In a curious bit of recursion, finding the best order for an LPC subframe via an exhaustive
search requires taking each list of LP Coefficients calculated previously, quantizing them
into a list of QLP Coefficients and a QLP Shift Needed value,3 determining the total amount
of bits each hypothetical LPC subframe uses and using the LPC order which uses the fewest.

Remember that building an LPC subframe requires the following values: LPC Order,
QLP Precision, QLP Shift Needed and QLP Coefficients along with the subframe’s samples
and bits-per-sample. For each possible LPC Order, the QLP Shift Needed and the QLP
Coefficient list values can be calculated by quantizing the LP Coefficients. QLP Precision is
the size of each QLP Coefficient list value in the subframe header. Simply choose the field
with the largest number of bits in the QLP Coefficient list for the QLP Precision value.

Finally, instead of writing these hypothetical LPC subframes directly to disk, one only
has to capture how many bits they would use. The hypothetical LPC subframe that uses
the fewest number of bits is the one we should actually write to disk.

3Quantizing coefficients will be covered in the next section.

39

6 Free Lossless Audio Codec

Quantizing coefficients

Quantizing coefficients is a process of taking a list of LP Coefficients along with a QLP
Coefficients Precision value and returning a list of QLP Coefficients and a QLP Shift Needed
value. The first step is determining the upper and lower limits of the QLP Coefficients:

QLP coefficient maximum = 2precision−1 − 1 (6.43)

QLP coefficient mininum = −2precision−1 (6.44)

The QLP Coefficients Precision value is typically based on the encoder’s block size:

Block Size Precision Block Size Precision
Size ≤ 192 7 Size ≤ 384 8
Size ≤ 576 9 Size ≤ 1152 10

Size ≤ 2304 11 Size ≤ 4608 12
Size > 4608 13

So in our example of a block of 20 samples,

QLP Coefficient maximum = 27−1 − 1 = 64− 1 = 63 (6.45)

QLP Coefficient minimum = −27−1 = −64 (6.46)

Now we determine the initial QLP Shift Needed value:

shift = precision−
⌈

log(max(|LP Coefficients|))
log(2)

⌉
− 1 (6.47)

where ‘shift’ is adjusted if necessary such that: 0 ≤ shift ≤ 0xF , since it must fit into a
5-bit signed field and negative shifts are no-ops in the FLAC decoder.

Continuing our ongoing example, let’s assume we’re quantizing the LP coefficients 0.9065,
-0.0052 and -0.0293. So our shift should be:

shift = 7−
⌈

log(0.9065)
log(2)

⌉
− 1 = 7−

⌈
−0.0981
0.6931

⌉
− 1 = 7− 0− 1 = 6 (6.48)

Finally, we determine the QLP Coefficient values themselves via a small recursive routine:

X(i) = E(i− 1) + (LP Coefficienti × 2shift) (6.49)
QLP Coefficienti = round(X(i)) (6.50)

E(i) = X(i)−QLP Coefficienti (6.51)

where E(0) = 0 and each QLP Coefficient is adjusted prior to calculating the next E(i) value
such that: QLP coefficient minimum ≤ QLP Coefficienti ≤ QLP coefficient maximum

40

6.4 FLAC Encoding

So to finish our LPC example:

X(1) = E(0) + (0.9065× 26) = 0 + 58.016 = 58.016 (6.52)
QLP Coefficient1 = round(58.016) = 58 (6.53)

E(1) = X(1)−QLP Coefficient1 = 58.016− 58 = 0.016 (6.54)

X(2) = E(1) + (−0.0052× 26) = 0.016 +−0.3328 = 0.3168 (6.55)
QLP Coefficient2 = round(0.3168) = 0 (6.56)

E(2) = X(2)−QLP Coefficient2 = 0.3168− 0 = 0.3168 (6.57)

X(3) = E(2) + (−0.0293× 26) = 0.3168 +−1.875 = -1.558 (6.58)
QLP Coefficient3 = round(−1.558) = -2 (6.59)

E(3) = X(3)−QLP Coefficient3 = −1.558−−2 = 0.4420 (6.60)

Therefore, the LPC order is 3. The QLP Coefficients are 58, 0 and -2. The QLP Shift
Needed value is 6. And, the QLP precision value can be calculated from the bits required
for the largest absolute QLP Coefficient value. In this case, 6 bits are required to hold the
value 58 so QLP precision can be 6.

Calculating LPC residual

A number of warm-up samples equal to LPC Order are taken from the input PCM and the
subframe’s residuals are calculated according to the following formula:

Residuali = Samplei −


Order−1∑
j=0

QLP Coeffcientj × Samplei−j−1

2QLP Shift Needed

 (6.61)

For example, given the samples 1053, 1116, 1257, 1423, 1529, 1570, 1623, 1694, 1688, 1550,
the coefficients: 1241, -944, 14, 342, -147 and a QLP Shift Needed value of 9, our residuals
are as follows:

Index Sample Residual
0 (warm-up) 1053
1 (warm-up) 1116
2 (warm-up) 1257
3 (warm-up) 1423
4 (warm-up) 1529

5 1570 1570−
j

(1241×1529)+(−944×1423)+(14×1257)+(342×1116)+(−147×1053)

29

k
= 1570−

¨
798656

512

˝
= 11

6 1623 1623−
j

(1241×1570)+(−944×1529)+(14×1423)+(342×1257)+(−147×1116)

29

k
= 1623−

¨
790758

512

˝
= 79

7 1694 1694−
j

(1241×1623)+(−944×1570)+(14×1529)+(342×1423)+(−147×1257)

29

k
= 1694−

¨
855356

512

˝
= 24

8 1688 1688−
j

(1241×1694)+(−944×1623)+(14×1570)+(342×1529)+(−147×1423)

29

k
= 1688−

¨
905859

512

˝
= -81

9 1550 1550−
j

(1241×1688)+(−944×1694)+(14×1623)+(342×1570)+(−147×1529)

29

k
= 1550−

¨
830571

512

˝
= -72

41

6 Free Lossless Audio Codec

6.4.9 the Residual

Given a stream of residual values, one must place them in one or more partitions, each with
its own Rice parameter, and prepended with a small header:

Coding Method
0 1

Partition Order
2 5

Partition₁
6

Partition₂ ...

Method = 0 Rice Parameter
0 3

Escape Code
4 8

Encoded Residual

Method = 1 Rice Parameter
0 4

Escape Code
5 9

Encoded Residual

The residual’s coding method is typically 0, unless one is encoding audio with more than
16 bits-per-sample and one of the partitions requests a Rice parameter higher than 24. The
residual’s partition order is chosen exhaustively, which means trying all of them within a
certain range (e.g. 0 to 5) such that the residuals can be divided evenly between them and
then the partition order which uses the smallest estimated amount of space is chosen.

Choosing the best Rice parameter is a matter of selecting the smallest value of ‘x’ such
that:

sample count× 2x >
residual count−1∑

i=0

|residuali| (6.62)

Again, this is easier to understand with a block of example residuals, 19 in total:

index residuali |residuali|
0 -1 1
1 1 1
2 1 1
3 1 1
4 0 0
5 3 3
6 0 0
7 -4 4
8 -1 1
9 0 0
10 1 1
11 1 1
12 1 1
13 4 4
14 -3 3
15 1 1
16 4 4
17 -1 1
18 -1 1
|sum| 29

19× 20 is not larger than 29. 19× 21 is larger than 29, so the best Rice parameter for this
block of residuals is 1. Remember that the Rice parameter’s maximum value is limited to

42

6.4 FLAC Encoding

24 using coding method 0, or 25 using coding method 1.

Residual values

Encoding individual residual values to Rice coding requires only the Rice parameter and the
values themselves. First, one must convert any negative values to positive by multiplying it
by -1, subtracting 1 and prepending a 1 bit. If the value is already positive, prepend a 0 bit
instead. Next, we split out new value into most significant bits (MSB) and least significant
bits (LSB) where the length of the LSB is equal to the Rice parameter and MSB contains
the remaining bits. The MSB value is written unary encoded, whereas the LSB is written
as-is.

As with residual decoding, this process is not as difficult as it sounds and is best explained
by an example, in this case using a parameter of 3 and encoding the residual values 18, -25
and 12:

0 0 0 1 0 0 1 0 0

value = 18 = 0x12

1 1 0 0 0

value = 12 = 0xC

0 0 0 1 0 0 0

0 0 0 1 1 0 0 0 1

0 0 0 0 0 0 1 0 0 10 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0

value
sign
bit

MSB = 4 LSB = 4 MSB = 6 LSB = 1 LSB = 0MSB = 3

start end
The Bit Stream

value = −25 = 0x19 − 1 = 0x18

43

6 Free Lossless Audio Codec

6.4.10 Checksums

Calculating the frame header’s CRC-8 and frame footer’s CRC-16 is necessary both for
FLAC encoders and decoders, but the process is the same for each.

CRC-8

Given a byte of input and the previous CRC-8 checksum, or 0 as an initial value, the current
checksum can be calculated as follows:

checksumi = CRC8(byte xor checksumi−1) (6.63)

0x?0 0x?1 0x?2 0x?3 0x?4 0x?5 0x?6 0x?7 0x?8 0x?9 0x?A 0x?B 0x?C 0x?D 0x?E 0x?F

0x0? 0x00 0x07 0x0E 0x09 0x1C 0x1B 0x12 0x15 0x38 0x3F 0x36 0x31 0x24 0x23 0x2A 0x2D

0x1? 0x70 0x77 0x7E 0x79 0x6C 0x6B 0x62 0x65 0x48 0x4F 0x46 0x41 0x54 0x53 0x5A 0x5D

0x2? 0xE0 0xE7 0xEE 0xE9 0xFC 0xFB 0xF2 0xF5 0xD8 0xDF 0xD6 0xD1 0xC4 0xC3 0xCA 0xCD

0x3? 0x90 0x97 0x9E 0x99 0x8C 0x8B 0x82 0x85 0xA8 0xAF 0xA6 0xA1 0xB4 0xB3 0xBA 0xBD

0x4? 0xC7 0xC0 0xC9 0xCE 0xDB 0xDC 0xD5 0xD2 0xFF 0xF8 0xF1 0xF6 0xE3 0xE4 0xED 0xEA

0x5? 0xB7 0xB0 0xB9 0xBE 0xAB 0xAC 0xA5 0xA2 0x8F 0x88 0x81 0x86 0x93 0x94 0x9D 0x9A

0x6? 0x27 0x20 0x29 0x2E 0x3B 0x3C 0x35 0x32 0x1F 0x18 0x11 0x16 0x03 0x04 0x0D 0x0A

0x7? 0x57 0x50 0x59 0x5E 0x4B 0x4C 0x45 0x42 0x6F 0x68 0x61 0x66 0x73 0x74 0x7D 0x7A

0x8? 0x89 0x8E 0x87 0x80 0x95 0x92 0x9B 0x9C 0xB1 0xB6 0xBF 0xB8 0xAD 0xAA 0xA3 0xA4

0x9? 0xF9 0xFE 0xF7 0xF0 0xE5 0xE2 0xEB 0xEC 0xC1 0xC6 0xCF 0xC8 0xDD 0xDA 0xD3 0xD4

0xA? 0x69 0x6E 0x67 0x60 0x75 0x72 0x7B 0x7C 0x51 0x56 0x5F 0x58 0x4D 0x4A 0x43 0x44

0xB? 0x19 0x1E 0x17 0x10 0x05 0x02 0x0B 0x0C 0x21 0x26 0x2F 0x28 0x3D 0x3A 0x33 0x34

0xC? 0x4E 0x49 0x40 0x47 0x52 0x55 0x5C 0x5B 0x76 0x71 0x78 0x7F 0x6A 0x6D 0x64 0x63

0xD? 0x3E 0x39 0x30 0x37 0x22 0x25 0x2C 0x2B 0x06 0x01 0x08 0x0F 0x1A 0x1D 0x14 0x13

0xE? 0xAE 0xA9 0xA0 0xA7 0xB2 0xB5 0xBC 0xBB 0x96 0x91 0x98 0x9F 0x8A 0x8D 0x84 0x83

0xF? 0xDE 0xD9 0xD0 0xD7 0xC2 0xC5 0xCC 0xCB 0xE6 0xE1 0xE8 0xEF 0xFA 0xFD 0xF4 0xF3

For example, given the header bytes: 0xFF, 0xF8, 0xCC, 0x1C, 0x00 and 0xC0:

checksum0 = CRC8(0xFF xor 0x00) = CRC8(0xFF) = 0xF3 (6.64)
checksum1 = CRC8(0xF8 xor 0xF3) = CRC8(0x0B) = 0x31 (6.65)
checksum2 = CRC8(0xCC xor 0x31) = CRC8(0xFD) = 0xFD (6.66)
checksum3 = CRC8(0x1C xor 0xFD) = CRC8(0xE1) = 0xA9 (6.67)
checksum4 = CRC8(0x00 xor 0xA9) = CRC8(0xA9) = 0x56 (6.68)
checksum5 = CRC8(0xC0 xor 0x56) = CRC8(0x96) = 0xEB (6.69)

Thus, the next byte after the header should be 0xEB. Furthermore, when the checksum byte
itself is run through the checksumming procedure:

checksum6 = CRC8(0xEB xor 0xEB) = CRC8(0x00) = 0x00 (6.70)

the result will always be 0. This is a handy way to verify a frame header’s checksum since
the checksum of the header’s bytes along with the header’s checksum itself will always result
in 0.

44

6.4 FLAC Encoding

CRC-16

CRC-16 is used to checksum the entire FLAC frame, including the header and any padding
bits after the final subframe. Given a byte of input and the previous CRC-16 checksum, or
0 as an initial value, the current checksum can be calculated as follows:

checksumi = CRC16(byte xor (checksumi−1 � 8)) xor (checksumi−1 � 8) (6.71)

and the checksum is always truncated to 16-bits.

