Software vulnerabilities in the Brazilian
voting machine

Diego F. Aranha', Marcelo Monte Karam?, André de Miranda?, Felipe Scarel?

!'Department of Computer Science — University of Brasilia
2Center for Informatics — University of Brasilia

Version 1.0.2

March 31, 2013

!Team coordinator.

Abstract

This report presents a security analysis of the Brazilian voting machine
software based on the the experience of the authors while participating of
the 2" Public Security Tests of the Electronic Voting System organized
by the Superior Electoral Court (SEC). During the event, vulnerabilities in
the software were detected and explored to allow recovery of the ballots in
the order they were cast. We present scenarios where these vulnerabilities
allow electoral fraud and suggestions to restore the security of the affected
mechanisms. Additionally, other flaws in the software and its development
process are discussed. In particular, this report details the main design
and/or implementation problems detected on the security mechanisms of
the voting machine software:

¢ Inadequate protection of ballot secrecy: votes are stored out of
order, but it is trivial to recover them in order only from public prod-
ucts of an election and superficial knowledge of the software source
code, which is also made public to the political parties. This vul-
nerability compromises ballot secrecy when associated to a partial or
complete ordered list of electors.

e Inadequate use of encryption: the same encryption key is shared
among all voting machines for encrypting their memory cards. Using
the classical abstraction of a locker as an encryption technique, this is
equivalent to using half a million lockers with exactly the same key,
since this is the approximate number of voting machines in operation.
This cryptographic key is also stored in the plain text portion of the
memory cards. Using the same analogy, this is compatible to hiding
the locker key under the carpet and trusting the secrecy of this location
to protect the confidentiality of the key.

e Obsolete cryptographic algorithms: the SHA-1 cryptographic
hash function used for computing digital signatures and integrity checks
is demonstrably not collision-resistant. These specific applications of
the chosen hash function have been deprecated for 6 years already. A
sophisticated collision in this hash function would allow an insider at-
tacker to construct fake voting software capable of producing election
results indistinguishable from the correct outcome.

e Inappropriate attacker model: significant emphasis is put on the
design of security features resistant only to outsider attackers, when
insider threats present a much higher risk.

e Faulty software development process: bad engineering practices
allow the accidental or malicious insertion of software vulnerabilities,
clearly attesting that the software development process is immature
from a security point of view.

e Insufficient integrity verification: the voting software verifies its
own integrity during its initialization process, but all of the informa-
tion needed to subvert this verification is contained inside the voting
machines, with different attack surfaces depending on the presence
of a hardware security module. In the machines without this mod-
ule, the problem of software authentication is reduced to itself, with
no external source of trust. In this case, digital signature-based soft-
ware self-verification [1] is equivalent to trusting the authenticity of
a document based only on allegations of the “author”, who is free to
impersonate anyone. It is also important to emphasize that an au-
thentic signature attests only to the processing of the protected object
at a point in time and space where the signing private key was also
present. Even when the integrity verification mechanisms are not cir-
cumvented, digital signature techniques cannot attest that software is
in fact correct or secure. Digitally signing vulnerable software also has
the opposite effect of providing mathematical certainty that all of the
voting machines have the same exploitable flaws. The version of the
source code studied by the authors had commented out a function call
to perform integrity verification of a significant portion of the voting
software, further illustrating the intrinsic limitations of the technique.

Detailed descriptions of the problems mentioned above are presented in
the rest of this document, but it can be noted that many of the protec-
tion features implemented in the voting machine software aim to achieve
obfuscation instead of security, not resistance to insider attacks or advanced
persistent threats (APTs). Several of these problems are the result of archi-
tectural flaws or inappropriate design assumptions. Fixing the underlying
causes will require more than ad hoc localized interventions in the source
code. A complete review of the software development process is needed to
establish good engineering practices and avoid the intentional or acciden-
tal insertion of new vulnerabilities by internal or external attackers. Since
the Direct Recording Electronic (DRE) voting machines adopted in Brazil
require software integrity to provide integrity of results, the problems dis-
cussed in this report achieve a critical status and require the introduction of
software-independent auditability measures [2]. Only with periodic scientific
evaluation, it is possible for the Brazilian voting system to satisfy minimal
and plausible security and transparency requirements.

Contents

1 Introduction

1.1 Goals
1.2 System overview

1.3 Organization of this document

1.4 Acknowledgements

2 Public Security Tests

21 Format............
2.2 Objectives
2.3 Methodology
24 Results.
2.5 Scoring
2.6 Improvement

3 Vulnerabilities

3.1 Digital Record of the Vote (DRV)

3.2 Hypothesis

3.3 Design and implementation

3.4 Attacks
3.5 Consequences
3.6 Mitigations

4 Flaws

4.1 In the software

4.1.1 Inadequate protection of ballot secrecy
4.1.2 Inadequate entropy source
4.1.3 Insufficient verification of software integrity
4.1.4 Sharing of cryptographic keys
4.1.5 Presence of cryptographic keys in the source code . . .
4.1.6 Inadequate use of encryption
4.1.7 Inadequate choice of algorithms
4.1.8 Repeated implementation of cryptographic primitives

4.2 In the development process

13
13
15
15
17
18
19

4.2.1 Complexity o 26

4.2.2 Insufficient external software audit 26
4.2.3 No static analysis of source code 27
4.2.4 Inappropriate attacker model 27
4.2.5 No internal security exercises 27
4.2.6 No formal training L. 28
4.2.7 Critical data made available to investigators 28
4.2.8 Ignorance of relevant literature 28
4.2.9 False sense of security 29
5 Conclusions and perspectives 30

Chapter 1

Introduction

The Brazilian electoral authority (SEC) has been increasingly adopting elec-
tronic elections since 1996, culminating in the current scenario where nearly
all votes are collected by voting machines and a considerable fraction of
the machines have fingerprinting devices for voter identification. Important
milestones in the history of the initiative were the first purely electronic
elections in 2000, the transfer of full responsibility for software development
to the SEC in 2006 and the migration to the GNU/Linux operating sys-
tem in 2008. Although security testing by independent parties should be a
part of the process from the start, as a natural way to improve reliability of
elections and reassure that the system provides sufficient ballot secrecy and
integrity, it only received significant attention after the software components
and human procedures for electronic voting became stable. An important
movement in this direction has been the public and periodic testing of the
voting systems organized by the SEC since 2009. Despite some undesir-
able restrictions, these tests allow teams of specialists from industry and
academia to independently evaluate the security mechanisms adopted by
the Brazilian voting system.

1.1 Goals

The main goal of this report is to present the observations collected by the
authors during their participation in the 2" iteration of the Public Secu-
rity Tests organized by the SEC in 2012. The official reports of the event
were jointly written with the SEC and do not contain sufficient information
regarding other security issues not directly attacked by the authors during
the event. Our intention is to point out several limitations of the Brazilian
electronic voting system and to contribute to its security process. Following
standard practices in the security field, we present self-contained descrip-
tions of the observed software and development process flaws with multiple
suggestions for correction or mitigation. This way, the interested parties are

in an adequate position to implement effective countermeasures.

This report discusses only aspects of the voting machine software, omit-
ting physical or hardware aspects of the equipment in order to respect the
authors’ fields of expertise. The information provided only pertains to a
small — yet strategic — fraction of the software source code. It excludes other
software components that constitute the complete voting system, because
the rules of the event and time restrictions imposed on the investigators did
not allow for a full evaluation. The content is entirely the responsibility
of the authors and does not necessarily represent the position of University
of Brasilia or any other institutions where the authors have worked or will
work in the future.

