bURR-BROWN Integrated Circuils Data Book Supplement

Operational Amplifiers Instrumentation Amplifiers Isolation Amplifiers Analog Circuit Functions Military Products

A/D Converters D/A Converters
Sample/Hold Converters
Multiplexers
Power Supplies

MODEL INDEX

Model	Page
VFC320/BS9000	13-19
XTR100	2-82
XTR101	2-94
XTR101KP	65
XTR110.	2-104
XTR110 DIE..	.11-34
100MS	3-17
546	. 14-3
550	14-3
551	. 14-3
552	. 14-3
553	14-3
554	14-3
556	. 14-3
558	. 14-3
560	. 14-3
561	. 14-3
562	14-3
700	14-35
710	14-37
722	14-41
724	14-45
3329/03	.. 1-157
3450	. 3-19
3451	3-19
3452	3-19
3455	3-19
3500	1-159
3500/883B	12-147
3507J	1-161
3508J	1-163
3510	1-165
3510VM/883B	12-158
3521.	1-167
3522	1-167
3523	1-170
3527	1-172
3528	1-174
3550.	1-176
3551	1-180
3553	1-184
3554	. 1-188
3571	1-196
3572	1-196
3573	1-202
3580	1-206
3581	. 1-206
3582.	1-206
3583	1-210
3584	1-214
3606	2-114
3627	. 2-122
3650	3-21
3652.	. 3-21
3656	3-29
4023/25	4-80
4085	4-82
4115/04	4-88
4127.	4-90
4203.	4-97
4204	4-99
4206	4-99
4213.	4-105
4213/BS9000.	13-20
4213/883B	12-166
4214.	4-109
4302	4-111
4340	4-117
4341.	4-119
4423	4-123
DSPlay ${ }^{\text {Tu }}$ Burr	orp

A complete price list for these products is located inside the back cover.

SUPPLEMENT TO
 IATTEGRATED CIRCUITS DATA BOOK

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

INTRODUCTION

This supplement to the Burr-Brown Integrated.Circuits Data Book contains product data sheets on new products that have been developed and introduced since the Data Book was published. Product lines such as Operational, Instrumentation, and Isolation Amplifiers, Analog-to-Digital and Digital-to-Analog Converters, Military Products, ivioduiar Fower Supplies, Data Entry and Display Terminals, Microcomputer I/O Systems, and Data Acquisition Components are represented.
The Model Index list on the inside of the front cover refers to models and page numbers in both the Data Book and this supplement. Products in this supplement are set in bold type.
A Selection Guide beginning on page iii contains a summary of performance characteristics of all products in both the Data Book and this supplement.
A complete list of all Burr-Brown offices and sales representatives can be found on the inside of the back cover. If you have questions on any of our products please contact the nearest Burr-Brown office or sales representative.

SELECTION GUIDE HIGH PERFORMANCE OPERATIONAL AMPLIFIERS

GENERAL PURPOSE

These moderately priced FET and bipolar op amps offer good performance over a wide range of parameters. These are good
options when a special function op amp is not required. You can be confident that Burr-Brown's quality and reliability are inherent in their design.

GENERAL PURPOSE												
Description	Model	Offset Voltage, max		Bias Current $\left(25^{\circ} \mathrm{C}\right)$, max ($n A$)	Open Loop Gain, min (dB)	Frequency Response		Rated Output, min		Temp Range ${ }^{(1)}$	Package	Page
		$\begin{gathered} \mathrm{At} \\ 25^{\circ} \mathrm{C}, \end{gathered}$	Temp Drift,			Unity Gain	Slew Rate					
		($\pm \mathrm{mV}$)	$\left(\pm \mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$			(MHz)	($\mathrm{V} / \mu \mathrm{sec}$)	($\pm \mathrm{V}$)	$(\pm \mathrm{mA})$			
Low Power	OPA21GZ	0.5	5	50	114	0.3	0.2	13.6	1.3	Ind	DIP	1-13
	OPA21EZ	0.1	1	25	120	0.3	0.2	13.7	1.4	Ind	DIP	1-13
Switchable Input	OPA201AG	0.5	5	50	114	0.5	0.1	13.5	5	Com	DIP	1-87
	OPA201BG	0.2	2	40	114	0.5	0.1	13.5	5	Com	DIP	1-87
	OPA201CG	0.1	1	25	120	0.5	0.1	13.5	5	Com	DIP	1-87
	OPA201SG	0.2	2	40	114	0.5	0.1	13.5	5	MIL	DIP	1-87
Low Cost	OPA121KP*	3	10	± 0.010	106	2	2	10	5	Com	DIP	1-67
FET	OPA121KM	2	10	± 0.005	110	2	2	10	5	Com	TO-99	1-67
Wide Temp Range	OPA11HT	5	$5^{(2)}$	± 25	94	12.0	7.0	10	15	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +175^{\circ} \mathrm{C} \end{aligned}$	TO-99	1-9
	QPAT?	ก.05	0. $2 .{ }^{(2)}$	$1!1 /{ }^{\text {A }}$	120	6	1.9	12	$16^{(2)}$	$\left\lvert\, \begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +200^{\circ} \mathrm{C} \end{gathered}\right.$	TO-99	1-29
	OPA37HT	0.05	$0.25{ }^{(2)}$	$1 \mu \mathrm{~A}$	120	36	11.9	12	$16^{(2)}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +200^{\circ} \mathrm{C} \end{aligned}$	TO-99	1-29
	OPA111HT	0.5	$8^{(2)}$	0.002	114	2	2	10	5	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +200^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	TO-99	1-63

NOTES: (1) $\mathrm{Com}=0$ to $+70^{\circ} \mathrm{C}$; Ind $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; MIL $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (2) Typical.

LOW DRIFT

Low offset voltage drift vs temperature performance in both FET and bipolar input types is obtained by our sophisticated drift compensation techniques. First, the drift is measured and then
special laser trim techniques are used to minimize the drift and the initial offset voltage at $25^{\circ} \mathrm{C}$. Finally, "max drift" performance is retested for conformance with specifications.

LOW DRIFT ($\leq 5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$)												
Description	Model	Offset Voltage, max		Bias Current ($25^{\circ} \mathrm{C}$), max (nA)	Open Loop Gain, min (dB)	Frequency Response		Rated Output, min		$\begin{gathered} \text { Temp } \\ \text { Range }^{(1)} \end{gathered}$	Package	Page
		$\begin{gathered} \mathrm{At} \\ 25^{\circ} \mathrm{C} \\ (\pm \mathrm{mV}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Temp } \\ \text { Drift } \\ \left(\pm \mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right) \end{gathered}$			Unity Gain	Slew Rate					
						(MHz)	($\mathrm{V} / \mu \mathrm{sec}$)	$(\pm \mathrm{V})$	$(\pm \mathrm{mA})$			
FET	OPA111AM ${ }^{*}$	0.5	5	± 0.002	114	2	2	11	5	Ind	TO-99	1-53
	OPA111BM	0.25	1	± 0.001	120	2	2	11	5	Ind	T0-99	1-53
	OPA111SM	0.5	5	± 0.002	114	2	2	11	5	MIL	TO-99	1-53
Wideband	OPA156AM	2	5	0.05	94	6	14	10	5	MIL	TO-99	1-81
	OPA356AM	2	5	0.05	94	6	14	10	5	Com	T0-99	1-81
	OPA606LM	0.5	5	± 0.01	100	13	35	12	5	Com	T0-99	1-135
Dual FET	OPA2111BM*	0.5	2.8	± 0.004	114	2	2	11	5	Ind	TO-99	1-143
Bipolar	OPA27A*	0.025	0.6	± 40	120	8	1.9	12	16.6	MIL	TO-99, DIP	1-17
	OPA37A*	0.025	0.6	± 40	120	$63^{(2)}$	11.9	12	16.6	MIL	TO-99, DIP	1-17
	OPA27B	0.060	1.3	± 55	120	8	1.9	12	16.6	MIL	TO-99, DIP	1-17
	OPA37B	0.060	1.3	± 55	120	$63^{(2)}$	11.9	12	16.6	MIL	TO-99, DIP	1-17
	OPA27C	0.100	1.8	± 80	117	8	1.9	12	16.6	MIL	TO-99, DIP:	1-17
	OPA37C	0.100	1.8	± 80	117	$63^{(2)}$	11.9	12	16.6	MIL	TO-99, DIP	1-17
	OPA27E	0.025	0.6	± 40	120	8	1.9	12	16.6	Ind	TO-99, DIP	1-17
	OPA37E	0.025	0.6	± 40	120	$63^{(2)}$	11.9	12	16.6	Ind	TO-99, DIP	1-17
	OPA27F	0.060	1.3	± 55	120	8	1.9	12	16.6	Ind	TO-99, DIP	1-17
	OPA37F	0.060	1.3	± 55	120	$63^{(2)}$	11.9	12	16.6	Ind	TO-99, DIP	1-17
	OPA27G	0.100	1.8	± 80	117	8	1.9	12	16.6	Ind	TO-99, DIP	1-17
	OPA37G	0.100	1.8	± 80	117	$63^{(2)}$	11.9	12	16.6	Ind	TO-99, DIP	1-17
	OPA27GP	0.100	1.8	± 80	117	8	1.9	12	16.6	Com	DIP	1-17
	OPA37GP	0.100	1.8	± 80	117	$63^{(2)}$	11.9	12	16.6	Com	DIP	1-17
Low Power	OPA21EZ	0.1	1	25	120	0.3	0.2	13	5	Ind	DIP	1-13
	OPA21GZ	0.5	5	50	114	0.3	0.2	13	5	Ind	DIP	1-13

[^0]
LOW BIAS CURRENT

Our many years of experience in designing, manufacturing and testing FET amplifiers gives us unique abilities in providing low and ultra low bias current op amps. These amplifiers offer bias
currents as low as $75 \mathrm{fA}\left(75 \times 10^{-15} \mathrm{amps}\right)$ and low voltage drift as low as $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. With offset voltage laser-trimmed to as low as $250 \mu \mathrm{~V}$, the need for expensive trim pot adjustments is eliminated.

LOW BIAS CURRENT ($\leq 50 \mathrm{pA}$)												
Description	Model ${ }^{(1)}$	Offset Voltage, max		Bias Current ($25^{\circ} \mathrm{C}$), max (pA)	Open Loop Gain, min (dB)	Frequency Response		Rated Output, min		Temp Range ${ }^{(2)}$	Package	Page
			$\begin{gathered} \text { Temp } \\ \text { Drift, } \\ \left(\pm \mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right) \end{gathered}$			Unity Gain (MHz)						
								$(\pm \mathrm{V})$	$(\pm \mathrm{mA})$			
Premium	OPA111AM*	0.5	5	± 2	114	2	2	11	5	Ind	TO-99	1-53
Performance	OPA111BM	0.25	1	± 1	120	2	2	11.	5	Ind	TO-99	1-53
	OPA111SM	0.5	5	± 2	114	2	2	11	5	MIL	TO-99	1-53
Low Noise	OPA101AM	0.50	10	-15	94	10	6.5	12	12	Ind	TO-99	1-33
	OPA101BM	0.25	5	-10	94	10	6.5	12	12	Ind	TO-99	1-33
	OPA102AM	0.50	10	-15	94	40	14	12	12	Ind	TO-99	1-33
	OPA102BM	0.25	5	-10	94	40	14	12	12	Ind	TO-99	1-33
Ultra-Low Bias Current	OPA128JM*	1	20	± 0.300	94	1	3	10	5	Com	TO-99	1-73
	OPA128KM	0.5	10	± 0.150	110	1	3	10	5	Com	TO-99	1-73
	OPA128LM	0.5	5	± 0.075	110	1	3	10	5	Com	TO-99	1-73
	OPA128SM	0.5	10	± 0.150	110	1.	3	10	5	MIL	TO-99	1-73
Dual FET	OPA2111AM*	0.75	6	± 8	110	2	2	11	5	Ind	TO-99	1-143
	OPA2111BM	0.5	2.8	± 4	114	2	2	11	5	Ind	TO-99	1-143
	OPA2111SM	0.75	6	± 8	110	2	2	11	5	MIL	TO-99	1-143
	OPA2111KM	2	15	± 15	106	2	2	11	5	Com	TO-99	38
	OPA2111KP	2	15	± 15	106	2	2	11	5	Com	DIP	38
Quad FET	OPA404AG*	1	$3^{(4)}$	± 8	88	6.4	35	11.5	5	Ind	DIP	1-95
	OPA404BG	0.75	$3^{(4)}$	± 4	92	6.4	35	12	5	Ind	DIP	1-95
	OPA404SG	1	$3^{(4)}$	± 8	88	6.4	35	11.5	5	MIL	DIP	1-95
	OPA404KP	2.5	$5^{(4)}$	± 12	88	6.4	35	11.5	5	Com	DIP	1
Low Cost	OPA121KM*	2	10	± 5	110	2	2	11	5	Com	TO-99	1-67
	OPA121KP	3	10	± 10	106	2	2	11	5	Com	DIP	1-67
Wideband	OPA602AM	1	15	10	75	6.5	20	10	15	Ind	TO-99	23
	OPA602BM	0.5	5	2	88	6.5	24	10	15	Ind	T0-99	23
	OPA602CM	0.25	2	1	92	6.5	28	10	15	Ind	T0-99	23
	OPA602SM	0.5	5	2	88	6.5	24	10	15	MIL	TO-99	23
	OPA606KM	1.5	$5^{(4)}$	± 15	95	12.5	33	11	5	Com	TO-99	1-135
	OPA606LM	0.5	5	± 10	100	13	35	12	5	Com	TO-99	1-135
	OPA606SM	1.5	$5^{(4)}$	± 15	95	12.5	33	11	5	MIL	TO-99	1-135
	OPA606KP	3	$10^{(4)}$	± 25	90	12	30	11	5	Com	DIP	1-135
Low Cost, Ultra-Low Bias Current	AD515JH	3	50	0.300	86	0.35	1	10	5	Com	TO-99	1-153
	AD515KH	1	15	0.150	92	0.35	1	10	5	Com	TO-99	1-153
	AD515LH	1	25	0.075	88	0.35	1	10	5	Com	TO-99	1-153

NOTES: (1) "(Q)" indicates product also available with screening for increased reliability. (2) $\mathrm{Com}=0$ to $+70^{\circ} \mathrm{C}$, Ind $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{MIL}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (3) Gain-bandwidth product. (4) Typical.

