
Protocol Genome Project: Functional Genes (draft)

$Id: genes.ms,v 1.2 2005/04/25 12:32:12 aki Exp $
http://www.ee.oulu.fi/research/ouspg/protos/genome/

ouspg@ee.oulu.fi

ABSTRACT

This paper presents a small domain specific language for describing structure. It is
used in the Protocol Genome Project as a way to describe shared structural components
of communication protocols. The language and its presented implementation effectively
amount to a parser generator, though the language can also express structures that are
hard to capture using grammars alone. The presented implementation is embedded into
the algorithmic language Scheme.

1. Introduction

The Protocol Genome Project aims to process
protocols in terms of their shared structural com-
ponents - their genes. To be able to easily express
and process these structures we have dev eloped a
small language for describing them. This docu-
ment describes a version of that language, and a
way to implement it. The language is intended to
be simple, expressive enough to handle common
structures from communication protocols and
easy to process symbolically.

Much of the structure in protocols is syntactic and
can be defined using formal grammars. In the
tasks where grammars are used there is usually a
strict separation between syntax and semantics.
Some common structures in communication pro-
tocols, like length-payload pairs, can be viewed as
leaks from semantics to syntax. They are usually
simple to implement efficiently with a general
purpose programming language, but require rather
horrible purely grammatical constructions.

Conceptually the structures we need to express
are simple. Therefore, instead of adding ad-hoc
extensions to a grammar based system, or using
some existing universal structure description lan-
guage, we decided to make a domain specific lan-
guage for the task. The language is embedded to a

general purpose language. Two underlying for-
malisms, logic- and lambda calculus based, were
considered. The language described in this docu-
ment is based on ideas from both approaches.

The functional genes language consists of two
parts; gene expressions and their matching func-
tions. These correspond to regular expressions
and their associated automata. The language of
gene expressions is here defined with a grammar.
The language consists of one or more primitive
genes, and means of combining them to more
complex ones. Both aggregate and primitive
genes share the same structure and can be com-
bined to make more complex genes. Thisallows
one to quickly and safely build descriptions of
complex structures from their components.

Each gene expression is a first class value in the
underlying language. This means that they can be
easily constructed and modified in a program.
The implementation of the language described
below consists of some macros and functions that
translate these gene expressions to functions with
a certain form. These functions to gene expres-
sions what finite automata are to regular expres-
sions.

The gene expressions can also be compiled to
programs that perform others tasks. One imple-



- 2 -

mentation we have compiles them to functions
that operate on suffix arrays, and one we will
implement in a few months will compile them to
functions that generate data instead of parsing it.

Scheme was a natural choice for implementation
language. It has a hygienic macro system which
makes building safe embedded languages simple.
Functional programming style is also well sup-
ported, since Scheme is effectively typed
Lambda-I calculus.

Some knowledge of Scheme is assumed in the
following chapters.

2. The language

Below is the grammar for the gene expressions.
The only primitive gene is herebit, which means
an individual bit of data.Union, catenateand
sequenceare combining operations that can be
used to construct compound genes.

<gene> ::= bit
| (union <gene>+)
| (catenate <gene>+)
| (sequence <sequence-form>*

(return <expression>))

<sequence-form> ::= (skip <gene>)
| (gene <variable> <gene>)
| (assert <expression>)
| (let <variable> <gene>)

<expression> ::= A Scheme expression
<variable> ::= A Scheme variable

The convention is that a gene expression is either
the name of a primitive or a previously defined
gene, or an expression in parenthesis where the
first element is an operation and the rest are argu-
ments to that operation.

Each gene expression both defines a structure and
gives some interpretation of it. We say that the
gene evaluates to that value, given some input.
The primitive gene bit evaluates either true or
false depending on the input.

Union and catenate work as in formal languages.
Union creates a gene that matches successfully if

any of its parameter genes match. Catenate con-
structs a gene that matches successfully if all of
the parameter genes match in that order. Union
evaluates to the value of the matching gene.Cate-
nate evaluates to a list of the values of the genes.

Sequence behaves like catenate, but instead of
implicitly collecting the values returned by genes
to a list, each of them is explicitly skipped with
skipor bound to a variable withlet

The bindings made in a sequence become lexical
bindings that are visible in the subsequent genes.
Each expression in the grammar can be any
Scheme expression and can use values bound by
let as normal variables. Assert checks that the
given expression does not evaluate to false. This
can be used for example to check that a gene has
evaluated to a desired value.

