
Model Inference Guided Random Testing of Programs with
Complex Input DomainsRevision : 1:44

Aki Helin, Joachim Viide, Marko Laakso, Juha Röning
University of Oulu, Computer Engineering Laboratory

Linnanmaa BOX 4500, FIN-90014 University of Oulu, Finland

ouspg@ee.oulu.fi

ABSTRACTThe obvious need for networked software to survive mali-ious input has promoted robustness testing where exep-tional input is either manually or randomly designed withthe hope of athing the vulnerabilities prior to wide ex-ploitation. Manual test design is subjet to human errors,the language of undoumented proprietary protools is outof the reah of the designer, and even with doumentationlak of human resoures may beome a bottlenek. Con-versely, blind random fuzzing is hindered by the impossi-bility of addressing in�nite input spae in �nite time. As aompromise between pure randomness and human design wehave developed an intelligent random testing methodology.The tehnique is based on generating testing material forprograms by mutating an automatially inferred struturalmodel of their proper input data. Our tehnique is applia-ble to programs that proess input, provided that samplesof the input data are available. The tehnique an be usedin a blak box manner to automatially produe test ases.It an also be extended with domain spei� knowledge ina natural way. We argue that our approah strikes a pra-tial ompromise between ompletely random and strutureaware test ase generation tehniques.
1. INTRODUCTIONSeurity vulnerabilities infest information tehnology. Theprograms we use proess information from various souresand use a plethora of enodings and protools. Input pro-essing routines are among the most exposed areas of a pro-gram, whih is why they should be espeially reliable. This israrely the ase. The obvious need to survive maliious inputhas drawn attention to robustness testing where exeptionalinput is either manually or randomly designed with the hopeof athing the vulnerabilities prior to wide exploitation.The lassi work by Miller et al. demonstrated the e�etive-ness of random testing for dislosing seurity ritial inputparsing errors.[18, 17℄ The PROTOS projet[2℄ developed anapproah to systematially test implementations of proto-ols in a blak-box fashion. PROTOS lassi approah pro-dued several highly e�etive test suites. The most famousof them so far being the SNMP suite, whih a�eted overone hundred vendors and raised onsiderable interest e.g.from the ritial infrastruture protetion perspetive.[11,3℄ Lately fuzzing has beome a buzzword in information se-urity. Many reent publi dislosures of vulnerabilities have

been based on various degrees of fuzzing.Our previous work in robustness testing of protool imple-mentations has shown that manually designed struturalmutations and exeptional element values are an eÆientway to expose errors in networked software. Unfortunatelymanual test design is subjet to the same human errors asthe original programming task of the tested software. Fur-thermore, the languages of undoumented propriatery pro-tools are out of the reah for human test designers, and evenwith doumentation the lak of human resoures may omea bottlenek. Blind random fuzzing on the other hand ishindered by the impossibility of addressing an in�nite inputspae in �nite time.During the PROTOS projet the suspiion emerged thatthere ould be a fairly small set of strutural building bloksthat most real-life protools atually use. A orollary wouldbe that many protool implementations, onsidering theirgeneral quality, ould share the same kinds of vulnerabili-ties. And indeed, the test ase designers soon began to spotwhat they alled death zones from the protool spei�a-tions; similar parts between spei�ations for di�erent pro-tools whih seemed to be systematially implemented par-tiularly sloppily. Eronen and Laakso have identi�ed somepossible reasons for this.[9℄The hypothetial strutural building bloks were alled pro-tool genes, and based on this idea the PROTOS ProtoolGenome Projet was initiated in 2003. The main motiva-tion was to study the existene of protool genes, and to�nd ways to identify and exploit them. The real ulteriormotive was to get rid of the most time onsuming phases ofPROTOS lassi testing. The goal was to essentially pro-due a tehnique and a general tool to automatially reatee�etive test ases from arbitrary valid data examples, whihwould in the long run omplement the manual test designapproah.The resulting tehniques an be seen as instane of what weall model based fuzzing. The idea is to automatially builda model desribing the struture of some given training ma-terial, and use the model to generate similar data to be usedas robustness testing material. By using a higher level de-sription of the data, the fuzzer is able to make hanges tostruture as well as the ontent of some training material.

