
This PDF is a Git Repository

Containing its Own LATEX Source

and a Copy of Itself

Evan Sultanik

April 11, 2017

Have you ever heard of the git bundle command? I hadn’t. It bundles a
set of Git objects—potentially even an entire repository—into a single file. Git
allows you to treat that file as if it were a standard Git database, so you can
do things like clone a repo directly from it. Its purpose is to easily sneakernet
pushes or even whole repositories across air gaps.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Neighbors, it’s possible to create a PDF that is also a Git repository.

$ git clone PDFGitPolyglot.pdf foo

Cloning into ’foo’...

Receiving objects: 100% (174/174), 103.48 KiB | 0 bytes/s, done.

Resolving deltas: 100% (100/100), done.

$ cd foo

$ ls

PDFGitPolyglot.pdf PDFGitPolyglot.tex

1 The Git Bundle File Format

The file format for Git bundles doesn’t appear to be formally specified anywhere,
however, inspecting bundle.c reveals that it’s relatively straightforward:

v2 git bundle ←↩
Git Bundle Signature

3aa340a2e3d125ab6703e5c9bdfede2054a9c0c5 refs/heads/master ←↩

3aa340a2e3d125ab6703e5c9bdfede2054a9c0c5 refs/remotes/origin/master ←↩

4146cfe2fe9249fc14623f832587efe197ef5d2d refs/stash ←↩

babdda4735ef164b7023be3545860d8b0bae250a HEAD ←↩

D
ig

est

←↩

PACK. . .
Git Packfile

Git has another custom format called a Packfile that it uses to compress the
objects in its database, as well as to reduce network bandwidth when pushing

1

and pulling. The packfile is therefore an obvious choice for storing objects
inside bundles. This of course raises the question: What is the format for a Git
Packfile?

Git does have some internal documentation in

Documentation/technical/pack-format.txt

however, it is rather sparse, and does not provide enough detail to fully parse
the format. The documentation also has some “observations” that suggest it
wasn’t even written by the file format’s creator and instead was written by a
developer who was later trying to make sense of the code.

Luckily, Aditya Mukerjee already had to reverse engineer the file format for
his GitGo clean-room implementation of Git, and he wrote an excellent blog
entry about it1.

‘P’ ‘A’ ‘C’ ‘K’ 00 00 00 02 # objects
magic version big-endian 4 byte int

one data chunk for each object

20-byte SHA-1 of all the previous data in the pack

Although not entirely required to understand the polyglot, I think it is useful
to describe the git packfile format here, since it is not well documented elsewhere.
If that doesn’t interest you, it’s safe to skip to the next section. But if you do
proceed, I hope you like Soviet holes, dear neighbor, because chasing this rabbit
might remind you of Кольская.

Right, the next step is to figure out the “chunk” format. The chunk header
is variable length, and can be as small as one byte. It encodes the object’s
type and its uncompressed size. If the object is a delta (i.e., a diff, as opposed
to a complete object), the header is followed by either the SHA-1 hash of the
base object to which the delta should be applied, or a byte reference within the

1https://codewords.recurse.com/issues/three/unpacking-git-packfiles

2

packfile for the start of the base object. The remainder of the chunk consists of
the object data, zlib-compressed.

This is the format of the variable length chunk header:

1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1

first byte second byte third byte

object type

if the MSB is one,
then this is not

the last byte

first four
bits of

the length
(big-endian)

MSB is one,
so this is not the last byte

the next seven
bits of the length

(big-endian)

MSB is zero,
so this is the last byte

the next seven
bits of the length

(big-endian)

The second through fourth most significant bits of the first byte are used to
store the object type. The remainder of the bytes in the header are of the same
format as bytes two and three in this example. This example header represents
an object of type 112, which happens to be a git blob, and an uncompressed
length of (1002 << 14) + (10101102 << 7) + 10010012 = 76,617 bytes. Since this
is not a delta object, it is immediately followed by the zlib-compressed object
data. The header does not encode the compressed size of the object, since
the DEFLATE encoding can determine the end of the object as it is being
decompressed.

At this point, if you found The Life and Opinions of Tristram Shandy to be
boring or frustrating, then it’s probably best to skip to the next section, ’cause
it’s turtles all the way down.

To come at the exa� weight of things in the scientific õeel-yard, the
fulchrum, [Walter Shandy] would say, should be almoõ invisible, to
avoid all fri�ion from popular tenets;—without this the minutiæ of
philosophy, which should always turn the balance, will have no weight
at all. Knowledge, like matter, he would affirm, was divisible in
infinitum;—that the grains and scruples were as much a part of it,
as the gravitation of the whole world.

