
Oulu University Secure Programming Group (2002)

PROTOS
Systematic approach to eliminate software

vulnerabilities

Content © by OUSPG 2002

Art © by Origion 1999

Juha Röning

Marko Laakso

Ari Takanen

ouspg@ee.oulu.fi

http://www.ee.oulu.fi/research/ouspg

Oulu University Secure Programming Group (2002)

Motivation

• Software vulnerabilities prevail:
“Fragile and insecure software continues to be a major threat to

a society increasingly reliant on complex software systems.”
- Anup Ghosh [Risks Digest 21.30]

• A focal problem area is software implementation, which may
introduce potential for unanticipated and undesired program
behaviour

• We have made some rather strong claims:
o (A) Secure programming errors are systematic!
o (B) Many vulnerabilities could be eliminated with low cost!
o (C) Dynamic black-box testing would be a decent first-aid!

Oulu University Secure Programming Group (2002)

PROTOS presentation outline

• Background and context - Röning
• Testing approach - Laakso
• Results and vulnerability handling - Takanen

Oulu University Secure Programming Group (2002)

OUSPG

• Active as an independent and academic research group
in the Computer Engineering Laboratory
since summer 1996.

• Our purpose:
“To study, evaluate and develop methods of implementing and

testing application and system software in order to prevent,
discover and eliminate implementation level security

vulnerabilities in a pro-active fashion.
Our focus is on implementation level security issues and

software security testing.”

Oulu University Secure Programming Group (2002)

• The total security of the release is the product of the
specification, design, implementation and testing performed in
the software process.

1. Specification
2. Design

3. Implementation
4. Testing

5. Maintenance/Use

Implementation & testing

Oulu University Secure Programming Group (2002)

Security Development

• Distribution of effort in development

Specification

Design

Implementation

Testing

Maintenance

Oulu University Secure Programming Group (2002)

Security Endangered by Vulnerabilities

• InfoSec vulnerabilities endanger (CIA):
o confidentiality of information
o integrity of information
o availability of information

• Security may have Safety implications
• InfoSec vulnerability could be caused by:

o a software failure

o a misconfiguration

o a human or procedural error

• What threatens our InfoSec:
o Spontaneous combustion

• Hardware and software reliability
• Natural disasters

o Malicious activity (who we prepare for)
• Pranksters, Script kiddies, Terrorists, Professionals ...

Oulu University Secure Programming Group (2002)

Our approach - in a nutshell

Today, thousands of gifted and patient, but uncoordinated monkeys are pounding
different products in order to reveal vulnerabilities.

Think of us as rather dumb monkeys using a monkey-machine and systematic
methodology to eliminate the most trivial ones.

Visual by
http://www.PDImages.com

Oulu University Secure Programming Group (2002)

Vulnerability Reality Check

• Security is not the Holy Grail:
o Address and understand risks first.
o Risk arithmetics [T * V = R]:

• 0 * V = 0 (no threats equals no risks)

• T * 0 = 0 (no vulnerabilities equals no risks)

• Risk is impossible to assess without possibility of measuring
the vulnerability and threat

• Reactive or Proactive approach to the risk

THREAT * VULNERABILITY = RISK

Oulu University Secure Programming Group (2002)

Searching for the process Grail to
reduce vulnerability

• Bug prevention and elimination methods in the software
development process (by B. Beizer)

o Thorough analysis
o Prototypes
o Analytical models
o Formal methods
o Inspections

• Awareness: skills in secure programming and safety
engineering

• Testing is the means for discovering the bugs that persist after
these

Oulu University Secure Programming Group (2002)

Searching for the technical Grail to
reduce vulnerability

• Alternatives for educating the engineers:
o Safer libraries
o Better compilers and languages (e.g. Java)
o Operating System (kernel) solutions

• Methods behind them:
o Bounds checking / strong typing (run/compile time)
o Non-executable stack, stack guarding techniques
o Sandboxing and managed code
o Code signing (You will know who to blame? ;)

• Deployment? Adaptation? Completeness?
o There will be room for a safety net provided by testing

Oulu University Secure Programming Group (2002)

Software Security Testing

• Evolution of the software testing (by B. Beizer):
o 0: No difference between testing and debugging
o 1: The purpose of testing is to show that the software works.
o 2: ... is to show that the software DOESN’T work.
o 3: ... purpose of testing is to reduce the perceived risk ...
o 4: ... a mental discipline ... (minimum effort in test stage)

• From the practical security perspective:
o Software vendors are at phase 1 (conformance)?
o Vulnerability research is stuck at phase 2?

Oulu University Secure Programming Group (2002)

Black-box vs. White-box

• White-box (with src)
o Costly?
o Complex
o 3rd party software?

• Black-box testing (no src)
o Cheap? First-aid?
o Can be adopted in QA?
o Poor code-path coverage
o Effective against casual

bugtraq disclosures (trivial
vulnerabilities)
...
Same starting point as for any
bugtraq submitter?

• Methods are complementary
o Our approach is black-box

testing

Oulu University Secure Programming Group (2002)

Static vs. Dynamic testing

• Dynamic testing
o Testing at run time
o Poor code-path coverage?
o Coverage improved by stress-

test suites?
o Proven effective even for

passive monitoring
o Vulnerabilities detected by

actual run-time context

• Methods are completary
o Our approach is dynamic

testing

• Static testing
o Off-line testing
o Complex?
o Vulnerabilities detected by

emulated run-time context

Oulu University Secure Programming Group (2002)

Software Security Testing

• From Software Testing Techniques by Boris Beizer (2nd
Edition, p. 2):

“Thrill to the excitement of the chase!
Stalk bugs with care, methodology, and reason. Build traps for them.

....
Testers!

Break that software (as you must) and
drive it to the ultimate

- but don’t enjoy the programmer’s pain.”

Oulu University Secure Programming Group (2002)

Testing the Security of Protocol Implementations

• PROTOS will:
o Develop practical vulnerability testing methods
o Distribute awareness
o Develop procedures to prevent errors
o Inform vendors of found vulnerabilities

• Results public, except for the bug reports and demonstration
exploits

Oulu University Secure Programming Group (2002)

PROTOS - "the goal"

• Dispite existence of TTCN and others, vulnerabilities were
constantly found

• Testing framework
o a skeletal structure designed to support or enclose something - Webster

• Testing platform (a.k.a. scripting platform)
o (Mil.) (a) solid ground on which artillery pieces are mounted ... (b) a

metal stand or base attached to certain type of artillery pieces - Webster

• At least we learn the protocols ... ;)

Oulu University Secure Programming Group (2002)

PROTOS
- Framework & Platform

Provocation
Knowledge

Test
Generator

Injector

Instrument

Test
Analyzer

Protocol
Specification

has

gives
feedback to

Exploit

Failure

Subject

makes
possible to

create
threats
security

of

feeds

feeds test cases to

metrics is
collected by

Fault

ProtoScope

causes

is detected
by

Fault
Information

produces

metrics is
analysed by

