
21:09 An ELF Palindrome for AMD64
by Netspooky

The first Binary Golf Grand Prix was a challenge
issued on Twitter to create a small binary that ex-
ecuted the same forwards as it did backwards. In-
cluded were certain rules, such as ensuring execu-
tion past the halfway point in the binary, and that
scores would be based on the ratio of overall number
of bytes executed to total bytes in the file.

The binary I chose to target was a 64-bit ELF
binary, due to my familiarity with creating weird
ELFs. I began investigating strategies for creating a
palindromic binary in this format because there are
quite a few sensitive areas that must remain intact
for a binary to run at all.

Initial Efforts

I had already established a baseline of a barebones
golf’d 64-bit ELF, and my previous attempts to pro-
duce the smallest 64-bit ELF yielded a binary that
was 84 bytes in size. I chose this as my starting
point.

Since I used nasm to create ELF files, I began
by first flipping the entire source code backwards
after the end of my existing source code, and metic-
ulously placing bytes in the correct order. After I
finished, I used a Perl one-liner to flip the binary
backwards, then executed both binaries and com-
pared their hashes to validate my work.

The next stop was to create a payload that would
be both valid, and easy to work with in both direc-
tions. My first idea was to use alphanumeric shell-
code, as outlined in Phrack 57:15,19 to have a series
of single byte instructions that would also display
a palindrome in the hex dump output. The issue
with this approach is that alphanumeric shellcode is
based on 32-bit x86, which wouldn’t work to run on
64-bit Linux.

I also wanted my palindrome to be readable, and
since palindromes tend to rely on the ambiguity of
punctuation to work, my palindrome would have to
use words that could be read if presented as a single
string of alphanumeric characters. I decided to go
with the phrase “PULLUPIFIPULLUP,” because it was
readable. Testing this in a disassembler showed that
certain characters would not be valid machine code.

I tested all of the alphanumeric characters in a
disassembler and realized that even fewer charac-
ters are usable than in 32-bit mode. This is due
to prefix instructions taking the place of references
to smaller registers, and certain encodings changing.
These were the characters that were safest to use:

Op Instruction Char
50 push rax P
51 push rcx Q
52 push rdx R
53 push rbx S
54 push rsp T
55 push rbp U
56 push rsi V
57 push rdi W
58 pop rax X
59 pop rcx Y
5a pop rdx Z

19unzip pocorgtfo21.pdf phrack5715.txt

42

Luckily, there are vowel sounds that can be used
to find some words and write my own palindrome.
An online Scrabble word finder came in handy for
this. After searching for words to use, I ended up
with the phrase “PUPPY SPY, PSY P. PUP”.

The nice thing about these particular instruc-
tions is that they are push and pop instructions, so
you don’t have to worry too much about messing up
data that might be in these registers, and just have
to track where values might end up if you use them
at all.

Mirroring

The template 64-bit ELF source only executes seven
bytes to perform the exit syscall:

1 0 : b0 3c mov al , 0 x3c
2 : 48 31 f f xor rd i , r d i

3 5 : 0 f 05 s y s c a l l

What was particularly interesting was that when
reversed, the bytes are actual usable instructions.

1 0 : 05 0 f f f 31 48 add eax , 0 x4831 f f 0 f
5 : 3c b0 cmp al , 0 xb0

This was a very lucky discovery, and I started
thinking even more about interpreting instructions
backwards. One of the challenges in something like
this is that x86 has variable length instructions, and
using bigger registers with smaller values gives a lot
of null bytes to contend with. This means that care-
fully planning certain instructions of the basic oper-
ations I wanted to do was next on my list.

There is quite a lot of variance in both assem-
blers and disassemblers in generating and reading
code, so ensuring that the source is assembled prop-
erly is of utmost importance. I ended up only using
nasm and ndisasm to verify that instructions were
what I wanted them to be.

Now that I had some ideas, I started padding
out the remaining sections that might contain code
with nops, so that at the very least, I had some wig-
gle room when calculating things like jumps. Since
the code began at offset 0x4 in the header, padding
with five nops filled the rest of the space to offset
0xF.