In the PROTOS lassi approah the model is built man-ually, and in traditional random testing the model an beonsidered to be a trivial one.The approah an be split to three main phases. Firstlythe onept of a struture is made onrete by seleting alanguage in whih to represent the models. Any inferredstruture will then be representable as an expression in thehosen language. The seond phase is model inferene, thetask of whih is to build a meaningful or otherwise interest-ing desription of the training material. The last phase isusing the model, or possibly a mutated version of it, to pro-due data that resembles the training material. This dataan then be used to test the target programs.In this paper we desribe how these phases are implementedin one of our prototype tools, and disuss initial experieneson the e�etiveness of the produed test ases when pittedagainst real life software. Finally we argue that our approahstrikes a pratial ompromise between ompletely randomand struture aware test ase generation tehniques.
2. REPRESENTING GENESThe �rst task in building a random model based testingframework is seleting a knowledge representation system.The purpose of this system is to store the result of stru-ture inferene. Sine the struture inferene step is usuallyomputationally omplex, it is useful to have an externalor otherwise storable representation for the result, so thatit an be saved and reused. The system should provide away to easily represent the kinds of strutures that will beinferred, along with means of proessing and using them.In many ases the result an simply be stored in an ad-hodata struture. However, a well-de�ned language may proveto be useful in struture inferene and fuzzing. There aremany formal languages whih are suitable to this task. Inour ase the requirement was, that the language should beable to easily de�ne the shared building bloks in pakets ofommuniation protools; the protool genes.
2.1 Formal GrammarsOur �rst approah for expressing protool genes was basedon formal grammars[10℄, namely the regular and ontext-free subsets. These subsets of grammars are widely usedin form of regular expressions and BNF based syntax de�ni-tions. Many subsets of grammars have well known propertis,suh as mathing omplexities and tehniques, assoiatedautomata, normal forms and in some ases inferring om-plexities. They are an attrative struture representationsystem, beause they an be easily proessed symbolially,have lean and simple semantis and an desribe varioussyntati strutures eÆiently.One early prototype of ours, alled RegExpert, produedinrementally more preise Unix-style regular expressionsfrom input data. Figure 1 shows a regular expression pro-dued from a bunh of GIF images. An eye trained tothe ways of regexps may see that even the early prototype�nds some strutural information: the magi identi�er string(\GIF87a") and most of the header.11Coinidentally - and a bit ironially - the GIFs used were

