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Abstract

The software chain of trust starts with a chain of loaders. Software is just as reliant

on the sequence of loaders that ultimately setup its runtime environment as it is on

the libraries with which it shares its address space and offloads tasks onto. Loaders,

and especially bootloaders, act as the keystone of trust, and yet their formal security

properties – which should be a part of any solid bootloader design – are both underap-

preciated and not well understood. This is especially problematic given the increasing

adoption of loader-based code signing and execution enforcement mechanisms. My

thesis digs deeply into how loaders have failed to earn our trustworthiness and how

they may continue to harbor vulnerabilities even after memory corruption-based vul-

nerabilities lose their prevalence. In order to address these issues, I propose a memory

region-based type system that allows us to better model a loader’s intentions and

thus mediate its behavior. More specifically, I show how a loader’s execution can be

broken down into a sequence of typed phases, each semantically classified as either a

bookkeeping, loading, or a patching substage, while sections of memory are grouped

into semantically related regions and assigned a type, based on their intended use, by

which policy access decisions are made. I demonstrate the feasibility of this technique

by applying it to Das U-Boot, a well-known and widely-used bootloader, with minimal

changes to the bootloader’s implementation. In order to do so, I designed and devel-

oped an extensive bootloader instrumentation suite to help analyze a bootloader’s

behaviors, construct a policy, and completely mediate operations, thereby enforcing

behaviors governed by the type system’s policy.

ii



There is no moment in life that can’t be improved with pizza.

–Daria Morgendorffer, from MTV’s Daria

Acknowledgments

I owe a great deal of gratitude to my advisor, Sergey Bratus, for his guidance and

patience. Anya Shubina, who played a much grater role in my PhD research than

she may even realize. My committee for their insightful advice and direction. Travis

Goodspeed and the Scooby Crew along with the generations of trust labbies all who

have played a non-trivial role in the generation of this thesis. The Wellesley computer

science department faculty and its few (but mighty) computer science students who

charmed me into taking my first computer science classes so I could be captivated by

its shiny puzzles and enchanting mysteries. My family and friends for their support

and patience. Also, all those yaks I shaved in the creation of this thesis (none which

were harmed). And you, the reader, even if you are not explicitly listed here, for

endeavoring to drink from the fire hose that is this dissertation.

iii



Contents

Abstract ii

Acknowledgments iii

Contents iv

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Our trust in bootloaders . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 A different perspective on bootloader design . . . . . . . . . . . . . . 5

1.2.1 Loader safety properties . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Designing a safe bootloader . . . . . . . . . . . . . . . . . . . 7

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Loaders and their vulnerabilities 10

2.1 A loader’s onus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 The evolution of loaders . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Loader safety properties . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Properties of an address space: a loader’s opus . . . . . . . . 16

2.2 Loader vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Code signing . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iv



2.2.2 Out-of-bounds memory accesses . . . . . . . . . . . . . . . . . 19

2.3 i$DEVICES/iOS bootloader vulnerabilities . . . . . . . . . . . . . . . 21

2.3.1 iOS boot sequence overview . . . . . . . . . . . . . . . . . . . 21

2.3.2 Bootloader image format and storage . . . . . . . . . . . . . . 22

2.3.3 The baseband (modem) boot process . . . . . . . . . . . . . . 23

2.3.4 Type overlap loading weaknesses . . . . . . . . . . . . . . . . 24

2.3.5 Loader enforcement/verification failures . . . . . . . . . . . . 28

2.4 Loader vulnerabilities beyond iOS . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Android phone loader vulnerabilities . . . . . . . . . . . . . . 30

2.4.2 UEFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.3 Game Consoles . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.4 BIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.5 Everything else . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 The language of loading . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Obstacles to loader analysis 35

3.1 Loader metadata and questionable behaviors . . . . . . . . . . . . . . 35

3.1.1 ELF metadata: accidentally Turing-complete . . . . . . . . . 36

3.1.2 An ELF metadata-based root shell . . . . . . . . . . . . . . . 38

3.1.3 A Mach-O metadata root shell . . . . . . . . . . . . . . . . . 40

3.1.4 A PE metadata-driven packer . . . . . . . . . . . . . . . . . . 42

3.1.5 Loader metadata-based parser differentials . . . . . . . . . . . 43

3.2 Reining in a loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Implementation considerations . . . . . . . . . . . . . . . . . 44

3.2.2 Runtime environment . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Bootloader instrumentation and analysis 53

v



4.1 Bootloader instrumentation techniques . . . . . . . . . . . . . . . . . 55

4.1.1 Bare metal debugging . . . . . . . . . . . . . . . . . . . . . . 55

4.1.2 Emulation-based debugging . . . . . . . . . . . . . . . . . . . 57

4.2 Dynamic bootloader analysis . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Dynamically tracking memory writes . . . . . . . . . . . . . . . . . . 58

4.3.1 Watchpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 Memory-mapped registers . . . . . . . . . . . . . . . . . . . . 61

4.3.4 Relocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Data collection and analysis . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Dynamic call graph generation . . . . . . . . . . . . . . . . . 64

4.5 Related firmware instrumentation work . . . . . . . . . . . . . . . . . 67

4.6 Bootloader static analysis . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Access properties & region typing 71

5.1 Mew-Boot on a ManulBoard: a toy system . . . . . . . . . . . . . . . 73

5.1.1 ManulBoard hardware description . . . . . . . . . . . . . . . . 73

5.1.2 Initial ManulBoard memory layout . . . . . . . . . . . . . . . 74

5.1.3 Mew-Boot bootloader description . . . . . . . . . . . . . . . . 74

5.1.4 ManulBoard/Mew-Boot vs. BeagleBoard-xM/U-Boot . . . . . 77

5.2 Address region-based write access control . . . . . . . . . . . . . . . . 77

5.2.1 RBWAC definition . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.2 Substages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.3 Bootloader design patterns . . . . . . . . . . . . . . . . . . . 83

5.2.4 Substage transitions . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.5 Region typing . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.6 Policy violations . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.7 Policy rules and logic . . . . . . . . . . . . . . . . . . . . . . . 95

vi



5.3 RBWACµ sample policy instances . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Basic ManulBoard policy . . . . . . . . . . . . . . . . . . . . 97

5.3.2 A more complex ManulBoard policy . . . . . . . . . . . . . . 98

5.4 Retrofitting an RBWACµ instance . . . . . . . . . . . . . . . . . . . . 99

5.4.1 Bootloader reconnaissance and substage extraction . . . . . . 102

5.5 BBxM U-Boot SPL RBWACµ policy . . . . . . . . . . . . . . . . . . 114

5.5.1 BBxM substage and region definitions . . . . . . . . . . . . . 117

5.5.2 BBxM SPL’s policy architecture . . . . . . . . . . . . . . . . 119

5.6 RBWACµ policy language . . . . . . . . . . . . . . . . . . . . . . . . 126

5.6.1 Region definitions . . . . . . . . . . . . . . . . . . . . . . . . 126

5.6.2 Substage definitions and region type transitions . . . . . . . . 129

5.7 RBWACµ instance and enforcement challenges . . . . . . . . . . . . . 131

5.7.1 Addressing challenges via static analysis . . . . . . . . . . . . 136

5.7.2 Addressing changes via rearchitecting the system . . . . . . . 139

5.8 Other applications of RBWAC . . . . . . . . . . . . . . . . . . . . . . 139

6 Future directions 141

6.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.3 “It’s not a bus, it’s a network!” . . . . . . . . . . . . . . . . . . . . . 143

6.4 Other tangentially-related research questions . . . . . . . . . . . . . . 144

7 Conclusion 145

7.1 Concluding thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A RBWAC-inspired U-Boot discoveries 149

A.1 BBxM hardware and documentation . . . . . . . . . . . . . . . . . . 149

A.1.1 Documentation’s register tables . . . . . . . . . . . . . . . . . 149

vii



A.1.2 ARM TrustZone security extensions . . . . . . . . . . . . . . 150

A.2 QEMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.3 U-Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.3.1 Code bloat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.3.2 Undefined registers . . . . . . . . . . . . . . . . . . . . . . . . 156

A.3.3 Typing issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.3.4 Linkmap scripts and tricks . . . . . . . . . . . . . . . . . . . . 157

B Loader-related vulnerabilities 158

C U-Boot Frama-C value analysis 165

C.1 Running a Frama-C analysis on U-Boot . . . . . . . . . . . . . . . . 165

C.1.1 Frama-C value analysis statistics . . . . . . . . . . . . . . . . 165

C.1.2 Frama-C ARM architecture support . . . . . . . . . . . . . . 166

C.1.3 U-Boot source code post-preprocessing tool . . . . . . . . . . 166

C.1.4 U-Boot assembly code . . . . . . . . . . . . . . . . . . . . . . 167

C.1.5 Alignment issues . . . . . . . . . . . . . . . . . . . . . . . . . 171

C.1.6 Static linker-generated structures . . . . . . . . . . . . . . . . 171

C.1.7 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C.1.8 Frama-C execution options . . . . . . . . . . . . . . . . . . . 172

C.2 Frama-C destination analysis plugin source . . . . . . . . . . . . . . . 173

C.3 ARM architecture definition for Frama-C . . . . . . . . . . . . . . . . 177

C.4 C representation of U-Boot assembly code . . . . . . . . . . . . . . . 178

C.5 Frama-C source code patch . . . . . . . . . . . . . . . . . . . . . . . 184

D BBxM U-Boot SPL RBWAC policy definition 185

D.1 Region definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

D.2 Substage definitions and region retyping rules . . . . . . . . . . . . . 189

D.3 U-Boot source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

viii



Bibliography 209

List of Figures

1.1 Instances of secure boot adoption since 2010 . . . . . . . . . . . . . . 4

2.1 Front panel of PDP-11/70 computer . . . . . . . . . . . . . . . . . . 15

2.2 iOS boot stages and image storage locations . . . . . . . . . . . . . . 23

2.3 Mach-O loading commands . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Root shell-backdoor in ELF ping . . . . . . . . . . . . . . . . . . . . 40

3.2 Root shell-backdoor in Mach-O ping . . . . . . . . . . . . . . . . . . 42

3.3 Bytewise diff highlighting Mach-O ping backdoor . . . . . . . . . . . 42

4.1 Typical JTAG debugging setup. . . . . . . . . . . . . . . . . . . . . . 56

4.2 Pseudocode to calculate runtime write destination . . . . . . . . . . . 65

4.3 Pseudocode to calculate number of bytes written . . . . . . . . . . . 66

4.4 Example of calltrace tool output . . . . . . . . . . . . . . . . . . . 68

5.1 How sections, regions, and types are related . . . . . . . . . . . . . . 72

5.2 ManulBoard memory maps . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 RBWACµ policy automata . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Continuation-passing in U-Boot . . . . . . . . . . . . . . . . . . . . . 85

5.5 Trampoline design pattern in U-Boot source code . . . . . . . . . . . 85

5.6 U-Boot function pointer arrays . . . . . . . . . . . . . . . . . . . . . 86

5.7 Simple ManulBoard Mew-Boot policy substage sequence . . . . . . . 88

5.8 Region definitions for basic ManulBoard Mew-Boot policy . . . . . . 93

ix



5.9 Type confusion, verification failures, and enforcement failures . . . . 94

5.10 RBWACµ class policy predicates . . . . . . . . . . . . . . . . . . . . 96

5.11 Graph representation of basic ManulBoard Mew-Boot policy . . . . . 97

5.12 More complex ManulBoard Mew-Boot policy substage sequence . . . 98

5.13 Region definitions for more complex ManulBoard Mew-Boot policy . 100

5.14 Graph representation of more complex ManulBoard Mew-Boot policy 101

5.15 U-Boot self-relocation implementation . . . . . . . . . . . . . . . . . 104

5.16 Pointer use during U-boot self-relocation . . . . . . . . . . . . . . . . 105

5.17 Projection of write operations onto block write operations . . . . . . . 107

5.18 U-Boot SPL target locating code . . . . . . . . . . . . . . . . . . . . 108

5.19 Hard-coded U-Boot SPL target definitions . . . . . . . . . . . . . . . 109

5.20 Definition of U-Boot global data struct . . . . . . . . . . . . . . . . . 111

5.21 BBxM U-Boot SPL calltrace plugin output . . . . . . . . . . . . . . . 112

5.22 U-Boot busy loop example . . . . . . . . . . . . . . . . . . . . . . . . 113

5.23 BBxM U-Boot SPL block writes . . . . . . . . . . . . . . . . . . . . . 115

5.24 Condensed function call graph of the BBxM’s U-Boot SPL . . . . . . 118

5.25 BBxM U-Boot SPL substage sequence . . . . . . . . . . . . . . . . . 119

5.26 BBxM U-Boot SPL substage region definitions (1 of 3) . . . . . . . . 121

5.27 BBxM U-Boot SPL substage region definitions (2 of 3) . . . . . . . . 122

5.28 BBxM U-Boot SPL substage region definitions (3 of 3) . . . . . . . . 123

5.29 Graph representation of BBxM U-Boot SPL policy . . . . . . . . . . 124

5.30 U-Boot SPL region definitions for external RAM . . . . . . . . . . . 127

5.31 BBxM U-Boot SPL region definitions for external RAM . . . . . . . 128

5.32 RBWACµ policy language’s region scoping pseudocode . . . . . . . . 132

5.33 Grammar for RBWACµ’s region definition language . . . . . . . . . . 133

5.34 Grammar for RBWACµ’s substage definition language . . . . . . . . 134

5.35 Pseudocode implementing RBWACµ type policy . . . . . . . . . . . . 134

x



5.36 Frama-C write destination analysis plugin output . . . . . . . . . . . 138

A.1 QEMU BBxM ROM implementation . . . . . . . . . . . . . . . . . . 152

A.2 Parameters passed from boot ROM to target . . . . . . . . . . . . . . 153

A.3 U-Boot sanity checking of parameters passed from ROM . . . . . . . 153

List of Tables

4.1 BBxM hardware information . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Relocations performed by U-Boot stages . . . . . . . . . . . . . . . . 63

4.3 U-Boot instrumentation statistics at a glance . . . . . . . . . . . . . 70

5.1 RBWACµ substage type definitions . . . . . . . . . . . . . . . . . . . 82

5.2 RBWACµ region types . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 A successful SPL execution’s write operations . . . . . . . . . . . . . 110

5.5 BBxM U-Boot SPL policy statistics at a glance . . . . . . . . . . . . 116

5.6 BBxM SPL substage definitions . . . . . . . . . . . . . . . . . . . . . 120

5.7 BBxM SPL region definition transitions . . . . . . . . . . . . . . . . 120

B.1 Example loader-related vulnerabilities . . . . . . . . . . . . . . . . . 159

C.1 Frama-C value analysis statistics . . . . . . . . . . . . . . . . . . . . 166

xi



A chain of trust is a chain of loaders

–Sergey Bratus

1
Introduction

Wherever you encounter a general-purpose computer system, you will find a chain

of one or more dynamic loaders, the first of which is known as a bootloader. As a

system pulls itself into a state of usefulness and readiness, a tree-shaped chain of

loaders are invoked rooted by the kickoff bootloader, each loading one or more

binary images some of which are themselves loaders, occasionally branching when

multiple distinct processors need initialization. Loaders are the centerpiece of the

chain of trust, but few have a deep understanding of the bootloading process and even

fewer have developed a bootloader or a general-purpose loader from scratch. Loaders

are similar to electricity in that they are ubiquitous, in a relatively transparent and

seemingly-magical way, but folks will lunge for their pitchforks if they stop working.

A dynamic loader’s primary objective is to breath life into a static and inanimate

binary image so that it can takeover and execute on its own in whatever environment

is setup for it by the loader.

Conceptually speaking, bootloaders appear to be fairly simple, as their core purpose

is to transform a hardware system from its initial state upon reset into a more

1



flexible and useful system, eventually loading its target software, be that a full-blown

operating system or a simple embedded application. Loaders that do not operate

early in a system’s boot process have fewer responsibilities, especially with respect

to the hardware, and merely act as transducers of system state, bringing a static

representation of an executable image to life. However, upon closer inspection, we

will find that the mechanisms that allow loaders to achieve their end goals can be

multifaceted and complex, and hence prone to bugs and vulnerabilities especially in

the absence of a common security model of the loader’s properties.

When it comes to bootloaders, the specific actions a bootloader performs (or may

perform) are determined by the specifics of the hardware, overall requirements of

the system, as well as the developers’ goals of the bootloader itself. Many hardware-

agnostic goals of the bootloader (such as locating the target image to be loaded) are

achieved by hardware-specific mechanisms that do not generalize across architectures.

Here lies a large part of the challenge inherent in both studying a specific bootloader

and investigating loaders in general: it is hard to separate the generic behaviors of

loaders from the hardware and platform-bound ones. This may be the reason why no

generic models of loaders emerged: the analysis of general desirable behaviors gets

bogged down in hardware or platform-bound details, yet such a generic understanding

and separation are necessary for constructing trustworthy loaders.

Bootloaders establish the tone for the system, including for all of the loaders

that are (loaded) descendants, yet they are they are the most challenging type of

loader to instrument. Furthermore, because bootloaders initially operate in restricted

environments with undefined state which requires that at least some of the loader be

written in assembly language, it is challenging to make use of standard verification

and runtime access control techniques. Despite all of this, bootloaders are still loaders.

They perform linking and loading just like any other loader, and sometimes even

operate on the same file formats application loaders work with, such as ELF and PE.

2



Therefore, although I have chosen to focus my dissertation research more specifically

on bootloaders; the models, mechanisms, and techniques I use to describe and enforce

safe behaviors for a bootloader will not only allow remainder of the loader tree be

more trustworthy, but could also be applied to all other kinds of loaders.

The main contributions of my thesis, further expanded in section 1.3, are

1. tools to observe and define loading behaviors during boot,

2. formal apparatus for describing bootloader behaviors, and

3. enforcement mechanisms for these bootloader behavior specifications.

1.1 Our trust in bootloaders
Bootloaders, being the first code invoked by a system as it powers on, are implicitly

trusted by all layers of the software they load and patch. There are many ways in which

software implicitly trusts the originating bootloader, but one of the most noticeable

ways arises due to how a processor’s security mechanisms are configured and employed.

Any processor with configurable security mechanisms must start execution in the most

privileged state possible so that its protection mechanisms can be configured. Even if

the system’s kickoff bootloader does not directly configure the hardware’s protection

mechanisms, all subsequent software implicitly trusts the state in which the kickoff

bootloader left the system. Moreover, there has been an increase in explicit trust of

bootloaders over the past few decades as “secure” and “measured” boot mechanisms

became incorporated into an increasing number of bootloading chains, which treat

the bootloader as a static root of trust.

Code signing mechanisms have also been incorporated in other types of loaders, in

both kernel module/driver loaders (such as 64-bit Windows drivers from Windows

8) and application loaders, which employ similar mechanisms to establish the trust-

worthiness of the code it is about to load and consequently also suffer from the same

kinds of vulnerabilities.

3



2008 2010 2012 2014 2016
iOS code signing

NIST BIOS Integrity Measurement
Microsoft announced secure boot requirements

Chromium OS verified boot design

Android verified boot
Solaris verified boot

Intel Boot Guard
Qualcomm secure boot

Figure 1.1: Instances of secure boot adoption since 2010

It is difficult to avoid the need to trust a system’s bootloader, although mechanisms

that act as secure enclaves, such as Intel’s Secure Guard Extensions (SGX), have been

developed to allow for limited computation environments in which (in theory) the

executing software only needs to trust the processor, establishing a dynamic root of

trust. Regardless of the existence of such secure enclaves, most software must trust

the (boot)loader(s) that initialized the system on which they execute. And even so,

as software that relies on SGX continues to mature, they will likely come to include

their own loaders.

Few research teams are equipped with the knowledge and capabilities to discover

(boot)loader-related vulnerabilities, especially with respect to loaders that run early in

the system initialization sequence, yet there is no lack of discovered loader vulnerabili-

ties. For example, in a talk name “Attacking and defending BIOS in 2015.” presented

at REcon 2015 [20], 38 BIOS bootloader-related vulnerabilities discovered between

2013 and 2015 were listed, which does not include any non-BIOS bootloader-related

vulnerabilities (e.g. [217, 218, 220–223]). And yet, during this time period there are a

number of introductions of “secure”-boot-like support mechanisms or implementations

by Intel, Solaris, and Android. These and other bootloader-related vulnerabilities

will be further discussed in section 2.2, where I will show how they follow certain

structural patterns. I will further show how the region-based typed system described

4



by this thesis mitigates such failure patterns.

1.2 A different perspective on bootloader design
Over the past decade or so, industry has been moving towards more explicitly trusting

bootloaders and relying on mechanisms that check bootloader integrity and origin of

a bootloader image (e.g. measured boot), and more explicitly defining communication

mechanisms between bootloader images of varying origins (e.g. UEFI). Yet little

(if any) work has been done specifically to boost our overall confidence in a given

bootloader’s implementation correctness and safety.

1.2.1 Loader safety properties

Before we began to explicitly trust bootloaders and use them as a root of trust, we

implicitly trusted (and continue to trust) that bootloaders (and other types of loaders)

are capable of correctly:

• allocate non-overlapping address regions,1

• manage address alignment,

• prepare address space mapping,

• patch/link loaded images, and

• extract requirements and restrictions from the loaded resources themselves.

Regions of addresses that loaders (and especially bootloaders) manage can (and

often do) change throughout the course of loading as the loader itself discovers new

resources that require dedicated space in the system’s address map. A resource that

a loader discovers can be a device or subsystem, or it can be a software image that

the loader is ultimately expected to map to one or more address regions and possibly

execute.
1I mean address in a general sense: sequences of cells that are retrieved via a numeric identifier

that indicates its index into the sequence. This can apply to both system memory and system I/O
addresses, which on x86 are addressable via in and out instructions, or even the PCI-bus address
space which can be accessed via memory/mapped registers or in/out instructions. Several such
address spaces, disparate or interconnected, are encountered in a typical boot process.
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In general, the purpose of a loader is to discover, initialize, and allocate resources.

During this process of resource discovery, the loader ideally identifies and discovers a

special resource – one that contains the binary image and metadata describing the

loader’s target executable. (For a bootloader, this target is the subsequent stage in

the bootloading process.) Throughout a loader’s course of resource discovery and

initialization, it may encounter a resource that substantially changes the system’s

current address map(s) once configured. For example, this may happen if it discovers

additional volatile memory or a section of code or data that it must map to or relocate

in memory. Such behavior can be easily described – when additional memory is

initialized, a region of physical addresses which initially does not have a backing

store is suddenly usable later in the boot process – however it can be challenging to

represent the separation between these two epochs in the loader’s source code.

Throughout a loader’s iterative process of resource discovery, initialization, and

allocation, a loader is either:

• preparing and/or patching/linking a region of memory that will be used by a

later phase in the loading process, or

• performing internal bookkeeping (a catchall for any other type of action)

With this simple insight in mind, we can begin to classify a loader’s actions by

intent, so we can establish a typing system for the loader. The objects upon which a

loader operates are blocks of addressable bytes that can be assigned a type label, each

of which is either bookkeeping data, patching/linking metadata, or within a region

that the loader is preparing.

This treatment of memory regions is inspired by the typed regions of Cyclone,

a safe dialect of C [109]. Cyclone assigns labels to regions of memory that can

be simultaneously deallocated. Pointers declared in Cyclone source code can be

augmented with these region labels, allowing the compiler to statically check for

unsafe pointer dereferences (policy violations). Similarly, over the course of a loader’s
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execution, regions of memory change in “availability.”2 Finally, we observe that the

“write” operation is a loader’s fundamental action. Therefore, in this thesis I introduce

address region-based write access control – RBWAC3. The basic idea, which will be

covered in greater depth in chapter 5, is that RBWAC consists of:

• Substages: which define loader execution as a sequence of behavior-based sub-

stages

• Region-based access control rules: for each substage, we formulate an address

region-based write access policy

1.2.2 Designing a safe bootloader

In this dissertation I endeavor to narrow the gap between the trustworthiness we

demand from our bootloaders and the trustworthiness we can expect from them. I will

describe and focus on bootloader behavioral properties that are:

1. prevalent across bootloaders (and more generally, loaders),

2. whose correctness are important for a bootloader’s safety, and

3. can be statically checked and/or dynamically enforced.

In order to accomplish this, I will first demystify the inner workings of bootloaders,

then I will decompose their behaviors into phases of execution that can be formally

described and ultimately enforced.

To allow us to analyze and decompose bootloader behavior in a hardware-agnostic

manner into phases, I performed a qualitative descriptive study on a range of hardware

and open source bootloaders. I also investigated bootloader and other types of loader

vulnerabilities as well as other issues that leads to safety violations, in order to identify

behavioral properties that are relevant to overall bootloader security.

Finally, to show that my ideas are both feasible and practical, I performed a case

study, deriving, describing, and enforcing a behavioral security policy on an instance
2Availability as in whether the loader may access a region, not whether it can address a region

since the later is a question handled by hardware.
3Pronounced: arrrrrrrrb-whack!
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of the open source Das U-Boot bootloader compiled to execute on the BeagleBoard-

xM with minimal changes to the original U-Boot source code. During the process of

deriving an enforceable policy, I developed a bootloader instrumentation tool suite

capable of dynamically tracing, analyzing, and enforcing certain types of bootloader

behaviors. Also, to explore the feasibility of applying source code-based static analysis

to a bootloader, I worked with Frama-C source code analysis framework to analyze a

complete U-Boot stage.

My U-Boot case study demonstrates feasibility of applying a behavior-based policy

on a bootloader executing on simple ARM system. However, to demonstrate that

such safety mechanisms may work on a range of bootloaders and hardware of varying

requirements and complexities, I will also discuss how these mechanisms may be used

in other classes of bootloaders and hardware.

1.3 Contributions
In this thesis, I present a suite of tools for observing and characterizing bootloader

behaviors. My tools work at a fine granularity – mediating every write a loader makes

during execution – while also allowing us to coarsely characterize and aggregate these

writes by purpose resulting in a concise description of bootloader behaviors. The

major contributions of this thesis are:

(a) A survey of security-related loader failure patters,

(b) a generalization of these failures into a number of formally-defined failure classes,

(c) a formalism for describing the purpose and intent of loader memory accesses at

an instruction-level granularity but with a convenient aggregation to memory

regions,4

(d) a mechanism for enforcing behaviors as specified by my formalism,

4The region descriptions in this formalism naturally align with symbols and other ABI metadata
constructs. To the best of my knowledge, this is the first practical formalism of its kind applied to
legacy bootloaders.
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(e) methodologies for refactoring existing bootloader code to take advantage of this

formalism as well as for writing fresh bootloader code,

(f) methodologies for incrementally strengthening an existing loader’s implementa-

tion, and

(g) a design and implementation of a policy language with which policy actors and

objects can be defined based on both source code annotations and references to

objects within a loader’s own compiled image,

(h) a case study showing feasibility of this approach, applying this methodology to

the well-known Das U-Boot bootloader

My goal is to provide industry bootloader programmers with practical tools and

methodologies for writing bootloader code.
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Loaders are the stepchildren of most systems. Users do not like

them because they are simply another unnecessary delay on the

way to The Answer. Compiler writers do not like them because

they are parts of the system (what do you mean they’re not?).

System programmers do not like them because they are just another

utility. Perhaps only the business manager likes the loader because

so much time (and money) is spent executing it.

–Charles Wetherell, 1978
in “Etudes for programmers” [226] 2

Loaders and their vulnerabilities

Many a philosophical discussions have emerged from simply trying to answer the

question of whether a particular behavior is a feature or a bug. When it comes

to loaders, this very question can be difficult to address in a general way. Many

of the loaders that are in use today were originally designed in the era when the

robustness principle dominated – robust in the same vein as stated in the RFC for

the Transmission Control Protocol, to “...be conservative in what you do, be liberal

in what you accept from others” [103]. Some of these robust loaders have grown to

become less lenient, often incorporating code signing mechanisms. However, only so

much rigidity can be imposed on a loader’s target executable whose file format is

explicitly designed to be flexible. For example, there is clear evidence that ELF, the

binary file format used in Unix-like systems, was designed to be a flexible format in a

future-compatible way. This is evident both in the file format itself, how its use has

evolved, and how one of the earliest references on ELF describes the format, e.g.,

Some object file control structures can grow, because the ELF header
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contains their actual sizes. If the object file format changes, a program

may encounter control structures that are larger or smaller than expected.

Programs might therefore ignore ‘extra’ information. The treatment of

‘missing’ information depends on context and will be specified when and if

extensions are defined.

– Page 13-4 of [12]

Because ELF was designed with such flexibility in mind, technical references for ELF

rarely describe what ELF-processing software should not do – only expected behaviors

are described. This intentional flexibility allows for a variety of interpretations that

pave the way for these philosophical debates as to whether a particular loader’s

behavior is a vulnerability or a feature.

When there are many way in which a given object can be used and interpreted,

we cannot always foresee its consequences. Bratus and Bangert identified discovered

and presented a number of such unintended consequence of this hyperflexability by

demonstrating methods of crating ELF files whose memory-mapped image loaded

by the dynamic linker is seemingly unrelated to its memory-mapped image when

directly executed [34]. This hyperflexability has other problematic consequences, one

of which I discuss in section 3.1.1 (page 36), where I describe my prior research on

ELF metadata-driven virtual machines, the results of which have heavily motivated

this thesis.

The remainder of this chapter will skirt this philosophical debate by narrowing our

focus onto a less-broadly defined loader vulnerability family of concern, in particular,

behaviors that result in unintended access to intentionally protected assets. Assets can

include data or code, accesses can entail reading data, modifying an asset, or code

execution.
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2.1 A loader’s onus
Dynamic loaders are what breathes life into otherwise static binary images. They fill

in the gaps between the programmer’s view of symbols/shared resources, the compiler,

the system’s hardware instruction set (and its addressing constraints), and the system’s

runtime environment/resources. These requirements are often described in an ABI

(application binary interface) specification. ABIs describe hardware-related details

such as data sizes, layout, and alignment requirements; calling conventions; library

and kernel interfacing conventions; and how binary images are formatted, including

symbol resolution and relocation information. Each unique combination of hardware

family and operating system family requires its own ABI specification, although, it

is not hard to find commonalities between different ABIs that ultimately allow for

binary-level interoperability between systems that adhere to different ABIs.

It is a loader’s role to make sure separately compiled units of code work together as

smoothly and transparently as possible, ideally without introducing more constraints

onto the other actors it works with (with the exception of code signing requirements).

In order to fulfill these expectations, loaders perform tasks such as: locating binary

images in both volatile and nonvolatile memory, parsing and understanding the

binary images, copying binary images, patching up unresolved symbols (code or data

references) in a binary image, and managing resources imported or exported from a

binary image.

During the past couple of decades, with the introduction of code signing, we have

seen a loader’s role transform into one most appreciated by business managers (see

epigraph) – an arbitrator of executables. Code signing intends to control which software

a system executes, sometimes for business-related reasons. Companies including Apple,

Microsoft, Qualcomm, Motorola, Google, and Oracle (Sun Microsystems) all have

developed and built code signing mechanisms into their loaders. Although these code
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signing mechanisms are deeply intertwined with a loader’s automaton, they are still

divorced from the loader as computational objects, treated as an oracle by the loader.

Although, from a software design perspective it makes sense to have the loading

and code signing mechanisms act as separate automata, this design can easily lead to

a situation where the automata have diverging views of the system’s state. A loader

that has acquired a security role as an adjunct to code signing should be designed and

implemented with the same amount of care as the code signing mechanisms themselves.

This is the only path to making the links of the chain-of-trust and their code signing

mechanisms eventually verifiable. My thesis recognizes this as a problem, and addresses

it by introducing a formalism that semantically models loading behaviors, thus allowing

for complete mediation of security-relevant behaviors.

2.1.1 The evolution of loaders

The duties of loaders have evolved throughout the short history of digital computing,

which has resulted in today’s de-facto understanding of what is expected from a

runtime (dynamic) loader. In the earlier days of computing, runtime loaders helped

automate the process of reading absolute binaries1 (image formats that did not require

further runtime adjustments) into memory. The DEC PDP-11 (circa 1970) made use

of a fourteen-word-long bootstrap loader that could be feasibly be input by hand

via a series of switches on the front panel as seen in figure 2.1 [61, pg. 11-9]. This

hand-inputted bootloader instructs the machine to load an additional small number of

instructions into memory which run diagnostics, determine from which device to boot,

and read a binary image from that device into memory for execution. Some early

loaders managed and executed binary images that were too large to hold in system

memory using a technique called overlaying. Overlaying was commonly used in the

1960s to mid 70s, and then reemerged in the 80s until virtual memory techniques

1The term absolute binaries is rarely used today, however it is heavily used in Baron’s 1978
Assemblers and Loaders book [18].
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generally superseded the need for overlays [139] 2.

Before virtual memory came into use, all loaders needed to be sensitive to the

system’s hardware and required knowledge of the system’s physical memory map.

Loaders that operate within the context of virtual memory can be oblivious to the

hardware’s physical address layout, only having to worry about any restrictions or

expectations posed by the operating system (or whatever software the manages the

virtual memory). Nevertheless, there are still loaders that execute before virtual

memory is enabled (i.e., boot loaders), which must still be cognizant of their hardware.

The adoption of virtual memory led the way for non-bootloading loaders to be

developed in a more hardware-agnostic manner with only a small percentage of their

source code comprised of hardware-specific instructions and actions. Most hardware-

specific responsibilities – such as instruction and address formatting, byte order,

alignment, and relative addressing – remain a task for the compiler/assembler to

handle. It is the compiler that emits the most hardware-specific objects/information

into the binary for the runtime loader to later interpret. Modern extensible binary

image formats such as Mach-O (used in OS X), PE (used in Windows), and ELF

(used in Linux)3 encapsulate such information in a hardware-agnostic manner for the

loader to later interpret4.

This decoupling of loader implementation details from hardware along with the

use of richly descriptive object file formats allowed the responsibilities of loaders to

evolve and grow. As hardware requirements evolved, so did programming languages

and software engineering practices. Thus, dynamic loaders evolved in-step with

their hardware and software counterparts. As software began requiring increasingly

complex symbol resolution rules, as well as dynamic object initialization, lookup,

2Although, it is possible to find use of overlays in modern hardware, such as by Silicon Lab’s
Si4010 chip.