Using this core language additional genes and
combining operations can be defined. Below are
some examples.

(define (epsilon value)
(sequence
(return value)))

(define (kleene* thing)
(sequence
(gene self
(union
(sequence
(let this thing)
(let rest self)
(return (cons this rest)))

(epsilon null)))
(let value self)
(return value)))

(define (kleene+ gene)
(sequence
(let this gene)
(let rest (kleene* gene))
(return (cons this rest))))

These behave as in regular expressions. Epsilon is
a gene that always succeeds with the given value
without consuming any data. The kleene opera-
tions mean zero or more and one or more repeti-
tions of the given gene. Values are collected to a
list. Kleene* could have used itself directly, but a



- 3 -

local recursive gene was defined as an example.

(define (repeat count gene)
(union
(sequence
(assert (= count 0))
(return null))

(sequence
(let this gene)
(let rest (repeat (- count 1) gene))
(return (cons this rest)))))

(define (until step terminal)
(union
(sequence
(let match terminal)
(return (list match)))

(sequence
(let this step)
(let rest (until step terminal))
(return (cons this rest)))))

Repeat means a repetition of a given gene a given
number of times. This is a common construct in
communication protocols. Note that the count
may be a variable bound in a sequence and can
therefore depend on the preceding input. Until
means a sequence of zero or more given step
genes followed by a given terminal gene.The
values are in both cases collected to a list.

(define (integer size)
(sequence
(let bits (repeat size bit))
(return (bits->integer bits))))

(define byte (integer 8))

(define (literal wanted gene)
(sequence
(let value gene)
(assert (equal? value wanted))
(return value)))

Integer interprets a fixed length bit sequence as an
unsigned integer. Canonical bit order is assumed
unless otherwise stated. Literal is a gene that eval-
uates to a given value.

3. An implementation

The basic idea of the implementation is to repre-
sent all genes as functions written in explicit suc-
cess and failure continuation passing style. Lexi-
cal bindings are used to store all state informa-
tion. Thistechnique is commonly used in compil-
ing logic based languages to functional languages.
Gene expressions are directly compiled to func-
tions by defining the primitive combining opera-
tions as macros, and the primitive gene as a func-
tion. The target language is effectively Lambda-I
calculus, which makes reasoning about genes and
their behavior relatively simple.

We use bit as the primitive gene. Input data is rep-
resented as a list of boolean values. The only case
in which the initial gene gene will fail is if there is
no more input data. In that case the failure contin-
uation ft is invoked. Otherwise the first bit and
rest of the data are passed to the success continua-
tion sc

(define bit
(lambda (sc ft data)
(if (null? data) (ft)
(sc (car data) (cdr data)))))

The remaining three primitives construct new
genes. Sequence is a macro that first expands to a
new gene - a lambda expression with the same
form as the bit - and then proceeds to process the
contents. The let form binds the value returned by
a gene to a given variable and skip behaves simi-
larly but binds the value to a variable that does not
occur free in rest of the expression. Assert calls
failure continuation if the given expression evalu-
ates to false. Because each gene is compiled to a
function, Scheme’s local mutual recursive func-
tion definition form can be used also for internal
genes.

(define-syntax sequence
(syntax-rules (assert return skip let gene)
((sequence (a . b) . c)
(lambda (sc ft data)
(sequence 42 sc ft data (a . b) . c)))

((sequence 42 sc ft data
(gene name1 val1) (gene name2 val2) ... . rest)
(letrec ((name1 val1) (name2 val2) ...)
(sequence 42 sc ft data . rest)))

((sequence 42 sc ft data (let var thing) . rest)



- 4 -

(thing
(lambda (var data)
(sequence 42 sc ft data . rest))

ft data))
((sequence 42 sc ft data (skip thing) . rest)
(thing
(lambda (fresh data)
(sequence 42 sc ft data . rest))

ft data))
((sequence 42 sc ft data (assert exp) . rest)
(if exp (sequence 42 sc ft data . rest) (ft)))

((sequence 42 sc ft data (return value))
(sc value data))))

Union constructs a new gene, where the success
continuation of each sub-gene is connected to the
new one, and each failure continuation to the
remaining sub-genes or the new failure continua-
tion. Catenate simply collects values from each
gene and constructs a list of them.

