Computer Networks 57 (2013) 436-450

Contents lists available at SciVerse ScienceDirect

Computer Networks

2 |

Mputer
% N}rks
L‘::J -

jou3drnal homepage: www.elsevier.com/locate/comnet

Dissecting SpyEye - Understanding the design of third

generation botnets

Aditya K. Sood **, Richard J. Enbody *!, Rohit Bansal "2

2 Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA

bSecNiche Security Labs, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 24 November 2011
Received in revised form 2 June 2012
Accepted 29 June 2012

Available online 3 August 2012

Keywords:
Botnets
Malware
Malicious Code
Rootkits
Cybercrime

Botnet malware is improving with the latest (3rd) generation exemplified by the SpyEye
and Zeus botnets. These botnets are important to understand because they target online
financial transactions, primarily with banks. In this paper, we analyze the components
from multiple generations of the SpyEye botnet in order to understand both how it works
and how it is evolving. SpyEye is a sophisticated piece of malware with a modular design
that eases the incorporation of improvements. We will discuss in detail the complete
framework of SpyEye botnet consisting of the Bot Development Kit (BDK), the plugin archi-
tecture, the backend storage server, the bot design and the web-based Command and Con-
trol (C&C) management system. In addition, we also examine the techniques used by
SpyEye to steal money.

Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

Cybercriminals are making the Internet a less affable
place, and the increasing monetary losses further degrade
the experience. Botnets have become a popular tool for
large-scale attacks on financial transactions because of
their ability to spread their infections widely. As these at-
tacks have become more lucrative and defenses have im-
proved, the botnet frameworks have become more
sophisticated. For these reasons, botnets are important to
study.

Abbreviations: MAP, Main Admin Panel; FAP, FormGrabber Admin
Panel; BC, Backend Connector; BDS, Backend Database Server; BDK, Bot
Development Kit; C&C, Command and Control.

* Corresponding author. Address: Department of Computer Science and
Engineering, 3115 Engineering Building, Michigan State University, East
Lansing, MI 48824-1226, USA. Tel.: +1 517 755 9911.

E-mail addresses: soodadit@cse.msu.edu (A.K. Sood), enbody@cse.
msu.edu (RJ. Enbody), rb@secniche.org (R. Bansal).

1 Address: Department of Computer Science and Engineering, 3115
Engineering Building, Michigan State University, East Lansing, MI 48824-
1226, USA. Tel.: +1 517 353 3389.

2 Address: New Delhi, India. Tel.: +91 95600 11494.

Botnets are not new, but they are evolving. Botnets can
be categorized using a variety of characteristics but com-
munication protocol and motivation are two important
metrics that can be used to classify them into generations.
The first generation of botnets were controlled using the
Internet Relay Chat (IRC) protocol, and were used primarily
for conducting Distributed Denial of Service (DDoS) [3] at-
tacks, phishing attacks [4] and stealing login credentials [5]
from victims’ machines. IRC-based botnets were suscepti-
ble to defensive attacks on their command-and-control
infrastructure so a new generation (2nd) of botnets was
developed based on Peer-2-Peer (P2P) protocols to frus-
trate those defensive techniques. P2P botnets use distrib-
uted client server communication architecture to form a
decentralized network that is more difficult to defensively
take down. P2P traffic was susceptible to blocking so
designers turned to the HTTP protocol since all users ex-
pect HTTP access making broad blocking impracticable.
This third generation of botnets is exemplified by the Spy-
Eye and Zeus botnets. Third-generation botnets (some-
times called TGBs) are characterized by their economic
motivation and design sophistication. Not surprisingly,
the boundaries among botnet generations are not well de-

1389-1286/$ - see front matter Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.comnet.2012.06.021

http://dx.doi.org/10.1016/j.comnet.2012.06.021
mailto:adi.zerok@gmail.com
mailto:enbody@cse.msu.edu
mailto:enbody@cse.msu.edu
mailto:rb@secniche.org
http://dx.doi.org/10.1016/j.comnet.2012.06.021
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

AK. Sood et al./ Computer Networks 57 (2013) 436-450 437

fined and there exist hybrid botnets that combine features
of multiple generations. The change in motivation over
time is striking: initially botnets were used for fun and
did little damage, but recent botnets are reaping large re-
wards by stealing money online from financial institutions.

Botnets are controlled by bot herders (a.k.a. bot mas-
ters) using a centralized server called the Command and
Control (C&C) server. Bots are the agents designed to com-
promise the victim’s machine, and after successful infec-
tion, the zombie machine becomes part of the botnet.
Bots are often distributed through drive-by-downloads.
[1] using Browser Exploit Packs (BEPs) [6] which are auto-
mated exploit serving frameworks. In a drive-by-download
attack, a victim visits a compromised web site and that
website infects the victim’s machine (almost always) with-
out the victim being aware that he/she has been infected.
The mechanism is the dropper, a compressed piece of mal-
ware that bypasses defenses (such as antivirus engines) to
load a bot into the victim’s machine. Once on a machine, a
bot can tamper with many components of the system and
manipulate it for illegitimate purposes. There are multiple
stages to the bot infection process, but it is quite successful
because it is difficult for many users to understand and de-
fend against it.

This paper investigates SpyEye, a third-generation bot-
net that has been widely deployed and targets online
financial institutions. We have analyzed more than 13 vari-
ants of the SpyEye [2] botnet framework to understand its
evolution over time. In addition, we have reverse engi-
neered several variants of the SpyEye bot to understand
the internals of the malicious binary. Finally, we have dis-
sected the plugin architecture of SpyEye botnet which al-
lows us to present a component-level design. We have
formulated the paper as follows:

e Based on the behavioral, static and source code analysis,
we present a complete design of the SpyEye bot frame-
work and its components.

e We explain the techniques and tactics used by the Spy-
Eye framework to spread malware across the World
Wide Web.

e We present a history of changes that have occurred in
the SpyEye botnet framework.

Our analysis of SpyEye sheds light on the design of the
third generation botnets.

2. Related work

Feily et al. [7] conducted a survey on botnet detection.
In their study, various botnet detection techniques were
discussed which includes signature-based detection,
anomaly based detection, DNS mapping and mining.
Examination of the detection techniques indicated that
botnets hid their control by using multitier Command &
Control (C&C) based on techniques such as DNS fluxing.
Paxton et al. [8] presented a prototype for identifying the
communication characteristics and agents involved in the
botnet transactions by introducing an analysis system they
called the MasterBlaster. They characterized the botnet

interactions as a social mapping because of the botnet
two-way communication model: when a bot sends a com-
mand, the node has to reply. Jang et al. [9] conducted a de-
tailed study on the Waledac botnet which is an HTTP-
based botnet that also uses a P2P protocol. The Waledac
botnet used a protocol switching mechanism to shift from
HTTP to P2P after infection which made it hard to detect
using generic detection mechanisms. Dagon et al. [10] pre-
sented taxonomy of botnet structures in which different
metrics were proposed to clarify the impact of different re-
sponse techniques on the botnet activity. Additionally, Da-
gon et al. [11] proposed a model for studying the impact of
time and location on the malware infections by the
botnets.