1.2 System overview

The Brazilian voting machine is a classical Direct Recording Electronic
(DRE) device without a Voter-Verified Paper Audit Trail (VVPAT). It con-
sists of an election officer terminal used to authenticate electors by their
registration number or fingerprint and a voter terminal where votes are
cast. Both terminals are connected by a cable, as shown in Figure 1.1. The
cable provides access to the elector data stored in the voter terminal. In
general terms, an election using the voting machine follows the preparation
steps below:

1. Production of software components and distribution of memory cards
containing the voting software.

2. Installation of the software in the voting machines from the memory
cards.

3. Distribution of the machines to the corresponding polling places.

On the day of elections, a well-defined procedure is executed at each
polling place:

1. Printing of the zero tape, an official public document which supposedly
attests that no votes were computed for any candidates before the start
of the elections.

2. Opening of the voting session by the election officials.

3. Granting of access for electors to cast their votes with the voting ma-
chines.

4. Closing of the voting session by the election officials.

5. Printing of the Partial Summation (PS) by each voting machine, con-
taining per-machine totals for each candidate.

Figure 1.1: Brazilian voting machine and its two terminals. The election
officer terminal is on the left and the voter terminal is on the right.

6. Recording of authenticated public products of the election by each
voting machine. They consist of a digital version of the PS, a chrono-
logical record of events registered by the machine (LOG), and the
Digital Record of the Vote (DRV), an electronic shuffled list of the
actual votes.

7. Authorized breaking of the protecting seal by the election officials
and retrieval of the Memory of Results (MR), an orange USB drive
containing the public products of the election.

8. Transmission through a private network of the public products of the
election to the centralized tabulation system. This is performed by
the election officials at the polling places using computers provided by
the SEC. The digital partial summations are made available on the
Internet afterwards.

The role of the central tabulator is combining all the partial summations
to declare the overall result of the elections.

1.3 Organization of this document

The report is structured as follows. Chapter 2 briefly describes the format
and the results obtained in the Public Security Tests. Chapter 3 details the
progression of vulnerabilities which provided a method to defeat the only
mechanism implemented in the voting machine to protect ballot secrecy. We
describe multiple alternatives for correcting the vulnerabilities and discuss
realistic scenarios where voter privacy is threatened if the vulnerabilities
are not fixed. Chapter 4 presents another collection of flaws detected in

the voting software and its development process. Finally, Chapter 5 con-
cludes the document with perspectives on how to improve transparency and
auditability of the electronic voting system.

1.4 Acknowledgements

We would like to thank colleague Prof. Pedro Rezende from University
of Brasilia, Prof. Jeroen van de Graaf from Federal University of Minas
Gerais, Prof. Paulo S. L. M. Barreto from University of Sao Paulo, and
Prof. Francisco Rodriguez-Henriquez from Centro de investigacién y de Es-
tudios Avanzados del Instituto Politécnico Nacional de México, for relevant
discussions during the preparation of this work. The authors are especially
grateful to Prof. J. Alex Halderman from University of Michigan for pro-
viding many useful comments on a preliminary version of this report.

Chapter 2

Public Security Tests

The 274 Public Security Tests of the Electronic Voting System organized
by the Superior Electoral Court (SEC) were held in March 2012. The or-
ganization involved a Disciplinary Committee, responsible for creating and
enforcing the competition rules, and an Evaluation Committee, responsible
for evaluating the performance of each competing team. Formally, the event
began with the publication of a call for participation and team registration.
According to the official announcement [3], only the teams approved by the
SEC would have the opportunity to participate in the trials. The major
difference between the 24 and 1% iterations of the trials was access to the
source code of the voting software. The 1% iteration of the event was held
in 2009 and consisted exclusively of “black box” testing.

2.1 Format

The 9 approved teams were composed of 24 Brazilian professionals from
industry, universities and government institutions. The investigators par-
ticipated in two stages spanning 3 days with 10 hours a day of activities:
(i) a preparation phase, March 6-8, when the teams could study the voting
software source code and ask technical questions to formulate hypotheses
and testing plans to evaluate the quality of security features implemented
in the voting machine; (ii) a testing phase, March 20—22, when teams could
no longer study the source code and could exercise their methodologies to
validate hypotheses and obtain results and conclusions.

Concrete activities of the 2"d Public Security Tests started on March 6,
with an opening talk [4] where the format and rules of the event were pre-
sented together with an overview of the voting procedures and security mea-
sures implemented in the voting machine. The goal of the opening talk was
to level the amount of information available to the participants. The team
composed by the authors, identified as “Group 1”7, attended the opening
talk to familiarize themselves with technical aspects of the system and to

detect promising points of attack.

During the 12-day period between the two phases, teams were required
to submit testing plans formulated from the information collected during
the preparation phase. Only testing plants approved by the Disciplinary
Committee of the event (appointed by the SEC) could be put into practice
in the following phase. The restriction on access to source code during
the testing phase was waived on the second day of the testing phase. The
authors did not take advantage of this possibility.

2.2 Objectives

The call for participation explicitly divided the objectives of the trials into
two distinct classes, directly translated from the official announcement [3]:

e Fuailure: event when a system violates its specification after entering
an inconsistent state of execution caused by a fault or imperfection in
the software or hardware components, and improper functioning does
not have any interference on the intent or anonymity of the votes.

e Fraud: intentional act of modifying information or causing damage
with impact on the intent or anonymity of the votes, preferably with-
out leaving apparent traces.

The first class comprises denial of service attacks, where an attacker
aims only to make the voting equipment unavailable to the electors. The
second class captures attempts at electoral fraud.

Our team formulated and submitted two testing plans, titled “Untrace-
able attempt at compromising ballot secrecy” [5] and “Untraceable attempt
at corrupting election results” [6], both clearly directed to cause fraud in a
simulated election using official procedures. Due to time restrictions, only
the first testing plan was put into practice.

2.3 Methodology

The method proposed by the testing plan required the team to split into
two parts, here identified as A and B, who alternated their presence in the
testing room to avoid any kind of internal communication. The experiments
followed the procedures below:

1. Generation by the SEC of a secret list of fictional votes for city coun-
cilor and mayor.

2. Receipt of the secret list of votes by part A of the team.

3. Software installation of the voting machine using an official memory
card and printing of the zero tape.

4. Casting of votes in the voting machine by part A of the team, following
the order of the list and under supervision of SEC officials.

5. Breaking of the seal and delivery of the Media of Results (MR) to part
B of the team.

6. Execution of a customized program to analyze the Digital Record of
the Vote (DRV) stored in the MR and to produce a list of votes in
an order supposedly corresponding to the votes cast on the voting
machine.

7. Comparison of the list of votes kept secret from part B and the list of
votes produced by the customized program.

The success criterion for the attack is naturally the correspondence be-
tween the two lists. Observe that, inside the testing room, part B of the
team had to break a seal and retrieve the MR to complete the simulation,
since this was the only way to obtain the DRV matching the simulated elec-
tion. In real elections, the DRV is public by law [7]. Part A also needed
physical access to the voting machine, but only to cast the prescribed votes,
according to the protocol described above.

2.4 Results

As stated in the report jointly written by the authors and the SEC [5], the
ballot secrecy attack method obtained absolute success in recovering the
votes in the order they were cast during simulated elections with 10, 16,
21 and 475 electors (20, 32, 42 and 950 votes, respectively). The latter
reproduced the proof-of-concept results with a realistic amount of data, a
requirement made by the SEC to match the 82% participation rate from
the previous election in the universe of 580 fictional electors composing the
training set of the event.! Since the attack method only consisted of ana-
lyzing public products of an election, no modification in any component of
the voting machine, or invasion of its security perimeter was needed. For
this reason, the method is essentially untraceable.

Storing the votes in an order different than the order they were cast is a
critical procedure for protecting ballot secrecy. It is clear that the authors’
methodology defeated the only security mechanism employed by the voting
machine to protect ballot secrecy. It was not possible, however, to recover
the ordered list of elector identities from the public products of an election.

Voting in Brazil is mandatory, thus the high participation rate.