“

”
There are two types of delta objects: references (object type 7) and off-

sets (object type 6). Reference delta objects contain an additional 20 bytes at
the end of the header before the zlib-compressed delta data. These 20 bytes
contain the SHA-1 hash of the base object to which the delta should be applied.
Offset delta objects are exactly the same, however, instead of referencing the
base object by its SHA-1 hash, it is instead represented by a negative byte off-
set to the start of the object within the pack file. Since a negative byte offset
can typically be encoded in two or three bytes, it’s significantly smaller than a
20-byte SHA-1 hash. One must understand how these offset delta objects are
encoded if—say, for some strange, masochistic reason—one wanted to change
the order of objects within a packfile, since doing so would break the negative
offsets. (Foreshadowing!)

3

One would think that git would use the same multi-byte length encoding
that they used for the uncompressed object length. But no! This is what we
have to go off of from the git documentation:

n bytes with MSB set in all but the last one.

The offset is then the number constructed by

concatenating the lower 7 bit of each byte, and

for n >= 2 adding 2^7 + 2^14 + ... + 2^(7*(n-1))

to the result.

Right. Some experimenting resulted in the following decoding logic that appears
to work:

def decode_obj_ref(data):

bytes_read = 0

reference = 0

for c in map(ord, data):

bytes_read += 1

reference <<= 7

reference += c & 0b01111111

if not (c & 0b10000000):

break

if bytes_read >= 2:

reference += (1 << (7 * (bytes_read - 1)))

return reference, bytes_read

The rabbit hole is deeper still; we haven’t yet discovered the content of the
compressed delta objects, let alone how they are applied to base objects. At
this point, we have more than sufficient knowledge to proceed with the PoC,
and my canary died ages ago. Aditya Mukerjee did a good job of explaining the
process of applying deltas in his blog post, so I will stop here and proceed with
the polyglot.

2 A Minimal Polyglot PoC

We now know that a git bundle is really just a git packfile with an additional
header, and a git packfile stores individual objects using zlib, which uses the
DEFLATE compression algorithm. DEFLATE supports zero compression, so if
we can store the PDF in a single object (as opposed to it being split into deltas),
then we could theoretically coerce it to be intact within a valid git bundle.

Forcing the PDF into a single object is easy: We just need to add it to the
repo last, immediately before generating the bundle.

Getting the object to be compressed with zero compression is also relatively
easy. That’s because git was built in almost religious adherence to The UNIX
Philosophy: It is architected with hundreds of sub commands it calls “plumb-
ing,” of which the vast majority you will likely have never heard. For example,
you might be aware that git pull is equivalent to a git fetch followed by
a git merge. In fact, the pull code actually spawns a new git child process
to execute each of those subcommands. Likewise, the git bundle command
spawns a git pack-objects child process to generate the packfile portion of

4

the bundle. All we need to do is inject the --compression=0 argument into
the list of command line arguments passed to pack-objects. This is a one-line
addition to bundle.c:

argv_array_pushl(&pack_objects.args,

"pack-objects", "--all-progress-implied",

"--compression=0",

"--stdout", "--thin", "--delta-base-offset",

NULL);

Using our patched version of git, every object stored in the bundle will be
uncompressed!

$ export PATH=/path/to/patched/git:$PATH

$ git init

$ git add article.pdf

$ git commit article.pdf -m "added"

$ git bundle create PDFGitPolyglot.pdf --all

Any vanilla, un-patched version of git will be able to clone a repo from the
bundle. It will also be a valid PDF, since virtually all PDF readers ignore
garbage bytes before and after the PDF.

3 Generalizing the PoC

There are, of course, several limitations to the minimal PoC given in the previous
section:

1. Adobe, being Adobe, will refuse to open the polyglot unless the PDF is
version 1.4 or earlier. I guess it doesn’t like some element of the git bundle
signature or digest if it’s PDF 1.5. Why? Because Adobe, that’s why.

2. Leaving the entire Git bundle uncompressed is wasteful if the repo contains
other files; really, we only need the PDF to be uncompressed.

3. If the PDF is larger than 65,535 bytes—the maximum size of an uncom-
pressed DEFLATE block—then git will inject 5-byte deflate block headers
inside the PDF, likely corrupting it.