Calvet et al. [12] discussed botnet detection strategies
based on modeling, analysis and experimentation on the
botnets. Stone-Gross et al. [13] conducted an analytical
study of the Torpig botnet that was distributed using
Mebroot rootkit. It replaced the Master Boot Record
(MBR) to take control of the victims’ machines. Mebroot
hid itself by exploiting the MBR so it was activated be-
fore the operating system was actually booted. The com-
plete lifecycle of Torpig botnet was analyzed and various
infection techniques were presented. Li et al. [14] inves-
tigated different ways to analyze malicious traffic sam-
ples to understand the relative significance of botnet
probing sequences in real time. A methodology of analyz-
ing botnet probing activity was presented. Their tech-
nique enabled them to decipher the incoming requests
using local observation techniques resulting in character-
ization of the different scanning strategies used by the
botnets.

Vo and Pieprzyk [15] presented protection measures to
secure Web 2.0 services from botnet exploitation. The
researchers described the sophistication of botnets using
Web 2.0 services as C&C channels. To resist and circumvent
botnet operations, they proposed an algorithm using an
encryption routine with session keys and CAPTCHA verifi-
cation. Wei et al. [16] discussed the concept of an online
botnet traffic classifier in which they classified the network
traffic using payload signatures and a decision tree to de-
tect the presence of online communities participating in
the botnet activities. Kok and Kurz [18] presented details
of the botnet ecosystem explaining the difference between
botnets and other malware. They also discussed in detail
the botnet player roles and the amount of revenue gener-
ated by botnets in the underground economy. Zhu et al.
[17] categorized botnet research into three different sets:
understanding botnets, analyzing botnets and defending
against botnets.

A significant amount of botnet research exists and is
crucial for understanding and thwarting botnet attacks.
We extend that work with a detailed analysis of the latest
type of botnet.

3. Experiment setup
The key to our approach was to create an experimental

setup so we could analyze the SpyEye botnet in action. We
were particularly interested in the communication pat-

438 AK. Sood et al./ Computer Networks 57 (2013) 436-450

terns between the bot and the C&C server. In order to cre-
ate such a setup, we needed to obtain and then install a bot
in a controlled environment, and we required access to a
C&C server. Botnets can be found in malware repositories,
but access to the C&C server was more challenging. We
performed penetration testing on the C&C servers to detect
vulnerabilities in the web application interface used by
SpyEye. We detected SQL injection vulnerabilities in the
SpyEye C&C web interface ([24] that allowed remote access
to the server. Once the SpyEye bot was installed in the con-
trolled environment and we had access to the C&C server,
we could dissect the network activity.

Other researchers have examined botnets’ secondary ef-
fects such as phishing emails, analyzing DNS queries [19]
and mapping C&C servers based on DNS network data for
performing analysis. These techniques are good for deci-
phering the botnet behavior and assisting in detection
but they do not provide much insight into the core design
of botnets. Our setup gave us access to hidden details of
SpyEye.

It took 6 months to collect a sufficiently large selection
of SpyEye versions for this study. To get samples, we mon-
itored various P2P networks, storage repositories, and rap-
idshare storage version systems. We also monitored
several underground forums to find any new development
taking place in SpyEye. It was actually a hard process to
collect the SpyEye binaries for reverse engineering. SpyEye
uses a builder (bot generator) to generate a bot. Several
versions of SpyEye builder were protected with a Hard-
ware Identifier (HWID). It uses VMProtect which is a lock
mechanism used to install software to a specific physical
device or system. Both HWID and VMProtect exist to pre-
vent the access that we needed, so they created a daunting
challenge, but surmountable with effort and time. For ana-
lyzing and generating the bot, the builder has to be reverse
engineered against these. More details will be presented in
the bot builder section. We used multiple sets of virtual
machines running the Windows OS to emulate the envi-
ronment so we could map and monitor changes in the sys-
tems in real time.

We used tools such as IDA Pro Disassembler, Olly
Debugger, Exescope, PEID, Anubis [20] and BitBlaze [21]
to trace the properties of the SpyEye binaries. In addi-
tion, we created custom designed scripts for further
analysis of the bots. For traffic analysis, we used
Wireshark, tcpdump, xplico, and network miner tools.
We used the following to organize our study of the impact
of SpyEye.

e The compromised system could seriously affect the
safety of users surfing the World Wide Web.

o The executable modifies the file system so it can have a
dramatic impact on the system state.

e The executable reads, modifies, creates and monitors
registry values.

e The executable registers processes to be active at sys-
tem start resulting in unwanted actions to be performed
automatically.

The overall results of our experiment are modeled into a
framework as presented in the next section.

4. Inside SpyEye framework

The SpyEye framework is composed of three layers that
include client-side components, server-side components,
and intermediate-interface components. The framework
has a built-in Bot Development Kit (BDK). The complete
modular design of SpyEye framework is presented in
Fig. 1. In the following sections, we will discuss the design.

4.1. C&C server — Main Admin Panel

The Main Admin Panel (MAP) on the C&C server is the
heart of SpyEye. It is designed for executing administrative
operations and maintaining the records of bots that are in-
stalled on the compromised machines. MAP is a PHP-based
interactive web management panel that is installed on the
web server and utilizes Web 2.0 technologies to communi-
cate over HTTP. The MAP functionality can be summarized
as follows:

e MAP sends commands to the SpyEye bot on the com-
promised client. If a bot goes astray, MAP has the capa-
bility to ignore or uninstall it.

o MAP logs all changes in the installed bots.

e MAP can create tasks for SpyEye bots remotely. The

main three types of tasks (jobs) are: updating the bot

executable, updating the bot configuration and loading
third party executable.

MAP has an anti-virus testing (virtest) module so it is

possible to find the detection rate of SpyEye.

MAP has a module for managing and controlling the

nature of plugins that are configured in the bot during

build time. However, MAP can also activate any plugin
for a particular bot later on. This capability shows that

SpyEye supports a plugin architecture that is portable

and flexible.

MAP has a configuration component that can configure

various modules in the framework.

MAP has a statistics module that manages the traffic

statistics and successful infections by the SpyEye bot

based on geographical preferences.

MAP has a variety of interfaces such as FTP, SOCKS and

RDP that work directly with the plugins. The variety of

servers provides flexibility for compromised machines

to bypass some host-based protection software such
as firewalls. A particularly useful task is to enable an
infected machine within a Network Address Translation

(NAT) environment to connect back to the C&C server.

MAP is the information hub and guardian of the SpyEye
botnet. MAP executes global commands using HTTP to pro-
vide robust control over the operational bots.

There is a Backend Database Server (BDS), but it is not
hosted on the same domain as the MAP. Bot herders use
different domains to host MAP and BDS in order to reduce
complexity and loss: if one server is compromised, the
other can be preserved.

Fig. 2 shows the MAP interface control panel of the lat-
est version of SpyEye. Table 1 shows the set of configura-
tion parameters used in MAP:

AK. Sood et al./ Computer Networks 57 (2013) 436-450 439

Client Side Components

Collector @ .
o
DNS Mapper h l

Screenshot Stealer / Scrapper @ Builder
‘ Components 0
Custom-connector @
Plugins h

Web Injects Module

Certificate Grabber

Credit Card Grabber

Web Fakes

SOCKS Backconnect

Plugins

FTP Backconnect
Manager

RDP Backconnect

DDoS

Bug Report

11111

Jabber Notifier / Spreader

2. Configuration Decoder
3. Web Injects Developer

Server Side Components

FTP and SOCKS Server

1

RDP Backconnect Server

Command and a
Control Server

Backconnect Database Server

~

Form Grabber Control Panel

Peripheral Tools

1. Uninstaller
@ Bot Development Kit

Fig. 1. SpyEye framework in action.

