
A Code Pirate’s Cutlass:
Recovering Software Architecture from

Embedded Binaries

evm

@evm_sec

Motivation

21 January 2019 2

• Much of infosec is built on top of reverse engineering (RE)

• RE is manually intensive and requires multi-domain expertise, particularly for
embedded systems

• Embedded systems
- Combine OS, libraries, and application code into a single program space

- Binary is fully linked with no symbols (usually)

• Previous research in RE has focused on
- Code-to-code translation: Binary -> Intermediate Language -> High Level Language

- Function-level matching

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Towards Automated RE

• Objects / Libraries

• Subroutines / Functions

• Statements / Constructs

• Assembly / Opcodes

• Reverse engineers operate on
at least 4 levels

• Usually when a new project
gets started we are spinning
our wheels a bit at the bottom
in order to label enough
functions to start to make
sense of the bigger picture

• For ML/DL approaches – we
are going to need methods to
chunk up a large binary – and
give a sense of context for
each function

21 January 2019 3 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

The CodeCut Problem

21 January 2019 4

• Assumptions:
- Embedded developers organize code into multiple source files

- Source files are compiled into object files

- Linker produces final binary that is a linear concatenation of object

files

- No intentional obfuscation

Binary

Program

main.c

math_lib.c

net_lib.c

crypt_lib.c

std_lib.c

main.o

math_lib.o

net_lib.o

crypt_lib.c

std_lib.c

C
o
m

p
ile

L
in

k

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

The CodeCut Problem

21 January 2019 5

• Problem Statement: Given only call graph information for a large

binary, recover the boundaries of the original object files

• Notes:

- Essentially architecture independent (as long as a call graph can be generated

through disassembly)

- Inherent ambiguity: CodeCut algorithms might locate multiple functional clusters

within an original source file - or combine two files because they are highly related

Binary

Program

main.o

unk_mod1.o

net_lib.o

unk_mod2.o

std_lib.o

main.c

math_lib.c

net_lib.c

crypt_lib.c

std_lib.c

main.o

math_lib.o

net_lib.o

crypt_lib.c

std_lib.c

C
o
m

p
ile

L
in

k

C
o
d
e
C

u
t

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Local Function Affinity Concept

#include <stdio.h>

int helper_1() {

 return helper_2()/100;

}

int helper_2() {

 …

}

int more_complex() {

 …

 while (helper_1() < 100) {

 foo = helper_2() % 20;

 }

 …

}

void main_functionality() {

 more_complex();

 …

 while (helper_2() > 1000) {

 foo = helper_1();

 bar = more_complex();

 }

}

21 January 2019 6 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Local Function Affinity Concept

#include <stdio.h>

int helper_1() {

 return helper_2() / 100;

}

int helper_2() {

 …

}

int more_complex() {

 …

 while (helper_1() < 100) {

 foo = helper_2() % 20;

 }

 …

}

void main_functionality() {

 more_complex();

 …

 while (helper_2() > 1000) {

 foo = helper_1();

 bar = more_complex();

 }

}

• If we eliminate external calls…

21 January 2019 7 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Local Function Affinity Concept

#include <stdio.h>

int helper_1() {

 return helper_2() / 100;

}

int helper_2() {

 …

}

int more_complex() {

 …

 while (helper_1() < 100) {

 foo = helper_2() % 20;

 }

 …

}

void main_functionality() {

 more_complex();

 …

 while (helper_2() > 1000) {

 foo = helper_1();

 bar = more_complex();

 }

}

• If we eliminate external calls…

• Directionality of calls at the

beginning of the module is in

the positive direction

21 January 2019 8 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Local Function Affinity Concept

#include <stdio.h>

int helper_1() {

 return helper_2() / 100;

}

int helper_2() {

 …

}

int more_complex() {

 …

 while (helper_1() < 100) {

 foo = helper_2() % 20;

 }

 …

}

void main_functionality() {

 more_complex();