Getting an idea of how to use jumps was the next
thing to sort out. I figured that jmp instructions
could be accounted for in one of two ways: either a
pairing of jmps that jump over each other, or a jmp
that is interpreted as something else backward.

I wrote a small script to generate all of the pos-
sible opcode combinations for short jumps and what
they disassemble to when interpreted backwards.
Even though it’s only two bytes, EB and the one byte
jmp distance, there are a lot of incompatible instruc-
tions, such as references to EBP and other registers
that aren’t easily usable in x64.

import sys
2 import subproces s

4 # python3 op i t e r . py opcode
Wil l i t e r through one by te in f r on t o f the

6 # opcode you put in there . I t ’ s h e l l a
bespoke , f e e l f r e e to change heh

8
exp = sys . argv [1]

10
for i in range (0 ,255) :

12 opp = format (i , ’ 02x ’)
i n f = ’ " ’+opp+’ ’+exp+’ " ’

14 print (opp+" "+exp+" | " , end=" ")
proce s s = subproces s . run (

16 [’ / usr / bin /rasm2 −a x86 −b 64 −d ’+i n f] ,
s h e l l=True , check=True ,

18 stdout=subproces s . PIPE ,
un ive r sa l_newl ine s=True)

20 output = proce s s . s tdout
i f ’ i n v a l i d ’ in output :

22 print ("−−")
else :

24 print (output , end="")

This is the output from the jmp bruteforce table
with invalid opcodes ignored:
00 eb add bl, ch 2c eb sub al, 0xeb
01 eb add ebx, ebp 30 eb xor bl, ch
02 eb add ch, bl 31 eb xor ebx, ebp
03 eb add ebp, ebx 32 eb xor ch, bl
04 eb add al, 0xeb 33 eb xor ebp, ebx
08 eb or bl, ch 34 eb xor al, 0xeb
09 eb or ebx, ebp 38 eb cmp bl, ch
0a eb or ch, bl 39 eb cmp ebx, ebp
0b eb or ebp, ebx 3a eb cmp ch, bl
0c eb or al, 0xeb 3b eb cmp ebp, ebx
10 eb adc bl, ch 3c eb cmp al, 0xeb
11 eb adc ebx, ebp 63 eb movsxd rbp, ebx
12 eb adc ch, bl 6a eb push 0xffffffffffffffeb
13 eb adc ebp, ebx 70 eb jo 0xffffffffffffffed
14 eb adc al, 0xeb 71 eb jno 0xffffffffffffffed
18 eb sbb bl, ch 72 eb jb 0xffffffffffffffed
19 eb sbb ebx, ebp 73 eb jae 0xffffffffffffffed
1a eb sbb ch, bl 74 eb je 0xffffffffffffffed
1b eb sbb ebp, ebx 75 eb jne 0xffffffffffffffed
1c eb sbb al, 0xeb 76 eb jbe 0xffffffffffffffed
20 eb and bl, ch 77 eb ja 0xffffffffffffffed
21 eb and ebx, ebp 78 eb js 0xffffffffffffffed
22 eb and ch, bl 79 eb jns 0xffffffffffffffed
23 eb and ebp, ebx 7a eb jp 0xffffffffffffffed
24 eb and al, 0xeb 7b eb jnp 0xffffffffffffffed
28 eb sub bl, ch 7c eb jl 0xffffffffffffffed
29 eb sub ebx, ebp 7d eb jge 0xffffffffffffffed
2a eb sub ch, bl 7e eb jle 0xffffffffffffffed
2b eb sub ebp, ebx 7f eb jg 0xffffffffffffffed

43

After generating all of these instructions, I real-
ized that the distance between the code at 0xF and
the corresponding code on the other half of the bi-
nary was too great for a short jump. I moved on
to the next phase, working out some sort of code to
jump to within the main binary. There was another
example of tiny code I had used in previous work,
a stream covering approach to assembly code opti-
mization called i2ao.20 This code was simple and
portable enough to reuse for this application. The
code simply printed out a string and exited.