3Both ELF and PE are descendants of the COEFF format.
4Older binary image formats, such as MS-DOS .COM files, a.out files, as well as some still-used

bootloader image formats, carry minimal data beside the necessary machine code and statically-
defined data.
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Figure 2.1: Front panel of a PDP-11/70 machine, switches on right-hand side ma-
nipulate machine state, switches on left-hand side are for manual input of data and
address values. (CC BY-SA 3.0 Retro-Computing Society of Rhode Island) [179]

and destruction, loaders introduced symbol versioning, weak symbols, and C++

class/static constructor support. The GNU binary toolchain eventually incorporated

support for embedding arbitrary symbol resolution rules into a binary in a hardware-

agnostic manner by allowing the compiler to embed an arbitrary function, called an

IFUNC (indirect function), that is executed to perform symbol resolution [166]. Mach-

O took a different approach, using a dedicated bytecode to encode the same type of

information in a highly-flexible manner.

The most popular binary file formats used by modern operating systems survived

the test of time partially because they were able to adopt to the system’s changing

needs. Although loaders that execute during boot do not necessarily use these

extensible formats, there are some notable exceptions, such UEFI which uses the TE

file format (a more compact version of PE), and the bootloading code that runs in

early stages of the ARM Linux kernel which handles ELF-encoded binaries. Although

there are compelling reasons to allow for flexibility in binary file formats, there are

various drawbacks which I will address throughout this chapter. Ultimately this thesis

aims to find a sweet spot between flexibility and constraint by overlaying a flexible
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intent-base enforcement mechanism on top of any existing loader implementation.

This history of loader evolution demonstrates:

1. Loaders evolved to become hardware-agnostic where possible, taking on new

roles and abstractions to do so,

2. flexible binary file formats allowed loaders to more easily evolve to address the

changing requirements of its hardware and software environment, and

3. loaders will continue to take on security roles in systems.

All of this motivates the need for another step in loader evolution. This thesis

takes on the challenge of distilling abstractions needed to describe and model loading

behaviors in a practical manner. These abstractions must be able to encapsulate

a loader’s intent because when implementation does not accurately and completely

encode intent, vulnerabilities surface. Many examples of such vulnerabilities will be

discussed later in section 2.2.

2.1.2 Loader safety properties

Regardless of whether or not a loader performs code signature checking, we still place

a great deal of implicit trust in it. We trust our loader to properly initialize and allocate

system resources, including the system’s address space(s) and hardware. Not only must

a loader be able to correctly allocate system resources (typically in a non-overlapping

manner), but it must also be able to extract and handle resource requirements and

restrictions, such as address alignment, from the resources themselves. On top of

managing resources, a loader must also be able to locate, patch, and link any images

it loads.

2.1.3 Properties of an address space: a loader’s opus

Every operation a loader performs is reflected in the address space(s) it prepares

for its target. It is the loader’s duty to prepare the address space for its target and

it must maintain a memory map (model) of the full address space it is composing,
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or at the very least keep track of which regions it can and cannot reallocate. For

example, a bootloader that is working with physical addresses must know which

regions are not backed by RAM (e.g., memory-mapped hardware registers) thus can

not be repurposed. Loaders typically have a more nuanced understanding of their

address space and maintain a memory map that divides the addresses it controls into

regions based on intended use such as: code, stack, heap, and space in which the

target image can be loaded.

Memory maps, just like geographical maps, can be rendered with a variety of

granularities, feature layers, and labels. These memory-related properties a loader

maintains vary, not only between address regions, but also temporally as the loader

executes. Loaders maintain these memory maps both explicitly (in data structures)

and implicitly (hard-wired into its source code and the mechanics of its compilation

toolchain), which makes it difficult to extract an accurate and complete representation

of the loader’s memory map in order to reason about the correctness and robustness

of a loader’s implementation.

Address spaces naturally lend themselves to a hierarchical semantic label-

ing scheme even though they are often modeled and treated as a flat sequence

of consecutive intervals, e.g., with labels that differentiate between the stack, heap,

static data, code, etc. An address that resolves to a memory mapped register could

also be labeled with information that, for example, indicates what subsystem the

register controls and whether the register is a status or control register. Although it

is important for a loader to know whether a particular address is located within the

stack region, it is not necessarily enough information to determine the intended use of

the object at that address for some overarching access-control policy. Sometimes it is

enough to just determine whether a particular address contains static data, but other

times the loader must know that, for example, not only an address is static data but

it also defines the location of the heap. Such information about an address is often
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embedded into the source code itself by how it interacts with the address. However, in

order to construct useful security policies that govern loader behaviors we must both

recognize this semantic hierarchy and provide a means of representing and interacting

with it within a security policy.

2.2 Loader vulnerabilities
Due to the extensible nature of loaders and their binary file formats, it can sometimes

be difficult to classify a particular behavior as a bug – it is easy to be satisfied as

long as the expected final state was achieved. What happens between the loader’s

invocation and the invocation of the target software it loads may not matter much –

barring any failures, unexpected resource hogging, or accesses to privileged code or

data that violate the system’s policy – with exception to loaders that make use of

code signing or loaders that restrict its target’s privileges in some manner (e.g., via

sandboxing or memory access permissions). With this in mind, I will focus on curbing

behaviors that exhibit as unintended accesses within an address space using a typed

memory region-based policy.

Public disclosure and knowledge of loader vulnerabilities is limited and occasionally

inaccurate, therefore in this chapter, I will mainly focus on the few publicly disclosed

and detailed loader vulnerabilities. Most of these disclosed vulnerabilities are triggered

either by a crafted binary file or by some protocol the loader makes use of in order to

acquire the binary file (e.g., USB), and result in either misleading the code signing

mechanism or a privilege violation. I will later briefly discuss publicly-disclosed

vulnerabilities where few details are publicly available. This all will help motivate my

proposed type system which guards against such vulnerabilities.

2.2.1 Code signing

Loaders that employ code signing mechanisms typically intend to provide some pro-

tection against loading binary blobs from unknown origins. Code signing mechanisms
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are also used to defend against modification of executable code between the time it

is signed by the developer (or other trusted party) and the time it is executed. The

mechanisms required to implement code signing add layers of complexity to loading,

and with this complexity comes a larger and more prominent attack surface. In order

to reap the benefits of code signing, we must be able to ensure that the loaded signed

code is in an environment where it can not be overwritten (its integrity must be some-

how assured), and any changes made to the image of the code in memory should be

of a narrowly-controlled kind5.

Code signing circumvention There is no shortage of weaknesses that can be

leveraged in order to circumvent code signing and get untrusted code to execute. One

can directly attack the code signing’s cryptography by stealing private keys, such as

what happened to an Adobe code signing certificate in 2012 [5]; one can try to disable

the mechanism that enforces code signing (a technique that has been used to attack

iOS code signing in [137, 225]); one can target mechanisms that execute unsigned

code or affect control flow such as in other iOS code signing attacks [154, 155, 225];

or one can target the data included with and in the code signature itself such as in

the Android master-key bug [79, 80] and the CVE-2012-0151 vulnerability for signed

Windows PE files [87]. Husain, et.al., demonstrated how to bypass Chromium OS’s

verified boot by modifying the file system [101]. In my 2013 Shmoocon talk, I discussed

former implementations of Linux kernel module signing that may be vulnerable to

similar metadata-based attacks [190], as well as similar issues with various userland

ELF executable code signing implementations in a earlier talk [35].

2.2.2 Out-of-bounds memory accesses

Bootloaders that make trust decisions or actively try to protect the system in some

other manner have discernible delineations of privilege and access control rules which

5JIT (just-in-time compilation) performed during code execution are out of scope.
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makes it relatively straightforward to label certain behaviors as in violation of its

intended security policy. It is not as straightforward to identify problematic behaviors

for loaders that were not built with such intentions in mind. Nevertheless, there are

still certain behaviors any loader can exhibit that we can confidently label as a bug or

potential vulnerability, namely: crashes due to memory exhaustion, an out-of-bounds

read (such as a NULL pointer dereference), or an out-of-bounds write (such as a buffer

overflow).

Out-of-bounds operations are a form of type overlap. These out-of-bounds

memory operations are a form of, what I am calling, type overlap, which is when a

single region (object) is assumed to be of a different (and conflicting) type by different

actors6. Consider the classic stack overflow attack, a technique introduced by Aleph

One [6], in which an attacker-controlled stack-based buffer overflow is leveraged to

hijack execution flow by overflowing into and overwriting the return address stored

on the stack. The way a processes’ stack is laid out in memory is really a sketch of

how the memory regions within the stack are intended to be used. Yet, when the

return address is clobbered by an overflowing buffer we can see that the function who

overwrote the return address had its own set of semantics it applied to that region

of memory, intending to use it as storage for the object it is building, whereas the

instructions that perform the return apply their own semantics to the same addresses.

This clash is an instance of type overlap. Type overlap may also surface when two

different actors, such as the loader and the loader’s target software, interact with a

single address space. For example, so-called copy relocation violations – when

the linker/loader relocates a region that is expected to be read-only into writable

memory – also an instance of type overlap, are not uncommon, and in fact, Ge, et. al.

have found numerous examples of this in Ubuntu binaries [82]. Every out-of-bounds

6Sometimes this type of weakness is referred to as type confusion, but I will be overloading and
broadening the definition of this term when I more formally define type confusion and type overlap in
5.2.6 on page 92.
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memory access falls in the category of type overlap – by the very definition of an

action being out-of-bounds we clearly know that actions performed are unsound with

respect to the software’s expectations and behaviors.

2.3 i$DEVICES/iOS bootloader vulnerabilities
iOS-based devices (which I refer to as i$DEVICES) make use of code signing at every

link in their trusted boot chain. For many reasons, this particular chain of trust has

been heavily targeted by security researchers. Consequently, it has a rich history of

publicly documented vulnerabilities, and thus is an interesting staring point in my

survey of loader vulnerabilities. In this section I will first provide a general overview

of the iOS boot process, then I will summarize various loader-related vulnerabilities

that have lead to circumvention of iOS’s code signing requirements.

The goal of most iOS exploits is to be able to load and execute arbitrary code on

an i$DEVICE, preferably retaining presence on the device between reboots. Most

iOS loader-related vulnerabilities targeted by these exploits can be sorted into one

of two major categories: type overlaps in the form of memory corruption (not just

buffer overflows, but memory writes that should not have been allowed to occur),

and enforcement/validation failures due to “features” unintentionally included in

production devices.

2.3.1 iOS boot sequence overview

Throughout the past decade, a game of cat-and-mouse has played out between security

researchers and Apple, causing the i$DEVICE chain of trust to strengthen and evolve,

often growing in complexity. In the remainder of this section I will shed some light on

the various ways this game played out. It is important to note that not every i$DEVICE

loader vulnerability has been publicly acknowledged and even fewer technical details

were released, so what I describe here is a limited picture of the larger situation. The

fact that this game is still being played (it has been ten years since iOS was first
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introduced in 2007) shows that current tools and techniques are insufficient, further

motivating the series of tools I developed that help distill and describe a loader’s

intent (see chapter 4) and this thesis.

iOS’s chain of trust can be roughly decomposed into the following loading stages:

• Stage 1: BootROM, the kickoff stage also known as SecureBoot

• Stage 2: LLB (Low Level Bootloader)

• Stage 3: iBoot

• Stage 4: iOS Kernel, with separate kernel extension and userland application

loaders

• KEXT, the kernel extension loader

• execv, the userland loader

• i: launchd, the first executed userland application

• ii: dylib, userland dynamic linker and loader

2.3.2 Bootloader image format and storage

Not all iOS bootloader stage images are encapsulated within the same file format

nor are they all physically stored on the same device. The iPhone has three kinds of

nonvolatile storage, each of which are increasingly difficult to overwrite: (1) system

storage (a.k.a NAND flash), (2) firmware storage (a.k.a. NOR flash), and (3) ROM.

Researchers believe that the ROM is not writable, firmware storage is writable until

the LLB is invoked, and system storage can only be written to from ring 0 (system

mode). The kernel itself is stored in system storage and is mounted read-only so

that it cannot be modified by untrusted software (without making use of a kernel

vulnerability). Figure 2.2 illustrates the order in which each boot stage is executed

and where each stage is stored. A check mark indicates whether a stage’s image is

signature checked before the stage is entered.
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Figure 2.2: iOS boot stages (in dashed boxes) in their execution order (first boot
stage is on the left) and corresponding image storage locations. A thin arrow from the
boot storage location to a thick stage transition arrow indicates where the subsequent
stage’s image is loaded from. A checkbox next to such an arrow indicates that a
signature check is performed on the image as it is loaded. The dotted lines indicate
when firmware storage is write-locked (before the LLB stage is entered) and when
ring 0 (system) privileges are dropped thus disallowing modification of system storage
(when the dylib stage is entered).

2.3.3 The baseband (modem) boot process

iOS-based devices that have modems (such as iPhones) take additional steps during

their boot process to initialize their baseband processor. Even less is known about

baseband bootloading, although it is clear that the baseband’s boot process has

significantly evolved since the introduction of the first iPhone. The baseband in

older models of i$DEVICES has its own boot chain that runs in parallel to the boot

chain that initializes the application processor (described in the previous sections).

This boot chain starts off with the baseband’s own ROM-based kickoff bootloading

stage. This ROM-based stage then loads the subsequent stage from its own NOR

flash (separate from the application processor’s NOR flash), which then loads the

kernel (Nucleus OS), also from the NOR. Starting with the iPhone4S, the baseband

processor stopped making use of separate flash to store its firmware and bootloader,

instead booting from (presumably) on-chip ROM into an “emergency” service mode

that waits for the application processor to send it a signed image which it then verifies,

loads, and executes [1].
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2.3.4 Type overlap loading weaknesses

The iPhone Dev Team’s certificate-parsing exploit, presented in their 2008

CCC talk, was one of the first highly-detailed publicly-released iPhone exploits [175].

Back in 2008, the iPhone’s BootROM did not verify the signature of the LLB (its second

stage). Although it is possible to overwrite the flash storage containing the LLB, iOS’s

bootloaders restrict how and when this storage can be modified (see figure 2.2). Only

the BootROM, LLB, and iBoot stages can modify firmware storage, and only during

a special recovery boot mode. The code that does write to firmware storage first

verifies the signature of the image it writes, which is important because the BootROM

(in these earlier versions of iOS) did not check signatures. The iPhone Dev Team

discovered a stack-based buffer overflow vulnerability within recovery mode which

allowed them to craft a certificate that corrupts memory in such a way that causes

signature checking to always succeed, thus resulting in them being able to control

what is written to firmware storage during recovery mode. Ultimately, this allowed

them to manipulate the bootloader running in recovery mode into writing an altered

LLB image that does not enforce signature checking to storage, thus compromising the

intent of iOS’s trusted boot chain. Apple has since implemented signature enforcement

in their BootROM of the i$DEVICE models targeted by the rest of the attacks I

discuss in the remainder of this chapter.

The 0x24000 segment overflow attack, (also known as 24Kpwn) was publicly

released by the iPhone Dev Team in 2009. It exploited a BootROM vulnerability

which ultimately allowed for an LLB stage to be loaded in a manner that bypasses

signature verification performed by the ROM [55]. The LLB image is stored in an

IMG3 file format which is chiefly composed of tag-length-value-style blobs of data

(e.g. certificate, processor information, code, etc.), proceeded by a general header that

provides information on the image’s size and file offsets that are signed. In practice,
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this design results in there being various length fields scattered throughout the image’s

metadata, some which are redundant, only some of which are protected by the file’s

signature. Researchers found that the BootROM relied on a non-signature-checked

length value from which the number of bytes it loads into memory is calculated. They

also found that the BootROM did not properly perform boundary checking to ensure

that the loaded LLB image fits within the region of memory set aside for it. Therefore

they could craft a LLB image that not only passed the BootROM’s signature check

but also corrupted the bootloader’s own internal data when being loaded, thus giving

them control over the chain of trust.

iBoot Environment Variable Overflow. In 2009, geohot found a heap overflow

vulnerability in iBoot which could be triggered by setting a specially crafted and

particularly long environmental variable in iBoot’s console [84]. When crafted this

way, it caused iBoot to overwrite an entry in its command table (which contains

information on entrypoints to each of its console commands), thus allowing the attacker

to redirect execution to injected shellcode when they later execute the targeted

command. Examples of how this exploit is used are described in [10, 84].

The evasi0n userland code signing bypass, presented by the evad3rs team in

2013, made use of multiple vulnerabilities including one exhibited by iOS’s application

loader – the first in a series of jailbreaks that function by misleading the loader

into overlaying two distinct segments (of code and/or data) from the loaded target

executable on top of each other in memory [225]. In the version of iOS evad3rs targeted,

the kernel depended on a userland daemon (called amfid) as well as the dynamic

loader (dyld) to check the signatures of all loaded code (formatted as Mach-O files).

dyld additionally required that the Mach-O header of all loaded Mach-O files be

marked as executable to prevent itself from loading binaries whose metadata have

been altered. This particular implementation of code signing happened to allow data

to be appended to the end of a Mach-O file without invalidating its signature However,
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if the Mach-O header was (naively) tampered with in order to get the loader to copy

these appended bytes to memory, the file’s signature would be deemed invalid. evad0rs

developed a clever way of injecting extra metadata at the end of the file that tricks

the loader into loading the unsigned (not marked as executable) metadata appended

to the end of the file on top of the already loaded and validated Mach-O metadata.

Using this technique, they could make the loader overwrite the region of memory

containing the Mach-O’s signed metadata with their own crafted data. Ultimately,

evad0rs was able to overwrite data used to locate the signature checking function so

that all future calls to perform signature checking would always signal success.

Pangu is a jailbreak that, like evasi0n, accomplished some of its goals by crafting

a binary file so that multiple distinct segments defined in the binary got mapped

to overlapping regions of memory by the loader – a technique I will now refer to as

segment overlap [138]. At the time Pangu was released, Apple had patched the loader

so that it was no longer vulnerable to evasi0n, adding checks to prevent segment

overlap. Pangu achieved segment overlap via a different mechanism than evasi0n –

an integer overflow vulnerability present in the segment overlap-checking code which

caused the loader to overwrite a previously loaded and validated region in memory

with a payload of their choice.

Pangu8 was introduced after Apple patched the integer overflow vulnerability

targeted by Pangu. The Pangu8 jailbreak that made use of a different integer overflow

vulnerability to achieve the segment overlap, yet again coercing the loader into

overlapping data of the attacker’s onto a memory region that was already validated

and trusted [63]. This vulnerability was partially fixed in iOS 8.1.2, but Pangu was

able to again tweak their method in response to the patch until such vulnerabilities

were more aggressively patched in iOS 8.1.2 [169].
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TaiG was then introduced after Pangu8’s overlapping segment attack was ren-

dered moot by iOS 8.1.2, continuing with the tradition of overlapping segment-based

attacks. The TaiG exploit, a riff on Pangu8, targeted a different integer overflow

vulnerability which also allowed for segment overlaps. This vulnerability targeted by

TaiG was later patched in iOS 8.1.3 [138].

The alloc8 exploit is a more-recently discovered iPhone 3GS BootROM exploit [13].

alloc8 makes use of a bug in the BootROM’s heap implementation. The BootROM’s

heap returns 0x8 instead of the standard NULL (0) when it is unable to fulfill a memory

allocation request. Some services that use this heap incorrectly assume the allocater

returns NULL on error, and thus treat any returned value other than NULL as a valid

address. Consequently, a service may write data to address 0x8 – which happens to

be an address with the table of exception handlers – instead of catching the failure.

In order to exploit this vulnerability, an attacker must (1) fill up the heap, (2) trigger

the vulnerable code to overwrite the exception table so that the function pointer is

clobbered with a value of the attacker’s choice, ideally an address that the attacker

knows to contain shell code, and (3) cause the overwritten exception’s handler to be

triggered. This can all be achieved by coercing the bootloader, via its recovery mode

console, to load a large number of IMG3 files until the heap is filled, and then passing

it a specially crafted IMG3 file to be loaded and parsed (while also clobbering the

exception table), ultimately redirecting execution to a location of the attacker’s choice.

The Pegasus spyware, which achieved persistent unsigned code execution in iOS,

was reverse engineered by researchers at Citizen Lab and presented at CCC in 2016 [19].

It leveraged a collection of userland and kernel exploits to achieve persistence across

reboots. Pegasus made use of a legitimate (and signed) developer tool called jsc, which

harbored a memory corruption vulnerability that allowed for arbitrary code execution.

The attack worked by replacing the executable of a non-essential daemon with jsc

so it could be persistently leveraged to eventually gain arbitrary kernel execution
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privileges (by making use of several other vulnerabilities), which ultimately allowed

for an attacker to disable code signing.

A series of USB/serial console memory corruption vulnerabilities in the

iOS bootloader’s recovery mode console were also discovered. These exploitable

vulnerabilities could be triggered via specially crafted packets that cause the loader to

overwrite some function pointer with an attacker-controlled value, ultimately allowing

the attacker to hijack the loader’s control flow. Researchers leveraged a number of

these vulnerabilities to achieve code execution in i$DEVICE bootloading chains over

the years [85, 106, 174]. Although there are few public details on these vulnerabilities,

we do know that these vulnerabilities are mostly related to heap management [96].

2.3.5 Loader enforcement/verification failures

Some of iOS’s system variables are intended to be read-only. However,

in a talk Levin gave at the RSA conference in 2015, he described various sensi-

tive system configuration variables that were unintentionally writable, which, if

changed, allow for unsigned code execution [138]. For example, the two variables

security.mac.proc_enforce and security.mac.vnode_enforce could be modified,

and if either security.mac.proc_enforce or security.mac.vnode_enforce was set

to false then various aspects of code signing would be subsequently disabled. Apple

has since disabled write access to such variables.

Diags, short for diagnostics, is an iBoot console command which executed code at

a parameter-specified address, bypassing any code signing [105]. It appears to have

been intended for developer use only but was accessible in certain versions of iBoot.

ARM7 Go was independently discovered by Chronic and the iPhone Dev

Team. This vulnerability was present in the second generation iPod touch’s firmware

and allowed them to tell the device’s coprocessor (a secondary ARM chip that has

access to hardware-based cryptographic functions, memory, and can write to firmware
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storage) to execute arbitrary code by sending it a command called arm7_go with

an environmental variable set to the address at where to begin execution [54]. This

“feature” is thought to be a debugging tool that was accidentally not stripped from

firmware present in production devices.

The iPhone Dev Team’s 2008 baseband exploit, also presented in their 2008

CCC talk [175], targeted the baseband’s own nonvolatile firmware storage, which

not only contains firmware images but also special region of data called the seczone

which contains sensitive (intentionally protected) system state. This firmware can only

be overwritten when the baseband is in a special service mode. Data to be written

to the firmware must be wrapped in secpacs, which include signed metadata that

describe how and where the firmware is to be overwritten its payload. The service-

mode software that is capable of overwriting firmware enforces an additional set of

rules that restrict what regions withing the firmware that a secpac can overwrite which

include seczone protection. Researchers found that they could craft a secpac using

address manipulation tricks in such a way that these restrictions are not properly

enforced, resulting in them being able to modify the seczone. Most baseband exploits

developed this attack was published also use various instances of memory corruption

to achieve their goals [156].

2.4 Loader vulnerabilities beyond iOS
Although some number of iOS loader-related vulnerabilities have been publicly dis-

closed and documented, iOS is certainly not the only software stack which has

been found to harbor loader vulnerabilities. In this section I will discuss publicly-

documented vulnerabilities discovered in other software stacks, and show how many

of these vulnerabilities are similar to those discussed in the previous sections in that,

they too, suffer from type overlap and enforcement/verification failures.
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2.4.1 Android phone loader vulnerabilities

Security researchers have also been interested in studying Android’s chain of trust. Each

Android phone manufacturer (OEM) can build custom bootloaders to enforce code

signing, and so code signing-related vulnerabilities are often OEM-specific or phone

model-specific. In 2014, Harrison and Li gave a talk at Shmoocon that documented

a series vulnerabilities the in Samsung’s chain of trusted loaders, a chain of trust

that was designed to prevent the system from loading custom kernels [91]. The series

of bugs they presented boiled down to variations of the bootloader trusting data

that the adversary is capable of controlling and resulted in verification/enforcement

failures. For example, in one version of the Samsung Galaxy Note II’s boot chain, the

bootloader only checked cryptographic signatures of partitions with specific names.

This bootloader expected all partitions it made use of, such as those containing the

kernel, to be named in a particular manner, but in reality, partition names had

no technical significance beyond verification checks. Not only were partition names

inconsequential, but also their names and contents could easily be modified to trick

the bootloader into loading and executing an unsigned kernel.

2.4.2 UEFI

UEFI (the unified extensible firmware interface) has recently received a lot of attention

as it is now The Standard followed by most general-purpose computer manufactur-

ers. Although folks commonly use the term UEFI to refer to a system’s firmware

(bootloader), it actually refers to a specification, and thus it is more correct to refer to

firmware as UEFI-compliant.

A handful of research groups who have spent a significant amount of time studying

the UEFI specification and UEFI-compliant bootloaders have discovered a myriad

of vulnerabilities, some of which are listed in appendix B’s table of vulnerabilities.

Many of the vulnerabilities discovered by these researchers fall into the category of
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improperly protected UEFI variables (non-volatile UEFI configuration data) such

as [20, 40, 43, 113, 121, 126, 149]. There are also many discovered vulnerabilities that

allow underprivileged code to write to privileged memory/directly execute privileged

code (e.g. forms of type overlap) such as [20, 39, 42, 72, 75, 99, 100, 126, 149, 200,

228], as well as other types of memory corruption vulnerabilities [120, 121].

2.4.3 Game Consoles

Game console bootloaders many of which employ their own cryptographic code-

validation mechanisms to protect their intellectual property and prevent arbitrary

software from being run on it, have also been of interest to security researchers.

Researchers have mostly targeted these systems’ cryptographic mechanisms, as their

end-goals are slightly different from those who targeted phone-based bootloaders.

Therefore, there are not as many publicly-disclosed memory corruption-based exploits

in this realm.

The XBox (released in 2001), which made use of symmetric cryptography to

encrypt their bootloader images and it stored its kickoff bootloader, which performed

bootloader decryption and verification, in the system’s chipset. In 2002, researcher

bunnie reverse engineered this initial boot stage and extracted its encryption key [97].

In 2008, Busing and Marcan demonstrated that the Wii game console’s code signing

mechanisms were relatively weak and signatures that pass its signature check could

be quickly/cheaply brute-forced [41].

2.4.4 BIOS

BIOS-type firmware (non UEFI-compliant) have also been of interest to security

researchers. Consequently, a number of BIOS vulnerabilities have been discovered in

which underprivileged code writes to a privileged region of memory, an instance of

type overlap, such as [11, 20, 24, 38, 51, 73–75, 88, 93, 118, 127, 229–231].
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2.4.5 Everything else

There is little public information available about vulnerabilities present in other

loaders, however a best-effort summary of loader and bootloader vulnerabilities and

their categories can be found in appendix B. The little information I found about each

of these vulnerabilities does paint a telling picture. The table that summarizes these

findings (table B.1 on 159), shows an overwhelming number of vulnerabilities in the

form of type overlap, and for those that could not be clearly classified as type overlaps

are at the very least likely to be forms of enforcement and/or verification failures.

Although I mostly focused on loader-based vulnerabilities, is important to highlight

recent studies on firmware security. An embedded system’s firmware often includes

some sort of a bootloader, not just to initialize the system, but to also bootstrap

firmware upgrades. In 2014 a group of researchers from Eurocom performed a large-

scale vulnerability study of firmware, testing consumer electronics firmware images

for unprotected credentials and vulnerable configurations. They found a significant

number of cryptography-related vulnerabilities, such as hard-coded credentials, as well

as software with known vulnerabilities embedded in firmware images.

2.5 The language of loading
Loaders are virtual machines7. Their operations are shaped by the environment in

which they run, and their bytecode is contained in the image they load. Some loader

implementations, such as Mach-O, have gone as far as explicitly implementing a higher-

level language for their loader. These (sometimes) ad-hoc languages define commands

which embody the higher-level procedures the loader performs and provide insight

into how the loader’s codebase (and its static data) can be semantically partitioned.

The Mach-O file format, chiefly used by the iOS and OSX operating systems,

explicitly encode various forms of metadata into a custom bytecode. Mach-O files
7Here I use the term virtual machine in the more general sense – meaning interpreter.
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Figure 2.3: Screenshot from MachOView’s interpretation of a Mach-O file’s loader
commands (bytecode). The left-most column indicates the instruction or instruction
parameter’s location in the Mach-O file, the second column contains a hex represen-
tation of the instruction or data, and the final columns contain more human-readable
information on the bytecode such as instruction name and parameter type.

begin with a special header containing a magic number, CPU information, file type

information, flags, the number of (variable length) loading commands, and the length

of this block of loading commands (the loader’s bytecode, a.k.a. binding bytecode).

Mach-O’s binding bytecode operates in a transactional style: it sets up a description of

how an imported symbol’s state should be altered (via a sequence of bytecode instruc-

tions), and then commits the transaction via a BIND_OPCODE_DO_BIND instruction.

Figure 2.3 shows an example of such bytecode, in particular it contains a sequence

of bytecode that instructs the loader to (1) reset the loader’s bind (dynamic linker)

state (BIND_OPCODE_DONE), (2) set the loader’s state so it knows where to patch,

[BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULIB], (3) set the loader’s state requesting

it locate the _strcasecmp function [BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM],

and (4) perform linking based on this current state [BIND_OPCODE_DO_BIND].

Some bootloaders feature interpreters that support a high-level loader

scripting language, such as the widely-used GRUB and U-Boot bootloaders. The

UEFI forum has, in fact, published a formal language specification detailing each

command’s interface and semantics [210], and so this language is supported by most

UEFI-compliant bootloaders including Tianocore, the UEFI-compliant bootloader

reference implementation [205]. All of GRUB, U-Boot, and UEFI have their own

variations of commands that embody high-level loading operations, such as copying
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a target image to memory, which can be accomplished by the kernel command in

GRUB, U-Boot’s loadp command, and UEFI’s mm command. Each of these scripting

languages are tangible displays of how each bootloader is intended to function and

behave. Error conditions defined by these scripting languages also document how each

bootloader is intended to fail. What lies between these intended behaviors and failures

are non-explicitly intended behaviors – and this is where vulnerabilities often lurk.
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A well-installed microcode bug will be almost impossible to detect.

–Ken Thompson, 1984
in “Reflections on trusting trust” [204]

3
Obstacles to loader analysis

In this chapter I describe the many obstacles there are to loader analysis, bootloaders

in particular.

3.1 Loader metadata and questionable behaviors
Loaders perform powerful transformations as they map binary images into memory

and prepare them for execution. Modern executable file formats, such as Mach-O

(used in OS X), PE (used in Windows), and ELF (used in Linux), include metadata

that instruct the loader as to what transformations to perform such as what locations

in its image need to be patched with the absolute address of some object in memory –

absolute addresses are often unknown until runtime. These type of metadata allow a

single executable file to be adapted to its environment, regardless of exactly where

and how it is laid out in memory.

Existing loader designs do not yield to meaningful analysis of their memory accesses.

This is something we must address, especially now that loaders are becoming the

cornerstone of trust. Loaders are machines driven by the data they process, and when
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we do not significantly constrain them, it becomes hard, or even impossible, to make

any security guarantees about the loader or the system’s state when the loader finishes

executing. We must think of these and all data as a program that drives a (hopefully!)

constrained virtual machine. A loader’s machine performs essential memory operations

that can and should be explicitly described and enforced (which I do with types and

will discuss in chapter 5). Unfortunately, this is where current loader descriptions and

designs come up short.

Application and library loaders that exist in general-purpose operating

systems are notoriously complex. It is neither hard nor surprising to find exam-

ples of loader vulnerabilities, or, in the case in which its classification as a vulnerability

is up to debate, “surprising behaviors” that arise due to this complexity which I ex-

plore in this chapter. These so-called “weird machines” [36], this emergent behavior

appearing in the form of an unintended virtual machine, can manifest from the manner

in which a loader processes the metadata in its target. Although some of these weird

machines may not involve precise vulnerabilities (besides the ability to obfuscate the

binary’s execution), we will see that these weird machines can be powerful enough to

make one question not just the trustworthiness of a particular loader implementation,

but also the correctness and comprehensiveness of the loader’s design and behavioral

requirements.

3.1.1 ELF metadata: accidentally Turing-complete

The influence a binary image’s metadata has over its surrounding system has historically

been underestimated and underappreciated. Such assumptions can undermine a

system’s security, as I have demonstrated by determining how to compile the Turing-

complete language Brainfuck into ELF metadata. I have since learned that these

findings have directly affected designs of real-word code signing mechanisms. This

research, and the research I conducted on the Mach-O file format, which I describe
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later in this chapter, have greatly motivated my thesis’s overall direction.

The AMD64 System V Application Binary Interface (ABI) specification on which

the AMD64-specific ELF objects are based defines two types of metadata structures

that drive the loader’s transformation process: (1) symbol metadata and (2) relocation

metadata. These symbol and relocation metadata instruct the loader in calculating

which addresses to patch and the values to inscribe. When loaders trust relocation

metadata, the metadata can mislead it to unintentionally manipulate objects the loader

assumes to be invariant during relocation, such as objects the loader itself uses to keep

track of its progress. When we do not explicitly model these implicit expectations and

can or do not verify or enforce them, vulnerability prevention becomes intractable.

This weird virtual machine, driven by the GNU glibc suite’s loader, pro-

cesses each relocation entry metadata (virtual machine bytecode) in an ELF sequen-

tially and maintains the equivalent to a virtual instruction pointer (IP), stored in

memory, which contains the address of the next relocation entry (bytecode) to be

processed. There is nothing special about the location or value of the IP from the

prospective of the loader, it is merely a pointer stored “in-band” with all the other

values the loader manipulates. If a relocation entry instructs the loader to patch

the IP, the loader will happily oblige. In my 2013 WOOT publication, I discuss

how ELF metadata can be crafted as a Turing-complete bytecode when processed

by the Ubuntu 11.10’s AMD64 gcc toolchain (eglibc-2.13), by demonstrating how

to build a Brainfuck-to-ELF-metadata compiler [191]. I have since expanded this

compiler to include standard input and output functionality, as documented in [188,

189]. This Laissez-faire attitude towards metadata that allows the loader to drive

a Turing-complete virtual machine puts us in a position where it is difficult, even

impossible, to analyze properties of a piece of software after it is loaded into memory.

Although I have focused on an emergent Turing-complete behavior thus far, it

is rarely the case where an attacker needs Turing-complete power over a target in
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order to compromise it. A successful attack tends to involve overwriting sensitive data

and/or leaking sensitive data . Rarely is a full Turing-machine required to accomplish

these tasks. Attackers are merely looking to elevate their privileges. Nevertheless,

as Felix ’FX’ Lindner says, “You can’t argue with a root shell”. If we have Turing-

complete execution environments lurking in our software, we will have a hard time

asserting any security properties in our software.