GIF87a.{1}\^C.{1}\^B.{1}\000\000\000\000\000\�\�\�.*\,\000\000\000\000.{1}\^C.{1}\^B\000\^B\ \<8C>\<8F>\l'\�E\��\^O\�\<9C>\t'\�U\<8B>\�s\ \ij\û\^O\<86>\âH\<96>\�\<89>\ ,e\ê\Ê\u\�̂\^K.{2}L\�\�o\<8D>\�\�u\Î\�\ \^O\^L<87>.{3}\<88>L*\<97>\�I\ ,e\�o<8D>J\�g\Ô.{2}\<8A>\�Ij\�u\�U\o\�\^K\^N\<8B>.*\�.*\��\u.{3}\�E\�\ô\�z\�y\<8E>\�I.{3}\�\�\^O\^X\(8.*\�E.*\�.*\�e.*\)9IYi.*\�U.*\�e\�u.*\.*\:JZjz.*\<8A>.*\�z\Ê\�U\ê\�u.*\.*\;K\[k\{.*\z.*\�E\Û\�e.{4}\<L.*\�n.*\ij\�I\�U.*\��.*\-\=M.{2}\}\<8D>\<9D>\ .*\Æ.*\��\�y\^M\^^.{3}\^n\~\<8E>.*\<9E>.*\Î.*\SS.*\ .*\z.*\ .*\`.*\ .*\Î.*\ .*\<.*\ .*\<99>.*\ .*\�e.*\ .*\ .*\�e.*\Û.*\ .*\�I.*\ .*\^?.*\^?.*\<83>.*\<85>.*\<87>.*\<88>.*\<8A>.*\<8C>.*\�l.*\ .*\<95>.*\<89>.*\<9A>.*\<9A>.*\ .*\ ,a.*\d'.*\ .*\ l.*\ l.*\�n.*\ .*K.*\z.*\ .*\�.*\ .*\Â.*\ .*\<8C>.*\�I.*\�I.*\�E.*\ .*\<9D>.*\�I.*\�Y.*\ .*\�Y.*\ .*\�e.*\�̂.*\ .*\~o.*\ .*\000.*\ .*\).*\ .*\Â.*\ .*6.*\ .*\℄.*\ .*\".*\ .*\d'.*\ .*V.*\ .*\ .*\�a.*\ .*\ .*\�I.*0.*\ .*\^Q.*\^Q.*\ .*R.*\�o.*\/.*\ .*S.*\?.*\^T.*\ .*U.*u.*\ .*l.*6.*\ .*w.*7.*\ .*\<8F>.*Y.*\�z.*y.*\:.*\;.*\ij.*\�u.*\�u.*\�u.*\=.*\;.*Figure 1: A regular expression an early prototypeRegExpert produed from GIF images.The downside of using grammars is that they an not eas-ily represent many simple strutures used in protools and�le formats. These strutures, suh as length-payload pairsand heksums, an be onsidered as leaks from semantis tosyntax. Creating de�nitions of them using grammars aloneis possible, but the resulting system would lose the simpli-ity appeal. To this end, the grammar formalism is oftenextended with operations for handling other kinds of tasks.Attribute grammars[13℄ provide a well de�ned way of ex-tending grammars with semantis. A similar approah wasadopted in the former PROTOS lassi model representa-tion system.
2.2 Functional GenesInstead of adding extensions to grammars, we deided to addgrammar-based operations as an extension to another sys-tem. Funtional genes is a small domain-spei� languagedeveloped at early phases of our projet. It provides a way tobuild delarative struture desriptions by using grammar-style rules as well as purely funtional program ode. Thelanguage onsists of a small set of simple primitive opera-tions, from whih aggregate strutures an be built. Thelanguage is implemented as a subset of the Sheme[12℄ pro-gramming language.A funtional gene is an expression obeying a simple gram-mar. Eah funtional gene de�nes a struture in some givendata, and gives an interpretation of its meaning. The genesan be proessed symbolially in the inferring phase, andlater they an be evaluated for example to extended parsersor fuzzers of the spei�ed struture.In addition to being useful as a language for storing interme-diate results of struture inferene, manually written fun-tional genes o�er a onvenient way to express simple parsers,in whih ase they are evaluated to fairly standard odefor baktraking parsing funtions. Figure 2 shows a hand-written example funtional gene representing well formedIPv4 pakets. The gene is de�ned as a sequential strutureof �elds with di�erent bit widths. The interpretations ofwood spetrum images whih our neighbouring group work-ing on image pattern reognition used in a ompletely di�er-ent ontext. The resulting regular expression worked, with-out modi�ations, quite well for �ltering away most GIFsthat were not wood spetrum images from the same soure.

(let-struture((ip-version (integer 4))(header-length (integer 4))(servie-type byte)(total-length (integer 16))(identifiation (integer 16))(skip zero-bit)(DF-bit bit)(MF-bit bit)(fragment-offset (integer 13))(time-to-live byte)(protool byte)(header-heksum (integer 16))(soure-address word)(dest-address word)(options(repeat (- header-length 5) word))(payload(repeat(- total-length (* header-length 4)) byte)))payload)Figure 2: A funtional gene representing IPv4 pak-etsthese �elds an be named and used in other parts of thede�nition. In the example, the de�nition begins by assign-ing the names ip-version and header-length to integer-interpretations of the �rst two 4 bit sequenes some data.The names integer, byte and word refer to previously de-�ned or primitive funtional genes, whereas repeat is anoperation for omposing joint strutural de�nitions. At theend of the struture its �nal interpretation - in this ase thepayload of an IPv4 paket - is spei�ed.
3. MODEL INFERENCEOne a suitable knowledge representation system was ho-sen, we an proeed to infer struture from the data. Thisis the model inferene step, whih is a tough nut to rak.Ideally the program should be able reasonably to deal withommon �le formats, network protools, as well as naturallanguage and weather data statistis.
3.1 General PrinciplesWe will assume that the training material an be enodedas an initial model, that is, an expression of the struturerepresentation language. In our fuzzing ontext, the initialmodel desribes a set of �les ontaining the valid programinputs. The struture inferene step an be spei�ed as thetask of �nding a more interesting model that does not on-it with the initial one. One approah would be to growa new model altogether, for example by using geneti pro-gramming tehniques. We have mainly foused on applyingproperty-preserving transformations to the initial model. Inboth ases the proess, oneptually or in pratie, onsistsof a rapidly expanding tree of possibly better models.An important subproblem is that of model seletion. Giventwo models, one should be able to deide whih of themis more interesting. One ommon approah to solving this

