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Introduction

An analogy:

Newtonian physics is an approximation to Einsteinian physics
(general relativity).

Classical physics is an approximation to quantum mechanics.

Classical information is an approximation to quantum
information.

In each case, the approximation excludes important details but
serves well for many purposes.

In each case, removing the approximation requires deeper
understanding and harder math, but results in a truer picture of
Nature and may enable new technologies.

Yes, Nature: we’re beginning to understand that information is
a physical concept.
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What approximation do we remove?

Relativity: we remove (among others) the approximation that
we are traveling much slower than light.

Quantum mechanics: we remove (among others) the
approximation that we are manipulating things much larger
than atoms.

Quantum computation: we remove (among others) the
approximation that the elements of information are
independently manipulable.
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Why would we care?

That approximation means that we can look at one bit in a
register without affecting the other bits.

Why remove that approximation? Because it limits the power
of the computer. (Keep in mind the analogies.)

Also, getting ahead of ourselves, that approximation turns out
to be troublesome in representing information quantum
mechanically.

Why would we do that?
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We’re running out of particles.

The insulators in CMOS transistors can’t get much smaller or
the insulating layers will stop insulating (at around 6 atoms
thick). (Maybe before 2010.)

In optical fiber, we use ten thousand or so photons to represent
a bit. There’s a Moore’s law for fiber, too, and we’ll soon run
out of photons. (Maybe before 2010.)

Quantum mechanical effects will become important in just a
few years!

Currently, we work in the classical information regime. That
won’t last. We’d better come to understand quantum
information.

Of course, this version of the story isn’t how quantum
computation came to be. (Keep in mind the analogies.) So
let’s back up and tell a more historical story, to introduce the
ideas.
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Feynman’s Question

In a couple of papers in the 1980s, Feynman asked and began
to answer the following question:

Is it feasible for a computer to simulate a physical system
perfectly?

The answer appears to be, "No". A classical computer seems
to need time exponential inn to predict precisely the behavior
of a general quantum mechanical system ofn particles. (Yet
nature manages to do it in real time.)

Briefly, a quantum mechanical system ofn particles is
represented by a wave function in a Hilbert space of
dimension exponential inn. We really do need that much
dimensionality to represent all possible behaviors of the
system.

Less briefly...
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The Nature of Quantum Reality

The two-slit experiment.

γ

1. Single photon still produces interference pattern!
2. Ask which slit photon passes - pattern disappears!
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Interpretation

The photon can go through either slit, or both; its state
embodies both possibilities.

If we ask which slit it went through, there must be an answer,
and the system must decide:

Asking the question changes the state of the system from
both possibilities to exactly one.

The Quantum Measurement Postulate
When you make a measurement, the system makes a
random selection among the possible answers and chooses
one. After the measurement, the system is in the state that
always gives that answer; the possibility of other answers is
gone.

Do the measurement again (sufficiently quickly) and you’ll get
the same answer.
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Quantum mechanics in two slides (I)

The state of a QM system is described by itswave function, ψ,
an oscillating complex-valued function defined over all of
space.ψ can interfere with itself.

Quantum mechanics is linear. We can createψ by linear
combination, e.g.:

ψ = α upψ up + α downψ down
For well-defined states, e.g. up, we use the notationup>, so

ψ = α upup> + α downdown>

Theαs are complex coefficients that must normalize; if the>
states are orthogonal, theαs must satisfy:

i
Σ α i 2 = 1

These are calledprobability amplitudesandα i 2 (note the
square) is the probability that if we make a measurement of the
system, we will find it in statei >.
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Quantum mechanics in two slides (II)

The quantum measurement postulate in math:

If we make a measurement on a system with wave function
ψ =

i
Σ α i i >

and find it’s in statei, the wave function is now
ψ = i >.

