
20:10 A Code Pirate’s Cutlass:
Recovering Software Architecture from Embedded Binaries

by evm

He looks around, around
He sees angels in the architecture
Spinning in infinity
He says Amen! and Hallelujah!
- Paul Simon, “You Can Call Me Al”

(which was probably not written
about software RE)

Software RE underlies much of the work in the
cyber landscape for both defensive and offensive op-
erations.

When developing complex programs, it is com-
mon to segment functionality of code into multiple
source files. These source files are compiled into
multiple object files and then linked into an exe-
cutable program. The object files contain pieces of
information (such as the developer-given names of
functions and global data structures) that the linker
uses to determine relationships between them. Once
the linker produces the final executable, all the in-
termediate developer-generated information is gone
(unless for some reason debugging information is in-
cluded, which rarely happens in production code).
See Figure 1 for an illustration of this process.

This means that software reverse engineers ap-
proaching a new target are usually dealing with a
fully linked binary with no symbols included. How-
ever, we know that the binary is just a conglomera-
tion of the original object files, usually in the exact
order they were passed to the linker. Usually soft-
ware reverse engineers are interested in a specific
cross section of the binary associated with either a
particular high-level function (“how does this pro-
gram handle network authentication?”) or whether
vulnerable points in the code can be reached from a
particular entry point. Often software reverse engi-
neers use different clues to find either the function-
ality they are interested in or the areas they think
might be vulnerable. Eventually after many hours
of the analyst’s time, the structure and design of the
code may become apparent. What if the structure
and design of code could be extracted in an auto-
mated way? How much faster and more effective
could we make RE if we were able to work from the
beginning by analyzing the design of the program
instead of starting from a sea of subroutines?

Defining the Metric
The concept is pretty simple. Local function affinity
(LFA) is like a force vector, showing which direction
a subroutine is pulled toward based on its relation-
ship to nearby subroutines. Consider your average
C source code file - and ignore external function calls
for the moment. As you move from the beginning of
the file down to the bottom, calls start in the pos-
itive direction (down) and eventually switch to the
negative direction (up). The idea is that when we
look at the binary, we should be able to detect the
switch from the negative direction back to positive
at the beginning of the next object file.

73

Figure 1. Illustration of compilation, linking, and what this research is attempting to produce. Note: This
is greatly oversimplified (e.g., the standard library often consists of hundreds of object files).

So how do we deal with external calls? For now,
LFA just discards any function calls over a fixed
threshold, which currently has been set at 4 KB.
Admittedly this isn’t a great way to do it, and later
I’ll talk about some ways this might be improved.

We need to combine both outgoing function ref-
erences (calls FROM this function to other func-
tions) and incoming function references (calls TO
this function from other functions) to include helper
functions that don’t make calls. Even with the ex-
ternal calls “eliminated,” we want to weight our met-
ric toward nearby neighbors. So we define the metric
this way:

where neighbors(f) is defined as the set of func-
tions (i.e., their address in the memory map) that
call f or are called by f for which the distance from
f to the function is below a chosen threshold. Mul-
tiple references are counted.

For practical purposes, in my current implemen-
tation of LFA, I treat the outgoing and incoming
references as separate scores, and if either is zero, I
interpolate a new score based on the previous score.
This helps to smooth out the data.

Detecting Object Boundaries

For now, LFA has a simple edge-detection metric,
which is simply a change from negative values (two
of three previous values are negative) to a positive
value where the difference is greater than 2. Dur-
ing initial research, a colleague suggested a simple
metric like this due to the irregularity of the signal
(i.e., due the varying sizes of object files). This edge-
detection strategy can most certainly be improved
upon (which will be discussed later).

I should also note here that when a function has

no LFA score (meaning it either has no references, or
all references are above the external threshold), my
current implementation treats it like it isn’t there.
This creates gaps between object files.

Extracting Software Architecture

Once approximate object file boundaries are ex-
tracted, we can produce a software architecture pic-
ture by generating a directed graph where each ob-
ject is a node, and edges between nodes represent
calls from any function in the first object to any
function in the second object.

With the object file boundaries approximately
identified, we can also make use of debugging string
information in the binary. The current LFA imple-
mentation looks at possible source file names as well
as common words, bigrams and trigrams in order to
guess a possible name for the object.