4.2. Backend Collector

The Backend Collector (BC) is a Backend Database Ser-
ver (BDS) that is the primary component of the SpyEye
framework for storing stolen data. The BC is activated as
a daemon on the same domain or a different domain where
the MAP is hosted. The BC is queried through a well-de-
fined web interface to make management easy. Bots in-
stalled on the compromised machines send data directly
back to the BC that stores the extracted information such
as screenshots and credentials. The BC is structured in a
modular fashion and configured with a predefined data-
base having a specific set of tables created for storing infor-
mation. Mostly, SpyEye uses MySQL for database
operations. To make the data transfer process faster, the
bot has a built-in capability to use LZO compression for
efficiently sending data in a compressed format. LZO is
probably used because it works fine on all operating sys-
tems, as it is platform independent by design. In SpyEye
terminology, the TCP based packets for transferring data
used by bots to send logs to C&C is called “sausages”. By
using encryption and compression, the C&C server collects
data efficiently and securely.

The BC consists of several tables that read input data
from several files stored on the server which are discussed
as follows:

“table_screens.sql” file holds the information about var-
ious screenshots take from victims’ machines.
“table_reports.sql” file holds the information about sta-
tistics and reports of the infected machines.
“table_register.sql” file holds the information about the
bots that are registered with C&C.

“table_hostban.sql” file is updated with the information
about the number of banned hosts.
“table_exceptions.sql” file manages information about
various exceptions.

“table_creditcards.sql” file holds the information about
stolen credit card numbers.

“table_certifications.sql” file is updated with information
about certificates.

We will provide detailed information in later sections
about the APIs that are used to implement data transfer
routines from infected machines to the C&C.

4.3. FormGrabber Admin Panel

The Form Grabber Admin Panel (FAP) is an intermediate
graphical interface used to manage and explore the data
stored in the BC. The FAP interface is designed in PHP with
AJAX to communicate with the BC in an asynchronous
manner. Basically, information stolen by all the plugins

440 AK. Sood et al./ Computer Networks 57 (2013) 436-450

Aj' Molllaigct;?'ing m Stall:ﬁ;ltic) Create Task |) St-gatsiﬁic
Gl ad VRTEST £ Pwgins B ETP. L\ sockss)y s
14:29:14 Q-‘ RDP
1 Logs /| Files %% Settings

default

del_period._days: [0]

geoip_update_check_interval_days: [30__ |

update

skip_update: [o

skip_update_config: [o

interface

auto_reload_panels: 11

bots_monitoring_geoip_hide: 0

virtest

lsai |

passwvord: _—|

Rdp:

rdp_db: rdp

rdp_password: Zjk SEDFIKSFGUURFG

rdp_table: [ise]

rdp_user: |rdp

be:

be_db: spyeye

be_host: 1112

bec_password: |spyeye_pass

be_table: |be_geoinfo

bec_user: fspye‘fe_user

be_stuff:

bec_show_geoip: 1

bec_show_bots_ip: 1

L save |

Fig. 2. SpyEye’s Main Admin Panel (MAP).

and bots can be easily queried using FAP. It is possible for
the FAP and MAP to not be hosted on the same servers. The
FAP has number of modules:

e The “Find Info” module queries the BC to display infor-
mation about the bots.

e The “Statistic” module queries the BC for details of
ongoing infections across the world.

e The “FTP Accounts” module queries the stolen FTP cre-
dentials present in the BC.

e The “Settings” module is used to configure the different
options in FAP for querying data.

e The “Screen Shots” module queries the BC to provide
screen shots of websites taken by bots.

e The “BOA Grabber” module looks for the presence of cre-
dentials of Bank of America user accounts.

e The “CC Grabber” module queries the BC for stolen
credit card information.

e The “Certificate Grabber” module queries the BC for sto-
len certificates from compromised machines.

Fig. 3 shows the FAP of SpyEye botnet.
4.4. BackConnect Servers — FTP, SOCKS and RDP

Currently SpyEye has three additional servers, FTP,
SOCKS and RDP, for supporting its activities. These servers
are called BackConnect servers because the C&C initiates a
connection back to these servers for communication when
the network is not reachable by the C&C due to the pres-
ence of NAT. That is, the host machines in the internal net-
work do not have dedicated IP addresses. In those

Table 1

Configuration parameters used in SpyEye’s MAP.

AK. Sood et al./ Computer Networks 57 (2013) 436-450

MAP configuration parameters

Details

bc_db

bc_host

bc_password

bc_table

bc_user

bc_server_ip
bc_show_geoip
bc_show_bots_ip
login [virtest]
password [virtest]
auto_reload_panels
bots_monitoring_geoip_hide
use build-in pe loader
replace

skip_update
skip_update_config
del_period_days

geoip_update_check_interval_days

stat_country_num

BDS database name to be used for storing stolen data

Host IP address where the BDS is to be hosted

Password for the configured database

Tables having information about installed bots

User configured for BDS for accessing data

Host IP address where the BDS daemon runs

To display the information about bots GeolP

To display information about the bots IP

Login account username for virtest services

Password of the account configured for virtest services
Updating statistic panel automatically after a few seconds
Hiding the GeolP information of bots

Configuring the execution mode of the bot

Replacing the bot executable if required

Skipping or configuring the bot with latest updates

Skipping or configuring the bot with latest configuration
Specifies the number of days after which the bot is to be deleted
Specifies the number of days after which GeolP info is updated
Displaying the number of countries to be displayed in statistics

441

rdp_host Host IP where the RDP database is hosted

rdp_db Name of the configured RDP database

rdp_server_ip Server IP address where the RDP daemon runs

rdp_user RDP database user

rdp_password RDP database password

rdp_table Table having information about bots using RDP back connect

environments, the plugins initiate connections back to the
BackConnect servers for dumping stolen information. This
technique works quite well for exfiltration of data from
compromised machines. Table 2 shows the details of con-
figuration parameters used by the SpyEye for different
servers.

4.5. SpyEye Bot Development Kit

SpyEye’s Bot Development Kit (BDK) is a type of Soft-
ware Development Kit (SDK). Instead of SDK, we call it a
BDK because the framework completely revolves around
the building of a bot for nefarious purposes. SpyEye’s
BDK is designed in VC++ which supports modular design,
in particular, their plug-in architecture. The idea behind
the BDK is to make the infection framework portable so
that third party malware authors can easily incorporate
custom code—increasing the sophistication of spinoffs.
The plugin architecture is structured as a Dynamic Link Li-
brary (DLL) having a configuration file with extension .CFG.
By default, the plugin name is the name of the DLL. To de-
sign a custom plugin, the BDK expects three functions to be
defined in the exported DLL table named INIT, START and
STOP. The INIT routine defines the initialization of the plu-
gin; the START and STOP routines are required for manag-
ing the plugin from the SpyEye MAP (described above). The
BDK provides two ways of executing code using plugins:

e Local Infections: When the plugin is designed for local
scope, then the plugin code executes in the main pro-
cess infected by the bot, e.g. explorer.exe

e Global Infections: When the plugin is designed for global
scope, then the plugin code executes in all the processes
available in the system.

We analyzed the SpyEye’s BDK and found that number
of functions are used as presented in Table 3.