LOW NOISE

Now both FET and bipolar input op amps are offered with guaranteed low noise specifications. Until now the designer had to
rely on "typical" specs for his demanding low noise designs. These fully characterized parts allow a truly complete error budget calculation.

LOW NOISE (Guaranteed e_{n})													
Description	Model	Noise Voltage at$\begin{gathered} 10 \mathrm{kHz}, \\ \max \\ (\mathrm{nV} / \sqrt{\mathrm{Hz}}) \end{gathered}$	Bias Current $\left(25^{\circ} \mathrm{C}\right)$, max (pA)	Offset Voltage, max		Open Loop Gain, min (dB)	Frequency Response		Rated Output, min		Temp Range (1)	Package	Page
						Gain Bandwidth (MHz)	Slew Rate, min ($\mathrm{V} / \mu \mathrm{sec}$)						
				$\begin{gathered} \mathrm{At} \\ 25^{\circ} \mathrm{C} \\ (\pm \mathrm{mV}) \\ \hline \end{gathered}$	Temp Drift $\left(\pm \mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$								
								$(\pm \mathrm{V})$	$(\pm \mathrm{mA})$				
Bipolar	OPA27A*	3.8	$\pm 40 \mathrm{nA}$. 0.025	0.6	120	8	1.7	12	16.6	MIL	TO-99, DIP	1-17
	OPA37A*	3.8	$\pm 40 \mathrm{nA}$	0.025	0.6	120	63	11	12	16.6	MIL	TO-99, DIP	1-17
	OPA27B	3.8	$\pm 55 \mathrm{nA}$	0.060	1.3	120	8	1.7	12	16.6	MIL	TO-99, DIP	1-17
	OPA37B	3.8	$\pm 55 \mathrm{nA}$	0.060	1.3	120	63	11	12	16.6	MIL	TO-99, DIP	1-17
	OPA27C	4.5	$\pm 80 \mathrm{nA}$	0.100	1.8	117	8	1.7	12	16.6	MIL	TO-99, DIP	1-17
	OPA37C	4.5	$\pm 80 \mathrm{nA}$	0.100	1.8	117	63	11	12	16.6	MIL	TO-99, DIP	1-17
	OPA27E	3.8	$\pm 40 \mathrm{nA}$	0.025	0.6	120	8	11	12	16.6	Ind	TO-99, DIP	1-17
	OPA37E	3.8	$\pm 40 \mathrm{nA}$	0.025	0.6	120	63	11	12	16.6	Ind	TO-99, DIP	1-17
	OPA27F	3.8	$\pm 55 \mathrm{nA}$	0.060	1.3	120	8	1.7	12	16.6	Ind	TO-99, DIP	$1-17$ $1-17$
	OPA37F	3.8	$\pm 55 n A$	0.060	1.3	120	63	11	12	16.6	Ind	TO-99, DIP	1-17

*Available in 20-pin ceramic leadless chip carriers.
This table continued on next page.
Models in boldface type are found in this supplement; others are in the Burr-Brown Integrated Circuits Data Book.

LOW NOISE (Guaranteed e_{n}) (CONT)													
Description	Model	Noise Voltage at 10 kHz , max $(\mathrm{nV} / \sqrt{\mathrm{Hz}})$	Bias Current ($25^{\circ} \mathrm{C}$), max (pA)	Offset Voltage, max		Open Loop Gain, min (dB)	Frequency Response		Rated Output, min		Temp Range (1)	Package	Page
						Gain Band- width (MHz)	Slew Rate, min (V/ $/ \mathrm{sec}$)						
				$\begin{gathered} \mathrm{At} \\ 25^{\circ} \mathrm{C} \\ (\pm \mathrm{mV}) \end{gathered}$									
								($\pm \mathrm{V}$)	$(\pm \mathrm{mA})$				
Bipolar	OPA27G	4.5	$\pm 80 n A$	0.100	1.8	117	8	1.7	12	16.6	Ind	TO-99, DIP	1-17
	OPA37G	4.5	$\pm 80 \mathrm{nA}$	0.100	1.8	117	63	11	12	16.6	Ind	TO-99, DIP	1-17
Wide Bandwidth	OPA101AM	8	-15	0.5	10	94	20	5	12	12	Ind	TO-99	1-33
	OPA101BM	8	-10	0.25	5	94	20	5	12	12	Ind	TO-99	1-33
	OPA102AM	8	-15	0.5	10	94	40	10	12	12	Ind	TO-99	1-33
	OPA102BM	8	-10	0.25	5	94	40	10	12	12	Ind	TO-99	1-33
FET	OPA111AM*	8	± 2	0.5	5	114	2	1	11	5	Ind	TO-99	1-53
	OPA111BM	8	± 1	0.25	1	120	2	1	- 11	5	Ind	TO-99	1-53
	OPA111SM	8	± 2	0.5	5	114	2	1	11	5	MIL	TO-99	1-53
	OPA606LM	13	± 10	0.5	5	100	13	25	12	5	Corn	TO-99	1-135
Low Cost	OPA27GP	4.5	$\pm 80 \mathrm{nA}$	0.100	1.8	117	8	$1.9{ }^{(2)}$	10	16.6	Com	DIP	1-17
	OPA37GP	4.5	$\pm 80 \mathrm{nA}$	0.100	1.8	117	63	$11.9^{(2)}$	10	16.6	Com	DIP	1-17
Dual FET	OPA2111AM*	8	± 8	0.75	6	110	2	1	11	5	Ind	TO-99	1-143
	OPA2111BM	8	± 4	0.5	2.8	114	2	1	11	5	Ind	TO-99	1-143
	OPA2111SM	8	± 4	0.75	6	110	2	1	11	5	MIL.	TO-99	1-143
	OPA2111KM	$6^{(2)}$	± 15	2	15	106	2	1	11	5	Com	TO-99	38
	OPA2111KP	$6^{(2)}$	± 15	2	15	106	2	1	11	5	Com	DIP	38

NOTES: (1) Ind $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{MIL}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, Com $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. (2) Typical.

UNITY-GAIN BUFFER (Power Booster)
These versatile amplifiers: boost the output current capability of another amplifier; buffer an impedance that might load a critical
circuit; may be used inside the feedback loop of another op amp to form a current-boosted, composite amplifier. Currents as high as $\pm 100 \mathrm{~mA}$ are available with speeds of $2000 \mathrm{~V} / \mu \mathrm{sec}$.

Description	Model	UNITY-GAIN BUFFER									
		Rated Output, min		Frequency Response			$\begin{aligned} & \text { Gain } \\ & \text { (V/V) } \end{aligned}$	Input Impedance\qquad ($\Omega)$	Temp Rangu' ${ }^{\prime \prime}$	Package	Page
				$\begin{aligned} & -3 \mathrm{~dB} \\ & (\mathrm{MHz}) \end{aligned}$	Full Power BW (MHz)	Slew Rate ($\mathrm{V} / \mu \mathrm{sec}$)					
		$(\pm \mathrm{V})$	$(\pm \mathrm{mA})$								
High Performance	3553AM	10	200	300	32	2000	≈ 1	10^{11}	Ind	TO-3	1-184
Low Cost	OPA633AH	10	80	275	65	1000	≈ 1	10^{6}	Ind	TO-8	29
.	OPA633SH	10	80	275	65	1000	≈ 1	10^{6}	MIL	TO-8	29
	OPA633KP	10	80	275	65	1000	≈ 1	10^{6}	Com	DIP	29

NOTES: (1) Ind $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, MIL $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, $\mathrm{Com}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
WIDE BANDWIDTH

Design expertise in wideband circuits combines with our fully developed technology to create cost effective wideband op amps.

Burr-Brown high speed amplifiers allso offer outstanding DC performance specifications.

WIDE BANDWIDTH ($\geq 5 \mathrm{MHz}$)													
Description	Model ${ }^{(1)}$	Frequency Response		$\begin{gathered} t_{s} \\ \pm 0.1 \% \\ \text { (nsec) } \end{gathered}$	Com-pensation	Rated Output, min		Offset Voltage, max		Open Loop Gain, min (dB)	Temp Range (:3)	Package	Page
		Gain Bandwidth (MHz)											
								$\begin{array}{\|c\|} \hline \mathrm{At} \\ 25^{\circ} \mathrm{C} \\ (\pm \mathrm{mV}) \\ \hline \end{array}$					
						$(\pm \mathrm{V})$	$(\pm \mathrm{mA})$						
FET	3554AM, (Q)	$1700, A=1000$	1000	120	ext.	10	100	2	50	100	Ind	TO-3	1-188
	3554BM, (Q)	$1700, A=1000$	1000	120	ext.	10	100	1	15	100	Ind	TO-3	1-188
	3554SM, (Q)	$1700, A=1000$	1000	120	ext.	10	100	1	25	100	MIL.	TO-3	1-188
	3551J	$50, A=10$	250	400	ext.	10	10	1	$50^{(3)}$	88	Com	TO-99	1-180
	3551S, (Q)	$50, A=10$	250	400	ext.	10	10	1	$50^{(3)}$	88	MIL.	TO-99	1-180
.	3550J	10, $A=10$	65	400	int.	10	10	1	$50^{(3)}$	88	Com	TO-99	1-176
	3550 K	20, $A=1$	100	400	int.	10	10	1	$50^{(3)}$	88	Com	TO-99	1-176
	3550S, (Q)	$10, A=1$	65	400	int.	10	10	1	$50^{(3)}$	88	MII.	TO-99	1-176
Bipolar	3508J	100, $A=100$	0	-	ext.	10	10	5	$30^{(3)}$	98	Com	TO-99	1-163
	3507J, (Q)	$20, A=10$	80	200	ext.	10	10	10	$30^{(3)}$	83	Com	TO-99	1-161