3.1.2 A root shell backdoor embedded in ELF metadata

To demonstrate how sub-Turing-complete weird machines are useful from the perspec-

tive of an attacker, I constructed a proof-of-concept attack by carefully constructed

ELF metadata that do not make use of any Turing-complete properties of the loader’s

execution environment, but allow the attacker to insert an obfuscated root shell (a con-

sole with administrative privileges) backdoor in ping by merely manipulating ping’s

metadata.

ping, a widely-used utility that allows users to quickly test if they can send and

receive packets to a remote system, is not a particularly unique piece of software

besides the fact that many versions of it run as setuid root. setuid root means that

regardless of who executes the program, the binary will be provided root privileges in

order to accomplish its task, typically dropping these elevated privileges as soon as it

is done with them. It is possible to inject crafted metadata into the ping1 executable

that causes it to expose a shell running with root privileges to an ordinary user.

There are two features of the ping implementation I take advantage of to implement

this backdoor: (1) ping runs as root, but drops privileges using a call to setuid, and

(2) ping has an optional --type command-line argument that takes a single argument

that customizes the type of packets sent. If provided, ping tests the argument (which

I call <string>) in the following manner –

1More specifically, the version of ping in Ubuntu’s inetutils v1.8 package.

38



if(strcasecmp (<string>, "echo") == 0)

In this code segment, <string> is the command-line argument to the --type option.

The location of library functions such as strcasecmp and setuid are not known

at compile time, and one role relocation metadata plays is to instruct the runtime

loader (and linker) which offsets into the image, such as those that should contain

the address of a library function, need to be updated with such information that is

only known at runtime. When library function is called for the first time while ping

is executing, the dynamic linker uses these relocation metadata to patch the function

pointer’s value. Given a compiled ping binary, we can generate a backdoored ping

binary with altered, but well-formed, relocation metadata that instruct the loader

to overwrite the strcasecmp and setuid function pointers to redirect these function

calls to locations of our choosing.

More specifically, we can build a backdoor that gives a regular user the ability

to execute arbitrary programs as root by injecting crafting metadata that when

interpreted by the loader does the following:

1. Overrides the call to setuid() with a different function so privileges are not

dropped (preferably with a function that does not produce any noticeable side

effects such as getuid()), and

2. overrides the call to strcasecmp() with a call to execl().

This keeps setuid() from being called thus preventing ping from dropping root

privileges. It then coerces ping into calling execl(string, "echo") instead of calling

strcasecmp(string, "echo"), causing ping to treat the value of string as a

path to a file to execute (via its call to execl()). The string pointed to by the variable

string is directly obtained from the value of the --type command-line option, and

so the user can supply the path to the executable (such as a shell) that they wish to

be executed as root as an argument to ping.

With this backdoor in place, ping operates normally unless the --type argument
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Figure 3.1: Snippet of readelf utility output showing a root shell-backdoor in ping
(ELF). Added/changed metadata highlighted in green.

is used, in which case it retains its root privileges and executes the argument to

--type as root. The details of how this is implemented is documented in in [191],

however the basic idea is that we augment the executable’s metadata with a set of

relocation entries that, (1) locate the base address of libc based on statically-known

addresses of ELF metadata in memory, and (2) add the known offset of the libc

function we want to be called to the base address of libc (e.g. execl()), so that the

pointer to strcasecmp is overwritten with this value. Figure 3.1, which is a snippet

of human-readable description of the augmented ELF executable generated with the

readelf utility, gives a sense of how much metadata were added in order to implement

this backdoor in ELF.

3.1.3 Mach-O: wee bytes with potent consequences

Mach-O is a slightly more evolved executable file format than ELF – much of its

metadata are encoded in a specialized bytecode, discussed in more detail in section 2.5

(page 32). This linking/loading bytecode lends itself more easily to the same types
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of analysis techniques we already apply to other languages and bytecode. This is

a notable step in more precisely and explicitly defining a loader’s behavior, but

unfortunately it stops short of formally describing the access properties of the loading

computation (a deficiency addressed in this thesis). ELF metadata, in comparison,

do not easily lend themselves to be understood in such a manner because ELF’s

binding-related metadata are scattered throughout the file and whose interpretation

are system-specific and context-sensitive.

Both the Mach-O and ELF formats encode similar information and are processed

by loaders that perform similar operations, so is an interesting exercise to insert the

same backdoor in a Mach-O-formatted version of ping as in the ELF version. I have

found that Mach-O’s condensed formatting of linking/loading metadata allows for

more concise expression of the same backdoor. In fact, the same backdoor can be

implemented by merely modifying eleven bytes of the Mach-O-formatted ping (in

comparison to the 100+ bytes inserted and modified to achieve the same affect in the

ELF-formatted ping). These eleven modified bytes belong to the string “_strcasecmp”

embedded in a loader command specifying that the function of this name should be

imported. We modify the bytes of the “_strcasecmp” string that is embedded in the

binary’s linking bytecode to be “_execlp

x0

x12

x12

x12

x12” which, when interpreted, cause the loader to locate the _execlp function (instead

of _strcasecmp). It then interprets the byte following the null-terminated “_execlp”

string, 0x12, as well as the subsequent 0x12 bytes as one-byte long instructions that

essentially act as noops. This modification is shown in figure 3.2. Similarly, we can

overwrite the bytecode for importing the _setuid function by changing its embedded
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Original ping ping with backdoor

Figure 3.2: Visualization of the binding bytecode implementing the Mach-O ping
backdoor, overriding setuid. Original bytecode on left, patched on right. The left-
most column indicates the bytecode’s location in the Mach-O file, the second column
contains a hex representation of the instruction or data, and the final columns contain
human-readable information on the bytecode such as instruction name, parameter type,
or parameter value. (Screenshots taken of MachOView.)

< 0016720: 7400 5f73 6574 7569 6400 5f73 6967 6e61 t._setuid._signa
---
> 0016720: 7400 5f67 6574 7569 6400 5f73 6967 6e61 t._getuid._signa

< 0016740: 005f 7373 6361 6e66 005f 7374 7263 6173 ._sscanf._strcas
< 0016750: 6563 6d70 005f 7374 7263 6872 005f 7374 ecmp._strchr._st
---
> 0016740: 005f 7373 6361 6e66 005f 6578 6563 6c70 ._sscanf._execlp
> 0016750: 0012 1212 125f 7374 7263 6872 005f 7374 ....._strchr._st

Figure 3.3: Bytewise diff between original and backdoored version of Mach-O ping
containing position in file (left column of digits), a hexadecimal representation of
the modified bytes (middle column) and an ASCII representation of the bytes (right
column). Colored values highlight differences between the original (blue) and modified
(red) binaries.

string to “_getuid”. A byte-wise diff, highlighting the eleven modified bytes, is depicted

in figure 3.3.

3.1.4 A PE metadata-driven packer

PE metadata can just as easily be misused in powerful ways. One telling example of

loader metadata misuse was demonstrated by skape in 2007 [195]. In this paper, skape

demonstrates how we can create a well-formed PE executable with unintended loading-

induced side-effects driven by its metadata. He shows how to craft PE relocation

metadata that alter binary’s image in memory – effectively acting as a binary unpacker.
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Binary unpackers allow portions of a binary to be stored as an obfuscated blob on

disk, and perform the runtime translation needed to ultimately execute the binary.

Unpackers, and crafted metadata in general, can make static analysis more difficult,

especially when they take advantage of other design weaknesses potentially present in

a loader.

3.1.5 Loader metadata-based parser differentials

Parser differentials, a term coined by Len Sassaman, Meredith Patterson, and the

language-theoretic security (langsec) movement, arise when two different parser im-

plementations interpret the same data differently. Parser differentials, such as those

found in the X.509 certificate authority infrastructure [122], can have profound secu-

rity consequences. They are also sometimes the root-cause of vulnerabilities in trusted

loaders, such as in the case of the Android “master-key” exploit [79, 80].

Linker metadata formats often have redundant representations of the same data,

and ELF has many examples of such redundancy. Julian Bangert and Sergey Bratus, in

their talk named “ELF Eccentricities”, demonstrated multiple ways to take advantage

of these redundancies so that the Linux kernel and the popular IDA reverse engineering

toolkit interpret the same file differently, disagreeing on the entrypoint’s address [15,

34]. When a binary analysis tool does not agree with the runtime as to what code is

run, all analyses it performs are rendered moot.

3.2 Reining in a loader
In some ways, a loader is no different from any other piece of software; many of the

techniques we use to develop safer and more robust software can also be applied

to loaders. Yet, as I’ve discussed throughout previous chapters, loaders are also an

interesting class of software in and of themselves worthy of special consideration. In

this section I will discuss techniques used to ensure software safety and correctness

with a special focus on loaders and systems software.
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A software’s design, implementation (including static analysis and testing), and

runtime environment all greatly influence the software’s safety and correctness in

practice. The requirements of a loader are determined by the system’s hardware,

software environment, and compilation toolchain – and thus many of its design

requirements are inflexible. In order to build a safer loader we must either focus on

the loader’s implementation/runtime environment or we must redesign and rearchitect

parts of the rest of the system. My thesis has chosen to focus on the former, but there

are a number of examples of research that worked on the later.

3.2.1 Implementation considerations

Loaders are typically implemented in C (with a sprinkling of assembly) for both historic

and practical reasons. C allows for a great amount of flexibility which loaders require,

but consequently offers no memory safety guarantees. C provides a certain degree of

type and scope checking, but loaders often treat regions of memory as sequences of

bytes, not as typed objects, during loading and patching operations. This results in

C type checking not being applicable to significant portions of critical operations a

loader performs.

Loaders are typically memory-mapped to the very address space they are manipu-

lating and must have a certain degree of self-awareness so that they do not corrupt

their own code or data. This is often achieved by performing its loading operations

relative to labels that describe absolute addresses. However, these labels only ar-

tificially exist within the confines of the typing system – they are typically typed

as generic pointers (void *), and any warnings the C compiler may raise due to a

loader’s treatment of such pointers are inconsequential. The addresses of these labels

and their relative positioning cannot always be resolved until after compilation since

some addresses it needs are at the boundaries of the loader’s own code or data. Load-

ers work with compiled units of code and data as objects, the very objects a compiler
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generates. Any safety guarantees offered by the compiler are valid within the confines

of these objects – software that operates outside these bounds is more-or-less left to

its own devices.

It is useful to consider alternatives to standard C. However, with their

safety guarantees comes restrictions that make it hard to implement a realistic

loader. Nevertheless, loaders can potentially benefit from using safer string and

memory allocation routines, similar to those proposed and implemented by Safe C [22],

or additional libraries that enable run-time type checking such as librcunch [123].

Tools that analyze C source code to detect potential problems such as CLINT [111],

Splint [76], MemSafe [193, 194], or Eau Claire [50], may also improve safety to a

certain degree. It may be feasible to use an alternate C compiler such as Fail-Safe

ANSI-C [167], MSCC [234], CETS [158], samurai [170], RTC [152], CCURED [9, 162].

Or we may use any of the techniques demonstrated in [68], which generate binaries with

certain memory guarantees – ensured via static analysis and augmenting the binary

with runtime monitoring. However, we may find such compiler-based tools enforce

safety properties in a manner that is fundamentally incompatible with the needs of a

loader. We can also consider using compiler extensions that introduce control-flow

integrity [4], which guards against control-flow altering attacks by verifying the validity

of any indirect control-flow transfers, a type of hardening that has been achieved via

compiler extensions such as in [3, 25, 47, 206]. However, (1) loaders, by their very

nature, transfer control to addresses/code that cannot be determined by runtime,

(2) a number of attacks against loaders do not violate control-flow integrity, and (3) in

loaders that enforce code signing, it may not always be possible to distinguish between

control transfers into properly signature-checked images and all other images.

There are a variety of languages based on C, but with syntactical extensions

and stronger type system such as those in Cyclone [109] and Deputy [57]. We can also

consider using a safer systems language that is not directly derived from C, such a
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Rust [180], Vault [66]. Filet-o-fish [64], Ivy [37], an extension of Haskell [69], PIT [171],

mbeddr [216], or even Idris [33]. However, just as with safer C compilers, we will

likely find a fundamental clash between the safer language’s goals and guarantees and

the loader implementation’s own needs.

Compilers can also be augmented to provide other forms of targeted pro-

tections. For example, compilers have been used to inject code that checks for signs

of stack corruption before jumping to a return address stored on the stack [62]. Re-

searchers have also produced more general bounds-checking compiler plugins and

static analysis tools, such as in [48, 56, 92, 159, 239].

Type systems, which are intuitive and lightweight techniques that help reduce

programming bugs by capturing, modeling, and verifying program semantics, come

in many forms and complexities, some of which verification of is undecidable. C has

its own, fairly minimal, type system that does not provide much in terms of safety

guarantees, but instead acts more like a warning system that helps developers identify

certain classes of errors in their source code. Dependent typing schemes provide an

expressive way in which to label source code with intent by allowing for types themselves

to depend on their object’s value. Dependently-typed languages include Agda, Idris,

and Scala. These functional programming languages do not easily lend themselves to

systems programming, although, researchers have demonstrated techniques to apply

dependent types to low-level software [33, 57, 90]. Other forms of type checking have

also been found useful in systems programming, such as the augmented C typing

system Johnson and Wagner proposed that statically identify certain forms of kernel

vulnerabilities [110], or type qualifiers which have been used to detect format string

vulnerabilities in C programs [187].

Region-based memory management was first introduced as a theoretical foun-

dation for dynamic memory management in Standard ML [207, 208]. In the context
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of region-based memory management, a region is a collection of dynamically-allocated

objects that can all be deallocated at the same time. Cyclone used such a memory

allocation scheme, requiring each region to be annotated with a type, so that program-

mers annotate region-located object pointers with the region’s type [89]. These typed

regions allowed the compiler to differentiate between pointers in different locations (re-

gions) of memory, such as the stack or heap, and make safety decisions based on these

typed regions. Cyclone made use of typed regions in order to prevent dangling-pointer

dereferences and memory leaks. Mozilla’s Rust, a systems programming language that

guarantees memory safety, also makes use of such techniques [151].

Domain-specific languages (DSLs) allow developers to quickly and succinctly

express programs using semantics that make sense within a particular domain. For

example, the MATLAB language and development environment is designed specifically

for matrix and mathematical programming. There are also DSLs that make it easier to

build correct and verifiable lexers and parsers which can be used to help a loader parse

file-system metadata and binary files. Examples include PacketTypes (for generating

packet parsers) [150], DataScript (for more general binary parsing) [14], Hammer [211],

and Nail [16]. DSLs can be embedded in existing programming languages to take

advantage of the language’s syntax and features, or work as a stand-alone language.

Some loaders implement and make use of their own DSLs, such as those supported

by UEFI and U-Boot’s consoles and Mach-O’s loading bytecode (as discussed in

section 2.5), and may be useful starting points in developing a DSL for loaders.

There is also an array of static analysis tools that exist outside the confines

of a compiler. For example, KLEE [124], built on top of the LLVM compiler, is a

powerful symbolic execution framework which has been used to automatically generate

tests that achieve high code coverage [44], but also has been used for other purposes.

Bazhaniuk et. al. used KLEE to test a UEFI-compliant firmware implementation for

problematic memory accesses, namely for instances when a trusted SMM interrupt
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reads memory outside the bounds of the SMRAM region [21]. Venkitaraman and

Gupta used abstract interpretation-based analysis methods to determine if a given

firmware image’s implementation followed its coding standards [214]. More recently,

a group of researches at UC Santa Barbara developed a static analysis technique to

search for untrusted sources of non-volatile data that can compromise the devices

bootloader in a manner that violates Google’s Verified Boot guidelines [178, 215].

Static pointer analysis techniques, such as shape analysis, have been used to verify

pointer safety in Windows and Linux device drivers [143, 237]. Yamaguchi, et. al., were

able to identify previously unknown Linux kernel vulnerabilities using what they call

a Code Property Graph which models a software’s code and data dependencies [236].

Heelan, and Rooles demonstrated how to use SMT (satisfiability modulo theories)

solvers to determine whether a piece of code adheres to various security properties.

The HAVOC verifier (based on the Boogie theorem prover) can be used to check for

various software properties, and has been used by the Microsoft security team to

find variants of existing vulnerabilities [212]. Although these techniques can be used

to extract interesting properties of a loader, any technique that does not include a

low-level model of the loader’s hardware, memory map, and instruction set, will likely

fail to capture the loader’s raison d’être. For example, standard static control-flow

graphs cannot model a loader’s self-modifications because they assume they implicitly

assume that the software’s instructions are immutable [8].

Loaders, which often contain self-modifying code, present their own special

challenges to verification. In their Certified Self-Modifying Code paper, Cai, Shao,

and Vaynberg present a Hoare-logic-style framework that supports verification of self-

modifying code – modeling the program’s own code as a mutable data structure [46].

They then demonstrate how their framework could be used to verify properties of

toy examples of self-modifying software, including a simple BIOS-style bootloader

(implemented in 11 lines of assembly code). This x86 bootloader, (1) prepares the x86
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segment registers (memory addressing initialization), (2) prepares its registers to make

a BIOS call to read the hard disk by loading static constants into these registers, and

(3) jumps to the loaded target image in memory. They verify that this bootloader

correctly sets its registers, while assuming that (1) their models are correct, (2) the

BIOS interrupt is correctly implemented and copies the target to a location, (3) a

specific disk geometry, and (4) the blocks of bootloader code are correctly loaded to

a specific location in memory. Their verification framework includes (1) a model of

x86 operating in 16-bit real mode as well as a limited set of x86 instructions, (2) a

simplified model of a hard disk, as well as (3) a model of how a BIOS interrupt modifies

the system. Their work shows the feasibility of formally verifying self-modifying code,

but even verifying a simple bootloader requires a large amount of preliminary work to

develop accurate and useful models. Most research in detecting, analyzing, modeling,

and formalizing self-modifying code focuses on a more general form of self-modification

– self modifications that result in semantic changes (e.g., for obfuscation) [8, 31, 46, 58,

142]. Loader self-modification is typically a relatively simple form of self-modification

– self-relocation.

Formal analysis techniques have been successfully applied to systems soft-

ware. Formal verification is typically used to assert the correctness of an implemen-

tation given a formal definition of correctness, and have been used against low-level

software including compilers, networking software, and kernels. The CompCert com-

piler, which supports a subset of C, was formally verified to show that its generated

machine code behaves like the source code from which it was compiled [136]. Guha,

Reitblatt, and Foster implemented a machine-verified software-defined networking con-

troller using the Coq proof assistant, proving that it adheres to a formal specification

and operational model of software-defined networking. Researchers at Saarland Uni-

versity in Germany built a formally verified paging mechanism, by proving functional

correctness of their page fault handler (written in a high-level language with inline
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assembly) on a low-level model of the machine (disk and processor) [7]. The VeriFast

verifier was used to prove the correctness of the implementation of module loading

and unloading mechanisms for a toy kernel, verifying that they verified were that only

loaded modules can be executed and only loaded modules can be unloaded [107].

The seL4 microkernel is a formally verified microkernel whose verification includes

(1) a formal model the hardware which captures relevant kernel state and state

transitions, (2) an executable specification of how the kernel works, including data

structure and representation details, and (3) an abstract specification which is the main

model of the kernel, and specifies interrupt and fault behavior, system call behavior, and

the system call interfaces [125]. They proved that their kernel specification enforces

integrity and confidentiality, assuming that (1) the embedded assembly code is correct,

(2) the hardware behavior matches their model, and (3) their accompanying 1,200

lines of code that make up the kernel’s bootloader are correct – more specifically, that

the kernel has been correctly loaded into memory at set to a specific initial state [203].

ORIENTAIS is a formally verified real-time operating system used for au-

tomotive applications, which was formally proven to follow the OSEK/VDX standards

set by the automobile industry [192]. This involved modeling the requirements set

by these standards as pre and post-conditions using Hoare Logic. ORIENTAIS was

written in C with annotations to aid verification and the VCC automatic verifier tool

as used to perform a functional analysis of this code. In order to assure the kernel

was free of deadlocks and termination errors, they created and verified a high-level

behavioral model of the kernel’s parallel tasks’ interactions.

Temporal reasoning can also be useful to formally model and analyze loaders.

Cook et. al. have shown how temporal reasoning could be used to prove temporal

properties of databases, web servers, and kernels [59]. Temporal and linear logic have

been used model and verify heap properties [53, 213, 235], and could be useful not
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only for verifying a bootloader’s own heap implementation, but for also modeling and

verifying a loader’s own temporal dependencies.

Both static and dynamic analysis techniques may be helpful in checking the

correctness and safety of a loader. Valgrind is a popular instrumentation tool that

can detect memory-related bugs during execution [163]. Flayer, which is built on top

of valgrind, extends on the types of flaws that can be discovered, and also allows for

fault injection [71]. Other dynamic memory error detecting tools include AddressSan-

itizer [185] and Memcheck [186]. The bug finding tool EXE uses a combination of

dynamic and static analysis techniques to search for inputs that crash software [45].

IntFinder uses a combination of type and taint analysis to search for integer handling-

related bugs, first using type analysis to select potentially problematic instructions

and then applying taint analysis as it executes the software to verify whether it is a

bug [49]. The Avatar framework was designed to instrument and test firmware for

vulnerabilities via symbolic and dynamic analysis [238].

We can also apply less formal methods, such as fuzzing, to test loaders

for memory corruption bugs. Fuzz testing, a technique introduced by Barton

Miller [153], is a form of software testing in which invalid program inputs are chosen

in attempt to crash the software. If a program crashes while processing such input,

it signifies that the program is buggy, and likely vulnerable. In general, fuzz-testing

research has greatly focused on software instrumentation and test case generation.

Binary-image specific fuzz test case generation tools, such as Melkorr [95, 104], may

be useful in testing a loader’s durability and safety.

3.2.2 Runtime environment

A software’s runtime environment can help protect against certain types of bugs from

being exploited. Because a loader cannot necessarily rely on its environment and

environment-based protection mechanisms to be in place, as it often the loader’s job
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to establish any environmental security mechanisms, we would need to understand

the mechanism’s bootstrapping process to determine whether it can be usefully

applied to loaders. Several hardware primitives have been proposed that enable more

efficient bounds-checking mechanisms, including hardbound [67], and watchdog [157].

SafeProc proposes a new series of ISA instructions that detect violations in memory

references [86].

3.3 Final remarks
Loaders are susceptible to not only classic low-level memory corruption vulnerabilities,

but also to high-level “weird-machine”-like issues. There are already many architectural

solutions in place that can help proactively protect against low-level vulnerabilities,

such as address space layout randomization (ASLR) and hardware-enforced memory

read/write/execute protections. However, these protections are mainly software-

initialized and thus we cannot depend on them to be in place for a loader. Compilers can

perform static analyses and insert instrumentation to both proactively and retroactively

protect again general classes of vulnerabilities, but loaders often function outside a

compiler’s sphere of influence. Other static analysis and formal techniques can be

helpful in identifying potential vulnerabilities, as well as verifying certain properties of

a loader. However, before we can use formal analyses to verify behavioral correctness

of a loader’s implementation, we must first model the behaviors and properties we

want to test. I discuss a potential model in chapter 5. Only after we decide on the set

of properties and behaviors to enforce can we consider applying a more complete and

formal verification technique.

52



Security won’t get better until tools for practical exploration of

the attack surface are made available.

–Joshua Wright, 2011
“Wright’s Principle”

4
A detour:

bootloader instrumentation and

analysis

At this point I will narrow my focus from speaking about loaders in general to speaking

more specifically about bootloaders. In order to compose a model that describes

loading behaviors central to security properties for verification, it is useful to study

real bootloaders. Bootloaders operating in their natural habitat can provide us with

insights into the messy ecosystem in which bootloaders exist. Real bootloaders provide

insight into engineering/manufacturing constraints and practices, inconsistencies or

implementation bugs, and implementation complexities that we would otherwise not

discover. For this reason, I decided to study a popular bootloader implementation,

U-Boot (also known as Das U-Boot) by instrumenting it, gathering data on its

runtime behavior, designing a method of modeling bootloader behaviors for verification
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Table 4.1: BBxM hardware information

Primary processor TI am37x (ARM)
# documented registers ~113425
Size of on-chip ROM 112KB
Size of public on-chip ROM 64KB
Size of “secure” on-chip ROM 32KB
Total size of on-chip RAM 64KB
Total size of public on-chip RAM 2KB
Total size of “secure” on-chip RAM 62KB
Size of external RAM 512MB

(presented in chapter 5), building an instance of a model for my case study’s target

system along with an access control policy, and demonstrating it feasibility by building

policy enforcement mechanisms. U-Boot is a well-established (first released in 1999

and still under active development) and highly-flexible open-source bootloader that

works on a large variety of hardware and architectures, making it a good candidate

for this case study.

More specifically, I studied U-Boot executing on the BeagleBoard xM (BBxM), an

ARM-based development board with a TI am37x system on chip (SoC) containing

an ARM processor. The TI am37x processor is effectively a member of TI’s family

of OMAP3 processors which have been used in a range of products from general

development boards like the BBxM, to smartphones, to smart watches like the

Motorola 360, to smartglasses like the Lumus SLEEK. Table 4.1 contains some basic

information about the BBxM.

We must capture any potentially relevant loader behavior before distilling the

desired properties and then enforcing them. Therefore, in this chapter I will introduce

techniques currently used to instrument and debug bootloaders. I will then introduce

the suite of instrumentation tools I specifically designed to study bootloader behavior.

I use these tools to collect and analyze U-Boot’s address write patterns in order to

define substages, address region divisions, and their type corresponding labels from

which I build a memory access control policy.
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There is a general lack of usable, affordable, and accessible tools and that can be

used to debug bootloaders. Bootloaders are especially challenging to debug, especially

before the it configures an output (e.g., serial console) device. Furthermore, there can

be multiple (sometimes distinct) address spaces a debugger needs to keep track of

while the instrumented loader is executing: the loader’s own address space and the

loader’s loadee’s address space. These address spaces may potentially change over

time, sometimes overlapping (e.g. when a loader is actively relocating an image), and

symbols within each address space may appear, disappear, or be relocated over time,

all of which standard debuggers do not automatically track.

4.1 Bootloader instrumentation techniques
There are two classes of bootloader debugging methods: bare metal and emulation-

based. Bare metal debugging methods require special hardware support, and emulation-

based debugging methods require a software model of the emulated hardware.

In this section I will discuss both hardware and emulation-based classes of boot-

loader debugging techniques as well as their strengths and weaknesses with regards to

studying bootloader behavior.

4.1.1 Bare metal debugging

JTAG is a popular method of instrumenting software executing on bare metal as it

has be broadly adopted among chip and hardware manufacturers. Although the term

JTAG is often used to mean a hardware instrumentation technique, JTAG actually

refers to the protocol with which the hardware is debugged. More specifically, JTAG

is the lower levels of the protocol stack – the “application-layer” details of what can

be done via the JTAG interface is determined by the hardware manufacturer.

Whether and how JTAG can be used to debug a bootloader varies – manufacturers

can chose to disable JTAG or to not make specific hardware components “visible” from

JTAG (e.g., registers). Also, because JTAG is implemented in hardware and thus may
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target JTAG adapter debugging hostserial serial/USB

Figure 4.1: Typical JTAG debugging setup.

be affected by hardware initialization (such as software-controlled power settings),

a JTAG debugger cannot always completely mediate a bootloader’s execution even

when the bootloader is not trying to hide parts of itself from JTAG.

The JTAG cat-and-mouse game. Through the eyes of manufacturers, JTAG is

a bit of a double-edged sword. As much as it is a cheap method of allowing them

to develop and debug their own hardware, it can also be used by anybody else in

possession of the hardware to reverse engineer and/or modify the system. Over the

years, chip manufacturers and OEMs have developed methods of limiting access to

these hardware debugging interfaces with varying levels of success. Techniques ranging

from “security by obscurity”/requiring expensive hardware and NDAs, to eFuse-based

protection mechanisms, to tamper protection, have been implemented. ROM-based

bootloaders are just one type of resource that manufacturers seek to both access and

protect throughout this ongoing game of J-TAG1.

U-Boot on the BeagleBoard xM case study notes: The BBxM ’s bootloader

can be debugged using a Flyswatter 2 JTAG adapter driven over a USB/serial

connection by OpenOCD (Open On-Chip Debugger) executing on the host. When

working with debugging the BBxM’s bootloader via JTAG, I encountered the following

challenges:

• Single-stepping through smi instructions (or any instructions the belong to a

secure monitor interrupt handler) causes further JTAG accesses to fail.

• Single-stepping through instructions that modify certain memory-mapped regis-

ters, such as those that control hardware clocks, causes JTAG to fail.

• OpenOCD caches the processor’s register values and does not always provide

1Pun intended, my apologies.
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up-to-date register values to the debugger.

• OpenOCD does not process debugging metadata and thus cannot always correctly

determine whether a given instruction is ARM or Thumb-encoded.

4.1.2 Emulation-based debugging

It can be much easier to debug a bootloader running on software-emulated hardware

because the emulator itself runs on a fully-booted system. Not all hardware have

corresponding software emulator implementations, and even when one is available,

it may not be complete or even accurate2. Even emulations that are based on

the hardware’s HDL (hardware description language) source code3 from which the

hardware itself is generated, tested, and verified, are not perfect representations of

their hardware due to timing and other types of anomalies caused by the emulation’s

host machine.

Despite these downside of emulation-based debugging, this technique ultimately

gives us more control over the software we are instrumenting. It allows us single step

through any instruction (including smi instructions) without issue and with little

JTAG-imposed overhead.

U-Boot on the BeagleBoard xM case study notes: QEMU has a software-

based implementation of the BBxM which not only includes an emulation of its

main processor (the am37x), but also the BBxM’s peripherals which include its

power management chip, external RAM, and the processor’s GPIO (general purpose

I/O) pins. Although this emulation is functional, it is also incomplete and at times

inaccurate. For example, the very U-Boot bootloader that happily executes on bare-

metal refuses to boot in QEMU’s emulation because of how the emulated ROM stores

2This behavioral gap between bare-metal hardware and emulated/virtualized hardware is often
called a “red pill” by researchers who are interested in determining whether code is running on a
virtualized machine or on bare-metal.

3HDL source is typically not publicly available, although you can find sample HDL-base imple-
mentations of hardware on OpenCores at http://opencores.org.
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the parameters it passes to the bootloader (this and my work-around is discussed in

appendix A.2 on page 151). In general, I found emulation-based debugging to be both

more reliable and more efficient, and thus it served as my primary instrumentation

technique.

4.2 Dynamic bootloader analysis in practice
The true work a bootloader performs is expressed through its transformations of

ts address spaces. Or, in other words, its executed sequences of write operations.

Bootloader exploits often involve write operations performed at the wrong address

and at the wrong time. My hypothesis is that it is both possible and useful to model

a bootloader as a set of temporal-based rules that determine whether a write operation

at a given address is allowed (see chapter 5 for more details). Therefore, the goals of

my bootloader analysis tools are twofold:

1. Track location and relative order of every write operation, and

2. derive control flow-based substages to divide the bootloading process into phases

where each has as consistent intended use of each region of memory it modifies.

These tools were essential in developing a useful and enforceable bootloader policy

for a real-world bootloader, as I will later account in section 5.4.1 (page 102).

4.3 Dynamically tracking memory writes
An intuitive starting point in analyzing a loader is to study its memory write behaviors

with the goal of determining what addresses in memory are modified (and when)

during execution. There are two methods we can employ to trace memory writes of a

bootloader running on emulated hardware: watchpoints and breakpoints.

4.3.1 Watchpoints

Watchpoints are a form of instrumentation that halt execution whenever the value at

a particular address changes. Watchpoints most directly embody what I wish to track
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– they halt execution when an address is written so I can collect information on the

memory write. We can imagine scattering watchpoints across the entire address space

so that we collect data on every memory write. Hardware-supported watchpoints are

efficient but are limited in number, and software-based watchpoints can impose a large

amount of overhead (linear to the number of watchpoints). Setting a watchpoint for

every physical address imposes an incredibly high performance hit. Nevertheless, I

modified QEMU so I can insert watchpoints at a page-like granularity, triggering data

collection whenever an address within a particular block (a page-like unit of memory

in QEMU’s model of the emulated hardware’s address space) is written.

U-Boot on the BeagleBoard xM case study notes: The BBxM has a 32-bit

physical address space, supporting addresses up to 0xFFFFFFFF. However, not

all of its physical addresses are writable. Therefore, it may be sufficient to only

insert watchpoints for these writable address regions for information gathering pur-

poses. For these purposes, I initially inserted a watchpoint for each 0x400-byte block

in addresses 0x40200000-0x40210000 (on-chip RAM – 64 0x400-byte blocks) and

0x80000000-0xC0000000 (the address range mapped to external RAM, which is not

initially available – 1,048,576 0x400-byte blocks). This regions do not include any

memory-mapped registers. An additional 1,410,624 watchpoints would be required to

instrument every writable block of physical memory including its memory-mapped

registers which imposes a significant memory and runtime overhead. It takes on the

order of one hour to execute the BBxM’s U-Boot SPL stage with only RAM-backed

watchpoints in place using this implementation.

4.3.2 Breakpoints

We can also make use of breakpoints to collect data on memory writes by inserting a

breakpoint at every instruction that modifies memory, querying the machine’s state

when the breakpoint is hit in order to determine which address was modified. Although
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setting large numbers of breakpoints can impose a significant initial overhead, there is

not much of a performance hit during execution beyond that due to periodically in

halting execution in response to the breakpoints.

To further reduce runtime overhead, we can identify places in the code where large

consecutive blocks of memory are modified within a loop – what one may expect to

occur during a memcpy operation – in such a way that we can pre-calculate the entire

range of addresses written to by this loop when the loop is first entered and not need

halt execution for subsequent iterations of the write instruction. I refer to these types

of writes that occur in loops that contain a single write instruction and one conditional

branch longwrites

All the information we need to determine which addresses need these breakpoints,

as well as which registers need to be read to calculate the breakpoint instruction’s

write destination, can be determine by statically analyzing the bootloader’s binary

image. This information can be extracted, preprocessed, and saved into a database

before the bootloader is executed (and reused for all future executions) in order to

reduce the runtime overhead imposed by the instrumentation.

I have implemented this preprocessing using the capstone disassembler toolkit

which I use to scan and disassemble each instruction in the image’s binary to check if

it is a write instruction. The only ARM/thumb instructions that modify memory are:

push, stm, str, and stl.