Math aside: thei are the eigenvalues corresponding to
eigenvectorsi > of the operator (e.g. energy) defining the
measurement.
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See for yourself

Light can belinearly polarized: its vibrations can lie in a
plane, say horizontally or vertically. Represent these two
possibilities as←→> and↑↓>. We call these orthogonal states
abasisof the system.

Plain light is a mixture of these polarizations and in fact a
single photon can be a mixture. For example, light polarized
at 45° is 1/�2 (←→> + ↑↓>).

Light can also be circularly polarized: circular polarization can
be created from linear as follows:

rcp> = 1/�2 (←→> + i ↑↓>)
lcp> = 1/�2 (←→> − i ↑↓>)

This is another orthogonal basis of the polarization.

We can demonstrate that light obeys the quantum
measurement postulate using three linear polarizing filters and
an overhead projector....
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A few points about wave functions

1. Quantum mechanics is a linear theory: we can create linear
superpositions of wave functions, provided we keep the
probability amplitudes normalized.

2. The quantum measurement postulate can be described as the
wave function ‘collapsing’ to the basis state corresponding to
the outcome of the experiment.

3. We cannot discover the full quantum state of a system, only
thesquaredprobability amplitudesα2. Theα are the
projections of the system onto the basis states and are
complex-valued.

4: We cannot clone an unknown quantum state. There are no
quantum wires. (Proof a little later.)
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Bits and Qubits

A bit is in one of two states, 0 and 1, represented by e.g. the
state of a switch or a voltage.

To map this to quantum mechanics, choose two orthogonal
states (e.g. horizontal and vertical polarization) and label these
0> and1>. The state maps to a Boolean 0 or 1.

A qubit is a parcel of information represented by such a
system. Because quantum mechanics is linear, unlike Boolean
algebra, aqubit can be not just the value0> or 1> but any
complex linear superposition that satisfies the normalization
condition.

For example, a qubit might be0>, a horizontally polarized
photon; or it might be1>, a vertically polarized one, or it
might be 1/�2 (1> + i 0>), a right circularly polarized one,
or any other linear combination with appropriate
normalization.
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The interpretation of Qubits

A bit represents one of two points, but a qubit represents any
point on the unit circle in the complex plane.

ψ

0>

1>

....
....

....
....

....
....

....
.

To ask the state of the qubit is to ask whether it is0> or 1>,
and by QMP it must decide. Therefore, when we measure a
qubit, we can only ever get0> or 1>, corresponding to
Boolean 0 or 1. Butuntil we ask, it can be an arbitrary
mixture of0> and1>.
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Multiple bits and qubits

N bits can represent 2N integer values.
N qubits can represent any complex vector of unit length in 2N

dimensions, onedimensionfor each possible classical state. A
spectacularlylarger set of values!

3 bits can represent any one of 000, 001, 010, ..., 111.

3 qubits can represent any value of the form

i = 000
Σ

111
α i i >

as long as

Σ α i 2 = 1.
For example, a 3-qubit register might have the value
0.6010> − 0.8i 110>. There is no classical analogue of this
sort of state. The register represents two (or up to 2N)
different values simultaneously!

The register could be in the ‘pure’ state010> or 110>, but
the overwhelming majority of possible states are not pure.
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Entanglement

Two classical bits can be 00 or 01 or 10 or 11. We can ask the
value of the first bit without affecting the second bit.

Two qubits could be in the state
1/�2 (01> + 10>)

The first qubit is neither0> nor 1>.

It’s not even a superposition of0> and1> because the state
is not separable: the value of the first qubit isentangledwith
the value of the second.

We can’t discover value of first qubit affecting the second.
Say we measure it and get 0; by QMP that means the state of
the system is now01> and therefore the second qubit is now
1>. But it wasn’t1> before; it was entangled with the first
qubit.

This is another very different feature of quantum information.
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Two points about entanglement

1. An entanglement by definition involves multiple qubits;
this is not an entangled state:

1/�2 (0> + 1>).