WIDE BANDWIDTH ($\geq 5 \mathrm{MHz}$) (CONT)													
Description	Model ${ }^{(1)}$	Frequency Response		$\begin{gathered} \mathrm{t}_{\mathrm{s}} \\ \pm 0.1 \% \\ \text { (nsec) } \end{gathered}$	Com- pensation	Rated Output, min		Offset Voltage, max		Open Loop Gain, min (dB)	Temp Range (2)	Package	Page
		Gain Bandwidth (MHz)	Slew Rate, min ($\mathrm{V} / \mu \mathrm{sec}$)										
								$\begin{gathered} \mathrm{At} \\ 25^{\circ} \mathrm{C} \\ (\pm \mathrm{mV}) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Temp } \\ \text { Drift } \\ \left(\pm \mu /{ }^{\circ} \mathrm{C}\right) \\ \hline \end{array}$				
						($\pm \mathrm{V}$)	$(\pm \mathrm{mA})$						
FET	OPA156AM	6, $A=1$	10	$1.5 \mu \mathrm{sec}$	int.	10	5	2	5	94	MIL	TO-99	1-81
	OPA356AM	6, $A=1$	10	$1.5 \mu \mathrm{sec}$	int.	10	5	2	5	94	Com	TO-99	1-81
Advance Information	OPA602AM	6.5	20	600	Int.	10	15	1	15	75	Ind.	T0-99	23
	OPA602BM	6.5	24	600	Int.	10	15	0.5	5	88	Ind.	T0-99	23
	OPA602CM	6.5	28	600	int.	10	15	0.25	2	92	Ind.	T0-99	23
	OPA602SM	6.5	24	600	Int.	10	15	0.5	5	88	MIL	T0-99	23
	OPA605H	200, $A=1000$	$300^{(3)}$	300	ext.	10	30	1	25	$96{ }^{(3)}$	Com	DIP	1-129
	OPA605A	$200, A=1000$	$300^{(3)}$	300	ext.	10	30	1	25	$96^{(3)}$	Ind	DIP	1-129
	OPA605K	200, $A=1000$	$300{ }^{(3)}$	300	ext.	10	30	0.5	5	$96^{(3)}$	Com	DIP	1-129
	OPA605C	?00, $A=1000$	$300^{(3)}$	300	ext.	10	30	0.5	5	$96{ }^{(3)}$	Ind	DIP	1-129
	OPA606KM	12.5	22	$1 \mu \mathrm{sec}$	int.	11	5	1.5	$5^{(3)}$	95	Com	TO-99	1-135
	OPA606LM	13	25	$1 \mu \mathrm{sec}$	int.	12	5	0.5	5	100	Com	TO-99	1-135
	OPA606SM	12.5	22	$1 \mu \mathrm{sec}$	int.	11	5	1.5	$5^{(3)}$	95	MIL	TO-99	1-135
	OPA606KP	12	20	$1 \mu \mathrm{sec}$	int.	11	5	3	$10^{(3)}$	90	Com	TO-99	1-135
Quad FET	OPA404AG	6.4	24	600	int.	11.5	5	1	$3^{(3)}$	88	Ind	DIP	1-95
	OPA404BG	6.4	28	600	int.	11.5	5	0.75	$3^{(3)}$	92	Ind	DIP	1-95
	OPA404SG	6.4	24	600	int.	11.5	5	1	$3^{(3)}$	88	MIL	DIP	1-95
	OPA404KP	6.4	24	600	Int.	11.5	5	2.5	$5^{(3)}$	88	Com	DIP	1
Low Noise Bipolar	OPA27A*	$8, A=1$	1.7	-	int. ${ }^{\text {(4) }}$	12	16.6	0.025	0.6	120	MIL	TO-99, DIP	1-17
	OPA37A*	63, $A=5$	11	-	int. ${ }^{\text {(4) }}$	12	16.6	0.025	0.6	120	MIL	TO-99, DIP	1-17
	OPA27B	$8, A=1$	1.7	-	int. ${ }^{\text {(4) }}$	12	16.6	0.060	1.3	120	MIL	TO-99, DIP	1-17
	OPA37B	$63, A=5$	11	-	int. ${ }^{(4)}$	12	16.6	0.060	1.3	120	MIL	TO-99, DIP	1-17
	OPA27C	8, $A=1$	1.7	-	int. ${ }^{\text {(4) }}$	12	16.6	0.100	1.8	117	MIL	TO-99, DIP	1-17
	OPA37C	$63, A=5$	11	-	int. ${ }^{\text {(4) }}$	12	16.6	0.100	1.8	117	MIL	TO-99, DIP	1-17
	OPA27E	8, $A=1$	1.7	-	int. ${ }^{\text {(4) }}$	12	16.6	0.025	0.6	120	Ind	TO-99, DIP	1-17
	OPA37E	63, $A=5$	11	-	int. ${ }^{(4)}$	12	16.6	0.025	0.6	120	Ind	TO-99, DIP	1-17
	OPA27F	$8, A=1$	1.7	-	int. ${ }^{\text {(4) }}$	12	16.6	0.060	1.3	120	Ind	TO-99, DIP	1-17
	OPA37F	$63, A=5$	11	-	int. ${ }^{\text {(4) }}$	12	16.6	0.060	1.3	120	Ind	TO-99, DIP	1-17
	OPA27G	$8, A=1$	1.7	-	int. ${ }^{\text {(4) }}$	12	16.6	0.100	1.8	117	Ind	TO-99, DIP	1-17.
	OPA37G	$63, A=5$	11	-	int. ${ }^{\text {(4) }}$	12	16.6	0.100	1.8	117	Ind	TO-99, DIP	1-17
Low Noise FET	OPA101AM	20, $A=100$	5	$2.5 \mu \mathrm{sec}$	int.	12	12	0.5	10	94	Ind	TO-99	1-33
	OPA101BM	20, $A=100$	5	$2.5 \mu \mathrm{sec}$	int.	12	12	0.25	5	94	Ind	TO-99	1-33
	OPA102AM	$40, A=100$	10	$1.5 \mu \mathrm{sec}$	int.	12	12	0.5	10	94	Ind	TO-99	1-33
	OPA102BM	40, $A=100$	10	$1.5 \mu \mathrm{sec}$	int.	12	12	0.25	5	94	Ind	TO-99	1-33
Fast Settling	OPA600UM	(1.100, $A=1000$	500	80	ext.	9	180	5	100	86	MIL	DIP	12-94
	OPA600VM	(1000, $A=1000$	500	80	ext.	9	180	4	20	86	MIL	DIP	12-94
	OPA600BM	$5(500, A=1000$	500	80	ext.	9	180	± 5	± 80	86	Ind	DIP	1-121
	OPA600CM	$5000, A=1000$	500	80	ext.	9	180	± 4	± 40	86	Ind	DIP	1-121
	OPA600SM	$51500, A=1000$	500	80	ext.	9	180	± 5	± 100	86	MIL	DIP	1-121
	OPA600TM	$51(1) 0, A=1000$	500	80	ext.	9	180	± 4	± 80	86	MIL	DIP	1-121
Unity-Gain Buffer	3553AM, (Q)	32	2000	-	-	10	200	50	$300^{(3)}$	NA	Ind	TO-3	1-184
Low Cost	OPA27GP OPA37GP	$\begin{gathered} 8, A=1 \\ 63, A=5 \end{gathered}$	$\begin{gathered} 1.9^{(3)} \\ 11.9^{(3)} \end{gathered}$	-	$\begin{aligned} & \text { int. } \\ & \text { int. }{ }^{(4)} \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 16.6 \\ & 16.6 \end{aligned}$	$\begin{aligned} & 0.100 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 117 \\ & 117 \end{aligned}$	Com Com	$\begin{aligned} & \text { DIP } \\ & \text { DIP } \end{aligned}$	$\begin{aligned} & 1-17 \\ & 1-17 \end{aligned}$
Wide Temp Range	$\begin{aligned} & \text { OPA27HT } \\ & \text { OPA37HT } \end{aligned}$	$\begin{gathered} 6, A=1 \\ 36, A=5 \end{gathered}$	$\begin{gathered} 1.9 \\ 11.9 \end{gathered}$	-	int. int. ${ }^{\text {(4) }}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{array}{\|l\|} \hline 16.6^{(3)} \\ 16.6^{(3)} \\ \hline \end{array}$	$\begin{aligned} & 0.050 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.25^{(3)} \\ & 0.25^{(3)} \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{gathered} -55^{\circ} \mathrm{C} \\ \text { to } \\ +200^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \text { TO-99 } \\ & \text { TO-99 } \end{aligned}$	$\begin{aligned} & 1-29 \\ & 1-29 \end{aligned}$
	OPA11HT	12, $A=1$	4	$1.5 \mu \mathrm{sec}$	ext.	10	15	$5^{(3)}$	5	98	$\begin{gathered} -55^{\circ} \mathrm{C} \\ \text { to } \\ +200^{\circ} \mathrm{C} \end{gathered}$	TO-99	1-9

NOTES: (1) "(Q)" indicates product also available with screening for increased reliability. (2) $\mathrm{Com}=0$ to $+70^{\circ} \mathrm{C}$, Ind $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, MIL $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (3) Typucal. (4) $\mathrm{G}=5 \mathrm{~min}$ for OPA37.
*Available in 20-pin ceramic leadless chip carriers.
Models in boldace type are found in this supplement; others are in the Burr-Brown Integrated Circuits Data Book.

HIGH VOLTAGE-HIGH CURRENT												
Description	Model ${ }^{(1)}$	Rated Output, min		Offset Voltage, max		Bias Current ($25^{\circ} \mathrm{C}$), max (pA)	Frequency Response		Open Loop Gain (dB)	Temp Range (2)	Package	Page
				$\begin{gathered} \mathrm{At} \\ 25^{\circ} \mathrm{C}, \end{gathered}$	Temp Drift,		Unity Gain	Slew Rate				
		$(\pm \mathrm{V})$	($\pm \mathrm{mA}$)	($\pm \mathrm{mV}$)	$\left(\pm \mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$		(MHz)	(V/ $/ \mathrm{sec}$)				
High Power	OPA501AM	20	10A	10	65	40 nA	1	1.35	94	Ind	TO-3	1-103
	OPA501BM	26	10A	5	40	20nA	1	1.35	98	Ind	TO-3	1-103
	OPA501RM	20	10A	10	65	40nA	1	1.35	94	MIL	TO-3	1-103
	OPA501SM	26	10A	5	40	20nA	1	1.35	98	MIL	TO-3	1-103
	OPA511AM	22	5A	10	65	40	1	1	91	Ind	TO-3	1-111
	OPA512BM	35	10A	6	65	30	4	2.5	110	Ind	TO-3	1-116
	OPA512SM	35	15A	3	40	20	4	2.5	110	MIL	TO-3	1-116
	OPA541AM	30	5A	10	40	50	1.6	8	90	Ind.	TO-3	9
	OPA541BM	35	5A	1	30	50	1.6	8	90	Ind.	TO-3	9
	OPA541SM	35	5A	1	30	50	1.6	8	90	MIL	TO-3	9
	3573AM	20	$2 A^{(5)}$	10	65	40nA	1	2.6	94	Ind	TO-3	1-202
	3572AM	30	$2 A^{(5)}$	2	40	-100	0.5	3	94	Ind	TO-3	1-196
	3571AM, (Q)	30	$1 \mathrm{~A}^{(4)}$.	2	40	-100	0.5	3	94	Ind	TO-3	1-196
Wideband	3554AM, (Q)	10	100	2	50	-50	$1700^{(3)}$	1200	100	Ind	TO-3	1-188
	3554BM, (Q)	10	100	1	15	-50	$1700^{(3)}$	1200	100	Ind	TO-3	1-188
	3554SM, (Q)	10	100	1	25	-50	$1700^{(3)}$	1200	100	MIL	TO-3	1-188
High Voltage	3584 JM , (Q)	145	15	3	25	-20	$20^{(3)}$	150	126	Com	TO-3	1-214
	3583AM	140	75	3	25	-20	5	30	118	Ind	TO-3	1-210
	3583JM	140	75	3	25	-20	5	30	118	Com	TO-3	1-210
	358 ?. 1	145	15	3	25	-20	5	20	118	Com	TO-3	1-206
	3581J	70	30	3	25	-20	5	20	112	Com	T0-3	1-200
	3580J	30	60	10	30	-50	5	15	106	Com	TO-3	1-206
$\begin{gathered} \text { Advance } \\ \text { Information } \end{gathered}$	OPA445BM	35	15	3	10	50	2	10	100	Ind	T0-99	5
	OPA445SM	35	15	1	10	50	2	10	100	MIL	T0-99	5
Booster	3553AM, (Q)	10	200	50	$300^{(6)}$	-200	300	2000	NA	Ind	TO-3	1-184
	OPA633AH	10	80	15	$33^{(6)}$		$275^{(6)}$	1000	NA	Ind	TO-8	29
	OPA633SH	10	80	15	$33^{(6)}$	$35 \mu \mathrm{~A}$	$275{ }^{(6)}$	1000	NA	MIL	TO-8	29
	OPA633KP	10	80	15	$33^{(6)}$	$35 \mu \mathrm{~A}$	$275{ }^{(6)}$	1000	NA	Com	DIP	29

NOTES: (1) "(Q)" indicates product also available with screening for increased reliability. (2) Com $=0$ to $+70^{\circ} \mathrm{C}, \operatorname{Ind}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{M} / \mathrm{L}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (3) Gain-bandwidth product. (4) 2 A peak. (5) 5 A peak. (6) Typical.

INSTRUMENTATION AMPLIFIERS AND PROGRAMMMABLE GAIN AMPLIFIERS

INSTRUMENTATION AMPLIFIERS											
Description	Model	Gain Range	Gain Accuracy,$\begin{gathered} \mathrm{G}=100, \\ 25^{\circ} \mathrm{C}, \\ \max (\%) \end{gathered}$	Gain Drift,$\begin{gathered} \mathrm{G}=100 \\ \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{gathered}$	NonLinearity, $\mathrm{G}=100$, $\max (\%)$	Input Parameters		Dynamic Response,$\begin{gathered} \mathrm{G}=100 \\ \pm 3 \mathrm{~dB} \text { BW } \\ (\mathrm{kHz}) \\ \hline \end{gathered}$	Temp Range (1)	Package	Page
						$\begin{gathered} \text { CMR, DC to } \\ 60 \mathrm{~Hz}, \mathrm{G}=10, \\ 1 \mathrm{k} \Omega \text { Unbal., } \\ \min (\mathrm{dB}) \end{gathered}$	Offset Voltage vs Temp, $\max \left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$				
Very-High Accuracy	INA104HP	1-1000 ${ }^{(2)}$	0.15	22	± 0.007	96	$\pm(2 \pm 20 / \mathrm{G})$	25	Com	DIP	2-26
	INA104JP	$1-1000^{(2)}$	0.15	22	± 0.003	96	$\pm(0.25 \pm 10 / \mathrm{G})$	25	Com	DIP	2-26
	INA104KP	1-1000 ${ }^{(2)}$	0.15	22	± 0.003	96	$\pm(0.75 \pm 10 / \mathrm{G})$	25	Com	DIP	2-26
	INA104AM	1-1000 ${ }^{(2)}$	0.15	$22^{(3)}$	± 0.007	96	$\pm(2 \pm 20 / \mathrm{G})$	25	Ind	DIP	2-26
	INA104BM	1-1000 ${ }^{(2)}$	0.15	$22^{(3)}$	± 0.003	96	$\pm(0.75 \pm 10 / \mathrm{G})$	25	Ind	DIP	2-26
	INA104CM	1-1000 ${ }^{(2)}$	0.15	22^{131}	± 0.003	96	$\pm(0.25 \pm 10 / \mathrm{G})$	25	Ind	DIP	2-26
	INA104SM	1-1000 ${ }^{(2)}$	0.15	$22^{(3)}$	± 0.003	96	$\pm(0.75 \pm 10 / \mathrm{G})$	25	MIL	DIP	2-26
	INA101AM*	$1-1000^{(2)}$	0.03	$22^{(4)}$	± 0.007	96	$\pm(2+20 / \mathrm{G})$	25	Ind	TO-100	2-7
	INA101CM	$1-1000^{(2)}$	0.03	$22^{(4)}$	± 0.004	96	$\pm(0.25+10 / \mathrm{G})$	25	Ind	TO-100	2-7
	INA101SM	1-1000 ${ }^{(2)}$	0.03	$22^{(4)}$	± 0.004	96	$\pm(0.25+10 / \mathrm{G})$	25	MIL	TO-100	2-7
	INA101AG	$1-1000^{(2)}$	0.03	$22^{(3)}$	± 0.007	96	$\pm(2+20 / \mathrm{G})$	25	Ind	DIP	2-7
	INA101CG	1-1000 ${ }^{(2)}$	0.03	$22^{(3)}$	± 0.003	96	$\pm(0.25+10 / \mathrm{G})$	25	Ind	DIP	2-7
	INA101SG	$1-1000^{(2)}$	0.03	$22^{(3)}$	± 0.003	96	$\pm(0.25+10 / \mathrm{G})$	25	MIL	DIP	2-7
	INA101HP	$1-1000^{(2)}$	0.3	$22^{(3)}$	± 0.007	90	$\pm(2+20 / \mathrm{G})$ typ	25	Com	DIP	2-7
	INA101KU	$1-1000^{(2)}$	0.3	$22^{(3)}$	± 0.007	90	$\pm(2+20 / \mathrm{G})$ typ	25	Com	SOIC	xxiii
Low Quiescent	INA102AG*	1,10,100,	0.25	20	± 0.05	80	$\pm(5+10 / \mathrm{G})$	3	Ind	DIP	2-18
Power	INA102CG) 1000	0.15	15	± 0.02	90	$\pm(2+5 / \mathrm{G})$	3	Ind	DIP	2-18

[^1]inis table continued on next page.
Models in boldface type are found in this supplement; others are in the Burr-Brown Integrated Circuits Data Book.