4.6. SpyEye Bot Builder

Builder is used to build the bot with a specific configu-
ration. The bot herder applies the required settings in the
builder which includes plugin information, MAP configura-
tion and BC configuration, etc. After successful compilation
of the code with the applied configuration, the malicious
bot is generated. The builder usually has configuration
parameters that require paths for including resources that
can be present locally or remotely. The plugins and other
peripheral programs reside in the MAP and are compiled
dynamically during build time.

The builder program is usually protected with some
packer or system specific protection module. For example,
the SpyEye builder is protected with VMprotect and HWID
protection. VMprotect is a system-specific obfuscation
technique in which machine instructions are transformed
into pseudo code that is randomized. VMProtect is also
called a virtualization obfuscator because it changes the
x86 instructions into custom code that is interpreted and
executed during run time. For that reason, VMProtect con-
tains its own interpreter. It is possible to reverse engineer
the VMprotect [22], but it is time consuming. HWID stands
for Hardware Identification and is a technique to provide
software licenses for individual machines. HWID uses
VMProtect to install the SpyEye builder to a specific phys-
ical device. One goal of using HWID protection is to pre-
vent others, including analysts, from debugging and
reverse engineering the builder itself. The builder also
has other options to thwart reverse engineering of the
bot: SpyEye uses the UPX packer to randomize the Object

442

AK. Sood et al./ Computer Networks 57 (2013) 436-450

HEE

(&) SYN'1 -liceweasel
Eile Edit View History Bookmarks Tools Help
=) v & [i§ http:/localhost/frmepofindex.php v | [V

=
*
S

|@) Formgrabber CP #0| |@) Installer of Formgra...

[| Formgrabber CP #0
http://localhost/frmcpojindex.php

Q Find INFO

2011
o118

©,

Spy Eye..

-y

FTP
j| Statistic W T ints

iy Settings

20541 k

a

W2 RS # crabber [Grabber < Erber’
Find INFO

(O] LIkE?) Bot GUID - |

Tnjected Process Name - |

Hooked Function |
Report date region : [21/09/2010 1812011 |
{ l_l she i URL L J
(&) show it?) Data: ||]
([reverse?) Limit : [100
submit

Fig. 3. SpyEye’s FormGrabber Admin Panel (FAP) in action.

Table 2
Backconnect server-configuration parameters.

Server configuration parameters

Details

socks_port
ftp_port
ping_timeout
threads_number
ftp_limit
socks_limit
Login

password
geoip_path
mysql_host
mysql_user
mysql_pass
mysql_db
mysql_table
mysql_table_rdp
mysql_table_logs
cfg_file_log_enabled
cfg_file_log
cfg_file_log_maxsize
cfg_file_blacklist
cfg_ip_address
cfg_rdp_port_in
cfg_rdp_port_out
magic_code

Port used for listening connections from socks-plugin

Port used for listening connections from ftp-plugin

Wait time for getting a reply from a bot. Bot is removed in 5 s if no reply received
Thread count to process network activity

Maximum number of sockets for connections by ftp-plugin
Maximum number of sockets for connections by socks-plugin
FTP server authentication - username used by ftp-plugin
FTP server authentication - password used by the ftp-plugin
Path to the GeolP DB file (GeolPCity.dat by default)

Server IP address for running MySQL daemon

MySQL database user

MySQL database password

Database for writing information about bots

Tables for writing information about bots

Tables used for RDP connections

Tables used for RDP logs

Configuration file for storing debug information with flags
Dumping log information to a specified path

Maximum size of the log file

Blacklisting bots for sending wrong magic codes

RDP server IP address for listening connections

Port number used for incoming connections

Port number used for triggering back connects

String required for authentication of clients

Entry Points (OEP) in the bot. In addition, SpyEye’s decen-
tralized design increases the difficulty of detecting all of its
components. To install SpyEye builder, the builder itself
had to be compromised by us. Steven [23] has blogged
about the details of reverse engineering SpyEye builder
so the bot could be installed.

The installation and configuration files are the part of
MAP and included during the build process. To manage
and protect the build, there is a symmetric encryption key
shared between the MAP and builder. Once the bot is gen-
erated, the encryption key is hard coded into the bot itself.
Configuration parameters are also encrypted. Since the

AK. Sood et al./ Computer Networks 57 (2013) 436-450 443

Table 3
Listed function in SpyEye’s BDK.

BDK functions

Details

TakeGateToCollector
TakeGateToCollector2
TakeBotGuid

TakeBotPath

TakeBotVersion

GetState

KeepAlive

IsGlobal
Callback_OnBeforeProcessUrl
Callback_OnBeforeLoadPage
Callback_OnAfterLoadingPage
Callback_ChangePostRequest
TakeGetPage

TakeGetPage2

TakeFreeMem
Callback__WS2_32__send
TakeConfigCrc32Callback
TakeBotExeMd5Callback
TakePluginsListCallback
TakeMainCpGateOutputCallback
MainCpGatelnput
TakeUpdateBotExe
TakeUpdateConfig
TakeStartExe
TakeGatePipeSendMsg

Executed to trigger a separate thread for sending data back to BC using gate function

Executed for sending data back to BC using gate function without instantiating a separate thread

A unique identifier for the bot

A path where bot is installed in the machine

The version of the installed bot

Used to decipher the state of plugins [on/off]

A flag used for verifying the state of the plugins

A flag used to determine whether to inject code in all active processes

Callback function to get the details of URL before it is processed

Callback function to get the content of webpage before it is loaded in the browser
Callback function to get the contents of webpage after it is loaded in the browser
Callback function to get the contents of POST request

Function used for downloading the resources over HTTP/HTTPS

Function used for downloading the resources over HTTP/HTTPS with enhanced functionality
Function used by SpyEye memory manager to free the dynamic memory
Callback function used for sending and manipulating the output of the data
Callback function to determine the identification of the bot configuration file
Callback function to determine the MD5 hash of the bot

Callback function used for collecting data about the installed plugins

Callback function used to transfer the information from MAP to the bot

Function used by the SpyEye bot to transfer data back to MAP

Function used for updating the bot executable

Function used for updating the bot configuration file

Function executed by plugins to trigger the execution of third-party executable
Function used to manage a custom connector plugin

configuration file is included from a remote location, the
builder actively manages communication to avoid disrup-
tion in the transfer of configuration parameters.

The builder also has the ability to build a lightweight
bot close to 40 KB. One trick is to keep objects such as
the configuration file (config.bin) in the MAP rather than
in the bot. During the build, the bot downloads the config-
uration file directly from MAP. The builder also supports
ZLIB compression used for optimizing data. However, this
desirable feature can also cause a problem. Under certain
scenarios, ZLIB compression impacts the state of bot in per-
forming Web Injects—the injection of malicious data into a
web session (more later). The problem can occur because
some web servers send data in compressed format such
as “gzip/deflate” by specifying a Content-Encoding header
in the HTTP request. As a rule of thumb, the browser has to
send the Accept-Encoding header to inform the web server
about the type of data encoding recognized. So ZLIB is re-
quired when the web server sends data back in com-
pressed format. If the ZLIB compression is not enabled
and data is compressed, the bot fails to perform Web
Injects.

Other tidbits: the generated bot has a unique name that
is required for system wide control for executing opera-
tions. Also, during the build process, the bot is usually con-
figured with an option to delete the cookies regularly.

Fig. 4 shows the SpyEye builder in action.