For every write instruction contained in the binary, my tools insert the following

information to a database:

• Virtual address: Address of instruction in memory (barring any relocation)

as calculated from the executable’s metadata

• Register operands: names of registers referenced in instruction’s operands

(including stack pointer if push instruction, or CPSR if instruction includes a

condition code)
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• Write size: number of bytes written by this instruction

U-Boot on the BeagleBoard xM case study notes: In order to trace every

memory write performed by the BBxM’s bootloader, I set a breakpoint at every push,

stm, str, and stl instruction. I also precalculate the write destinations for four

different longwrites performed by the bootloader, including one in the memset()

function, one in memcpy(), and a basic block that zeroes out the BSS region of

memory. The bootloader’s BSS is 196,382 bytes in size but by treating the write

instruction that zeroes out the BSS region as a longwrite, I am able collect information

on each individual write within the loop via a single breakpoint, instead of the over

49,000 breakpoints that would have been triggered within the loop had I not employed

this technique. My tool collects data on around 400,000 write operations generated

from 1,596 breakpoints in just over 2 minutes (a significant improvement over the

hour it takes when employing the watchpoint method) per successful boot in which its

target is located on a FAT-formatted SD card. More statistics are shown in table 4.3.

4.3.3 Memory-mapped registers

A secondary bootloader-analysis tool I have developed parses all the tables in the

BBxM processor’s technical reference (the TI am37x processor [201]) that contain

information on the processor’s memory-mapped registers, in order to generate a

complete database on these registers. For each register listed in the technical reference,

my tool collects the following information:

• Unique identifier

• Physical address

• Register width (in bits)

• Register permissions (read-only, read/write)

With these data extracted from the documentation, I can test the bootloader to see

if it tries to access any undefined registers or write to read-only registers. Although I
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did not find instances of U-Boot modifying read-only registers, I did find what appears

to be mistakes in the documentation (more on this in section A.1 on page 149).

4.3.4 Relocation

Bootloaders often shuffle objects around regions of memory which may include the

bootloader’s own data and/or code. We must be aware of these transformations

to best understand the bootloader, especially when regions of memory that contain

breakpoints are relocated (watchpoints in-of-themselves are agnostic of relocation as

long as all addressable regions of memory are being watched). There is no standard

way in which bootloaders perform and document such transformations. Therefore,

obtaining a list of a bootloader’s relocation operations is a manual process subject to

human error.

For each relocated region, it is important to know the following:

• value of the program counter when it begins the relocation process,

• value of the program counter when the relocated region is ready to be used,

• physical address and size of the region that is relocated,

• physical addresses to which the region is copied, and

• (if available) offset of relocated region within binary image.

My tools use this information to keep track of all breakpoints or symbolic references,

especially those that are copied or moved during execution.

Bootloaders typically relocate only a handful of regions, any given chunk of objects

at most once, and typically in the style of a longwrite. Because of this, it is feasible to

manually determine relocation information by searching dynamically collected memory

write information for such longwrite patterns.

U-Boot on the BeagleBoard xM case study notes: The U-Boot boot sequence

on the BBxM is composed of two U-Boot stages, (1) a simple stage called “SPL”

(secondary program loader) that is small enough to be loaded by the BBxM’s on-chip
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Table 4.2: Relocations performed by U-Boot stages

Stage name Function # copied bytes Purpose
SPL cpy_clk_code() 264 Intends to move

go_to_speed function
into faster memory (see
appendix A.3.1)

main cpy_clk_code() 108 Intends to move
go_to_speed function
into faster memory (see
appendix A.3.1)

main relocate_code() 0x14402c Moves main image towards
end of RAM to make space
for target image

boot ROM and loads (2) a second U-Boot stage I call “main” (which ultimately loads

the Linux kernel). The SPL performs just one relocation of a region of code. The

main stage performs two separate relocations: first a small region of code and then

later all of the stage’s own code and static data is relocated. It is possible to statically

calculate all of the data needed to allow the instrumentation tools to keep track of all

relocations at runtime. U-Boot’s relocation phases are summarized in table 4.2.

4.4 Data collection and analysis
Throughout the course of execution, my instrumentation tools collect the following

information about each memory write operation:

• Write index: Number of write operations performed before current operation

• Relocation offset: Offset of current program counter with respect to its

expected memory address (as specified by its symbol definition)

• Program counter: Address of fetched write instruction

• Link register: Value of link register during operation

• Current program status register: Value of CPSR register during operation

• General purpose register values: The values of all other registers needed

to compute destination of write
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• Substage: Current substage (substages are defined and discussed in section 5.2.2

on page 81)

Using these collected data about each write we can later calculate the following about

each write:

• Destination: Destination address of write operation

• Size: Number of bytes written by operation (negative if a push)

Pseudocode that calculates the instruction’s write destination given the write

instruction is shown in figure 4.2. Pseudocode to calculate the number of bytes a

given instruction writes is shown in figure 4.3

4.4.1 Dynamic call graph generation

It is also useful to collect data on the bootloader’s execution flow and generate a

dynamic call graph. The DTrace tracing framework’s flowindent plugin does exactly

this, unfortunately, DTrace is a kernel-based instrumentation framework and therefore

cannot be depended upon to instrument a bootloader. Therefore, I implemented a gdb

debugger plugin called calltrace that can generate a bootloader’s (or any software’s)

dynamic call graph.

The calltrace plugin works by inserting a special function entrypoint breakpoint

at every named address (symbol) that falls within the bootloader’s executable segments.

When one of these function entrypoints is triggered, the plugin increments a global

counter, logs the function name and counter value, and sets a special finish breakpoint

which is triggered when the current stack frame is popped off the stack as the function

returns. When the finish breakpoint is hit, it decrements the global counter and logs

the event before disabling the finish breakpoint. This procedure produces a simple

text representation of the bootloader’s function calls and returns.

calltrace formats its output in a way that can be easily navigated and manip-

ulated as a tree-structured outline with the emacs text editor, as can be seen in
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def calculate_store_offset(instruction):
lshift = 0
disp = 0
referenced_registers = register_values(instruction)
for o in instruction.operands:

if o.type == ARM_OP_MEM:
lshift = o.mem.lshift
disp = o.mem.disp

if lshift > 0:
regs[1] = (regs[1] << lshift) % (0xFFFFFFFF)

return (sum(regs) + disp) % (0xFFFFFFFF)

# assume instruction is a memory store instruction,
# one of: push, stl, stm, or str
def register_values(instruction):

regs []
mne = instruction.mnemonic
if mne.startswith("push"):

regs = ["sp"]
elif mne.startswith("stl") or mne.startswith("stm"):

# similar to push, register is only in first operand
regs = [instruction.operands[0].reg_name]

else: # mnemonic is "str"
for o in instruction.operands:

if o.type == ARM_OP_MEM:
if o.mem.base > 0:

regs.append(instruction.reg_name(o.mem.base))
if o.mem.index > 0:

regs.append(instruction.reg_name(o.mem.index))
return [get_reg_value(r) for r in regs]

Figure 4.2: Pseudocode used to calculate write destination at runtime for the cur-
rently fetched write instruction
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def calculated_store_size(instruction):
mne = instruction.mnemonic
if mne.startswith("push") or mne.startswith("stl") or

mne.startswith("stm"):↪→

(read_regs, write_regs) = instruction.regs_accesses()
if "sp" in read_regs:

read_regs.remove("sp")
return -1*length(read_regs)*WORD_SIZE

elif mne.startswith("str"):
if ins.has_condition_suffix():

# strip off conditional suffix
mne = mne[:-2]

size = mne[-1]
if mne == "str":

return WORD_SIZE
elif size == "b":

return 1 # byte
elif size == "h":

return WORD_SIZE/2 # half
elif size == "d":

return WORD_SIZE * 2 # double
raise Exception("Cannot calculate number of bytes written")

Figure 4.3: Pseudocode to calculate number of bytes a written by given instruction
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figure 4.4. Its output contains a list of all function calls and returns in the order

they occur. Each function call is logged on a new line in the file as: (1) a series of

asterisks representing the function’s depth within the call stack, (2) a “>” symbol

indicating the function was called, (3) the function’s name, and (4) the location within

the executable’s source code from which the call was made. When the function returns,

a new line is added to the log consisting of: (1) asterisks that represent the functions

position in the call stack when it was called, (2) a “<” symbol to indicate the function

is returning, and (3) the function’s name.

My calltrace gdb plugin is a helpful tool in understanding U-Boot, or any

other software’s, runtime behavior and implementation, and I heavily relied on it

identify semantically distinct phases in U-Boot’s source code (which are discussed in

section 5.5.1 on page 117).

4.5 Related firmware instrumentation work
There have been several academic papers published on firmware instrumentation that

are worth noting here. The Avatar framework introduced an instrumentation technique

that involved running the firmware inside a modified emulator that intercepts all I/O

accesses, and forwards them to the physical hardware [238]. This technique allows

us to execute firmware in a fully-instrumented environment without having to also

emulate all of the device’s peripherals in software. The Surrogates system improved

on Avatar’s design, reducing the latency associated with I/O accesses so peripheral

interactions operate closer to real-time.

4.6 Bootloader static analysis
The debugging methods I described in this chapter are helpful in understanding a

bootloader’s inner workings but they lack the vigor and completeness needed in order

to make formally verifiable statements. Static analysis can be more challenging to
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Figure 4.4: Example output generated from my calltrace tool rendered with
emacs’s outline-mode syntax highlighting
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perform on bootloaders than other types of software for many reasons including that

they make use of hardware-specific assembly instructions, may alter registers that

greatly affect system state (such as enabling page tables), and are often written in

multiple languages (assembly and a “higher-level” language, like C). This means that

in order for a static analysis tool to useful, it must work with a representation of

the underlying hardware during analysis. Frama-C, a well established static analysis

framework, is one such tool that is capable of performing static analysis on C source

code while also making use of a simple model of the underlying hardware. It can

perform a value analysis on C source code (hence the “C” in Frama-C) to determines

all possible values a variable may take on, given its knowledge of C and the system’s

architecture. To give you ta sense of the inherent challenges of applying existing static

analysis tools to bootloaders, I worked with Frama-C to produce a value analysis of

the U-Boot SPL. Details on how I accomplished this are documented in appendix

section C.1 on page 165.
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Table 4.3: U-Boot instrumentation statistics at a glance

SPL stage Main stage
Total LoCa in U-Boot ~1,244,000
LoC that form executable segments ~4,000 ~25,066
Format of image TI-defined u-boot legacy uImage
Size of image 49,848 bytes 313,908 bytes
Number of symbols defined in ELF 1087 6235
Number of write instructions in ELF 1,592 7,283
Time to perform initial static analysisb ~2 mins ~6 mins
Execution time in QEMU < 1 sec < 4 secs
Execution time in QEMU instrumented with
write-tracking breakpoints ~2 mins ~40 mins

Execution time in QEMU instrumented with
watchpoints ~1 hour 4 days 13 hours

Frama-C analysis time ~8 mins N/A
calltrace tool execution time ~1 min ~44 mins
Execution in QEMU instrumented with
policy-enforcing breakpoints ~2 mins N/A

a Lines of code
b Executing on an Intel Core i7-6600U CPU at 2.6 GHz machine with 16GB of RAM
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Each of the linker’s input files contains a set of segments of various

types. Different kinds of segments are treated in different ways.

–John Levine
in “Linkers and Loaders” [139]

5
Access properties & region typing

With this strengthened understanding of the role loaders play in a system and how

they may be implemented in practice (as discussed in chapter 2), we can now build a

descriptive model of a loader’s behaviors for the purpose of policy enforcement. My

primary goal is to develop a policy mechanism that eliminates out-of-type writes to

memory, so that, for example, a loader will not be able to accidentally (or intentionally)

corrupt its internal bookkeeping state while it is loading a future stage’s image, or

corrupt an already loaded and measured (verified) image. Additionally, this technique

should be able to enforce that certain tasks occur and occur in the expected order in

order to prevent, for example, enforcement/validation failures. My system focuses

on memory (address map) write accesses to create a type system governing memory

writes that can be statically and/or dynamically checked to determine whether its

memory writes obeys the type system’s rules. This use of typed regions was inspired

by Cyclone’s (a type-safe derivative of C) region-based memory management [89].

However, instead on defining regions in terms of groups temporally-related objects (in

terms of usage), my use of regions more directly corresponds to sections in an ELF file,
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Types

Address regionsBinary sections

Figure 5.1: Sections in a binary, address regions in memory, and RBWAC types are
all interdependent.

and is inspired by ELFbac’s approach to constructing behavioral policies at the ABI

level – by treating ELF sections (code, data, and metadata) as policy objects [17].

The loader policy proposed here is based on the observation that sections within

a binary file are essentially types. All of the most well-known and popular binary

file formats – Mach-O, PE, and ELF – have their own methods of labeling blocks of

consecutive bytes containing semantically related objects that admit the same sets of

operations (from the point of view of the binary toolchain).

Binary compilation toolchains prefer to co-locate semantically similar ob-

jects so their generated binaries are smaller, faster to parse, and easier to debug.

Because of this design, runtime loaders do not have to themselves coalesce objects,

and can instead directly copy sections into memory, which consequently creates mem-

ory regions containing the same semantically related objects. Therefore, a region of

memory can also be thought of as a typed object, and the region’s type is closely

related to the type of the file’s section from which it was derived.

If we develop a deeper understanding of how a loader’s behaviors are

driven by its target image – the image which can be thought of as containing the

loader’s bytecode – and how these operations correspond to the loader’s higher-level

semantics – which are sometimes explicitly defined (as discussed in section 2.5 on

page 32), but are otherwise implicitly defined by the binary toolchain – we can more
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meaningfully identify section and region types from which a type-based policy can be

constructed.

In this chapter, I first define a simple system including its hardware and bootloader

which I will use as a motivating example as I then present my typing system that

captures the intentions of the bootloader’s write operations. Throughout the first part

of this chapter I will focus on a relatively simple policy for this system. I will then

demonstrate the flexibility of this typing system by extending this simple policy into a

more restrictive policy with more precisely defined semantics. Finally, I will document

how this typing system can be applied to the real-world U-Boot bootloader of my

case study. The purpose of working through these three examples is so that (1) we

can initially get used to notation and simple properties, (2) we can work through

non-trivial properties, which will finally allow us to (3) apply this typing system to a

real product: the U-Boot SPL bootloading stage executing on a BeagleBoard-xM.

5.1 Mew-Boot on a ManulBoard: a toy system
For the purpose of building a simple illustrative example system for this type system,

let us consider an imaginary piece of hardware based on the BeagleBoard called the

ManulBoard. Similar to the BeagleBoard-xM, the ManulBoard contains a single-core

32-bit ARM-based system-on-a-chip (SoC) that is capable of being the basis of a

mobile device.

5.1.1 ManulBoard hardware description

The ManulBoard system’s hardware includes the following components:

• an ARM-based SoC,

• a serial interface (for console input and output),

• read-only non-volatile memory (ROM) containing a Mew-Boot bootloader image

mapped to an region of addresses starting at 0x00000000,
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• external non-volatile memory formatted with a filesystem that contains multiple

images from which the subsequent stage can be selected (via the serial console),

• volatile memory (RAM) that is not initially memory mapped, and

• various registers (including those that must be used to configure the volatile

memory) mapped to a region starting at 0x60000000.

5.1.2 Initial ManulBoard memory layout

Figure 5.2a illustrates the layout of the ManulBoard’s initial memory map as the

first instruction of its kickoff (ROM-based) bootloader (Mew-Boot) is fetched. Its

address space eventually evolves to look more like figure 5.2b once it initializes the

hardware. After the target image is loaded, the ManulBoard’s memory map will like

one illustrated in figure 5.2c.

5.1.3 Mew-Boot bootloader description

Mew-Boot ultimately invokes some target executable, but before it does so, it must:

1. initialize the serial console so that it can ask the user to select the target,

2. initialize its volatile memory to create space memory for a stack, bookkeeping

data (which may be statically or dynamically defined), and space for the target

image to be loaded,

3. copy statically-defined data in the bootloader’s ROM-based image into a RAM-

backed address region so that the data are writable,

4. initialize non-volatile memory (storage) and search it for potential target images,

5. prompt the user to select which target image to load , and finally,

6. load the target image into an unused RAM-backed region.

When Mew-Boot is ready to jump into its target, the target software expects the

memory map to be as shown in figure 5.2c.

It does not matter to us what overall role the target partakes in the system

(nor does it matter to the bootloader), as long as the bootloader is able to setup the
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Figure 5.2: ManulBoard memory maps before (a), during (b), and after (c) Mew-
Boot ( -Boot) execution while loading the target (}) image
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system so its target can be executed and its target can query the environment for

any additional information it needs. Mew-Boot’s target image could contain another

bootloader stage, a kernel, or even a standalone application. Nevertheless, the target

must have some knowledge of the memory regions and their boundaries within its

environment including the read/write semantics of these regions. Neither the target

nor the loader can afford to be sloppy – sloppiness leads to vulnerabilities.

Even this terse description of the ManualBoard and Mew-Boot gives us

good sense of how the system’s memory map evolves as blocks of memory

become used, abandoned and re-purposed throughout execution1. At any point in time,

the ManulBoard’s memory map can be decomposed into a series of non-overlapping

regions, each of which can be assigned a label that represents the region’s intended

use.

This description of Mew-Boot also allows us to identify actions that de-

marcate major transitions in address space usage. From it we can subdivide

the bootloading process into a series of substages so that each contain (at some granu-

larity) a semantically-unchanging address space. Each substage can then be provided

with a label that identifies its purpose based on how it intends to interact with its

address space. By decomposing the bootloading process into such phases, we can

then model the bootloader as an automaton of phases, each of which contains a set of

semantically-labeled regions and a set of behaviors we expect the phase to exhibit.

The bootloader traverses though these substages in some pre-determined manner over

the course of a successful boot.

These semantic labels are the basis on which our typed regions are defined

and they naturally align themselves with how memory maps are typically modeled.

For example, the memory map in figure 5.2a which simply illustrates the device’s

1Any pre-repurposed use of a reused block is likely a vulnerability, very much in the same vein as
a use-after-free vulnerability.
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physical memory layout when reset already has semantically labeled regions – the

bootloader’s code is in the region mapped to the lowest addresses, and a region starting

at 0x60000000 contains its memory-mapped registers. Later in the ManulBoard boot

process (depicted in figure 5.2b), new regions are conjured for Mew-Boot’s static data,

the heap, the stack, and the target image. Even though the labels I just mentioned

are fairly general, we can still use them to define a meaningful intent-based typed-

region-based access control policy, one that ensures that, e.g., the heap is not used

until it is available, that the target image is not executed until the image is ready,

and that any repurposed regions are not accessed by operations that are only aware

of its original purpose.

5.1.4 ManulBoard/Mew-Boot vs. BeagleBoard-xM/U-Boot

This toy system composted of the ManulBoard and Mew-Boot is intended to be a simple,

but realistic, system that highlights a subset of policy-relevant behaviors exhibited

by U-Boot executing on a BeagleBoard-xM. In particular, Mew-Boot, like U-Boot,

must initialize hardware before loading and patching a target. Also, both systems

have regions of RAM-backed memory that are used but are not initially available

when the bootloader is first invoked. Although U-Boot on the BBxM does not have

data stored on read-only memory that must be relocated to writable memory, it does

have to manually manage data located in the .bss section – global data whose values

are (expected to be) initially zero – and thus it should not access these data until it

explicitly zeros out the region of memory for them.

5.2 Address region-based write access control
Bootloaders must initialize and manage system resources as they locate, load, and

patch their subsequent target stage. They perform these actions in a sequential manner

shaped and driven by its hardware and software resource dependencies. Periods of

execution which encapsulate different phases of intended address-space use can be
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thought of as distinct substages, each of which may initialize resources, load (copy)

objects into a region, or patch a region for a future substage. Based on this observation,

we can assign a type to each such substage in a manner that allows us to label the intent

of each its write operations and mediate each write (either statically or dynamically)

that takes place during the substage, ensuring that the write’s destination falls within

a compatible region based on the region and substage types. I call this method of

modeling and restricting a loader’s behavior RBWAC2, address Region-Based Write

Access Control. Without loss of generality, I limit the focus of my thesis to only

mediating write accesses, however, these ideas can be extended to incorporate any

number of memory use-related operations. The remainder of this section describes

the various components that make up the most general form of RBWAC: its formal

definition, temporal logic (which governs substage typing), region typing, and access

control rules. We will then describe RBWACµ, a class of RBWAC policies for loaders,

and finally describe a couple of example RBWACµ instances.

5.2.1 RBWAC definition

A complete RBWAC policy instance is simply defined with the following tuple:

(S,R,O, b, e, S,E,F,Q,R, used_regions, L, U, semantics_of,

typeof_region, typeof_substage,P)

Where S is the set of substage types,

R is the set of region types,

O is the set of mediated operations,

b and e define the minimum and maximum addresses supported by this policy (non-

negative integers),

S = {s0, s1, . . . sn−1} is the set of n substages,

E ⊆ S is the set of entrypoints,

2Pronounced: ARRRR...whack, the B is silent!
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F ⊆ S is the set of allowed exitpoints, denoting successful execution upon entry,

Q is a function that defines allowed substage transitions such that Q : S → P(S)

(range is the power set of S),

R is the set of substage region definitions, R = {r0, r1, . . . , rm} where each ri ∈ R

defines a region of consecutive bytes, i.e., ri = (bi, ei) where b ≤ bi < ei ≤ e,

used_regions() is a function that returns which regions define the address space’s

labeling during a particular substage where: used_regions : S → P(R).

Region definitions must adhere to certain restrictions. For each si ∈ S and

Ai where used_regions(si) = Ai, Ai must be complete and non-overlapping.

The definition of complete is:

for all valid addresses a (i.e., b ≤ a < e) and ∀s∗ ∈ S,

∃r∗ ∈ used_regions(s∗) such that r∗ = (b∗, e∗) ∧ b∗ ≤ a < e∗.

Non-overlapping is defined as:

for some valid address a, ri = (bi, ei), and rj = (bj, ej), where ri, rj ∈ used_regions(s∗),

(bi ≤ a < ei) ∧ (bj ≤ a < ej) ⇔ i = j.

Additionally, I say that a region r ∈ R is in-scope for some substage s ∈ S if

r ∈ used_regions(s). This is useful because ∀s ∈ S : used_regions(s) ⊆ R.

To help formalize the notion of a region’s semantics, we also define two sets

of labels, L and U , as well as a few functions that operate on these sets:

L is a set of semantic labels which can define a region’s intended use (e.g., heap, stack,

executable),

U is the set of usage labels, which can define a region’s semantic status (e.g., reserved,

ready, in-use).

semantics_of is a function that returns a region’s semantics during a given substage

i.e., semantics_of : (R× S) → P(U × L). For example, if region r∗ solely contains
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the current stack during substage s∗, then semantics_of(r∗, s∗) = {(stack, in-use)}.

typeof_region is a function that returns the type of a region with respect to a sub-

stage (during substage execution) i.e., typeof_region : (R× S) → R.

typeof_substage is a function that returns the type of a substage,

typeof_substage : S → S ∪ {success, failure}.

Substages that are typed as either success or failure are special substages

in that once one of either type is entered, policy enforcement is discontinued. As their

names suggest, a success substage denotes the target was successfully loaded, and a

failure substage indicates that loading failed.

An RBWAC instance’s access rules are formally defined by a policy P. P

is a function that defines the policy – P : (S× R×O) → {deny, allow}. It must be

the case that for any r∗ ∈ R, s∗ ∈ S, and o∗ ∈ O where

semantics_of(r∗, s∗) = ∅: P(s∗, r∗, o∗) = deny.

I have defined additional RBWAC-specific terminology that I will use through-

out this chapter. A mediated event3 is a tuple (s∗, r∗, o∗) representing an operation

that occurred during execution, where s∗ ∈ S, r∗ ∈ R, and o∗ ∈ O. During a mediated

execution, the current substage is defined as the substage that was most recently

entered. I define an invocation of a loader to be an ordered list, I, of all substages

that are entered during a mediated execution.

This thesis focuses on policies constructed from a less general form of RB-

WAC, a specific RBWAC class for loaders called RBWACµ where

3The idea of mediated events is based on Schnieder’s concept of “complete mediation” [183].
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|Sµ| = 3,

|Rµ| = 6,

Oµ = {write},

bµ = 0, eµ = 232,

Eµ = s0,

Fµ = {sn} where n < |S|,

Qµ(si) = si+1 for i < n.

In general, we define a RBWAC class to be a partially instantiated RBWAC

policy with at least the following components defined: (S,R,O, b, e,P). An RBWAC

instance is a fully-defined RBWAC policy.

5.2.2 Substages

Substages are, in essence, similar to typestate as proposed by Strom and Yemini in

1986 [199], except at a far coarser granularity. With typestate, the operations an object

of some type supports are dependent on the object’s state – its typestate. Substages

dictate the system’s state and state transitions. Whether a particular operation may

be applied to a region is not only dependent on the region’s type, but also on the type

of the current substage.

A single stage of the (boot) loading process can be subdivided by purpose into

a sequence of consecutive substages, each of which is a policy principle whose type

determines which access rules are in place. The substage’s type should reflect the

substage’s intent, be that internal loader bookkeeping (which includes hardware

initialization), or preparing an address region of a future substage. With my ELF

metadata-driven weird machine [191] as inspiration, I focus on defining types that

indicate a phase’s overall function in the bootloading process: loading, patching, or

bookkeeping, as defined in table 5.1. I have found that these choices in substage types
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Table 5.1: RBWACµ substage type definitions (Sµ)

name symbol semantic description
loading δ “loading” (e.g., copying) a future substage
patching π patching/linking a loaded future substagea

bookkeeping β not performing loading or patching
a Although it is possible to unite the patching and loading types
without weakening the RBWACµ policy, these two behaviors are
semantically different operations.

non-failure
substageentrypoint

failure
substage

load success
(success substage)

load failure

error

substage transition

policy
violation

Figure 5.3: Success, failure, and sequential substage transitions of RBWACµ policy.
Policy is enforced until success substage is entered. If policy is violated (either due to
an out-of-order substage transition or a type violation), then loading fails.

to be sufficient and pose minimal challenges when I applied RBWACµ to an existing

codebase.

Given that a significant portion of loading vulnerabilities (as discussed in chap-

ter 2) have a temporal component (e.g., code not being validated before being loaded),

it is useful to build a policy mechanism around these substages that enforces temporal

dependencies. Such rules are represented by the function Q (allowed substage tran-

sitions) in the RBWAC formalism. As a starting point, I decided to only focus on

policies with fixed linear substage ordering.
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The idea of requiring a fixed linear ordering of substages may seem fairly

restrictive at first but, in fact, allows us to simply model the sequence of tasks a

bootloader (or even an application loader) performs to successfully loads its target. It

also gives us the added benefit of being able to uniquely identify which substage a

loader is in by inspecting its call graph. This is especially useful when working with

static analysis tools such as Frama-C. It also forces the loader to be written in a style

that makes it easier to statically determine whether a function that makes assumptions

about currently defined regions is invoked only when these properties hold (assuming

we can assert exactly which substages exhibit such properties) – partially motivating

this design decision. Other substage transition models are not discussed in this thesis4.

5.2.3 A short detour: design patterns and substage transi-

tions

This linear substage ordering is fairly straightforward to achieve in practice: each

substage in the sequence is equivalent to an entrypoint of a function that behaves

like a forward continuation which never returns5. Such a continuation-passing style

of programming is often implicitly present in loader implementations, used when a

loader finishes initializing some feature upon which all later phases of the loading

process depend. Rarely do such features later become unavailable.

Substage entrypoints have additional dedicated semantics in comparison to regular

function entities because they allow for regions of memory to be retyped upon transition.

Defining substage entrypoints as non-returning continuations helps us more simply

model such semantics.

Continuation passing. Figure 5.4 shows an example continuation passing design

pattern already present in the U-Boot bootloader source code– in this case, after
4Future work can explore different models of allowed substage transitions such as lattices.
5Although it is not strictly necessary to use non-returning continuations to implement linear

substages, e.g., a global variable can be used to keep track of the current substage, I found non-
returning continuations helpful when working with static analysis tools.
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it finishes relocating a region of code with its call to cpy_clk_code (on line 6), it

performs a forward call to the s_init continuation (on line 10). Code within the

phase that begins upon entry of s_init assumes that cpy_clk_code was executed.

Trampoline-style continuation passing. This continuation-passing program-

ming style is also often mixed with a more imperative/procedural programming

style where a main()-like function sequentially calls a series of functions, each of which

eventually returns to the initial caller/trampoline (such as main()). An example of

where U-Boot uses this design pattern is shown in figure 5.5. In instances when one

of these procedures is a substage entrypoint, converting the call into a non-returning

continuation is a relatively trivial (and potentially automatable) task.

An array of function pointers. Another design pattern U-Boot makes use of

when performing an ordered sequence of tasks is iteration over an array – sequentially

calling each function pointer in a list. One example of this is shown in figure 5.6,

where initcall_run_list iterates over the function pointers in the array passed to it

named init_sequence. If we decide that one of the function pointers in the array is a

substage entrypoint, we can transform it into a non-returning continuation by dividing

the list of function pointers into two – one containing all function pointers before the

entrypoint and the entrypoint itself, the second containing the remaining function

pointers. This design pattern, as well as the main()-style pattern, largely occurs

naturally in bootloaders; indeed, U-Boot only needs limited adjustment to deliberately

introduce non-returning continuations that are invoked using such a design pattern.

Lazy device initialization. Bootloaders also occasionally perform lazy device

initialization – only initializing a device when it is first used. For example, U-

Boot does not initialize data structures related to its SD (also referred to as MMC)

card reader until the first time it accesses the SD storage. Such a design pattern

makes separating bootloading phases, such as bookkeeping from loading, not as
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1 ENTRY(lowlevel_init)
2 ldr sp, SRAM_STACK
3 str ip, [sp] # stash ip register
4 mov ip, lr # save link reg across call
5 ldr r1, =SRAM_CLK_CODE
6 bl cpy_clk_code
7 mov lr, ip # restore link reg
8 ldr ip, [sp] # restore save ip
9 # tail-call s_init to setup pll, mux, memory

10 b s_init
11 ENDPROC(lowlevel_init)

Code fragment based on U-Boot’s definition of lowlevel_init in arch/arm/cpu/armv7/omap3/lowlevel_init.S

Figure 5.4: Example of continuation-passing in U-Boot source code

1 void s_init(void) {
2 watchdog_init();
3 try_unlock_memory();
4 omap3_invalidate_l2_cache_secure();
5 set_muxconf_regs();
6 prcm_init();
7 per_clocks_enable();
8 }

Code fragment based on U-Boot’s definition of s_init in arch/arm/cpu/armv7/omap3/board.c

Figure 5.5: Trampoline design pattern in U-Boot source code

straightforward, however, I did not find U-Boot’s use of lazy device initialization posed

problems when defining substages.
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1 int initcall_run_list(const init_fnc_t init_sequence[]) {
2 const init_fnc_t *init_fnc_ptr;
3 for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) {
4 unsigned long reloc_ofs = 0;
5 int ret;
6 if (gd->flags & GD_FLG_RELOC)
7 reloc_ofs = gd->reloc_off;
8 ret = (*init_fnc_ptr)();
9 if (ret) {

10 printf("initcall sequence %p failed at call %p (err=%d)\n",
11 init_sequence, (char *)*init_fnc_ptr - reloc_ofs, ret);
12 return -1;
13 }
14 }
15 return 0;
16 }

Code fragment based on U-Boot’s definition of initcall_run_list in common/initcall.c

Figure 5.6: Example use of arrays of function pointers in U-Boot source code

The Mew-Boot bootloader on the ManulBoard can be decomposed into sub-

stages in a variety of ways. I will begin by describing a simple RBWAC instance that

consists of the following five substages:

• Substage 0: [_start: type β, bookkeeping (defined in table 5.1 on page 82)]

Initialize serial console, volatile memory, and stack

• Substage 1: [copy_data: β] Copy static data and initialize heap

• Substage 2: [load_target: δ (loading)] Copy selected target image to volatile

memory, and patch to reflect its current position in memory

• Substage 3: [jump_to_image: success] Jump to target image’s entrypoint

• Substage 4: [halt: failure] Mew-Boot encountered an error from which it cannot

recover

Although simple, this policy instance can be significantly extended, which I describe

in section 5.3.2.
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5.2.4 Substage transitions

RBWACµ’s set of substage types naturally align with function boundaries because

of the the close relationship between the source code’s unit structure and intent.

RBWACµ’s substages are meant to model the loader’s linear sequence phases when

it successfully loads and executes its target. A substage transition occurs when an

entrypoint to the subsequent substage is executed. Every write the loader performs

is measured against the policy as dictated by the type of the most recently-entered

substage, i.e., the current substage.

An instance of this RBWACµ class must define which functions mark substage

entrypoints (S) and allowed substage transitions (Q). When Q requires a fixed linear

sequence (which I will assume to be the case throughout the rest of this chapter), any

out-of-order substage transition is considered a policy violation. More formally stated:

Given the function Qµ, which defines allowed substage transitions, and the set A ⊆ S

which contains the |A| = m substages that are allowed to be entered (are in the range of

Qµ), such that A = {s0, s1, . . . , sm−1}, then Qµ(si) = (si+1) ∀i < m. Any transition

into a substage s∗ /∈ A is considered to be a policy violation. An invocation I is

defined as successful if the last substage in its sequence is in F.

We can easily model failure paths in loader execution (e.g., halting) by defining

a substage sf ∈ S, such that ∀s∗ ∈ S, sf /∈ Qµ(s∗).

The final substage sm−1 in the sequence defined by Qµ is considered to be a

special success substage (e.g., F = {sm−1}), which upon entry indicates the loader

has completed execution and that its policy has been successfully and completely

enforced. This final substage should be an entrypoint to a short function that merely

jumps to the target’s entrypoint.

The first substage in the substage sequence, s0, should be the loader’s own

entrypoint.
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Stack available
Static data/heap available

} ready

jump to }
success

load }

δ
copy data

β
_start

β
Figure 5.7: Substage sequence defined by the simple ManulBoard Mew-Boot policy.
Each arrow contains a substage name and points to the policy’s subsequent substage.
The label below each substage’s arrow denotes the substage’s type. Important features
common to one or more substage are indicated above the substage arrows. The }
symbol is shorthand for target.

The ManulBoard example policy has four non-failure substages – s0–s3 (the

union of the domain and range of Qµ) – which are included in the policy’s substage

sequence, as well as one failure substage – s4 – which is entered upon a call to

halt(). Figure 5.7 depicts these substages, their types, and also indicate during which

substages important resources, such as the stack, are available.