Now, we have a palindrome that works as both
code and printable text, all of the possible short
jumps, and some basic code to print the string, it
was time to put it all together.

Putting it all together

Throughout this, you can refer to both the finished
assembly code, and the diagram featuring the full
labeled binary. If you are unfamiliar with the ELF
format, check out Ange Albertini’s Corkami ELF file
explanations on Github!

The primary concern with all of this was to make
sure that the registers we need are cleared prior to
making a syscall, lest we segfault. In this case, there
are two calls to make: write and exit.

The registers required for a write syscall are
RAX, RDX, RDI, and RSI. Since the first instructions
executed add values to RAX, an explicit mov rax, 1
is needed, rather than any clever tricks to populate
RAX. If we wanted to use something like xor rax,
rax; inc rax, it would add an extra byte. Some
other space saving measures are also used in the
write syscall code, which you can refer to in the
i2ao writeups or video.

The next step is to reference the string within
the code that is immediately after the write syscall.
There are a few ways of making references to the
current offset, but none of them made much sense
other than simply knowing where in the binary the
string is, and moving that value into the sil regis-
ter. This can be achieved by assembling your binary,
and opening in a debugger before executing, to get
the exact values needed.

After the write syscall code was sorted, it was
time to start mirroring the entire executable section.
Since the bounds of the headers have already been
established, you can safely do this without messing
up your binary. Jumps from the main code sec-

tion back into the reverse header will be determined
later.

The write syscall code doesn’t really have too
many instructions that you can safely execute back-
wards without entirely rewriting it. So instead of
that, another approach is to simply jump over what-
ever wasn’t executable. The alphanumeric machine
code was placed before the write code, so that it
could be used as a sled and have a known location.
Since this is executable and won’t interfere with the
flow of the program, a jmp can be placed between
that and the backwards code for the write syscall.

The size of the write code, along with the short
jmp, produces jmp 0x17, which turns into eb15 in
machine code. This unfortunately doesn’t translate
to anything usable backwards. Referring to the jmp
table, there is a usable instruction sbb bl, ch, that
can be achieved by padding with three nops to bring
the opcode to 18eb when backward, eb18 forward.
This would create a nice way to both jump over junk
code, and still maintain executability in the code.

All of this jmp encoding was done mainly to pre-
vent generating even more junk bytes to account
for. Another solution would be to just encode a
jmp instruction backwards, 02eb, after the jmp to
the write syscall label, which would do a small hop
over the jmp 0x17 that we can’t execute backwards.
This approach felt cleaner in the end.

Now all we have to do is just execute our string,
clear RAX, and jump back into the headers. This
operation just adds a small, five byte block that we
have to account for when we jump out of the headers
the first time and into the main code section.

A space saving trick used here was to completely
overwrite the p_align section in the ELF’s program
header, saving 16 bytes in total (eight on each side)
within the code section.

20unzip pocorgtfo21.pdf i2ao.zip

44

Final Optimizations

Due to the jump from the header to the main code
area, there was junk code from 0x4 to 0x10, where
the binary begins and ends execution. So, a final
step was tried to utilize all the space here.

Previous fuzzing of the various headers deter-
mined that there is writable space at both 0x3C and
0x44 in the program header. They must be exactly
the same or the binary will not execute. Each of
these spots has four bytes of space to work with,
which is perfect to do something simple like a short
jmp.

A short jmp from the top of the ELF header at
0x0E to 0x44, produces some bytes that are usable
backwards! This is eb34, which backwards, 34eb de-
codes to xor al, 0xeb. Since it’s only messing with
AL, the lowest byte of RAX, this operation doesn’t
matter because the value is explicitly assigned af-
terwards. Chef’s kiss!

This ensures that when we jump from the main
code section, we will be able to use all of the bytes at
the end of the binary before the exit syscall. Addi-
tionally, this increased the total number of executed
bytes by four, bringing the grand total to 90 bytes
executed out of 245 total.

The final code is shown on page 47.