problem is to use MDL (MinimumDesription Length) prin-iple[19℄. It is often useful to equate learning, or inferring,struture from some data with the ability to ompress it.A good model will generally require less spae than the ini-tial one, sine it an desribe redundany in data by usinghigher-level onepts. The MDL priniple uses the amountof information required to represent the model as the soringmethod. In other words, it provides a formalised version ofthe Oam's razor. One of the most useful properties of thisstrategy is its tendeny to protet from over�tting a model.Even though this approah gives an intuitively sound de�ni-tion for a better model, the fat that the problem is nowequivalent with ompression may not seem what was in-tended. However, assuming that one extends the modeldesription language with domain spei� knowledge, thesore of a model may bene�t from using the extensions. Amodel andidate an therefore be more interesting if it andesribe data using the supplied bakground knowledge.Assuming these priniples, the task of writing a good modelinferene system would seem to be somewhat trivial; eitherenumerate all possible models in size order and �nish withthe �rst one that mathes the training data, or start withthe initial model and searh the best possible model deriv-able from it. Rather obviously both of these approahesrequire exponential time and spae in nontrivial ases. Us-ing a turing-omplete struture representation system, suhas Sheme, �nding the optimal model is not solvable[8℄. Ifonly the model size is used as soring method, the problemis still equivalent with omputing the Kolmogorov omplex-ity[14℄ of the given data. Thus, one generally must resort toheuristis and make eduated guesses.
3.2 Functional Gene InferenceOur �rst prototype of a funtional gene inferene engine op-erates by searhing the ontents of a model for ourrenesof hand written funtional genes desribing ommon proto-ol strutures, suh as null terminated strings and length-payload pairs. In this tool, the domain spei� knowledgeonsists these prede�ned strutures. The latter prototypesalso inorporate searhing for shared ontent in input data,namely maximal frequently ourring substrings.The tool starts by onstruting a trivial model from thetraining data soures. The model is then evolved using a re-ursive divide and onquer approah. The tool �rst searhesthe model for ourrenes of the prede�ned strutures andfrequently ourring substrings. A hand-written evaluationfuntion, based on the MDL priniple, is used to selet themost interesting proposal at eah division step. After themost interesting path has been seleted, the model is parti-tioned around the urrent �nding, and the surrounding partsare proessed reursively.When no more interesting strutures are found, the onquer-ing phase begins. The smaller submodels are reombinedbak into a omplete model of the data. Some further modelsimpli�ations are also applied while reombining. The in-tention is to build a model whih reognizes shared or oth-erwise interesting ontents in training data, so that theymay be mutated, repeated, deleted and permuted instead ofsimply modifying their ontents.