When the ManulBoard’s bootloader is invoked and s0 is entered, there is no

writable memory (RAM) available until the bootloader initializes it by writing to a

particular memory-mapped register. Likewise, the stack isn’t available until the RAM

is initialized and the stack pointer register is set properly, which happens just before

copy_data (s1) is invoked. During the copy_data (s1) bookkeeping substage, the

static bootloader data are copied to RAM and the bootloader’s stack is initialized so

they are ready by the time load_target (load }, s2) is invoked. The load_target

loading substage (s2) should be the only substage that writes to the region of reserved

for the target image. Finally, the target image must be fully prepared for execution

by the time jump_to_image (s3) is invoked.
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Table 5.2: RBWACµ region types (Rµ)

name symbol semantic description
read-only r read-only
stack s region containing stack
bookkeeping b loader’s internal state
globals g non-stack regions writable by all substage types
future f region reserved for future substage image
patching p region containing future substage image

5.2.5 Region typing

RBWAC assigns types to regions of memory containing related objects to explicitly

indicate its intended use. RBWACµ’s six region types are: read-only (r), stack

(s), bookkeeping (b), globals (g), future (f), patching (p), each are defined

with more detail in table 5.2. Therefore, the set of region defined in RBWACµ is,

Rµ = {r, s, b, g,f ,p}.

Regions require us to explicitly specify the intended use of portions of the ad-

dress space accessed during a given substage. Because regions are defined orthog-

onally to the bootloader itself, it is possible to statically check that all in-scope

(r ∈used_regions(s)) regions during a particular substage are complete and non-

overlapping (as defined in section 5.2.1 on page 78). In the context of this thesis, any

address/region that I do not explicitly label with a type is assumed to be read-only.

By virtue of the locality of reference principle, it is fairly convenient to type

memory addresses in this manner, as nearby addresses typically have a similar intended

use. This allows specialization to more explicitly be part of programmer’s mental

model and consequently expressed by the policy.

Regions allow for a highly flexible type and policy granularity. A single

object (such as a variable or memory-mapped register) can either be assigned its

own region and typed differently than its surrounding data, or incorporated into a

neighboring region. Therefore, for example, a memory-mapped register that controls
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a specific subsystem can be treated differently from other nearby memory-mapped

registers. Therefore, an RBWAC policy can seamlessly mediate subsystem/external

hardware accesses, allowing us to control access to memory-mapped I/O as well as all

other objects in memory in a centralized and consistent manner. This is a compelling

alternative to the variety of access control configuration methods implemented by

different chip manufacturers, which include specialized instructions (e.g., in and out

in x86-based architectures) or special registers (accessed via normal load and store

memory operations), on top of which layers of address translation may be applied (if an

IOMMU is in use, such as Intel’s VT-d). Bootloader are expected to properly configure

these access controls, which are not always straightforward to configure. There are

numerous examples of bootloaders not correctly configuring these controls (such as

in [178]) resulting in a vulnerable system. RBWAC allows bootloader developers to

formalize and validate such expectations set by hardware manufacturers.

An address’s semantic use may evolve over time, due to the very nature of

loaders. Thus, our type system we must be able to allow for such region layout

transformations in a dynamic but controlled fashion, so that region types reflect the

programmer’s expectations for the current substage throughout the entire bootloading

process. Therefore, for each defined substage, there must also be a set of complete

and non-overlapping regions defined specific to that substage. This plays out as a

controlled transformation of regions from the point-of-view of the memory map, –

regions definitions may evolve, but only during substage transitions.

Engineers typically think of hardware in terms of memory maps, such as

the one illustrated in figure 5.2b (page 75), which cleanly the purposes of various mem-

ory regions. I use memory map diagrams in place of formal region definitions through-

out this chapter because they plainly represent an ordered set of non-overlapping

regions.
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Region definitions for each of Mew-Boot’s substages, is illustrated in fig-

ure 5.8. For the purpose of clarity, region subdivisions remain constant for all

substages, only a region’s type may differ between substages. (I will model region

definitions for all example policies I present in this chapter in this manner.) If a

region’s type differs between consecutive substages, then the type conversion occurs

during the substage transition before the subsequent substage begins execution.

The ManulBoard’s initial substage’s region definitions, for the bookkeeping

substage s0 (_start), is illustrated by the memory map in figure 5.8a. The only

region the bootloader can and should be able to write during the first substage is

the region containing memory-mapped registers, which is labeled as a bookkeeping

region named r2 in figure 5.8a. The bookkeeping type is used here to indicate that

these registers should only be modified when configuring the system. This substage’s

region definitions (which happens to only contain the one bookkeeping region, with

the remaining addresses typed as read-only) represents the bootloader’s intended

memory usage during this substage, as it sets up the RAM and stack.

Figure 5.8b shows the regions defined for the copy_data (s1) substage. As the

copy_data substage is entered, the stack region (r6), which was initialized by the

previous substage, becomes available. Also, a portion of RAM reserved for the target

image (region r7) is typed as a future region as this substage is entered. During this

bookkeeping substage, now that the RAM is available, static data are copied from the

ROM to the RAM (into the r4 bookkeeping region), and the heap (bookkeeping

region r5) is initialized.

When the load_target (s2) loading substage is entered, static data in r4 (which

have initialized by the previous substage), maintaining their bookkeeping type, and

the recently-initialized heap becomes available as a global region so that it can be

used while the target is loaded. These region definitions are depicted in figure 5.8c.

The target’s image must be ready for execution by the time the s3 (jump_to_target)
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success substage is entered, at which time RBWAC mediation ends and control is

transferred to the target.

Bootloading failures that are explicitly defined in source code, which are imple-

mented as non-exiting loops in the U-Boot SPL, should be modeled as failure substages.

This is achieved by defining a substage at the entrypoint to the failure’s function that

is not included in either the domain or the range of Qµ (the function defining allowed

substage transitions). In the case of Mew-Boot (as well as in U-Boot), bootloading

failures handled by the source code all result in a call to halt(), which contains an

infinite loop. We model this explicit failure in Mew-Boot by defining a failure substage,

s4, whose entrypoint is the halt function, but is neither in the range nor domain of

Qµ. Any transition into s4 is thus automatically and immediately considered a policy

violation (violations are discussed in the following section).

5.2.6 Policy violations

An RBWAC policy consists of typed substages, substage transition rules (encoded as

a linear sequence in RBWACµ), typed regions, region definition transition rules, and

type-based substage/region access rules. The two conditions that indicate a policy

violation are (1) an out-of-type write, and (2) an out-of-order substage execution.

These two violation conditions capture the weaknesses I have found to be common

among vulnerable loaders (as discussed in chapter 2 and appendix B): type confusion,

verification failure, and enforcement failure. These three kinds of loader weaknesses are

often related to and/or are consequences of each other – type confusion may lead to

verification and enforcement failures. A verification failure may lead to type confusion

or enforcement failure. Likewise, an enforcement failure may lead to a verification

failure or type confusion.

The term type confusion has historically been used to describe the bugs/vulnerabil-

ities that arise when an actor with an object in a manner inconsistent with the object’s
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Figure 5.8: Region definitions for substages s0–s2 in basic ManulBoard Mew-Boot
policy. Each region’s name is displayed on lower right-hand of its position in the
memory map diagram, its shading indicates the region’s type.
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Type confusion

Verification failureEnforcement failure

Figure 5.9: Type confusion and verification failures, and enforcement failures are all
interdependent and occasionally co-exist

type. However, I will use this term more generally to include all inconsistencies that

involve object/memory region’s semantics. With this in mind, type confusion can

be broken into two subclasses: type overlap and type superposition. Type overlap

is when an actor interacts with an object in a manner inconsistent with the object’s

type (i.e., what others refer to as type confusion). Type superposition is when

multiple separate actors incorrectly assume that they are interacting with the same

object/region.

There are not many known instances of type superposition-based loader weaknesses.

Such weaknesses are no necessarily rare, rather I believe that they are more complex

in nature than type overlap, verification, and enforcement failures in that they require

having multiple actors that interpret to allow for conflicting interpretations. For

example, independent parser implementations that parse/interpret the same object

differently. The Android master-key bug [79, 80], is one of the few known instances

of loader-related type superposition, and is caused by independently-implemented

parsers that interpret the same data structure that contains code signing information

differently. Therefore, although I believe this class of software weaknesses is important,

I will not be formally defining or discussing type superposition-based loader weaknesses

in this thesis, instead leaving a deeper investigation of such weaknesses as future work.

A more formal definition of type overlap is as follows: Let e∗ = (s∗, r∗, o∗) (where

s∗ ∈ S, r∗ ∈ R, and o∗ ∈ O) represent an operation that occurred during execu-
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tion, and Pµ be the system’s policy. Type overlap is defined as a mediated event

e∗ = (s∗, r∗, o∗) where Pµ(s∗, r∗, o∗) = deny.

Verification and enforcement failures are similar with respect to RBWAC’s formalism,

as both are forms of temporal violations. A formal definition of these failures is as

follows:

Let substage s∗p ∈ S be a non-failure substage (in the domain or range of Qµ) in

which some property p is validated. A verification failure is said to have occurred

in an invocation I∗ if sp @ I∗. An enforcement failure implies that there is some action,

a, that only and always occurs during substage sa ∈ S, and is expected to occur before

substage s∗ ∈ S where s∗ 6= sa, but didn’t. In other words, an invocation, I∗ is said to

exhibit an enforcement failure if sa is not before s∗ in I∗.

The occurrence of an enforcement or verification failure indicates that the boot-

loader did not execute all intended actions or executed them in an incorrect order.

In order to protect against such failures, a RBWAC policy designer should consider

introducing a substage that narrowly contains this action so that it is more visible to

other developers (as a significant event), and can be explicitly targeted by the policy.

5.2.7 Policy rules and logic

Each RBWAC policy instance must define the set of rules that provide a deterministic

allow or deny decision based on the currently-executing substage’s type, the type

of the region within which the address being operated on lies, and the type of the

operation being performed. An example rule set is discussed in section 5.3. Such rules

and desired behavioral properties based on such rules could also be formally modeled

as a linear time logic [173].

5.3 RBWACµ sample policy instances
In this section I present a summary of three different RBWACµ policy instances, (1) a

simple policy for the ManulBoard, (2) a more complex ManulBoard policy, and (3) my
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case study on the BeagleBoard-xM U-Boot SPL. All three policy instances share the

following RBWAC class characteristics:

Sµ = {δ,π,β} as defined in table 5.1 on page 82, Rµ = {r, s, b, g,f ,p} as defined in

table 5.2 on page 89, Oµ = {write}, bµ = 0, eµ = 232 (0xFFFFFFFF is the highest

addressable value in these architectures), Eµ = {s0}, and Fµ = {sn} where n < |S|.

Furthermore, Qµ should only allow for a single sequential ordering of substages, and

thus be in the form of: Qµ(si) = {si+1} if 0 ≤ i < n (as discussed in section 5.2.4).

Finally, Pµ is defined based on the set of predicated defined in figure 5.10 so that

given st ∈ S, ru ∈ R, typeof_substage(st) = t, and typeof_region(ru, st) = u,

allowed(st, ru, write) ⇔ Pµ(st, ru, write) = allow

substage(S) :- true
region(R) :- true
loading_substage(sδ) :- true
patching_substage(sπ) :- true
bookkeeping_substage(sβ) :- true
stack_region(rs) :- true
global_region(rg) :- true
bookkeeping_region(rb) :- true
future_region(rf) :- true
patching_region(rp) :- true

allowed(S,R,write) :- stack_region(R)

allowed(S,R,write) :- global_region(R)

allowed(S,R,write) :- bookkeeping_substage(S),
bookkeeping_region(R)

allowed(S,R,write) :- loading_substage(S),
future_region(R)

allowed(S,R,write) :- patching_substage(S),
patching_region(R)

Figure 5.10: Predicates that form the RBWACµ class’ policy rules (Pµ)
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start registers

copy data data

stack

load } heap

} img

Figure 5.11: Explicitly defined semantic relationships between substages and regions
for basic ManulBoard Mew-Boot policy. Nodes on the left represent substages, regions
on the right. An edge between a substage and region denotes write access is allowed.

5.3.1 Basic ManulBoard policy

The substages of the basic ManulBoard policy that I have been using as an example

throughout the earlier parts of this chapter can be formally defined as an instance of

the RBWACµ class with,

S = {s0, s1, . . . s4},

typeof_substage(si) =



δ if i = 2

success if i = 3

failure if i = 4

β otherwise

,

and Fµ = {s3}.

Substage s0 corresponds to _start(), copy_data() is the entrypoint to substage s1,

load_target() is the entrypoint to substage s2, jump_to_target() is the entrypoint

to substage s3 (the success substage), and halt() is the entrypoint to a failure substage

(s4)

This combination of region and substage definitions generates a policy that can be

illustrated as a bipartite graph, as shown in figure 5.11, where the left set of nodes

represents each substage, the right set of nodes represents each region definition, and

an edge between a region and substage indicates write operations are allowed.

97



RAM available
Stack available

Static data available
Heap available

} ready

jump to }
success

patch }

π
load }

δ
init heap

β
copy data

δ
init stack

β
_start

β

Figure 5.12: Substage sequence defined by more complex ManulBoard Mew-Boot
policy. Each arrow contains a substage name and points to the policy’s subsequent sub-
stage. The label below each substage’s arrow denotes the substage’s type. Important
features common to one or more substage are displayed above the substage arrows. }
symbol is a shorthand for target.

5.3.2 A more complex ManulBoard policy

RBWAC is naturally flexible, allowing for a multitude of granularities. If we wish to

introduce more finely-grained mechanisms that limit access to static data until they

are available, as well as separate the target loading phase from its patching phase, we

can do so by including more substages and region definitions. This more finely-grained

policy introduces three substages that are not present in the previously-described basic

policy: (1) the init_stack s1 substage, which occurs after RAM is initialized (during

s0 _start), but before data is made available by the (now s2) copy_data substage,

(2) init_heap, substage s3, which occurs after static data is made available by

copy_data, to protect the heap until it is initialized, and (3) patch_target (substage

s5) which captures the bootloader’s target image patching operations so they can be

treated differently from the bootloader’s loading operations that occur earlier during

the load_target (now s4) substage. A high-level view of this more detailed policy is

depicted in figure 5.12.

The regions defined by this more complex policy are similar to the basic policy,

but with additional region transitions that supplement the three new substages. The

region definitions that complement the three additional substages are depicted in
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figure 5.13. Figure 5.14 graphically represents this more complex policy.

This more complex RBWACµ policy instance for the ManulBoard is defined as:

S = {s0, s1, . . . s7},

typeof_substage(si) =



δ if i ∈ {2, 4}

π if i = 5

success if i = 6

failure if i = 7

β otherwise
and Fµ = {s6}.

5.4 Retrofitting an RBWACµ instance
Until this point I have limited our focus on a simple and imaginary bootloader executing

on pretend hardware. However, my thesis aims to present practical loader hardening

techniques. Therefore, instead of focusing on how to build a hardened bootloader

from scratch, I focused on developing a methodology for point-rearchitecting existing

bootloaders so that they can be incrementally hardened. To this end, I have written

a third RBWACµ policy instance, specifically for the popular U-Boot bootloader,

and more specifically for U-Boot SPL bootloading stage compiled for BeagleBoard-

xM (BBxM) development board. Like the previous example policy instances, this

policy’s overall goal is to prevent the loading and patching behaviors from overwriting

bookkeeping data, and vice versa – recall that such accesses have been many attack’s

primary tool (as exemplified in [120, 175, 225]).

U-Boot, like the imaginary Mew-Boot, goes through a sequence of phases before it

successfully loads its target. However, unlike Mew-Boot, which consists of a single

stage that ultimately executes the final target, U-Boot is divided into two separate

stages (each stored in its own binary image) – (1) the SPL (secondary program loader),
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(a)
init_stack (β)

s3
boot img r0
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(b)
init_heap (β)

s6
boot img r0
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r3

data r4

heap r5

stack r6

(} img)
r7

r8

(c)
patch_target (π)

readonly bookkeeping global stack patching future

Figure 5.13: Region definitions for more complex ManulBoard Mew-Boot policy.
Each region’s name is displayed on lower right-hand of its position in the memory map
diagram, shading indicates region’s type. Region definitions for substage s0 is in figure
5.8a, s2 is in figure 5.8b, and s5 is in figure 5.8c all on page 93.
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Table 5.3: RBWACµ policy P’s allowed writes

Substage type
bookkeeping (β) loading (δ) patching (π)

R
eg

io
n

ty
pe

stack (s) X X X
bookkeeping (b) X

globals (g) X X X
future (f) X

patching (p) X
read-only (r)

Xdenotes write is allowed

start registers

init stack stack

copy data data

init heap

load } heap

} img

patch }

Figure 5.14: Explicitly defined semantic relationships between substages and regions
in more complex ManulBoard Mew-Boot policy. Nodes on left represent substages,
regions are on the right. An edge between a substage and region denotes write access is
allowed.
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which is a small binary with few features so that it can fit inside the BBxM application

processor’s 64KB of on-chip RAM, and (2) a stage which I call the main stage – a

large, full-featured stage loaded by the SPL onto external RAM after it initializes said

RAM. Both stages are built from the same codebase – much of what is present in the

SPL is also compiled into the main stage. Although I also worked on a policy for the

more-complex main stage, I will only present a policy for the SPL stage here.

5.4.1 Bootloader reconnaissance and substage extraction

Method. Using the tools described in section 4.4 on page 63, I identified substages,

region definitions, and relocation behavior by iteratively searching for and testing

candidate policies. In order to develop a candidate policy, I iteratively (1) collect

information on the bootloader’s executed sequence of write operations – the fetched

write instruction’s register states, write index, and destination address – via my tracing

tools discussed in section 4.2 on page 58, and then (2) query this database for particular

write patterns characteristic of loading and patching operations as well as writes

destined to known objects, until (3) no unaccounted-for writes remain. In particular,

I search for consecutive sequences of writes performed to consecutive addresses by

the same instruction – such a pattern suggests indicate an image or data structure is

being copied into another region of memory, indicative of potential loading of a future

substage. My tools also help identify candidate substage entrypoints by generating

dynamic call graphs of the bootstage’s control flow and correlating write operations

with its corresponding node in the call graph.

Relocation support. Before I can truly test a candidate RBWACµ policy instance,

I first needed to identify all phases of runtime loader self-relocation/modification.

This is important so the tools can keep track of and identify all symbols/objects

by location throughout execution, even after phases of self-modification. It is not

uncommon for bootloaders to relocate their own code or data during execution, but
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continue to address non-relocated or pre-relocated objects. For example, figure 5.15

shows one example of U-Boot self-relocation where it relocates its entire memory-

based image. Here it uses general-purpose registers (r0, r1, r2, r3, r4) to keep track

of its self-relocation process. After it finishes copying itself, it jumps to fixloop

(on line 16) to patch absolute addresses in the relocated image so they reflect their

current location. These updated addresses are calculated based on a table generated

by the compilation toolchain (ELF’s .rel.dyn table). More specifically, the patching

performed by fixloop (starting on line 13 of figure 5.15) (1) iterates through the

.rel.dyn table of compiler-generated offsets to image-based absolute pointers (which

defined with respect to the beginning on the image), and (2) updates the pointer at

its relocated address so its value reflects the pointer’s relocated address. In general,

loader verification will likely have to deal with invariants of such self-relocating loops.

Any complete RBWACµ policy must account for such operations. This highlighted

relocation procedure, however, is not performed by the SPL (it is only performed by

the main stage), and therefore we will not encounter it during the U-Boot SPL case

study.

If we take a step back and inspect what happens before and after the call to

relocate_code, we will find more examples of how U-Boot subtly manages ab-

solute addresses around its self-relocation. The instructions surrounding the call

to relocate_code are shown in figure 5.16. Before U-Boot self-relocates via its

branch to relocate_code, it sets up the lr register (line 5), which traditionally

holds the current function’s return address, to contain the address of the relocated

label here (defined on line 9), so that when relocate_code returns (as shown on

line 31 of figure 5.15), it fetches instructions from relocated location of here and

not the (still-present) original location to which it would otherwise return. At this

point, U-Boot calls c_runtime_cpu_setup (line 11) at its relocated address, despite

what the comment next to the instruction suggests. What is not apparent is that
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1 ENTRY(relocate_code)
2 ldr r1, =__image_copy_start # r1 <- SRC &__image_copy_start
3 subs r4, r0, r1 # r4 <- relocation offset
4 beq relocate_done # skip relocation
5 ldr r2, =__image_copy_end # r2 <- SRC &__image_copy_end
6

7 copy_loop:
8 ldmia r1!, {r10-r11} # copy from source address [r1]
9 stmia r0!, {r10-r11} # copy to target address [r0]

10 cmp r1, r2 # until source end address [r2]
11 blo copy_loop
12

13 # fix .rel.dyn relocations
14 ldr r2, =__rel_dyn_start # r2 <- SRC &__rel_dyn_start
15 ldr r3, =__rel_dyn_end # r3 <- SRC &__rel_dyn_end
16 fixloop:
17 ldmia r2!, {r0-r1} # (r0,r1) <- (SRC location,fixup)
18 and r1, r1, #0xff
19 cmp r1, #23 # relative fixup?
20 bne fixnext
21

22 # relative fix: increase location by offset
23 add r0, r0, r4
24 ldr r1, [r0]
25 add r1, r1, r4
26 str r1, [r0]
27 fixnext:
28 cmp r2, r3
29 blo fixloop
30 relocate_done:
31 bx lr
32 ENDPROC(relocate_code)

Code fragment based on U-Boot’s definition of relocate_code in arch/arm/lib/relocate.S

Figure 5.15: Example of self-relocation implementation in U-Boot source code
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1 # Set up intermediate environment (new sp and gd) and call
2 # relocate_code(addr_moni). Trick here is that we'll return
3 # 'here' but relocated.
4

5 adr lr, here
6 ldr r0, [r9, GD_RELOC_OFF] # r0 = gd->reloc_off
7 add lr, lr, r0
8 b relocate_code
9 here:

10 # Set up final (full) environment
11 bl c_runtime_cpu_setup # we still call old routine here
12 b clear_bss

Code fragment based on U-Boot’s definition of _main in arch/arm/lib/crt0.S

Figure 5.16: How U-Boot manages absolute pointer values in registers before and
after self-relocation

the branch to c_runtime_cpu_setup (on line 11) is encoded as a branch relative to

the instruction’s program counter. Given we know relocate_code passes execution

to the newly-relocated address of here and the branch at this location is calculated

relative its program counter, the branch’s target will also be a relocated address. A

proper loop invariant must account for such details in order to formally model and

verify self-relocation, even if they are not so easily extracted from the loader’s source

code.

Memory write patterns. Using my instrumentation tools, I can extract informa-

tion on every memory write performed during execution, including the number of

write operations that have occurred, destination of each write, and number of bytes

written – these are the data from which I build a RBWACµ policy instance for the

U-Boot SPL.

At this point it is helpful to introduce additional terminology for analyzing and

classifying memory write patterns. Let us define a write operation o as a tuple:

o = (n, pc, va, dest, node),

where: n is the number of write operations that occurred before this write operation
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(its write index), pc is value of the processor’s program counter (instruction pointer)

that performed the write and va is the virtual address of the write instruction from

the point-of-view of the compilation tool chain – where it expects the instruction to

be located in memory before any relocation. Virtual addresses are helpful in looking

up statically-generated information such as a write instruction’s mnemonic, operands,

the number of bytes it writes, and location in the source code from which it was

generated. dest is the address to where the write is performed, and node uniquely

identifies its corresponding not in the dynamically-generated call graph, i.e, when the

write occurred with respect to the call graph.

We can use these collected write operations to generate an enhanced call graph –

a write-augmented call graph – and annotate each node with the data collected

on the write operations performed during that function call. This so-called write-

augmented call graph helps us assign intent to individual write operations. These

write-augmented call graphs also can highlight memory writing patterns, such as phases

when consecutive bytes of memory are written to by a consecutively repeated write

instruction (within a tight loop), which one may expect to observe during relocation.

To capture occurrences of repeated consecutive memory writes, we make a projec-

tion called W_to_B of the set W containing all write operations onto a set B containing

all block write operations. W_to_B: W → B . A block write operation b̂i is defined

as:

b̂i = (i, pc, va, dest, size, repetitions).

For a given b̂i, i represents the block write’s index in the projection’s ordering; pc, va,

dest, and node are the same as in a write operation; size is the total number of bytes

written starting at address dest; and repetitions is the number of write operations

that were combined in order to form this single block write operation. Figure 5.17

shows pseudocode that calculates this projection.
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def W_to_B:(W):
B = set()
last = None
last_size = None
last_pc = None
last_va = None
last_dest = None
last_node = None
last_reps = 0
index = 0

for (n, pc, va, dest, node) in sorted(W): # Sort W by index
size = lookup_size(va)
if (last_pc == pc) and (last_va == va) and \

(last_dest + last_size == dest):
last_size += size
last_reps += 1

else:
if last_n is not None:

B.insert((index, pc, va, last_dest,
last_size, last_node, last_reps))

index += 1
last_n = n
last_pc = pc
last_va = va
last_dest = dest
last_size = size
last_node = node
last_reps = 1

# insert final block write
if last_n is not None:

B.insert((index, last_pc, last_va, last_dest,
last_size, last_node, last_reps))

return B

Figure 5.17: Pseudocode that implements projection of write operations onto block
write operations
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err = spl_load_image_fat(&mmc->block_dev,
CONFIG_SYS_MMCSD_FS_BOOT_PARTITION,
CONFIG_SPL_FS_LOAD_PAYLOAD_NAME);

Code fragment based on U-Boot’s definition of spl_mmc_do_fs_boot in common/spl_mmc.c

Figure 5.18: U-Boot code that locates SPL’s target in a FAT-formatted SD card

I define a repeated block write as any block write b̂i where

b̂i = (i, write_indexi, pci, vai, desti, sizei, repetitionsi), and repetitionsi > 1.

A repeated block write has two indices (1) i, which is its position relative to all other

repeated block writes, and (2) write_indexi which is its index of its earliest (non-

repeated) block write operation.

BBxM U-Boot SPL Internals

For the purpose of this case study, I focus on a common BBxM U-Boot SPL configura-

tion where the target image is stored in a file named “u-boot.img” located in the root

directory of an inserted FAT-formatted SD card which is loaded by the processor’s

on-chip-ROM-based kickoff bootloader using its own, limited, FAT filesystem driver6.

U-Boot’s SPL stage is designed to operate on systems with limited volatile memory

and thus the SPL has limited flexibility. This is evident in the few kinds of targets it

supports and by the fact that the partition number and file name of the target image

are hard-coded into its source code, as we can see in figure 5.18, which shows how

it loads its target image from the SD, and figure 5.19, which shows the hard-coded

values it references to to load the target from a FAT-formatted SD card.

The overall sequence of events that happen during the BBxM’s U-Boot SPL stage

as it boots from a SD card are:

1. Saves pointer to boot parameters passed to it by the BBxM’s boot ROM via

the r0 register

6The am37x’s SD card-based boot procedure is described in detail in [202]. If the driver finds a
MBR-type partition table, it requires that the target image be stored in a file named “MLO” in the
root directory of a FAT12/16/23 file system contained within an active primary partition.
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/* FAT sd card locations. */
#define CONFIG_SYS_MMCSD_FS_BOOT_PARTITION 1
#define CONFIG_SPL_FS_LOAD_PAYLOAD_NAME "u-boot.img"

Code fragment based copied from U-Boot file include/configs/ti_armv7_common.h

Figure 5.19: Hard-coded values in that allow U-Boot SPL to locate the target image
on a FAT-formatted SD card.

2. Initializes CPU and hardware-specific features such as caches

3. Repositions stack to slightly larger region (from stack0 to stack1)

4. Relocates go_to_speed function

5. Performs more low-level initialization including hardware clock configuration

and processor pin multiplexing

6. Moves stack again as it begins to reshuffle on-chip memory (to stack2)

7. Zeros out and initializes a special global data structure that holds important

bootloader bookkeeping information (structure definition in figure 5.20)

8. Moves stack yet again (stack3)

9. Initializes external volatile memory (also knows as the SRAM )/bx/Music

10. Moves stack to final position (stack4)

11. Zeros out BSS region

12. Initializes heap

13. Parses and saves boot parameters passed to SPL (from the previous/kickoff boot

stage) into global data (pointer to parameter structure was saved in step 1)

14. Initializes console

15. Initializes SD reader drivers and hardware

16. Checks how the SD card is formatted

17. Loads beginning (header) of file containing target image into memory

18. Parses the header to determine target’s specified load address and entrypoint

19. Loads full target image into memory at specified load address

20. Jump’s to target’s entrypoint
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Table 5.4: A successful SPL execution’s write operations

# memory writes ~400,000
# block writes ~10,000
# repeated block writes ~700

There are two major phases of the U-Boot SPL delineated by when the external

memory (also referred to as the SRAM) becomes initialized (step 9 of the preceding

list). Before external SRAM is initialized, the U-Boot SPL has little memory available

to it, and so it carefully dances around the in-use regions of the available RAM (its

on-chip RAM) as it performs its initialization tasks. The location of the stack is

changed four times as a byproduct of this dance during this pre-SRAM phase.

Figure 5.21 shows how the sequence of steps outlined as the SPL’s boot procedure

overlap with (a portion of) the call graph generated from an execution of the SPL

as it loads the U-Boot main stage image (also) located on an inserted SD card. The

operations highlighted in this figure form the basis its RBWACµ policy instance. From

this call graph we can get a sense of where non-returning continuations – from which

substages are defined – are present in the bootloader.

BBxM U-Boot SPL substage and region derivation

A great deal of useful information can be derived from a single successful run of the

SPL stage. Given no difference in hardware or contents of non-volatile storage, the

SPL’s memory write behaviors are fairly deterministic and do not vary much between

different executions, besides the number of times particular timing-dependent actions

are repeated. For example, when U-Boot interacts with hardware subsystems that

operate asynchronously with respect to its CPU, such as the SD/MMC card reader,

U-Boot uses a busy loop-type design pattern that waits until the subsystem is ready.

A couple versions of this busy loop modify memory, e.g., by calling a function that

reads the hardware clock at each iteration (which executes a push instruction), as can

be seen in figure 5.22.
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typedef struct global_data {
bd_t *bd;
unsigned long flags;
unsigned int baudrate;
unsigned long cpu_clk; /* CPU clock in Hz! */
unsigned long bus_clk, pci_clk, mem_clk;
unsigned long have_console; /* serial_init() was called */
unsigned long env_addr; /* Address of Environment struct */
unsigned long env_valid; /* Checksum of Environment valid? */
unsigned long ram_top; /* Top address of RAM used by U-Boot */
unsigned long relocaddr; /* Start address of U-Boot in RAM */
phys_size_t ram_size; /* RAM size */
unsigned long mon_len; /* monitor len */
unsigned long irq_sp; /* irq stack pointer */
unsigned long start_addr_sp; /* start_addr_stackpointer */
unsigned long reloc_off;
struct global_data *new_gd; /* relocated global data */
struct udevice *dm_root; /* Root instance for Driver Model */
struct udevice *dm_root_f; /* Pre-relocation root instance */
struct list_head uclass_root; /* Head of core tree */
const void *fdt_blob; /* Our device tree, NULL if none */
void *new_fdt; /* Relocated FDT */
unsigned long fdt_size; /* Space reserved for relocated FDT */
struct jt_funcs *jt; /* jump table */
char env_buf[32]; /* buffer for getenv() before reloc. */
int cur_i2c_bus; /* current used i2c bus */
unsigned long timebase_h, timebase_l;
unsigned long malloc_base; /* base address of early malloc() */
unsigned long malloc_limit; /* limit address */
unsigned long malloc_ptr; /* current address */
struct udevice *cur_serial_dev; /* current serial device */
struct arch_global_data arch; /* architecture-specific data */
} gd_t;
struct arch_global_data { /* needed by most of timer.c on ARM */
unsigned long timer_rate_hz;
unsigned long tbu;
unsigned long tbl;
unsigned long lastinc;
unsigned long long timer_reset_value;
unsigned long tlb_addr, tlb_size;
u32 omap_boot_device;
u32 omap_boot_mode;
u8 omap_ch_flags;
}; Code from arch/arm/include/asm/global_data.h and include/asm-generic/global_data.h

Figure 5.20: U-Boot’s definition global data structure
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> __start (arch/arm/cpu/armv7/start.S)
> save_boot_params (arch/arm/cpu/armv7/omap-common/lowlevel_init.S)
> cpu_init_cp15 (arch/arm/cpu/armv7/start.S)
< cpu_init_cp15
> cpu_init_crit (arch/arm/cpu/armv7/start.S)
> lowlevel_init (arch/arm/cpu/armv7/omap3/lowlevel_init.S)
> cpy_clk_code (arch/arm/cpu/armv7/omap3/lowlevel_init.S)
> lowlevel_init_finish (arch/arm/cpu/armv7/omap3/lowlevel_init.S)
> s_init (arch/arm/cpu/armv7/omap3/board.c)
> watchdog_init (arch/arm/cpu/armv7/omap3/board.c)
< watchdog_init
> try_unlock_memory (arch/arm/cpu/armv7/omap3/board.c)
< try_unlock_memory
> omap3_invalidate_l2_cache_secure (arch/arm/cpu/armv7/omap3/board.c)
< omap3_invalidate_l2_cache_secure
> set_muxconf_regs (board/ti/beagle/beagle.c)
< set_muxconf_regs
> sdelay (arch/arm/cpu/armv7/syslib.c)
< sdelay
> prcm_init (arch/arm/cpu/armv7/omap3/clock.c)
< prcm_init
> per_clocks_enable (arch/arm/cpu/armv7/omap3/clock.c)
< per_clocks_enable
> ehci_clocks_enable (arch/arm/cpu/armv7/omap3/clock.c)
< ehci_clocks_enable
> _main (arch/arm/lib/crt0.S)
> board_init_f_mem (common/init/board_init.c)
> memset (lib/string.c)
< memset
> arch_setup_gd (common/init/board_init.c)
< arch_setup_gd
> board_init_f_mem_finish (arch/arm/lib/crt0.S)
> board_init_f (arch/arm/cpu/armv7/omap3/board.c)
> mem_init (arch/arm/cpu/armv7/omap3/sdrc.c)
< mem_init
> _main_finish (arch/arm/lib/crt0.S)
> spl_relocate_stack_gd (common/spl/spl.c)
< spl_relocate_stack_gd
> clear_bss (arch/arm/lib/crt0.S)
> board_init_r (common/spl/spl.c)
> mem_malloc_init (common/dlmalloc.c)
< mem_malloc_init
> spl_init (common/spl/spl.c)
< spl_init
> timer_init (arch/arm/cpu/armv7/omap-common/timer.c)
< timer_init
> spl_board_init (arch/arm/cpu/armv7/omap-common/boot-common.c)
> save_omap_boot_params (arch/arm/cpu/armv7/omap-common/boot-common.c)
< save_omap_boot_params
> preloader_console_init (common/spl/spl.c)
> serial_init (drivers/serial/serial.c)
< serial_init
> puts (common/console.c)
< puts

< preloader_console_init
> i2c_init (drivers/i2c/i2c_core.c)
< i2c_init

< spl_board_init
> board_boot_order (common/spl/spl.c)
< board_boot_order
> announce_boot_device (common/spl/spl.c)
< announce_boot_device
> spl_load_image (common/spl/spl.c)
> spl_mmc_load_image (common/spl/spl_mmc.c)
> spl_mmc_find_device (common/spl/spl_mmc.c)
< spl_mmc_find_device
> mmc_init (drivers/mmc/mmc.c)
< mmc_init
> spl_boot_mode (arch/arm/cpu/armv7/omap-common/boot-common.c)
< spl_boot_mode
> spl_mmc_do_fs_boot (common/spl/spl_mmc.c)
> spl_start_uboot (common/spl/spl_mmc.c)
< spl_start_uboot
> spl_load_image_fat (common/spl/spl_fat.c)
> spl_register_fat_device (common/spl/spl_fat.c)
> fat_register_device (fs/fat/fat.c)
> get_partition_info (disk/part.c)
< get_partition_info
> fat_set_blk_dev (fs/fat/fat.c)
< fat_set_blk_dev

< fat_register_device
< spl_register_fat_device
> file_fat_read (fs/fat/fat.c)
< file_fat_read
> spl_parse_image_header (common/spl/spl.c)
< spl_parse_image_header
> file_fat_read (fs/fat/fat.c)
< file_fat_read

< spl_load_image_fat
< spl_mmc_do_fs_boot

< spl_mmc_load_image
< spl_load_image
> spl_after_load_image (common/spl/spl.c)
> jump_to_image_no_args arch/arm/cpu/armv7/omap-common/boot-common.c)

(1) save boot params

(2) initialize CPU features

(3) moves stack
(4) node relocates go_to_speed

(5) initialize clocks, pins, etc.