2. A superposition is not necessarily entangled. Consider
1/�2 (10> + 11>).

We can measure the first qubit without affecting the second.

Compare the two above with this truly entangled state:
1/�2 (00> + 11>).
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Proof of the no cloning theorem

Proof by contradiction. Assume we have a box that will take
an arbitrary qubit and create a copy. Given0> the result will
be00>; given1> the result will be11>. Given the
arbitrary state

α0> + β1>
we want as output two separable qubits like this:

(α0> + β1>)(α0> + β1>).
But quantum mechanics is linear, so applying the box to our
state will produceα00> + β11>.

Unless one ofα or β is zero, this is not the desired state; it is
entangled. Therefore the cloning box cannot exist.

Similarly, an unknown quantum state cannot be deleted
without affecting the rest of the system.

Conservation of information.

This theorem means: no wires, no oscilloscope probes, no
debugging print statements. Note: this theorem doesn’t apply
once we measure the qubits, since the result is a pure state.
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Computation

Classically, we putn bits into a calculation and getmbits out:

n bits F mbits

A quantum computer can’t create or destroy qubits during the
calculation, sommust equaln:

n qubits F n qubits

The quantum computer is an operator that mapsn input qubits
to n output qubits. Recall thatn qubits represent a unit vector
pointing to the surface of a sphere in complex space of 2n

dimensions. Therefore the QC is a kind of rotation; it can be
represented by a rotation matrix in complex 2n space; such
matrices are calledunitary.

Quantum systems evolve by unitary operations, and all steps
in a quantum calculation must be unitary.

The final measurement step does not need to be unitary, since
we can throw data away at the end.
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A quantum gate

A quantum gate is a unitary operator, so number of bits in
equals number of bits out. No AND or OR, but instead e.g., a
controlled-NOT, which invertsB if A is 1:

CNOT
A

B

A

if A then¬B elseB

It’s a rotation, so reversible: given the output, we can recover
the input.

Other quantum gates include controlled-controlled-NOT,
square root of NOT, and other exotica.

Reversibility has the side effect that, in principle, it means a
quantum gate can use zero energy (but might take arbitrarily
long).

Reversibility has the undesired side effect that we are
forbidden from using latches, feedback, or rewritable memory.
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The big picture

A quantum computer looks like this, takingn input qubits, the
registerV, and producingn output qubits, the registerW:

V F W

n n

The input register can be prepared as a superposition of states,
e.g. an equal superposition ofall integers from 0 to 2n:

V =
i
Σ
2n

1/�2 (0 i > + 1 i >)

The computer then calculates in parallel the function applied
to all 2n integers simultaneously.

From QMP, when we measureW, it will choose a Boolean for
each bit of the output register according to the resulting
entangledwave function of the output qubits.

DesignF so that it maximizes the probability that the output
we measure is the answer we want.
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The big picture continued

Measuring the output collapses the wave function: get Boolean
values for all the qubits inW. The result is one of the possible
outputs.

Imagine thatF is (integer) square rootW=�V . PrepareV as
the superposition of all integers from 0 to 2n, run the
computer, then measureW. Result will square root ofsome
number between 0 and 2n. The square root ofanysuch
number, with equal probability.

F calculates the square roots of all the integers in parallel, but
QMP says we can only find out about one.

For real problems, arrangeF so the probability amplitudes of
the output state strongly favor the desired output fromF.

Recall the double-slit experiment. Quantum computers are
like huge multidimensional arrays of slits that generate
interference patterns in the wave functions. Design the array
right, and the pattern solves your problem.

A quantum computer isprobabilistic: we may need to run it
multiple times before we get the answer we want.
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Shor’s algorithm, simplified (I)

Peter Shor showed how to design a quantum computer to
calculate the factors of an integer in polynomial time,
theoretically breaking RSA.

We want to factorN, that is, findA andB such thatAB= N.

Trick: find distinctx andy such that
x2≡y2mod N.