3.3 Implementation IssuesThe most diÆult part of model inferene is keeping timeand spae omplexities of eah step in aeptable bounds. Ifsome expensive operation is to be performed frequently, itis often useful to make it faster by preomputing a suitabledata struture. The intention is to represent the frequetlyneeded results statially in memory, so that the result anbe simply looked up.Algorithms and data strutures, whih may prove to be use-ful, an be searhed from areas suh as bioinformatis[22,23℄, data ompression[21℄ and arti�ial intelligene[20, 4, 7℄.Indeed, for example the Protool Informatis Projet[1℄ hasapplied algorithms from bioinformatis to reverse engineernetwork protools.In our experiene, suÆx trees[24℄ and suÆx arrays[16, 5,15℄ have been useful. One onstruted, they allow parallelwalking of eah unique ourrene of a sequene of datain the model using simple onstant- or logarithmi timelookups. SuÆx arrays are espeially attrative beause oftheir low memory overhead. In our urrent prototypes fun-tional genes and other tehniques operate diretly on a suf-�x array omputed from the input data. This speeds manyoperations onsiderably while adding only a small onstantmemory-overhead. In many ases the suÆx array needs onlybe onstruted one, sine the same ordering an be reusedwhen the model hanges.A funtional data struture for model representation mayalso prove to be useful, sine it makes baktraking easy andallows automati sharing of ontents between model gener-ations.
4. FUZZINGOne a model has been inferred, the generation of randomisedtest ases, i.e. fuzzing, may �nally ommene. This is afairly simple proedure ompared to previous steps. Basi-ally our prototype fuzzer takes a model expression, whihin our ase is a funtional gene, and ompiles it to a reverseparser, whih generates data based on requested strutureinstead of parsing it.The model, sine it gives some insight into the struture ofthe orret data, allows a fuzzer to make hanges to higherlevel strutures as well as traditional hanges to known on-tents. Sine the inferred model usually builds generalisationsrather than rigidly de�ning only the training data, the in-ferred model an generate more data than the initial one,where the the extra data an be onsidered fuzzed. How-ever, we have had most suessful results by intentionallymutating the model itself. The model mutations ontain forexample dupliation, removal, swapping and random alter-ation of funtional genes.Di�erent kinds of strategies in produing data from the modelan be applied, depending on the desired goal. Making largesets of strongly mutated data, a strategy sometimes referredto as shotgun testing, is a good way to expose any suspiiousbehavior. On the other hand making single point mutationsto original inputs is a good way to narrow down what ex-atly auses a problem. In both ases it is useful to storesome metadata desribing how eah fuzzed piee of data was

Figure 3: Some of the remotely haunting imagery ofthe 'Freak Show' gallery, produed by fuzzing validGIF and JPEG images.onstruted, in order to be able to examine it later on.
5. RESULTSWe have implemented and enhaned the desribed teh-niques in a series of prototypes and have used them to gen-erate fuzzed test ases for several �le formats. File formatswere hosen as a good starting point for testing, beausethey share a lot of ommon ground with protools in termsof implementation. In the tests we used a rude struture in-ferene strategy whih only �nds maximal shared ontents,and ombines them in the manner desribed above. We alsofoused on visible and easily reproduible failure modes anddid not inlude any low level monitoring for more esoteriand masked software failures. Nevertheless, this approahhas proven to be surprisingly e�etive and maliious. Inthe following, we will briey ataloque some trials in feed-ing fuzzed data to real programs. However, we will not gointo spei�s suh as singling out tested software or test asedetails.
5.1 Round 1: Image files (GIF and JPEG)The �rst two groups of test ases that were atually fedto implementations were for the GIF and JPEG image for-mats. The fuzzing for eah format was done based on a fewhundred valid images randomly obtained from the internet.From these images we generated around 1000 ases for bothformats, whih we fed to several programs by hand.Amongst the test subjets were several popular web browserpakages on various platforms, most of whih we managed torash with several generated broken images. We then on-struted a HTML page gallery of some of the fuzzed pituresa�etionately alled 'Freak Show' (Figure 3). Loading thepage aused visibly erroneous program behaviour in testedbrowsers, in ontrast to the page simply being rendered tosreen with some visual glithes.

5.2 Round 2: Office packages (DOC, RTF and
XLS)Two groups of test ases generated from valid DOC and RTFdouments and XLS spreadsheets proved to be e�etive aswell. The test ases managed to ause a wide range of visiblefailures in eah sofware pakage, from resoure exhaustion toto rashing and even loking up the entire operating system.