Figure 2 shows an example software architecture
diagram automatically extracted from a target bi-
nary using LFA. Some interesting features are read-
ily apparent in this graph, which are not readily dis-
cernible by other means. It is readily apparent which
objects are most commonly referenced in the tar-
get program (e.g. sys_up_config and unk_mod_5).
Notice also how unknown modules 1-6 form a sub-
graph that is only reachable from sys_up_config.
This indicates that these objects are only used by
sys_up_config and not directly called by any other
object. This means they are essentially a library de-
pendency for sys_up_config and can be safely ig-
nored by the RE analyst (unless the functionality of
sys_up_config is of interest).

74

Figure 2. Automated software architecture graph produced by LFA, with objects/modules named by source
file string references.

Measuring Success

As far as I can tell (and dear reader, I would humbly
welcome your education on this subject if you have
further information), measuring success in solving
this problem is somewhat unusual and difficult for
a couple of reasons. We want to credit the algo-
rithm with success when it identifies smaller groups
of functionality within an original source file. For
instance, if a very large source file contains three
groups of related functions, we want to give the al-
gorithm credit if it identifies these three groups as
separate objects. We also want to give credit when
the algorithm defines two adjacent, closely related
objects as a single thing.

LFA outputs a .map file, which is compared
against the .map file produced by the compiler dur-
ing the build (the ground truth). First we define
a process of reconciliation, where we combine mod-
ules (objects) in the ground truth file and in the
algorithm’s .map file, to produce the best alignment
possible between the maps. To do this we start
with the first module in both maps. We combine
whichever module is shorter with subsequent mod-
ules in that map to produce the best alignment with
the module from the other map. During this pro-

cess, whenever there are gaps between modules in
the algorithm’s list, we add these to the “gap area”
count. We assume that the ground truth .map file
is contiguous.

Once the maps are reconciled, for each module in
the algorithm’s map, we score the area that matches
the ground truth map and also score the “underlap”
(areas of the ground truth module not covered by
the algorithm’s module). The final score is then a
combined result of match, gap, and underlap per-
centages for the binary. A perfect score would be a
100% match, with no gaps or underlaps. See Table 3
for a list of results to date.

75

Name/operating system (architecture) Match, % Gap, % Underlap, %
Gnuchess (x86) 76.1 3.2 20.7
PX4 Firmware/Nuttx (ARM) 82.2 13.6 4.2
GoodFET41 Firmware (msp430) 76.1 0.0 23.9
Tmote Sky Firmware/Contiki (msp430) 93.3 0.0 6.7
NXP HTTPD Demo/FreeRTOS (ARM) 86.7 1.4 11.9

Figure 3. LFA results to date. The algorithm has a high gap score on the PX4 firmware due to a few very
large functions that generate no LFA score.

A Max Cut Graph-Based Algorithm
Many graph algorithms that deal with segmentation
are encumbered by the fact that nodes exist in two
or three dimensions, meaning that there are facto-
rial possibilities for “cuts” in the graph. Not so for
a binary. Although the graph representation may
be complicated, a binary is a one-dimensional struc-
ture, a number line. Using this to my advantage I
developed an algorithm which segments the binary
by cutting it into two pieces, then recursively cut-
ting those pieces until a threshold is reached. In the
binary the possible “cuts” are between the end of one
function and the beginning of the next (one possible
cut for every function in the binary). These possible
cuts are scored by scoring the average of the call dis-
tances for all calls that metaphorically “pass over”
the cut address. The higher the average call score,
the less likely the two functions on either side of the
cut are to be part of the same object (since short
range inter-object calls would lower the score).

Pseudocode of the maximum cut object segmen-
tation algorithm is shown in Figure 4.

The algorithm runs in O(n log n) for speed, and
O(n2) for memory usage, although memory usage
could be reduced if old copies of the graph could
be freed. From limited evaluation, MaxCut seems
to work at least as well as LFA in most cases, see
results in Table 5.

46Jin, Wesley, et al. “Recovering c++ objects from binaries using inter-procedural data-flow analysis.” Proceedings of ACM
SIGPLAN on Program Protection and Reverse Engineering Workshop 2014. ACM, 2014.

47Yoo, Kyungjin, and Rajeev Barua. “Recovery of Object Oriented Features from C++ Binaries.” APSEC (1). 2014.