4.6.1. Understanding the Bot

The bot has similarities to rootkits in that it digs deep to
hide in the system. Rootkits sit in between operating sys-
tem and the applications and this positioning makes them
hard to detect. In the ring model, the hardware and OS di-
vide control among four basic rings: Ring 0 to Ring 3. Ring

0 is for the kernel, Ring 3 is for the user, and most OS’s
make little use of the other rings. Rootkits prefer Ring 0,
but the SpyEye bot primarily works in Ring 3. Code exe-
cuted in the Ring 3 has fewer capabilities than in Ring 0,
but Ring 3 rootkits are easier to write and easier to install
yet retain significant control over the applications’ address
space. Ring 3 rootkits can use Import Address Table (IAT)
hooking, inline hooking and DLL Injections using CreateRe-
moteThread, Registry Applnit_DLLs setting or using Set-
WindowsHookEx APIs to hook system and application
routines.

Fig. 5 shows the working nature of a Ring 3 bot.

As discussed earlier, the generated bot has an interface
with plugin architecture. Depending on the plugin, it can
inject code in a specific application process or all processes
running in the system. The primary processes subject to
injection are firefox.exe, iexplore.exe and explorer.exe since
the browser is the window to the Internet. The bot works
by injecting DLLs into the legitimate browser process,
and then it hooks critical functions such as those that pro-
vide information about the data flow or the data itself.
With the Ring 3 modifications mentioned above, the bot
can use the native windows API to execute the code.

In a sense, the bot self-destructs after it executes, in that
it “melts” into the system to hide its presence. If a dropper
is executed to install the code, it then deletes itself from
the system. Once installed the bot takes control of the
browser process, so it can commandeer all the data from
browser and transfer it back to the BC. The capability of
bot depends on the plugins that can be developed to han-
dle specific tasks to extract specific data related to specific
targets. For example, the builder can be configured with
Anti-Rapport, a module that neutralizes anti-rootkits such
as Trusteer Rapport. Basically the bot kills the anti-rootkit

444 AK. Sood et al./Computer Networks 57 (2013) 436-450

| = SpyEye Builder v1.3.0

& Spy Eye..

Encryption key (for config): Ijjsdjfahh99399gh4rhafihdsfoh

Clear cookies every startup (TE, FF): F Anti-Rapport: [V
Delete non-exportable certificates: 9 FF webinjects: V¥

Dont send http-reports:

Compress build by UPX v2.07w:

Make build without ZLIB support

(SpyEye may use zlib for unpacking gzip or deflate 7
content at FF webinjects ... so, this option can save
15-16 KB):

Make LITE-config m|
(without webinjects, plugins & screenshots):

* EXE name : ‘Recycle.sin * Mutex name : |SystemService

Make config & get build

Fig. 4. SpyEye builder in action.

threads and blocks its ability to write messages back to the duced in the SpyEye version 1.3.x. After some time interval,
reporting engine. the bot sends identity information back to Custom-connec-
tor using an HTTP GET request. Basically, the information
maps the environment of the victim’s machine including
operating system details and installed browser. Based on
the identity information of the bot, MAP sends command

4.6.2. Custom-connector module
Custom-connector is a module that acts as an interface
between the bot and MAP. This functionality was intro-

| Operating System Layers |

/s

V4 ¥ /
\ \ \ b i / /
\ \ / 4 /
\ N \\‘ // / i /
e = o / J]
\\ \\\ = =1 p "4 V4
9 < = /
\\ \\\ —— 4
2 . g /
~ B - - = ! d
: g p
~ e e S

Fig. 5. Abstract layout of working of ring 3 bot.

AK. Sood et al./ Computer Networks 57 (2013) 436-450 445

back to the bot that include configuration and executable
updates. With that information in hand, it is easy for the
bot herder to encrypt the traffic between bot and MAP.
The Custom-connector plugin sends information in a spe-
cific format back to MAP as presented in Scheme 1.

The string presented in Scheme 1 contains information
that is extracted using various functions defined in the
BDK. In this example, “guid” is an outcome of a TakeBot-
Guid call that contains the unique identifier for the in-
stalled bot. The “ver” holds the value extracted using
TakeBotVersion. Similarly, “ccrc”, “md5”, “plg” contains
the values extracted from the infected machine using Take-
ConfigCrc32Callback , TakeBotExeMd5Callback and TakePlu-
ginsListCallback, respectively. The remaining parameters
are optional but cover information related to installed
plugins.

4.6.3. Web Injects

Web Injects is a technique of injecting illegitimate con-
tent into the HTTP responses coming from legitimate web-
sites. This infection strategy is very effective because it
allows the bot to exploit the browser process (hooked al-
ready) and to inject content that is displayed as inline con-
tent in the browser. This practice is quite malicious
because of its ability to modify the web pages on the client
side. For example, consider a user visiting a bank’s website.
The incoming HTTP response is modified to inject fake
“username” and “password” input boxes that look legiti-
mate to the user but in-fact it is rogue content. This process
exploits an unsuspecting user to fool them into providing
their login credentials. The installed bot captures that
information and sends it back to the BC. Scheme 2 shows
an example of Web Injects code present in a webinjects.txt
file.

An injection is divided into four tags that are specified
in a webinjects.txt file:

o data_before/data_end: This tag designates a portion of
the webpage after which the injection is placed, i.e. in
the final page it will be “before” the injected code.

e data_inject/data_end: This tag defines the actual code to
be injected into the incoming HTTP response. The injec-
tion can be a single line of code or a complete form as
there is no specific restriction placed on the length of
the injected payload.

e data_after/data_end: This tag defines a portion of the
webpage before which the injection is performed, i.e.
in the final page it will be “after” the injected code.

e set_url: This tag defines the URL of the targeted website
against which the Web Injects is to be performed.

Additionally, flags G (GET) and P (POST) are used in the
set_url tag to force the bot to perform Web Injects when a

GET (or POST) request is initiated. Additional flags include
L and H which are used for grabbing injects in webpages.
The main difference between the L and H flags is that the
L flag specifically extracts the data present in the data_be-
fore, data_inject and data_after tags whereas the H flag
captures the rest of the webpage. In SpyEye terminology,
the extracted webpage content is termed as ripped content
and is passed back to the backend database. The ripped
content can be queried through FAP by specifying the
search pattern string “Grabbed Data” in the hooked
function module. The Web Injects technique is complex
and illustrates the sophistication of third-generation
botnets.

4.6.4. Screen Scraper

The Screen Scraper is a module implemented in SpyEye
to scrape the content of a screen in a pre-defined interval
of time. During build, the rules for a screen scraper are
specified in the screenshots.txt file. Once the bot is built, it
has the capability of taking screen shots whenever a user
clicks the mouse. By default, the center of the screenshot
is the mouse cursor. This module can be customized for a
specific target website so the bot will only take screen
shots for that domain only. The screen scraper configura-
tion requires information in the format as shown in
Scheme 3.

The parameters in Scheme 3 cover the layout of a
screenshot to be taken by the bot. The YURL_MASKY is
used to define the URL against which the screen scraper
plugin is activated. The ¥WIDTH% and %¥HEIGHT% defines
the width and height of the screenshot respectively. The
%SMINIMUM_CLICKS% and %MINIMUM_SECONDS% are
used to turn off the rules after a specific number of clicks
and seconds respectively.