Confirming Functionality
This was tested and built on Ubuntu 20.04 with ker-
nel 5.4.0-42-generic. Here is a small script you can
use to build and test the ASM file, and execution is
shown on page 46.
#! / bin /bash

2
nasm −f bin ns . bggp . asm −o ns . bggp

4 chmod +x ns . bggp
echo "Executing i n i t i a l b inary . . . "

6 . / ns . bggp
echo ""

8 xxd ns . bggp
echo ""

10 echo "Revers ing . . . "
p e r l −0777pe ’$_=rev e r s e $_ ’ ns . bggp > ns .R

12 chmod +x ns .R
echo "Executing binary in r e v e r s e . . . "

14 . / ns .R
echo ""

16 xxd ns .R
echo ""

18 echo "Comparing hashes . . . "
sha1sum ns . bggp

20 sha1sum ns .R

Final Thoughts
I might’ve shrunk the write syscall code down even
more to try and save 1 byte to produce a short jmp of
0xeb12->0x12eb (adc ch, bl). Since I was cod-
ing not just for size, but for percentage of bytes exe-
cuted as well, it made more sense just to leave things
as they were.

It will be exciting to do another challenge like
this next time around, and hopefully expand on the
competition as a whole. If you’d participate, or
have any questions / comments, you can email me
at u@n0.lol or talk to me on Twitter @netspooky.

A special thank you goes to everyone who com-
peted in the first Binary Golf Grand Prix, 0xdade,
ThugCrowd and Hermit. :}

45

$. / bu i ld . sh
2 Executing i n i t i a l b inary . . .

PUPPYSPYPSYPPUP
4 00000000: 7 f45 4 c46 050 f f f 3 1 483 c b090 9090 eb34 .ELF . . . 1H< 4

00000010: 0200 3e00 0100 0000 0400 0000 0100 0000 . . >
6 00000020: 1 c00 0000 0000 0000 0000 0000 0000 0000

00000030: 0100 0000 4000 3800 0100 0200 eb0b 0000 @ . 8
8 00000040: 0000 0000 eb0b 0000 0000 0000 3ceb c031 < . . 1

00000050: 4850 5550 5059 5350 5950 5359 5050 5550 HPUPPYSPYPSYPPUP
10 00000060: eb18 9090 9090 9005 0 f95 b640 20 e6 c148 @ . .H

00000070: c689 0 fb2 c789 0000 0001 b801 0000 0089
12 00000080: c7b2 0 f89 c648 c1e6 2040 b695 0 f05 9090 H . . @

00000090: 9090 9018 eb50 5550 5059 5350 5950 5359 PUPPYSPYPSY
14 000000 a0 : 5050 5550 4831 c0eb 3c00 0000 0000 000b PPUPH1 . . <

000000b0 : eb00 0000 0000 000b eb00 0200 0100 3800 8 .
16 000000 c0 : 4000 0000 0100 0000 0000 0000 0000 0000 @

000000d0 : 0000 0000 1c00 0000 0100 0000 0400 0000
18 000000 e0 : 0100 3e00 0234 eb90 9090 b03c 4831 f f 0 f . . > . . 4 <H1 . .

000000 f0 : 0546 4c45 7 f .FLE.
20

Revers ing . . .
22 Executing binary in r e v e r s e . . .

PUPPYSPYPSYPPUP
24 00000000: 7 f45 4 c46 050 f f f 3 1 483 c b090 9090 eb34 .ELF . . . 1H< 4

00000010: 0200 3e00 0100 0000 0400 0000 0100 0000 . . >
26 00000020: 1 c00 0000 0000 0000 0000 0000 0000 0000

00000030: 0100 0000 4000 3800 0100 0200 eb0b 0000 @ . 8
28 00000040: 0000 0000 eb0b 0000 0000 0000 3ceb c031 < . . 1

00000050: 4850 5550 5059 5350 5950 5359 5050 5550 HPUPPYSPYPSYPPUP
30 00000060: eb18 9090 9090 9005 0 f95 b640 20 e6 c148 @ . .H

00000070: c689 0 fb2 c789 0000 0001 b801 0000 0089
32 00000080: c7b2 0 f89 c648 c1e6 2040 b695 0 f05 9090 H . . @