4. Adobe will also refuse to open the polyglot unless the PDF is near the
beginning of the packfile2.

The first limitation is easy to fix by instructing LATEX to produce a version
1.4 PDF by adding \pdfminorversion=4 to the document.

The second limitation is a simple matter of software engineering, adding a
command line argument to the git bundle command that accepts the hash of
the single file to leave uncompressed, and passing that hash to git pack-objects.
I have created a fork of git with this feature, available here:

2Requiring the PDF header to start near the beginning of a file is common for many, but
not all, PDF viewers.

5

https://github.com/ESultanik/git/tree/UncompressedPack

As an aside, while fixing the second limitation I discovered that if a file
has multiple PDFs concatenated after one another (i.e., a git bundle polyglot
with multiple uncompressed PDFs in the repo), then the behavior is viewer-
dependent: Some viewers will render the first PDF, while others will render the
last. That’s a fun way to generate a PDF that displays completely different
content in, say, macOS Preview versus Adobe.

The third limitation is very tricky, and ultimately why this polyglot was not
used for the PDF of a digital issue of PoC‖GTFO. I’ve a solution, but it will
not work if the PDF contains any objects (e.g., images) that are larger than
65,535 bytes. A universal solution would be to break up the image into smaller
ones and tile it back together, but that is not feasible for a document the size
of a PoC‖GTFO issue.

DEFLATE headers for uncompressed blocks are very simple: The first byte
encodes whether the following block is the last in the file, the next two bytes
encode the block length, and the last two bytes are the ones’ complement of
the length. Therefore, to resolve this issue, all we need to do is move all of the
DEFLATE headers that zlib created to different positions that won’t corrupt
the PDF, and update their lengths accordingly.

Where can we put a 5-byte DEFLATE header such that it won’t corrupt
the PDF? We could use our standard trick of putting it in a PDF object stream
that we’ve exploited countless times before to enable PoC‖GTFO polyglots.
The trouble with that is: Object streams are fixed-length, so once the PDF is
decompressed (i.e., when a repo is cloned from the git bundle), then all of the
5-byte DEFLATE headers will disappear and the object stream lengths would
all be incorrect. Instead, I chose to use PDF comments, which start at any
occurrence of the percent sign character (%) outside a string or stream and
continue until the first occurrence of a newline. All of the PDF viewers I tested
don’t seem to care if comments include non-ASCII characters; they seem to
simply scan for a newline. Therefore, we can inject “%\n” between PDF objects
and move the DEFLATE headers there. The only caveat is that the DEFLATE
header itself can’t contain a newline byte (0x0A), otherwise the comment would
be ended prematurely. We can resolve that, if needed, by adding extra spaces to
the end of the comment, increasing the length of the following DEFLATE block
and thus increasing the length bytes in the DEFLATE header and avoiding the
0x0A. The only concession made with this approach is that PDF Xref offsets
in the deflated version of the PDF will be off by a multiple of 5, due to the
removed DEFLATE headers. Fortunately, most PDF readers can gracefully
handle incorrect Xref offsets (at the expense of a slower loading time), and this
will only affect the PDF contained in the repository, not the PDF polyglot.

As a final step, we need to update the SHA-1 sum at the end of the pack-
file (q.v. Section 1), since we moved the locations of the DEFLATE headers,
thus affecting the hash.

At this point, we have all the tools necessary to create a generalized PDF/Git
Bundle polyglot for almost any PDF and git repository. The only remaining

6

hurdle is that some viewers require that the PDF occur as early in the packfile as
possible. At first, I considered applying another patch directly to the git source
code to make the uncompressed object first in the packfile. This approach proved
to be very involved, in part due to git’s UNIX design philosophy and architecture
of generic code reuse. We’re already updating the packfile’s SHA-1 hash due
to changing the DEFLATE headers, so instead I decided to simply reorder the
objects after-the-fact, subsequent to the DEFLATE header fix but before we
update the hash. The only challenge is that moving objects in the packfile has
the potential to break offset delta objects, since they refer to their base objects
via a byte offset within the packfile. Moving the PDF to the beginning will
break any offset delta objects that occur after the original position of the PDF
that refer to base objects that occur before the original position of the PDF.
I originally attempted to rewrite the broken offset delta objects, which is why
I had to dive deeper into the rabbit hole of the packfile format to understand
the delta object headers (as you saw at the end of Section 1, if you were brave
enough to finish it). Rewriting the broken offset delta objects is the correct
solution, but, in the end, I discovered a much simpler way.