4.6.5. DNS mapper and multiple collector
SpyEye also supports two additional functionalities in
order to make the build process easier. These are:

e DNS Mapping is a technique that can be specified by
SpyEye during the build process to specify the names
of DNS servers (in the dns.txt file) so the bot will use
the listed DNS servers to resolve the address of the
C&C server. This capability is important because a num-
ber of networks restrict the DNS servers by blacklisting
them.

SpyEye also has the capability to specify multiple con-
nectors during build time so that the bot is able to send
the information back to all the servers listed in the
connectors.txt file. This is a failsafe option so if one
server fails, the information can be sent to another
server.

gate.php? guid=!USER -

5C377A2CCF!046502F4& ver=11435&stat=ONLINE&ie=6.0.2900.2180&0s=5.1.2600&ut=Admin&
cerc=13A7F1B3& md5 =b9c3cb2cdc66b1f4465fe56cc34040b2& plg=customconnector

Scheme 1. Information transferred to gate component.

446 AK. Sood et al./ Computer Networks 57 (2013) 436-450

set_url */my.ebay.com/*CurrentPage=MyeBayPersonallnfo* GL

data_before

Registered email address< /td>*<img*>
data_end

data_inject

e-mail:

data_end

data_after

</td>

data_end

set_url *.ebay.com/*eBayISAPLdII?* GL
data_before

(

data_end
data_inject
Feedback:
data_end
data_after

data_end

Scheme 2. Web Injects in action.

%MINIMUM_SECONDS %

%URL_MASK% %WIDTH% %HEIGHT % %MINIMUM_CLICKS%

Scheme 3. Configuration parameters used in screen scraper module.

4.7. Plugin architecture

Plugins are designed to extend the capability of a bot
and are a characteristic of third-generation botnets. As dis-
cussed in the BDK section, plugins play a critical role in the
success of data exfiltration from compromised machines.
To execute plugins, these bots do not use the standard PE
loader provided by the OS to download code from memory
because that process is detectable by antivirus engines. In-
stead, they use their own custom loader for running plugin
code from memory without detection. The plugins are
actually stored in the bot configuration file. This feature re-
sults in smaller size of and faster execution. A BDK also has
built-in, shellcode-specific plugin such as ConfigShellcode
and InstallShellcode to trigger the configuration and instal-
lation of the bots on the victim machine. Plugin functional-
ity is discussed next.

4.7.1. Certificate Grabber

The Certificate Grabber plugin is designed to steal cer-
tificates from the Windows built-in cryptographic storage.
The certificate grabber works differently for Internet Ex-
plorer (IE) and Firefox (FF) so they each have a plugin. This
is because IE is a built-in component of the Windows OS
whereas Firefox uses its own repository and storage mech-
anism to handle certificates. This plugin has only one con-
figuration parameter: the minimum time the bot waits
before sending the certificates back to the BC. The stolen
certificates are marked with “FF” or “IE” so that data har-
vesting is easier in the FAP.

4.7.2. Credit Card Grabber

Credit-Card Grabber plugin is designed in a sophisti-
cated manner for extracting Credit Card (CC) numbers from
POST requests sent by the browser. This plugin has a built-
in implementation of the LUHN algorithm for validating the
CC. If the CC number is validated, the plugin will send that
information back to the BC. The ripped CC numbers can be
found easily by querying an interface through the FAP.

4.7.3. Web Fakes

The Web Fakes plugin is designed to spoof the content
of HTTP/HTTPS resources without showing the legitimate
content to the user. Generally, this plugin redirects the
legitimate URL to the URL resource defined by the bot her-
der in the configuration file for Web Fakes. The Web Fakes
plugin is configured as presented in Scheme 4.

The %URL_MASK% is used to configure the target URL
which is to be masked and %URL_REDIRECT% is used to
redirect the browser to the specified URL. Additionally,
the %POST_BLACK_MASK% and %POST_WHITE_MASK%
parameters are defined for deactivating and activating
the rules after POST requests respectively. HTTP POST,
GET and other requests are defined in the ¥FLAGS% param-
eter. To block and unblock the rules ¥BLOCK_URL% and
%UNBLOCK_URL% parameters are used.

4.7.4. Distributed Denial of Service (DDoS)

This plugin is designed to launch DDoS attacks against
anti SpyEye servers or detection websites such as abuse.ch.
Currently, this plugin is not powerful enough to conduct a

AK. Sood et al./ Computer Networks 57 (2013) 436-450 447

entry "WebFakes"

end

%URL_MASK% %URL_REDIRECT% %FLAGS% %POST_BLACK_MASK%
%POST_W HITE_MASK% %BLOCK_URL% %WEBFAKE_NAME% %UNBLOCK_URL%

Scheme 4. Web Fakes configuration parameters.

DDoS for a long time. This plugin was introduced in the lat-
est versions of the SpyEye version starting from 1.3.x. It can
also support multiple flooding at the same time. The con-
figuration file has a set of parameters as presented in
Scheme 5.

The flood parameter is used for specifying the flood type
which can be Slowloris, SYN or UDP. The target parameter
specifies the destination to be flooded. The port parameter
is the used for declaring the target port that is to be
flooded. The time parameter is used for defining the time
interval that the flood remains active. The DDoS plugin is
started from the MAP to begin the flooding attack.

4.7.5. Backconnect Plugins (FTP/SOCKS/RDP)

The Backconnect plugins are designed for flexibility of
communication. SpyEye supports Backconnect plugins for
FTP, SOCKS and RDP. The functionality is as follows:

e The FTP Backconnect plugin starts an FTP server inter-
face on the bot in the compromised machine and pro-
vides access to the bot herder through Backconnect
FTP server. As a result, the bot herder is able to access
the victim’'s machine’s directory structure from the
C&C panel. It is also possible for the bot herder to use
a custom FTP server to initiate connections with the
compromised machine.

The SOCKS Backconnect plugin starts a SOCKS server
interface on the bot in the compromised machine. Basi-
cally, the SOCKS protocol is implemented to bypass
host-based intrusion detection systems and firewalls.
With this plugin installed, a bot installed on the
machines inside a NAT can be connected back to the
C&C.

Scheme 6 shows the list of parameters that are used to
configure FTP and SOCKS Backconnect plugins. Here %BOT-
NAME?% specifies the name of the bot. The %IP% and
%PORT% parameters define the IP address and port number
for connections. Additionally, %RECONNECT_INTER-
VAL_MSEC% defines the time interval after which the plu-
gin starts connecting again. To define some autorun
commands, the ¥AUTORUN_FLAGY% parameter is used.

o The RDP Backconnect plugin starts an RDP server on the
compromised machine and forwards the connection to
the Backconnect server on the C&C panel. This plugin
also creates a hidden user on the system so that the
RDP can be accessed remotely. This plugin is quite use-
ful for the bot herder to initiate financial transactions

from the victim’s machine using RDP connections that
look legitimate. The plugin has the following configura-
tion parameters as presented in Scheme 7:

In this plugin, %IP_OF_BC_SERVER% and %POR-
T_OF_BC_SERVER%” hold the IP address and port number
of the Backconnect server respectively. For accessing the
Windows RDP, %WINDOWS_LOGIN% and %WIN-
DOWS_PASSWORDY% parameters are used to define the cre-
dentials. To authenticate the clients, ¥MAGIC_CODE% is
used and to execute any commands the YURL_TO_PORTA-
BLE_TCMD parameter is used.