0x?0 0x?1 0x?2 0x?3 0x?4 0x?5 0x?6 0x?7 0x?8 0x?9 0x?A 0x?B 0x?C 0x?D 0x?E 0x?F

0x0? 0000 8005 800f 000a 801b 001e 0014 8011 8033 0036 003c 8039 0028 802d 8027 0022

0x1? 8063 0066 006c 8069 0078 807d 8077 0072 0050 8055 805f 005a 804b 004e 0044 8041

0x2? 80c3 00c6 00cc 80c9 00d8 80dd 80d7 00d2 00f0 80f5 80ff 00fa 80eb 00ee 00e4 80e1

0x3? 00a0 80a5 80af 00aa 80bb 00be 00b4 80b1 8093 0096 009c 8099 0088 808d 8087 0082

0x4? 8183 0186 018c 8189 0198 819d 8197 0192 01b0 81b5 81bf 01ba 81ab 01ae 01a4 81a1

0x5? 01e0 81e5 81ef 01ea 81fb 01fe 01f4 81f1 81d3 01d6 01dc 81d9 01c8 81cd 81c7 01c2

0x6? 0140 8145 814f 014a 815b 015e 0154 8151 8173 0176 017c 8179 0168 816d 8167 0162

0x7? 8123 0126 012c 8129 0138 813d 8137 0132 0110 8115 811f 011a 810b 010e 0104 8101

0x8? 8303 0306 030c 8309 0318 831d 8317 0312 0330 8335 833f 033a 832b 032e 0324 8321

0x9? 0360 8365 836f 036a 837b 037e 0374 8371 8353 0356 035c 8359 0348 834d 8347 0342

0xA? 03c0 83c5 83cf 03ca 83db 03de 03d4 83d1 83f3 03f6 03fc 83f9 03e8 83ed 83e7 03e2

0xB? 83a3 03a6 03ac 83a9 03b8 83bd 83b7 03b2 0390 8395 839f 039a 838b 038e 0384 8381

0xC? 0280 8285 828f 028a 829b 029e 0294 8291 82b3 02b6 02bc 82b9 02a8 82ad 82a7 02a2

0xD? 82e3 02e6 02ec 82e9 02f8 82fd 82f7 02f2 02d0 82d5 82df 02da 82cb 02ce 02c4 82c1

0xE? 8243 0246 024c 8249 0258 825d 8257 0252 0270 8275 827f 027a 826b 026e 0264 8261

0xF? 0220 8225 822f 022a 823b 023e 0234 8231 8213 0216 021c 8219 0208 820d 8207 0202

For example, given the frame bytes: 0xFF, 0xF8, 0xCC, 0x1C, 0x00, 0xC0, 0xEB, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00 and 0x00, the frame’s CRC-16 can be calculated as
follows:

checksum0 = CRC16(0xFF xor (0x0000� 8)) xor (0x0000� 8) = CRC16(0xFF) xor 0x0000 = 0x0202 (6.72)

checksum1 = CRC16(0xF8 xor (0x0202� 8)) xor (0x0202� 8) = CRC16(0xFA) xor 0x0200 = 0x001C (6.73)

checksum2 = CRC16(0xCC xor (0x001C� 8)) xor (0x001C� 8) = CRC16(0xCC) xor 0x1C00 = 0x1EA8 (6.74)

checksum3 = CRC16(0x1C xor (0x1EA8� 8)) xor (0x1EA8� 8) = CRC16(0x02) xor 0xA800 = 0x280F (6.75)

checksum4 = CRC16(0x00 xor (0x280F� 8)) xor (0x280F� 8) = CRC16(0x28) xor 0x0F00 = 0x0FF0 (6.76)

checksum5 = CRC16(0xC0 xor (0x0FF0� 8)) xor (0x0FF0� 8) = CRC16(0xCF) xor 0xF000 = 0xF2A2 (6.77)

checksum6 = CRC16(0xEB xor (0xF2A2� 8)) xor (0xF2A2� 8) = CRC16(0x19) xor 0xA200 = 0x2255 (6.78)

checksum7 = CRC16(0x00 xor (0x2255� 8)) xor (0x2255� 8) = CRC16(0x22) xor 0x5500 = 0x55CC (6.79)

checksum8 = CRC16(0x00 xor (0x55CC� 8)) xor (0x55CC� 8) = CRC16(0x55) xor 0xCC00 = 0xCDFE (6.80)

checksum9 = CRC16(0x00 xor (0xCDFE� 8)) xor (0xCDFE� 8) = CRC16(0xCD) xor 0xFE00 = 0x7CAD (6.81)

checksum10 = CRC16(0x00 xor (0x7CAD� 8)) xor (0x7CAD� 8) = CRC16(0x7C) xor 0xAD00 = 0x2C0B (6.82)

checksum11 = CRC16(0x00 xor (0x2C0B� 8)) xor (0x2C0B� 8) = CRC16(0x2C) xor 0x0B00 = 0x8BEB (6.83)

checksum12 = CRC16(0x00 xor (0x8BEB� 8)) xor (0x8BEB� 8) = CRC16(0x8B) xor 0xEB00 = 0xE83A (6.84)

checksum13 = CRC16(0x00 xor (0xE83A� 8)) xor (0xE83A� 8) = CRC16(0xE8) xor 0x3A00 = 0x3870 (6.85)

checksum14 = CRC16(0x00 xor (0x3870� 8)) xor (0x3870� 8) = CRC16(0x38) xor 0x7000 = 0xF093 (6.86)

Thus, the next two bytes after the final subframe should be 0xF0 and 0x93. Again, when the checksum bytes are run
through the checksumming procedure:

checksum15 = CRC16(0xF0 xor (0xF093� 8)) xor (0xF093� 8) = CRC16(0x00) xor 0x9300 = 0x9300 (6.87)

checksum16 = CRC16(0x93 xor (0x9300� 8)) xor (0x9300� 8) = CRC16(0x00) xor 0x0000 = 0x0000 (6.88)

the result will also always be 0, just as in the CRC-8.

45

6 Free Lossless Audio Codec

46

7 WavPack

WavPack is a format for compressing Wave files, typically in lossless mode. Notably, it also
has a lossy mode and even a hybrid mode which allows the ‘correction’ file to be separated
from a lossy core.

Metadata is stored as an APEv2 tag, which is described on page 52.

All of its fields are little-endian.

7.1 the WavPack file stream

WavPack Block₁ WavPack Block₂ ... WavPack Blockₓ APEv2 Tag

Block Header
0 255

Sub Block₁
256

Sub Block₂ ...

Sub-Block Header
0 7

Sub-Block Length
8 15/31

Sub-Block Data

47

7 WavPack

7.2 the WavPack block header

Block ID `wvpk' (0x7776706B)
0 31

Block Size
32 63

Version
64 79

Track Number
80 87

Index Number
88 95

Total Samples
96 127

Block Index
128 159

Block Samples
160 191

Floating Point Data
192

Hybrid Noise Shaping
193

Channel Decorrelation
194

Joint Stereo
195

Hybrid Mode
196

Mono Output
197

Bits-per-Sample
198 199

Left Shift Data (low)
200 202

Final Block
203

Initial Block
204

Hbd. Noise Balanced
205

Hbd. Controls Bitrate
206

Extended Size Integers
207

Sampling Rate (low)
208

Maximum Magnitude
209 211

Maximum Magnitude (cont.)
212 213

Left Shift Data (high)
214 215

Reserved
216

False Stereo
217

Use IIR
218

Reserved
219

Reserved
220

Sampling Rate (high)
221 223

CRC
224 255

value sample rate

0000 6000
0001 8000
0010 9600
0011 11025
0100 12000
0101 16000
0110 22050
0111 24000
1000 32000
1001 44100
1010 48000
1011 64000
1100 88200
1101 96000
1110 192000
1111 reserved

The ‘flags’ field is stored as a little-endian 32-bit integer. Since
some fields cross byte boundaries, their high and low bits will be
far apart when written in this format where the bits are ordered
the way they appear in the file.

‘Block Size’ is the length of everything past everything past the
block header, minus 24 bytes.

‘Bits per Sample’ is one of 4 values:
00 = 8 bps, 01 = 16 bps, 10 = 24 bps, 11 = 32 bps .
‘Mono Output’ bit indicates the channel count. If 1, this block

has 1 channel. If 0, this block has 2 channels. For an audio stream
with more than 2 channels, check the ‘Initial Block’ and ‘Final
Block’ bits to indicate the start and end of the channels. As an
example:

Initial Block Final Block Mono Output Channels
1 0 0 2
0 0 1 1
0 0 1 1
0 1 0 2

Total 6

48

7.2 the WavPack block header

7.2.1 WavPack sub-block header

Large Block
0

Actual Size 1 Less
1

Nondecoder Data
2

Metadata Function
3 7

Block Size
8 15/31

Block Data

If the ‘Large Block’ field is 0, the ‘Block Size’ field is 8 bits long. If it is 1, the ‘Block Size’
field is 24 bits long. The ‘Block Size’ field is the length of ‘Block Data’, in 16-bit words
rather than bytes. If ‘Actual Size 1 Less’ is set, that means ‘Block Data’ doesn’t contain
an even number of bytes; it is padded with a single null byte at the end in order to fit. If
‘Nondecoder Data’ is set, that means the decoder does not have to understand the contents
of this particular sub-block in order to decode the audio.

49

7 WavPack

50

8 Monkey’s Audio

Monkey’s Audio is a lossless RIFF WAVE compressor. Unlike FLAC, which is a PCM
compressor, Monkey’s Audio also stores IFF chunks and reproduces the original WAVE file
in its entirety rather than storing only the data it contains. All of its fields are little-endian.

8.1 the Monkey’s Audio file stream

Descriptor
0 415

Header
416 607

Seektable Header Data Frame₁ Frame₂ ... APEv2 Tag

8.2 the Monkey’s Audio descriptor

ID (`MAC' 0x4D414320)
0 31

Version
32 63

Descriptor Bytes
64 95

Header Bytes
96 127

Seektable Bytes
128 159

Header Data Bytes
160 191

Frame Data Bytes
192 223

Frame Data Bytes (High)
224 255

Terminating Data Bytes
256 287

MD5 Sum
288 415

Version is the encoding software’s version times 1000. i.e. Monkey’s Audio 3.99 = 3990

8.3 the Monkey’s Audio header

Compression Level
0 15

Format Flags
16 31

Blocks Per Frame
32 63

Final Frame Blocks
64 95

Total Frames
96 127

Bits Per Sample
128 143

Channels
144 159

Sample Rate
160 191

Length in Seconds =
((Total Frames− 1)× Blocks Per Frame) + Final Frame Blocks

Sample Rate
(8.1)

51

8 Monkey’s Audio

8.4 the APEv2 tag

The APEv2 tag is a little-endian metadata tag appended to Monkey’s Audio files, among
others.

Header
0 255

Item₁ Item₂ ... Footer
0 255

Item Value Length
0 31

Flags
32 63

Item Key
64

NULL (0x00)
0 7

Item Value

Item Key is an ASCII string from the range 0x20 to 0x7E. Item Value is typically a UTF-8
encoded string, but may also be binary depending on the Flags.

Abstract Abstract

Album album name

Artist performing artist

Bibliography Bibliography/Discography

Catalog catalog number

Comment user comment

Composer original composer

Conductor conductor

Copyright copyright holder

Debut album debut album name

Dummy place holder

EAN/UPC EAN-13/UPC-A bar code identifier

File file location

Genre genre

Index indexes for quick access

Introplay characteric part of piece for intro playing

ISBN ISBN number with check digit

ISRC International Standard Recording Number

Language used Language(s) for music/spoken words

LC Label Code

Media source media

Publicationright publication right holder

Publisher record label or publisher

Record Date record date

Record Location record location

Related location of related information

Subtitle track subtitle

Title track title

Track track number

Year release date

52

8.4 the APEv2 tag

8.4.1 the APEv2 tag header/footer

Preamble (`APETAGEX' 0x4150455441474558)
0 63

Version (0xD0070000)
64 95

Tag Size
96 127

Item Count
128 159

Flags
160 191

Reserved
192 255

The format of the APEv2 header and footer are identical except for the ‘Is Header’ tag.
‘Version’ is typically 2000 (stored little-endian). ‘Tag Size’ is the size of the entire APEv2
tag, including the footer but excluding the header. ‘Item Count’ is the number of individual
tag items.

8.4.2 the APEv2 flags

Undefined (0x00)
0 4

Encoding
5 6

Read-Only
7

Undefined (0x00)
8 23

Container Header
24

Contains no Footer
25

Is Header
26

Undefined (0x00)
27 31

This flags field is used by both the APEv2 header/footer and the individual tag items. The
‘Encoding’ field indicates the encoding of its value:
00 = UTF-8, 01 = Binary, 10 = External Link, 11 = Reserved .

53

8 Monkey’s Audio

54

9 MP3

MP3 is the de-facto standard for lossy audio. It is little more than a series of MPEG frames
with an optional ID3v2 metadata header and optional ID3v1 metadata footer.

MP3 decoders are assumed to be very tolerant of anything in the stream that doesn’t
look like an MPEG frame, ignoring such junk until the next frame is found. Since MP3 files
have no standard container format in which non-MPEG data can be placed, metadata such
as ID3 tags are often made ‘sync-safe’ by formatting them in a way that decoders won’t
confuse tags for MPEG frames.

9.1 the MP3 file Stream

ID3v2 Metadata MPEG Frame₁ MPEG Frame₂ ... ID3v1 Metadata

Frame Sync (all set)
0 7

Frame Sync
8 10

MPEG ID
11 12

Layer Description
13 14

Prot.
15

Bitrate
16 19

Sampling
20 21

Pad
22

Private
23

Channel
24 25

Mode Extension
26 27

Copyright
28

Original
29

Emphasis
30 31

MPEG Data
32

Sample Rate
bits MPEG ID Description MPEG-1 MPEG-2 MPEG-2.5 Channels
00 MPEG-2.5 reserved 44100 22050 11025 Stereo
01 reserved Layer III 48000 24000 12000 Joint stereo
10 MPEG-2 Layer II 32000 16000 8000 Dual channel stereo
11 MPEG-1 Layer I reserved reserved reserved Mono

Layer I frames always contain 384 samples. Layer II and Layer III frames always contain
1152 samples. If the ‘Protection’ bit is set, the frame header is followed by a 16 bit CRC.

55

9 MP3

MPEG-1 MPEG-1 MPEG-1 MPEG-2 MPEG-2
bits Layer-1 Layer-2 Layer-3 Layer-1 Layer-2/3
0000 free free free free free
0001 32 32 32 32 8
0010 64 48 40 48 16
0011 96 56 48 56 24
0100 128 64 56 64 32
0101 160 80 64 80 40
0110 192 96 80 96 48
0111 224 112 96 112 56
1000 256 128 112 128 64
1001 288 160 128 144 80
1010 320 192 160 160 96
1011 352 224 192 176 112
1100 384 256 224 192 128
1101 416 320 256 224 144
1110 448 384 320 256 160
1111 bad bad bad bad bad

Table 9.1: Bitrate in 1000 bits per second

To find the total size of an MPEG frame, use one of the following formulas:

Layer I:

Byte Length =
(

12× Bitrate
Sample Rate

+ Pad
)
× 4 (9.1)

Layer II/III:

Byte Length =
144× Bitrate
Sample Rate

+ Pad (9.2)

For example, an MPEG-1 Layer III frame with a sampling rate of 44100, a bitrate of 128kbps
and a set pad bit is 418 bytes long, including the header.