This information must be obtained externally in order to relate the ordered
votes with the ordered identities, making possible an exact correspondence
between each voter and his or her vote. To the extent the authors could
investigate, public products only store the registraton number of missing
electors in lexicographic order. The next chapter discusses how recovering
the ordered votes allow electoral fraud in realistic scenarios.

There was not sufficient time to execute the second testing plan, which
aimed to evaluate the security measures that protect the integrity of re-
sults. Priority was given to the first testing plan because of its simplicity
and almost complete independence from any significant collaboration with
the SEC. Attacking the integrity of results during the trials would require
active collaboration from the electoral authority to at least attest to the
authenticity of the corrupted results with the existing detection measures.

2.5 Scoring

Scoring criteria were devised by the SEC to quantitatively compare the
performance of the teams [8] using the formula:

1 1
=X = -A-E,
where At ranged from 1 to 15 depending on the time in minutes until the
attack presented the first relevant results, p was the number of intervention
points required for the attack to be successful, A was 1 or 10 depending
on the attack type (failure or fraud, as discussed previously), and E ranged
from 1 to 20 depending on the geographical extent of the attack (from polling
place to nationwide). The final score would be doubled if the investigators
provided a suitable solution for correcting the vulnerabilities found.

Without detailed justification and even with the absolute success during
the execution of the testing plan, the authors received the negligible score
of 0.0313 on a 0-400 scale [9]. The Evaluation Committee of the event
(also appointed by the SEC) considered that our team took 176 minutes
to successfully attack the system (At = 4), required 4 intervention points
(p = 4), aimed at only causing a failure (A = 1) and impacted single voting
machines or polling places (E = 1).

The penalties applied to the team score were questionable at best. It
was not clear, for example, why penalties caused by intervention points re-
quired at the testing environment were applied even if they would not be
needed during a real instantiation of the attack. The Evaluation Committee
cited the following intervention points: physical access to the voting ma-
chine, protection seal, and memory cards and access to the source code. It
would be impossible to simulate any election without physical access to the
voting machine and it would be impossible to analyze the public products

10

of a simulated election without breaking the seal to retrieve the Media of
Results. The attack did not require access to the voting machine beyond
what is allowed to electors during the voting process or mandated to elec-
tion officials at the end of the voting session. Political parties receive the
contents of the Media of Results without physical access to the voting ma-
chine. Is is also incoherent to penalize the team for reviewing the voting
software source code, when the objective of the event was to evaluate the
quality of security features implemented in that source code. The team still
does not understand why their methodology was considered to be an at-
tempt to cause failure instead of a fraud attempt on a simulated election,
since no apparent failure was perceived in the voting equipment during the
whole trials. Despite the scoring issues, the team won the competition after
providing the most significant contribution to improve the security of the
electronic voting system.

There are two possible hypotheses for the negligible team score: either
the Evaluation Committee did not understand the severity of the vulner-
ability exploited or this was a deliberate attempt to mischaracterize and
quantitatively minimize the results. Both hypotheses are equally worrisome.

2.6 Improvement

During their participation, the authors collected several recommendations
to improve the event:

e Minimize intervention from the event staff: the necessity to
monitor the investigators during the execution of their testing plans
is understandable, but the lack of privacy and constant intervention
disrupted the efficiency of the team.

e Minimize bureaucracy: again, the necessity of keeping track of all
the procedures executed by the investigators is perfectly justifiable,
but satisfying bureaucratic requirements consumed an amount of time
which could be dedicated to the execution of additional testing plans.

e Minimize the time restriction: 30 hours are absolutely insufficient
to analyze a significant portion of the voting machine source code,
which has in total a few million lines. Mission-critical software should
be considered security software in all of its entirety, since a vulnera-
bility in non-critical code can trigger a vulnerability in critical code.

e Increase the source code availability: a sealed room with only
4 computers was specifically dedicated for studying the source code.
Since many teams had to share these 4 computers, the lack of capacity
severely reduced the amount of exposure of the source code. In par-
ticular, our team only obtained access to the source code at 11 AM of

11

the second day of the preparation phase, since another team obtained
exclusive access to the sealed room on the first day. In total, our team
spent only 5 hours of the preparation phase studying critical portions
of the source code. On a positive note, the current availability of sim-
ple text processing utilities (grep, vi, cat, etc.) was paramount for
the efficient detection of which code sections presented higher interest.

Enlarge the testing scope: the event focused exclusively on the
security mechanisms implemented in the voting machine, not pertain-
ing to the central tabulator. The SEC provided the justification that
any entity can perform a parallel tabulation of the results after all the
partial numbers are published on the Internet. This way, any attack
directed at the tabulator would only delay the publication of the of-
ficial results, not change them. However, in our opinion, successful
attacks directed to the centralized tabulation could create ambigu-
ity or corruption of the official results. These can be detected and
neutralized afterwards, but only when the respective guarantees, that
the correct results obtained by each voting machine correspond to the
ones published in the Internet, are available to any potentially dam-
aged candidates. A successful attack of this type would still call into
question the reputation and capacity of the electoral authority in ex-
ecuting the elections or even the validity of the election outcome.

Improve the scoring criteria: the formula for evaluating the per-
formance of the teams was ill-conceived and had too much focus on
applying penalties. The official report written by the Evaluation Com-
mittee did not justify their decisions and only listed the intervention
points and final scores.

Change the nature of the event: the competition format creates
disincentives for information sharing among the teams and emphasizes
cost-benefit metrics. Teams are led to prioritize attacks that would be
fast to execute and demonstrate within the restrictions of the event,
rather than those that might pose the most danger to real elections
in practice. These characteristics clearly model a portion of potential
attackers, but only a careful collaborative evaluation of security mech-
anisms allow the modeling of well-informed attackers with considerable
resources to represent more dangerous threats.

The complete and careful evaluation of the voting machine software re-

quires enormous amounts of effort and time. Without the possibility of
extensive unrestricted testing, following a sound scientific methodology, it
cannot be said that the current format of the event significantly improves
the security of the voting system. It only allows the detection of easily
exploitable vulnerabilities which allow simple attacks with limited effects.

12

Chapter 3

Vulnerabilities

In this chapter we describe the sequence of vulnerabilities which allowed the
team of authors to recover the list of ordered votes in several consecutive
simulated elections, one of them using a realistic number of electors.

3.1 Digital Record of the Vote (DRV)

Following the introduction by electoral law of the current DRE voting ma-
chines in 1997 [10], voter-verified paper audit trails (VVPATSs) were adopted
in Brazilian elections for the first time in 2002 [11]. They aimed to distribute
among all electors the possibility of independent verification of their individ-
ual votes. Paper audit trails consist of a voter-verified physical record of the
votes that can be stored for later recount without allowing electors to prove
their choices to any interested parties. Without independent verification of
results, trust has to be put on the limited software auditing measures exer-
cised by the political parties before the election and on the good faith of the
technicians responsible for the voting system [12, page 23]. After allegations
by the election authority that the additional printers increased costs signifi-
cantly and created many operational problems, VVPATSs were discontinued
in 2003 [7]. In their place, a purely digital substitute was adopted. Today,
the only record of the votes is stored as a data structure called the DRV in
the voting machine’s electronic memory.

The DRV is a table separated into sections, where each section is devoted
to a different race. This table shuffles the votes cast by the electors during
storage to disassociate the order of the votes and the order of electors. It
was introduced as a replacement to VVPATSs to supposedly permit indepen-
dent verification of election results. For this reason, it is a public document
made available to the political parties after the elections. However, while
paper audit trails in fact allow independent verification of the votes com-
puted electronically, the DRV is produced by the same software component
which tallies the votes and produces per-machine partial results. This way,

13

any successful attack against the tallying process can also compromise the
integrity of the DRV.