(6) moves stack

(7) clears global data

(8) moves stack

(9) initializes SRAM
(10) moves stack

(11) clears bss

(12) initializes heap

(13) parses boot ROM
params

(14) initializes console

(15) initializes SD driver and hardware

(16) parses SD partition table

(17) loads target image header

(18) parses and interperetes header

(19) loads full target image

(20) jumps to target stage

Figure 5.21: Ordering of subset of function calls (prepended by >) and returns (<)
during successful execution and loading of main stage from SD card, produced by my
calltrace tool (introduced on p. 64).
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while (size) {
ulong start = get_timer(0);
do {

mmc_stat = readl(&mmc_base->stat);
if (get_timer(0) - start > MAX_RETRY_MS) {

printf("%s: timedout waiting for status!\n",
__func__);

return TIMEOUT;
}

} while (mmc_stat == 0);

Code fragment from U-Boot’s definition of mmc_read_data in drivers/mmc/omap_hsmmc.c

Figure 5.22: Example of busy loop in U-Boot which contains a function call. This re-
sults in memory writes due to values being pushed to the stack as part of the function
call.

As summarized in table 5.4, a successfully executed SPL performs on the order

of 400,000 writes to memory. These 400,000 individual writes can be projected onto

about 10,000 block writes. Of these 10,000 block writes, close to 700 are classified as

repeated block writes – in other words, 700 of the 10,0000 block writes happened in

a tight loop where no other memory write occurs and are likely part of a memory

copying/relocation operation.

By searching for memory write patterns such as repeated block writes (as one

would expect from operations like memcpy()), I was able to identify when and where

major loading and patching operations occur. From these data, I found one instance

of self-relocation – of a function that incidentally is never executed. I also when U-

Boot zeroes a region to hold global data bookkeeping structure, zeroes the BSS region,

copies filesystem metadata, reads in the target’s image header, and reads in the rest

of the target image (in 512KB chunks). Figure 5.23 summarizes these findings by

showing the first 4,800 repeated block writes that occur during a successful execution of

the SPL, overlaid with the corresponding call graph (more-or-less) vertically separated

by time (function calls that happen earlier appear closer to the top of the plot). The

last 5,200 repeated block writes continue the pattern that starts at around the 4,400th

block write, all of which comprise the writes produced from loading the target image off
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the SD card, one 512K sector at a time. All of these data were collected and analyzed

in under five minutes (including an initial binary analysis to determine breakpoint

locations that takes about two minutes, but only needs to be performed once).

Patching phases can be identified by executing the bootloader under a policy

that separates loading phases from all other behaviors – all writes that violate this

policy are likely patching the target image. These invalid writes emerge when future

regions are modified outside any loading substages. Using this technique, I identified

a phase when U-Boot tested its recently-initialized external memory by writing and

reading special values to small number of external memory-backed addresses. Likewise,

I also found a handful of statically-allocated and heap-allocated variables that are

modified during loading and patching phases. It also became apparent that the stack

was relocated multiple times during the boot process. Each iteration of this discovery

process took fewer than three minutes to execute with the help of my tools. These

tools made all the difference in developing a RBWAC policy.

I ultimately settled on a sequence of thirteen substages that separated the U-Boot

SPL’s bookkeeping, loading, and patching phases. Approximately 50 lines of code

were modified or added to achieve continuation-style substage transitions. However,

nearly half of these changes resulted from copy and pasting portions of the code to

allow for conditional compilation of the RBWAC-friendly control flow7.

5.5 BBxM U-Boot SPL RBWACµ policy
My goal for this case study was to design an RBWAC policy that ensures the following

security properties, p − p:

p: Regions of memory containing in-use code (text) cannot be overwritten (type

overlap, enforcement, or verification failure)

7Although I made minimal changes to the U-Boot codebase in order for RBWAC, I did alter
the compilation process so that unused functions were not built into the binary image. This change
assured that a debugger-friendly image could also fit in the BBxM’s on-chip RAM. Additionally, I
inserted markup in the form of empty #define statements to aid my static analysis tools.
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Figure 5.23: The first 4,800 repeated block writes that occur during a successful exe-
cution of the SPL, overlaid with the corresponding call graph (more-or-less) vertically
separated by time (function calls that happen earlier appear closer to the top of the
plot). The last 4,800 repeated block writes continue the pattern that starts at around
the 4,400th block write, all of which comprise the writes produced from loading the
target image from the SD card, one 512K sector at a time.
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Table 5.5: BBxM U-Boot SPL policy statistics at a glance

Total # substages 14
# failure substages 1

# bookkeeping substages 9
# loading substages 2

# patching substages 3
# named regions 27

# temporarily retyped symbols 20
# times region definitions change 9

Median # writes per substage 9
Min # writes per substage 0
Max # writes per substage 351999

p: Regions reserved for future substage images cannot be written to during book-

keeping phases (type overlap)

p: Loading and patching phases cannot corrupt data intended for bookkeeping

(type overlap, enforcement, or verification failure)

p: Regions reserved for external memory, the BSS, the heap, and the SRAM’s

global data cannot be written to by bookkeeping substages until initialized (type

overlap)

p: An overall reduction in the amount of writable memory at any given point

during execution (least privilege [182])

More formally, p requires that during any substage si ∈ S, and

∀ rj = (bj, ej) ∈ used_regions(si) which contain executable anywhere between bj and

ej (i.e., (in-use, executable) ∈(semantics_of(si, rj)) −→ Pµ(si, rj, write) = deny.

Any violation of this property indicates a clear type overlap, possibly due to a verifi-

cation or enforcement failure with respect to the target image’s metadata.

p requires that ∀ rj ∈ R in which any part of the region is reserved for a future sub-

stage, (i.e., there is some sk ∈ S where k > i and typeof_region(rj, sk) = future),

if typeof_substage(si) = β −→ Pµ(si, rj, write) = deny.

Any violation of this property also indicates a clear type overlap. However, because
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bookkeeping behaviors are generally not directly influenced by the target image, it is

unlikely that there are also any accompanying enforcement and/or verification failures.

p requires that ∀ si ∈ S where

typeof_substage(si) = δ ∨ π,

if typeof_substage(r∗, si) = b −→ Pµ(si, r
∗, write) = deny

Similarly to p, any violation of this property indicates type overlap, probably due to

either a verification or enforcement failure.

p: suppose that rs contains the SRAM, rs contains the BSS, rh is the heap, and

the global data is rg. Let sp be the earliest substage in the sequence of valid substage

transitions (in Qµ) where (initialized, SRAM) ∈ semantics_of(rs, sp),

∀ s∗ ∈ {s | typeof_substage(s) = β ∧ s is before sp} −→ Pµ(s∗, rs, write) = deny.

Similar assertions should also hold true for rh, rg, and ri. p is similar to p, in that

any violation of it would surface as a type overlap.

p requires that, for the range of all writables which we define as the function

W : S → R where W (s) = {r | Pµ(s, r, write) = allow} −→∑
∀ s∈S ∧ ∀ r=(b∗,e∗)∈W (s)

(e∗ − b∗) < e− b.

5.5.1 BBxM substage and region definitions

My U-Boot SPL policy divides execution into fourteen substages, including the final

success and failure substages. A simplified version of the U-Boot SPL’s function call

graph generated by the IDA Pro disassembler that also highlights the entrypoint,

success, and failure substages are depicted in figure 5.24.

A description of the behavior and type of each of the SPL’s substages is in table 5.6.
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} ready

heap, BSS ready

SRAM ready

SRAM initialized

final stack, global data ready

go_to_speed available

age_no_args

success

ter_load_image

β
board_init_r

δ
clear_bss

π
_main_finish

β
board_init_f

π
_mem_finish

β
nit_f_mem

π
_main

β
vel_init_finish

β
cpy_clk_code

δ
lowlevel_init

β
_start

β
Figure 5.25: Substage sequence defined by BeagleBoard U-Boot policy. Each arrow
contains a substage name and points to the policy’s subsequent substage. The label
below each substage’s arrow denotes the substage’s type. Important features common
to one or more substage are displayed above the substage arrows. } symbol is a
shorthand for target.

Figure 5.25 depicts a high-level view of these fourteen substages. Memory regions

are reclassified during nine of the substage transitions, including a small number of

variables (each treated as a tiny region) that are temporarily retyped from b to g (from

bookkeeping to global) for a single patching or loading substage. The regions

definitions and transitions for subsequent substages are described in table 5.7. Each

unique memory map labeled with the substage which brings it into effect can be found

in figures 5.26 through 5.28.

5.5.2 BBxM SPL’s policy architecture

A high-level (bipartite graph) view of the BBxM’s policy is depicted in figure 5.29. This

graph also highlights objects/regions that get relocated over the course of execution,

more specifically the stack and a special global data structure, by appending a counter

subscript to the region’s name indicating the number of times it has been previously

relocated.

Given the RBWACµ policy definition (table 5.3 on 101) and this policy instance’s

region and substage definitions, it should be relatively straightforward to recognize
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Table 5.6: BBxM SPL substage definitions

# entrypoint type description
0 _start β saves parameters, initializes hardware,

moves stack
1 lowlevel_init β initializes hardware
2 cpy_clk_code δ relocates go_to_speed function,

moves stack
3 lowlevel_init_finish β initializes hardware, environment for

executing C, moves stack to final loca-
tion

4 _main β initializes hardware, including SRAM
5 board_init_f_mem π zeros out region to hold global data
6 board_init_f_mem_finish β initializes hardware
7 board_init_f π tests SRAM
8 _main_finish β more initialization
9 clear_bss π zeros out BSS region, initializes heap
10 board_init_r δ loads target image and header meta-

data from filesystem on non-volatile
storage

11 spl_after_load_image β final sanity checks
12 _jump_to_image_no_args success successful boot
- hang failure failure to boot

Table 5.7: BBxM SPL region definition transitions

entrypoint type figure regions reclassified at entry
_start β 5.26a initial typing
lowlevel_init β 5.26b former stack (set by ROM) labeled r,

new stack labeled s
cpy_clk_code δ no change
lowlevel_init_finish β 5.26c stack moved, relocated go_to_speed

retyped r
_main β 5.27a stack moved
board_init_f_mem π 5.27b global data p, stack moved, future

image region f
board_init_f_mem_finish β 5.27c global data g, SRAM testing p
board_init_f π “revision” symbol temporarily g
_main_finish β 5.28a SRAM testing p if in BSS region, r

otherwise.
clear_bss π no change
board_init_r δ 5.28b BSS now b, heap now g, a FAT, heap

metadata temporarily g
spl_after_load_image β 5.28c image and image header set r
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(a)
__start (β)

s1
r0

ROM r1
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U-Boot text r4

U-Boot data r5

r6

global data r7
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(b)
lowlevel_init (β)
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global data r7
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go_to_speed r10
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(c)
lowlevel_init_finish (β)

readonly bookkeeping global stack patching future

Figure 5.26: BBxM U-Boot SPL substage region definitions (1 of 3). Each region’s
name is displayed on lower right-hand of its position in the memory map diagram,
shading indicates region’s type.
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board_init_f_mem_finish (β)

readonly bookkeeping global stack patching future

Figure 5.27: BBxM U-Boot SPL substage region definitions (2 of 3). Each region’s
name is displayed on lower right-hand of its position in the memory map diagram,
shading indicates region’s type.
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board_init_r (δ)
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spl_after_load_image (β)
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Figure 5.28: BBxM U-Boot SPL substage region definitions (3 of 3). Each region’s
name is displayed on lower right-hand of its position in the memory map diagram,
shading indicates region’s type.
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_start stack0

data

global data0

registers

lowlevel_init stack1

copy_clk_code go_to_speed

lowlevel_init_finish stack2

_main stack3

board_init_f_mem global data1

stack4

board_init_f_mem_finish

board_init_f ram test

main_finish

clear_bss BSS

board_init_r }

} header

heap

Figure 5.29: Explicitly defined semantic relationships between substages and regions
in BBxM’s U-Boot SPL policy. Nodes on left represent substages, nodes on the right
represent regions (a subscript denotes iteration of relocated region), and an edge
between a substage and region denotes write access is allowed.
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that property p (defined on p. 114) – regions of memory containing in-use code

(text) cannot be overwritten – holds for its code and self-relocated code. The region r5

which continuously holds the bootloader’s text is also always typed as r (read-only).

The region (r10) to where the loader self-relocates go_to_speed is simply not writable

during any substage in which it may potentially be called, and in particular the

lowlevel_init_finish substage, s3. More specifically, typeof_substage(s3) = β,

typeof_region(r10, s3) = r, and according to Pµ (as defined in figure 5.10 on page

96), @ p ∈ Pµ | p(s3, r10, write) = allow.

We can also observe how the regions holding the BSS (the consecutive ranges r18,

r19, r20, and r21), heap (r26), and global data (r11) are not writable by bookkeeping

stages until their respective contents have been initialized, i.e., that property p holds.

For example, the BSS contained in the address range (b18, e21) is not initialized until

s8. It is the case that ∀ si ∈ S | i ≤ 8 ∧ typeof_substage(si) = β (bookkeeping

substages that occur before the BSS is ready) and ∀ p ∈ Pµ:

@ rj = (bj, ej) ∈ used_regions(si) where

typeof_substage(si) = β ∧ (bj ≥ b18 ∨ ej < e21) ∧ p(si, rj, write) = allow.

Similar assertions can be made for the heap (also initialized during substage s8) and

the final global data structure (initialized during substage s6).

p (overall reduction in the amount of writable memory at any given point during

execution) clearly holds given the fact that there is more than one combination of

r∗ ∈ R and s∗ ∈ S such that P µ(s∗, r∗, write) = deny.

We can use similar arguments to establish p (that regions reserved for future

substage images cannot be written to during bookkeeping phases) and p (that loading

and patching phases cannot corrupt data intended for bookkeeping) also hold.

This RBWAC policy we constructed for the U-Boot BBxM SPL protects against

unintentional bugs and greatly curtails the control maliciously crafted target input

(not just a target’s image, but also file system metadata) may have over the loader by
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heavily reducing the range of addresses that can be written while the target is being

loaded, parsed, and interpreted (c.f. the ELF loader weird machine in [191]). This not

only exemplifies the principle of least privilege, but it also enhances our understanding

of what behaviors the executing bootloader is capable of exhibiting.

5.6 RBWACµ policy language
An RBWAC policy must contain both substage and region definitions. I implemented

a simple RBWACµ policy interpreter for this thesis that parses policies structured

with YAML markup. This interpreter requires two separate YAML files: one that

defines named regions, and another that defines substages and substage transitions.

Special source code markup (in the form of empty macro statements) is used to define

functions which are entrypoints to failure substages for convenience.

5.6.1 Region definitions

The YAML-formatted RBWAC policy language defines and labels regions of memory

in a hierarchical manner, as a forest of trees. Each region defined must be assigned a

name and the list of memory addresses it contains. A single region may map to one or

more ranges of addresses. This is reminiscent of tree-structured overlays, a technique

developed in the earlier days of computing when memory was a scarce resource [139].

This technique involved partitioning and loading a program that does not fit in the

system’s available physical memory so that memory could be temporally shared among

the program’s separated units. The treatment of memory resources as trees is also

a characteristic of modern memory allocaters such as Vmem [32], and linker scripts

such as those used by the GNU compilation toolchain.

A region defined in the policy language can contain zero or more subregions,

which themselves are also regions but must be located strictly within the address

ranges range of their parent. Sibling subregions may overlap with respect to each

other. A region that has no parents is referred to as a root region. All root regions
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SRAM

BSS target

target_header target_paylod

heap

Figure 5.30: Example BBxM U-Boot SPL region definitions for external RAM. Each
node denotes a region. Child nodes are named subregions located within their parent’s
region.

must be assigned unique names, these names act as unique identifiers. Subregions

that share a common parent must have unique names with respect to each other so

the can be uniquely identified with respect to their parents. For example, if there is a

root parent region named parent with two subregions c and c, these subregions

can be globally referenced with respect to their parent as parent.c and parent.c.

For example, the case study’s bootloader separates the SRAM (its external RAM)

into three major areas: the BSS, the target image, and the heap. The target im-

age region can be further divided into two subregions: the target’s header and the

target’s payload. This partitioning of the SRAM can be represented as the tree in

figure 5.30. We can uniquely refer to each of the SRAM’s subregions with respect to

their ancestors: SRAM, SRAM.BSS, SRAM.target, SRAM.heap, SRAM.target.tar-

get_header, SRAM.target.target_payload. In accordance with to our language’s rules

regarding subregions, the SRAM.BSS, SRAM.target, and SRAM.heap regions must

all be located within the bounds of the SRAM region. Similarly, the SRAM.target.tar-

get_header and SRAM.target.target_payloads must be located within SRAM.target.

However, because U-Boot tests the SRAM by writing and reading bytes from it

at a sequence of addresses that overlap with both the SRAM.BSS and addresses in

the SRAM that fall outside the BSS, heap, and target, the region layout we have

described and illustrated in 5.30 is incomplete. So that the this SRAM testing phase

can only modify these few addresses, there are a few additional SRAM subregions
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target
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sram_test remainder

Figure 5.31: More detailed BBxM U-Boot SPL region definitions for external RAM.
Each node denotes a region. Child nodes are subregions nested within their parent’s
region

defined the case study’s policy. The actual RBWAC policy’s SRAM’s regions are more

accurately represented by the tree in figure 5.31.

Multiple region definitions among different branches may have overlapping ad-

dresses. The RBWAC enforcement mechanism ensures that no two overlapping regions

among different branches are in-scope during a single substage. The concept of region

scope is discussed in section 5.6.2 on page 129 when I discuss substage definitions.

This allows us to define multiple region trees to describe a range of addresses that get

repurposed during execution. Any tree can be brought into or removed from scope as

a whole when its corresponding address ranges are repurposed.

As a kind of syntactic sugar, a region’s definition may include its initial type that

automatically used when introduced into scope. For example, if

SRAM.target.target_payload’s initial type is defined as read-only, its respective

memory ranges are assigned the r type when it is brought into scope during a substage

transition.

A region with children can be assigned an include_children attribute which

governs whether its children are automatically brought into scope along with it, this

attribute is False by default. If include_children is True, then when the region

is brought into scope, all of its children will also recursively be brought into scope.

If at any point during this recursive traversal, a subregion with include_children

explicitly set to false False is encountered, the recursive inclusion of children is
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discontinued for that branch.

For example, if figure 5.31 SRAM.target’s include_children attribute is True,

then SRAM.target.target_header and SRAM.target.target_payload will auto-

matically be brought into scope when SRAM.target is introduced. If SRAM.BSS’s

include_children attribute is False, then when SRAM.BSS is brought into scope, its

two children will remain out-of-scope until explicitly included.

Type is also recursively applied to children when a region is brought into scope

unless a child explicitly declares its own type.

For ease of use, a region’s address range can be defined using absolute addresses,

named constants, ELF symbols, ELF sections, or relative to other named regions

with simple arithmetic for convenience (similar to most macro, assembly, and linker

script conventions). A region’s address range can also be declared to expand to fit the

remainder of its parents region that are not covered by any of its siblings. For example,

if we directly specify the address ranges of SRAM.BSS and SRAM.BSS.sram_test when

defining the regions in figure 5.31, we can specify that there is sibling region called

SRAM.BSS.remainder that contains all of the addresses in SRAM.BSS that are not in

SRAM.BSS.sram_test. Additionally, a region can also divided into subregions based

on an externally produced description – a feature I used to define a separate subregion

corresponding to each register listed in the BBxM processor’s technical reference.

5.6.2 Substage definitions and region type transitions

In the YAML-formatted policy substage description, substages are defined in the same

order in which they should be executed during boot. Substages that denote failure

are not included in the file of substage definitions, and are instead simply defined by

a special annotation (in the form of an empty macro) at the substage’s entrypoint

(function definition) in the source code.

A substage definition must include its name (function entrypoint), type (β, π, or
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δ), and may optionally include region typing and region scope transition statements.

Any chunks of addresses that are not within the range of any in-scope region are

automatically typed as r (read-only) for this substage.

new_regions, reclassified_regions, undefined_regions, and

allowed_symbols are optional substage attributes. The new_regions attribute con-

tains a list of regions that should be brought into scope and typed according to their

definition (as specified in section 5.6.1). The first substage that is entered when the

bootloader is invoked must explicitly bring regions to which it wants to write into

scope. For example, our case study’s first substage’s new_region attribute includes

the Registers, RAM.stack0, RAM.scratch_space, and RAM.uboot_data regions be-

cause some of these regions are modified during this first substage.

Any region (and its children if include_children is True) listed in a substage’s

new_regions remains in-scope through later substages until they are included in a

later substage’s undefined_regions attribute. For example, the RAM.stack0 region

is listed in the first substage’s new_regions attribute so it is brought into scope

as this substage is entered. However, it is also listed in the subsequent substage’s

(lowlevel_init’s) undefined_regions attribute because the stack is moved before

this substage is entered, and thus is removed from scope upon entry to lowlevel_init.

When a region is listed in a substage’s undefined_regions attribute, it and its

children (regardless of its include_children attribute) are recursively removed from

scope before that substage is entered, and consequently its address ranges become

read-only until a region that overlaps with those address ranges is brought into

scope again.

When a region is brought into scope, its address ranges are typed accordingly for

the policy’s access decisions. A region’s type (and its children) may be changed when a

substage is entered by listing it and its new type in the substage’s redefined_regions

attribute. This new type continues to be assigned to the region until the region is
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redefined by a future substage (via redefined_regions) or is removed from scope

(via undefined_regions). For example, after U-Boot initializes the BBxM’s external

RAM during the _main substage, the SRAM-based SRAM.BSS.sram_test is brought

into scope as read-only (via the new_regions attribute) when it enters the subse-

quent board_init_f_mem substage. This region remains typed read-only until the

bootloader is ready to test the external RAM during the later board_init_f patching

substage. This retyping happens as the bookkeeping board_init_f_mem_finish stage

is entered by including (SRAM.BSS.sram_test, patching) in

board_init_f_mem_finish’s redefined_regions attribute. Eventually the

board_init_f patching substage is entered which may write to the SRAM.BSS.sram_test

patching region as it finishes initializing the external RAM.

Pseudocode written in a logical Python-like programming style which calculates

region scope changes during substage transitions can be found in figure 5.32. This

substage and region definition scheme allows us to statically check for conflicting or

overlapping region types for a given substage and calculate the set of addresses to

where writes are allowed during that substage.

For added convenience, any substage of type δ or π may define an allowed_symbols

attribute, which contains of list of variables defined in the bootloader’s source code

that need to be in a writable region for just that substage. The pseudocode in fig-

ure 5.35 demonstrates how these temporary allowances are included a policy’s decision

as whether to allow a write at a particular address to occur during the current substage.

5.7 RBWACµ instance and enforcement challenges
Although I have shown that RBWACµ is both useful and usable, it is not all sunshine

and rainbows. For example, RBWACµ (as well as RBWAC) does not generically

protect against all memory corruptions within legitimately related substages and

regions and it may not catch unintended substage transitions caused by memory
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def update_region_scope(region_scope,
new_regions,
undefined_regions,
reclassified_regions):

for r in undefined_regions:
region_scope.remove(r)

for r in new_regions:
region_scope.add(r)

for (r, type) in reclassified_regions:
if not region_scope.contains(r):

raise Exception("Region not in scope")
else:

region_scope.update_type(r, type)
# signal an error if there is a problem with the region definitions
# such as an interval overlap
# also assigns the type 'read only' to any intervals that are not
# explicitly contained within a region
region_scope.verify_intervals()
return region_scope

Figure 5.32: RBWACµ policy language’s region scoping pseudocode

corruption. Also, the tools I have developed to both instrument the bootloader and

enforce a policy impose a considerable overhead on bootloader execution – the U-Boot

SPL stage that normally takes a fraction of a second on QEMU-emulated hardware

takes minutes to run with my instrumentation that uses breakpoints to enforce policy.

Finally, it is generally not practical (and potentially unsafe) to run a debugger in

production software for enforcing security policies. Nevertheless, this all is merely a

prototype to demonstrate RBWACµ feasibility.

Heap non-determinism. It is not always possible to statically predict where

all data structures will be located at runtime. Even if the bootloader’s heap is

deterministic, we cannot always depend on a particular heap-allocated data structure

to being allocated at the same address every time the bootloader is executed. One

way to address the issue of mediating writes to heap-allocated objects is to create

separate heaps for data modified by bookkeeping, loading, and patching substages.
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regions_yml: region_definitions values
region_definitions: region region | ()

region:
name ":" region_type addresses include csv subregions

| ()

subregions: "subregions:" region | ()
addresses: "addresses:" address_values
address_values: addr_list | "remainder"
csv: "csv: " STRING | ()
values: "values:" value_entry value_entry | ()
addr_list: addr_range addr_list | ()
addr_range: "[" addr ", " addr "]"
addr: INTEGER | STRING

region_type:
"bookkeeping"

| "future"
| "patching"
| "readonly"
| "stack"
| "global"
| ()

include:
"include_children: True"

| "include_children: False"
| ()

value_entry: STRING | INT
name: STRING

Figure 5.33: Grammar for RBWACµ’s region definition language
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substages_yml: substage_entrypoint substages_yml | ()

substage_entrypoint:
name ":" type_decl reclassified undefined symbols new

type_decl: "substage_type:" substage_type
reclassified: "reclassified_regions:" reclass reclass | ()
reclass: name ":" substage_type | ()
undefined: "undefined_regions:" list | ()
symbols: "allowed_symbols:" list
new: "new_regions:" list | ()
list: name list | ()
substage_type: "bookkeeping" | "loading" | "patching"
name: STRING

Figure 5.34: Grammar for RBWACµ’s substage definition language

def is_address_writable(address,
current_substage,
region_scope):

if not bookkeeping_substage(current_substage):
if current_substage.allowed_symbols.contains(address):

return True
region = region_scope.region_containing_address(address)
return allowed(current_substage, region, WRITE)

Figure 5.35: Pseudocode implementing RBWACµ type policy
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Bootloader console environments. Some bootloaders provide mechanisms that

allow a user to manually instruct it how and where to load an image to boot and to

re-specify these parameters if it fails to boot the target. A linear substage description

may not be able to capture such behaviors at a desired granularity, but this possible

shortcoming can be addressed by future work as additions to the type system.

Variability in target image storage. Furthermore, many bootloaders allow for

flexibility in where and how the target image is stored (whereas my case study focused

only on a target stored on an SD card), meaning that further care must be taken to

separate bookkeeping from loading logic for each of the supported target locating and

loading methods.

Lazy device initialization. Similarly, it may be difficult to capture the behaviors

of just-in-time-style (lazy) device initialization at a desirable granularity given the

constraints of the RBWAC class described in this thesis. Again, such considerations

can be addressed in future work with help from the set of tools I developed for this

thesis.

Loading images as libraries, not targets. Some bootloaders, such as those

designed for general-purpose computers, may load an arbitrary number of images

from various sources (such as the extension ROM that can be found in network cards

connected to a PCI-type bus). This poses challenges for writing a useful RBWACµ

policy instance. Furthermore, these other loaded images themselves may include

code to be executed in the context of the main bootloader, which levies yet another

challenge in defining and enforcing RBWAC. Nevertheless, although these challenges

may not be as easily addressed in by the RBWAC class I presented here, I believe

that they are not inherent limitations to RBWAC as a whole and that extensions to

its type system will better address such issues.
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5.7.1 Static analysis of loaders – or –

“How are loaders different from all other software8”

It may be useful to employ more static analysis techniques in the future in order to

not rely so much on dynamic policy checking. However, in order to understand the

changes we may face when applying a static analysis technique to a loader, we must be

aware of what makes loaders, and especially bootloaders, different from other software.

All other software may potentially be executed multiple times, whereas

upon successful boot, bootloaders execute through completion only once.

All other software may execute in either an unprivileged hardware operating

mode or in both a privileged and unprivileged operating mode, whereas

bootloaders are only executed in a privileged hardware execution mode.

All other software may assume that all addressable memory is ready for

use, whereas bootloaders must tiptoe around what little addressable memory

is available as it initializes memory that is not yet available.

All other software has a stack available for them to use, whereas bootloaders

may not be able to make this assumption.

Although we may not need our static analysis to be cognizant of these differences if

we are only focusing on a loader’s write operations, static analysis tools that are not

aware of such low-level details and requirements are not as useful.

For example, the well-known and well-used Frama-C analysis framework is designed

to work with systems software but it mainly performs symbolic analysis on source code.

It does not understand assembly code nor does it naturally understand relocation, and

so it is best used to analyze bookkeeping phases. Even so, it requires any portions of

the loader’s source code written in assembly to be modeled in C. Although Frama-C

requires an architectural model of the hardware itself, this information is not enough

8Introduction is inspired by the Four Questions נשחנה) (מה traditionally asked by the youngest
capable child during a Passover seder meal.
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to usefully model a bootloader’s behavior because bootloaders are greatly affected by

the behavior of their memory-mapped registers.

In order to perform a useful Frama-C analysis of the U-Boot SPL, I had to manually

contribute these missing pieces. More details on how I worked with Frama-C to

produce a value analysis of U-Boot is documented in section 4.4.1 (page 64), appendix

C (page 165), and Frama-C analysis-related source code markup can be found in

appendix D (page 185).

Therefore, I developed a Frama-C plugin (source code is available in appendix

C.2 on page 173) that processes Frama-C’s value analysis results and extracts all

information on writes whose destination address has been (at least) partially resolved.

Using my plugin, I found that Frama-C was able to meaningfully resolve the destination

addresses of 593 out of the 1,596 write instructions present in the U-Boot binary image9.

Out of these 593 statically-resolved write destinations, only 43 of these resolved

destinations have a resolved write destination range greater than four bytes (the

size of a word). All of the 43 less-narrowly-resolved writes are located in hardware-

specific portions of the source code, making it possible to check their behavior against

the processor’s technical reference. These 593 statically-resolved write instructions

ultimately make up about 13% of all memory writes that occur during a successful

execution of the bootloader.

Because U-Boot’s substages are implemented as non-returning continuations and

includes the call stack from which the result was calculated, it is possible to determine

the substage during which each of these writes occur. Figure 5.36 shows an example of

some of the output from my Frama-C write destination analysis plugin formatted as:

“[dst] [<start_addr>,<end_addr>] <left_value> in <source_line> .. -><callstack>”,

such that,
9Although Frama-C does not have an understanding of U-Boot as a compiled binary, as it

operates at a source code level, using U-Boot’s debugging symbols (and gdb’s info line) command)
it is possible to uniquely identify which write instruction corresponds to a given line in the source
code.
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[dst] [0x48002264, 0x48002266] *((unsigned short volatile *)1207968356) in
/tmp/tmpQXzkhn/board/ti/beagle/beagle.c:526 ..
->frama_go->lowlevel_init->cpy_clk_code->lowlevel_init_finish->s_init-
>set_muxconf_regs

↪→

↪→

↪→

[dst] [0x490580D0, 0x490580D4] *((unsigned int volatile *)reg) in
/tmp/tmpQXzkhn/drivers/gpio/omap_gpio.c:71 ..
->frama_go->lowlevel_init->cpy_clk_code->lowlevel_init_finish->s_init-
>_main->board_init_f_mem->board_init_f_mem_finish->board_init_f-> c
mem_init->do_sdrc_init->get_board_mem_timings->get_board_revision-> c
gpio_direction_input->_set_gpio_direction

↪→

↪→

↪→

↪→

↪→

[dst] [0x4020FED8, 0x4020FEDC] gd->arch.omap_boot_device in
/tmp/tmpQXzkhn/arch/arm/cpu/armv7/omap-common/boot-common.c:105 ..
->frama_go->lowlevel_init->cpy_clk_code->lowlevel_init_finish->s_init-
>_main->board_init_f_mem->board_init_f_mem_finish->board_init_f-> c
_main_finish->clear_bss->board_init_r->spl_board_init-> c
save_omap_boot_params

↪→

↪→

↪→

↪→

↪→

[dst] [0x80000400, 0x80000404] *((unsigned int volatile *)(addr + 1024U))
in /tmp/tmpQXzkhn/arch/arm/cpu/armv7/omap-common/mem-common.c:39 ..
->frama_go->lowlevel_init->cpy_clk_code->lowlevel_init_finish->s_init-
>_main->board_init_f_mem->board_init_f_mem_finish->board_init_f-> c
mem_init->do_sdrc_init->write_sdrc_timings->mem_ok

↪→

↪→

↪→

↪→

Figure 5.36: Example output generated by Frama-C write destination analysis plugin
containing the call stack and possible write destination ranges for various memory
writes performed in the U-Boot source code in the form of:
[dst] [<start_addr>, <end_addr>] <left_value> in <source_line> .. -><callstack>

• start_addr and end_addr mark the range of destination addresses to which

this statement may write

• left_value is how Frama-C visually represents this resolved destination range

(as a dereferenced left-hand-side value)

• source_line is the location of this write in the source code

• callstack is the call stack (separated by “->”) from which this value was

calculated. Note that first function on this list is always frama_go, a function

that contains a C translation of U-Boot’s entrypoint.