144× 128000
44100

+ 1 = 418 (9.3)

9.1.1 the Xing header

An MP3 frame header contains the track’s sampling rate, bits-per-sample and number of
channels. However, because MP3 files are little more than concatenated MPEG frames,
there is no obvious place to store the track’s total length. Since the length of each frame is
a constant number of samples, one can calculate the track length by counting the number
of frames. This method is the most accurate but is also quite slow.

For MP3 files in which all frames have the same bitrate - also known as constant bitrate,
or CBR files - one can divide the total size of file (minus any ID3 headers/footers), by the

56

9.2 ID3v1 tags

bitrate to determine its length. If an MP3 file has no Xing header in its first frame, one
can assume it is CBR.

An MP3 file that does contain a Xing header in its first frame can be assumed to be
variable bitrate, or VBR. In that case, the rate of the first frame cannot be used as a basis
to calculate the length of the entire file. Instead, one must use the information from the
Xing header which contains that length.

All of the fields within a Xing header are big-endian.

Header `Xing' (0x58696E67)
0 31

Flags
32 63

Number of Frames
64 95

Bytes
96 127

TOC Entry₁
128 135

TOC Entry₂
136 143

...
144 919

TOC Entry₁₀₀
920 927

Quality
928 959

9.2 ID3v1 tags

ID3v1 tags are very simple metadata tags appended to an MP3 file. All of the fields are
fixed length and the text encoding is undefined. There are two versions of ID3v1 tags.
ID3v1.1 has a track number field as a 1 byte value at the end of the comment field. If the
byte just before the end is not null (0x00), assume we’re dealing with a classic ID3v1 tag
without a track number.

9.2.1 ID3v1

Header (`TAG' 0x544147)
0 23

Track Title
24 263

Artist Name
264 503

Album Name
504 743

Year
744 775

Comment
776 1015

Genre
1016 1023

9.2.2 ID3v1.1

Header (`TAG' 0x544147)
0 23

Track Title
24 263

Artist Name
264 503

Album Name
504 743

Year
744 775

Comment
776 999

NULL
1000 1007

Track Number
1008 1015

Genre
1016 1023

57

9 MP3

9.3 ID3v2 tags

The ID3v2 tag was invented to address the deficiencies in the original ID3v1 tag. ID3v2
comes in three similar but not entirely compatible variants: ID3v2.2, ID3v2.3 and ID3v2.4.
All of its fields are big-endian.

Header
0 79

ID3v2 Frame₁ ID3v2 Frame₂ ... Padding

9.3.1 ID3v2.2

ID3v2.2 header

ID (`ID3' 0x494433)
0 23

Version (0x0200)
24 39

Unsync
40

Compression
41

NULL (0x00)
42 47

0x00
48

Size
49 55

0x00
56

Size
57 63

0x00
64

Size
65 71

0x00
72

Size
73 79

The single Size field is split by NULL (0x00) bytes in order to make it ‘sync-safe’. That is,
no possible size value will result in a false MP3 frame sync (11 bits set in a row).

ID3v2.2 frame

Frame ID
0 23

Size
24 47

Frame Data
48

Frame ID’s that begin with the letter ‘T’ (0x54) are text frames. These have an additional
text encoding byte before the actual text data. All text strings may be terminated by a
null character (0x00 or 0x0000, depending on the encoding).

58

9.3 ID3v2 tags

Frame ID `TXX' (0x54XXXX)
0 23

Size
24 47

Encoding
48 55

Text
56

Encoding Byte Text Encoding
0x00 ISO-8859-1
0x01 UCS-16

ID3v2.2 PIC frame

‘PIC’ frames are attached pictures. This allows an ID3v2.2 tag to contain a JPEG or PNG
image, typically of album artwork which can be displayed to the user when the track is
played.

Frame ID `PIC' (0x504943)
0 23

Size
24 47

 Text Encoding
48 55

 Image Format
56 79

Picture Type
80 87

Description
88

Picture Data

Text Encoding is the encoding of the Description field. Its value is either ISO-8859-1 or
UCS-16 - the same as in text frames. Image Format is a 3 byte string indicating the format
of the image, typically ‘JPG’ for JPEG images or ’PNG’ for PNG images. Description is a
NULL-terminated C-string which contains a text description of the image.

value type value type

0 Other 1 32x32 pixels ‘file icon’ (PNG only)
2 Other file icon 3 Cover (front)
4 Cover (back) 5 Leaflet page
6 Media (e.g. label side of CD) 7 Lead artist / Lead performer / Soloist
8 Artist / Performer 9 Conductor

10 Band / Orchestra 11 Composer
12 Lyricist / Text writer 13 Recording location
14 During recording 15 During performance
16 Movie / Video screen capture 17 A bright coloured fish
18 Illustration 19 Band / Artist logotype
20 Publisher / Studio logotype

Table 9.2: PIC image types

59

9 MP3

ID3v2.2 frame IDs

BUF Recommended buffer size

CNT Play counter

COM Comments

CRA Audio encryption

CRM Encrypted meta frame

ETC Event timing codes

EQU Equalization

GEO General encapsulated object

IPL Involved people list

LNK Linked information

MCI Music CD Identifier

MLL MPEG location lookup table

PIC Attached picture

POP Popularimeter

REV Reverb

RVA Relative volume adjustment

SLT Synchronized lyric/text

STC Synced tempo codes

TAL Album/Movie/Show title

TBP BPM (Beats Per Minute)

TCM Composer

TCO Content type

TCR Copyright message

TDA Date

TDY Playlist delay

TEN Encoded by

TFT File type

TIM Time

TKE Initial key

TLA Language(s)

TLE Length

TMT Media type

TOA Original artist(s) / performer(s)

TOF Original filename

TOL Original Lyricist(s) / text
writer(s)

TOR Original release year

TOT Original album / Movie / Show
title

TP1 Lead artist(s) / performer(s) /
Soloist(s) / Performing group

TP2 Band / Orchestra / Accompani-
ment

TP3 Conductor / Performer refine-
ment

TP4 Interpreted, remixed, or other-
wise modified by

TPA Part of a set

TPB Publisher

TRC ISRC (International Standard
Recording Code)

TRD Recording dates

TRK Track number / Position in set

TSI Size

TSS Software / hardware and set-
tings used for encoding

TT1 Content group description

TT2 Title / Songname / Content de-
scription

TT3 Subtitle / Description refine-
ment

TXT Lyricist / text writer

TXX User defined text information
frame

TYE Year

UFI Unique file identifier

ULT Unsychronized lyric / text tran-
scription

WAF Official audio file webpage

WAR Official artist / performer web-
page

WAS Official audio source webpage

WCM Commercial information

WCP Copyright / Legal information

WPB Publishers official webpage

WXX User defined URL link frame

60

9.3 ID3v2 tags

9.3.2 ID3v2.3

ID3v2.3 header

ID (`ID3' 0x494433)
0 23

Version (0x0300)
24 39

Unsync
40

Extended
41

Experimental
42

Footer
43

NULL (0x00)
44 47

0x00
48

Size
49 55

0x00
56

Size
57 63

0x00
64

Size
65 71

0x00
72

Size
73 79

The single Size field is split by NULL (0x00) bytes in order to make it ‘sync-safe’.

ID3v2.3 frame

Frame ID
0 31

Size
32 63

Tag Alter
64

File Alter
65

Read Only
66

NULL (0x00)
67 71

Compression
72

Encryption
73

Grouping
74

NULL (0x00)
75 79

Frame Data
80

Frame ID’s that begin with the letter ‘T’ (0x54) are text frames. These have an additional
text encoding byte before the actual text data. All text strings may be terminated by a
null character (0x00 or 0x0000, depending on the encoding).

Frame ID ‘TXXX’ (0x54XXXXXX)
0 31

Size
32 63

Tag Alter
64

File Alter
65

Read Only
66

NULL (0x00)
67 71

Compression
72

Encryption
73

Grouping
74

NULL (0x00)
75 79

Encoding
80 87

Text
80

Encoding Byte Text Encoding
0x00 ISO-8859-1
0x01 UCS-16

61

9 MP3

ID3v2.3 APIC frame

Frame ID `APIC' (0x41504943)
0 31

Size
32 63

Tag Alter
64

File Alter
65

Read Only
66

0x00
67 71

Compression
72

Encryption
73

Grouping
74

0x00
75 79

Text Encoding
80 87

MIME Type
88

Picture Type
0 7

Description

Picture Data

Text Encoding is the encoding of the Description field. Its value is either ISO-8859-1 or
UCS-16 - the same as in text frames. MIME Type is a NULL-terminated, ASCII C-string
which contains the image’s MIME type, such as ‘image/jpeg’ or ‘image/png’. Description
is a NULL-terminated C-string which contains a text description of the image.

value type value type

0 Other 1 32x32 pixels ‘file icon’ (PNG only)
2 Other file icon 3 Cover (front)
4 Cover (back) 5 Leaflet page
6 Media (e.g. label side of CD) 7 Lead artist / Lead performer / Soloist
8 Artist / Performer 9 Conductor

10 Band / Orchestra 11 Composer
12 Lyricist / Text writer 13 Recording location
14 During recording 15 During performance
16 Movie / Video screen capture 17 A bright coloured fish
18 Illustration 19 Band / Artist logotype
20 Publisher / Studio logotype

Table 9.3: APIC image types

62

9.3 ID3v2 tags

ID3v2.3 frame IDs

AENC Audio encryption

APIC Attached picture

COMM Comments

COMR Commercial frame

ENCR Encryption method registra-
tion

EQUA Equalization

ETCO Event timing codes

GEOB General encapsulated object

GRID Group identification registra-
tion

IPLS Involved people list

LINK Linked information

MCDI Music CD identifier

MLLT MPEG location lookup table

OWNE Ownership frame

PRIV Private frame

PCNT Play counter

POPM Popularimeter

POSS Position synchronisation frame

RBUF Recommended buffer size

RVAD Relative volume adjustment

RVRB Reverb

SYLT Synchronized lyric / text

SYTC Synchronized tempo codes

TALB Album /Movie / Show title

TBPM BPM (beats per minute)

TCOM Composer

TCON Content type

TCOP Copyright message

TDAT Date

TDLY Playlist delay

TENC Encoded by

TEXT Lyricist / Text writer

TFLT File type

TIME Time

TIT1 Content group description

TIT2 Title / songname / content de-
scription

TIT3 Subtitle / Description refine-
ment

TKEY Initial key

TLAN Language(s)

TLEN Length

TMED Media type

TOAL Original album/movie/show ti-
tle

TOFN Original filename

TOLY Original lyricist(s) / text
writer(s)

TOPE Original artist(s) / per-
former(s)

TORY Original release year

TOWN File owner / licensee

TPE1 Lead performer(s) / Soloist(s)

TPE2 Band / orchestra / accompani-
ment

TPE3 Conductor / performer refine-
ment

TPE4 Interpreted, remixed, or other-
wise modified by

TPOS Part of a set

TPUB Publisher

TRCK Track number / Position in set

TRDA Recording dates

TRSN Internet radio station name

TRSO Internet radio station owner

TSIZ Size

TSRC ISRC (international standard
recording code)

TSSE Software/Hardware and encod-
ing settings

TYER Year

TXXX User defined text information
frame

UFID Unique file identifier

USER Terms of use

USLT Unsychronized lyric / text
transcription

WCOM Commercial information

WCOP Copyright / Legal information

WOAF Official audio file webpage

WOAR Official artist/performer web-
page

WOAS Official audio source webpage

WORS Official internet radio station
homepage

WPAY Payment

WPUB Publishers official webpage

WXXX User defined URL link frame

63

9 MP3

9.3.3 ID3v2.4

ID3v2.4 header

ID (`ID3' 0x494433)
0 23

Version (0x0400)
24 39

Unsync
40

Extended
41

Experimental
42

Footer
43

NULL (0x00)
44 47

0x00
48

Size
49 55

0x00
56

Size
57 63

0x00
64

Size
65 71

0x00
72

Size
73 79

ID3v2.4 frame

Frame ID
0 31

0x00
32

Size
33 39

0x00
40

Size
41 47

0x00
48

Size
49 55

0x00
56

Size
57 63

0x00
64

Tag Alter
65

File Alter
66

Read Only
67

0x00
68 71

0x00
72

Grouping
73

0x00
74 75

Compression
76

Encryption
77

Unsync
78

Data Length
79

Frame Data
80

Frame ID’s that begin with the letter ‘T’ (0x54) are text frames. These have an additional
text encoding byte before the actual text data. All text strings may be terminated by a
null character (0x00 or 0x0000, depending on the encoding).