Then
x2 − y2 = (x + y)(x − y) ≡0 mod N

so one must contain a factor, which we can find by e.g.
gcd(x − y,N).

Next, takey to be 1, so ifxr ≡1 andr is even then
(xr/ 2 − 1)(xr/ 2 + 1)≡0 modN.

Thenr is the period of the functionxamod N in a.
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Shor’s algorithm, simplified (II)

Looking for pairx,r such that (xr/ 2 − 1)(xr/ 2 + 1)≡0 mod N.

Greatly simplifying, algorithm builds a superposition of all
integersx < N, then calculatesxa mod Nfor all a in parallel.

Discover the periods using a (quantum) FFT on the resulting
entanglement. The final state is (sort of) an entanglement of
all valid x,r pairs.

Finally, measure the output register. QMP says it must choose
onex,r pair, and we can factor.

With probability<< 1/2, the output may be zero; if so, we run
it again.

Not much like a regular computer program!
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What else can we do?

Shor’s algorithm
factors in polynomial time.

(We expect to get a non-zero result in a small number of runs.)
It’s dramatically faster than any known classical algorithm;

Entanglement gives us exponential parallelism.

A few other quantum algorithms go faster than classical. Most
are obscure but one is important:

Lov Grover’s algorithm searches an unordered database ofN
elements to finds an element satisfying a given condition in
�N time. In other words,

it searches a linear list in square root time.
Not as dramatic as the exponential speedup in Shor’s
algorithm, but remarkable and possibly even practical.
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Decoherence

Factoring a 200-digit number using Shor requires 3500
perfectly well-behaved qubits. (Current state of the art is four
entangled qubits.) But that’s not the hard part.

The challenge isdecoherence: the ‘leakage’ of quantum state
into the environment. Actually, it is entanglement with the
environment. (Believed to be the explanation for why the
macroscopic world behaves classically).

QC must be run in a sealed box without any interaction with
the outside world. Otherwise the qubits will be contaminated.
(This is another reason debugging could be hard.)

The required isolation is extreme; today’s entangled atomic
states in the lab last for about 10ns, and decoherence proceeds
exponentially fast in the number of particles.



26

Error correction

Decoherence would be the death knell for QC, except that
Shor and others discoveredquantum error correction. Like
classical error correction, but QEC can correct anarbitrary
error in a qubit, even if we don’t know its state! (Much more
astonishing than repairing a bit flip in a classical message.)

Many such codes exist, e.g. 7 qubits can fully repair damage
to any one qubit in the message.

QEC could compensate for decoherence and other losses if
they’re at a low enough rate. (Current theory ranges from
10− 6 to 10− 2.) Error correcting at-step computation involves
overhead polynomial in logt.

Using Shor to factor 200 digits requires 3500 perfect qubits,
100,000 if error correction is involved.
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Quantum communication

Computation may be extremely hard because it involves many
qubits. Butcommunicationcan work one qubit at a time.
Error-correcting such states might be practical. Experiments
have reliably transmitted kiloqubits per second over many
kilometers of fiber, and in one case a mile of open air!

Is this a solution to the running out of photons problem? An
open question. Several ways to communicate:

C: Send classical bits.

Q: Send qubits.

Q2: Send qubits but also use two-way classical
communication to assist.

QE: Send qubits but first prepare them by prior
entanglement between sender and receiver.

Channel capacities:
Q≤Q2≤C≤QE.

Entanglement is again the source of power.
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EPR pairs

Einstein, Podolsky and Rosen proposed a thought experiment
to show that quantum mechanics was crazy. Today we can do
the EPR experiment and Einstein would have hated the result:
QM is crazy.

Based on EPR, we can do stuff like teleportation, unbreakable
key exchange, and high-efficiency communication.

Electron-positron annihilation produces two photons:

Alice γ e+ e− γ Bob

The two must have entangled states: the polarization of one
must correlate with the polarization of the other.