Hence, the DRV does not serve any practical purpose besides compro-
mising ballot secrecy if it is not designed or implemented securely. Figure
3.1 presents a fictitious DRV for an election with 3 races and 7 electors of
which only 3 participated. The first elector choses candidate number 13
for Governor, 31 for Senator and casts a BLANK vote for President. The
second elector chooses 71 for Governor, casts a NULL vote for Senator by
inputting an invalid number and chooses 37 for President. The third and
last voter also chooses 71 for Governor, casts a BLANK vote for Senator
and chooses 37 for President. Observe that the final version of the file ap-
parently does not allow recovery of any correspondence between electors and
their votes, and that unused positions are conserved by the shuffling process.

Governor Senator President Governor Senator President

e

13
(a) Storage of first vote. (b) Storage of second vote.
Governor Senator President Governor Senator President
71 31 71 31 37
BLANK
13 13
NULL 71 NULL
BLANK BLANK
37 37
(c) Storage of third vote. (d) Final contents of the file.

Figure 3.1: Example of shuffled storage of votes in the DRV.

3.2 Hypothesis

The shuffling mechanism was presented in the opening talk as a security
feature [4] and immediately raised suspicion among our team. The rea-
son for this was the clear observation that the vote shuffling should reach
cryptographic strength, and only someone with proper training in computer
security would recognize that this is as important for ballot secrecy as soft-
ware integrity is for reliable tallying. Still during the opening talk, the team
raised the hypothesis that the DRV was not designed and implemented se-
curely. With only a few recursive searches for well-known insecure functions
for random number generation in the first hour of studying the source code,
the hypothesis was considerably strengthened. It only remained to deter-
mine which data was needed to reverse the shuffling and recover the votes
in the order they were cast.

3.3 Design and implementation

The shuffling mechanism was designed and implemented with a progression
of errors which culminated in allowing its reversal. The implementation uses
a pseudo-random number generator, a computational procedure which pro-
duces a sequence of numbers apparently random, but that can be uniquely
determined from a small parameter called the seed which must be chosen in
a truly random fashion. When the sequence of numbers should be protected
from independent derivation by an attacker, the seed must not only be truly
random but also be kept secret. In the following, we present the progression
of software vulnerabilities that forced the pseudo-random number genera-
tor to work outside of its operation limits, not fully reaching its security
properties:

1. Inadequate choice of pseudo-random number generator: the
standard generator included in the C programming language and im-
plemented through functions rand () /srand() was chosen. This gen-
erator has an extremely short period and accepts seeds with only 32
bits. Thus, it does not reach cryptographic strength [13]. Just this
choice of generator already allows a probabilistic attack method.

2. Inadequate choice of seed: the seed was chosen at the initialization
of the voting software as a time measurement with precision of seconds
in the UTC timezone and implemented through the function time ().
This choice of seed is obviously not truly random. The system must be
initialized on election day between 7 and 8 AM and this information
alone reduces the exhaustive search space to just 3600 values.

3. Public seed: the seed was not only deterministic but also made public
in the LOG of events and in the zero tape, both official documents.

15

The former becomes public to the political parties after the election,
while the latter becomes public right after its printing, when it receives
handwritten signatures by election officials and inspectors from the
political parties. Given the right time that the zero tape was printed,
it is trivial to recover the ordered votes efficiently and exactly, without
any error probability or need for an exhaustive search. The digital
signature mechanism on the LOG file and the handwritten signatures
on the zero tape further guarantee that the documents are authentic
and the timestamp contained in them is indeed the correct seed.

Algorithms 3.1 and 3.2 present simplified versions of how the pseudo-
random number generator was initialized and how votes were stored in the
DRV, respectively. Figure 3.2 presents a copy of a real zero tape found on the
Internet, with the seed (which should be random and secret) highlighted. Let
n be the number of electors who voted in an election with m total electors.
Note that even if the seed was unknown, the way the DRV conserves the
empty positions allows one to try different values for the seed and always
obtain the correct one when n < m. This test is possible by comparing the
empty positions in the DRV with the empty positions generated by storing
votes of n electors with the potential seed being tested.

Algorithm 3.1 DRV Initialization.
Input: Table T representing the DRV, total of m electors.
Output: Table T initialized and pseudo-random number generator seeded
with a timestamp.
1: srand(time (NULL)) ;
2: for i < 0 tom do
3 T[i] + EMPTY
4: end for

Algorithm 3.2 Storage of a vote in the DRV.
Input: Table T representing the DRV, i-th vote V', with 0 < i < n.
Output: Table T updated with vote V stored.
: j < rand () modm
if T[j] # EMPTY then
{Collision found!}
Increment or decrement j until a new free position is found
end if
T[jl <V

16

Figure 3.2: Document showing the seed for shuffling votes during storage.

Inst. Federal de Educagdo Ciéncia
e Tecnologia do Rio Grande do Sul
Campus Bento Gongalves
Zerésima

Eleigdo do IFRS

(28/06/2011)

Municipio 88888

Bento Gongalves
Zona Eleitoral 0008
Segdo Eleitoral 0024
Eleitores aptos 0083
Cédigo identificagdo UE 01106161
Data 28706872011
Hora 08:32: 08

RESUMO DA CORRESPONDENCIA
588 .653

3.4 Attacks

The progression of vulnerabilities presented in the last section allows the
formulation of two attack methodologies:

e Direct attack: given the seed, recovered from the LOG file or zero
tape corresponding to a polling place, it is possible to simulate the
shuffled storage of n votes and detect in which position of the DRV
each vote was stored. This makes possible the recovery of all votes in
order, only from documents specified by the current system as essential
for making the electoral process auditable.

e Indirect attack: given the votes stored out of order, it is possible to
perform an exhaustive search in the seed space and discover the correct
seed by comparing empty positions. With the correct seed detected,
the direct attack can be executed.

Both attacks above are essentially untraceable, since they do not involve
modification of any software or hardware component of the voting machine
and do not require violation of its physical perimeter. Reading public prod-
ucts of an election never leaves traces, since it is not possible to differentiate
between inspection for auditing purposes and attacks on ballot secrecy. The
attacks are also deterministic, exact and reproducible with no error proba-
bility. It becomes clear that the only mechanism used by the voting machine
software to protect ballot secrecy was defeated. This is aggravated by the

17

fact that secret ballots are a constitutional requirement in Brazil [15]. Al-
gorithm 3.3 presents the direct attack described above. After the trials, the
team obtained the information that the public LOG of events produced by
the voting machine also stores the timestamp of when each vote is cast [14].
When the time information is associated with the list of ordered votes, it is
also possible to recover a specific vote cast in a specific time instant.

Algorithm 3.3 Recovery of ordered votes from the DRV.

Input: Table T" representing the DRV, public seed s, number n of electors
who voted among m total electors.

Output: List of ordered votes.

1: srand(s);
2: for i+ 0 ton do
3: j < rand()modm

4. if T[j] = MARK then

5: {Collision found!}

6: Increment or decrement j until 77j] # MARK
7. end if

8: Print vote stored in T'[j]

9. T[j] « MARK

10: end for

3.5 Consequences

Now suppose an attacker capable of coercing k electors and monitoring their
behavior on election day. Recovering the list of ordered votes allows this
attacker to obtain mathematical certainty in different types of electoral fraud
violating ballot secrecy!:

e Inserting the coerced electors into the k first positions of the voting
queue. This does not seem hard to achieve if the attacker funds trans-
portation for electors and arrives early at the polling places.

e Using a marker vote to indicate the beginning of the block of k coerced
voters in the voting queue. If arriving early to the polling place is
an issue, the attacker can instruct one elector to vote in a previously
determined way (nulling his/her vote with a prescribed invalid number,
for example), after which the sequence of coerced votes begins.

e Recording the identities and position of all electors in the voting queue
or the time they cast their votes. This allows an attacker to break se-
crecy for all n electors, even those not coerced by the attacker. Observe

Voter coercion is historically so common in Brazil that it even has its own name in
Portuguese: voto de cabresto.