Frame ID ‘TXXX’ (0x54XXXXXX)
0 31

0x00
32

Size
33 39

0x00
40

Size
41 47

0x00
48

Size
49 55

0x00
56

Size
57 63

0x00
64

Tag Alter
65

File Alter
66

Read Only
67

0x00
68 71

0x00
72

Grouping
73

0x00
74 75

Compression
76

Encryption
77

Unsync
78

Data Length
79

Encoding
80 87

Text
80

Encoding Byte Text Encoding
0x00 ISO-8859-1
0x01 UTF-16
0x02 UTF-16BE
0x03 UTF-8

64

9.3 ID3v2 tags

ID3v2.4 APIC frame

Frame ID `APIC' (0x41504943)
0 31

0x00
32

Size
33 39

0x00
40

Size
41 47

0x00
48

Size
49 55

0x00
56

Size
57 63

0x00
64

Tag Alter
65

File Alter
66

Read Only
67

0x00
68 71

0x00
72

Grouping
73

0x00
74 75

Compression
76

Encryption
77

Unsync
78

Data Length
79

Text Encoding
80 87

MIME Type
88

Picture Type
0 7

Description

Picture Data

Text Encoding is the encoding of the Description field. Its value is either ISO-8859-1,
UTF-16 or UTF-8 - the same as in text frames. MIME Type is a NULL-terminated,
ASCII C-string which contains the image’s MIME type, such as ‘image/jpeg’ or ‘image/png’.
Description is a NULL-terminated C-string which contains a text description of the image.

value type value type

0 Other 1 32x32 pixels ‘file icon’ (PNG only)
2 Other file icon 3 Cover (front)
4 Cover (back) 5 Leaflet page
6 Media (e.g. label side of CD) 7 Lead artist / Lead performer / Soloist
8 Artist / Performer 9 Conductor

10 Band / Orchestra 11 Composer
12 Lyricist / Text writer 13 Recording location
14 During recording 15 During performance
16 Movie / Video screen capture 17 A bright coloured fish
18 Illustration 19 Band / Artist logotype
20 Publisher / Studio logotype

Table 9.4: APIC image types

65

9 MP3

ID3v2.4 frame IDs

AENC Audio encryption

APIC Attached picture

ASPI Audio seek point index

COMM Comments

COMR Commercial frame

ENCR Encryption method registra-
tion

EQU2 Equalisation (2)

ETCO Event timing codes

GEOB General encapsulated object

GRID Group identification registra-
tion

LINK Linked information

MCDI Music CD identifier

MLLT MPEG location lookup table

OWNE Ownership frame

PRIV Private frame

PCNT Play counter

POPM Popularimeter

POSS Position synchronisation frame

RBUF Recommended buffer size

RVA2 Relative volume adjustment (2)

RVRB Reverb

SEEK Seek frame

SIGN Signature frame

SYLT Synchronised lyric/text

SYTC Synchronised tempo codes

TALB Album/Movie/Show title

TBPM BPM (beats per minute)

TCOM Composer

TCON Content type

TCOP Copyright message

TDEN Encoding time

TDLY Playlist delay

TDOR Original release time

TDRC Recording time

TDRL Release time

TDTG Tagging time

TENC Encoded by

TEXT Lyricist/Text writer

TFLT File type

TIPL Involved people list

TIT1 Content group description

TIT2 Title/songname/content de-
scription

TIT3 Subtitle/Description refine-
ment

TKEY Initial key

TLAN Language(s)

TLEN Length

TMCL Musician credits list

TMED Media type

TMOO Mood

TOAL Original album/movie/show ti-
tle

TOFN Original filename

TOLY Original lyricist(s)/text
writer(s)

TOPE Original artist(s)/performer(s)

TOWN File owner/licensee

TPE1 Lead performer(s)/Soloist(s)

TPE2 Band/orchestra/accompaniment

TPE3 Conductor/performer refine-
ment

TPE4 Interpreted, remixed, or other-
wise modified by

TPOS Part of a set

TPRO Produced notice

TPUB Publisher

TRCK Track number/Position in set

TRSN Internet radio station name

TRSO Internet radio station owner

TSOA Album sort order

TSOP Performer sort order

TSOT Title sort order

TSRC ISRC (international standard
recording code)

TSSE Software/Hardware and set-
tings used for encoding

TSST Set subtitle

TXXX User defined text information
frame

UFID Unique file identifier

USER Terms of use

USLT Unsynchronised lyric/text
transcription

WCOM Commercial information

WCOP Copyright/Legal information

WOAF Official audio file webpage

WOAR Official artist/performer web-
page

WOAS Official audio source webpage

WORS Official Internet radio station
homepage

WPAY Payment

WPUB Publishers official webpage

WXXX User defined URL link frame

66

10 M4A

M4A is typically AAC audio in a QuickTime container stream, though it may also contain
other formats such as MPEG-1 audio.

10.1 the QuickTime file stream

Atom₁ Atom₂ Atom₃ Atom₄ Atom₅ ...

Atom₂₋₁ Atom₂₋₂ Atom₅₋₁ Atom₅₋₂ ...

Atom₅₋₁₋₁ Atom₅₋₁₋₂ Atom₅₋₁₋₃ Atom₅₋₁₋₄

Unlike other chunked formats such as RIFF WAVE, QuickTime’s atom chunks may be
containers for other atoms. All of its fields are big-endian.

10.1.1 a QuickTime atom

Atom Length
0 31

Atom Type
32 63

Atom Data
64

Atom Type is an ASCII string. Atom Length is the length of the entire atom, including
the header. If Atom Length is 0, the atom continues until the end of the file. If Atom Length
is 1, the atom has an extended size. This means there is a 64-bit length field immediately
after the header which is the atom’s actual size.

False Length (0x01)
0 31

Atom Type
32 63

Atom Length
64 127

Atom Data
64

10.1.2 Container atoms

There is no flag or field to tell a QuickTime parser which of its atoms are containers and
which ones are not. If an atom is known to be a container, one can treat its Atom Data as
a QuickTime stream and parse it in a recursive fashion.

67

10 M4A

10.2 M4A atoms

A typical M4A begins with an ‘ftyp’ atom indicating its file type, followed by a ‘moov’ atom
containing a copious amount of file metadata, an optional ‘free’ atom with nothing but
empty space (so that metadata can be resized, if necessary) and an ‘mdat’ atom containing
the song data itself.

ftyp

moov

trak

mvhd

tkhd

mdia

mdhd

hdlr

minf

stbl

stsd

smhd

dinf

dref

M4A File

mp4a

stts

stsc

stsz

stco

udta

meta

free

mdat

10.2.1 the ftyp atom

ftyp Length
0 31

`ftyp' (0x66747970)
32 63

Major Brand
64 95

Major Brand Version
96 127

Compatible Brand₁
128 159

...
160

The ‘Major Brand’ and ‘Compatible Brand’ fields are ASCII
strings. ‘Major Brand Version’ is an integer.

10.2.2 the mvhd atom

mvhd Length
0 31

`mvhd' (0x6D766864)
32 63

Version
64 71

Flags (0x000000)
72 95

Created Mac UTC Date
96 127/159

Modified Mac UTC Date
128/160 159/223

Time Scale
160/224 191/255

Duration
192/256 223/319

Playback Speed
224/320 255/351

User Volume
256/352 271/367

Reserved (0)
272/368 351/447

WGM A
352/448 383/479

WGM B
384/480 415/511

WGM U
416/512 447/543

WGM C
448/544 479/575

WGM D
480/576 511/607

WGM V
512/608 543/639

WGM X
544/640 575/671

WGM Y
576/672 607/703

WGM W
608/704 639/735

QuickTime Preview
640/736 703/799

QuickTime Still Poster
704/800 735/831

QuickTime Selection Time
736/832 799/895

QuickTime Current Time
800/896 831/927

next/new track ID
832/928 863/959

If ‘Version’ is 0, ‘Created Mac UTC Date’, ‘Modified Mac
UTC Date’ and ‘Duration’ are 32-bit fields. If it is 1, they
are 64-bit fields.

68

10.2 M4A atoms

10.2.3 the tkhd atom

tkhd Length
0 31

`tkhd' (0x746B6864)
32 63

Version
64 71

Reserved (0)
72 91

Track in Poster
92

Track in Preview
93

Track in Movie
94

Track Enabled
95

Created Mac UTC Date
96 127/159

Modified Mac UTC Date
128/160 159/223

Track ID
160/224 191/255

Reserved (0)
192/256 255/319

Duration
256/320 287/383

Reserved (0)
288/384 319/415

Video Layer
320/415 335/431

QuickTime Alt
336/432 351/447

Audio Volume
352/448 367/463

Reserved (0)
368/464 383/479

VGM value A
384/480 415/511

VGM value B
416/512 447/543

VGM value U
448/544 479/575

VGM value C
480/576 511/607

VGM value D
512/608 543/639

VGM value V
544/640 575/671

VGM value X
576/672 607/703

VGM value Y
608/704 639/735

VGM value W
640/736 671/767

Video Frame Size
672/768 735/831

As with ‘mvhd’, if ‘Version’ is 0, ‘Created Mac UTC Date’, ‘Modified Mac UTC Date’ and
‘Duration’ are 32-bit fields. If it is 1, they are 64-bit fields.

10.2.4 the mdhd atom

The mdhd atom contains track information such as samples-per-second, track length and
creation/modification times.

mdhd Length
0 31

`mdhd' (0x6D646864)
32 63

Version
64 71

Flags (0x000000)
72 95

Created Mac UTC Date
96 127/159

Modified Mac UTC Date
128/60 159/223

Sample Rate
160/224 191/255

Track Length
192/256 223/319

Pad
224/320

Language
225/321 239/335

Quality
240/336 255/351

As with ‘mvhd’, if ‘Version’ is 0, ‘Created Mac UTC Date’, ‘Modified Mac UTC Date’ and
‘Track Length’ are 32-bit fields. If it is 1, they are 64-bit fields.

69

10 M4A

10.2.5 the hdlr atom

hdlr Length
0 31

`hdlr' (0x68646C72)
32 63

Version
64 71

Flags (0x000000)
72 95

QuickTime type
96 127

Subtype/media type
128 159

Quicktime manufacturer
160 191

QuickTime flags
192 223

Quicktime flags mask
224 255

Component Name Length
256 263

Component Name
264

‘QuickTime flags’, ‘QuickTime flags mask’ and ‘Component Name Length’ are integers.
The rest are ASCII strings.

10.2.6 the smhd atom

smhd Length
0 31

`smhd' (0x736D6864)
32 63

Version
64 71

Flags (0x000000)
72 95

Audio Balance
96 111

Reserved (0x0000)
112 127

10.2.7 the dref atom

dref Length
0 31

`dref' (0x64726566)
32 63

Version
64 71

Flags (0x000000)
72 95

Number of References
96 127

Reference Atom₁
128

Reference Atom₂ ...

70

10.2 M4A atoms

10.2.8 the stsd atom

stsd Length
0 31

`stsd' (0x73747364)
32 63

Version
64 71

Flags (0x000000)
72 95

Number of Descriptions
96 127

Description Atom₁
128

Description Atom₂ ...

10.2.9 the mp4a atom

The mp4a atom contains information such as the number of channels and bits-per-sample.
It can be found in the stsd atom.

mp4a Length
0 31

`mp4a' (0x6D703461)
32 63

Reserved (0x000000000000)
64 111

Reference Index
112 127

QuickTime Version
128 143

QuickTime Revision Level
144 159

QuickTime Audio Encoding Vendor
160 191

Channels
192 207

Bits per Sample
208 223

QuickTime Compression ID
224 239

Audio Packet Size
240 255

Audio Sample Rate
256 287

`esds' atom
288

esds Length
0 31

`esds' (0x65736473)
32 63

Version
64 71

Flags (0x000000)
72 95

ESDS Atom Data
96

71

10 M4A

10.2.10 the stts atom

stts Length
0 31

`stts' (0x73747473)
32 63

Version
64 71

Flags (0x000000)
72 95

Number of Times
96 127

Frame Count₁
128 159

Duration₁
160 191

Frame Count₂
192 223

Duration₂
224 255

...
256

10.2.11 the stsc atom

stsc Length
0 31

`stsc' (0x73747363)
32 63

Version
64 71

Flags (0x000000)
72 95

Number of Blocks
96 127

First Chunk₁
128 159

Samples per Chunk₁
160 191

Sample Duration Index₁
192 223

First Chunk₂
224 255

Samples per Chunk₂
256 287

Sample Duration Index₂
288 319

...
320

10.2.12 the stsz atom

stsz Length
0 31

`stsz' (0x7374737A)
32 63

Version
64 71

Flags (0x000000)
72 95

Number of Block Sizes
96 127

Block Size₁
128 159

Block Size₂
160 191

...
192

72

10.2 M4A atoms

10.2.13 the stco atom

stsz Length
0 31

`stsz' (0x7374737A)
32 63

Version
64 71

Flags (0x000000)
72 95

Number of Offsets
96 127

Offset₁
128 159

Offset₂
160 191

...
192

Offsets point to an absolute position in the M4A file of AAC data in the mdat atom.
Therefore, if the moov atom size changes (which can happen by writing new metadata in its
meta child atom) the mdat atom may move and these obsolute offsets will change. In that
instance, they must be re-adjusted in the stco atom or the file may become unplayable.

10.2.14 the meta atom

ftyp

ilst

 nam

data

trkn

data

free

meta
meta Length

0 31
`meta' (0x6D657461)

32 63

Version
64 71

Flags (0x000000)
72 95

`ftyp' atom
96

`ilst' atom `free' atom ...

The atoms within the ilst container are all containers them-
selves, each with a data atom of its own. Notice that many of
ilst’s sub-atoms begin with the non-ASCII 0xA9 byte.

data Length
0 31

`data' (0x64617461)
32 63

Type
64 95

Reserved (0x00000000)
96 127

Data
128

Text data atoms have a type of 1. Binary data atoms typically
have a type of 0.

Atom Description Atom Description Atom Description

alb Album Nam ART Track Artist cmt Comments
covr Cover Image cpil Compilation cprt Copyright
day Year disk Disc Number gnre Genre
grp Grouping ---- iTunes-specific nam Track Name
rtng Rating tmpo BMP too Encoder
trkn Track Number wrt Composer

Table 10.1: Known ilst sub-atoms

73

10 M4A

the trkn sub-atom

trkn is a binary sub-atom of meta which contains the track number.

trkn Length
0 31

`trkn' (0x74726B6E)
32 63

Data
64

data Length
0 31

`data' (0x64617461)
32 63

Flags (0x00000000)
64 127

NULL (0x0000)
128 143

Track Number
144 159

Total Tracks
160 175

NULL (0x0000)
176 191

the disk sub-atom

disk is a binary sub-atom of meta which contains the disc number. For example, if the track
belongs to the first disc in a set of two discs, the sub-atom will contain that information.

disk Length
0 31

`disk' (0x6469736B)
32 63

Data
64

data Length
0 31

`data' (0x64617461)
32 63

Flags (0x00000000)
64 127

NULL (0x0000)
128 143

Disc Number
144 159

Total Discs
160 175

74

11 Ogg Vorbis

Ogg Vorbis is Vorbis audio in an Ogg container. Ogg containers are a series of Ogg pages,
each containing one or more segments of data. All of the fields within Ogg Vorbis are
little-endian.

11.1 Ogg file stream

Ogg Page₁ Ogg Page₂ Ogg Page₃ ...

Magic Number `OggS' (0x4F676753)
0 31

Version (0x00)
32 39

Header Type
40 47

Granule Position
48 111

Bitstream Serial Number
112 143

Page Sequence Number
144 175

Checksum
176 207

Page Segments
208 215

Segment Length₁
216 223

... Segment Lengthₓ

Segment₁ ... Segmentₓ

bits Header Type
001 Continuation
010 Beginning of Stream
100 End of Stream

‘Granule position’ is a time marker. In the case of Ogg
Vorbis, it is the sample count.

‘Bitstream Serial Number’ is an identifier for the given
bitstream which is unique within the Ogg file. For in-
stance, an Ogg file might contain both video and audio
pages, interleaved. The Ogg pages for the audio will have a different serial number from
those of the video so that the decoder knows where to send the data of each.