For any write instruction destination that cannot be statically resolved, it is easy
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to imagine supplementing this static analysis with a compilation stage to inject range

checks that guard that particular write.

5.7.2 Rearchitecting systems to address RBWAC challenges

Although rearchitecting a system from the ground up is not a particularly practical

solution, certain architectural modifications could help us better apply an RBWAC

policy to its bootloaders.

For example, if we could set memory access permissions at a word granularity as

proposed in the Mondrian memory protection paper [227], the bootloader itself could

setup region access permissions during substage transitions. The proposed SAFE

system architecture which tags each addressed word with metadata, dynamically-

defined “authorities”, and call gates that allow transitions between these authorities

(beyond user and system modes) for privilege isolation, may be able to cleanly enforce

substage transitions and access controls [52].

These proposed architectural changes are forms of tagged architectures that

allow for “self-identifying data” and include instruction sets that incorporate these data

tags [77]. Tagging is not completely absent from commonplace modern architectures.

For example, page tables used for memory virtualization have metadata that are

essentially a page-granularity tags. In fact, grsecurity made use of otherwise-unused

page metadata to implement the equivalent of a no-executable bit for x86-based

hardware that lacked hardware-based memory execution protections [196].

5.8 Other applications of RBWAC
Up to this point, RBWAC has been exhibited as a system designed to reduce a

bootloader’s attack surface by enforcing memory accesses based on how the bootloader

is intended to operate. Yet, there are other potential uses for RBWAC and its

instrumentation suite. As demonstrated when I described how I developed a policy

for U-Boot, RBWAC can be used to extract information on how a bootloader behaves
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and gain an understanding of its overall control flow. Therefore, one can use it to

build and test models that represent how they believe the loader functions or how

they intend it to function. These same techniques and tools can be applied to all

types of software for blackbox and whitebox testing as well as reverse-engineering.

They can also be used as a general testing/fuzzing aid, to catch more subtle bugs (e.g.,

off-by-one errors) that surface as the target software processes malformed input.
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6
Future directions

Although my thesis covers a lot of ground, there is still plenty left to explore. Through-

out this thesis, I aimed to achieve a balance between practicality and academic inquiry;

the thesis, therefore, opens many questions in both realms. It acts as an exploratory

step towards trustworthy loaders and bootloaders, and demonstrates that is feasible

to build a stronger chain-of-trust based on simple properties and in a manner that

requires minimal changes to legacy code. Yet, there are many questions, ranging from

theoretical to practical, that must be addressed before we can build verifiably trust-

worthy loaders. Throughout the course of working on this dissertation, I encountered

an number of tangentially-related questions worth exploring which I also highlight in

this chapter.

6.1 Theory
Loaders act like machines – typically written in Turing-complete programming models

– that ultimately translate a Turing machine its reads in as input to a Turing machine

that becomes executed in its place, sometimes performing self-modification along the
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way. Although there is research on modeling and verifying self-modifying code, most

of it has either focused more generally on self-modification or on self-modification

observed in malicious software. Therefore, I see value in extending this work to focus

more specifically on the kind of self-modification performed by loaders and linkers – a

form of self-modification that aims to preserve (as opposed to obfuscate) the semantics

of the target image. Another important question is whether a loader needs to be

Turing-complete, or if it can be expressed in sub-Turing models that lend themselves

to easier verification. Yet another potential direction one could explore is to develop a

framework of Hoare-style reasoning, similar to Cai, Shao, and Vaynberg’s Certified

Self-Modifying Code [46], to model and verify behaviors, such as relocation, that are

common across all types of loaders.

6.2 Performance
Although my thesis did not focus much on performance issues, performance must be

addressed if the techniques I introduced are to be adopted. I have addressed some

performance concerns with potential improvements in section 5.7 (page 131), however it

is worth reiterating here that future work can endeavor to reduce runtime performance

costs via a combination of static analysis and injecting runtime policy checks instead

of relying on external instrumentation. It may also be worth considering potential

hardware extensions as a more general solution.

One also may want to study techniques from loaders past – more specifically the

overlay method many older loaders employed that allowed the system to execute a

binary image larger than the amount of memory available. Overlays were managed by

an overlay manager which was a paging/dynamic linking-like mechanism statically

built into a binary’s image that copies binary’s own unmapped segments into memory

when needed by overwriting unneeded segments. It may be worthwhile to build a

bootloader that, in the same manner of an overlay manager, incrementally loads
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pieces of itself as needed while discarding regions with which it is finished. This

would naturally limit the amount of available code/data1 and thus the loader’s own

capabilities at any given time.

6.3 “It’s not a bus, it’s a network!2”
Memory regions can naturally be represented as nodes on a tree whose layout and

relationships represent the address ranges enclosed by each region. What may not be

surprising is that a processor’s physical addresses can be modeled the same way. When

a processor reads an address’s value, there are electronic mechanisms in place – buses –

that dictate the semantics of this address and provide the CPU access to the addresses’

value. When we dig deeper into the true meaning of a physical address, we find that

this bus, often taken for granted by software engineers due to its transparency, is a

complex network in and of itself. Addressing may seem simple from the point of view

of a software developer because instruction sets present a consistent interface when

working with the abstraction of a physical address, however this simplicity is merely

an illusion. Hardware buses will continue to grow more complex, especially with the

ever-increasing popularity and complexity of SoCs (system on a chips). SoCs contain a

conglomeration of discrete IP (intellectual property) components connected by various

configurable buses and networking protocols such as the Advanced Microcontroller Bus

Architecture (AMBA), the Advanced Extensible Interface (AXI), and the Wishbone

Bus – all of which seem to be relatively unknown within the computer security

community. Given the large body of existing work on networks and distributed

systems, we should try to apply this body of knowledge to these buses so we can build

safer systems.

1C.f. Linux’s marking of some sections of code as init-only, discarded them at the end of system
initialization.

2Exclaimed Sergey Bratus during a lecture Travis Goodspeed gave to Sergey’s class on embedded
devices.
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6.4 Other tangentially-related research questions
What happens on the other size of a physical address’s abstraction barrier is dependent

on the hardware itself, but an address access request can potentially traverse multiple

types of buses, each of which potentially have their own private physical, link, and

networking layers – all of which imply that buses are managed by embedded processors.

Buses are networks, complete with internal nodes and edges, they are not merely a

network’s edges. Not only that, but their routers are smart and stateful. Many of the

more-recently discovered UEFI-related vulnerabilities (especially those related to x86’s

System Management Mode) take advantage of these networks being misconfigured. I

believe that there is value is more deeply exploring the relationships between buses,

networks, and routing of physical addresses.

There is another layer of complexity that those who work with systems software

rarely need to consider – physical addresses represent how the processor (and software

developer) interact with this network, but the primary processor is not the only node

that is allowed to initiate read or write requests on this network. Other hardware

components (that have their own private processor, firmware, and volatile memory)

may themselves interact with other endpoints (other hardware or the processor itself)

over the same network. These endpoints may have a completely different view of the

network, with an orthogonal addressing scheme imposed by the bus itself. This not

only makes it harder to reason about the network, but allows for the possibility that

different endpoints have conflicting views of the network. These conflicts should be

formally studied, and bootloaders may be a natural entrypoint to such research since

it is typically the bootloader that configures any non-hardwired topology. It may

be useful to pull from the well-established field of distributed systems in to identify

potential issues, especially as these buses become faster, more powerful, and more

complex.
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7
Conclusion

7.1 Concluding thoughts
Specifying formal properties of loaders, and especially bootloaders, may be underap-

preciated, but loader failures are certainly conspicuous when things go wrong. Not

only is it important to have correctly-implemented and secure loaders for our own

sanity, it is also important that loaders live up to their position as a foundation on

which we build our system’s trust. My thesis illustrates why current loaders are not

as trustworthy as they are treated by documenting the many ways loaders have failed

to act in a trustworthy way. I then strive to improve the trustworthiness of loaders

by developing the necessary tools to instrument a loader, analyzing its behaviors,

and proposing a novel typing-based method that allows us to semantically model a

loader’s intended behavior – one that targets and mediates a loader’s memory accesses

in a meaningful way. Finally, I designed and implemented languages and mechanisms

that allow for loader memory accesses policies to be defined and enforced – ultimately

demonstrating the feasibility and applicability of my method of modeling and media-
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tion by applying it U-Boot, a well-known and extensively used bootloader.

My thesis starts by describing the role loaders play in a system – which act as a

necessary bridge between a system’s hardware and software ecosystems, and exist in

the realm of the application binary interface (ABI). We have always implicitly trusted

loaders to operate correctly and in an benign manner. However, an increasing amount

of explicit trust is now being placed on bootloaders throughout this past decade as an

increasing number of loaders have been tasked with judging the trustworthiness of the

binary images they load. Examples of this explicit trust include Trusted Boot and

Measured Boot, and their designs hardly address the internals of the bootloader itself1.

My thesis addressed this pressing need to design and implement provably trustworthy

loaders by proposing a region-based type system that meaningfully govern a loader’s

behaviors.

In order to motivate and inform my type system’s design, I extensively discuss

weaknesses exhibited by real-world loaders across a variety of devices (in chapter 2

and provide a table of publicly reported vulnerabilities (CVEs) in appendix B). I then

discuss many of the challenges that make loader analysis and verification difficult in

chapter 3. Chapter 4 addresses some of these challenges using tools I implemented

and discusses how these tools were used to extract and describe the U-Boot SPL

bootloaders behaviors as it executed the BeagleBoard-xM (BBxM), a case study of

how these tools operate in practice.

The meat of my thesis’s proposed policy framework is presented in chapter 5,

which formally describes a typed region policy framework called RBWAC that is

capable of modeling a loader’s intended behaviors – distinguishing phases when

the loader is performing internal/bookkeeping tasks, from phases when the loader is

copying a subsequent substage to memory, and from those when the loader is patching

a subsequent stage. By explicitly separating these three types of intended behaviors,

1Even the well-known UEFI bootloader specification only minimally addresses bootloader inter-
nals.
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we are able to better build loaders that do not suffer from the kinds of weaknesses

loaders exhibit (as discussed in chapter 2). My policy discussion in chapter 5 presents

three policy definitions of increasingly complexity, two for a toy-sized, but realistic,

bootloader, and the third, most complex example, dealt with the BBxM’s U-Boot

SPL boot stage. This demonstrates both the feasibility and usefulness of my thesis’s

proposed policy framework. I then conclude this policy chapter with a discussion of

other possible uses for my thesis’s tools and policy framework. Finally, in chapter 6,

I present a few ideas of how this work can evolve and be extended, as well as other

possible research questions inspired by this thesis.

7.2 Final thoughts
My thesis has merely scratched the surface of to build safer bootloaders. There are

may potential directions this work can proceed, but, before I continue with this work,

it is important that I identify which of these ideas resonate with the wider research

community and industry. I would also like to see which components of this work

can be adopted into existing infrastructures and engineering environments. I hope

that those from academia and industry who have taken time to study this work will

consider its possibilities respond with their own interpretations and derivations.

In the spirit of open access, I have made the source code for my tools available at:

https://github.com/bx/bootloader_instrumentation_suite

The U-Boot source code, complete with my patches is available at: https://github.

com/bx/u-boot-extended

My patched version of QEMU that is fully compatible with U-Boot and is capable of

tracing watchpoints is available at https://github.com/bx/qemu-linaro-patched
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A patched version of openocd that supports BBxM JTAG debugging is available at

https://github.com/bx/openocd-patched
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A
RBWAC-inspired U-Boot

discoveries

Throughout my process of working with QEMU and U-Boot to develop an RBWAC

policy, I encountered many interesting quirks and (by)products of the its development

process that I discuss this chapter.

A.1 BBxM hardware and documentation
The BBxM has been around since 2010, and the SoC around which it was built, the

TI (Texas Instruments) am37x, has been around just as long. Despite their age, I

have noticed various quirks in both the hardware and its documentation that have

withstood the test of time as well as a number of revisions.

A.1.1 Documentation’s register tables

TI publicly released extensive documentation for the am37x, over 3000 pages long,

which included tables that identify many (if not all) of its memory-mapped registers.
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My register table scraping tools that were run on this document found multiple (20+)

instances where these tables suggest that two disparate registers are located at the

same physical address. These are likely bugs in the documentation.

A.1.2 ARM TrustZone security extensions

TI’s documentation uses the term ”public” to describe the processor’s on-chip-ROM-

based bootloader, an on-chip-RAM-based stack, and other bootloading-related objects.

What is not initially apparent is why the adjective public is being used in such contexts.

However, when we read between the documentation’s lines, we may find ourselves

pondering on why its entrypoint which is not where it should be for an ARM processor

(either at 0x00000000 or 0xFFFF0000) but instead is at 0x14000. Perhaps the SoC

design has some abnormalities, or perhaps there is a non-public portion of the ROM

whose entrypoint is at an expected address.

It appears that am37x makes use of its ARM processor’s TrustZone security

extensions and configures these security extensions so that a portion of its on-chip

ROM (which likely starts at address 0x00000000) is not-directly visible from the

so-called public ROM and, consequently, any standard hardware debugging tools.

Indeed, TrustZone-specific ARM instructions are present in the BBxM’s U-Boot

implementation (and unsurprisingly, they are written by a TI employee1). Indeed, it

turns out that the SoC’s documentation contains some information on how to interact

with this non-public portion of the boot ROM, although its not easy to find, as it

appears as a side-note displayed in a box marked caution located in the chapter on

device initialization.

It is often the case that information about a microprocessor’s internal boot ROM

is not made public, however it is almost surprising that TI’s documentation does not

directly state the existence of the am37x’s “secure” boot ROM given the large number

of details they provide on the chip’s boot ROM. Unfortunately, it is not uncommon
1U-Boot commit 45bf05854bc94ed8bae9e9114292895b990327ea
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for chip manufacturers to incorporate black boxes into a chip’s ROM that act as

highly privileged and trusted interfaces (e.g., system management mode and the Intel

Management Engine).

This tale about the BBxM’s “secret” use of TrustZone brings up a few thoughts

worth pondering, in particular:

• How do such unknown-unknowns affect the resulting strength of a security policy?

• How do we architect a security policy that incorporates any little knowledge we

have of these implicitly-trusted black-box interfaces (in this case provided by

the chip manufacturer)?

• Certain hardware-based security mechanisms, such as TrustZone, are sort of

like hardware fuses – they are mechanisms can only be used once. If multiple

stakeholders in a given manufacturing chain want to implement systems that

make use of these security extensions, the stakeholder who is earliest in the

manufacturing get first dibs, ultimately locking other stakeholders out from

making direct use of these security extensions. Therefore, such security extensions

will more likely be used by the chip manufacturer then an OEM and especially

then the end-user.

A.2 QEMU
QEMU’s implementation of a BBxM emulator includes an implementation of the

device’s on-chip boot ROM. This implementation comes in the form of an array of

bytes which represent how the boot ROM appears in memory. Figure A.1 shows a

small portion of this byte array found in the QEMU source code.

Although this implementation technique is interesting in and of itself, what is also

interesting is that the QEMU’s original ROM implementation is not compatible with

all of the bootloaders that directly run on hardware. QEMU’s ROM implementation

works with x-loader – the original initial bootloader used by the BBxM – not with
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1 0x08, 0x0c, 0x40, 0xe2, /* sub r0, r0, #2048 @ 2kB UND stack */
2 0xd3, 0xf0, 0x21, 0xe3, /* msr cpsr_c, #0xd3 @ enter SVC mode */
3 0x00, 0xd0, 0xa0, 0xe1, /* mov sp, r0 @ 23kB left for SVC stack */
4 0xdf, 0xf0, 0x21, 0xe3, /* msr cpsr_c, #0xdf @ enter SYS mode */
5 0x40, 0x04, 0xa0, 0xe3, /* mov r0, #0x40000000 @ r0 -> vba */
6 0x05, 0x09, 0x80, 0xe2, /* add r0, r0, #0x14000 */
7 0x10, 0x0f, 0x0c, 0xee, /* mcr p15, 0, r0, c12, c0, 0 */
8 0x60, 0x00, 0x80, 0xe2, /* add r0, r0, #0x60 @ r0 -> monitor vba */
9 0x30, 0x0f, 0x0c, 0xee, /* mcr p15, 0, r0, c12, c0, 1 */

10 0x1c, 0x00, 0x10, 0xe5, /* sub r0, [r0, #1c] @ r0 -> booting
parameter struct */↪→

11 0x01, 0xf0, 0xa0, 0xe1, /* mov pc, r1 */

Code fragment from QEMU linaro’s hw/misc/omap3_boot.c

Figure A.1: Sample of QEMU’s BBxM ROM implementation – instructions embed-
ded in an array of bytes

the U-Boot SPL. What makes x-loader compatible with QEMU’s emulated BBxM

ROM but not the U-Boot SPL is that QEMU’s ROM stores its parameter data (as

shown in figure A.2) within the boot ROM’s own read-only region even though it is

unlikely that the hardware’s on-chip boot ROM is even capable of storing parameters

in ROM. x-loader is perfectly happy to read its boot parameters from a region that

is not technically writable, whereas U-Boot refuses to interpret its parameters if the

are not located within the device’s on-chip RAM (as we can see in its source code in

figure A.3). I resolved this issue by patching QEMU so that its ROM implementations

stores its parameters in (its emulated) on-chip RAM, thus appeasing U-Boot.

These seemingly subtle differences in implementation can (and do) have a real

impact. They are not just “benign” example of red pills because they can also im-

pact behavior in hard-to-predict and hard-to-ignore ways. And yet, in this particular

instance, we cannot firmly say that QEMU’s ROM implementation is incorrect – al-

though it makes the most sense that their emulation stores such data in writable

memory, the chip’s technical reference says nothing specific about where these param-

eters may be located. Likewise, U-Boot’s sanity checks are extremely reasonable – it

makes sense to verify whether its parameters are stored in writable memory.
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Figure A.2: Layout of parameters passed from the on-chip boot ROM to the subse-
quent bootloader as published in the am37x technical specification [202]

1 void save_omap_boot_params(void)
2 {
3 u32 boot_params = *((u32 *)OMAP_SRAM_SCRATCH_BOOT_PARAMS);
4 struct omap_boot_parameters *omap_boot_params;
5 int sys_boot_device = 0;
6 u32 boot_device;
7 u32 boot_mode;
8

9 if ((boot_params < NON_SECURE_SRAM_START) ||
10 (boot_params > NON_SECURE_SRAM_END))
11 return;

Code fragment from U-Boots arch/arm/cpu/armv7/omap-common/boot-common.c

Figure A.3: U-Boot sanity checking the location of the parameters passed to it from
the boot ROM

153



A.3 U-Boot
U-Boot is an open source project that has been in existence since 1999. U-Boot,

as it stands today, is a result of the branching and merging of fairly independent

incarnations (often targeted to a specific architecture) of U-Boot trees. In fact, U-Boot

has developed a formal process of tracking these so-called “custodian trees”2. Because

of this, U-Boot’s source code harbors a variety of coding styles and design patterns

that address similar engineering tasks. There is also a large amount of code reuse in U-

Boot, including hardware-specific code that is reused by related hardware. This code

reuse is aided by preprocessor macros, a complex build environment, static libraries,

and what appears to be copy-and-paste development techniques. One example of a

possible copy-and-paste bug found in the source code is highlighted in figure 5.16 on

105 where I note inaccuracies in the markup that explains its relocation process in

section 5.4.1 on page 102.

A.3.1 Code bloat

These development techniques also result in both dead and unnecessary code which

can be problematic given the scarcity of RAM available early in the boot process of

some hardware. I personally ran into size/bloat issues while trying to build a version

of the SPL with debugging symbols.

We can get an idea of how much bloat is present in U-Boot my comparing the

sizes of the U-Boot SPL generated for the BBxM (MLO-uboot) and the equivalent

OMAP3-specific x-loader3 bootloader image (MLO-xload):

2http://www.denx.de/wiki/view/U-Boot/CustodianGitTrees#Philosophy_of_custodian_
trees

3x-loader is TI’s OMAP chip family specific bootloader and was what was eventually merged
into U-Boot to support the BBxM.
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> ls -s1h

total 76K

52K MLO-uboot

24K MLO-xload

The U-Boot SPL image is nearly twice the size of x-loader’s image!

One chunk of unnecessary code in U-Boot’s SPL is the function cpy_clk_code

which relocates the go_to_speed function. According to comments in the source

code, go_to_speed is relocated to a region of memory that is faster to access. More

specifically, the comment above cpy_clk_code4 which says the following:

/****************************************************

* cpy_clk_code: relocates clock code into SRAM where

its safer to execute

* R1 = SRAM destination address.

****************************************************/

go_to_speed5 is annotated with the following comments:

/********************************************

* go_to_speed: -Moves to bypass, -Commits clock dividers, -puts dpll

at speed

* -executed from SRAM.

* R0 = CM_CLKEN_PLL-bypass value

* R1 = CM_CLKSEL1_PLL-m, n, and divider values

* R2 = CM_CLKSEL_CORE-divider values

* R3 = CM_IDLEST_CKGEN - addr dpll lock wait

*

* Note: If core unlocks/relocks and SDRAM is running fast already it

4Found in U-Boot’s arch/arm/cpu/armv7/omap3/lowlevel_init.S
5Also, in U-Boot arch/arm/cpu/armv7/omap3/lowlevel_init.S
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* gets confused. A reset of the controller gets it back. Taking away

* its L3 when its not in self refresh seems bad for it. Normally,

* this code runs from flash before SDR is init so that should be ok.

********************************************/

In the case of the BBxM, cpy_clk_code unnecessarily relocates go_to_speed

because it is relocated into an address ranged backed by the same memory (and thus

the same speed) as its original location. Additionally, go_to_speed is never executed

by the SPL – a property that can be statically deduced.

A.3.2 Undefined registers

Using my PDF register table parsing tool I generated a RBWAC policy that specifically

targeted registers, to ensure that read-only registers are not written to by the bootloader

and that the bootloader does not write to non-existent registers. Because of this, I

discovered three memory addresses that U-Boot believes to be mapped to writable

registers but are not listed in the device’s technical reference. It is not clear as to

whether these registers are merely missing from the technical reference or that these

write accesses are indeed subtle (potentially code reuse-related) bugs. Regardless of

where the truth lies, given that this code that writes potentially undefined locations

has been unchanged since 2009 (or 2008 if we take into account its presence in the

x-loader implementation), we can see how RBWAC can also act as a useful software

testing and auditing tool.

A.3.3 Typing issues

Frama-C was able to identify multiple type violations that were not otherwise known,

which are discussed in section C.1.4 (page 170).
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A.3.4 Linkmap scripts and tricks

U-Boot implements a custom link map script which instructs the compilation toolchain’s

static linker in how to construct and order sections in its generated ELF image.

This script manipulates the static linker into storing select static variables, sorted al-

phanumerically by symbol name, in a special separate section they call .u_boot_list.

This trick allows for important hardware-specific data structures, such as those that

hold hardware information and driver function pointers, to be declared anywhere in

the codebase, but for the data structures themselves to be coalesced (by the linker)

into a single ELF section that contains them in a series of doubly-linked lists. This

is implemented in a linkmap script (arch/arm/cpu/armv7/omap-common/u-boot-

spl.lds) by instructing the linker to sort and combine all sections whose names match

.u_boot_list*_i2c_* into a single section named .u_boot_list and locate the re-

sult in the region defined by .sram using the following statements –

.u_boot_list : {
KEEP(*(SORT(.u_boot_list*_i2c_*)));

} >.sram

Where sram is defined in the same file as:

MEMORY { .sram : ORIGIN = CONFIG_SPL_TEXT_BASE,\
LENGTH = CONFIG_SPL_MAX_SIZE }

Entries in a linkmap list are declared and traversed via macros (located in in-

clude/linker_lists.h) such as:

#define ll_entry_declare(_type, _name, _list) \
_type _u_boot_list_2_##_list##_2_##_name __aligned(4) \

__attribute__((unused, \
section(".u_boot_list_2_"#_list"_2_"#_name)))
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B
Loader-related vulnerabilities

The table below contains a summary of loader-related weaknesses found in the database

of Common Vulnerabilities and Exposures (CVEs) in the National Vulnerability

Database published by NIST (National Institute of Standards and Technology), as

well as Vulnerability Notes (VNs) published by US-CERT (United States Computer

Emergency Readiness Team). This table is by no means complete – not just because

not all known vulnerabilities are disclosed as a CVE and/or VN, but also because CVE

records do not consistently contain enough information to discern if a vulnerability

is loader-related. This table lists CVEs and VNs that were either mentioned in a

publication (which is cited in the citations column of the table) or found while manually

searching the CVE database for records that contained at least one of the following

words: boot, loader, crafted, bypass, UEFI, BIOS, firmware. It is not possible for

me to definitely classify all CVEs that appear to be loader-related due to the brevity

of some database records, and so my assignation of a CVE’s underlying weakness is

sometimes judgment I made based on the available information.

Many of the vulnerabilities I pulled from these databases are expressed in a source-
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code granularity – integer overflows, buffer overflows, out-of-bounds (with respect

to a buffer) reads, null pointer dereferences, missing permissions checks, etc. Such

features are most often what a CVE entry describes and focuses on, but they also fail

to model a software instance’s underlying weaknesses and deficiencies in capturing the

software’s higher-level goals and intentions1. A higher-level intent violation cannot

always be captured as a single source code-level bug – and this table, which draws

most of its content from CVEs, merely provides insight into the general landscape of

loader vulnerabilities. Section 5.2.6 (on 92) more formally defines the meaning of type

confusion, verification failure, and ordering failure.

Table B.1: Example loader-related vulnerabilities

ID Citations Weakness Software

CVE-2000-0729 verification failure FreeBSD

CVE-2004-1070 [198] type confusion Linux

CVE-2004-1071 [198] type confusion Linux

CVE-2004-1072 [198] type confusion Linux

CVE-2004-1073 [198] type confusion Linux

CVE-2006-0741 [198] type confusion Linux

CVE-2006-6165 [81, 102] type confusion FreeBSD

CVE-2007-3912 [65] verification failure Debian

CVE-2007-4315 [160, 161] verification failure AMD driver

CVE-2007-4993 [232] type confusion XEN

CVE-2007-5549 verification failure Cisco IOS

CVE-2010-0482 verification failure Windows

CVE-2010-0486 verification failure Windows

CVE-2010-0487 verification failure Windows

continued on next page
1MITRE is working to address such omissions with their Common Weakness Enumeration (CWE),

which seeks to formalize, standardize, and classify types of software weaknesses.
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Table B.1 – continued from previous page

ID Citations Weakness Software

CVE-2010-0830 type confusion glibc

CVE-2010-4346 [112, 147] type confusion Linux

CVE-2011-2503 [141] verification failure SystemTap

CVE-2011-2883 verification failure Citrix

CVE-2012-0151 [87] verification failure Windows

CVE-2012-2625 verification failure PyGrub

CVE-2012-3485 [209] type confusion Tunnelbick

CVE-2013-0977 [225] type confusion iOS

CVE-2013-2195 type confusion XEN libelf

CVE-2013-2598 [176] type confusion LittleKernel

CVE-2013-3582 [120, 223] verification failure BIOS

CVE-2013-3900 [177] verification failure Windows

CVE-2013-3949 enforcement failure OS X

CVE-2014-1273 [83, 225] verification failure iOS

CVE-2014-2961 [43, 119, 220] enforcement failure UEFI

CVE-2014-3880 [78] type confusion FreeBSD

CVE-2014-3714 type confusion XEN

CVE-2014-4325 [70] enforcement failure LittleKernel

CVE-2014-4455 [137] type confusion iOS

CVE-2014-4707 [98] enforcement failure LittleKernel

CVE-2014-4859 [121, 218] type confusion tianocore

CVE-2014-4864 [121, 218] type confusion tianocore

CVE-2014-7840 [148] verification failure QEMU

CVE-2014-8271 [217] type confusion tianocore

continued on next page
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Table B.1 – continued from previous page

ID Citations Weakness Software

CVE-2014-8273 [221, 228] type confusion BIOS

CVE-2014-8838 verification failure OS X

CVE-2014-9793 [115] type confusion Android

CVE-2014-9795 [114, 197] type confusion LittleKernel

CVE-2014-9796 [128] type confusion LittleKernel

CVE-2014-9798 [134] type confusion Android

CVE-2014-9801 [132] type confusion Android

CVE-2014-9802 [133] type confusion Android

CVE-2015-0949 [118, 219] type confusion BIOS

CVE-2015-1145 verification failure OS X

CVE-2015-1146 verification failure OS X

CVE-2015-2830 [117] enforcement failure Linux

CVE-2015-3709 [23] verification failure kextd

CVE-2015-3802 [137] verification failure iOS

CVE-2015-3803 [137] verification failure iOS

CVE-2015-3805 [137] verification failure iOS

CVE-2015-3806 [137] verification failure iOS

CVE-2015-5281 [60] verification failure Grub2

CVE-2015-5839 [137, 169] type confusion iOS

CVE-2015-6128 verification failure Windows

CVE-2015-7055 [224] enforcement failure iOS

CVE-2015-7079 [224] enforcement failure iOS

CVE-2015-8888 [129] verification failure iOS

CVE-2015-8890 [135] type confusion Linux

continued on next page
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Table B.1 – continued from previous page

ID Citations Weakness Software

CVE-2015-8891 [144] type confusion LittleKernel

[184] verification failure QNX RTOS

[94, 165, 168] verification failure OpenBSD

CVE-2015-8892 [116] verification failure Android

CVE-2015-8893 [130] type confusion LittleKernel

CVE-2015-8967 [181] enforcement failure Linux

CVE-2016-0014 ? Windows

CVE-2016-0016 ? Windows

CVE-2016-0018 ? Windows

CVE-2016-0020 ? Windows

CVE-2016-0041 ? Windows

CVE-2016-0042 ? Windows

CVE-2016-0160 enforcement failure Windows

CVE-2016-0428 verification failure Solaris

CVE-2016-0807 ? elf_utils

CVE-2016-1000 ? Windows

CVE-2016-1738 verification failure iOS dyld

CVE-2016-2050 type confusion libdwarf

CVE-2016-2226 type confusion GNU libiberty

CVE-2016-3850 [131] type confusion LittleKernel

CVE-2016-4488 [27] type confusion GNU binutils

CVE-2016-4489 [28] type confusion GNU libiberty

CVE-2016-4490 [29] type confusion GNU libiberty

CVE-2016-4491 [30] type confusion GNU libiberty

continued on next page
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Table B.1 – continued from previous page

ID Citations Weakness Software

CVE-2016-4492 [26] type confusion GNU libiberty

CVE-2016-4493 [26] type confusion GNU libiberty

CVE-2016-5027 [140] type confusion libdwarf

CVE-2016-5031 [2] type confusion libdwarf

CVE-2016-5034 [2] type confusion libdwarf

CVE-2016-5035 [2] type confusion libdwarf

CVE-2016-5247 verification failure BIOS

CVE-2016-7247 verification failure Windows

CVE-2016-7275 ? Office

CVE-2016-7292 verification failure Windows

CVE-2016-7410 [2] type confusion libdwarf

CVE-2016-7511 [2] type confusion libdwarf

CVE-2016-8680 [145] type confusion dwarfdump

CVE-2016-8681 [146] type confusion dwarfdump

CVE-2016-9379 [233] verification failure pygrub

CVE-2016-9380 [233] verification failure pygrub

CVE-2016-10254 verification failure elfutils

CVE-2016-10255 verification failure elfutils

CVE-2017-0039 verification failure Windows

CVE-2017-7210 [172] type confusion objdump

CVE-2017-7607 type confusion elfutils

CVE-2017-7608 type confusion elfutils

CVE-2017-7609 verification failure elfutils

CVE-2017-7610 type confusion elfutils

continued on next page
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Table B.1 – continued from previous page

ID Citations Weakness Software

CVE-2017-7611 type confusion elfutils

CVE-2017-7612 type confusion elfutils

CVE-2017-7613 verification failure elfutils

CVE-2017-8421 [108] verification failure objdump

CVE-2017-8396 [164] type confusion libbfd

CVE-2017-9038 type confusion binutils

CVE-2017-9039 type confusion binutils

CVE-2017-9040 type confusion binutils

CVE-2017-9041 type confusion binutils

CVE-2017-9042 type confusion binutils

CVE-2017-9043 type confusion binutils

CVE-2017-9044 type confusion binutils

VU#127284 (not posted) [231] type confusion BIOS

VU#255726 (not posted) [120] enforcement failure BIOS
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C
U-Boot Frama-C value analysis

C.1 Running a Frama-C analysis on U-Boot
The well-known and widely-used Frama-C analysis framework has been designed to

work with systems software. Performing a Frama-C analysis on the U-Boot SPL for

the BBxM was not a straight-forward task. For example, because Frama-C does not

analyze assembly code, I manually translated portions of U-Boot written in assembly

into C. Frama-C both had trouble with a number of type declarations in U-Boot, as

well as issues with the alignment of some of its write operations. I will discuss how I

addressed these and other analysis difficulties in this appendix, provide statistics on

what kind of information I derived from Frama-C, as well as discuss how I performed

the analysis.

C.1.1 Frama-C value analysis statistics

My primary goal of working with Frama-C was to perform a value analysis on U-Boot

in order to calculate the set of possible values of all variables. Because U-Boot’s
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source included a number of important memory addresses stored as variables, a value

analysis would likely highlight a number of write operations whose destination address

could be statically calculated. In other words, using Frama-C terminology, I was

interested in how many lvalues (which can be thought of as the address of the variable

on the left-hand side of an expression/the expression result’s storage location) could

be calculated by a value analysis. It turns out that Frama-C statically resolves about

13% of all write instructions evaluated during a successful boot. This and other value

analysis-related statistics are summarized in table C.1.