INSTRUMENTATION AMPLIFIERS (CONT)																				
Description	Model	Gain Range	Gain Accuracy,$\begin{gathered} \mathrm{G}=100, \\ 25^{\circ} \mathrm{C}, \\ \max (\%) \end{gathered}$	Gain Drift,$\begin{gathered} \mathrm{G}=100 \\ \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{gathered}$	NonLinearity, $\mathrm{G}=100$, $\max (\%)$	Input Parameters		Dynamic Response,$\begin{gathered} G=100 \\ \pm 3 \mathrm{~dB} \text { BW } \end{gathered}$$(\mathrm{kHz})$	Temp Range (1)	Package	Page									
						$\begin{gathered} \text { CMR, DC to } \\ 60 \mathrm{~Hz}, \mathrm{G}=10, \\ \mathrm{k} \Omega \text { Unbal., } \\ \mathrm{min}(\mathrm{~dB}) \\ \hline \end{gathered}$	Offset Voltage vs Temp, $\max \left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$													
Fast Settling FET Input	INA110AG*	1. 10, 100,	0.2	40	± 0.02	87	$\pm(5+100 / \mathrm{G})$	470	Ind	DIP	2-46									
	INA110BG	\} 200,500	0.1	20	± 0.01	96	$\pm(2+50 / \mathrm{G})$	470	Ind	DIP	2-46									
	INA110SG	1,10,100	0.1	20	0.01	96	$\pm(2+50 / \mathrm{G})$	470	MIL	DIP	53									
	INA110KP	\} 200,	0.2	6 typ	0.02	87	$\pm(2+20 / G)$ typ	470	Com	DIP	53									
	INA110KU) 500	0.2	6 typ	0.02	87	$\pm(2+20 / G)$ typ	470	Com	SOIC	53									
Buffer, Unity-Gain Differential	3627AM	1V/V, fixed	0.01	5	$\pm 0.001^{(3)}$	90	30	$800^{(3)}$	Ind	TO-99	2-122									
	3627BM	1V/V, fixed	0.01	5	$\pm 0.001^{(3)}$	100	20	$800^{(3)}$	Ind	TO-99	2-122									
	INA105AM*	1V/V, fixed	0.01	5	$\pm 0.001^{(3)}$	$80^{(6)}$	20	$1000{ }^{(3)}$	Ind	TO-99	2-36									
	INA105BM	1V/V, fixed	0.01	5	$\pm 0.001^{13}$	$86^{(6)}$	10	1000^{131}	Ind	TO-99	2-36									
	INA105KP	IV/V, fixed	0.025	5	$\pm 0.001^{131}$	$72^{(6)}$	5 typ	$1000{ }^{131}$	Com	DIP	2-36									
	INA105KU	1V/V, fixed	0.025	5	$\pm 0.001^{131}$	$72^{(6)}$	5	$1000{ }^{(3)}$	Com	SOIC	xxili									
Gain of 10 Differential	INA106AM	10V/V fixed	0.01	10	0.001	$94^{(6)}$	5	$500^{(5)}$	Ind	DIP	45									
	INA106BM	10V/V fixed	0.01	10	0.001	$100^{(6)}$	2	$500^{(5)}$	Ind	DIP	45									
	INA106KP	10V/V fixed	0.025	4 typ	0.001	$86^{(6)}$	0.2 typ	$500^{(5)}$	Com	DIP	45									
High Common Mode Voltage Differential (200VDC CMV)	INA117AG	1V/V fixed	$0.05{ }^{(3)}$	$10^{(3)}$	$0.001^{(3)}$	$74^{(3,6)}$	40	$200^{(3)}$	Ind	T0-99	57									
	INA117BG	1V/V fixed	$0.02{ }^{(3)}$	$10^{(3)}$	$0.001^{(3)}$	$86^{(3,6)}$	20	$200^{(3)}$	Ind	T0-99	57									
	INA117P	1V/V fixed	$0.05{ }^{(3)}$	10^{131}	$0.001{ }^{(3)}$	$74^{(3,6)}$	40	$200^{(3)}$	Com	DIP	57									
	PROGRAMMABLE GAIN AMPLIFIERS																			
Noninverting Multiplexed Input	PGA100AG	Gain set	0.05	10	± 0.01	NA	6 typ	5 MHz	Ind	DIP	2-58									
	PGA100BG	with 4-bit	0.02	10	± 0.005	NA	6 typ	5 MHz	Ind	DIP	2-58									
		$\text { word 1, } 2 .$ $4,8 \ldots 128$																		
	PGA102AG	Gain set	0.02	20	0.01	-	3, $\mathrm{G}=100$	250	Ind	DIP	2-66									
	PGA102BG	with 2-bit	0.01	20	0.01	-	3, $\mathrm{G}=100$	250	Ind	DIP	2-66									
	PGA102SG	word 1, 10	0.01	20	0.01	-	3, $G=100$	250	Ind	DIP	2-66									
	PGA102KP	100	0.02	50	0.01	-	$3, \mathrm{G}=100$	250	Com	DIP	2-66									
Instrumen-	PGA200AG	Gain set	0.05	20	± 0.007	96	2, G $=100$	30	Ind	DIP	2-76									
tation	PGA200BG	with 2-bit	0.02	10	± 0.003	96	0.4, G $=100$	30	Ind	DIP	2-76									
Amplifier Input		word 1, 10 , 100, 1000																		
Differential Input	3606AG	Gain set	0.05	10	0.004	90, $\mathrm{G}=1$	$\pm(3+50 / \mathrm{G})$	40	Ind	DIP	2-114									
	3606AM	with 3-bit	0.05	10	0.004	90, $\mathrm{G}=1$	$\pm(3+50 / \mathrm{G})$	40	Ind	DIP	2-114									
	3606BG	word 1, 2, 4	0.02	10	0.004	90, $\mathrm{G}=1$	$\pm(1+20 / \mathrm{G})$	40	Ind	DIP	2-114									
	3606BM	$8 . .1024$	0.02	10	0.004	$90, \mathrm{G}=1$	$\pm(1+20 / \mathrm{G})$	40	Ind	DIP	2-114									

NOTES: (1) $\mathrm{Com}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Ind $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{MIL}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (2) Set with external resistor. (3) Unity-gain. (4) With zero TC external resistor. (5) Gain $=10$. (6) No source imbalance.

PRECISION TRANSMITTERS													
Description	Model	Span			Input Parameters			Output Parameters			Temp Range (2)	Package	Page
		Untrimmed Error, max (\%)	NonLinearity, max (\%)	$\begin{aligned} & \text { Temp } \\ & \text { Drift } \\ & \left({ }^{(1)}\right. \end{aligned}$	Offset Voltage, $\max (\mu \mathrm{V})$	Offset Voltage vs Temp, max $\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$.	CMR, DC, min (dB)	Current Range (mA)	Offset Current Error, $\max (\mu \mathrm{A})$	FS Output Current Error, $\max (\mu \mathrm{A})$			
Two-Wire	XTR100AM	-3	0.01	± 100	± 50	± 1	90	4-20	± 4	± 20	Ind	DIP	2-82
	XTR100AP	-3	0.01	± 100	± 50	± 1	90	4-20	± 4	± 20	Ind	DIP	2-82
	XTR100BM	-3	0.01	± 100	± 25	± 0.5	90	4-20	± 4	± 20	Ind	DIP	2-82
	XTR100BP	-3	0.01	± 100	± 25	± 0.5	90	4-20	± 4	± 20	Ind	DIP	2-82
	XTR101AG*	-5	0.01	± 100	± 60	± 1.5	90	4-20	± 10	± 40	Ind	DIP	2-94
	XTR101BG	-5	0.01	± 100	± 30	± 0.75	90	4-20	± 6	± 30	Ind	DIP	2-94
	XTR101AP	-5	0.01	± 100	± 100	± 1.5	90	4-20	± 19	± 60	Ind ${ }^{(3)}$		65
	XTR101AU	-5	0.01	± 100	± 100	± 1.5	90	4-20	± 19	± 60	Ind ${ }^{(3)}$	SOIC	xxiii
Three-	XTR110AG*	0.6	0.025	50	-	-	-	- 4-20,	± 64	± 96	Ind	DIP	2-104
Wire and	XTR110BG	0.2	0.005	30	-	-	-	0-20,	± 16	± 32	Ind	DIP	2-104
Current	XTR110KP	0.6	0.025	50	-	-	-	5-25	± 64	± 96	Com	DIP	2-104
Source	XTR110KU	0.6	0.025	50	-	-	-		± 64	± 96	Com	SOIC	xxiii

NOTES: (1) With zero TC span resistor. (2) $\mathrm{Com}=0$ to $+70^{\circ} \mathrm{C}$, Ind $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, $\mathrm{MIL}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (3) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (4) Many more ranges with appropriate circuit.
*Available in 20-pin ceramic leadless chip carriers.
Models in boldface type are found in this supplement; others are in the Burr-Brown Integrated Circuits Data Book.

ISOLATION PRODUCTS

TRANSFORMER COUPLED AMPLIFIERS																	
Description	Model	Isolation Voltage (V)		Isolation Mode Rejec- tion, typ.		Leakage Current at Test Voltage ($\mu \mathrm{A}$)	Isolation Impedance		Gain Nonlinearity		$\left\{\begin{array}{c} \text { Voltage } \\ \text { Drift, } \\ \left(\pm \mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right) \\ \max \end{array}\right.$	Bias Current, max	$\pm 3 \mathrm{~dB}$ Freq. (kHz)	External Isolation Power Required	Temp. Range (1)	Package	Page
		Continuous, peak	Pulse/ Test, peak														
				(dB)	(dB)		(Ω)	(pF)	(\%)	(\%)							
Low Drift ${ }^{(2)}$	3450	± 500	± 2000	160	120	1	10^{12}	16	± 0.005	± 0.0015	100	50nA	1.5	No	Com	Module	3-19
Low Bias FET	3451	± 500	± 2000	160	120	1	10^{12}	16	± 0.025	± 0.005	100	25pA	2.5	No	Com	Module	3-19
	3452	± 2000	± 5000	160	120	1	10^{12}	16	± 0.025	± 0.005	100	10pA	2.5	$\mathrm{No}{ }^{(4)}$	Com	Module	3-19
	3455	${ }^{\text {(3) }}$	${ }^{(3)}$	160	120	(3)	10^{12}	16	± 0.025	± 0.005	100	20pA	2.5	$\mathrm{No}^{(4)}$	Com	Module	3-19
Highest Isolation Voltage	3656AG	± 3500	± 8000	160	125	0.5	10^{12}	6	± 0.1	± 0.03	$25+$	100nA	30	No	Ind	DIP	3-29
											(500/G G_{1})						
	3656BG	± 3500	± 8000	160	125	0.5	10^{12}	6	± 0.05	± 0.03	$\left\|\begin{array}{c} 5+ \\ \left(1000 / G_{1}\right) \end{array}\right\|$	100nA	30	No	Ind	DIP	3-29
	3656HG	± 3500	± 8000	160	125	0.5	10^{12}	6	± 0.15	± 0.03	$\left.\left\lvert\, \begin{array}{c} 200+ \\ \left(1000 / G_{1}\right. \end{array}\right.\right)$	100 nA	30	No	Com	DIP	3-29
	3656JG	± 3500	± 8000	160	125	0.5	10^{12}	6	± 0.1	± 0.03	$\begin{gathered} 50+ \\ \left(750 / \mathrm{G}_{1}\right) \end{gathered}$	100nA	30	No	Com	DIP	3-29
	3656 KG	± 3500	± 8000	160	125	0.5	10^{12}	6	± 0.1	± 0.03	$\begin{gathered} 10+ \\ \left(350 / \mathrm{G}_{1}\right) \end{gathered}$	100nA	30	No	Com	DIP	3-29
OPTICALLY COUPLED AMPLIFIERS																	
Balanced Current Input	3650HG	± 2000	± 5000	140	120	$0.25{ }^{(5)}$	10^{12}	1.8	± 0.2	± 0.05	25	10nA	15	Yes ${ }^{(6)}$	Ind	DIP	3-21
	3650JG	± 2000	± 5000	140	120	$0.25{ }^{(5)}$	10^{12}	1.8	± 0.1	± 0.03	10	10 nA	15	Yes ${ }^{(6)}$	Ind	DIP	3-21
	3650 KG	± 2000	± 5000	140	120	$0.25{ }^{(5)}$	10^{12}	1.8	± 0.05	± 0.02	5	$10 \mathrm{~A} A$	15	Yes ${ }^{(6)}$	Ind	DIP	3-21
	3650MG	± 2000	± 5000	140	120	$0.25{ }^{(5)}$	10^{12}	1.8	± 0.2	± 0.05	100	10nA	15	Yes ${ }^{(6)}$	Ind	DIP	3-21
Balanced FET Input	3652 HG	± 2000	± 5000	140	120	$0.25{ }^{(5)}$	10^{12}	1.8	± 0.2	± 0.05	50	50 nA	15	Yes	Ind	DIP	3-21
	3652JG	± 2000	± 5000	140	120	0.25	10^{12}	1.8	± 0.1	$\pm \mathrm{U} .05$	25	50̂nA่	15	Yes	Inci	Dif	- 3 - 21
	3652MG	± 2000	± 5000	140	120	$0.25{ }^{(5)}$	10^{12}	1.8	± 0.2	± 0.05	100	50 nA	15	Yes	Ind	DIP	3-21
Low Drift Wide Bandwidth	ISO100AP	750	2500	$146^{(6)}$	$108{ }^{(6)}$	0.3	10^{12}	2.5	0.4	0.1	$10^{(6)}$	10nA	60	Yes	Ind	DIP	3-6
	ISO100BP	750	2500	$146{ }^{(6)}$	$108^{(6)}$	0.3	10^{12}	2.5	0.1	0.01	$4^{(6)}$	10nA	60	Yes	Ind	DIP	3-6
	ISO100CP	750	2500	$146^{(6)}$	$108^{(6)}$	0.3	10^{12}	2.5	0.07	0.02	$4^{(6)}$	10nA	60	Yes	Ind	DIP	3-6
CAPACITOR COUPLED, HERMETICALLY SEALED AMPLIFIERS																	
1500VAC Isolation	ISO102	± 2121	± 4000	160	120	1.0	10^{14}	6	0.075	0.04	± 500	$100 \mu \mathrm{~A}$	70	Yes	Ind	DIP	68
	ISO102B	± 2121	± 4000	160	120	1.0	10^{14}	6	0.025	0.02	± 250	$100 \mu \mathrm{~A}$	70	Yes	Ind	DIP	68
3500VAC Isolation	ISO106	± 4950	± 8000	160	130	1.0	10^{14}	6	0.075	0.04	± 500	$100 \mu \mathrm{~A}$	70	Yes	Ind	DIP	68
	ISO106B	± 4950	± 8000	160	130	1.0	10^{14}	6	0.025	0.02	± 250		70	Yes	Ind	DIP	68

NOTES: (1) $\mathrm{Com}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Ind $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (2) Bipolar. (3) Isolation voltage tested at $2500 \mathrm{~V}, \mathrm{rms}, 60 \mathrm{~Hz}$; leakage current tested for $2 \mu \mathrm{~A}$ max at $240 \mathrm{~V}, \mathrm{rms}, 60 \mathrm{~Hz}$. (4) $\pm 15 \mathrm{~V}$ at $\pm 15 \mathrm{~mA}$ isolated power available to power external circuitry. (5) At $240 \mathrm{~V} / 60 \mathrm{~Hz}$. (6) $\mathrm{R}_{\mathrm{IN}}=10 \mathrm{k}$, Gain $=100$.