‘Page Sequence Number’ is an integer counter which starts from 0 and increments 1 for
each Ogg page. Multiple bitstreams will have separate sequence numbers.

‘Checksum’ is a 32-bit checksum of the entire Ogg page.
The ‘Page Segments’ value indicates how many segments are in this Ogg page. Each

segment will have an 8-bit length. If that length is 255, it indicates the next segment is
part of the current one and should be concatenated with it when creating packets from the
segments. In this way, packets larger than 255 bytes can be stored in an Ogg page. If the

75

11 Ogg Vorbis

final segment in the Ogg page has a length of 255 bytes, the packet it is a part of continues
into the next Ogg page.

11.1.1 Ogg packets

Ogg Page₁ Ogg Page₂ Ogg Page₃ ...

Segment₁
30 bytes

Segment₂
255 bytes

Segment₃
255 bytes

Segment₄
255 bytes

Segment₅
255 bytes

Segment₆
40 bytes

Segment₇
60 bytes

Packet₁
30 bytes

Packet₂
1060 bytes

Packet₃
60 bytes

This is an example Ogg stream to illustrate a few key points about the format. Note
that Ogg pages may have one or more segments, and packets are composed of one of more
segments, yet the boundaries between packets are segments that are less than 255 bytes
long. Which segment belongs to which Ogg page is not important for building packets.

11.2 the Identification packet

The first packet within a Vorbis stream is the Identification packet. This contains the sample
rate and number of channels. Vorbis does not have a bits-per-sample field, as samples are
stored internally as floating point values and are converted into a certain number of bits
in the decoding process. To find the total samples, use the ‘Granule Position’ value in the
stream’s final Ogg page.

Type (0x01)
0 7

Header `vorbis' (0x766F72626973)
8 55

Vorbis version (0x00000000)
56 87

Channels
88 95

Sample Rate
96 127

Maximum Bitrate
128 159

Nominal Bitrate
160 191

Minimum Bitrate
192 223

Blocksize₁
224 227

Blocksize₂
228 231

Framing flag (0x01)
232 239

76

11.3 the Comment packet

11.3 the Comment packet

The second packet within a Vorbis stream is the Comment packet.

Type (0x03)
0 7

Header `vorbis' (0x766F72626973)
8 55

Comment Data
56

Framing (0x1)
0 7

Vendor String Total Comments
0 31

Comment String₁ Comment String₂ ...

Vendor String Length
0 31

Vendor String
32

Comment String Length
0 31

Comment String
0

The length fields are all little-endian. The Vendor String and Comment Strings are
all UTF-8 encoded. Keys are not case-sensitive and may occur multiple times, indicating
multiple values for the same field. For instance, a track with multiple artists may have more
than one ARTIST.

ALBUM album name

ARTIST artist name, band name, composer, author, etc.

CATALOGNUMBER* CD spine number

COMPOSER* the work’s author

CONDUCTOR* performing ensemble’s leader

COPYRIGHT copyright attribution

DATE recording date

DESCRIPTION a short description

DISCNUMBER* disc number for multi-volume work

ENGINEER* the recording masterer

ENSEMBLE* performing group

GENRE a short music genre label

GUEST ARTIST* collaborating artist

ISRC ISRC number for the track

LICENSE license information

LOCATION recording location

OPUS* number of the work

ORGANIZATION record label

PART* track’s movement title

PERFORMER performer name, orchestra, actor, etc.

PRODUCER* person responsible for the project

PRODUCTNUMBER* UPC, EAN, or JAN code

PUBLISHER* album’s publisher

RELEASE DATE* date the album was published

REMIXER* person who created the remix

SOURCE ARTIST* artist of the work being performed

SOURCE MEDIUM* CD, radio, cassette, vinyl LP, etc.

SOURCE WORK* a soundtrack’s original work

SPARS* DDD, ADD, AAD, etc.

SUBTITLE* for multiple track names in a single file

TITLE track name

TRACKNUMBER track number

VERSION track version

Fields marked with * are proposed extension fields and not part of the official Vorbis com-
ment specification.

77

11 Ogg Vorbis

11.4 Channel assignment

channel
count channel 1 channel 2 channel 3 channel 4 channel 5 channel 6 channel 7 channel 8

1
front

center

2
front front

left right

3
front front front

left center right

4
front front back back

left right left right

5
front front front back back

left center right left right

6
front front front back back

left center right left right LFE

7
front front front side side back

left center right left right center LFE

8
front front front side side back back

left center right left right left right LFE

8+ defined by application

78

12 Ogg FLAC

Ogg FLAC is a FLAC audio stream in an Ogg container.

12.1 the Ogg FLAC file stream

Ogg Page Ogg Page ... Ogg Page ... Ogg Page ...

Segment Segment Segment Segment Segment Segment Segment

STREAMINFO
0 407

Vorbis Comment Metadata₃ Metadata₄ ... Frame₁ Frame₂ ...

Packet Byte (0x7F)
0 7

Signature `FLAC' (0x464C4143)
8 39

Major Version (0x1)
40 47

Minor Version (0x0)
48 55

Header Packets
56 71

FLAC Signature `fLaC' (0x664C6143)
72 103

Last Block (0)
104

Block Type (0x0)
105 111

Block Length
112 135

Minimum Block Size (in samples)
136 151

Maximum Block Size (in samples)
152 167

Minimum Frame Size (in bytes)
168 191

Maximum Frame Size (in bytes)
192 215

Sample Rate
216 235

Channels
236 238

Bits Per Sample
239 243

Total Samples
244 279

MD5 Sum of PCM Data
280 407

Subsequent FLAC metadata blocks are stored 1 per packet. Each contains the 32-bit FLAC
metadata block header in addition to the metadata itself. The VORBIS COMMENT metadata
block is required to immediately follow the STREAMINFO block, but all others may appear
in any order.

79

12 Ogg FLAC

80

13 Ogg Speex

Ogg Speex is Speex audio in an Ogg container. Speex is a lossy audio codec optimized for
speech. All of the fields within Ogg Speex are little-endian.

How Ogg containers break up data packets into segments and pages has already been
explained in the Ogg Vorbis section on page 75. Therefore, I shall move directly to the Ogg
Speex packets themselves.

13.1 the header packet

The first packet within a Speex stream is the Header packet. It contains the number of
channels and sampling rate. Like Vorbis, the number of bits per sample is generated during
decoding and the total number of samples is pulled from the ‘Granule Position’ field in the
Ogg stream.

Speex String `Speex ' (0x5370656578202020)
0 63

Speex Version
64 223

Speex Version ID
224 255

Header Size
256 287

Sampling Rate
288 319

Mode
320 351

Mode Bitstream Version
352 383

Number of Channels
384 415

Bitrate
416 447

Frame Size
448 479

VBR
480 511

Frames Per Packet
512 543

Extra Headers
544 575

Reserved₁
576 607

Reserved₂
608 639

13.2 the comment packet

The second packet within a Speex stream is the Comment packet. This is identical to the
comments used by Ogg Vorbis which is detailed on page 77.

81

13 Ogg Speex

82

14 Musepack

Musepack is a lossy audio format based on MP2 and designed for transparency. It comes in
two varieties: SV7 and SV8 where ‘SV’ stands for Stream Version. These container versions
differ so heavily that they must be considered separately from one another.

14.1 the SV7 file stream

This is the earliest version of Musepack with wide support. All of its fields are little-endian.
Each frame contains 1152 samples per channel. Therefore:

Header
0 223

Frame₁
224

Frame₂ ... APEv2 tag

Signature (`MP+' 0x4D502B)
0 23

Version (0x07)
24 31

Frame Count
32 63

Max Level
64 79

Profile
80 83

Link
84 85

Sample Rate
86 87

Intensity Stereo
88

Midside Stereo
89

Max Band
90 95

Title Gain
96 111

Title Peak
112 127

Album Gain
128 143

Album Peak
144 159

Unusued (0x00)
160 175

Last Frame Samples (low)
176 179

True Gapless
180

Unusued (0x00)
181 183

Fast Seeking
184

Last Frame Samples (high)
 185 191

Unknown
192 215

Encoder Version
 216 223

Total Samples = ((Frame Count− 1)× 1152) + Last Frame Samples (14.1)

Musepack files always have exactly 2 channels and its lossy samples are stored as floating
point. Its sampling rate is one of four values:
00 = 44100Hz, 01 = 48000Hz, 10 = 37800Hz, 11 = 32000Hz .

83

14 Musepack

14.2 the SV8 file stream

This is the latest version of the Musepack stream. All of its fields are big-endian.

`MPCK' (0x4D50434B)
0 31

Packet₁
32

Packet₂ ... APEv2 tag

Key
0 15

Length
16

Value

‘Key’ is a two character uppercase ASCII string (i.e. each digit must be between the
characters 0x41 and 0x5A, inclusive). ‘Length’ is a variable length field indicating the size
of the entire packet, including the header. This is a Nut-encoded field whose total size
depends on whether the eighth bit of each byte is 0 or 1. The remaining seven bits of each
byte combine to form the field’s value, which is big-endian.

1. 0
0

Value
1 7

0 to 2⁷ - 2

2. 1
0

Value₁
1 7

0
8

Value₂
9 15

0 to 2¹⁴ - 2

3. 1
0

Value₁
1 7

1
8

Value₂
9 15

0
16

Value₃
17 23

0 to 2²¹ - 2

4. 1
0

Value₁
1 7

1
8

Value₂
9 15

1
16

Value₃
17 23

0
24

Value₄
25 31

0 to 2²⁸ - 2

Value₁
0 6

Value₂
7 13

Value₃
14 20

Value₄
21 27

← Actual Value

14.2.1 the SH packet

This is the Stream Header, which must be found before the first audio packet in the file.

CRC32
0 31

Version (0x8)
 32 37

Sample Count
38

Beginning Silence

Sample Rate
0 2

Max Used Bands
3 7

Channels
8 11

Mid Side Used
12

Frame Count
13 15

‘CRC32’ is a checksum of everything in the header, not including the checksum itself.
‘Sample Count’ is the total number of samples, as a Nut-encoded value. ‘Beginning Silence’

84

14.2 the SV8 file stream

is the number of silence samples at the start of the stream, also as a Nut-encoded value.
‘Channels’ is the total number of channels in the stream, minus 1. ‘Mid Side Used’ indicates
the channels are stored using mid-side stereo. ‘Frame Count’ is used to calculate the total
number of frames per audio packet:

Number of Frames = 4Frame Count (14.2)

‘Sample Rate’ is one of four values:
000 = 44100Hz, 001 = 48000Hz, 010 = 37800Hz, 011 = 32000Hz .

14.2.2 the SE packet

This is an empty packet that denotes the end of the Musepack stream. A decoder should
ignore everything after this packet, which allows for metadata tags such as APEv2 to be
placed at the end of the file.

14.2.3 the RG packet

This is ReplayGain information about the file.

Version (0x1)
0 7

Title Gain
8 23

Title Peak
24 39

Album Gain
40 55

Album Peak
56 71

14.2.4 the EI packet

This is information about the Musepack encoder.

Profile
0 6

PNS
7

Major Version
8 15

Minor Version
16 23

Build
24 31

85

14 Musepack

86

15 FreeDB

Because compact discs do not usually contain metadata about track names, album names
and so forth, that information must be retrieved from an external source. FreeDB is a
service which allows users to submit CD metadata and to retrieve the metadata submitted
by others. Both actions require a category and a 32-bit disc ID number, which combine to
form a unique identifier for a particular CD.

15.1 Native Protocol

disc ID
Calculate

Client ServerTCP connection

welcome message

client hello

handshake successful

change protocol

ID/Category matches

read ID/Category

XMCD data

client close

close successful

TCP connection closed

query disc ID

protocol changed

FreeDB’s native protocol runs as a service on TCP port 8880.

� After connecting, the client and server exchange a handshake us-
ing the hello command. The server will not do anything without
this handshake.

� Next the client changes to protocol level 6 with the proto com-
mand. This is necessary because only the highest protocol sup-
ports UTF-8 text encoding. Without this, any characters not in
the latin-1 set will not be sent properly.

� Once that is accomplished, the client should calculate the 32-bit
disc ID from the track information.

� One then sends the 32-bit disc ID and additional disc information
to the server with the query command to retrieve a list of match-
ing disc IDs, genres and titles. If there are multiple matches, the
user must be prompted to choose one of the matches.

� When our match is known, the client uses the read command to
retrieve the actual XMCD data.

� Finally, the close command is used to sever the connection and
complete the transaction.

87

15 FreeDB

15.1.1 the disc ID

FreeDB uses a big-endian 32-bit disc ID to differentiate on disc from another.

Offset Seconds Digit Sum
0 7

Total Length in Seconds
8 23

Track Count
24 31

‘Track Count’ is self-explanatory. ‘Total Length’ is the total length of all the tracks, not
counting the initial 2 second lead-in. ‘Offset Seconds Digit Sum’ is the sum of the digits
of all the disc’s track offsets, in seconds, and truncated to 8 bits. Remember to count the
initial 2 second/150 frame lead-in when calculating offsets.

Track Length Offset
Number in M:SS in seconds in frames in M:SS in seconds in frames

1 3:37 217 16340 0:02 2 150
2 3:23 203 15294 3:39 219 16490
3 3:37 217 16340 7:03 423 31784
4 3:20 200 15045 10:41 641 48124

In this example, ‘Track Count’ is 4. ‘Total Length’ is 16340+15294+16340+15045
75 = 840

There are 75 frames per second, and one must remember to count fractions of seconds
when calculating the total disc length.