76

f unc t i on make_cut (s ta r t , end , graph) :
2 for node in graph . nodes :

cut_address = node . address − 1
4 weight [cut_address] = 0

edge_count = 0
6 for edge in graph . edges :

i f edge c r o s s e s cut_address :
8 weight [cut_address] += edge . l ength

edge_count +=1
10 i f edge_count == 0 :

return cut_address
12 else :

weight [cut_address] = weight [cut_address] / edge_count
14 return address with maximum weight

16 func t i on do_cutting (s ta r t , end , graph) :
i f (end − s t a r t > THRESHOLD) and graph . nodes > 1 :

18 cut_address = make_cut (s ta r t , end , graph)
do_cutting (s ta r t , cut_address , subgraph (graph , s t a r t , cut_address))

20 do_cutting (cut_address+1,end , subgraph (graph , cut_address+1,end))
else :

22 p r i n t "Object boundary from " s t a r t " to " end

24 main :
s t a r t = binary s t a r t address

26 end = binary end address
graph = graph o f binary (f unc t i on s are nodes , c a l l s are edges)

28 do_cutting (s ta r t , end , graph)

Figure 4. Pseudocode of the Maximum Cut Object Segmentation Algorithm

77

Name/operating system (architecture) Match, % Underlap, %
Gnuchess (x86) 92.8 7.2
PX4 Firmware/Nuttx (ARM) 98.9 1.1
GoodFET41 Firmware (msp430) 97.0 3.0
Tmote Sky Firmware/Contiki (msp430) 89.6 10.4
NXP HTTPD Demo/FreeRTOS (ARM) 94.8 5.2

Figure 5. MaxCut results to date.

Related Work
Much of the related work in this area involves locat-
ing objects or object boundaries in C++ code, using
either static analysis,46 47 or sometimes a combined
static and dynamic analysis approach.48 This work
is purely based on static analysis and will work on
C or C++ code, it does not use C++ features like
run-time type information (RTTI). It makes use of
the idea that linkers usually concatenate object files
that they receive as input into the output binary.

Some work exists in generating design diagrams
(e.g. UML) from source code.49 50 This work shows
generating design diagrams directly from binaries by
first locating object file boundaries. It also presents
a metric for measuring the effectiveness of future so-
lutions to the problem of locating object file bound-
aries is presented.

Future Work
The possibilities for experimentation here are end-
less, and much of my motivation to publish this
work is to get others to play around with LFA and
Max Cut and brainstorm new possible ways to solve
the problem. Thank you to everyone I have brain-
stormed ideas with.

First off, for LFA I am not convinced that taking
the logarithm of distance is the best way to score. I
believe using the inverse square of distance would be
a little too drastic, but this could use some experi-
mentation. An area for improvement is the “thresh-
old” as a placeholder for removing external func-
tions. A simple experiment might be to vary the
threshold and run LFA on the data set, looking for
the best result. Another area for improvement is
edge detection. One possibility would be to gener-
ate the LFA curve for a variety of object files from
data sets, and then generate a characteristic LFA
curve. This characteristic curve could be convolved
with the LFA signal or could be used with a dynamic
threshold approach (i.e., the “external” threshold is
varied until the signal best matches the characteris-
tic curve).

For Max Cut, some development needs to hap-
pen to allow it to produce output matching LFA’s
output, and then it can be tested on the current
dataset.

I envision LFA/Max Cut as one day being a piece
of a multilayered, deep learning system for trans-
lating binary code into natural language automated
static reverse engineering. The LFA source code for
this article is available attached to this PDF and
through Github.51

48Tonella, Paolo, and Alessandra Potrich. “Static and dynamic C++ code analysis for the recovery of the object diagram.”
ICSM. IEEE, 2002.

49Tonella, Paolo, and Alessandra Potrich. “Reverse engineering of the interaction diagrams from C++ code.” Software
Maintenance, 2003. ICSM 2003. IEEE, 2003.

50Sutton, Andrew, and Jonathan I. Maletic. “Mappings for accurately reverse engineering UML class models from C++.”
Reverse Engineering, 12th Working Conference on. IEEE, 2005.

51git clone https://github.com/JHUAPL/CodeCut || unzip pocorgtfo20.pdf CodeCut.zip

78