Other plugins include Bug Report which is used to com-
municate the errors in the system when the bot fails. Final-
ly, the Jabber Notifier is a notification call system used by
MAP to send commands for starting plugins in the bot in-
stalled in the compromised machine.

4.7.6. FlashCamControl

Latest builds of SpyEye has shown one more improve-
ment in plugin architecture with the addition of flash
cam control plugin. This plugin is used to hijack inbuilt
webcam and microphone on user’s computer by manipu-
lating the integrity of flash software. This is primarily done
by tampering the configuration settings of flash software.
As a result, this plugin allows the permanent grant permis-
sions in the settings file for targeted websites. To perform
this attack, a malicious flash file is required to be included
in user’s browser which is possible by using previously dis-
cussed plugins i.e. Web Fakes and Web Injects. Hence, this
malicious file interacts with the browser and is used for
sending recorded data to C&C server. However, this devel-
opment is still very new but can be used at large scale with
passage of time.

5. Chronology of SpyEye framework

By collecting the multiple versions of SpyEye, we were
able to observe and study the evolution of their capabili-
ties. By studying SpyEye over time, our analysis provided
us with a better understanding of the software. Addition-
ally, we hope that the extracted knowledge can be used
to determine the future trends of botnets. The chronology
of the SpyEye TGB is presented in Fig. 6.

SpyEye has improved significantly over time. In version
1.0.0, the framework supported only Form Grabber, POP3
Grabber, FTP Grabber and Auto Fill. These modules are ba-
sic information-stealing plugins. In version 1.0.65, the

l flood_type target port time

Scheme 5. DDoS plugin configuration parameters.

448 AK. Sood et al./ Computer Networks 57 (2013) 436-450

G%

%BOTNAME%;%1P%;%PORT%;%RECONNECT_INTERVAL_MSEC%;%AUTORUN_FLA

Scheme 6. Configuration parameters for FTP and SOCKS BackConnect.

%IP_OF_BC_SERVER% :%PORT_OF_BC_SERVER%;%MAG IC_CODE%;%WINDO
WS_LOGIN%;%WINDOWS_PASSWORD%;%URL_TO_PORTABLE_TCMD%

Scheme 7. Configuration parameters for RDP plugin.

framework added a loader to execute commands and load
malicious executable from the C&C server. This version
also implemented a geo-location module for improved
tracking of bot infections around the world. In versions,
1.0.70 and 1.0.72, Zeus bot killer and anti-detection tech-
niques were added respectively. In addition, several bugs
were fixed. The Backend Collector and LZO compression
were included in version 1.0.75. LZO compression speeds
up data transfer from the infected machine. In SpyEye ver-
sion 1.0.80, support for a dropper was removed and a Web
Injects module for Internet Explorer was added. After this
version, the bot existed without a dropper and was lighter
and more compressed. In version 1.1.0, the author added

Web Injects support for Firefox and Netscape, and the
builder was protected with HWID. Additionally, a screen
scraper and the Bank of America information stealing plu-
gin were added. In version 1.2.0, several Backconnect plu-
gins were added (FTP, SOCKS and RDP) to bypass Network
Address Translation (NAT). Also, a Credit Card Grabber plu-
gin was included. In version 1.2.22, the BackConnect data-
base was made more independent so it could be deployed
on a different domain. Also, several optimization features
were added in this version. In version, 1.2.60, the configu-
ration module design was lightened, cookie support was
made more robust and a certificate handling module was
added. Currently, version 1.3.x scheme is running which

Versions Chronological changes and advancements (Module specialities)
1.0.0 FormGrabber Module | POP3 Grabber | FTP Grabber | AutoFill
1.0.65 Loader | Bot Analytics | Location based Graph Generation | GEO based Infection Loader
1.0.70 Zeus Bot Killer | Basic Authentication Credential Stealer
1.0.72 Undetectable Bot (AV Bypass) | Bug Fixes
1.0.75 Backend Collector | LZO Compression | Bot Size Compression| Log Parsing
1.0.80 Dropper support removed | Web Injects (IE) supported
110 Web Injects Support for FireFox, Netscape | VM Protected Builder (Hardware Lock)

|Screenshots Capturing Module | Bank of America (BOA) Grabber

Custom Plugins Framework | BackConnect Plugins (FTP/SOCKS) | Web Injects Optimization |

1.0 Enhancement in SpyEye Bot Development Kit (BDT) | Credit Card Grabber Module
1222 Unlimited Paths to BC Database | Plugin Support | Robust Storage for Web Injects | Web Fakes
- Module added | HTTP Traffic Optimization | Virus Test Module
1.2.4 Enhanced Data Stealing and Collection Module | “TakeGateToCollector” SDK API added
12.60 LITE Config Module added | Robust Cookies Handling support | Non Exportable Certificate
- Removal Module
1.3 (1-4) Email Grabber support | DDoS Plugin added | Advancements in Web Injects | Anti Rapport |

RDP BackConnect Module added | Custom-connector Plugin | FlashCamControl

Fig. 6. Chronology of SpyEye’s developments.

AK. Sood et al./ Computer Networks 57 (2013) 436-450 449

now includes a built-in DDoS plugin, an RDP BackConnect
plugin, optimized Web Injects, a Custom-connector plugin
for the interface, and Email Grabber support. Another ad-
vanced feature has been introduced in latest version of
SpyEye termed as FlashCamControl that is used for hijack-
ing cameras and microphones on victim machine. If the
development of SpyEye stays active, we can expect more
interesting tactics in the near future.

6. Conclusion

In this paper, we presented an example of third-gener-
ation botnets based on analysis of the most widely used
botnet in this category—SpyEye. We have learned a num-
ber of lessons from analyzing this sophisticated malware.
Our analysis was based on infiltration combined with sta-
tic and behavioral analysis topped off with penetration
testing on binaries and malware domains. This approach
provided us with a unique opportunity to understand the
characteristics and exploitation techniques used by the
SpyEye bot in executing the attacks for stealing critical
information from victims’ machines. First, we analyzed
the design of the SpyEye bot itself, which helped us to
understand its various components. We analyzed some of
the source code to understand the basic layout and how
the many modules are cross referenced. Next, we analyzed
the exploitation tactics used by the SpyEye framework in
performing various malicious operations on the web
browsers and operating systems. After that, we performed
behavioral and static analysis on the generated binaries to
understand the infection in victim systems and the way
browsers are exploited. We generated a complete chronol-
ogy of SpyEye advancements that took place over time. Fi-
nally, we collected all the information to put together a
picture of how third-generation botnets worked. It is our
hope that knowledge gained during this analysis can be
transformed into better defensive mechanisms.

References

[1] B. Stone-Gross, M. Cova, C. Kruegel, G. Vigna, Peering through the
iframe, INFOCOM, 2011 Proceedings IEEE, 10-15 April, 2011, pp.
411-415.

[2] A. Sood, R. Enbody, Browser Exploit packs - death by bundled
exploits, in: Proceedings of 21st Annual Virus Bulletin Conference,
Barcelona, Spain, 2011.

[3] D. Moore, G. Voelker, S. Savage, Inferring internet denial of service
activity, in: Usenix Security Symposium, 2001.

[4] A. Ramachandran, N. Feamster. Understanding the network-level
behavior of spammers, in: ACM SIGCOMM, 2006.