18

that this information can be obtained by collaboration with election
officers or inspectors from the political parties.

The time a specific vote was cast determines the position in the voting
order that a certain elector cast his/her vote. Examining the corresponding
position in the ordered list of votes recovered from the DRV directly reveals
the choices made by that elector. This directed attack, besides violating a
constitutional requirement, can cause significant issues for public personal-
ities (politicians, entrepreneurs, ministers). Note that the place and time
they vote is frequently reported by the press on election day. For example,
the time and place the then president of the SEC voted in the last elections
was reported by the Court’s internal press office [16, 17].

3.6 Mitigations

Correcting the progression of vulnerabilities starts with strengthening the
pseudo-random number generator which determines the positions votes are
stored in the DRV. This improvement can be implemented from the com-
ponents already available in the voting machine. A secure way to perform
this correction is replacing the pseudo-random number generator currently
used with a cryptographic pseudo-random number generator. Examples of
such generators are documented in standards [18] and implementations can
be found in general purpose cryptographic libraries [19].

Proper unpredictable seeds also need to be provided for the improved
pseudo-random number generator. This true randomness criterion can be
satisfied by a hardware generator based on a well-studied physical effect.
According to the specification of the 2009 voting machines [20], a genera-
tor with these features is already available in the hardware security module
inside the equipment. The AMD Geode processor mentioned in the speci-
fication also has a truly random number generator [21] accessible through
the file /dev/hw_random. For previous models, engineering trade-offs must
be made. A possible solution is obtaining the seed through a blocking read
from the file /dev/random which provides entropy of cryptographic qual-
ity from operating system events. This approach has problems involving
the predictability of the voting system initialization, which may not provide
sufficient entropy for a truly random seed, and the lack of entropy impair-
ing the equipment functionality. The last recommended solution is to relax
the cryptographic strength and obtain the seed through a non-blocking read
from the file /dev/urandom. In this case, cryptographic strength is lost, but
the quality of the shuffling should be better than the current construction.

It is important to test all of the above suggestions and determine if they
satisfy minimal security requirements established for the shuffling mecha-
nism. The authors cannot be held responsible in case the suggested solutions
do not completely remedy the shuffled storage of votes.

19

Chapter 4

Flaws

Studying the source code of the voting software revealed not only the vul-
nerabilities in the design and implementation of the security mechanism to
protect ballot secrecy, as discussed in the previous chapter, but also several
flaws in critical software components. Each flaw presented here is a poten-
tial vulnerability which allows an internal or external agent to formulate an
attack methodology. The presence of flaws in critical software components
attests to the presence of inherent flaws in the software development process.

4.1 In the software

In the following, several flaws found in the software are described, some
of them already pointed to in the 2002 report prepared by the Brazilian
Computer Society (BSC), or previously discussed in the academic analysis
of the voting software used in U.S. elections [22]. Diebold, Inc. manufac-
tured the hardware for the Brazilian and most of U.S. voting machines, the
software for the U.S. equipment and the voting software for initial versions
of the Brazilian model. Currently, the SEC is responsible for producing all
software running in the Brazilian voting machines.

4.1.1 Inadequate protection of ballot secrecy

The Digital Record of the Vote (DRV), introduced by a legal mandate in
2003 and described in the previous chapter, does not provide any real in-
dependent verification of results because it is generated by the same soft-
ware component which counts votes and produces the Partial Summation
(PS). For this reason, the possibility of compromising the PS directly im-
plies the possibility of compromising the DRV. This means that the DRV
is just redundant information as fragile as what it tries to protect. Since
the DRV does not have any practical value, it serves only as a source of
attacks against ballot secrecy if the shuffled storage of votes is not designed

20

and implemented securely. Besides that, the voting machine project does
not completely eliminate the possibility of associating the elector identities
and their votes through malicious software [12], since the both terminals
responsible for collecting this information are electronically connected. The
required information exists in the internal state of the voting machine at
some point and can be captured by malicious software.

The DRV already has 9 years of history and the question if the vul-
nerability discussed in the previous chapter was also present in the voting
software used in 4 past elections (2004, 2006, 2008 and 2010) poses an in-
teresting possibility. While the authors do not currently have any intention
of investigating this issue, there are only three possibilities: (i) the shuffling
mechanism used in past elections was more vulnerable than the one exam-
ined by the team; (ii) the shuffling mechanism used in past elections was as
vulnerable as the one examined by the team; (iii) the shuffling mechanism
used in past elections was less vulnerable than the one examined by the
team. The first two hypotheses indicate that there was inadequate protec-
tion to ballot secrecy in 4 past elections, leaving this security property open
to attack by internal or external agents with some knowledge of the mecha-
nism. The third hypothesis indicates that the quality of the voting software
decays with time, pointing to fundamental problems in how the software
is developed. The three possibilities are then equally worrisome, especially
when it is considered that secret ballots are required by the Brazilian consti-
tution and that the country has been a fertile field for electoral fraud based
on voter coercion for most of its history.

Recommendation. Eliminate the DRV and replace it by a mechanism
which allows truly independent verification of results such as a voter-verified
paper record. If the presence of the DRV is still a requirement, we recom-
mend at least that the empty positions be eliminated from the final version
of the file. This makes an exhaustive search in the seed space much harder.
However, if the shuffled storage of votes is still vulnerable, this compression
will not adequately resist to insider or well-informed attackers.

4.1.2 Inadequate entropy source

Entropy has a critical role in several cryptographic operations which require
random data, such as generation of ephemeral keys and seeding of pseudo-
random number generators. In many cases, it is possible to completely cir-
cumvent the cryptographic primitive by only attacking its entropy source.
Obtaining sufficient entropy in devices with limited interactivity through
software-only resources is practically impossible. As discussed in the pre-
vious chapter, the voting machine software used only a time measurement
with resolution of seconds as it entropy source, even when better sources
where available in hardware.

Collecting predictable information as an inadequate entropy source is

21

not an unknown or new vulnerability in either voting systems or commercial
software. The voting machine used in the U.S. employed equally insecure
techniques [22, Issue 5.2.12], obtaining information from the screen contents
and a time measurement with resolution of milliseconds. In 1995, PhD
students from University of California, Berkeley, discovered without access
to source code that version 1.1 of the Netscape Navigator had the same
exact vulnerability [23]. In particular, the seed was obtained using the same
function call on line 1 of Algorithm 3.1.
Recommendation. Adopt the suggestions presented in Section 3.6.

4.1.3 Insufficient verification of software integrity

The Brazilian voting machine has a mechanism for integrity verification of
its software as a mean of detecting if the software was maliciously replaced
during its installation or execution. This mechanism varies greatly depend-
ing on the presence of a customized hardware security module. Because of
this, our analysis will be split into two scenarios.

Voting machines not equipped with a hardware module. Software verifica-
tion is reduced to itself, and thus vulnerable to deactivation if an at-
tacker can access the portions of the software responsible for executing
the verification. To reduce this risk, it is common to implement a pre-
liminary integrity check at BIOS level (Basic Input/Output System)
to guarantee that the software executed next in authentic. However,
this technique only reduces the integrity of the software to the integrity
of the BIOS firmware. The problem of verifying the BIOS firmware is
reduced to itself, without any external source of trust.

Voting machines equipped with a hardware module. BIOS firmware is fur-
ther checked by the hardware module. In this scenario, the software
integrity verification problem is reduced to the authenticity of the
source of trust stored inside the hardware module. This can be a self-
contained certificate chain to validate digital signatures applied to the
other software components. Defeating a software verification mech-
anism with these characteristics requires collaboration of an insider
capable of deactivating the security module, or replacing the certifi-
cate chain and computing new signatures for the malicious software
with the corresponding private keys. However, according to specifi-
cation of the security module in the 2009 voting machines, the hash
value of the BIOS firmware needs to be programmed into the hardware
module [20]. This means that the BIOS transmits its own hash value
to be verified by the hardware module, instead of requiring that the
module actively verify the BIOS firmware. Hence, a malicious BIOS
can impersonate the authentic BIOS by transmitting the correct hash

22

values and deactivate the integrity verification of the software compo-
nents executed afterwards.