Table C.1: Frama-C BBxM U-Boot SPL value analysis statistics

Total number write instructions 1,596

Statically-resolved writes 593 (37%)

Writes whose resolved destination range is > 4 bytes 43

Runtime writes performed by these pre-resolved instructions ∼13%

C.1.2 Frama-C ARM architecture support

As of when I performed this analysis, Frama-C did not natively support the ARM

architecture. Therefore, I needed to implement an ARMv7-based model of the BBxM

processor architecture’s endiandness and fundamental data types for Frama-C – this

can be found in section C.3.

C.1.3 U-Boot source code post-preprocessing tool

U-Boot has a fairly complex build process and thus I decided to provide Frama-

C with the source code produced by the C preprocessor instead of U-Boot’s “raw”

source code. However, for many reasons discussed in this chapter, Frama-C is unable

to analyze Frama-C’s preprocessed code as-is. Because I wanted to minimize the

number of changes I made to U-Boot’s source code, I created a tool that instead

patches the intermediary/preprocessed source produced by the preprocessor. This
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tool performs simple string manipulations based on markup (in the form of empty

preprocessor macros) that I insert into the source code and produces a patched set of

(post-)preprocessed files for Frama-C to analyze.

C.1.4 Incorporating assembly into the Frama-C analysis

The U-Boot bootloader performs a number of important operations that are imple-

mented in assembly, all of which I manually translated into C for Frama-C.

Because Frama-C cannot naively analyze the U-Boot’s assembly-based entry point,

I translated its entrypoint into a C function named frama_go which is also where

I instruct Frama-C to begin its analysis. In this C-based translation, I use global

variables to act as the instruction set’s registers. I use C-preprocessor line control

macros1 to instruct the compilation tools from where in the source code each translated

assembly statement originated.

A globally-referenced pointer to U-Boot’s global data structure, which stores point-

ers to all of U-Boot’s bookkeeping data such drivers, is stored in a specially-reserved

general-purpose register, r92, and is chiefly addressed using DECLARE_GLOBAL_DATA_PTR

macro-generated inline assembly code (defined in arch/arm/include/asm/global_data.h)

which “stores” the global data’s address as a pointer named gd:

#define DECLARE_GLOBAL_DATA_PTR register volatile gd_t *gd asm ("r9")

As-is, Frama-C treats this statement’s assembly instruction as having no side-effects.

Also, because the gd variable is declared to be volatile, by default Frama-C assumes

that its value is non-deterministic which results in any value written to gd not getting

propagated through the value analysis, and consequently a less-than-useful value
1Line control macros inform the C compiler as to where a line of source code has originated

which is useful for debugging purposes. Such file/line-number information are typically transparently
managed by the compilation toolchain. These macros allow me to tell the compilation tools to act as
if a particular line of source code originated in a different file. More specifically, I use them to identify
the location of the assembly code from which a line of C code was translated. Information on GNU
line control macros can be found in the GCC manual or at https://gcc.gnu.org/onlinedocs/
cpp/Line-Control.html.

2The r9 register is reserved by making use of the compiler’s -ffixed-r9 option.
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analysis. To address this volatility issue, I modeled the global data structure using

ACSL (ANSI/ISO C Specification Language) ghost variables. ACSL is source-code

markup language for specifying formal properties that guide analysis and are only

visible to Frama-C and in practice are written as comments in the source code being

analyzed. ACSL ghost variables are C-like variables and statements that are only

visible to Frama-C.

In order to address the issues of the global data structure being accessed using as-

sembly, post-preprocessor tools transforms all DECLARE_GLOBAL_DATA_PTR statements

into statements that instead define gd as a plain, uninitialized pointer so all lines

containing the string

register volatile gd_t *gd asm ("r9") become gd_t *gd;. I then use ACSL

ghost statements to populate the value of gd. This is achieved using the following

ACSL:

//@ volatile gd reads read_gd writes write_gd;

This statement instructs Frama-C to use the value generated by the ghost function

read_gd whenever gd is read and to call the ghost function write_gd whenever gd is

written. read_gd and write_gd are implemented by the following ACSL statements:

/*@ ghost gd_t *gdghost;

gd_t *read_gd(gd_t **p) {return gdghost;}

gd_t *write_gd(gd_t **p, gd_t *x) {return gdghost = x;}

*/

The gdghost ghost variable is used to store the global data address in place of the

r9 register. gdghost is used in conjunction with read_gd and write_gd to emulate

the job of the r9 register for the Frama-C analysis.

Unfortunately Frama-C does not natively support the double indirection I use

to implement these ghost functions (as of the time I performed this analysis), and
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thus required I make two minor changes to its annotation type checker. This patch is

shown in section C.5.

Another piece of U-Boot code written in assembly I ported to C is a function

named get_cpu_id (implemented in arch/arm/cpu/armv7/omap3/sys_info.c) which

uses a special ARM instruction to retrieve information from (and about) the processor.

As a workaround, I simply used my post-preprocessing tool to replace the function’s

inline assembly with a statement that produces the value that the BBxM’s processor

always returns, according to its technical reference. The following shows U-Boot’s

implementation of get_cpu_id with my markup macro that instructs post-preprocessor

tool to replace the statement following the macro.

1 u32 get_cpu_id(void) {
2 struct ctrl_id *id_base;
3 u32 cpuid = 0;
4 #define ___FRAMAC_cpuid_spl_PATCH
5 __asm__ __volatile__("mrc p15, 0, %0, c0, c0, 0":"=r"(cpuid));

The macro in line 4 in the above source code is instructs my post-preprocessor to

replace the statement on line 5 with cpuid = 0x3;.

A final bit of assembly that needs to be replaced is part of a test the bootloader

performs that checks from where in its address spaces it is currently executing, it

implemented in arch/arm/cpu/armv7/omap3/sys_info.c and shown below with my

markup macro.

1 static u32 get_base(void) {
2 u32 val;
3 #define ___FRAMAC_val_spl_PATCH
4 __asm__ __volatile__("mov %0, pc \n":"=r"(val)::"memory");
5 val &= 0xF0000000;
6 val >>= 28;
7 return val;
8 }
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The macro on line 3 instructs my post-preprocessor to replace the inline assembly

on line 4 with val = get_base;, so that the address of get_base (the entrypoint of

the currently executing function) is written to val in place of the program counter.

Patching type violations

Frama-C has identified multiple type violations in the U-Boot source code which cause it

to prematurely halt analysis and are, therefore, patched by my post-preprocessor. More

specifically, it identified two instances of statements within void functions that return

values. For example, the void function puts() (implemented in common/console.c)

includes the following statements:

1 if (!gd->have_console)
2 #define ___FRAMAC_noreturn_spl_PATCH
3 return pre_console_putc(c);

My macro on like 2 instructs the post-preprocessor to remove the string “return”

from the return statement on line 3.

There is also an instance in which a void function (__bad_unaligned_access_size)

is called in a manner where it is expected to return a value (in include/linux/un-

aligned/generic.h), more specifically:

1 #define ___FRAMAC_void_to_int_spl_PATCH
2 extern void __bad_unaligned_access_size(void);
3

4 #define __get_unaligned_le(ptr) ((__force typeof(*(ptr)))({ \
5 __builtin_choose_expr(sizeof(*(ptr)) == 1, *(ptr), \
6 __builtin_choose_expr(sizeof(*(ptr)) == 2, get_unaligned_le16((ptr)), \
7 __builtin_choose_expr(sizeof(*(ptr)) == 4, get_unaligned_le32((ptr)), \
8 __builtin_choose_expr(sizeof(*(ptr)) == 8, get_unaligned_le64((ptr)), \
9 __bad_unaligned_access_size())))); \

10 }))

The function declaration on line 2 states that __bad_unaligned_access_size is

void, yet its use on line 9 implies that it returns a value. The markup macro on line 1
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instructs my post-preprocessor to replace the function declaration’s void return type

with int, thus pacifying Frama-C.

C.1.5 Alignment issues

Frama-C’s value analysis process occasionally has issues handling pointers whose

values were calculated via bit manipulation operations. This result in alignment-issues

that affect its analysis. In order to address these issues, my post-preprocessor tool

makes the following adjustments:

The statement offset = (offset & 15) << 27 | (offset & 0x300) << 17;

(in arch/arm/cpu/armv7/omap3/sdrc.c) inhibits useful analysis when offset is later

treated as a pointer, therefore my post-preprocessor tool statically sets the value of

offset to zero, which conveniently happens to always be offset’s value.

C.1.6 Static linker-generated structures

Frama-C also has issues performing value analyses on U-Boot’s linker-generated

lists as described in section A.3.4 on page 157. More specifically, Frama-C has

alignment-related troubles with the macros when it locates the beginning of a list

using ll_entry_start() and instances where the length of a list is calculated using

ll_entry_count(). My post-preprocessor replaces such problematic statements with

the value they ultimately produce – values which (fortunately) can be statically

calculated by hand.

C.1.7 Recursion

Frama-C cannot soundly analyze recursive function calls. Fortunately, there is only one

such call in the BBxM U-Boot SPL source code, and it occurs while parsing a storage

device’s DOS-based partition table (get_partition_info_extended implemented in

disk/part_dos.c) –
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return get_partition_info_extended(dev_desc, lba_start,

ext_part_sector == 0 ? lba_start : relative,

part_num, which_part, info, disksig);

My post-preprocessor replaces this recursive call with a simple return statement.

C.1.8 Frama-C execution options

To analyze the U-Boot SPL, I execute Frama-C with the following value-analysis

options set:

• -no-initialized-padding-locals and

-val-initialization-padding-globals=no: Disables implicit initialization

of padding bits for local and global variables.

• -absolute-valid-range 0x10000000-0xffffffff indicates that all absolute ad-

dresses must fall in this range and any accesses outside this range are deemed to

be invalid. This range in particular includes all volatile memory and registers.

• -val-builtin malloc:Frama_C_malloc_fresh,free:Frama_C_free: asks

Frama-C to use its builtin definitions of malloc and free instead of using the

ones provided by U-Boot. I decided to opt for this because Frama-C runs into

alignment issues while analyzing U-Boot’s built-in malloc implementation.

• -slevel=1: instructs the value analysis plugin to superimpose up to one state

while unrolling control flow – the default value is 0. A value of 1 allows for more

precision. Counter-intuitively, a value of 1 speeds up the analysis process – value

analysis takes less than eight minutes when slevel is 1, but it takes more than

50 hours (and then crashes) when it is set to its default value, 03.

3I assume this behavior is indicative of a bug in Frama-C’s analysis, however addressing such a
bug is clearly out-of-scope of this thesis.
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C.2 Frama-C destination analysis plugin source

open Cil_types
open Cil

module SS = Set.Make(String)
module Funcall_info = struct

type funcallinfo = {
lval:Cil_types.lval;
exp:Cil_types.exp;
lexloc:Cil_types.location;
lvalloc:Locations.location;
lvalfulladdr:Integer.t;
instr:Cil_types.instr;
min:Abstract_interp.Int.t option;
max:Abstract_interp.Int.t option;

}

let form_callstack_string cs =
List.fold_right (fun c s -> (match c with (f, _) ->

s ^ "->" ^
(Ast_info.Function.get_name

f.fundec))) cs ""↪→

let build_callinfo s kinstr =
if (Db.Value.is_computed()) && (Db.Value.is_reachable_stmt s) then

(match Db.Value.get_stmt_state_callstack ~after:true s with
None -> SS.empty

| Some(state) -> Value_types.Callstack.Hashtbl.fold
(fun cs state r ->

(if Cvalue.Model.is_reachable state then
SS.add (form_callstack_string cs) r

else
SS.empty))
state SS.empty)

else
SS.empty

end

let help_msg = "Resolves as many memory write destinations as possible"

module Self = Plugin.Register
(struct

let name = "write destination resolver"
let shortname = "dst"
let help = help_msg

end)
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module Enabled = Self.False
(struct

let option_name = "-dst"
let help = "when on (off by default), " ^ help_msg

end)
module More_enabled = Self.False

(struct
let option_name = "-dst-more"
let help = "print more dst info, " ^ help_msg

end)

module Output_file = Self.String
(struct

let option_name = "-dst-output"
let default = "-"
let arg_name = "output_file"
let help =
"file where the message is output (default:

console)"↪→

end)

module Location_helper= struct
let loc_to_loc_and_size loc =
(Locations.loc_to_loc_without_size loc, Locations.loc_size loc)

let loc_bytes_to_addr_int l =
try

match l with
(Locations.Location_Bytes.Map(m), _) -> (
match Locations.Location_Bytes.M.find Base.null m with

Ival.Set([|i|]) -> i
| _ -> Integer.zero) (* zero or more than one results *)

| _ -> Integer.zero (* no location map *)
with Not_found -> Integer.zero

let get_min_max l =
try

(match l with
(llv, lsz) ->
(match ((Cvalue.V.project_ival llv), (Int_Base.project lsz)) with

(v, sz) ->
(match Ival.min_and_max v with

(Some(min), Some(max)) ->
(Some(min),
Some(Integer.add max

(Integer.native_div sz (Integer.of_int
8))))↪→
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| _ -> (None, None))))
with Cvalue.V.Not_based_on_null -> (None, None)

end

module Instr_info = struct
type instrinfo = {

lval:Cil_types.lval;
exp:Cil_types.exp;
lexloc:Cil_types.location;
lvalloc:Locations.location;
lvalfulladdr:Integer.t;
instr:Cil_types.instr;
min:Abstract_interp.Int.t option;
max:Abstract_interp.Int.t option;
callinfo:SS.t;

}

let lexloc_string info =
let ({Lexing.pos_fname=f1; Lexing.pos_lnum=l1; _}, _) = info.lexloc in
Printf.sprintf "%s:%d" f1 l1

let get_lvalloc info =
info.lvalloc

let instr_string info =
let s = Printer.pp_instr Format.str_formatter info.instr in
Format.flush_str_formatter s

let eval_lval lval kinstr =
!Db.Value.lval_to_loc ~with_alarms:CilE.warn_none_mode kinstr lval

let callstack_str info =
if SS.is_empty info.callinfo then

""
else

SS.choose info.callinfo

let lval_string info =
let s = Printer.pp_lval Format.str_formatter info.lval in
Format.flush_str_formatter s

let build_instrinfo st kinstr =
if Db.Value.is_computed() then

match st.skind with
Instr (Set(lv, e, location) as s) ->
(let lvl = eval_lval lv kinstr in
(let (min, max) = Location_helper.get_min_max
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(Location_helper.loc_to_loc_and_size lvl) in
(let ii = {

lval = lv;
exp = e;
lexloc = location;
lvalloc = lvl;
lvalfulladdr = Location_helper.loc_bytes_to_addr_int

(Location_helper.loc_to_loc_and_size lvl);
instr = s;
min = min;
max = max;
callinfo = Funcall_info.build_callinfo st kinstr;

}
in Some(ii))))

| _ -> None
else

None
end

let print_msg =
object (self : 'self)

val mutable tofile = not Output_file.is_default()
val mutable file_chan = if Output_file.is_default() then

stdout
else
open_out (Output_file.get())

method ival_string ival =
(let s = Abstract_interp.Int.pretty

Format.str_formatter ival in
Format.flush_str_formatter s;)

method print msg =
if tofile then

Printf.fprintf file_chan "%s\n" msg
else

Self.result "%s" msg
method print_range info =

(let {Instr_info.min=min; Instr_info.max=max; _} = info in
match (min, max) with

Some(min'), Some(max') ->
self#print (Printf.sprintf "[%s, %s] %s in %s .. %s\n"

(self#ival_string min')
(self#ival_string max')
(Instr_info.lval_string info)
(Instr_info.lexloc_string info)
(Instr_info.callstack_str info));
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| _ -> ();)
method print_more info enabled =

if enabled then
(let s = Locations.pretty Format.str_formatter

(Instr_info.get_lvalloc info) in
self#print (Printf.sprintf "%s = %s (%s) .. %s \n"

(Instr_info.instr_string info)
(Format.flush_str_formatter s)
(Instr_info.lexloc_string info)
(Instr_info.callstack_str info)););

()
method close =

if tofile then
close_out file_chan

end

class print_dsts print_obj more = object (self: 'self)

inherit Visitor.frama_c_inplace

method! vstmt_aux s =
(match Instr_info.build_instrinfo s self#current_kinstr with

Some(info) -> (print_obj#print_range info;
print_obj#print_more info more)

| _ -> ());
Cil.DoChildren

end

let run () =
if Enabled.get() then

Visitor.visitFramacFileSameGlobals (new print_dsts print_msg
(More_enabled.get()))

(Ast.get ());
print_msg#close

let () = Db.Main.extend run

C.3 ARM architecture definition for Frama-C

open Cil_types

let arm = {
version = "arm machdep";

compiler = "gcc";
cpp_arch_flags = [];
(* All types but char and long long are 16 bits *)
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sizeof_short = 2;
sizeof_int = 4;
sizeof_long = 4;
sizeof_longlong = 8;
sizeof_float = 4;
sizeof_double = 8;
sizeof_longdouble = 8;
sizeof_ptr = 4;
sizeof_void = 4;
sizeof_fun = 4;
wchar_t = "int";
alignof_str = 1;
alignof_fun = 1;
char_is_unsigned = false;
underscore_name = false;
const_string_literals = false;
alignof_aligned = 8;
has__builtin_va_list = true;
__thread_is_keyword = true;
alignof_short = 2;
alignof_int = 4;
alignof_long = 4;
alignof_longlong = 8;
alignof_float = 4;
alignof_double = 8;
alignof_longdouble = 8;
alignof_ptr = 4;
little_endian = true;
size_t = "unsigned int";
ptrdiff_t = "int";

}

let () = File.new_machdep "arm" arm

C.4 C representation of U-Boot assembly code

#include <common.h>

DECLARE_GLOBAL_DATA_PTR;

#include <configs/ti_armv7_common.h>
#include <spl.h>
#include <asm/arch-omap3/clock.h>

u32 *sp;
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u32 *r1;
u32 *r0;
#define ___FRAMAC_go_to_speed_spl_ADDR_PATCH
u32 *framac_go_to_speed = 0;
#define ___FRAMAC_lowlevel_init_spl_ADDR_PATCH
u32 *framac_end = lowlevel_init;
#define ___FRAMAC___bss_end_spl_ADDR_PATCH
u32 *framac__bss_end = 0;
#define ___FRAMAC___bss_start_spl_ADDR_PATCH
u32 *framac__bss_start = 0;
u32 *framac_ret;
void cpy_clk_code(u32 *ptr);
void lowlevel_init_finish();
ulong board_init_f_mem(ulong top);
int _main();
int _main_finish();
void s_init();
u32 spl_relocate_stack_gd();
void frama_go();
int lowlevel_init();
struct omap_boot_parameters bxparams = {0, 8, 0, 0, 2, 0};
struct omap_boot_parameters **bxparamptr = 0x4020E024;

/*@ terminates \false;
@ ensures \false;

*/
#define ___FRAMAC_artifical_spl_ENTRYPOINT
void frama_go()
{
#line 23 "arch/arm/cpu/armv7/omap-common/lowlevel_init.S"

*bxparamptr = (u32 *) &bxparams;
#line 50 "arch/arm/cpu/armv7/omap3/lowlevel_init.S"

lowlevel_init();
#line 44 "frama_c_tweaks.c"
}
/*@ terminates \false;

@ ensures \false;
*/
int lowlevel_init() {

sp = LOW_LEVEL_SRAM_STACK;
#line 188 "arch/arm/cpu/armv7/omap3/lowlevel_init.S"

*sp = &frama_go;
#line 198 "arch/arm/cpu/armv7/omap3/lowlevel_init.S"

cpy_clk_code(SRAM_CLK_CODE);
#line 55 "frama_c_tweaks.c"
}
/*@ terminates \false;
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@ ensures \false;
*/
void lowlevel_init_finish()
{
#line 206 "arch/arm/cpu/armv7/omap3/lowlevel_init.S"

s_init(); // not defined in any header
#line 64 "frama_c_tweaks.c"
}

/*@ terminates \false;
@ ensures \false;

*/
void cpy_clk_code(u32 *ptr)
{

r0 = framac_go_to_speed;
while (ptr < framac_end) {

#line 53 "arch/arm/cpu/armv7/omap3/lowlevel_init.S"
*ptr = *r0;

#line 52 "arch/arm/cpu/armv7/omap3/lowlevel_init.S"
ptr++;

#line 53 "arch/arm/cpu/armv7/omap3/lowlevel_init.S"
r0++;

#line 80 "frama_c_tweaks.c"
}

#line 60 "arch/arm/cpu/armv7/omap3/lowlevel_init.S"
lowlevel_init_finish();

#line 84 "frama_c_tweaks.c"
}
/*@ terminates \false;

ensures \false;
*/
int _main()
{

sp = CONFIG_SYS_INIT_SP_ADDR; // ti_armv7_commoh.h
// bic sp, sp, #7 /* 8-byte alignment for ABI compliance

*/↪→

#line 86 "arch/arm/lib/crt0.S"
board_init_f_mem(sp); //common.h

#line 95 "frama_c_tweaks.c"
return -1; // shouldn't happen

}
ulong board_init_f_mem_finish(ulong framac_ret)
{

sp = framac_ret;
#line 94 "arch/arm/lib/crt0.S"

board_init_f(0); //common.h
#line 103 "frama_c_tweaks.c"
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return -1;
}
/*@ terminates \false;

ensures \false;
*/
int _main_finish() {
#line 140 "arch/arm/lib/crt0.S"

framac_ret = (u32) spl_relocate_stack_gd(); // not in any header but
defined in spl/spl.c↪→

#line 112 "frama_c_tweaks.c"
if (framac_ret != 0) {
sp = framac_ret;

}
#line 145 "arch/arm/lib/crt0.S"

clear_bss();
#line 118 "frama_c_tweaks.c"
}
/*@ terminates \false;

@ ensures \false;
*/
int clear_bss(){

// clear out bss, spl.h
#line 158 "arch/arm/lib/crt0.S"

r1 = framac__bss_end; //@ assert \valid(r1);
#line 149 "arch/arm/lib/crt0.S"

r0 = framac__bss_start; //@ assert \valid(r0);
//@ loop pragma WIDEN_HINTS r0, 0x80000000, 0x80030144;

#line 130 "frama_c_tweaks.c"
while (r0 != r1) { //@assert \pointer_comparable(r0, r1);
//@ assert \valid(r0+(0..4));

#line 167 "arch/arm/lib/crt0.S"
*r0 = 0;
r0++;

#line 136 "frama_c_tweaks.c"
}

#line 184 "arch/arm/lib/crt0.S"
board_init_r(gd, gd->relocaddr); //common.h

#line 140 "frama_c_tweaks.c"
}

dpll_param *get_36x_core_dpll_param()
{
#define ___FRAMAC_core_36x_dpll_param_spl_ADDR_PATCH

dpll_param *core_36x_dpll_param;
return core_36x_dpll_param;

}
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dpll_param *get_36x_per_dpll_param()
{
#define ___FRAMAC_per_36x_dpll_param_spl_ADDR_PATCH

dpll_param *per_36x_dpll_param;
return per_36x_dpll_param;

}

dpll_param *get_36x_per2_dpll_param()
{
#define ___FRAMAC_per2_36x_dpll_param_spl_ADDR_PATCH

dpll_param *per2_36x_dpll_param;
return per2_36x_dpll_param;

}

dpll_param *get_36x_iva_dpll_param()
{
#define ___FRAMAC_iva_36x_dpll_param_spl_ADDR_PATCH

dpll_param *iva_36x_dpll_param;
return iva_36x_dpll_param;

}

dpll_param *get_36x_mpu_dpll_param()
{
#define ___FRAMAC_mpu_36x_dpll_param_spl_ADDR_PATCH

dpll_param *mpu_36x_dpll_param;
return mpu_36x_dpll_param;

}

dpll_param *get_core_dpll_param()
{
#define ___FRAMAC_core_dpll_param_spl_ADDR_PATCH

dpll_param *core_dpll_param;
return core_dpll_param;

}

dpll_param *get_per_dpll_param()
{
#define ___FRAMAC_per_dpll_param_spl_ADDR_PATCH

dpll_param *per_dpll_param;
return per_dpll_param;

}

dpll_param *get_per2_dpll_param()
{
#define ___FRAMAC_per2_dpll_param_spl_ADDR_PATCH

dpll_param *per2_dpll_param;
return per2_dpll_param;
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}

dpll_param *get_iva_dpll_param()
{
#define ___FRAMAC_iva_dpll_param_spl_ADDR_PATCH

dpll_param *iva_dpll_param;
return iva_dpll_param;

}

dpll_param *get_mpu_dpll_param()
{
#define ___FRAMAC_mpu_dpll_param_spl_ADDR_PATCH

dpll_param *mpu_dpll_param;
return mpu_dpll_param;

}
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C.5 Frama-C source code patch

diff -r -u frama-c-Phosphorus-20170501.orig/src/kernel_services/ c
ast_queries/logic_typing.ml
frama-c-Phosphorus-20170501.patched/src/kernel_services/ast_queries/ c
logic_typing.ml

↪→

↪→

↪→

--- frama-c-Phosphorus-20170501.orig/src/kernel_services/ast_queries/ c
logic_typing.ml 2017-06-01 04:02:17.000000000
-0400

↪→

↪→

+++ frama-c-Phosphorus-20170501.patched/src/kernel_services/ast_queries/ c
logic_typing.ml 2017-08-13 08:30:31.903248755
-0400

↪→

↪→

@@ -4044,7 +4044,6 @@
(not (isVoidType ret || is_varg_arg))
&& isPointerType arg1
&& Cil_datatype.Typ.equal (typeOf_pointed arg1) ret_type

- && Cil.typeHasAttributeDeep "volatile" ret
-> (* matching prototype: T fct (T *arg1) when T has some

volatile attr*)↪→

checks_tsets_type fct ret_type (* tsets should have type: T *)
| _ ->

@@ -4076,7 +4076,6 @@
&& isPointerType arg1
&& Cil_datatype.Typ.equal arg2 ret_type
&& Cil_datatype.Typ.equal (typeOf_pointed arg1) ret_type

- && Cil.typeHasAttributeDeep "volatile" ret
->
(* matching prototype: T fct (T *arg1, T arg2)

when T has some volatile attr *)
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D
BBxM U-Boot SPL stage

RBWAC policy definition

D.1 Region definitions

regions:
ROM:

type: "readonly"
addresses: [0x40000000, 0x4001C000]

RAM:
addresses: [0x40200000, 0x40210000]
include_children: True
type: "readonly"
subregions:
rom_stack:

type: "stack"
addresses: ["ROM_STACK_START", "ROM_STACK_END"]

downloaded_image:
addresses: ["ROM_STACK_END", 0x4020FFB0]
subregions:
downloaded_image_text:
type: "readonly"

185



addresses: ["RAM.downloaded_image.start", ".text.end"]
downloaded_image_data:
type: "bookkeeping"
addresses: [".text.end", "__image_copy_end"]

unused:
type: "readonly"
addresses: ["__image_copy_end", "SCRATCH_SPACE_ADDR"]

scratch_space:
type: "bookkeeping"
addresses: ["SCRATCH_SPACE_ADDR",

"OMAP5_SCRATCH_SPACE_END"]↪→

remainder:
type: "readonly"
addresses: ["OMAP5_SCRATCH_SPACE_END", 0x4020F000]

public_stack:
type: "readonly"
include_children: True
addresses: [0x4020F000, 0x4020FFB0]
subregions:

beginning:
type: "readonly"
addresses: [0x4020F000, 0x4020f840]

cpy_clk_code:
type: "future"
addresses: [0x4020f840, "0x4020f840 + lowlevel_init -

cpy_clk_code"]↪→

stack_rest0:
addresses: ["RAM.downloaded_image.public_stack. c

cpy_clk_code.end",
0x4020ff20]

↪→

↪→

stack_rest1:
addresses: [ 0x4020ff20, "RAM.downloaded_image.end"]

rest0:
addresses: ["RAM.downloaded_image.end", 0x4020fffc]
type: "readonly"

rest1:
addresses: [0x4020fffc, RAM.end]
type: "readonly"

RAM1:
include_children: True
type: "readonly"
addresses: ["RAM.start", "RAM.end"]
subregions:
begin:
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type: "readonly"
addresses: ["RAM.start", ".text.end"]

downloaded_image_data:
type: "bookkeeping"
addresses: [".text.end", "__image_copy_end"]

later_stack:
type: "readonly"
addresses: ["__image_copy_end", "0x4020f840 + lowlevel_init -

cpy_clk_code"]↪→

global_data:
type: "stack"
addresses: ["0x4020f840 + lowlevel_init - cpy_clk_code",

0x4020ff20]↪→

end:
type: "readonly"
addresses: [ 0x4020ff20, "RAM.end"]

SRAM:
type: "readonly"
addresses: [0x80000000, 0xc0000000]
include_children: True
subregions:
bss:

addresses: [0x80000000, 0x80030144]
subregions:
sram_test:
type: "patching"
addresses: [[0x80000000, 0x80000008], [0x80000400,

0x80000404]]↪→

bss_rest:
addresses: "remainder"

after_bss:
addresses: [0x80030144, "CONFIG_SYS_TEXT_BASE -

sizeof_struct_image_header"]↪→

type: "readonly"
image_header:

type: "future"
addresses: ["CONFIG_SYS_TEXT_BASE -

sizeof_struct_image_header", "CONFIG_SYS_TEXT_BASE"]↪→

image:
type: "future"
addresses: ["CONFIG_SYS_TEXT_BASE", "CONFIG_SYS_TEXT_BASE +

main.image_size"]↪→

post_image:

187



addresses: ["CONFIG_SYS_TEXT_BASE + main.image_size",
"CONFIG_SYS_SPL_MALLOC_START"]↪→

heap:
type: "readonly"
addresses: ["CONFIG_SYS_SPL_MALLOC_START",

"CONFIG_SYS_SPL_MALLOC_START +
CONFIG_SYS_SPL_MALLOC_SIZE"]

↪→

↪→

nonbss:
type: "readonly"
addresses: ["CONFIG_SYS_SPL_MALLOC_START +

CONFIG_SYS_SPL_MALLOC_SIZE", 0xc0000000]↪→

include_children: True
subregions:
sram_test:
type: "patching"
addresses: [[0xA0000400, 0xA0000404], [0xA0000000,

0xA0000008]]↪→

rest:
addresses: "remainder"

Registers:
csv: "regs.csv"
type: "global"
include_children: True

missing_control_padconf0:
type: "global"
addresses: [0x48002150, 0x48002154]

missing_control_padconf1:
type: "global"
addresses: [0x48002154, 0x48002158]

missing_protection_mech_0:
type: "global"
addresses: [0x68010060, 0x68010068]

values:
SRAM_STACK: 0x4020fffc
SCRATCH_SPACE_ADDR: 0x4020E000
OMAP5_SCRATCH_SPACE_END: 0x4020E030
ROM_STACK_START: 0x40200000
ROM_STACK_END: 0x40200800
CONFIG_SYS_SPL_MALLOC_START: 0x80208000
CONFIG_SYS_SPL_MALLOC_SIZE: 0x100000
CONFIG_SYS_TEXT_BASE: 0x80100000
sizeof_struct_image_header: 64
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D.2 Substage definitions and region retyping rules

_start:
substage_type: "bookkeeping"
new_regions: ["ROM", "RAM", "Registers", "missing_control_padconf0",

"missing_control_padconf1", "missing_protection_mech_0"]↪→

lowlevel_init:
substage_type: "bookkeeping"
reclassified_regions:

RAM.rest0: "stack"
RAM.rest1: "stack"
RAM.rom_stack: "readonly"

cpy_clk_code:
substage_type: "loading"

lowlevel_init_finish:
substage_type: "bookkeeping"
reclassified_regions:

RAM.downloaded_image.public_stack.stack_rest0: "stack"
RAM.downloaded_image.public_stack.stack_rest1: "stack"
RAM.downloaded_image.public_stack.cpy_clk_code: "readonly"
RAM.rest1: "readonly"

_main:
substage_type: "bookkeeping"
undefined_regions: ["RAM.rom_stack",

"RAM.downloaded_image.scratch_space",
"RAM.downloaded_image.public_stack", "RAM.rest1", "RAM.rest0",
"RAM.downloaded_image.unused",
"RAM.downloaded_image.public_stack.beginning",
"RAM.downloaded_image",
"RAM.downloaded_image.public_stack.stack_rest1",
"RAM.downloaded_image.public_stack.stack_rest0",
"RAM.downloaded_image.downloaded_image_text",
"RAM.downloaded_image.downloaded_image_data",
"RAM.downloaded_image.public_stack.cpy_clk_code"]

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

reclassified_regions:
RAM1.global_data: "stack"
RAM1.later_stack: "readonly"
RAM1.end: "readonly"
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new_regions: ["RAM1"]

board_init_f_mem:
substage_type: "patching"
reclassified_regions:

RAM1.global_data: "patching"
RAM1.later_stack: "stack"
SRAM.bss.sram_test: "readonly"

new_regions: ["SRAM"]

board_init_f_mem_finish:
substage_type: "bookkeeping"
reclassified_regions:

RAM1.global_data: "global"
SRAM.bss.sram_test: "patching"
SRAM.image: "future"
SRAM.image_header: "future"

board_init_f:
substage_type: "patching"
allowed_symbols: ["revision"]

_main_finish:
substage_type: "bookkeeping"
reclassified_regions:

SRAM.bss: "patching"
SRAM.nonbss: "readonly"

undefined_regions: ["SRAM.bss.sram_test"]

clear_bss:
substage_type: "patching"

board_init_r:
substage_type: "loading"
reclassified_regions:

SRAM.bss: "bookkeeping"
SRAM.heap: "global"

allowed_symbols: ["mem_malloc_start", "mem_malloc_end",
"mem_malloc_brk", "_u_boot_list_2_i2c_2_omap24_0",
"spl_boot_list", "mmc_devices", "mem_malloc_brk",
"current_mallinfo", "sbrk_base", "av_", "max_sbrked_mem",
"max_total_mem", "cur_dev", "fat_registered", "spl_image",
"cur_dev_num", "do_fat_read_at_block",
"get_contents_vfatname_block", "cur_part_info"]

↪→

↪→

↪→

↪→

↪→

↪→
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spl_after_load_image:
substage_type: "bookkeeping"
reclassified_regions:

SRAM.image: "readonly"
SRAM.image_header: "readonly"

jump_to_image_no_args:
substage_type: "bookkeeping"

D.3 U-Boot source code
All bootloader analysis was based on revision fa85e826c of the U-Boot git repos-

itory, which can be retrieved from http://git.denx.de/u-boot.git. The source

code I ultimately worked with, including all patches, is available at fork located at

https://github.com/bx/u-boot-extended
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