As a matter of fact, G-d just questioned my judgment. He said,
‘Terry, are you worthy to be the man who makes The Temple? If you
are, you must answer: Is this [dastardly], or is this divine intellect?’

“
”

—Terry A. Davis, creator of TempleOS
self-proclaimed “smartest
programmer that’s ever lived”

Terry’s not the only one who’s written a compiler!
In the previous section, recall that we created the minimal PoC by patching

the command line arguments to pack-objects. One of the command line ar-
guments that is already passed by default is --delta-base-offset. Running
git help pack-objects reveals the following:

A packed archive can express the base object of a delta as either a

20-byte object name or as an offset in the stream, but ancient

versions of Git don’t understand the latter. By default, git

pack-objects only uses the former format for better compatibility.

This option allows the command to use the latter format for

compactness. Depending on the average delta chain length, this

option typically shrinks the resulting packfile by 3-5 per-cent.

So all we need to do is remove the --delta-base-offset argument and git will
not include any offset delta objects in the pack!

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Okay, I have to admit something: There is one more challenge. You see, the
PDF standard (ISO 32000-1) says

The trailer of a PDF file enables a conforming reader to quickly find
the cross-reference table and certain special objects. Conforming
readers should read a PDF file from its end. The last line of the file
shall contain only the end-of-file marker, %%EOF.

“

”

7

Granted, we are producing a PDF that conforms to version 1.4 of the specifica-
tion, which doesn’t appear to have that requirement. However, at least as early
as version 1.3, the specification did have an implementation note that Acrobat
requires the %%EOF to be within the last 1024 bytes of the file. Either way,
that’s not guaranteed to be the case for us, especially since we are moving the
PDF to be at the beginning of the packfile. There are always going to be at
least 20 trailing bytes after the PDF’s %%EOF (namely the packfile’s final SHA-1
checksum), and if the git repository is large, there are likely to be more than
1024 bytes.

Fortunately, most common PDF readers don’t seem to care how many trail-
ing bytes there are, at least when the PDF is version 1.4. Unfortunately, some
readers such as Adobe’s try to be “helpful,” silently “fixing” the problem and
offering to save the fixed version upon exit. We can at least partially fix the
PDF, ensuring that the %%EOF is exactly 20 bytes from the end of the file, by
creating a second uncompressed git object as the very end of the packfile (right
before the final 20 byte SHA-1 checksum). We could then move the trailer from
the end of the original PDF at the start of the pack to the new git object at
the end of the pack. Finally, we could encapsulate the “middle” objects of the
packfile inside a PDF stream object, such that they are ignored by the PDF.
The tricky part is that we would have to know how many bytes will be in that
stream before we add the PDF to the git database. That’s theoretically possible
to do a priori, but it’d be very labor intensive to pull off. Furthermore, using
this approach will completely break the inner PDF that is produced by cloning
the repository, since its trailer will then be in a separate file. Therefore, I chose
to live with Adobe’s helpfulness and not pursue this fix for the PoC.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

This PDF is a git bundle containing its LATEX source, as well as all of the
code necessary to regenerate this polyglot. Clone it to take a look at the history
of this document and its associated code! The code is also hosted on GitHub3.

Thus—thus, my fellow-neighbours and associates in this great harveõ
of our learning, now ripening before our eyes; thus it is, by ôow õeps
of casual increase, that our knowledge physical, metaphysical, physio-
logical, polemical, nautical, mathematical, ænigmatical, technical, bi-
ographical, romantical, chemical, obõetrical, and polyglottical, with
fifty other branches of it, (moõ of ’em ending as these do, in ical) have
for these four laõ centuries and more, gradually been creeping up-
wards towards that Akme of their perfe�ions, from which, if we may
form a conje�ure from the advances of these laõ  pages, we cannot
possibly be far off.

4 License

Copyright c© 2017 Evan A. Sultanik
Permission is hereby granted, free of charge, to any person obtaining a copy

of this document and associated source files (the “Software”), to deal in the

3https://github.com/ESultanik/PDFGitPolyglot

8

Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice, this permission notice, and the entire contents
and history of its associated git repository shall be included in all copies or
substantial portions of the Software.

The Software is provided “as is”, without warranty of any kind,
express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringe-
ment. In no event shall the authors or copyright holders be liable
for any claim, damages or liability, whether in an action of con-
tract, tort or otherwise, arising from, out of or in connection
with the Software or the use or other dealings in the software.

9