The ‘Offset Seconds Digit Sum’ is calculated by looking at the ‘Offset in Seconds’ column.
Those values are 2, 219, 423 and 641. One must take all of those digits and add them, which
works out to 2 + 2 + 1 + 9 + 4 + 2 + 3 + 6 + 4 + 1 = 34

This means our three values are 34, 840 and 4. In hexadecimal, they are 0x22, 0x0348
and 0x04. Combining them into a single value yields 0x22034804. Thus, our FreeDB disc
ID is 22034804

15.1.2 Initial greeting
From Server

<code> <host> CDDBP server <version> ready at <datetime>

<code>

200 OK, reading/writing allowed
201 OK, read-only
432 No connections allowed: permission denied
433 No connections allowed: X users allowed, Y currently active
434 No connections allowed: system load too high

<hostname> the server’s host name
<version> the server’s version
<datetime> the current date and time

88

15.1 Native Protocol

15.1.3 Client-server handshake
To Server

cddb hello <username> <hostname> <clientname> <version>

<username> login name of user
<hostname> host name of client

<clientname> name of client program
<version> version of client program

From Server
<code> hello and welcome <username>@<hostname> running <client> <version>

<code>
200 handshake successful
402 already shook hands
431 handshake unsuccessful, closing connection

<username> login name of user
<hostname> host name of client

<clientname> name of client program
<version> version of client program

15.1.4 Set protocol level
To Server

proto [level]

[level] protocol level as integer (optional)

From Server
<code> CDDB protocol level: <current>, supported <supported>

OR

<code> OK, protocol version now: <current>

<code>

200 displaying current protocol level
201 protocol level set
501 illegal protocol level
502 protocol level already at <current>

<current> the current protocol level of this connection
<supported> the maximum supported protocol level

89

15 FreeDB

15.1.5 Query database

To Server
cddb query <disc_id> <track_count> <offset_1> <...> <offset_n> <seconds>

<disc id> 32-bit disc ID
<track count> number of tracks in CD

<offset> frame offset of each track
<seconds> total length of CD in seconds

From Server
<code> <category> <disc_id> <disc_title>

OR

<code> close matches found
<category> <disc_id> <disc_title>
<category> <disc_id> <disc_title>
<...>
.

OR

<code> exact matches found
<category> <disc_id> <disc_title>
<category> <disc_id> <disc_title>
<...>
.

<code>

200 Found exact match
211 Found inexact matches, list follows
202 No match found
210 Found exact matches, list follows
403 Database entry corrupt
409 no handshake

<category> category string
<disc id> 32-bit disc ID

<disc title> disc title string

90

15.1 Native Protocol

15.1.6 Read XMCD data

To Server
cddb read <category> <disc_id>

<category> category string
<disc id> 32-bit disc ID

From Server
<code> <category> <disc_id>
<XMCD_file_data>
<...>
.

<code>

210 XMCD data follows
401 XMCD data not found
402 server error
403 database entry corrupt
409 no handshake

<category> category string
<disc id> 32-bit disc ID

15.1.7 Close connection

To Server
quit

From Server
<code> <hostname> <message>

<code>
230 Closing connection. Goodbye.
530 error, closing connection.

<message> exit message
<hostname> server’s host name

91

15 FreeDB

15.2 Web protocol

FreeDB’s web protocol runs as a service on HTTP port 80. A web client POSTs data to
a location, typically: cddb/cddb.cgi and retrieves results. This method is similar to the
native protocol and the returned data is identical. However, since HTTP POST requests
are stateless, there are no separate hello, proto and quit commands; these are issued
along with the primary server command or are implied.

key value
hello <username> <hostname> <clientname> <version>
proto <protocol>
cmd <command>

Table 15.1: POST arguments

For example, to execute the read command on disc ID AABBCCDD in the soundtrack cate-
gory, one can POST the following string:

cmd=read+soundtrack+aabbccdd&hello=username+hostname+audiotools+1.0&proto=6

15.3 XMCD

XMCD files are text files encoded either in UTF-8, ISO-8859-1 or US-ASCII. All begin
with the string ‘# XMCD’. Lines are delimited by either the 0x0A character or the 0x0D
0x0A character pair. All lines must be less than 256 characters long, including delimiters.
Blank lines are prohibited. Lines that begin with the ‘#’ character are comments. Curiously,
the comments themselves are expected by FreeDB to contain important information such as
track offsets and disc length. Fortunately, FreeDB clients can safely ignore such information
unless submitting a new disc entry.

What we are interested in are the KEY=value pairs in the rest of the file.

key value
DISCID a comma-separated list of 32-bit disc IDs
DTITLE an artist name and album name, separated by ‘ / ’
DYEAR a 4 digit disc release year

DGENRE the disc’s FreeDB category string
TITLEX the track title, or

the track artist name and track title, separated by ‘ / ’
X is an integer starting from 0

EXTD extended data about the disc
EXTTX extended data about the track

X is an integer starting from 0
PLAYORDER a comma-separated list of track numbers

Multiple identical keys should have their values concatenated (minus the newline delimiter),
which allows a single key to have a value longer than the 256 characters line length.

92

16 MusicBrainz

MusicBrainz is another CD metadata retrieval service similar to FreeDB, but designed to
eliminate many of FreeDB’s limitations. For example, MusicBrainz has a more robust disc
ID calculation mechanism, it has an easier way to disambiguate database entries in case
of collision, and its XML metadata format is less prone to errors (track names with ‘/’
characters are a particular problem for FreeDB).

However, because it is a newer service, it’s common to find disc entries that are on
FreeDB but do not yet have a MusicBrainz entry - whereas the converse is much more rare.
Therefore, a metadata looking program would be wise to check both services if possible.

16.1 Searching releases

This is analagous to FreeDB’s search routine in which one calculates a CD’s disc ID, submits
it to MusicBrainz via an HTTP get query and receives information such as album name,
artist name, track names and so forth as an XML file.

93

16 MusicBrainz

16.1.1 the disc ID

Calculating a MusicBrainz disc ID requires knowing a CD’s first track number, last track
number, track offsets (in CD frames) and lead out track offset (also in CD frames). For
example, given the following CD:

Track Length Offset
Number in M:SS in seconds in frames in M:SS in seconds in frames

1 3:37 217 16340 0:02 2 150
2 3:23 203 15294 3:39 219 16490
3 3:37 217 16340 7:03 423 31784
4 3:20 200 15045 10:41 641 48124

The first track number is 1, the last track number is 4, the track offsets are 150, 16490,
31784 and 48124, and the lead out track offset is 63169 (track 4’s offset 48124 plus its length
of 15045).

These numbers are then converted to 0-padded, big-endian hexadecimal strings with the
track numbers using 2 digits and the offsets using 8 digits. In this example, the first track
number becomes 01, the last track number becomes 04, the track offsets become 00000096,
0000406A, 00007C28 and 0000BBFC, and the lead out track offset becomes 0000F6C1.

These individual strings are then combined into a single 804 byte string:

First Track Number
0 15

Last Track Number
16 31

Lead Out Offset
32 95

Offset₁
96 127

Offset₂
128 191

... Offset₉₉
6368 6431

Excess track offsets are treated as having an offset value of 0, or a string value of 00000000.
Our string starts with 01040000F6C1000000960000406A00007C280000BBFC and is padded
with an additional 760 ‘0’ characters which I’ll omit for brevity.

That string is then passed through the SHA-1 hashing algorithm1 which results in a 20
byte hash value. Remember to use the binary hash value, not its 40 byte ASCII hexadecimal
one.

In our example, this yields the hash: 0xDA3D930462773DD57BBE43B535AD6A457138F079

The resulting hash value is then encoded to a 28 byte Base642 string. However, unlike
standard Base64, MusicBrainz’s disc ID replaces the characters ‘=’, ‘+’ and ‘/’ with ‘-’, ‘.’
and ‘ ’ respectively to make the value better suited to HTTP requests. So to complete our
example, the hash value becomes a disc ID of 2j2TBGJ3PdV7vkO1Na1qRXE48Hk-

1This is described in RFC3174
2This is described in RFC3548 and RFC4648

94

16.1 Searching releases

16.1.2 Server query

MusicBrainz runs as a service on HTTP port 80. To retrieve Release information, one can
make a GET request to /ws/1/release using the following fields:

key value
type xml

discid <disc ID string>

For example, to retrieve the Release data for disc ID 2jmj7l5rSw0yVb vlWAYkK YBwk- one
sends the GET query:

type=xml&discid=2jmj7l5rSw0yVb_vlWAYkK_YBwk-

Whether the Release is found in the MusicBrainz database or not, an XML file will always
be generated.

16.1.3 Release XML

release−list

metadata

release

title

text−representation

event

track−list

track

title

duration

track

title

artist

name

artist

name

duration

track

title

duration

release−event−list

All XML files returned by a MusicBrainz query consist of a
<metadata> tag container. When making a Release query,
it contains a <release-list> which is itself a container
for zero or more <release> tags, depending on how many
Release entries match the submitted disc ID.

The <release> tag typically contains a <title> which
is the album’s name, an <artist> tag which is the album’s
primary artist, a <release-event-list> tag containing in-
formation such as the album’s release date and catalog num-
ber, and finally a <track-list> which contains all the track
data.

The <track> tags are always listed in order of their ap-
pearance in the album. Each contains a <title> which is
the track’s name, a <duration> which is the track’s length
in milliseconds, and optionally an <artist> tag which is in-
formation about a track-specific artist, for instances where
the track’s artist differs from the album’s artist.

In addition, the <release> , <artist> , and <track> tags
all contain an ‘id’ attribute with 32 hex digits in the format
‘12345678-9abc-def1-2345-6789abcdef1234’. These uniquely
identify the Release, Artist and Track information in the
MusicBrainz database and can be used for direct lookups.

95

16 MusicBrainz

16.2 MusicBrainz XML

The following is the complete specification for MusicBrainz XML output in RELAX NG
Compact syntax from http://bugs.musicbrainz.org/browser/mmd-schema/trunk/schema
and converted to compact syntax for better readability.

Schema Start

default namespace id3034801 = "http://musicbrainz.org/ns/mmd-1.0#"

namespace local = ""

namespace inh = inherit

start = def_metadata-element

def_metadata-element =

element metadata

{

attribute generator { xsd:anyURI }?,

attribute created { xsd:dateTime }?,

def_artist-element?,

def_release-element?,

def_release-group-element?,

def_track-element?,

def_label-element?,

def_artist-list?,

def_release-list?,

def_release-group-list?,

def_track-list?,

def_label-list?,

def_metadata-element_extension

}

def_artist-element =

element artist

{

attribute id { xsd:anyURI }?,

attribute type { xsd:anyURI }?,

def_artist-attribute_extension,

element name { text }?,

element sort-name { text }?,

element disambiguation { text }?,

element life-span

{

attribute begin { def_incomplete-date }?,

attribute end { def_incomplete-date }?

}?,

def_alias-list?,

def_release-list?,

def_release-group-list?,

def_relation-list*,

def_tag-list?,

def_user-tag-list?,

def_rating?,

def_user-rating?,

def_artist-element_extension

}

96

16.2 MusicBrainz XML

def_release-element =

element release

{

attribute id { xsd:anyURI }?,

attribute type { def_URI-list }?,

def_release-attribute_extension,

element title { text }?,

element text-representation

{

attribute language { def_iso-639 }?,

attribute script { def_iso-15924 }?

}?,

element asin { xsd:string { pattern = "[A-Z0-9]{10}" } }?,

def_artist-element?,

def_release-group-element?,

def_release-event-list?,

def_disc-list?,

def_puid-list?,

def_track-list?,

def_relation-list*,

def_tag-list?,

def_user-tag-list?,

def_rating?,

def_user-rating?,

def_release-element_extension

}

def_release-group-element =

element release-group

{

attribute id { xsd:anyURI }?,

attribute type { def_URI-list }?,

def_release-group-attribute_extension,

element title { text }?,

def_artist-element?,

def_release-list?,

def_release-group-element_extension

}

def_track-element =

element track

{

attribute id { xsd:anyURI }?,

def_track-attribute_extension,

element title { text }?,

element duration { xsd:nonNegativeInteger }?,

element isrc-list { element isrc { attribute id { def_isrc } }* }?,

def_artist-element?,

def_release-list?,

def_puid-list?,

def_relation-list*,

def_tag-list?,

def_user-tag-list?,

def_rating?,

def_user-rating?,

def_track-element_extension

}

97

16 MusicBrainz

def_label-element =

element label

{

attribute id { xsd:anyURI }?,

attribute type { xsd:anyURI }?,

def_label-attribute_extension,

element name { text }?,

element sort-name { text }?,

element label-code { xsd:nonNegativeInteger }?,

element disambiguation { text }?,

element country { def_iso-3166 }?,

element life-span

{

attribute begin { def_incomplete-date }?,

attribute end { def_incomplete-date }?

}?,

def_alias-list?,

def_release-list?,

def_release-group-list?,

def_relation-list*,

def_tag-list?,

def_user-tag-list?,

def_rating?,

def_user-rating?,

def_label-element_extension

}

def_relation-element =

element relation

{

attribute type { xsd:anyURI },

attribute target { xsd:anyURI },

attribute direction { def_direction }?,

attribute attributes { def_URI-list }?,

attribute begin { def_incomplete-date }?,

attribute end { def_incomplete-date }?,

(

def_artist-element

| def_release-element

| def_track-element

| def_relation-element_extension

)?

}

def_alias =

element alias

{

attribute type { xsd:anyURI }?,

attribute script { def_iso-15924 }?,

text

}

def_tag = element tag { attribute count { xsd:nonNegativeInteger }?, text }

def_user-tag = element user-tag { text }

def_rating =

element rating

{

98

16.2 MusicBrainz XML

attribute votes-count { xsd:nonNegativeInteger }?,

xsd:float

}

def_user-rating = element user-rating { xsd:nonNegativeInteger }

def_metadata-element_extension = def_extension_element?

def_artist-element_extension = def_extension_element*

def_release-element_extension = def_extension_element*

def_release-group-element_extension = def_extension_element*

def_track-element_extension = def_extension_element*

def_label-element_extension = def_extension_element*

def_relation-element_extension = def_extension_element

def_artist-attribute_extension = def_extension_attribute*

def_release-attribute_extension = def_extension_attribute*

def_release-group-attribute_extension = def_extension_attribute*

def_track-attribute_extension = def_extension_attribute*

def_label-attribute_extension = def_extension_attribute*

def_extension_element =

element * - (id3034801:* | local:*)

{

(attribute * { text } | text | def_anything)*

}

def_extension_attribute = attribute * - (id3034801:* | local:*) { text }

def_anything =

element * - local:* { (attribute * { text } | text | def_anything)* }

def_artist-list =

element artist-list { def_list-attributes, def_artist-element* }

def_release-list =

element release-list { def_list-attributes, def_release-element* }

def_release-group-list =

element release-group-list

{

def_list-attributes,

def_release-group-element*

}

def_alias-list = element alias-list { def_list-attributes, def_alias* }

def_track-list = element track-list { def_list-attributes, def_track-element* }

def_label-list = element label-list { def_list-attributes, def_label-element* }

99

16 MusicBrainz

def_release-event-list =

element release-event-list

{

def_list-attributes,

element event

{

attribute date { def_incomplete-date },

attribute country { def_iso-3166 }?,

attribute catalog-number { text }?,

attribute barcode { text }?,

attribute format { xsd:anyURI }?,

def_label-element?