ISOLATION POWER SUPPLIES ${ }^{(1)}$														
Description	Model	Isolation Voltage (V)		Input Voltage (VDC)		Leakage Current, 240VAC, 60 Hz ($\mu \mathrm{A}$)	Isolation Impedance		Rated Current, Balanced Loads On All Outputs (mA)	Max Current, ${ }^{\text {(1) }}$ Balanced Loads On All Outputs (mA)	Sensitivity To To Input Voltage Change (V/V)	Temp Range (2)	Package	Page
		Continuous Peak	Pulse/ Test Peak											
				Min	Max		(Ω)	(pF)						
Single	700	1500	4200	10	18	1	10^{10}	5	$\pm 3-30$	± 60	1.08	Ind	Module	14-35
$\pm 15 \mathrm{~V}$	700 U	2000	5000	10	18	1	10^{10}	3	$\pm 3-30$	± 60	1.08	Ind	Module	14-35
Output	725	2121	4000	7	18	1.2	10^{12}	9	± 15	± 40	1.15	Ind	DIP	82
	726	4950	8000	7	18	1.2	10^{12}	9	± 15	± 40	1.15	Ind	DIP	82
Dual $\pm 15 \mathrm{~V}$ Output	722	4950	8000	5	16	1	10^{10}	6	$\pm 3-40$	± 50	1.13	Ind	Module	14-41
$\begin{aligned} & \text { Quad } \pm 15 \mathrm{~V} \\ & \text { Output } \end{aligned}$	710	1000	3100	10	18	1	10^{10}	8	± 9.5	± 60	1.08	Ind	Module	14-37
Quad $\pm 8 \mathrm{~V}$ Output	724	1000	3000	5	16	1	10^{10}	6	± 3-16	± 60	0.63	Ind	Module	14-45

NOTE: (1) See complete data sheet for full specifications, especially regarding output current capabilities. (2) Ind $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Models in boldface type are found in this supplement; others are in the Burr-Brown Integrated Circuits Data Book.

ANALOG CIRCUIT FUNCTIONS

MULTIPLIERS／DIVIDERS

You can select accuracy from 0.25% to 2% max from this complete line of integrated circuit multipliers．Most provide full four－ quadrant multiplication．All are laser－trimmed for accuracy－no
trim pots are needed to meet specified performance．These compact models bring the cost of high performance down to acceptable levels．

MULTIPLIERS／DIVIDERS									
Model	Transfer Function	Error at $+25^{\circ} \mathrm{C}$, $\max (\%)$	Temperature Coefficient （\％／${ }^{\circ} \mathrm{C}$ ）	Feed－ through （mV）	Offset Voltage （mV）	1\％Band－ width （kHz）	Temp Range （1）	Package	Page
MPY100A＊	$\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right) / 10\right]+Z_{2}$	± 2	0.017	100	50	70	Ind	TO－100	4－23
MPY100B	\＃	± 1	0.008	30	10	70	Ind	TO－100	4－23
MPY100C	\＃	± 0.5	0.008	30	7	70	Ind	TO－100	4－23
MPY100S	\＃	± 0.5	0.025	30	7	70	MIL	TO－100	4－23
MPY534JH＊	\＃	± 1.0	0.022	0．3\％	5	3 MHz	Com	TO－100	4－31
MPY534JD	\＃	± 1.0	0.022	0．3\％	5	3 MHz	Com	D！${ }^{\text {P }}$	4－31
MPY534KH	\＃	± 0.5	0.015	0.15	2	3 MHz	Com	TO－100	4－31
MPY534KD	\＃	± 0.5	0.015	0．15\％	2	3 MHz	Com	DIP	4－31
MPY534LH	\＃	± 0.25	0.008	0．05\％	2	3 MHz	Com	TO－100	4－31
MPY534LD	\＃	± 0.25	0.008	0．05\％	2	3 MHz	Com	DIP	4－31
MPY534SH	\＃	± 1.0	0.02	0．3\％	5	3 MHz	MIL	TO－100	4－31
MPY534SD	\＃	± 1.0	0.02	0．3\％	5	3 MHz	MIL	DIP	4－31
MPY534TH	\＃	± 0.5	0.01	0．15\％	2	3 MHz	MIL	TO－100	4－31
MPY534TD	\＃	± 0.5	0.01	0．15\％	2	3 MHz	MIL	DIP	4－31
MPY634AM＊	\＃	± 1.0	0.022	0．3\％	5	10 MHz	Ind	TO－100	4－38
MPY634BM	キ	± 0.5	0.015	0．15\％	2	10 MHz	Ind	TO－100	4－38
MPY634SM	\＃	± 1.0	0.02	0．3\％	5	10 MHz	MIL	TO－100	4－38
MPY634KP	\＃	± 2.0	0.03	0．3\％	25	10 MHz	Ind	DIP	4－38
MPY634KU	キ	± 2.0	0.03	0．3\％	25	10 MHz	Com	SOIC	xxiii
AD632A	\＃	1	0.02	0.3	30	50	Ind		
AD632B	\＃	0.5	0.01	0.15	15	50	Ind	TO－100，	Advance
AD632S	キ	1	0.02	0.3	30	50	MIL	DIP	Information
AD632T	\＃	0.5	0.01	0.15	15	50	MIL		

\ddagger Same as model above．
NOTE：（1） $\mathrm{Com}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ，Ind $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ， $\mathrm{MIL}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．
＊Available in 20 －pin ceramic leadless chip carriers．

SPECIAL FUNCTIONS

This group of models offers many different functions that are the quick，easy way to solve a wide variety of analog computational
problems．Most are in integrated circuit packages and are laser－ trimmed for excellent accuracy．

SPECIAL FUNCTIONS						
Function	Model	Description	Comments	Temp Range ${ }^{(1)}$	Package	Page
Multifunction Converter	4302	$Y(Z / X)^{m}$ This function may be used to multiply， divide，raise to powers，take roots and form sine and cosine functions．	Plastic package．	Ind	DIP	4－111
	LOG100JP	$\mathrm{K} \log \left(I_{1} / \mathrm{I}_{2}\right)$	Optimized for log ratio of current inputs．Specified over six decades of input（ 1 nA to 1 mA ）， 55 mV total error， 0.25% log conformity．	Com	DIP	4－15
Logarithmic Amplifier	$\begin{aligned} & 4127 \mathrm{JG} \\ & 4127 \mathrm{KP} \end{aligned}$	$\mathrm{K} \log \left(I_{1} / I_{\text {IEF }}\right)$	A more versatile part which contains an internal reference and a current inverter．1\％and 0．5\％accuracy．	Com Com	$\begin{aligned} & \text { DIP } \\ & \text { DIP } \end{aligned}$	$\begin{aligned} & 4-90 \\ & 4-90 \end{aligned}$
$\sqrt{\frac{1}{T} \int_{0}^{T} E_{\text {IN }}{ }^{2}(t) d t}$	4341	True rms－to－DC conversion based on a log－antilog occupational approach．	Some external trimming required． Lower cost in plastic package．Pin compatible with 4340.	Ind	DIP	4－119
Peak Detector	4085BM 4085KG 4085SM	These are analog memory circuits which hold and provide read－out of a DC voltage equal to peak value of a complex input waveform．	Digital mode control provides reset capability and allows selection of peaks within a desired time interval．May be used to make peak－to－peak detector．	Com Ind MIL	$\begin{aligned} & \text { DIP } \\ & \text { DIP } \\ & \text { DIP } \end{aligned}$	$\begin{aligned} & 4-82 \\ & 4-82 \\ & 4-82 \end{aligned}$

NOTE：（1） $\mathrm{Com}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ，Ind $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ， $\mathrm{MIL}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．

Models in boldface type are found in this supplement；others are in the Burr－Brown Integrated Circuits Data Book．

DIVIDERS

The use of a special \log / antilog commited divider design overcomes the major problem encountered when trying to use a multiplier in a
divider circuit. Outstanding accuracy is maintained even at very low denominator voltages.

DIVIDERS									
Model	Transfer Function	Input Range	Accuracy, max $D=250 \mathrm{mV}$ (\%)	$\begin{aligned} & \text { Temperature } \\ & \text { Coefficient } \\ & \left(\% /{ }^{\circ} \mathrm{C}\right) \end{aligned}$	0.5% Bandwidth (kHz)	Rated Output, min	Temp Range ${ }^{(1)}$	Package	Page
DIV100HP	N/D 10	250 mV	1.0	0.2	15	$\pm 10 \mathrm{~V}, \pm 5 \mathrm{~mA}$	Ind	DIP	4-7
DIV100JP	N/D 10	to	0.5	0.2	15	$\pm 10 \mathrm{~V}, \pm 5 \mathrm{~mA}$	Ind	DIP	4-7
DIV100KP	N/D 10	10 V	0.25	0.2	15	$\pm 10 \mathrm{~V}, \pm 5 \mathrm{~mA}$	Ind	DIP	4-7

NOTE: (1) Ind $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FREQUENCY PRODUCTS
This group of products consists of precision oscillators and active
filters for both signal generation and attenuation. Both fixed frequency and user-selected frequency units are available.

FREQUENCY PRODUCTS						
Function	Model	Description	Comments	Temp Range ${ }^{(1)}$	Package	Page
Oscillator	4423	Very-low cost in plastic package. Provides resistor programmable quadrature outputs (sine and cosine wave outputs simultaneously available).	Frequency range: 0.002 Hz to 20 kHz . Frequency stability: $0.01 \% /{ }^{\circ} \mathrm{C}$. Quadrature phase error: $\pm 0.1 \%$.	Com	DIP	4-123
Universal Active Filter	UAF41 UAF21	These filters provide a complex pole pair. Based on state variable approach, low-pass, high-pass and bandpass outputs are available.	Add only resistors to determine pole location (frequency and Q). Easily cascaded for complex filter responses.	Ind Ind	$\begin{aligned} & \text { DIP } \\ & \text { DIP } \end{aligned}$	$\begin{aligned} & 4-68 \\ & 4-60 \end{aligned}$

NOTE: (1) Com $=0$ to $+70^{\circ} \mathrm{C}$, Ind $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

VOLTAGE REFERENCE

These products are precision voltage references which provide $\mathrm{a}+10 \mathrm{~V}$
output. The output can be adjusted with minimal effect on drift or stability.

Voltage referince								
Model	Output (V)	Minimum Output (mA)	Maximum Drift (ppm $/{ }^{\circ} \mathrm{C}$)	Power Supply		Temp Range ${ }^{(1)}$	Package	Page
				(V)	(mA)			
REF10KM*	$+10.00 \pm 0.005$	10	1	+13.5/35	4.5	Com	TO-99	4-46
REF510JM	$+10.00 \pm 0.005$	10	2	+13.5/35	4.5	Com	TO-99	4-46
REF10SM	$+10.00 \pm 0.005$	10	3	+13.5/35	4.5	MIL	TO-99	4-46
REF10RM	$+10.00 \pm 0.005$	10	6	+13.5/35	4.5	MIL	TO-99	4-46
REF101KM*	$+10.00 \pm 0.005$	10	1	+13.5/35	4.5	Com	TO-99	4-52
REF101JM	+ 10.00 ± 0.005	10	2	+13.5/35	4.5	Com	TO-99	4-52
REF101SM	$+10.00 \pm 0.005$	10	3	+13.5/35	4.5	MIL	TO-99	4-52
REF101RM	$+10.00 \pm 0.005$	10	6	+13.5/35	4.5	MIL	TO-99	4-52

*Available in 20 -pin ceramic leadless chip carriers.
NOTE: (1) $\mathrm{Com}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{MIL}=-55$ to $+125^{\circ} \mathrm{C}$.

