
VTT Electronics

Software Security Assessment through

Specification Mutations and Fault

Injection

• Vulnerabilities caused by robustness problems exist in software

• Software robustness can be assessed using interface fault
injection technique

• WAP gateway assessment was conducted as an example and
numerous security problems were found

• Aim is to support early elimination of trivial vulnerabilities



PROTOS Project

• This work is done in project PROTOS - “Security Testing of
Protocol Implementations” running 1999-2001

• VTT (Technical Research Centre of Finland) Electronics

• OUSPG (University of Oulu, Secure Programming Group)

• Funded by TEKES (National Technology Agency) and partner
companies

• Contact
rauli.kaksonen@vtt.fi

• Project Internet home page
http://www.ee.oulu.fi/research/ouspg/protos



Setting

• Software which tolerates unexpected input is robust

• Robustness problems are security problems as well, these
flaws (e.g. buffer overflows) can be exploited to compromise a
system from outside

• Contemporary software is infested with robustness problems
causing security holes (see e.g. BugTraq)



Protocol Security Assessment

• Protocol implementations are logical targets for security analysis

• Messages are often transmitted over the Internet or other
insecure networks, which exposes them to malicious modification

• Cryptographic protections are not effective against attacker who
can negotiate a legal session

• In interface fault injection software is purposefully fed with
exceptional and/or erroneous input through interfaces

• Interface fault injection can simulate attacks through
network connections



The Assessment Approach

• Non-traditional testing using interface fault injection

• Black-box approach, no source code is required

• Test are designed by mutating message syntax, message content
and message exchanges

• Output is not checked for specification conformance, this
greatly reduces the needed effort

• The semantic meaning of messages and exchanges is preserved,
as far as possible (contrast to random testing)

• The hypothesis is that carefully constructed input is more likely
to find errors



Test Design

1. Acquire or write machine processable protocol specification (an
extended dialect of BNF)

2. Simplify the specification by removing elements irrelevant to the
test purpose, i.e. limit the test input space

3. Add rules for maintaining semantic validity, if possible

4. Set protocol base elements to have typical values

5. Add exceptional elements to protocol specification as alternatives
to existing elements, i.e. mutate specification

6. Design test cases by selecting suitable combinations of elements



Mini-Simulations

• Test cases are executed using a prototype mini-simulation
environment

• Mini-simulation is a BNF-formed executable specification
augmented with Java-implemented rules

• Mini-simulation provides only the minimum functionality needed
for sending the test input

• The environment provides flexibility for mutating the
specification and selecting test cases



WAP-WSP-Request Test Suite

• WAP is a family of protocols for delivering services and Internet
content to wireless terminals

• A WAP gateway mediates traffic between terminals and content
providers

• WAP-WSP-Request test suite assesses the ability of a WAP
gateway to handle maliciously formatted WSP messages

Terminal Wireless Network Gateway Internet, intranet, etc. Server



WAP Testing Motivation

• Security of WAP gateways is essential since even encrypted
traffic will be exposed as plain text inside a gateway

• Using a workstation or a laptop with a modem and a phone an
intruder can send malicious messages

• WAP is an important milestone for getting Internet to
the phones and acts as an example for things to come

– The overall security of a WAP system was not assessed

– However, a single vulnerable point is sufficient to totally
compromise a system



WAP-WSP-Request Test Design

• The starting point of test design was the WSP-request part of
the WAP specification, which was mutated to add exceptional
elements

• A simple WSP request has the form

0x01 0x40 0x1a "http://127.0.0.1/index.wml"

• The specification was mutated using 36 different groups of
mutations, the total number of selected test cases was 4236

• For example, the protocol field “http” was replaced with
different longish strings for finding potential buffer overflows

0x03 0x40 0x1a "aaaa://127.0.0.1/index.wml"

0x04 0x40 0x1e "aaaaaaaa://127.0.0.1/index.wml"

0x05 0x40 0x26 "aaaaaaaaaaaaaaaa://127.0.0.1/index.wml"



Test Results

• The test suite was executed against seven different WAP
gateways from different vendors

• Total number of 4326 test cases in 36 groups

• Test runs against all seven gateways contained failed test
cases indicating potential vulnerability

Gw Failed cases/groups Gw Failed cases/groups

1 569/10 5 664/8

2 141/18 6 622/14

3 10/2 7 148/20

4 385/16



Test Analysis

• Four gateways were verified to be vulnerable beyond
denial-of-service using a buffer-overflow based exploit

• Total compromise of the gateway services based on any of these
four implementations was demonstrated

• Test results were sent to the vendors

• Reactions varied, but all were positive (as far we know, the
individual flaws we found are now fixed)

• Some vendors indicated that they will take actions to prevent
vulnerabilities of this kind in the future

• As an indicator of the security of future technology this
gives a warning for us all



Public Test Suite

• The test suite was made publicly available after a grace period
http://www.ee.oulu.fi/research/ouspg/protos

• The exploits against the vulnerabilities and the names of the
tested products are excluded

• The test cases are in binary form without explaining their
structure

• The aim is to make the material available for all vendors and
their customers and to promote public discussion



Discussion

• The effectiveness of this simple method is surprising

– Addition to WAP, we have tested implementations of various
other protocols, the end results are mostly similar

• Problems similar to ones we found are constantly reported in the
Internet by casual evaluators using ad-hoc methods

• A systematic approach should be used to assess software
components before they are taken into serious use

• This could enhance the overall Internet security:

– Many vulnerabilities are found and fixed early

– Clients assess software robustness before deployment

– Software is implemented to have higher quality in the
first place



Conclusions

• The presented work was motivated by large number of robustness
and security problems in contemporary software

• Systematically injecting exceptional input into software
components reveals robustness problems

• No source code is required and testing effort is less than in
traditional testing

• As an example, 7/7 tested WAP gateways were found to have
robustness problems, four were demonstrated to be vulnerable.

– As an indicator of the things to come this gives a
warning

• Use of robustness evaluation would promote production of more
secure software



Thank You!

• Any questions?

• Contact
rauli.kaksonen@vtt.fi

• PROTOS project Internet home page
http://www.ee.oulu.fi/research/ouspg/protos