Furthermore, the authors observed that a critical line of code in the
application manager responsible for verifying the integrity of dynamic shared
libraries was deactivated with a comment, confirming that even if a chain of
trust is correctly established, software integrity verification is still susceptible
to sabotage or programming errors.

The BCS Report already presented an explicitly skeptical position re-
garding the possibility of software self-verification through cryptographic
techniques [12, page 24]|. Additionally, guaranteeing that the voting soft-
ware indeed was produced by the SEC does not make it secure, but rather
only confirms its origin, even when the integrity verification mechanism is
not circumvented and works correctly.

The software integrity verification problem is endemic in voting systems
and is particularly hard to solve in practice. The same limitation in the
integrity controls was observed in the voting machines used in the U.S. [22,
Issues 4.1.5 and 4.1.6]. For this reason, it is recommended to install means
for software-independent auditability of results, such as by reintroducing a
voter-verified paper record and adequate post-election audit procedures.

Recommendation. Perform the verification of the BIOS contents by
the hardware security module in an active manner. This recommendation
was also suggested by Group 6 participating in the trials [24]. More generally,
we recommend transferring the pressure on verifying software integrity to
software-independent verification of the results produced by it.

4.1.4 Sharing of cryptographic keys

Every voting machine in operation uses the same cryptographic key to en-
crypt the protected partitions of its memory cards. Leakage of this crypto-
graphic key has the devastating impact of revealing to an attacker the entire
content of the memory cards, including the voting software, the software in-
tegrity verification mechanism and the RSA private key used to digitally sign
the public products of an election [25]. The latter is shared by all voting ma-
chines in the same state [26], and its leakage allows an attacker to produce a
forged file (LOG, DRV, PS) detected as authentic by the central tabulator.
We can conclude that confidentiality of the private key and, consequently,
integrity of the partial summations depend only on the confidentiality of a
cryptographic key shared by half a million machines [4].

In an official position [27], SEC argues that using multiple encryption
keys to encrypt the same files can leak statistical characteristics of plain
text [27]. Attacks of this nature are indeed studied in cryptographic litera-
ture, but do not represent any relevant threat in practice [28]. It is clear that
this risk is nowhere near the consequences of a compromise of the massively

23

shared encryption key. If a proper mode of operation for encryption is used,
this risk is trivially eliminated by randomizing the block cipher input when
the plain text cannot be chosen by the attacker [28], as in the case discussed
here.

Recommendation. Assign a different cryptographic key to each voting
machine, or at least to each memory card used to install software in a reduced
set of voting machines. Key derivation functions are cryptographic tools
designed to solve this exact problem.

4.1.5 Presence of cryptographic keys in the source code

Sharing of cryptographic keys is aggravated by their clear presence in the
source code of the voting software. This means that any internal agent
with unrestricted access to the versioning repository where source code is
kept immediately has access to the cryptographic key which protects the
encrypted partitions of all memory cards. This also means that the encryp-
tion key is part of the operating system module responsible for mounting the
encrypted partitions and making their contents available. Thus, it must be
stored in the plain text portion of the memory cards. The encrypted objects
are stored right beside the cryptographic keys which decrypt it, qualifying
this mechanism as obfuscation instead of a security measure. Leaking the
key becomes possible for anyone knowing or able to discover the position in
which the key is stored by simply analyzing the plain text portions of the
software.

Recommendation. Store the encryption key in the hardware secu-
rity module or preferably in a tamper-resistant device external to the voting
machine environment. The hardware security module introduced in newer
voting machines also has unused storage capacity for private keys [20].

4.1.6 Inadequate use of encryption

The encryption algorithm used to protect the encrypted partitions of the
memory cards is the Advanced Encryption Standard (AES) [29] at the se-
curity level of 256 bits, a recommended choice for critical applications. The
selected block cipher mode of operation is Cipher Block Chaining (CBC).
The combination of algorithm and mode of operation is particularly good.
However, the mode of operation uses not only the same encryption key for
all voting machines but also the same initialization vector (the element re-
sponsible for randomizing the block cipher input and eliminating undesirable
leakage of statistical characteristics of the plain text). Choosing a new ran-
dom initialization vector for each encryption operation is a requirement for
this mode of operation [30]. Arguing that using the same encryption key
for all voting machines to prevent statistical leakage [27] loses any meaning
when the way the mode of operation is used violates its specification.

24

Recommendation. Select a new initialization vector for each encryp-
tion operation executed by the voting machine software, respecting the orig-
inal specification of the chosen mode of operation.

4.1.7 Inadequate choice of algorithms

Algorithms were not only badly chosen for pseudo-random number genera-
tor. The voting machine software also employed the SHA-1 [31] hash func-
tion for computing digital signatures and verifying software integrity. This
specific hash function is not recommended for such applications since 2006,
when it was discovered that it does not offer collision resistance. Rapid
migration to secure hash functions was also recommended following that
discovery [32]. A sophisticated collision in this hash function [33, 34] would
allow an insider attacker to construct fake voting software capable of pro-
ducing election results indistinguishable from the correct outcome.

Recommendation. Employ a pseudo-random number generator of
cryptographic quality, as discussed in Section 3.6, and a collision-resistant
cryptographic hash function, for example, from the SHA-2 family [31]. If
the length of hash values is crucial for human verification, it is possible to
truncate the output of stronger hash functions.

4.1.8 Repeated implementation of cryptographic primitives

The authors found several instances of repeated implementation of crypto-
graphic algorithms in the code base. Apparently, every software component
which employs cryptography in some way receives its own implementation
of the involved algorithms, making the proper auditing of all the implemen-
tations much harder and significantly increasing the chance of error.

Recommendation. Concentrate all implementations of cryptography
in the same library of critical code to ease auditing of their correct func-
tionality. Using a well-known general-purpose cryptographic library such as
OpenSSL [19] is also recommended.

4.2 In the development process

The flaws discussed in the previous section are the product of a fragile soft-
ware development process. From now on, we discuss flaws found or inferred
by context in this development process. Many of the same problems were
also detected in the development process used in the U.S. voting machines
manufactured by Diebold [22, Section 4.3].

25

4.2.1 Complexity

Security is a result of simplicity, transparency and correct evaluation of trust
assumptions and conditions. The millions of source code lines required to
carry out simple elections in Brazil eliminates any reasonable possibility of
a full and effective software audit review. It can be argued that a significant
volume of this software is dedicated to the operating system and thus does
not need a review. However, we verified that the SEC insert code sections
into the operating system components. For example, the encryption key
is directly inserted into the source code of the operating system module
responsible for mounting encrypted partitions. It is also worrisome that
insufficient compartmentalization and vulnerabilities in non-critical portions
of software can create severe vulnerabilities in critical portions which affect
security measures.

A volume of source code of this magnitude will, inevitably, have vulner-
abilities which can be exploited. For this reason, the code base needs to be
completely oriented around a small set of critical functionalities. The cor-
rect and secure functioning of the equipment should rely on this critical set.
As a reference value, researchers who evaluated the Diebold voting software
in a 60-day interval concluded that the thousands of lines of code dedicated
only to the application layer had such complexity that it is not possible to
make them secure [22, Issue 4.1.2].

Recommendation. Reduce code volume by reuse, compartmentaliza-
tion and refactoring techniques. Avoiding interventions in the external source
code and isolating code portions of the operating system from the application
layer can facilitate internal software audit reviews.