DATA CONVERSION AND DATA ACQUISITION

ANALOG-TO-DIGITAL CONVERTERS										
Description	Model	$\left\|\begin{array}{c} Q^{(1)} \\ \text { Screen } \end{array}\right\|$	Resolution (Bits)	Linearity Error (\% FSR)	Conversion Time ($\mu \mathrm{s}$)	Gain Tempco (ppm/ ${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \text { Temp }_{\text {(2) }} \\ & \text { Range }^{2 \mid} \end{aligned}$	$\begin{gathered} \text { Input } \\ \text { Range }^{(3)}(\mathrm{V}) \end{gathered}$	Package	Page
Very High Speed	ADC803	Q	12	± 0.012	1.5	30	MIL, Ind	10, 20, U/B	Hermetic Metal DIP	5-102
Ultra High Speed	ADC600		12	± 0.015	0.1	30	Com	1.25 B	Module	103
Serial Out	ADC804	Q	12	± 0.012	17	30	$\} \begin{gathered} \text { MIL, } \\ \text { Com, ind } \end{gathered}$	5, 10, 20 U/B	Hermetic Ceramic DIP	5-114
Low Cost, Microprocessor Interface	$\begin{aligned} & \text { ADC574 } \\ & \text { ADC674 } \end{aligned}$	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{Q} \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \pm 0.012 \\ & \pm 0.012 \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\} \begin{gathered}\text { MIL, } \\ \text { Com, Ind }\end{gathered}$	$\begin{aligned} & 10,20 \mathrm{U} / \mathrm{B} \\ & 10 \end{aligned}$	Hermetic Ceramic DIP Hermetic Ceramic DIP	$\begin{aligned} & 5-80 \\ & 5-93 \end{aligned}$
Low Cost	ADC80AG ADC80MAH	$\begin{gathered} \mathrm{Q} \\ \mathrm{QM} \end{gathered}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \pm 0.012 \\ & \pm 0.012 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	Ind Ind	$\begin{aligned} & 5,10,20 \cup / B \\ & 5,10,20 U / B \end{aligned}$	Hermetic Ceramic DIP Hermetic Ceramic DIP	$\begin{gathered} 5-56 \\ 87 \end{gathered}$
High Temp	ADC10HT		12	± 0.012	50	35	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +200^{\circ} \mathrm{C} \end{gathered}$	10, 20, U/B	Hermetic Ceramic DIP	5-3
High Speed, Low Cost	ADC84	Q	12	± 0.012	10	30	Com	5, 10, 20 U/B	Hermetic Ceramic DIP	95
High Speed, Wide Temp	$\begin{aligned} & \text { ADC85H } \\ & \text { ADC87H } \end{aligned}$	$\begin{aligned} & \mathbf{Q} \\ & \mathbf{Q} \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \pm 0.012 \\ & \pm 0.012 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	Ind MIL	$\begin{aligned} & 5,10,20 \mathrm{U} / \mathrm{B} \\ & 5,10,20 \mathrm{U} / \mathrm{B} \end{aligned}$	Hermetic Ceramic DIP Hermetic Ceramic DIP	$\begin{aligned} & 95 \\ & 95 \end{aligned}$
High Resolution	ADC71 ADC72 ADC76	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{Q} \\ & \mathrm{Q} \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \pm 0.003 \\ & \pm 0.003 \\ & \pm 0.003 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 17 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	Ind, Com Ind, Com Ind, Com	$5,10,20$ U/B $5,10,20$ U/B $5,10,20$ U/B	Ceramic DIP Hermetic Metal DIP Ceramic DIP	$\begin{aligned} & 5-13 \\ & 5-21 \\ & 5-40 \\ & \hline \end{aligned}$
Audio	PCM75		16	$\begin{gathered} 0.006 \% \\ \text { THD } \end{gathered}$	17	20	Com	$5,10,20 \mathrm{U} / \mathrm{B}$	Ceramic DIP	5-122

NOTES: (1) " Q " or " QM " indicates product available with screening for enhanced reliability. (2) $\mathrm{Com}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \operatorname{Ind}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{MIL}=$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (3) $\mathrm{U}=$ Unipolar, $\mathrm{B}=$ Bipolar.

DIGITAL-TO-ANALOG CONVERTERS										
Description	Model	$\left\|\begin{array}{c} Q^{(1)} \\ \text { Screen } \end{array}\right\|$	Resolution (Bits)	Linearity Error (\% FSR)	Settling Time ($\mu \mathrm{s}$)	Gain Tempco (ppm/ ${ }^{\circ} \mathrm{C}$)	Temp Range ${ }^{(2)}$	Output Range ${ }^{(3)}$	Package	Page
Very High Resolution	DAC729	Q	18	± 0.00075	5	15	Com	10V, 20 V U/B	Hermetic Ceramic DIP	141
High Resolution	$\begin{aligned} & \text { DAC700 } \\ & \text { DAC701 } \\ & \text { DAC702 } \\ & \text { DAC703 } \end{aligned}$	QM QM QM QM	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \pm 0.0015 \\ & \pm 0.0015 \\ & \pm 0.0015 \\ & \pm 0.0015 \end{aligned}$	$\begin{aligned} & 1 \\ & 8 \\ & 1 \\ & 8 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	MIL, Com, Ind MIL, Com, Ind MIL, Com, Ind MIL, Com, Ind	$\begin{gathered} -1 \mathrm{~mA} \\ 10 \mathrm{~V}, 20 \mathrm{~V} \text { U/B } \\ \pm 1 \mathrm{~mA} \\ 10 \mathrm{~V}, 20 \mathrm{~V} \text { U/B } \end{gathered}$	$\left\{\begin{array}{c} \text { Hermetic } \\ \text { Ceramic DIP } \\ \text { Plastic DIP } \\ \text { LCC, Die } \\ \hline \end{array}\right.$	$\begin{aligned} & 6-98 \\ & 6-98 \\ & 6-98 \\ & 6-98 \end{aligned}$
Bus Interface, High Resolution	$\begin{aligned} & \text { DAC705 } \\ & \text { DAC706 } \end{aligned}$	$\begin{aligned} & \text { QM } \\ & \text { QM } \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \pm 0.003 \\ & \pm 0.003 \end{aligned}$	$\begin{aligned} & 8 \\ & 1 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	MIL, Com, Ind MIL, Com, Ind	$\begin{gathered} 10 \mathrm{~V}, 20 \mathrm{~V} \mathrm{U} / \mathrm{B} \\ \pm 1 \mathrm{~mA} \end{gathered}$	Hermetic Ceramic DIP Hermetic Ceramic DIP	$\begin{array}{\|l\|} 6-106 \\ 6-106 \\ \hline \end{array}$
	DAC707	QM	16	± 0.003	8	15	MIL, Com, Ind	10V, 20 V U/B	Hermetic Ceramic DIP, Plastic DIP	6-106
	$\begin{array}{\|l\|l} \hline \text { DAC708 } \\ \text { DAC709 } \end{array}$	$\begin{aligned} & \mathrm{QM} \\ & \mathrm{QM} \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \pm 0.003 \\ & \pm 0.003 \end{aligned}$	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	MIL, Com, Ind MIL, Com, Ind	$\begin{gathered} 2 \mathrm{~mA}, \pm 1 \mathrm{~mA} \\ 10 \mathrm{~V}, 20 \mathrm{~V} \text { U/B } \end{gathered}$	Hermetic Ceramic DIP Hermetic Ceramic DIP	6-106
High Resolution	$\begin{array}{\|l\|} \hline \text { DAC70BH } \\ \text { DAC71 } \\ \text { DAC72BH } \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{QM} \\ & \mathrm{QM} \\ & \mathrm{QM} \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \pm 0.003 \\ & \pm 0.003 \\ & \pm 0.003 \end{aligned}$	$\begin{aligned} & 1,10 \\ & 1,10 \\ & 1,10 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	Ind Com Ind	$\begin{array}{\|l\|} \hline 10 \mathrm{~V}, 20 \mathrm{~V}, 2 \mathrm{~mA} \mathrm{U} / \mathrm{B} \\ 10 \mathrm{~V}, 20 \mathrm{~V}, 2 \mathrm{~mA} \text { U/B } \\ 10 \mathrm{~V}, 20 \mathrm{~V}, 2 \mathrm{~mA} \mathrm{U} / \mathrm{B} \end{array}$	Hermetic Ceramic DIP Hermetic Ceramic DIP Hermetic Ceramic DIP	$\begin{aligned} & 6-20 \\ & 6-28 \\ & 6-20 \end{aligned}$
Low Cost, High Resolution	$\begin{aligned} & \text { DAC710 } \\ & \text { DAC711 } \end{aligned}$		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \pm 0.003 \\ & \pm 0.003 \end{aligned}$	$\begin{aligned} & 1 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	Com Com	$\begin{gathered} \pm 1 \mathrm{~mA} \\ 10 \mathrm{~V}, 20 \mathrm{~V} \text { U/B } \end{gathered}$	$\} \begin{aligned} & \text { Hermetic Ceramic } \\ & \text { DIP, Plastic DIP } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 6-116 \\ 6-116 \\ \hline \end{array}$
Low Cost, Bus Interface	DAC811	QM	12	± 0.006	4	20	MIL, Com, Ind	10V, 20 V U/B	Hermetic Ceramic DIP, Plastic DIP, SOIC, Die	6-130
cMOS	DAC7541	OM	12	± 0.012	2	5	MIL, Com, Ind	Multiplying	Hermetic Ceramic DIP, Plastic DIP, SOIC, Die	159
CMOS, Bus Interface	DAC7545 DAC8012	$\begin{aligned} & \text { QM } \\ & \text { QM } \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \pm 0.012 \\ & \pm 0.012 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	MIL, Com, Ind MIL, Com, Ind	Multiplying Multiplying	THermetic Ceramic DIP, § Plasilc DIP, SOIC, Dle	$\begin{aligned} & 167 \\ & 174 \end{aligned}$
Low Cost, Industry Standard	$\begin{array}{\|l\|} \hline \text { DAC80 } \\ \text { DAC85H } \\ \hline \end{array}$	QM	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \pm 0.012 \\ & \pm 0.012 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3,3 \text { typ } \\ & 0.3,3 \text { typ } \\ & \hline \end{aligned}$	30 20	Com Ind	$10 \mathrm{~V}, 20 \mathrm{~V}, 2 \mathrm{~mA} \mathrm{U} / \mathrm{B}$ $10 \mathrm{~V}, 20 \mathrm{~V}, 2 \mathrm{~mA} \mathrm{U} / \mathrm{B}$	Hermetic Ceramic DIP, Plastic DIP, Die Hermetic Ceramic DIP	$\begin{aligned} & 6-64 \\ & 6-85 \\ & \hline \end{aligned}$
Military Temp, Industry Standard	DAC87H	QM	12	± 0.012	0.3, 3 typ	20	MIL.	$10 \mathrm{~V}, 20 \mathrm{~V}, 2 \mathrm{~mA} \mathrm{U/B}$	Hermetic Ceramic DIP	6-85

Models in boldface type are found in this supplement; others are in the Burr-Brown Integrated Circuits Data Book.

DIGITAL-TO-ANALOG CONVERTERS (CONT)										
Description	Model	$\begin{gathered} Q^{(1)} \\ \text { Screen } \end{gathered}$	Resolution (Bits)	Linearity Error (\% FSR)	Settling Time ($\mu \mathrm{s}$)	Gain Tempco (ppm $/{ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \text { Temp } \\ & \text { Range }^{(2)} \end{aligned}$	Output Range ${ }^{(3)}$	Package	Page
Ultra High Speed ECL	DAC63	Q	12	± 0.012	0.05	30	MIL, Ind	$10 \mathrm{~mA}, \mathrm{U} / \mathrm{B}$	Ceramic DIP, Metal Can	6-12
Uitra High Speed TTL	DAC812	Q	12	± 0.012	0.065	20	Ind	$10 \mathrm{~mA}, \mathrm{U} / \mathrm{B}$	Ceramic DIP. Metal Can	6-138

NOTES: (1) " Q " or " QM " indicates product available with screening for enhanced reliability. (2) $\mathrm{MIL}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{Com}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Ind $=$ $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (3) $\mathrm{U}=$ Unipolar, $\mathrm{B}=$ Bipolar.

VOLTAGE-TO-FREQUENCY CONVERTERS								
Description	Model ${ }^{(11}$	Frequency Range (kHz)	Vin Range (V)	Linearity, max (\% of FSR)	$\begin{gathered} \text { Tempco, } \\ \max \\ \left(\mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\circ} \mathrm{C}\right. \text {) } \end{gathered}$	$\begin{aligned} & \text { Temp } \\ & \text { Range }^{(2)} \end{aligned}$	Package	Page
Low Cost, Monolithic	$\begin{aligned} & \text { VFC32KP* } \\ & \text { VFC32BM, (Q) } \\ & \text { VFC32SM, (Q) } \end{aligned}$	$\} \begin{gathered} \text { User- } \\ \text { selected, } \\ 500 \mathrm{kHz}, \max \end{gathered}$	$\}$, $\begin{gathered}\text { User- } \\ \text { selected }\end{gathered}$	± 0.01 at 10 kHz ± 0.05 at 100 kHz ± 0.2 at 500 kHz	$\begin{gathered} 75 \text { typ } \\ \pm 100 \\ \pm 150 \end{gathered}$	Com Ind MIL	$\begin{gathered} \text { DIP } \\ \text { TO- } 100 \\ \text { TO }-100 \end{gathered}$	$\begin{aligned} & \hline 10-3 \\ & 10-3 \\ & 10-3 \\ & \hline \end{aligned}$
Low Cost Complete	$\begin{aligned} & \text { VFC42BP } \\ & \text { VFC42SM } \\ & \text { VFC52BP } \\ & \text { VFC52SM } \end{aligned}$	0 to 10 0 to 10 0 to 100 0 to 100	$\begin{aligned} & 0 \text { to }+10 \\ & 0 \text { to }+10 \\ & 0 \text { to }+10 \\ & 0 \text { to }+10 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.01 \\ & \pm 0.05 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & \pm 100 \\ & \pm 100 \\ & \pm 150 \\ & \pm 150 \end{aligned}$	Ind MIL Ind MIL	DIP DIP DIP DIP	$\begin{aligned} & 10-11 \\ & 10-11 \\ & 10-11 \\ & 10-11 \end{aligned}$
Precision Monolithic	VFC62BG* VFC62BM VFC62SM VFC62CG VFC62CM	$\left\{\begin{array}{c}\text { User- } \\ \text { selected, } \\ 1 \mathrm{MHz} \text { max }\end{array}\right.$	$\}$ 隹 $\begin{gathered}\text { User- } \\ \text { selected }\end{gathered}$	± 0.005 at 10 kHz ± 0.005 at 10 kHz ± 0.005 at 10 kHz ± 0.002 at 10 kHz ± 0.002 at 10 kHz	$\begin{aligned} & \pm 50 \\ & \pm 50 \\ & \pm 50 \\ & \pm 20 \\ & \pm 20 \end{aligned}$	Ind Ind MIL Ind Ind	$\begin{aligned} & \text { DIP } \\ & \text { TO-100 } \\ & \text { TO-100 } \\ & \text { DIP } \\ & \text { TO-100 } \end{aligned}$	$\begin{aligned} & 10-17 \\ & 10-17 \\ & 10-17 \\ & 10-17 \\ & 10-17 \end{aligned}$
	VFC320BG* VFC320BM VFC320SM VFC320CG VFC320CM	($\} \begin{gathered}\text { User- } \\ \text { selected } \\ 1 M H z \max \end{gathered}$, $\}$ Selected	$\begin{aligned} & \pm 0.005 \text { at } 10 \mathrm{kHz} \\ & \pm 0.005 \text { at } 10 \mathrm{kHz} \\ & \pm 0.005 \text { at } 10 \mathrm{kHz} \\ & \pm 0.002 \text { at } 10 \mathrm{kHz} \\ & \pm 0.002 \text { at } 10 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 50 \\ & \pm 50 \\ & \pm 20 \\ & \pm 20 \end{aligned}$	Ind Ind MIL Ind Ind	$\begin{aligned} & \text { DIP } \\ & \text { TOB-100 } \\ & \text { TO-100 } \\ & \text { DIP } \\ & \text { TO-100 } \end{aligned}$	$\begin{aligned} & 10-40 \\ & 10-40 \\ & 10-40 \\ & 10-40 \\ & 10-40 \end{aligned}$
Synchronized Monolithic	VFC100AG* VFC100BG VFC100SG	$\left\{\begin{array}{c} \text { Clock } \\ \text { Programmed, } \\ 2 \mathrm{MHz} \text { max } \end{array}\right.$	$\begin{aligned} & 0 \text { to }+10 \\ & 0 \text { to }+10 \\ & 0 \text { to }+10 \end{aligned}$	$\begin{aligned} & 0.025 \text { at } 100 \mathrm{kHz} \\ & 0.1 \text { at } 1 \mathrm{MHz} \\ & 0.025 \text { at } 100 \mathrm{kHz} \end{aligned}$	$\begin{gathered} \pm 100 \\ \pm 50 \\ \pm 100 \end{gathered}$	Ind Ind MIL	DIP DIP DIP	$\begin{aligned} & 10-25 \\ & 10-25 \\ & 10-25 \end{aligned}$

NOTES: (1) "(Q)" indicates product also available with screening for increased reliability. (2) $\mathrm{Com}=0$ to $+70^{\circ} \mathrm{C}$, Ind $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{MIL}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
*Available in 20-pin ceramic leadless chip carriers.