}*

}

def_disc-list =

element disc-list

{

def_list-attributes,

element disc

{

attribute id { xsd:string { pattern = "[a-zA-Z0-9._]{27}-" } },

attribute sectors { xsd:nonNegativeInteger }?

}*

}

def_puid-list =

element puid-list

{

def_list-attributes,

element puid { attribute id { def_uuid } }*

}

def_relation-list =

element relation-list

{

attribute target-type { xsd:anyURI },

def_list-attributes,

def_relation-element*

}

def_tag-list = element tag-list { def_list-attributes, def_tag* }

def_user-tag-list =

element user-tag-list { def_list-attributes, def_user-tag* }

def_list-attributes =

attribute count { xsd:nonNegativeInteger }?,

attribute offset { xsd:nonNegativeInteger }?

def_URI-list = list { xsd:anyURI+ }

def_incomplete-date =

xsd:string { pattern = "[0-9]{4}(-[0-9]{2})?(-[0-9]{2})?" }

def_iso-3166 = xsd:string { pattern = "[A-Z]{2}" }

def_iso-639 = xsd:string { pattern = "[A-Z]{3}" }

100

16.2 MusicBrainz XML

def_iso-15924 = xsd:string { pattern = "[A-Z][a-z]{3}" }

def_isrc = xsd:string { pattern = "[A-Z]{2}[A-Z0-9]{3}[0-9]{2}[0-9]{5}" }

def_uuid = xsd:string { pattern = "[0-9a-f]{8}(-[0-9a-f]{4}){3}-[0-9a-f]{12}" }

def_direction = "both" | "forward" | "backward"

Schema End

101

16 MusicBrainz

102

17 ReplayGain

The ReplayGain standard is designed to address the problem of highly variable music loud-
ness. For example, let’s assume we have two audio tracks, A and B, and that track B is
much louder than A. If played in sequence, the listener will have to scramble for the volume
control once B starts in order to have a comfortable experience. ReplayGain solves this
problem by calculating the overall loudness of a track as a delta (some positive or negative
number of decibels, in relation to a reference loudness value). This delta is then applied
during playback, which has the same effect as turning the volume up or down so that the
user doesn’t have to.

ReplayGain requires four floating-point values which are typically stored as metadata
in each audio track: ‘track gain’, a positive or negative number of decibels representing
the loudness delta of this particular track, ‘track peak’, the highest sample value of this
particular track from a range of 0.0 to 1.0, ‘album gain’, a positive or negative number of
decibels representing the loudness delta of the track’s entire album and ‘album peak’, the
highest sample value of the track’s entire album from a range of 0.0 to 1.0.

17.1 Applying ReplayGain

The user will be expected to choose whether to apply ‘album gain’ or ‘track gain’ during
playback. When listening to audio on an album-by-album basis, album gain keeps quiet
tracks quiet and loud tracks loud within the context of that album. When listening to audio
on a track-by-track basis, perhaps as a randomly shuffled set, track gain keeps them all to
roughly the same loudness. So from an implementation perspective, a program only needs
to apply the given gain and peak value to the stream being played back. Applying the gain
value to each input PCM sample is quite simple:

Outputi = Inputi × 10
gain
20 (17.1)

For example, if the gain is -2.19, each sample should be multiplied by 10
−2.19

20 or about 0.777.
If the gain is negative, the PCM stream gets quieter than it was originally. If the gain is

positive, the PCM stream gets louder. However, increasing the value of each sample may
cause a problem if doing so sends any samples beyond the maximum value the stream can
hold. For example, if the gain indicates we should be multiplying each sample by 1.28 and
we encounter a 16-bit input sample with a value of 32000, the resulting output sample of
34560 is outside of the stream’s 16-bit signed range (-32678 to 32767). That will result in
‘clipping’ the audio peaks, which doesn’t sound good.

103

17 ReplayGain

Preventing this is what ReplayGain’s peak value is for; it’s the highest PCM value in the
stream and no multiplier should push that value beyond 1.0. Thus, if the peak value of a
stream is 0.9765625, no ReplayGain value should generate a multiplier higher than 1.024
(0.9765625× 1.024 = 1.0).

17.2 Calculating ReplayGain

As explained earlier, ReplayGain requires a peak and gain value which are split into ‘track’
and ‘album’ varieties for a total of four. The ‘track’ values require the PCM data for the
particular track we’re generating data for. The ‘album’ values require the PCM data for
the entire album, concatenated together into a single stream.

Determining the peak value is very straightforward. We simply convert each sample’s
value to the range of 0.0 to 1.0 and find the highest value which occurs in the stream. For
signed samples, the conversion process is also simple:

Outputi =
|Inputi|

2bits per sample−1
(17.2)

Determining the gain value is a more complicated process. It involves running the input
stream through an equal loudness filter, breaking that stream into 50 millisecond long
blocks, and then determining a final value based on the value of those blocks.

17.2.1 the equal loudness filter

Because people don’t perceive all frequencies of sounds as having equal loudness, ReplayGain
runs audio through a filter which emphasizes ones we hear as loud and deemphasizes ones
we hear as quiet. This equal loudness filtering is actually comprised of two separate filters:
Yule and Butter (these are Infinite Impulse Response filters named after their creators).
Each works on a similar principle.

The basic premise is that each output sample is derived from multiplying ‘order’ number
of previous input samples by certain values (which depend on the filter) and ‘order’ number
of previous output samples by a different set of values (also depending on the filter) and
then combining the results. This filter is applied independently to each channel. In purely
mathematical terms, it looks like this:

Outputi =

 i∑
j=i−order

Inputj × Input Filterj

−(i−1∑
k=i−order

Outputk ×Output Filterk

)
(17.3)

‘Input Filter’ and ‘Output Filter’ are lists of predefined values. ‘Order’ refers to the size of
those lists. When filtering at the start of the stream, treat any samples before the beginning
as 0.

104

17.2 Calculating ReplayGain

a filtering example

Let’s assume we have a 44100Hz stream and our previous input and output samples are as
follows:

sample Inputi Yulei Butteri

89 -33 -14.90

90 -32 -14.93

91 -35 -14.65

92 -32 -14.46

93 -30 -14.15

94 -32 -13.58

95 -33 -13.18

96 -30 -13.16

97 -30 -13.12 0.41

98 -30 -12.89 0.61

99 -32 -12.81 0.66

If the value of sample 100 from the input stream is -30, here’s how we calculate output
sample 100:

sample Inputi Yule Input Filteri result Yulei Yule Output Filteri result
90 -32 × -0.00187763777362 = 0.06 -14.93 × 0.13149317958807999 = -1.96

91 -35 × 0.0067461368224699999 = -0.24 -14.65 × -0.75104302451432003 = 11.00

92 -32 × -0.0024087905158400001 = 0.08 -14.46 × 2.1961168489077401 = -31.76

93 -30 × 0.016248649629749999 = -0.49 -14.15 × -4.3947099607955904 = 62.19

94 -32 × -0.025963385129149998 = 0.83 -13.58 × 6.8540154093699801 = -93.08

95 -33 × 0.022452932533390001 = -0.74 -13.18 × -8.8149868137015499 = 116.18

96 -30 × -0.0083499090493599996 = 0.25 -13.16 × 9.4769360780128 = -124.72

97 -30 × -0.0085116564546900003 = 0.26 -13.12 × -8.5475152747187408 = 112.14

98 -30 × -0.0084870937985100006 = 0.25 -12.89 × 6.3631777756614802 = -82.02

99 -32 × -0.029110078089480001 = 0.93 -12.81 × -3.4784594855007098 = 44.56

100 -30 × 0.054186564064300002 = -1.63

input values sum = -0.44 output values sum = 12.53

Therefore, Yule100 = −0.44− 12.53 = −12.97
We’re not quite done yet. Remember, ReplayGain’s equal loudness filter requires both a

Yule and Butter filter, in that order. Notice how Butter’s input samples are Yule’s output
samples. Thus, our next input sample to the Butter filter is -12.97. Calculating sample 100
is now a similar process:

sample Yulei Butter Input Filteri result Butteri Butter Output Filteri result
98 -12.89 × 0.98500175787241995 = -12.70 0.61 × 0.97022847566350001 = 0.59

99 -12.81 × -1.9700035157448399 = 25.24 0.66 × -1.96977855582618 = -1.30

100 -12.97 × 0.98500175787241995 = -12.78

input values sum = -0.24 output values sum = -0.71

Therefore, Butter100 = −0.24 − −0.71 = 0.47 , which is the next sample from the equal
loudness filter.

105

17 ReplayGain

17.2.2 RMS energy blocks

The next step is to take our stream of filtered samples and convert them to a list of blocks,
each 1/20th of a second long. For example, a 44100Hz stream is sliced into blocks containing
2205 PCM frames each.

We then figure out the total energy value of each block by taking the Root Mean Square
of the block’s samples and converting to decibels, hence the name RMS.

Block dBi = 10 × log10

0BBBBBBBB@

0@ Block Length−1P
x=0

Left Samplex
2

Block Length

1A +

0B@
Block Length−1P

y=0
Right Sampley

2

Block Length

1CA
2

+ 10−10

1CCCCCCCCA
(17.4)

For mono streams, use the same value for both the left and right samples (this will cause
the addition and dividing by 2 to cancel each other out). As a partial example involving
2205 PCM frames:

Sample Left Value Left Value2 Right Value Right Value2

998 115 13225 -43 1849
999 111 12321 -38 1444

1000 107 11449 -36 1296
...

Left Value2 sum = 7106715 Right Value2 sum = 11642400

(7106715
2205) + (11642400

2205)
2

= 4251 (17.5)

10× log10(4251 + 10−10) = 36.28 (17.6)

Thus, the decibel value of this block is 36.28.

17.2.3 Statistical processing and calibration

At this point, we’ve converted our stream of input samples into a list of RMS energy
blocks. We now pick the 95th percentile value as the audio stream’s representative value.
That means we first sort them from lowest to highest, then pick the one at the 95% position.
For example, if we have a total of 2400 decibel blocks (from a 2 minute song), the value of
block 2280 is our representative.

Finally, we take the difference between a reference value of pink noise and our repre-
sentative value for the final gain value. The reference pink noise value is typically 64.82
dB. Therefore, if our representative value is 67.01 dB, the resulting gain value is -2.19 dB
(64.82− 67.01 = −2.19).

106

Appendices

107

A References

� Wave File Format Specifications
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html

� Audio File Format Specifications
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/AIFF/AIFF.html

� AU Audio File Format
http://www.opengroup.org/public/pubs/external/auformat.html

� FLAC Format Specification
http://flac.sourceforge.net/format.html

� APEv2 Specification
http://wiki.hydrogenaudio.org/index.php?title=APEv2 specification

� WavPack 4.0 File / Block Format
http://www.wavpack.com/file format.txt

� MPEG Audio Compression Basics
http://www.datavoyage.com/mpgscript/mpeghdr.htm

� What is ID3v1
http://www.id3.org/ID3v1

� The ID3v2 Documents
http://www.id3.org/Developer Information

� The Ogg File Format
http://en.wikipedia.org/wiki/Ogg#File format

� Vorbis I Specification
http://xiph.org/vorbis/doc/Vorbis I spec.html

� Proposals for Extending Ogg Vorbis Comments
http://www.reallylongword.org/articles/vorbiscomment/

� Speex Documentation
http://www.speex.org/docs/

109

http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/AIFF/AIFF.html
http://www.opengroup.org/public/pubs/external/auformat.html
http://flac.sourceforge.net/format.html
http://wiki.hydrogenaudio.org/index.php?title=APEv2_specification
http://www.wavpack.com/file_format.txt
http://www.datavoyage.com/mpgscript/mpeghdr.htm
http://www.id3.org/ID3v1
http://www.id3.org/Developer_Information
http://en.wikipedia.org/wiki/Ogg#File_format
http://xiph.org/vorbis/doc/Vorbis_I_spec.html
http://www.reallylongword.org/articles/vorbiscomment/
http://www.speex.org/docs/

A References

� Musepack Stream Version 7 Format Specification
http://trac.musepack.net/trac/wiki/SV7Specification

� Parsing and Writing QuickTime Files in Java
http://www.onjava.com/pub/a/onjava/2003/02/19/qt file format.html

� ISO 14496-1 Media Format
http://xhelmboyx.tripod.com/formats/mp4-layout.txt

� FreeDB Information
http://www.freedb.org/en/download miscellaneous.11.html

� ReplayGain
http://replaygain.hydrogenaudio.org

110

http://trac.musepack.net/trac/wiki/SV7Specification
http://www.onjava.com/pub/a/onjava/2003/02/19/qt_file_format.html
http://xhelmboyx.tripod.com/formats/mp4-layout.txt
http://www.freedb.org/en/download__miscellaneous.11.html
http://replaygain.hydrogenaudio.org

B License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE (”CCPL” OR ”LICENSE”). THE WORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF
THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPY-
RIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU AC-
CEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE
EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LI-
CENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF
YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

B.1 Definitions

1. ”Adaptation” means a work based upon the Work, or upon the Work and other
pre-existing works, such as a translation, adaptation, derivative work, arrangement of
music or other alterations of a literary or artistic work, or phonogram or performance
and includes cinematographic adaptations or any other form in which the Work may
be recast, transformed, or adapted including in any form recognizably derived from
the original, except that a work that constitutes a Collection will not be considered
an Adaptation for the purpose of this License. For the avoidance of doubt, where the
Work is a musical work, performance or phonogram, the synchronization of the Work
in timed-relation with a moving image (”synching”) will be considered an Adaptation
for the purpose of this License.

2. ”Collection” means a collection of literary or artistic works, such as encyclopedias
and anthologies, or performances, phonograms or broadcasts, or other works or sub-
ject matter other than works listed in Section 1(f) below, which, by reason of the
selection and arrangement of their contents, constitute intellectual creations, in which
the Work is included in its entirety in unmodified form along with one or more other
contributions, each constituting separate and independent works in themselves, which

111

B License

together are assembled into a collective whole. A work that constitutes a Collec-
tion will not be considered an Adaptation (as defined below) for the purposes of this
License.

3. ”Creative Commons Compatible License” means a license that is listed at
http://creativecommons.org/compatiblelicenses that has been approved by Cre-
ative Commons as being essentially equivalent to this License, including, at a mini-
mum, because that license: (i) contains terms that have the same purpose, meaning
and effect as the License Elements of this License; and, (ii) explicitly permits the reli-
censing of adaptations of works made available under that license under this License
or a Creative Commons jurisdiction license with the same License Elements as this
License.

4. ”Distribute” means to make available to the public the original and copies of the
Work or Adaptation, as appropriate, through sale or other transfer of ownership.