(define-syntax union
(syntax-rules ()
((union 42 sc ft data a)
(a sc ft data))

((union 42 sc ft data a . b)
(a sc
(lambda () (union 42 sc ft data . b))
data))

((union 42 sc ft data) (ft))
((union . stuff)
(lambda (sc ft data)
(union 42 sc ft data . stuff)))))

(define-syntax catenate
(syntax-rules ()
((catenate a . b)
(sequence
(let this a)
(let rest (catenate . b))
(return (cons this rest))))

((catenate)
(epsilon null))))

These four definitions are all it takes to compile
gene-expressions into executable functions in
Scheme. The small core is useful, because the
system can easily be modified and re-targeted. A
number of variations of the primitive operations
have been tested. Each operation also has simple
properties, which makes proving assertions about
them relatively easy.

There are many alternatives to this implementa-
tion. In this version the first gene of a union that
matches will be the value of the union. The suffix
array based version processes each of the possi-
bilities.

Scheme provides first class continuations which
can be used for backtracking.We initially
thought that real continuation could be useful for
adding another backtracking layer when process-
ing suffix trees or arrays, but it turned out that the
one provided by genes is sufficient with only a
few modifications. Inanother languages genes
can be for example defined as networks of objects
or as code for a stack based machine.

4. Case studies

We hav ewritten some tests to see how different
versions of the language behave. Currently the
largest gene has a description of about 250 lines.
It defines the parser for of the Scheme implemen-
tation used for prototyping purposes. Apart from
having byte as the primitive piece of data, it uses
the same macros and derived operations that are
defined in this paper.

A protocol related test is filtering IPv4 packets
from a packet capture file. The packet structure is
described with a gene of about 20 lines and
returns the payload of the packet.

A simple calculator program was written to
demonstrate how genes can be used to implement
small languages. It calculates values of fully
parenthesized arithmetic expressions and has a
description of some 50 lines.

5. Future applications

The language is still evolving. Efficiency and
portability issues will be addressed if the lan-
guage proves to be useful.

One obvious sample application would be to write
an easily extensible and traffic analyzer. The sim-
plest approach would be to write a large number
of packet descriptions and a matcher that analyzes
for example a packet capture file against the given
descriptions. Notethat this isnot the goal of the
Protocol Genome Project. There are already good



- 5 -

tools for this task, and we do not have enough
resources to start writing a useful set of protocol
descriptions by hand. We will probably write a
simple traffic analyzer and descriptions for a few
protocols for testing purposes. The advantage of
our approach would be that protocol descriptions
could probably be relatively simple and could be
loaded from plain text files to the program. It
might become a useful tool as such, provided we
could make it sufficiently easy and extend.

The genes could also be used to write verified
extended parsers.We believe that there is need
for an embedded language similar to regular
expressions that would allow safe and easy pro-
cessing of possibly malicious or mutated input
data.

In Protocol Genome Project the genes are used as
a structure description language. The current pro-
totype searches for known genes from input data,
constructs new ones for frequent repetitions,
scores them with an evaluation function and
matches them against a suffix vector. The current
main goal is to use various gene expression infer-
ring and learning techniques to build a realistic
autonomous protocol reverse engineering tool.

References:

[Scheme]
R. Kelsey, W. Clinger, J. Rees (eds.),
Revised5 Report on the Algorithmic Lan-
guage Scheme,Higher-Order and Symbolic
Computation, Vol. 11, No. 1, August, 1998
and ACM SIGPLAN Notices, Vol. 33, No.
9, September, 1998

[Lambda-I]
A. ChurchThe Calculi of Lambda Conver-
sion. (AM-6) (Annals of Mathematics Stud-
ies) Princeton University Press; (January 1,
1985)

Appendix A: IPv4 header

1 (sequence
2 (let ip-version (integer 4))
3 (let header-length (integer 4))
4 (let service-type byte)

5 (let total-length (integer 16))
6 (let identification (integer 16))
7 (skip zero-bit)
8 (let DF-bit bit)
9 (let MF-bit bit)
10 (letfragment-offset (integer 13))
11 (lettime-to-live byte)
12 (letprotocol byte)
13 (letheader-checksum (integer 16))
14 (letsource-address word)
15 (letdest-address word)
16 (letoptions (repeat (- header-length 5) word))
17 (letpayload (repeat (- total-length (* header-length 4)) byte))
18 (returnpayload))