SAMPLE/HOLD AMPLIFIERS													
Description	Model	$\begin{gathered} Q^{(1)} \\ \text { Screen } \end{gathered}$	$\begin{gathered} \text { Gain } \\ \text { Error } \\ \text { (\% FSR) } \end{gathered}$	Offset Error (mV)	Charge Offset (mV)	Amplifier Bandwidth, $-3 \mathrm{~dB}$ (MHz)	Hold Transient Settling ($\mu \mathrm{s}$ to 1 mV)	$\begin{gathered} \text { Acqui- } \\ \text { sition } \\ \text { Time }(\mu \mathrm{s}) \\ (0.01 \% \\ \text { FSR }) \end{gathered}$	Aperture Time (ns)	Aperture Jitter (ns)	Input Range (Vp-p)	Package	Page
Ultra High Speed	SHC600	Q	0.1	5	10 max	70	0.015	0.05	8	0.009	2.5	Ceramic DIP	7-21
High Speed With Buffer	SHC803	Q	0.1	3	5 max	16	0.15	0.35	25	0.025	20	Hermetic Metal DIP	7-24
High Speed	SHC804	Q	0.1	3	5 max	16	0.15	0.35	25	0.025	20	Hermetic Metal DIP	7-24
Low Cost	SHC5320	Q		0.5	1 typ	1.5	0.25	1.5	25	0.3	20	Hermetic Ceramic DIP	7-30
	$\begin{array}{\|l\|} \text { SHC85 } \\ \text { SHC298 } \end{array}$	Q	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	2 max 25 max		$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 4.5 \\ 10 \end{gathered}$	$\begin{gathered} 30 \\ 200 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	Hermetic Metal DIP TO-99	$\begin{aligned} & 7-11 \\ & 7-15 \end{aligned}$

NOTE: (1) " Q " indicates product available with screening for enhanced reliability.

MULTIPLEXERS								
Description	Model	Channels	Input Range (V)	On Resistance, max (Ω)	Crosstalk (\% of Off Channel)	Settling Time (to 0.01\%)	Package	Page
Protected Inputs	MPC8S	8 Single	± 15	1.8k	0.005	$5 \mu \mathrm{~s}$	DIP	9-3
	MPC4D	4 Differential	± 15	1.8k	0.005	$5 \mu \mathrm{~s}$	DIP	9-3
	MPC16S	16 Single	± 15	1.8k	0.005	$4 \mu \mathrm{~s}$	DIP	9-10
	MPC8D	8 Differential	± 15	1.8k	0.005	$4 \mu \mathrm{~s}$	DIP	9-10
High Speed	MPC800KG	16 Single or 8 Differential	± 15	750	0.004	800ns	DIP	9-17
	MPC800SG	16 Single or 8 Differential	± 15	750	0.004	800ns	DIP	9-17
	MPC801KG	8 Single or 4 Differential	± 15	750	0.004	800 ns	DIP	9-24
	MPC801SG	8 Single or 4 Differential	± 15	750	0.004	800ns	DIP	9-24

MILITARY PRODUCTS

ANALOG-TO-DIGITAL CONVERTERS								
Model	Resolution (Bits)	Linearity, $\max (\pm$ LSB $)$	Conversion Time, max ($\mu \mathrm{s}$)	Gain Drift, $\max \left(\pm \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$	Input Range (V)	Operating Temperature Range	Package	Page
ADC87/883B	12	1/2	10	15		MIL	32-pin DIP	12-8
ADC87	12	1/2	10	15	$\pm 2.5, \pm 5, \pm 10$,	MIL	32-pin DIP	12-8
ADC87U/883B	12	1/2	10	15) 0 to +5 ,	MIL	32-pin DIP	12-8
ADC87U	12	1/2	10	15	(0 to +10	MIL	32-pin DIP	12-8
ADC87V/883B	12	1/2	10	15		MIL	32-pin DIP	12-8
ADC87V	12	1/2	10	15		MIL	32-pin DIP	12-8

DIGITAL-TO-ANALOG CONVERTERS									
Model	Resolution (Bits)	Linearity, max $(\pm$ LSB $)$ (\pm LSB)	Monotonicity $\left({ }^{\circ} \mathrm{C}\right)$	Gain Drift, max ($\pm \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)	Settling Time, \max	Output Ranges (V)	Operating Temperature Range	Package	Page
DAC87-CBI-V/B	12	1/2	-55 to +125	20	$7 \mu \mathrm{sec}$	$\pm 2.5, \pm 5$,	MIL	24-pin DIP	12-24
DAC87-CBI-V	12	1/2	-55 to +125	20	$7 \mu \mathrm{sec}$	$\pm 10,+5$,	MIL	24-pin DIP	12-24
DAC87U-CBI-V/B	12	1/2	-25 to +85	20	$7 \mu \mathrm{sec}$	+10	MIL	24-pin DIP	12-24
DAC87U-CBI-V	12	1/2	-25 to +85	20	$7 \mu \mathrm{sec}$		MIL	24-pin DIP	12-24
DAC87-CBI-I/B	12	1/2	-55 to +125	20	400nsec		MIL	24-pin DIP	12-24
DAC87-CBI-I	12	1/2	-55 to +125	20	400 nsec	0 to 2mA,	MIL	24-pin DIP	12-24
DAC87U-CBI-I/B	12	1/2	-25 to +85	20	400nsec	$\pm 1 \mathrm{~mA}$	MIL	24-pin DIP	12-24
DAC87U-CBI-I	12	1/2	-25 to +85	20	400nsec		MIL	24-pin DIP	12-24
DAC870V/883B	12	1/2	-55 to +125	25	$7 \mu \mathrm{sec}$		MIL	24-pin	12-48
DAC870V	12	1/2	-55 to +125	25	$7 \mu \mathrm{sec}$		MIL	DIP	12-48
DAC870U/883B	12	1/2	-25 to +85	20	$7 \mu \mathrm{sec}$	± 2.5,	MIL	ceramic	12-48
DAC870U	12	1/2	-25 to +85	20	$7 \mu \mathrm{sec}$	$\pm 5, \pm 10$,	MIL		12-48
DAC870VL/883B	12	1/2	-55 to +125	25	$7 \mu \mathrm{sec}$	0 to +5 ,	MIL	28-term.	12-48
DAC870VL	12	1/2	-55 to +125	25	$7 \mu \mathrm{sec}$	0 to +10	MIL	leadless	12-48
DAC870UL/883B	12	1/2	-25 to +85	20	$7 \mu \mathrm{sec}$		MIL	chip	12-48
DAC870UL	12	1/2	-25 to +85	20	$7 \mu \mathrm{sec}$,	MIL	carrier	12-48
DAC703VG/883B	16	$\pm .003 \%$ FSR	-55 to $+125^{(1)}$	20	$8 \mu \mathrm{sec}$	± 10	MIL	24-pin DIP	191
DAC703VG	16	$\pm .003 \%$ FSR	-55 to $+125^{(1)}$	20	$8 \mu \mathrm{sec}$	± 10	MIL	24-pin DIP	191
DAC703VL/883B	16	$\pm .003 \%$ FSR	-55 to $+125^{(1)}$	20	$8 \mu \mathrm{sec}$	± 10	MIL	$\}^{28-t e r m}$.	191
DAC703VL	16	$\pm .003 \%$ FSR	-55 to $+125^{(1)}$	20	$8 \mu \mathrm{sec}$	± 10	MIL	LCC	191

NOTE: (1) Monotonicity to 14-bit accuracy.

VOLTAGE-TO-FREQUENCY CONVERTERS							
Model	VIN Range (V)	Fout Range, $\max (\mathrm{kHz})$	Linearity, max at 10 kHz (\% FSR)	Full Scale Drift, max (ppm FSR/ ${ }^{\circ} \mathrm{C}$)	Operating Temperature Range	Package	Page
VFC32WM/883B	± 10	200	± 0.006	± 100 at 10 kHz	MIL	TO-100	12-135
VFC32WM	± 10	200	± 0.006	± 100 at 10 kHz	MIL	TO-100	12-135
VFC32VM/883B	± 10	200	± 0.01	$-400,+150$ at 200 kHz	MIL	TO-100	12-135
VFC32VM	± 10	200	± 0.01	$-400,+150$ at 200 kHz	MIL	TO-100	12-135
VFC32UM/883B	± 10	200	± 0.01	± 150 at 10 kHz	MIL	TO-100	12-135
VFC32UM	± 10	200	± 0.01	± 150 at 10 kHz	MIL	TO-100	12-135

Models in boldface type are found in this supplement; others are in the Burr-Brown Integrated Circuits Data Book.

MULTIPLIERS								
Model	Accuracy at $25^{\circ} \mathrm{C}$, $\max (\pm \%)$	Accuracy at $125^{\circ} \mathrm{C}$, $\max (\pm \%)$	Feedthrough, $\max (\pm \mathrm{mV})$	Output Offset, $\max (\pm \mathrm{mV})$	Output, min (V, mA)	Operating Temperature Range	Package	Page
4213WM/883B	1/2	4	50	25	$\pm 10, \pm 5$	MIL	TO-100	12-166
4213WM	1/2	4	50	25	$\pm 10, \pm 5$	MIL	TO-100	12-166
4213VM/883B	1	4	100	30	$\pm 10, \pm 5$	MIL	TO-100	12-166
4213 VM	1	4	100	50	$\pm 10, \pm 5$	MIL	TO-100	12-166
4213UM/883B	1	2^{111}	100	50	$\pm 10, \pm 5$	MIL	TO-100	12-166
4213UM	1	$2^{(1)}$	100	50	$\pm 10, \pm 5$	MIL	TO-100	12-166

NOTES: (1) $\mathrm{At}+85^{\circ} \mathrm{C}$.