 …

 while (helper_2() > 1000) {

 foo = helper_1();

 bar = more_complex();

 }

}

• If we eliminate external calls…

• Directionality of calls at the

beginning of the module is in

the positive direction

• Directionality of calls generally

switch to the negative

direction towards the end of

the module

21 January 2019 9 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Local Function Affinity Concept

#include <stdio.h>

int helper_1() {

 return helper_2() / 100;

}

int helper_2() {

 …

}

int more_complex() {

 …

 while (helper_1() < 100) {

 foo = helper_2() % 20;

 }

 …

}

void main_functionality() {

 more_complex();

 …

 while (helper_2() > 1000) {

 foo = helper_1();

 bar = more_complex();

 }

}

• If we eliminate external calls…

• Directionality of calls at the

beginning of the module is in

the positive direction

• Directionality of calls generally

switch to the negative

direction towards the end of

the module

• We can detect edges by

finding the switch from

negative back to positive

21 January 2019 10 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Local Function Affinity Concept

#include <stdio.h>

int helper_1() {

 return helper_2() / 100;

}

int helper_2() {

 …

}

int more_complex() {

 …

 while (helper_1() < 100) {

 foo = helper_2() % 20;

 }

 …

}

void main_functionality() {

 more_complex();

 …

 while (helper_2() > 1000) {

 foo = helper_1();

 bar = more_complex();

 }

}

• If we eliminate external calls…

• Directionality of calls at the

beginning of the module is in

the positive direction

• Directionality of calls generally

switch to the negative

direction towards the end of

the module

• We can detect edges by

finding the switch from

negative back to positive

21 January 2019 11 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Local Function Affinity Definition

21 January 2019 12

𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝑓 =
 𝑠𝑖𝑔𝑛 𝑥 − 𝑓 ∗ 𝐿𝑜𝑔(𝑥 − 𝑓)𝑥 ∈𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑓 ,

|𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑓 |

 Where references(f) is defined as the set of functions that call f
 or are called by f for which the distance from f to the function is
 below a chosen threshold. Multiple references are counted.

• Using fixed threshold of 4K*

• Edge Detection*:
- General negative trend

- Change to positive value (Δ > 2)

- Treat calls to / calls from as separate scores – for functions without one of the
scores, interpolate from last score

* room for improvement!

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

21 January 2019 13

Call Directionality Metric

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

21 January 2019 14

Module-to-Module Call Graph (Auto-Generated)

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

LFA Results to Date

21 January 2019 15

 Match / Gap / Underlap (%)

• Gnuchess (x86) 76.1 3.2 20.7

• PX4 Firmware/NuttX (ARM) 82.2 13.6 4.2

• GoodFET 41 Firmware (msp430) 76.1 0 23.9

• Tmote Sky Firmware/Contiki (msp430) 93.3 0 6.7

• NXP Httpd Demo/FreeRTOS (ARM) 86.7 1.4 11.9

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

A Maximum Cut Graph Algorithm

21 January 2019 16

• 𝑊𝑒𝑖𝑔ℎ𝑡 𝐶 =
 𝐸𝐸 ∈ 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔𝑠(𝐶),

𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔𝑠(𝐶)

where 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔𝑠(𝐶) is defined

as the set of edges (calls) that

“cross” the cut address

• Algorithm:
- For every possible cut C, calculate

Weight(C) and choose C with

maximum weight

- Remove edges that cross C from

graph

- Divide graph into two subgraphs

- Recursively evaluate subgraphs, stop

when modules are below a chosen

threshold

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Show Me The Code!

21 January 2019 17

CodeCut is available at:

http://github.com/jhuapl/CodeCut

(LFA only for now)

Contact Info:

 @evm_sec

 evm.ftw@gmail.com

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

http://github.com/jhuapl/CodeCut

A Code Pirate’s Cutlass:
Recovering Software Architecture from

Embedded Binaries

evm

@evm_sec