00000090: 9090 9018 eb50 5550 5059 5350 5950 5359 PUPPYSPYPSY
34 000000 a0 : 5050 5550 4831 c0eb 3c00 0000 0000 000b PPUPH1 . . <

000000b0 : eb00 0000 0000 000b eb00 0200 0100 3800 8 .
36 000000 c0 : 4000 0000 0100 0000 0000 0000 0000 0000 @

000000d0 : 0000 0000 1c00 0000 0100 0000 0400 0000
38 000000 e0 : 0100 3e00 0234 eb90 9090 b03c 4831 f f 0 f . . > . . 4 <H1 . .

000000 f0 : 0546 4c45 7 f .FLE.
40

Comparing hashes . . .
42 c082d226c96b7251649c48526dd9766071fa5e59 ns . bggp

c082d226c96b7251649c48526dd9766071fa5e59 ns . bggp .R

Figure 11: Executing the palindrome backward and forward.

46

1 BITS 64
org 0x100000000 ; Where to load t h i s in to memory

3 ;−−−−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−
; ELF Header s t r u c t | OFFS | ELFHDR | PHDR | ASSEMBLY OUTPUT

5 ;−−−−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−
db 0x7F , "ELF" ; 0x00 | e_ident | | 7 f 45 4c 46

7 _start : ; | | |
add eax , 0 x 4831 f f 0 f ; 0x4 | | | 05 0 f f f 31 48

9 cmp al , 0 xb0 ; 0x9 | | | 3c b0
nop ; 0xB | | | 90

11 nop ; 0xC | | | 90
nop ; 0xD | | | 90

13 jmp hjmp ; 0xE | | | eb 34
;−−−−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−

15 ; ELF Header s t r u c t c t . | OFFS | ELFHDR | PHDR | ASSEMBLY OUTPUT
;−−−−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−

17 dw 2 ; 0x10 | e_type | | 02 00
dw 0x3e ; 0x12 | e_machine | | 3e 00

19 dd 1 ; 0x14 | e_version | | 01 00 00 00
dd _start − $$; 0x18 | e_entry | | 04 00 00 00

21 ;−−−−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−
; Program Header Begin | OFFS | ELFHDR | PHDR | ASSEMBLY OUTPUT

23 ;−−−−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−
phdr : ; | | |

25 dd 1 ; 0x1C | . . . | p_type | 01 00 00 00
dd phdr − $$; 0x20 | e_phoff | p_f lags | 1c 00 00 00

27 dd 0 ; 0x24 | . . . | p_of f s e t | 00 00 00 00
dd 0 ; 0x28 | e_shof f | . . . | 00 00 00 00

29 dq $$; 0x2C | . . . | p_vaddr | 00 00 00 00
; 0x30 | e_f lags | . . . | 01 00 00 00

31 dw 0x40 ; 0x34 | e_shsize | p_addr | 40 00
dw 0x38 ; 0x36 | e_phents ize | . . . | 38 00

33 dw 1 ; 0x38 | e_phnum | . . . | 01 00
dw 2 ; 0x3A | e_shents i ze | . . . | 02 00

35 ; dq 2 ; 0x3C | e_shnum | p_ f i l e s z | 02 00 00 00 00 00 00 00
dw 0x0beb ; eb 0b ; Overwri tes e_shnum and p_ f i l e s z

37 dw 0
dd 0

39 hjmp :
; dq 2 ; 0x44 | | p_memsz | 02 00 00 00 00 00 00 00

41 jmp sec0 ; eb 0b ; Overwri tes p_memsz
dw 0

43 dd 0
; dq 2 ; 0x4C | | p_align | 02 00 00 00 00 00 00 00

45 ;−−− Outer bounds o f e x e cu t a b l e por t ion
cmp al , 0xeb ; 3c eb ; Overwri tes p_align

47 db 0xc0 ; c0
db 0x31 ; 31

49 db 0x48 ; 48
sec0 :