5. ”License Elements” means the following high-level license attributes as selected by
Licensor and indicated in the title of this License: Attribution, ShareAlike.

6. ”Licensor” means the individual, individuals, entity or entities that offer(s) the Work
under the terms of this License.

7. ”Original Author” means, in the case of a literary or artistic work, the individual,
individuals, entity or entities who created the Work or if no individual or entity can
be identified, the publisher; and in addition (i) in the case of a performance the actors,
singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play
in, interpret or otherwise perform literary or artistic works or expressions of folklore;
(ii) in the case of a phonogram the producer being the person or legal entity who first
fixes the sounds of a performance or other sounds; and, (iii) in the case of broadcasts,
the organization that transmits the broadcast.

8. ”Work” means the literary and/or artistic work offered under the terms of this
License including without limitation any production in the literary, scientific and
artistic domain, whatever may be the mode or form of its expression including digital
form, such as a book, pamphlet and other writing; a lecture, address, sermon or other
work of the same nature; a dramatic or dramatico-musical work; a choreographic
work or entertainment in dumb show; a musical composition with or without words; a
cinematographic work to which are assimilated works expressed by a process analogous
to cinematography; a work of drawing, painting, architecture, sculpture, engraving
or lithography; a photographic work to which are assimilated works expressed by a
process analogous to photography; a work of applied art; an illustration, map, plan,
sketch or three-dimensional work relative to geography, topography, architecture or
science; a performance; a broadcast; a phonogram; a compilation of data to the extent

112

http://creativecommons.org/compatiblelicenses

B.2 Fair Dealing Rights.

it is protected as a copyrightable work; or a work performed by a variety or circus
performer to the extent it is not otherwise considered a literary or artistic work.

9. ”You” means an individual or entity exercising rights under this License who has not
previously violated the terms of this License with respect to the Work, or who has
received express permission from the Licensor to exercise rights under this License
despite a previous violation.

10. ”Publicly Perform” means to perform public recitations of the Work and to com-
municate to the public those public recitations, by any means or process, including
by wire or wireless means or public digital performances; to make available to the
public Works in such a way that members of the public may access these Works from
a place and at a place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the performances of
the Work, including by public digital performance; to broadcast and rebroadcast the
Work by any means including signs, sounds or images.

11. ”Reproduce” means to make copies of the Work by any means including without
limitation by sound or visual recordings and the right of fixation and reproducing
fixations of the Work, including storage of a protected performance or phonogram in
digital form or other electronic medium.

B.2 Fair Dealing Rights.

Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright
or rights arising from limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

B.3 License Grant.

Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide,
royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license
to exercise the rights in the Work as stated below:

1. to Reproduce the Work, to incorporate the Work into one or more Collections, and
to Reproduce the Work as incorporated in the Collections;

2. to create and Reproduce Adaptations provided that any such Adaptation, including
any translation in any medium, takes reasonable steps to clearly label, demarcate
or otherwise identify that changes were made to the original Work. For example,
a translation could be marked ”The original work was translated from English to
Spanish,” or a modification could indicate ”The original work has been modified.”;

113

B License

3. to Distribute and Publicly Perform the Work including as incorporated in Collections;
and,

4. to Distribute and Publicly Perform Adaptations.

5. For the avoidance of doubt:

a) Non-waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or compulsory licensing
scheme cannot be waived, the Licensor reserves the exclusive right to collect such
royalties for any exercise by You of the rights granted under this License;

b) Waivable Compulsory License Schemes. In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme
can be waived, the Licensor waives the exclusive right to collect such royalties
for any exercise by You of the rights granted under this License; and,

c) Voluntary License Schemes. The Licensor waives the right to collect royalties,
whether individually or, in the event that the Licensor is a member of a collecting
society that administers voluntary licensing schemes, via that society, from any
exercise by You of the rights granted under this License.

The above rights may be exercised in all media and formats whether now known or
hereafter devised. The above rights include the right to make such modifications as are
technically necessary to exercise the rights in other media and formats. Subject to Section
8(f), all rights not expressly granted by Licensor are hereby reserved.

B.4 Restrictions.

The license granted in Section 3 above is expressly made subject to and limited by the
following restrictions:

1. You may Distribute or Publicly Perform the Work only under the terms of this License.
You must include a copy of, or the Uniform Resource Identifier (URI) for, this License
with every copy of the Work You Distribute or Publicly Perform. You may not offer
or impose any terms on the Work that restrict the terms of this License or the ability
of the recipient of the Work to exercise the rights granted to that recipient under the
terms of the License. You may not sublicense the Work. You must keep intact all
notices that refer to this License and to the disclaimer of warranties with every copy
of the Work You Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological measures on the
Work that restrict the ability of a recipient of the Work from You to exercise the
rights granted to that recipient under the terms of the License. This Section 4(a)
applies to the Work as incorporated in a Collection, but this does not require the
Collection apart from the Work itself to be made subject to the terms of this License.

114

B.4 Restrictions.

If You create a Collection, upon notice from any Licensor You must, to the extent
practicable, remove from the Collection any credit as required by Section 4(c), as
requested. If You create an Adaptation, upon notice from any Licensor You must, to
the extent practicable, remove from the Adaptation any credit as required by Section
4(c), as requested.

2. You may Distribute or Publicly Perform an Adaptation only under the terms of: (i)
this License; (ii) a later version of this License with the same License Elements as this
License; (iii) a Creative Commons jurisdiction license (either this or a later license
version) that contains the same License Elements as this License (e.g., Attribution-
ShareAlike 3.0 US)); (iv) a Creative Commons Compatible License. If you license the
Adaptation under one of the licenses mentioned in (iv), you must comply with the
terms of that license. If you license the Adaptation under the terms of any of the
licenses mentioned in (i), (ii) or (iii) (the ”Applicable License”), you must comply
with the terms of the Applicable License generally and the following provisions: (I)
You must include a copy of, or the URI for, the Applicable License with every copy
of each Adaptation You Distribute or Publicly Perform; (II) You may not offer or
impose any terms on the Adaptation that restrict the terms of the Applicable License
or the ability of the recipient of the Adaptation to exercise the rights granted to that
recipient under the terms of the Applicable License; (III) You must keep intact all
notices that refer to the Applicable License and to the disclaimer of warranties with
every copy of the Work as included in the Adaptation You Distribute or Publicly
Perform; (IV) when You Distribute or Publicly Perform the Adaptation, You may
not impose any effective technological measures on the Adaptation that restrict the
ability of a recipient of the Adaptation from You to exercise the rights granted to that
recipient under the terms of the Applicable License. This Section 4(b) applies to the
Adaptation as incorporated in a Collection, but this does not require the Collection
apart from the Adaptation itself to be made subject to the terms of the Applicable
License.

3. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections,
You must, unless a request has been made pursuant to Section 4(a), keep intact all
copyright notices for the Work and provide, reasonable to the medium or means You
are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if
supplied, and/or if the Original Author and/or Licensor designate another party or
parties (e.g., a sponsor institute, publishing entity, journal) for attribution (”Attribu-
tion Parties”) in Licensor’s copyright notice, terms of service or by other reasonable
means, the name of such party or parties; (ii) the title of the Work if supplied; (iii)
to the extent reasonably practicable, the URI, if any, that Licensor specifies to be
associated with the Work, unless such URI does not refer to the copyright notice or
licensing information for the Work; and (iv) , consistent with Ssection 3(b), in the
case of an Adaptation, a credit identifying the use of the Work in the Adaptation

115

B License

(e.g., ”French translation of the Work by Original Author,” or ”Screenplay based on
original Work by Original Author”). The credit required by this Section 4(c) may
be implemented in any reasonable manner; provided, however, that in the case of a
Adaptation or Collection, at a minimum such credit will appear, if a credit for all
contributing authors of the Adaptation or Collection appears, then as part of these
credits and in a manner at least as prominent as the credits for the other contributing
authors. For the avoidance of doubt, You may only use the credit required by this
Section for the purpose of attribution in the manner set out above and, by exercising
Your rights under this License, You may not implicitly or explicitly assert or imply
any connection with, sponsorship or endorsement by the Original Author, Licensor
and/or Attribution Parties, as appropriate, of You or Your use of the Work, without
the separate, express prior written permission of the Original Author, Licensor and/or
Attribution Parties.

4. Except as otherwise agreed in writing by the Licensor or as may be otherwise per-
mitted by applicable law, if You Reproduce, Distribute or Publicly Perform the Work
either by itself or as part of any Adaptations or Collections, You must not distort,
mutilate, modify or take other derogatory action in relation to the Work which would
be prejudicial to the Original Author’s honor or reputation. Licensor agrees that in
those jurisdictions (e.g. Japan), in which any exercise of the right granted in Section
3(b) of this License (the right to make Adaptations) would be deemed to be a distor-
tion, mutilation, modification or other derogatory action prejudicial to the Original
Author’s honor and reputation, the Licensor will waive or not assert, as appropriate,
this Section, to the fullest extent permitted by the applicable national law, to enable
You to reasonably exercise Your right under Section 3(b) of this License (right to
make Adaptations) but not otherwise.

B.5 Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES
OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCU-
RACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DIS-
COVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IM-
PLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

116

B.6 Limitation on Liability.

B.6 Limitation on Liability.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, IN-
CIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING
OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

B.7 Termination

1. This License and the rights granted hereunder will terminate automatically upon any
breach by You of the terms of this License. Individuals or entities who have received
Adaptations or Collections from You under this License, however, will not have their
licenses terminated provided such individuals or entities remain in full compliance
with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this
License.

2. Subject to the above terms and conditions, the license granted here is perpetual (for
the duration of the applicable copyright in the Work). Notwithstanding the above,
Licensor reserves the right to release the Work under different license terms or to stop
distributing the Work at any time; provided, however that any such election will not
serve to withdraw this License (or any other license that has been, or is required to
be, granted under the terms of this License), and this License will continue in full
force and effect unless terminated as stated above.

B.8 Miscellaneous

1. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor
offers to the recipient a license to the Work on the same terms and conditions as the
license granted to You under this License.

2. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the
recipient a license to the original Work on the same terms and conditions as the license
granted to You under this License.

3. If any provision of this License is invalid or unenforceable under applicable law, it
shall not affect the validity or enforceability of the remainder of the terms of this
License, and without further action by the parties to this agreement, such provision
shall be reformed to the minimum extent necessary to make such provision valid and
enforceable.

117

B License

4. No term or provision of this License shall be deemed waived and no breach consented
to unless such waiver or consent shall be in writing and signed by the party to be
charged with such waiver or consent.

5. This License constitutes the entire agreement between the parties with respect to the
Work licensed here. There are no understandings, agreements or representations with
respect to the Work not specified here. Licensor shall not be bound by any additional
provisions that may appear in any communication from You. This License may not
be modified without the mutual written agreement of the Licensor and You.

6. The rights granted under, and the subject matter referenced, in this License were
drafted utilizing the terminology of the Berne Convention for the Protection of Liter-
ary and Artistic Works (as amended on September 28, 1979), the Rome Convention
of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and Phono-
grams Treaty of 1996 and the Universal Copyright Convention (as revised on July
24, 1971). These rights and subject matter take effect in the relevant jurisdiction in
which the License terms are sought to be enforced according to the corresponding
provisions of the implementation of those treaty provisions in the applicable national
law. If the standard suite of rights granted under applicable copyright law includes
additional rights not granted under this License, such additional rights are deemed to
be included in the License; this License is not intended to restrict the license of any
rights under applicable law.

118

	Introduction
	the Basics
	Hexadecimal
	Signed integers
	Endianness
	Character Encodings
	PCM

	Waveform Audio File Format
	the RIFF WAVE Stream
	the Classic `fmt' Chunk
	the WAVEFORMATEXTENSIBLE `fmt' Chunk
	the `data' Chunk
	Channel assignment

	Audio Interchange File Format
	the AIFF file stream
	the COMM chunk
	the SSND chunk

	Sun AU
	the Sun AU file stream

	Free Lossless Audio Codec
	the FLAC file Stream
	FLAC Metadata Blocks
	STREAMINFO
	PADDING
	APPLICATION
	SEEKTABLE
	VORBIS_COMMENT
	CUESHEET
	PICTURE

	FLAC Decoding
	CONSTANT subframe
	VERBATIM subframe
	FIXED subframe
	LPC Subframe
	the Residual
	Channels
	Wasted Bits per Sample

	FLAC Encoding
	the STREAMINFO metadata block
	Frame header
	Channel assignment
	Subframe header
	the CONSTANT subframe
	the VERBATIM subframe
	the FIXED subframe
	the LPC subframe
	the Residual
	Checksums

	WavPack
	the WavPack file stream
	the WavPack block header
	WavPack sub-block header

	Monkey's Audio
	the Monkey's Audio file stream
	the Monkey's Audio descriptor
	the Monkey's Audio header
	the APEv2 tag
	the APEv2 tag header/footer
	the APEv2 flags

	MP3
	the MP3 file Stream
	the Xing header

	ID3v1 tags
	ID3v1
	ID3v1.1

	ID3v2 tags
	ID3v2.2
	ID3v2.3
	ID3v2.4

	M4A
	the QuickTime file stream
	a QuickTime atom
	Container atoms

	M4A atoms
	the ftyp atom
	the mvhd atom
	the tkhd atom
	the mdhd atom
	the hdlr atom
	the smhd atom
	the dref atom
	the stsd atom
	the mp4a atom
	the stts atom
	the stsc atom
	the stsz atom
	the stco atom
	the meta atom

	Ogg Vorbis
	Ogg file stream
	Ogg packets

	the Identification packet
	the Comment packet
	Channel assignment

	Ogg FLAC
	the Ogg FLAC file stream

	Ogg Speex
	the header packet
	the comment packet

	Musepack
	the SV7 file stream
	the SV8 file stream
	the SH packet
	the SE packet
	the RG packet
	the EI packet

	FreeDB
	Native Protocol
	the disc ID
	Initial greeting
	Client-server handshake
	Set protocol level
	Query database
	Read XMCD data
	Close connection

	Web protocol
	XMCD

	MusicBrainz
	Searching releases
	the disc ID
	Server query
	Release XML

	MusicBrainz XML

	ReplayGain
	Applying ReplayGain
	Calculating ReplayGain
	the equal loudness filter
	RMS energy blocks
	Statistical processing and calibration

	Appendices
	References
	License
	Definitions
	Fair Dealing Rights.
	License Grant.
	Restrictions.
	Representations, Warranties and Disclaimer
	Limitation on Liability.
	Termination
	Miscellaneous