4.2.2 Insufficient external software audit

Inspectors from political parties have the guaranteed right to examine the
source code of the voting software, but for this they have to sign a Non-
Disclosure Agreement (NDA) which prevents them from publicly disclosing
any problem observed in the code. Consequently, inspectors cannot reveal
the quality of the voting software or its security measures in detail, while
malicious agents are free to attempt electoral fraud. Since inspection from
independent investigators is extremely limited, during a period where the
immense code base is constantly modified and under inadequate conditions,
or, more recently, consisting only of a few days of work and under complete
monitoring, in practice no effective auditing is done in the software com-
ponents of the electronic voting system. This problem was also previously
raised by the BCS report [12, page 23].

In DRE voting machines without voter-verified paper trails, integrity of
results depends only on software integrity. The scenario discussed here looks
perfect for untraceable electoral fraud.

26

Recommendation. Provide auditing capabilities to any Brazilian citi-
zen, specialist or not, without any legal impediment.

4.2.3 No static analysis of source code

The vulnerable function family employed for the shuffled storage of votes
is detected as potentially insecure by any tool for static analysis of source
code. For example, the free tool Flawfinder [35], produces the following
warning when it examines code containing the function call, such as our
implementation of Algorithm 3.3:

This function is not sufficiently random for security-related func-
tions such as key and nonce creation. Use a more secure tech-
nique for acquiring random values.

Recommendation. Adopt industry-standard tools for static code anal-
ysis in order to minimize the impact of programming errors capable of cre-
ating severe vulnerabilities, respecting good practices for developing mission-
critical software.

4.2.4 Inappropriate attacker model

The security mechanisms in the Brazilian voting machine are designed to
only resist attacks from external attackers and ignore the risk of insider
threats. In particular, as it is made clear by the SEC’s official position [27],
detection of potentially malicious behavior promoted by internal agents is
performed by an auditing process also executed by internal agents. The
sharing of encryption keys mentioned previously is a perfect example of
this phenomenon, since there is enormous emphasis on esoteric statistical
attacks mounted by external attackers while the risk of leakage by insiders is
completely ignored. Storing this encryption key as plain text in the voting
machine memory cards shows that security is not designed to resist well-
informed attackers.

Recommendation. Adopt security mechanisms resistant to external
agents and, particularly, internal agents armed with detailed knowledge of
such measures.

4.2.5 No internal security exercises

In a meeting between the authors and the SEC members responsible for
designing and producing the voting machines, right after the public audience
of the Public Security Tests, we offered a technical talk to illustrate all the
problems found in the software and the reasoning which let us detect and
explore the vulnerability discussed in Chapter 3. The offer was well received,
because it would allow the interested parties to exactly understand “how

27

the attacker mind works”, in the words of the SEC members. There was no
further concrete invitation for this, but our reading of this meeting indicates
that there is no internal team responsible for periodically simulating an
attacker and exercising potential attack methodologies.

Recommendation. Establish, train and direct an internal team of sim-
ulated attackers, a recommended practice for mission-critical software [22].
Design of security measures needs to be accompanied by simultaneous at-
tempts at defeating them.

4.2.6 No formal training

The flaws discussed in this chapter, found even in critical security mecha-
nisms, demonstrate clearly that the SEC employees responsible for devel-
oping voting software do not receive sufficient training to implement secure
software. The hypothesis raised by the authors, as early as the opening
talk, that the vote shuffling mechanism was not designed and implemented
securely due to lack of training confirms this observation. The absence
of internal simulations to model plausible attackers due to the lack of un-
derstanding of how an attacker works also supports our claim, since any
well-trained professional in computer security naturally alternates between
the roles of security designer and attacker to test the quality of his or her
own work.

Recommendation. Provide proper training for the development team
to consequently improve the quality of delivered software. It is not realistic
to expect secure software as the result of a software development team with
no formal training in computer security.

4.2.7 Critical data made available to investigators

The machines dedicated to studying the source code in a sealed room during
the Public Security Tests apparently came directly from the development
team. The evidence for this is the availability to all investigators of critical
information regarding usernames, passwords and internal network paths to
the software versioning servers. An attacker equipped with this information
and able to enter the SEC internal network can maliciously modify the source
code and make the changes effective under the credentials of an innocent
programmer.

Recommendation. Sanitize equipment made available to external vis-
itors in a way that critical information is not disclosed.

4.2.8 Ignorance of relevant literature

As discussed in Chapter 3, the vulnerabilities found in the vote shuffling
mechanism have been well-known for at least 17 years [23]. Several flaws

28

discussed in this report were already described by technical reports evalu-
ating other voting systems [22], or even the one under discussion [12], and
represent the opposite of recommended practices and formal specification
of cryptographic techniques. Persistence of these issues in a code base with
16 years of history is unjustifiable and clearly shows that the SEC team
responsible for the electronic voting system does not adequately follow the
relevant movements in the field of electronic voting or computer security in
general.

Recommendation. Ezplicitly dedicate part of the development team to
study and distribute relevant advances of practical or academic interest in
the area of computer security.

4.2.9 False sense of security

The incessant repetition that the Brazilian voting machine is uncondition-
ally secure and tamper-resistant, even if this constitutes a theoretical im-
possibility, disturbs the critical sense of the software development team and
culminates in the suspension of their self-evaluation mechanisms. The soft-
ware development process used in the voting machines apparently works
under the effect of suspension of disbelief, installing a generalized false sense
of security. This is not the ideal environment to develop security measures,
especially when these need to satisfy mission-critical requirements.

Recommendation. Install a software development process able to stim-
ulate mutual and critical verification of the work being done, with realistic
evaluation parameters.

29

Chapter 5

Conclusions and perspectives

We presented a collection of software vulnerabilities in the Brazilian vot-
ing machines which allowed the efficient, exact and untraceable recovery of
the ordered votes cast electronically. Associating this information with the
ordered list of electors, obtained externally, allows a complete violation of
ballot anonymity. The public chronological record of events kept by the
voting machines also allows recovering a specific vote cast in a given instant
of time. The consequences of these vulnerabilities were discussed under a
realistic attacker model and mitigations were suggested. Several additional
flaws in the software and its development process were detected and dis-
cussed with concrete recommendations for mitigation. In particular, it was
demonstrated how to defeat the only mechanism employed by the voting
machine to protect ballot secrecy.

The necessity of installing a continuous and scientifically sound evalua-
tion of the system, performed by independent specialists from industry or
academia, becomes evident and should contribute to the improvement of the
security measures adopted by the voting equipment.

This collection of flaws and vulnerabilities provides material evidence for
hypotheses already raised by the 2002 BCS Report on the voting system [12].
In particular, we can conclude that there was no significant improvement
in security in the last 10 years. Inadequate protection of ballot secrecy, the
impossibility in practice of performing a full or minimally effective software
review and the insufficient verification of software integrity are still worri-
some. Since these three properties are critical to guarantee the anonymity
and integrity of votes, the authors repeat the conclusions of the aforemen-
tioned report and defend the reintroduction of voter-verified paper audit
trails to allow simple software-independent verification of results. Paper au-
dit trails distribute the auditing procedure among all electors, who become
responsible for verifying that their votes were correctly registered by the
voting machine, as long as an audit is done afterwards to check that the
electronic and manual vote counts are equivalent. This auditing process can

30

be performed in a prescribed portion of the votes to reduce the impact on
the availability of results. It is important to emphasize that printed votes
are only a means for independent verification and should not leave the voting
place to serve as proof for external parties, as mandated by the correspond-
ing law [36]. Voter-verified paper audit trails were scheduled to return in
the 2014 elections, but unfortunately they were suspended by the Superior
Court of Justice under questionable allegations of unconstitutionality.