51 push rax ; 50
push rbp ; 55

53 push rax ; 50
push rax ; 50

55 pop rcx ; 59
push rbx ; 53

57 push rax ; 50
pop rcx ; 59

59 push rax ; 50
push rbx ; 53

61 pop rcx ; 59
push rax ; 50

63 push rax ; 50
push rbp ; 55

47

65 push rax ; 50
jmp sec1 ; eb 18

67 nop ; 90
nop ; 90

69 nop ; 90
nop ; 90

71 nop ; 90
add eax , 0 x40b6950f ; 05 0 f 95 b6 40 ; Third by te i s s t r o f f s e t

73 and dh ,ah ; 20 e6
ror DWORD [rax−0x3a] , 0 x89 ; c1 48 c6 89

75 dd 0 x89c7b20f ; 0 f b2 c7 89
add BYTE [rax] , al ; 00 00

77 add BYTE [rcx] , al ; 00 01
;−−− s p l i t − the f i r s t by t e i s shared with the mov rax ,1

79 sec1 :
mov rax , 1 ; b8 01 00 00 00

81 mov edi , eax ; 89 c7
mov dl , 15 ; b2 0 f

83 mov esi , eax ; 89 c6
shl r s i , 0x20 ; 48 c1 e6 20

85 mov s i l , 0x95 ; 40 b6 95
s y s c a l l ; 0 f 05

87 nop ; 90
nop ; 90

89 nop ; 90
nop ; 90

91 nop ; 90
sbb bl , ch ; 18 eb

93 sec2 :
push rax ; 50

95 push rbp ; 55
push rax ; 50

97 push rax ; 50
pop rcx ; 59

99 push rbx ; 53
push rax ; 50

101 pop rcx ; 59
push rax ; 50

103 push rbx ; 53
pop rcx ; 59

105 push rax ; 50
push rax ; 50

107 push rbp ; 55
push rax ; 50

109 xor rax , rax ; 48 31 c0
jmp r s t a r t ; eb 3c

111 ;−−− Header Mirror ; o ld o f f s e t |
dd 0

113 dw 0
dw 0xeb0b ; 0x44 | | p_memsz | 02 00 00 00 00 00 00 00

115 dd 0 ;
dw 0 ;

117 dw 0xeb0b ; 0x3C | e_shnum | p_ f i l e s z | 02 00 00 00 00 00 00 00
db 0 ;

119 db 2 ; 0x3A | e_shents i ze | . . . | 02 00
db 0 ;

121 db 1 ; 0x38 | e_phnum | . . . | 01 00
db 0 ;

123 db 0x38 ; 0x36 | e_phents ize | . . . | 38 00
db 0 ;

125 db 0x40 ; 0x34 | e_shsize | p_addr | 40 00
dw 0 ;

127 db 0 ;
db 1 ; 0x30 | e_f lags | . . . | 01 00 00 00

129 dd 0 ; 0x2C | . . . | p_vaddr | 00 00 00 00

48

dd 0 ; 0x28 | e_shof f | . . . | 00 00 00 00
131 dd 0 ; 0x24 | . . . | p_of f s e t | 00 00 00 00

dw 0 ;
133 db 0 ;

db 0x1c ; 0x20 | e_phoff | p_f lags | 1c 00 00 00
135 dw 0 ;

db 0 ;
137 db 1 ; 0x1C | . . . | p_type | 01 00 00 00

dw 0 ;
139 db 0 ;

db 4 ; 0x18 | e_entry | | 04 00 00 00
141 dw 0 ;

db 0 ;
143 db 1 ; 0x14 | e_version | | 01 00 00 00

db 0 ;
145 db 0x3e ; 0x12 | e_machine | | 3e 00

db 0 ;
147 db 2 ; 0x10 | e_type | | 02 00

r s t a r t :
149 xor al , 0xeb ; 34 EB ; Jmp in reve r s e

nop ; 90
151 nop ; 90

nop ; 90
153 mov al , 0x3c ; b0 3c

xor rd i , r d i ; 48 31 f f
155 s y s c a l l ; 0 f 05

db "F"
157 db "L"

db "E"
159 db 0x7F ; 0x00 | e_ident | | 7 f 45 4c 46

49