5.3 Round 3: Security software (multiple for-
mats)The latest development has inluded the testing of seuritysoftware solutions to see their reations to fuzzed data. Wereated test ases from several di�erent data formats, suhas exeutable �les and RAR and ZIP ompressed arhives.The aused quirks were extremely interesting and wildlyimaginative. For instane, in one ase feeding a fuzzed RARdata aused a seurity software solution to start ignoringall obvious seurity threats it usually athes. Meanwhilethe program ontinued to present the impression there isnothing wrong with it.Naturally feeding the image and oÆe �les from earlier roundsaused failures as well.

6. DISCUSSIONThe presented tehnique has proven to be a surprisingly ef-fetive way of reating test ases ausing repeatable visiblesoftware failures, onsidering its lak of any domain spe-i� knowledge. Thus we argue that inorporating modelinferene with random test generation has the potential tooverome the ineÆienies of both random testing and hand-made test suites, suh as those of PROTOS lassi.Furthermore we postulate that the ombination of man-ual test design and model inferene guided random testingshould be explored. The quality of the inferred model obvi-ously depends on the available data samples; if samples lakin depth and diversity, then muh of the dormant parsingfuntionality in software will be missed by the generated testases. Manual test design would result in oarse partitioningof the input spae, from where the mahine may take over inorder to systematially runh the �ne-grained details. Thisway the ill e�ets of tunnel vision and omissions as well hu-man errors may be alleviated in test design. Perhaps thiswill be a way to leap beyond the pestiide paradox as statedby Boris Beizer: \Every method you use to prevent or �ndbugs leaves a residue of subtler bugs against whih thosemethods are ine�etual."[6℄The most signi�ant limitation of the desribed approah isits lak of domain spei� knowledge. The means of express-ing, inferring and inorporating external reasoning should bedeveloped further. A realisti tool would probably ombineseveral independent model inferene tehniques in a uni�edframework. A suÆiently powerful struture desription lan-guage ould be used as the ommon denominator to glue theapproahes together.The design of our initial prototypes was biased towards be-ing able to generate e�etive testing material for a ertainlass of programs. Now that we have developed something

that has proven to be e�etive, work will also ontiue to-wards general purpose model inferene and abuse. Ulti-mately we aim to mature this tehnique into a test asegeneration framework, whih would be similar to the oneprodued in the earlier PROTOS projet, but easier andfaster to use. We are also planning on releasing full edgedtest sets of fuzzed data in the manner established in thePROTOS projet.
7. CONCLUSIONSAn automatially inferred model an be used as basis to gen-erate orret looking data for program robustness testing.The tehnique seems to be e�etive if the inferred modelssueeds in �nding meaningful strutures from the originaldata. The bottlenek is usually in model onstrution, whihrequires resoures.Our testing tehnique an be applied to any sample inputto automatially produe test ases in a blak box manner.The tehnique an also be extended in a natural mannerwith domain spei� knowledge that augments its eÆieny.We argue that our approah strikes a pratial ompromisebetween ompletely random and struture aware test design,while it an be used in onjuntion with these tehniques toomplement them.We believe that automati struture analysis an make ran-dom testing a viable option, beause a strutural modelallows a randomized fuzzer to generate more meaningfulhanges in robustess testing material. Our experienes withsimple prototypes suggest that this approah is e�etive andshould be explored further.