[5] S. Saroiu, S. Gribble, H. Levy, Measurement and Analysis of Spyware
in a University Environment. In Networked Systems Design and
Implementation (NSDI), 2004.

[6] A. Sood, R. Enbody, Spying on SpyEye, in: Proceedings of Hack in the
Box (HITB) Security Conference, Amsterdam, Netherlands, 2011.

[7] M. Feily, A. Shahrestani, S. Ramadass, A survey of Botnet and Botnet
detection, in: Third International Conference on Emerging Security
Information, Systems and Technologies, SECURWARE ‘09, 18-23
June, 2009, pp. 268-273.

[8] N.C. Paxton, G. Ahn, M. Shehab, MasterBlaster: identifying influential
players in Botnet transactions, in: IEEE 35th Annual Computer
Software and Applications Conference (COMPSAC), 18-22 July, 2011,
pp. 413-419.

[9] Dae-il Jang, Minsoo Kim, Hyun-chul Jung, Bong-Nam Noh, Analysis of
HTTP2P botnet: case study waledac, in: IEEE 9th Malaysia
International Conference on Communications (MICC), 15-17
December, 2009, pp. 409-412.

[10] D. Dagon, Guofei Gu, C.P. Lee, Wenke Lee, A taxonomy of Botnet
structures, in: Twenty-Third Annual Computer Security Applications
Conference, ACSAC 2007, 10-14 December, 2007, pp. 325-339.

[11] D. Dagon, C. Zou, W. Lee, Modeling botnet propagation using time
zones, in: Proceedings of the 13th Annual Network and Distributed
System Security Symposium (NDSS 2006), San Diego, CA, 2006.

[12] Joan Calvet, Carlton R. Davis, José M. Fernandez, Jean-Yves Marion,
Pier-Luc St-Onge, Wadie Guizani, Pierre-Marc Bureau, Anil Somayaji,
The case for in-the-lab botnet experimentation: creating and taking
down a 3000-node botnet, in: Proceedings of the 26th Annual
Computer Security Applications Conference (ACSAC ‘10), ACM, New
York, NY, USA, 2010.

[13] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert,
Martin Szydlowski, Richard Kemmerer, Christopher Kruegel,
Giovanni Vigna, Your botnet is my botnet: analysis of a botnet
takeover, in: Proceedings of the 16th ACM conference on Computer
and Communications Security, (CCS ‘09), ACM, New York, NY, USA,
2009, pp. 635-647.

[14] Zhichun Li, Anup Goyal, Yan Chen, Vern Paxson, Automating analysis
of large-scale botnet probing events, in: Proceedings of the 4th
International Symposium on Information, Computer, and
Communications Security (ASIACCS ‘09), ACM, New York, NY, USA,
2009, pp. 11-22.

[15] N.H. Vo,]. Pieprzyk, Protecting web 2.0 Services from botnet
exploitations, 2010 Second Cybercrime and Trustworthy
Computing Workshop (CTC), 19-20 July, 2010, pp. 18-28.

[16] Lu Wei, M. Tavallaee, G. Rammidi, A.A. Ghorbani, BotCop: An Online
Botnet Traffic Classifier, in: Communication Networks and Services
Research Conference, 2009. CNSR ‘09. Seventh Annual, 11-13 May
2009, pp. 70-77.

[17] Zhaosheng Zhu, Guohan Lu, Yan Chen, ZJ. Fu, P. Roberts, Keesook
Han, Botnet research survey, in: 32nd Annual IEEE, International
Computer Software and Applications, COMPSAC '08, July 28 2008-
August 1 2008, pp. 967-972.

[18] Jan Kok, Bernhard Kurz, Analysis of the BotNet ecosystem, in: 10th
Conference of Telecommunication, Media and Internet Techno-
Economics (CTTE), 16-18 May, 2011, pp. 1-10.

[19] M. Rajab, J. Zarfoss, F. Monrose, A. Terzis. My Botnet is Bigger than
yours (maybe, better than yours): why size estimates remain
challenging, USENIX Workshop on Hot Topics in Understanding
Botnet, 2007.

[20] U. Bayer, C. Kruegel, E. Kirda, TTAnalyze: A tool for analyzing
malware, in: 15th European Institute for Computer Antivirus
Research (EICAR 2006) Annual Conference, April 2006.

[21] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min
Gyung Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam,
Prateek Saxena, BitBlaze: a new approach to computer security via
binary analysis, in: Proceedings of the 4th International Conference
on Information Systems Security (ICISS), December, 2008.

[22] Rolf Rolles, Unpacking virtualization obfuscators, in: Proceedings of
Workshop on Offensive Technologies, August, 2009.

[23] K. Steven, Cracking SpyEye 13.x, 2011. <http://
xylibox.blogspot.com/2011/08/cracking-spyeye-13x.html>.

[24] Malware at Stake, Blasting SpyEye C&C - SQL Injection Wins, 2011.
<http://secniche.blogspot.com/2011/08/blasting-spyeye-c-sql-
injection-wins.html>.

Aditya K. Sood is a senior security researcher/
consultant and Ph.D. candidate at Michigan
State University. He has already worked in the
security domain for Armorize, COSEINC and
KPMG. He is also a founder of SecNiche
Security Labs, an independent arena for cut-
ting edge computer security research. He has
presented his research at leading security
conferences and is a regular contributor to
various security journals and magazines.

http://xylibox.blogspot.com/2011/08/cracking-spyeye-13x.html
http://xylibox.blogspot.com/2011/08/cracking-spyeye-13x.html
http://secniche.blogspot.com/2011/08/blasting-spyeye-c-sql-injection-wins.html
http://secniche.blogspot.com/2011/08/blasting-spyeye-c-sql-injection-wins.html

450

AK. Sood et al./ Computer Networks 57 (2013) 436-450

Richard J. Enbody, Ph.D., is associate profes-
sor in the Department of Computer Science
and Engineering at Michigan State University
(USA) where he joined the faculty in 1987.
Enbody has served as acting and associate
chair of the department and as director of the
computer engineering undergraduate pro-
gram. His research interests include computer
security; computer architecture; web-based
distance education; and parallel processing.

Rohit Bansal is a senior security researcher at
SecNiche Security Labs, an independent
security research arena. On the professional
front, he has worked with large consulting
firms including KPMG, PWC, L&T. He has also
coauthored papers on hacking and malware.

	Dissecting SpyEye – Understanding the design of third generation botnets
	1 Introduction
	2 Related work
	3 Experiment setup
	4 Inside SpyEye framework
	4.1 C&C server – Main Admin Panel
	4.2 Backend Collector
	4.3 FormGrabber Admin Panel
	4.4 BackConnect Servers – FTP, SOCKS and RDP
	4.5 SpyEye Bot Development Kit
	4.6 SpyEye Bot Builder
	4.6.1 Understanding the Bot
	4.6.2 Custom-connector module
	4.6.3 Web Injects
	4.6.4 Screen Scraper
	4.6.5 DNS mapper and multiple collector

	4.7 Plugin architecture
	4.7.1 Certificate Grabber
	4.7.2 Credit Card Grabber
	4.7.3 Web Fakes
	4.7.4 Distributed Denial of Service (DDoS)
	4.7.5 Backconnect Plugins (FTP/SOCKS/RDP)
	4.7.6 FlashCamControl

	5 Chronology of SpyEye framework
	6 Conclusion
	References