What if Alice measures using plane polarization? Then if Bob
measures using plane polarization, he must get same answer.
Ditto for circular. But.... what if Alice doesn’t tell until after
Bob measures?

A classical channel can be used to report how the
measurement was done, and Alice and Bob can compare notes.
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Using EPR pairs

Quantum key exchange: Exchange a bunch of EPR pairs.
Alice reports the basis she used for her measurements; Bob
checks against his, and the photons measured in the same basis
get the same answer.

Cannot be tapped because tapping will destroy the
entanglement. Alice can add extra ‘check’ bits; Bob can check
them to see if key has been tampered with.

After sharing an EPR pair, two classical bits can send an
arbitrary quantum state from Alice to Bob. Alice combines
her half of the pair with the state (say an atom), does a
measurement, and sends the result to Bob. Bob uses the bits
to entangle his half of the pair and the destination atom.
Result is to transfer the unknown state to the atom:
Teleportation!

ψ>
Alice

EPR
Bob

ψ>
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More about EPR pairs

In a similar experiment, after prior sharing an EPR pair, Alice
can send Bob two classical bits in one qubit. This is called
superdense coding. Time is important: Alice and Bob can
share and separate months before Alice decides which bits to
send.

x
Alicey

x
y

EPR x

y
Bob

EPR pairs are a new kind of data communication. There’s
nothing like them in classical information theory.

Quantum computation can reduce the time complexity of some
calculations.

Quantum communication can reduce the communication
complexity of some calculations.
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Physical Realizations

Far from an exhaustive list.

Photons: 23 km. of fiber under lake Geneva, reflecting with
polarization change at the end back to sender. (Gisin, U.
Geneva).

Electrons: Floating on liquid helium with electrodes
underneath; too early to tell (Platzman & Dykman, Bell Labs).

Atoms: Ion traps, controlling quantum state by external laser
pulses (Cirac & Zoller, Austria; Kimble, Caltech). Passing
qubit from atom to photon is work in progress.

Molecules: NMR on an ensemble of molecules (e.g.
chloroform, trichlorethylene) (Gershenfeld, MIT).

All these have limitations. Current status: a few qubits.

Solid state: In the future. Quantum dots, ultrasmall Josephson
junctions, semiconductor microcavities, ...



32

Conclusions

As computational elements get smaller and smaller, quantum
mechanical effects will become important. Somewhat to our
surprise, this may turn out to be a good thing.

Information is a physical variable, and we can use the
properties of its physical manifestation to our advantage.
Quantum mechanical information has deeper structure and
greater power than classical information.

Studying information as a physical notion helps us understand.
For example, to understand what can and cannot travel faster
than light, say this: information cannot travel faster than light.

A final thought: Sixty years ago classical computers seemed as
remote as quantum computers do today.
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Summary

Table adapted from Bennett & DiVincenzo:
____________________________________________________________________
Property Classical Quantum________________________________________________________________________________________________________________________________________
States String of bitsx∈{0,1} String of qubitsψ =

x
Σ cx x>

____________________________________________________________________
Computation Boolean operators Unitary transformations
Fault-tolerance Classical gate arrays Quantum FT gate arrays____________________________________________________________________
Communication Transmit bit Transmit bit; transmit qubit;

share EPR pair
Coding Data compression Quantum data compression;

entanglement concentration
Error correction EC codes Quantum EC codes;

entanglement distillation
C Q≤Q2 ≤C≤QENoisy-channel

capacity
Entanglement-assisted Superdense coding;

Quantum teleportation
Cost of bit comm.Communication

complexity
Can be less using qubits or
entanglement assist____________________________________________________________________

Key distribution Insecure against QC Secure against QC and
unlimited computation

Insecure against QC Insecure against QCTwo-party bit
commitment____________________________________________________________________


















































Quantum speedups:
Factoring: exponential; Search: quadratic; Iteration, parity: no
speed-up; Simulation of quantum systems: up to exponential.
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