A movement in this direction would follow the current trend in electronic
voting systems. With field tests for a voter-verified paper record being ex-
ecuted by the Indian Election Commission, Brazil is now the only major
democracy that relies exclusively on electronic voting systems without inde-
pendent verification of results. We believe that, for this reason, and in light
of the severe security problems discussed in this report, the software used in
the Brazilian voting system does not satisfy minimal and plausible security
and transparency requirements.

31

Bibliography

1]

Janino, G. D.; Balcao Filho, A.; Montes Filho, A.; Lima-Marques, M,;
Dahab, R.: Report from the Multidisplinary Committee appointed by
the Superior Electoral Court (in Portuguese), 2009.

Rivest, R. L.: On the notion of “software independence” in vot-
ing systems. Philosophical Transactions of The Royal Society A 366:
3759-3767, 2008. Available at http://people.csail.mit.edu/rivest/
pubs.html#Riv08b

Superior Electoral Court. Call for participation no. 01/2012 (in
Portuguese). http://www.justicaeleitoral. jus.br/arquivos/
tse-2-edicao-dos-testes-de-seguranca-na-urna-eletronica

Azevedo, R.: Technical Security Aspects of the Electronic Voting
System (in Portuguese). Available at http://www.tse.jus.br/
hotSites/testes-publicos-de-seguranca/arquivos/material/
Apresentacao_aspectos-tecnicos.pdf

Group 1. Testing Plan GP1T1 — Untraceable attempt at compromising
ballot secrecy (in Portuguese). Available at http://www.tse. jus.br/
hotSites/testes-publicos-de-seguranca/arquivos/G1PT1.pdf

Group 1. Testing Plan GP1T2 — Untraceable attempt at corrupting
election results (in Portuguese). Available at http://www.tse. jus.br/
hotSites/testes-publicos-de-seguranca/arquivos/G1PT2.pdf

Presidency of Brazil. Law No. 10,740 of October 1, 2003 (in
Portuguese). Available at http://www.planalto.gov.br/ccivil_03/
leis/2003/110.740.htm

Superior Electoral Court. Scoring criteria established by docu-
ment no. 05/2012 (in Portuguese). Available at http://www.tse.
jus.br/hotSites/testes-publicos-de-seguranca/arquivos/
TSE-edital-5-2012-criterios-de-classificacao.pdf

Evaluation Committee. Evaluation of the Public Security Tests
(in Portuguese). Available at http://www.tse.jus.br/hotSites/
testes-publicos-de-seguranca/arquivos/RelatorioFinal.pdf

32

[10] Presidency of Brazil. Law 9,504 of September 30, 1997 (in Portuguese).
Available at http://www.planalto.gov.br/ccivil_03/leis/19504.
htm

[11] Presidency of Brazil. Law 10,408 of January 10, 2002 (in Portuguese).
Available at http://www.planalto.gov.br/ccivil_03/leis/2002/
L10408.htm

[12] van de Graaf, J.; Custédio, R. F.: Electoral Technology and the Voting
Machine — Report of the Brazilian Computer Society (in Portuguese).
Available at http://www.sbc.org.br/index.php?option=com_
jdownloads&Itemid=195&task=view.download&catid=77&cid=107

[13] Wheeler, D.: Secure Programming for Linux and Unix HOWTO,
2003. Available at http://www.dwheeler.com/secure-programs/
Secure-Programs-HOWTO.html

[14] Superior Electoral Court. File Specification of the Event Log of
the 2008 Voting Machine (in Portuguese), Version 2. Available at
http://www.tse.gov.br/internet/eleicoes/arquivos/logs2008/
EspecificacaoArquivoRegistrologUrnasEletronicasEleicoes2008.
pdf

[15] Presidency of Brazil. Law 4,737 of July 15, 1965 (in Portuguese). Avail-
able at http://www.planalto.gov.br/ccivil_03/leis/14737.htm

[16] News Agency of the Superior Electoral Court. President of the
SEC votes in the capital city of Brazil (in Portuguese). Available
at http://agencia.tse.jus.br/sadAdmAgencia/noticiaSearch.do?
acao=get&id=1336461

[17] Correio Braziliense. President of the SEC, Ricardo Lewandowski,
votes in transit at IESB (in Portuguese). Available at http:
//www.correiobraziliense.com.br/app/noticia/especiais/
eleicoes2010/2010/10/03/interna_eleicoes2010,216159/index.
shtml

[18] National Institute of Standards and Technology. FIPS 186-1 — Digital
Signature Standard (DSS), 1998.

[19] The OpenSSL Project. Available at http://www.openssl.org/

[20] Superior Electoral Court. Acquitistion of 2009 Voting Machines / Ba-
sic Project (in Portuguese). http://www.tse. jus.br/transparencia/
arquivos/tse-projeto-basico-audiencia-publica-2009

[21] AMD. Design without compromise, 2007. Available at http://www.
amd . com/us/Documents/33358e_1x_900_productb.pdf.

33

[22] Calandrino, J. A.; Fieldman, A. J.; Halderman, J. A.: Wagner, D.; Yu,
H.; Zeller, W. P.: Source Code Review of the Diebold Voting System,
2007. Available at https://www.sos.ca.gov/elections/elections_
vsr.htm

[23] Golberg, I.; Wagner, D.: Randomness and the Netscape Browser. Dr.
Dobb’s Journal, 1996.

[24] Group 6. Testing Plan GP6T1 — Security test of the electronic vot-
ing system (in Portuguese). Available at http://www.tse.jus.br/
hotSites/testes-publicos-de-seguranca/arquivos/G6PT1.pdf

[25] Superior Electoral Court. 2010 Elections — List of hash wval-
ues (in Portuguese). Available at http://www.tse.jus.br/
arquivos/tse-urna-eletronica-modelo-2009-eleicoes-2010-
turno-1-e-2-atualizado-em-22-09-2010-991ue09

[26] Superior Electoral Court. OKEY System, 2010 (in Portuguese).
Available at http://www.tse.jus.br/arquivos/tse-chaves-das-u.
f.s-eleicoes-2010-turno-1-e-2-991okey

[27] Digital Security Column, by Altieres Rohr. Flaw in voting machine
faithfully reproduced error from 1995, says professor (in Portuguese).
http://gl.globo.com/platb/seguranca-digital/2012/05/28/
falha-na-urna-brasileira-reproduzia-fielmente-erro-de-1995
-diz-professor/

[28] Hong, J.; Sarkar, P.: New Applications of Time Memory Data Trade-
offs. ASTACRYPT 2005: 353-372, 2005.

[29] National Institute of Standards and Technology. FIPS 197 — Ad-
vanced Encryption Standard, 2001. Available at http://csrc.nist.
gov/publications/fips/fips197/fips-197.pdf

[30] National Institute of Standards and Technology. Recommendation for
Block Cipher Modes of Operation, 2001. Available at http://csrc.
nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

[31] National Institute of Standards and Technology. FIPS 180-2 — Se-
cure Hash Standard (SHS), 2002. Available at http://csrc.nist.gov/
publications/fips/fips180-2/fips180-2.pdf

[32] National Institute of Standards and Technology. NIST comments
on Cryptanalytic Attacks on SHA-1, 2006. http://csrc.nist.gov/
groups/ST/hash/statement.html

[33] Stevens, M.; Lenstra, A.; de Weger, B.: Chosen-Prefix Collisions for
MD5 and Applications. International Journal of Applied Cryptography,
2 (4): 322-359, 2012.

34

[34] Stevens, M.: New collision attacks on SHA-1 based on optimal joint
local-collision analysis. EUROCRYPT 2013: To appear.

[35] Wheeler, D.: Flawfinder. Available at http://www.dwheeler.com/
flawfinder/

[36] Presidency of Brazil. Law No. 12,034 of September 29, 2009 (in
Portuguese). Available at http://www.planalto.gov.br/ccivil_03/
_ato2007-2010/2009/1ei/112034 . htm

35

