
21:06 Reversing the Fairplay 710 Baseball Scoreboard
by EVM

The local baseball league where my kids play has
some old electronic FairPlay 710 scoreboards that
needed rehabilitation. FairPlay is a line of score-
boards made since 1975 by the Fairtron Corpora-
tion, which is still around in some fashion. The
boards in our league date to 1992 and have be-
come disused because of the way they were originally
wired. At a league meeting over the summer, some-
body asked what it would take to make them WiFi
controlled. In this article, I’ll walk through my RE
process and my WiFi controller implementation, in
the off chance that any of you fine neighbors want
to rig up something similar.

At installation the boards were wired up to 110V
AC power and a low voltage signal line. The pro-
cessor box inside the board takes a 1/4 inch au-
dio cable, and controls the bulbs. The board is
comprised of standard E26/A19 bulb sockets (for
the Ball/Strike/Out/Hit/Error lights) and E26/A15
bulb sockets (for all of the digit displays). The sig-
nal line is usually terminated indoors with a corre-
sponding audio jack. The controller box can then
be plugged into the jack to control the board.

On the two primary fields of play these jacks were
put in the top level of a snack shed—a sort of score-
keeping booth. The problem is that no parent wants
to be banished to the booth, so the boards don’t get
used. We wanted to make it so that parents could
easily operate the boards from their phone, sitting
comfortably in the bleachers.

The Controller

Since it was going to be logistically difficult to haul
an oscilloscope out to the field, I decided to attack
the controller box. After popping open the case I
saw a beautiful little old lady of a board, featuring
a Motorola 68HC11 and a 128K EPROM. Normally
I would be all about popping that EPROM into a
reader and dropping the image into a disassembler,
but I figured that would be a long path to getting re-
sults, since the signal was probably pretty straight-
forward. And like a batting practice fastball, it sure
was.

Stealing Signals (like an Astro)

I could easily see the red (signal) wire hooked up
to the “ring” part of the 1/4 inch audio jack, and
the black (ground) wire hooked up to the “tip” part.
When I clipped my oscilloscope probes onto these
parts of the connector, I could immediately see the
data pulse train output by the controller and the
encoding was very clear. (Figure 5.)

_
/ \
\ / <− Tip : S i gna l ground
/_\
|_| <− Ring : S i gna l
| |
| | <− S l eeve : Chass i s ground

The FairPlay signal uses RS-232 signal levels
(±5V), but uses a proprietary protocol. In RS-232,
each bit takes the same amount of time, with a 1
being a logical high (+5V) and a 0 being a logi-
cal low (−5V). The length of each bit is determined
by chosen baud rate. In the FairPlay protocol each
symbol contains both a high part and low part, and
the difference between a 1 and a 0 is the length of
the high part. Each symbol is 30 microseconds long,

17

Figure 2: FairPlay 710 scoreboard and internal processor box.

Figure 3: FairPlay controller buttons and label.

18

Figure 4: FairPlay BA41A controller board.

19

Figure 5: Scope capture of FairPlay signal.

a 0 symbol is 5 microseconds high and 25 microsec-
onds low, a 1 symbol is 20 microseconds high and 10
microseconds low. The messages go from controller
to board, there is no path for a response from the
scoreboard.

This particular model uses a 56 bit message word
that is repeated every 50 milliseconds. (See Fig-
ure 6.) I determined the fields by pressing controller
buttons while it was hooked up to the oscilloscope
and watching which bits change. For the digit en-
coding I cycled through all possibilities once I had a
proof-of-concept implementation running on a Rasp-
berry Pi. See Figure 7 for an explanation of the bit-
fields in the message. Notice that this is how it is
transmitted on the wire.

Overkill: The Correct Amount of Kill

You might be doing the math in your head and
thinking that there are precisely zero things that
happen in a baseball game that require 50ms tim-
ing in a scoreboard. But I think it’s likely that this
same protocol is used in FairPlay scoreboards for
sports like basketball or hockey that have a game
clock. (Such a clock needs to be accurate to tenths
of seconds.) My guess is that other FairPlay boards
of similar vintage for other sports probably use the
same encoding and timing, with different message
words.

You might expect a protocol like this to have the
controller transmit numerical values and then the
scoreboard would figure out which bulbs to turn on,
but it doesn’t work that way. For the Ball, Strike,
and Out fields, each bulb directly maps to bits in the
message. The score and inning digits are controlled
by a single byte in the message, but each digit is
made up of 13 bulbs. This means not every bulb
can be directly controlled. Nor does it work like a
seven-segment display.

20

Figure 6: Repeating messages in FairPlay protocol.

1 Byte # B i t f i e l d Key
0 | br x x x e i t (3) | br − br i gh t (1) / dim (0)

3 1 | h o o s t s t b b b | h − h i t e − e r r o r
2 | inn ing ones d i g i t | i t − i nn ing tens d i g i t (3 b i t s)

5 3 | home ones d i g i t | x − unused
4 | home tens d i g i t | o − out

7 5 | guest ones d i g i t | s t − s t r i k e
6 | guest tens d i g i t | b − ba l l

Figure 7: Bitfields in the FairPlay protocol.

21

The bulbs map to the 8 bits of the byte in the
following format:

007
2 5 1

567
4 4 2

337

For instance you can render the digit 3 in two
ways, with either the pattern 0x4F 0xCF.

1 XX XXX
X X

3 X or l i k e t h i s : XX
X X

5 XX XXX

Here are the mappings for every digit:

1 unsigned char pattern [] = {
// 0 1 2 3 4

3 0xBF, 0x86 , 0xDB, 0x4F , 0xE6 ,
// 5 6 7 8 9

5 0xED, 0xFD, 0x87 , 0xFF , 0xEF
} ;

To fully implement the WiFi control, I hooked
up a Raspberry Pi Zero to the new Pi Pico board
via UART and then I have a Pi Pico GPIO output
hooked up to a MAX3232. (Thanks to good neigh-
bor Goodspeed for that tip.) I have the Pi serve up
a pretty simple PHP script that writes the current
settings to a file, and a little server program that
converts these settings into the proper 56-bit mes-
sage word. The Pico program just reads the current
56-bit message and generates the signal which is con-
verted to ±5V by the MAX3232. Code is available,
of course.7

7git clone https://github.com/evm-apl/FairPlay || unzip pocorgtfo21.pdf FairPlay.zip

23

