
PROTOS - Mini-simulation method for
robustness testing

This and more available from:
http://www.ee.oulu.fi/research/ouspg/protos

Described in licentiate thesis of Rauli Kaksonen:

“A Functional Method for Assessing Protocol
Implementation Security”. VTT Publication 448

ISBN 951-38-5873-1, (2001)

Canonical URL: http://www.inf.vtt.fi/pdf/

Motivation

• Robustness in face of unexpected (malign) input is a
key issue in software security

• Robustness can be tested
• Traditional (conformance) testing does not probe

robustness
• Complementary approaches are needed

• Our mini-simulation approach was designed for
robustness testing
• Specification-based and flexible (syntax) test design yields

effective test material

Every interface has a language

• Explicit (documented)
• Formally specified -> parser code generated?

• Implicit (not documented)
• Use the source or analyser, Luke

• Hidden languages foster vulnerabilities
• E.g. in buffer overflow vulnerabilities data may be

interpreted as code

• Syntax testing exercises these languages

Traditional black-box testing vs.
robustness testing

1. Does SW deliver required
features (conformance)?

2. Mostly expected input
(clean syntax testing)

3. Expected outcome for
specific input

4. “Hundreds of test cases”

1. Does SW fail when exposed
to malicious input?

2. Mostly exceptional and thus
unexpected input
(dirty syntax testing)

3. Mostly ignore responses (no
oracle)
1 + 1 = 3 is fine

4. “Thousands of test cases”

Mini-simulation testing phases

1. Write or acquire a formal interface specification
2. Augment with rules and simplify, if needed
3. Design valid-cases
4. Define or reuse anomalies
5. Insert the anomalies
6. Design test cases
7. Generate test cases
8. Execute tests
9. Analyse the results

1. Specification

• Our tool uses context-free grammar (BNF) with
extensions
• Context-free description of PDU structures may come from

BNF or ASN.1
• After mini-simulation augmentations we have a higher-

order attribute grammar
• From formal specification we can calculate complexity

Example: TFTP (RFC 1350)
2 bytes string 1 byte string 1 byte
--

| Opcode | Filename | 0 | Mode | 0 |
--

Figure 5-1: RRQ/WRQ packet

<RRQ> ::= (0x00 0x01) <FILE-NAME> <MODE>
<WRQ> ::= (0x00 0x02) <FILE-NAME> <MODE>

<MODE> ::= ("octet" | "netascii") 0x00
<FILE-NAME> ::= { <CHARACTER> } 0x00
<CHARACTER> ::= 0x01 - 0x7f

2. Rules and simplification

• Our rules are library objects implementing semantics
and complex syntax
• Keeps specification language simple
• Provides means for communication
• E.g. checksums, lengths, socket I/O …

• Simplify specification
• Results a mini-simulation with minimal functionality

(maximum simplicity) to solve the problem in hand!

TFTP tree view

3. Valid cases

• Create one or more test cases representing valid
protocol behaviour
• Validate understanding of protocol
• Validate communication with tested software

<RRQ> ::= (0x00 0x01) <FILE-NAME> <MODE>

<MODE> ::= "octet" | "netascii") 0x00
<FILE-NAME> ::= "sample.txt" 0x00

4. Anomalies

• The unexpected elements intended to cause havoc
in the tested software

• Designed or reused from anomaly library
• Using the same notation:

<A-string> ::= () | 32x 0x61 0x00 |64x 0x61 0x00 |128x 0x61
0x00 |256x 0x61 0x00 |511x 0x61 0x00 | …

<A-16> ::= 0x00 0x00 |0x00 0x01 |0x00 0x02 |0x00 0x03 |0x00
0x04 |0x00 0x05 |0x00 0x06 |0x00 0xff |0x7f 0xff |0x80 0x00 | …

• Anomalies are inserted into specification (with valid
cases) as alternatives

• In practice the spec is not littered, instead the
grammar tree is modified via replace

5. Inserting anomalies

<RRQ> ::= (0x00 0x01 |<A-16>) <FILE-NAME> <MODE>

<FILE-NAME> ::= "sample.txt" 0x00 |<A-string>
<MODE> ::= "octet" 0x00 |<A-string>

TFTP tree with anomalies

c06-snmpv1 without
anomalies

c06-snmpv1 with
anomalies

6. Designing test cases

• Now we have a mini-simulation for testing
• With valid cases and anomalies

• Test case design
• Combine valid elements and anomalies into test cases by

instantiating the grammar tree with particular selections
• E.g. all overflow strings in SNMP get request community

name field (a test group)

• Test cases < test groups < test suites

7. Test case generation

• Fully automated
• Results:

• Binary PDUs (test cases)
• Test case BNF descriptions
• Test case documentation

• Since test-cases are relatively cheap to design,
generate and execute – you may have plenty of
them

8. Execute tests

• For stateless protocols binary-format PDUs (test
cases) can be injected into the tested software
component directly

• Preambles for stateful protocols require more
complex handling:
• BNF-formatted test cases have to be evaluated to mini-

simulate the required behaviour
• Anomalies are injected when in a suitable state

9. Analyse results

• Test case execution log and instrumentation log for
the tested software are the basis of the analysis

• Instrumentation sources
• Debuggers, OS tools, development tools …

• Valid-case instrumentation can be used
• Between test cases a valid case is executed to find out if

subject is still alive and kicking

Automation imperative

• Mostly mechanical (man or machine):
• spec, semantic rules, valid cases, generation, execution

and initial analysis

• Heurestic:
• Anomaly creation and insertion

• We are working on an anomaly database (e.g. raw.integer.ubit32
replaces unsigned int fields)

• Test (group) design
• For now human is needed to arrange infinite input space so that

most potent(ial) things come first

Quest for coverage

• Codepath/branch -coverage
• Could be instrumented via instruction pointer sampling etc.
• Not in our agenda yet

• Input coverage
• Comes naturally from the grammar tree approach (e.g.

percentage of selections exercised)
• Work in progress

Ideas that have worked well

1. Modify specification to contain valid cases and
anomalies (syntax modelling) + semantic modelling

• Specification language is all you need
• Compare to SDL + TTCN + ASN.1

2. Scripting used to modify the specification
• Original is unmodified and can be maintained separately

Conclusions

• Mini-simulation is alternative for complete system
simulation and a viable robustness testing concept

• Simplicity gives us good cost-benefit ratio
• Automate only mechanical process

• Other potential applications:
• Stub implementations, debugging aid, analyzers …

• Leave room for human intuition
• Flexible environment to try new ideas