8. REFERENCES[1℄ The protool informatis projet.http://www.baselineresearh.net/PI/.[2℄ Protos - seurity testing of protool implementations.http://www.ee.oulu.fi/researh/ouspg/protos.[3℄ Protos test-suite: 06-snmpv1. http://www.ee.oulu.fi/researh/ouspg/protos/testing/06/snmpv1/.[4℄ N. Abe. Feasible learnability of formal grammars andthe theory of natural language aquisition. InProeedings of the 12th onferene on Computationallinguistis, pages 1{6, Morristown, NJ, USA, 1988.Assoiation for Computational Linguistis.[5℄ M. I. Abouelhoda, S. Kurtz, and E. Ohlebush. Theenhaned suÆx array and its appliations to genomeanalysis. In 2nd Workshop on Algorithms inBioinformatis, LNCS, 2002. http://iteseer.ist.psu.edu/abouelhoda02enhaned.html.[6℄ B. Beizer. Software Testing Tehniques. John Wiley &Sons, In., New York, USA, 1990.[7℄ S. Ben-David and M. Jaovi. On learning in the limitand non-uniform (&egr;,&dgr;)-learning. In COLT '93:Proeedings of the sixth annual onferene onComputational learning theory, pages 209{217, NewYork, NY, USA, 1993. ACM Press.[8℄ G. J. Chaitin. The Limits of Mathematis.Springer-Verlag, 2003.[9℄ J. Eronen and M. Laakso. A ase for protooldependeny. In Proeedings of the First IEEEInternational Workshop on Critial InfrastrutureProtetion, Nov. 2005.http://www.ee.oulu.fi/researh/ouspg/protos/sota/matine/IWCIP2005-depen%deny/.[10℄ J. E. Hoproft and J. D. Ullman. Introdution toAutomata Theory, Languages, and Computation.Addison-Wesley, Reading, Massahusetts, 1979.[11℄ R. Kaksonen. A Funtional Method for AssessingProtool Implementation Seurity. Tehnial ResearhCentre of Finland (VTT), Espoo, Finland, 2001.Lientiate thesis. http://www.ee.oulu.fi/researh/ouspg/protos/analysis/VTT2001-funtional%/.[12℄ R. Kelsey, W. Clinger, and J. Rees. Revised5 reporton the algorithmi language Sheme. ACM SIGPLANNoties, 33(9):26{76, 1998. html://iteseer.ist.psu.edu/artile/kelsey98revised.html.[13℄ D. E. Knuth. Semantis of ontext-free languages.Theory of Computing Systems, 2(2):127{145, 1968.http://dx.doi.org/10.1007/BF01692511.[14℄ A. Kolmogorov. Logial basis for information theoryand probability theory. IEEE Transations onInformation Theory, 14(5):662{664, 1968.[15℄ N. J. Larsson and K. Sadakane. Faster suÆx sorting.Tehnial Report LU-CS-TR:99-214,LUNDFD6/(NFCS-3140)/1{20/(1999), Department ofComputer Siene, Lund University, Sweden, May1999.

[16℄ U. Manber and G. Myers. SuÆx arrays: a new methodfor on-line string searhes. In SODA '90: Proeedingsof the �rst annual ACM-SIAM symposium on Disretealgorithms, pages 319{327, Philadelphia, PA, USA,1990. Soiety for Industrial and Applied Mathematis.[17℄ B. Miller, D. Koski, C. P. Lee, V. Maganty,R. Murthy, A. Natarajan, and J. Steidl. Fuzzrevisited: A re-examination of the reliability of UNIXutilities and servies. Tehnial report, 1995.[18℄ B. P. Miller, L. Fredriksen, and B. So. An empirialstudy of the reliability of UNIX utilities.Communiations of the Assoiation for ComputingMahinery, 33(12):32{44, 1990.[19℄ J. Rissanen. Hypothesis seletion and testing by themdl priniple. Comput. J., 42(4):260{269, 1999.[20℄ S. Russell and P. Norvig. Arti�ial Intelligene: AModern Approah. Prentie-Hall, Englewood Cli�s,NJ, 2nd edition edition, 2003.[21℄ K. Sadakane. A Fast Algorithm for Making SuÆxArrays and for Burrows-Wheeler Transformation. InProeedings of IEEE Data Compression Conferene(DCC'98), pages 129{138, Mar. 1998. http://iteseer.ist.psu.edu/sadakane98fast.html.[22℄ Y. Sakakibara, M. Brown, R. Hughey, I. S. Mian,K. Sj�olander, R. C. Underwood, and D. Haussler.Reent methods for RNA modeling using stohastiontext-free grammars. In Proeedings of the AsilomarConferene on Combinatorial Pattern Mathing, NewYork, NY, 1994. Springer-Verlag.[23℄ I. Salvador and J.-M. Bened��. Rna modeling byombining stohasti ontext-free grammars andn-gram models.[24℄ E. Ukkonen. On-line onstrution of suÆx trees.Algorithmia, 14(3):249{260, 1995.