OPERATIONAL AMPLIFIERS												
Description	Model	Offset Voltage		Bias Current, $\max (\mathrm{nA})$	Bandwidth Unity Gain, $\min (M H z)$	SlewRate,min$(\mathrm{V} / \mu \mathrm{s})$	$\begin{gathered} \mathrm{ts}_{\mathrm{s}} \\ \pm 0.01 \% \\ (\mathrm{~ns}) \end{gathered}$	Compensation	$\begin{aligned} & \text { Output, } \\ & \text { min } \\ & (\mathrm{V}, \mathrm{~mA}) \end{aligned}$	Operating Temp. Range	Package	Page
		$\begin{gathered} \text { At } 25^{\circ} \mathrm{C}, \\ \max (\pm \mathrm{mV}) \end{gathered}$	$\begin{aligned} & \text { Drift, max } \\ & \left(\pm \mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right) \end{aligned}$									
Wideband	OPA600VM/883B OPA600VM OPA600UM/883B OPA600UM	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 80 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & -100 \mathrm{pA} \\ & -100 \mathrm{pA} \\ & -100 \mathrm{pA} \\ & -100 \mathrm{pA} \end{aligned}$	$\} \begin{aligned} & 5000,{ }^{(1)} \\ & A=1000\end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & 150 \\ & 150 \\ & \hline \end{aligned}$	external external external external	$\begin{aligned} & \pm 10, \pm 200 \\ & \pm 10, \pm 200 \\ & \pm 10, \pm 200 \\ & \pm 10, \pm 200 \end{aligned}$	$\begin{aligned} & \text { MIL } \\ & \text { MIL } \\ & \text { MIL } \\ & \text { MIL } \end{aligned}$	$\}^{16 \text {-pin }}$ DIP	$\begin{aligned} & 12-94 \\ & 12-94 \\ & 12-94 \\ & 12-94 \end{aligned}$
General Purpose Bipolar	$\begin{aligned} & 3500 \mathrm{R} / 883 \mathrm{~B} \\ & 3500 \mathrm{U} / 883 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{gathered} 20 \\ 20^{(2)} \end{gathered}$	$\begin{aligned} & \pm 30 \\ & \pm 30 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$	-	internal internal	$\begin{aligned} & \pm 10, \pm 10 \\ & \pm 10, \pm 10 \end{aligned}$	$\begin{aligned} & \text { MIL } \\ & \text { MIL } \end{aligned}$	$\begin{aligned} & \text { TO-99 } \\ & \text { TO-99 } \end{aligned}$	$\begin{aligned} & \hline 12-147 \\ & 12-147 \end{aligned}$
Precision Bipolar	3510VM/883B	0.12	2	± 25	0.25	0.5	-	internal	$\pm 10, \pm 10$	MIL	T0-99	12-158
Low Drift, Low Bias	OPA105WM/883B OPA10WWM OPA155VM/883日 OPA105VM OPA105UM/883B OPA105UM	$\begin{aligned} & 0.250 \\ & 0.250 \\ & 0.250 \\ & 0.250 \\ & 0.250 \\ & 0.250 \end{aligned}$	$\begin{gathered} 2 \\ 2 \\ 5 \\ 5 \\ 5 \\ 15^{(2)} \\ 15^{(2)} \end{gathered}$	$\begin{aligned} & -1 \mathrm{pA} \\ & -1 \mathrm{pA} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	0.9 0.9 0.9 0.9 0.9 0.9	-	internal internal internal internal internal internal	$\begin{aligned} & \pm 10, \pm 10 \\ & \pm 10, \pm 10 \\ & \pm 10 \\ & \pm 10, \pm 10 \\ & \pm 10, \pm 10 \\ & \pm 10, \pm 10 \end{aligned}$	MIL MIL MIIL MIL MIL MIL	$\begin{aligned} & \text { TO-99 } \\ & \text { TO-99 } \end{aligned}$	$\begin{aligned} & 12-74 \\ & 12-74 \\ & 12-74 \\ & 12-74 \\ & 12-74 \\ & 12-74 \end{aligned}$
Ultra Low Bias Current	OPA106WM/883B OPA106WM OPA106VM/883B OPA106VM OPA106UM/883B OPA106UM	$\begin{aligned} & \hline 0.250 \\ & 0.250 \\ & 0.250 \\ & 0.250 \\ & 0.250 \\ & 0.250 \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ 5 \\ 10 \\ 10 \\ 20^{(2)} \\ 20^{(2)} \\ \hline \end{gathered}$	$\begin{aligned} & \hline-100 \mathrm{fA} \\ & -100 \mathrm{fA} \\ & -150 \mathrm{fA} \\ & -150 \mathrm{fA} \\ & -300 \mathrm{fA} \\ & -300 \mathrm{fA} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 1.2 \\ & 1.2 \\ & 1.2 \\ & 1.2 \\ & \hline \end{aligned}$	$-$	internal internal internal internal internal internal	$\begin{aligned} & \pm 10, \pm 5 \\ & \pm 10, \pm 5 \end{aligned}$	MIL MIL MIL MIL MIL MIL	$\begin{aligned} & \text { TO-99 } \\ & \text { TO-99 } \end{aligned}$	$\begin{aligned} & \hline 12-84 \\ & 12-84 \\ & 12-84 \\ & 12-84 \\ & 12-84 \\ & 12-84 \\ & \hline \end{aligned}$
Low Drift, Low Bias, Low Noise	$\begin{aligned} & \text { OPA111VM/883B } \\ & \text { OPA111UM } \end{aligned}$	$\begin{aligned} & 0.500 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \pm 2 \mathrm{pA} \\ & \pm 2 \mathrm{pA} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	-	Internal Internal	$\begin{aligned} & \pm 10, \pm 5 \\ & \pm 10, \pm 5 \end{aligned}$	$\begin{aligned} & \text { MIL } \\ & \text { MIL } \end{aligned}$	$\begin{aligned} & \text { TO-99 } \\ & \text { TO-99 } \end{aligned}$	$\begin{aligned} & 210 \\ & 210 \end{aligned}$
Power	OPA501VM/883B OPA501VM OPA501UM/883B OPA501UM	$\begin{gathered} 5 \\ 5 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & 40 \\ & 40 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 20 \\ & \pm 40 \\ & \pm 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.35 \\ & 1.35 \\ & 1.35 \\ & 1.35 \\ & \hline \end{aligned}$	-	Internal internal internal internal	$\begin{aligned} & \pm 26, \pm 10 \mathrm{~A} \\ & \pm 26, \pm 10 \mathrm{~A} \\ & \pm 20, \pm 10 \mathrm{~A} \\ & \pm 20, \pm 10 \mathrm{~A} \end{aligned}$	MIL MIL MIL MIL	$\begin{aligned} & \text { TO-3 } \\ & \text { TO-3 } \\ & \text { TO-3 } \\ & \text { TO-3 } \end{aligned}$	$\begin{aligned} & 222 \\ & 222 \\ & 222 \\ & 222 \\ & \hline \end{aligned}$
	OPA8780VM/883B OPA8780VM OPA8780UM/883B OPA8780UM	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.05 \\ & -0.05 \\ & -0.05 \\ & -0.05 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & \hline \end{aligned}$	- -	internal internal internal internal	$\begin{aligned} & \pm 30, \pm 60 \\ & \pm 30, \pm 60 \\ & \pm 30, \pm 60 \\ & \pm 30, \pm 60 \end{aligned}$	MIL MIL MIL MIL	$\begin{aligned} & \text { TO-3 } \\ & \text { TO-3 } \\ & \text { TO-3 } \\ & \text { TO-3 } \end{aligned}$	$\begin{aligned} & \hline 12-1110 \\ & 12-1110 \\ & 12-1110 \\ & 12-1110 \end{aligned}$

NOTES: (1) Gain-bandwidth product. (2) $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

INSTRUMENTATION AMPLIFIERS											
Description	Model	$\begin{gathered} \text { Gain } \\ \text { Range }^{(1)} \end{gathered}$	Gain Accuracy, $\mathrm{G}=100$, At $25^{\circ} \mathrm{C}$, max (\%FS)	Gain Drift, $\mathrm{G}=100$,$\operatorname{typ}$$\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$	Nonlinearity $\mathrm{G}=100$ max	Input Parameters		Dynamic Response,$\begin{gathered} \mathrm{G}=100, \\ \pm 3 \mathrm{~dB} \mathrm{BW} \\ (\mathrm{kHz}) \end{gathered}$	Temp Range	Package	Page
						CMR, DC to 60 Hz , $\mathrm{G}=10$, min, $1 \mathrm{k} \Omega$ Unbal. (dB)	Offset Voltage vs Temp, $\mathrm{G}=1000$, $\max \left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$				
Very High	INA101VG/883B	1-1000	0.10	22	0.007	96	1.75	25	MIL	DIP	200
Accuracy	INA101VG	1-1000	0.10	22	0.007	96	1.75	25	MIL	DIP	200
	INA101VM/883B	1-1000	0.10	22	0.007	96	1.75	25	MIL	TO-100	200
	INA101VM	1-1000	0.10	22	0.007	96	1.75	25	MIL	TO-100	200
	iNA258WG/883B	1-1000	0.10	22	0.007	96	0.5	25	MIL	DIP	12-61
	INA258WG	1-1000	0.10	22	0.007	96	0.5	25	MIL	DIP	12-61
	INA258VG/883B	1-1000	0.10	22	0.007	96	1.0	25	MIL	DIP	12-61
	INA258VG	1-1000	0.10	22	0.007	96	1.0	25	MIL	DIP	12-61
	INA258UG/883B	1-1000	0.10	22	0.007	96	3.0	25	MIL	DIP	12-61
	INA258UG	1-1000	0.10	22	0.007	96	3.0	25	MIL	DIP	12-61
	INA258WL/883B	1-1000	0.10	22	0.007	96	0.5	25	MIL		12-61
	INA258WL	1-1000	0.10	22	0.007	96	0.5	25	MIL	20-	12-61
	INA258VL/883B	1-1000	0.10	22	0.007	96	1.0	25	MIL	terminal	12-61
	INA258VL	1-1000	0.10	22	0.007	96	1.0	25	MIL	leadless	12-61
	INA258UL/883B	1-1000	0.10	22	0.007	96	3.0	25	MIL	chip	12-61
	INA258UL	1-1000	0.10	22	0.007	96	3.0	25	MIL	carrier	12-61

NOTES: (1) Set with external resistor.

MODULAR POWER SUPPLIES

DC/DC CONVERTERS							
Description	Model	Input (VDC)	Output	Isolation (VDC)	Leakage Current, max $(\mu \mathrm{A})$	Package	Page
Unregulated	PWR1xx	5 to 48	450 mW	1000	5	Module	14-9
Unregulated	PWR2xx	5 to 48	1.5W	1000	5	Module	14-11
Unregulated	PWR3xx	5 to 48	2W, dual channel	1000	5	Module	14-13
Unregulated	PWR4xx	5 to 48	3W	1000	5	Module	14-15
Unregulated	PWR5xx	5 to 48	4W'	750	15	Module	14-17
Regulated	PWR6xx	5 to 48	2W	1000	20	Module	14-19
Regulated	PWR7xx	. 5 to 48	5W	1000	25	Module	237
Unregulated	PWR8xx	5 to 48	5W, triple output	1000	5	Module	14-25
Unregulated	PWR70	10 to 18	$\pm 15 \mathrm{VDC}, \pm 15 \mathrm{~mA}$	2000	2	Module	14-27
Unregulated	PWR71	10 to 18	$\pm 15 \mathrm{VDC}, \pm 25 \mathrm{~mA}$	1000	3	Module	14-29
Unregulated	PWR72	5 to 22	$\pm 15 \mathrm{VDC}, \pm 100 \mathrm{~mA}$	1000	3	Module	14-31
Unregulated	PWR74	10 to 20	$\pm 15 \mathrm{VDC}, \pm 25 \mathrm{~mA}$	1500	2	Module	14-33
Unregulated	PWR1017	10 to 18	$\begin{gathered} \pm 15 \mathrm{VDC}, \pm 25 \mathrm{~mA}, \\ 4 \text { channels } \end{gathered}$	1000	3	Module	241
Regulated	PWR5038	4.75 to 5.25	2.75W, triple output	500	5	Module	245
Regulated	PWR5104	4.75 to 5.25	$\pm 12 \mathrm{VDC}, \pm 370 \mathrm{~mA}$	750	15	Module	247
Regulated	PWR5105	4.75 to 5.25	$\pm 15 \mathrm{VDC}, \pm 300 \mathrm{~mA}$	750	15	Module	247

NOTES: (1) Models 700 and 700 M have separate internal input and output shields. Models 700 U and 700 UM have no internal shields. Models 700 M and 700 UM are similar to models 700 and 700 U , but in addition, they are 100% screened to patient-connected circuit requirements for the leakage current (par 27.5) and withstand voltage (par. 31.11) of UL544. Additional per-unit charge for 700 M or 700 UM . (2) Model 710 provides four channels (sets) of isolated outputs.

RELIABILITY

All Burr-Brown PWR Series DC/DC converters are manufactured using stringent in-process controls and quality inspections. The customer may also choose one of two additional levels of screening
to meet specific requirements. The advanced reliability program is designed to reduce infant mortality, system rework, field failures, and equipment downtime.

BURR-BROWN-A WORLDWIDE LEADER IN MICROCIRCUITS AND MICROPROCESSOR-BASED SYSTEMS AND SUBSYSTEMS

Burr-Brown first introduced VMEbus products in 1983 and now manufactures a comprehensive line of specialized products for the industrial instrumentation, control, and automation markets. Utilizing Burr-Brown's high performance data conversion products (e.g. ADC803), Burr-Brown is able to offer products which set new performance standards in the VMEbus market. When these are operated with the digital signal processing boards, a wide range of applications can be addressed.
With over ten years experience in the design and manufacture of board-level products, you can rely on the market leaders for VMEbus data acquisition boards.

THE SYSTEMS APPROACH

A systems approach has been taken in the design of the bus interface. This ensures software compatibility between the boards as well as giving the system designer a wide range of VMEbus features.

- Configuration A24, D16, DTB slave
- Address block selectable within 16 M bytes memory space
- Short addressing available if required (64 bytes)
- 150ns response to CPU interrogation
- 7-level interrupt priority selection
- Full interrupt vector selection-8 lines (256 options)
- Double Eurocard format, $160 \mathrm{~mm} \times 233 \mathrm{~mm}$

SUPPORT DOCUMENTATION

Each VMEbus board is fully supported with a comprehensive operating manual. In addition to detailed set-up and operating instructions, the manual includes schematics and assembly language software written for the 68000 processor.

TOP-QUALITY VMEbus PRODUCTS FROM BURR-BROWN

In addition to the full Q.C. inspection of incoming components, the boards are subjected to a comprehensive temper-ature-cycled burn-in (8 cycles between $-20^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$).
Exhaustive tests before and after burn-in ensure that any problems are identified before the product leaves the factory.

VMEbus ANALOG I/O BOARDS							
	Input			Output			
Product	Resolution (Bits)	Number of Channels	Sampling Rate (kHz)	Resolution (Bits)	Number of Channels	Sampling Rate (kHz)	Description
MPV901	12	32SE/16DIF	11	-	-	-	General purpose, analog input.
MPV901A	12	32SE/16DIF	11	12		200	As MPV901, with analog output.
MPV901P	12	32SE/16DIF	11	12		200	As MPV901A, with software-programmable gain.
MPV904	-	-	-	12	16	285 Hz	Low-cost analog output (voltage output).
MPV905	-	-	-	12	8	285 Hz	Current output.
MPV906	12	64SE/32DIF	33	-	-	-	High-density analog input, optically isolated, optional digital I/O.
ACX906	-	-	-	-	-	-	Digital I/O module for MPV906/907, 32 I/O lines.
MPV907	12	32SE/16DIF	33	-	-	-	Low-cost analog input, optional digital I/O.
MPV911	16	8SE	45	-	-	-	High resolution analog input, with on-board data buffer.
MPV950S	12	16SE	330	-	-	-	High speed analog input.
MPV950D	12	$8 \mathrm{SE}+8 \mathrm{DIF}$	330	-	-	-	As MPV950S, with 8 user-configurable input amplifiers.
MPV952	12	8SE	330	-	-	-	High speed analog input, with on-board data buffer.
MPV954	-	-	-	12	8	858	High speed analog output, with on-board data buffer.
MPV940	-	-	-	-	-	-	Intelligent I/O controller-6800 CPU, optically isolated I/O expansion interface.
ACX945A	12	16SE/8DIF	33	-	-	-	Analog input module for MPV940.
ACX945B	12	16SE/8DIF	33	12	4	500	As ACX945A, with 12-bit analog output.
ACX945C	12	16SE/8DIF	33	16	4	83	As ACX945A, with 16-bit analog output.
ACX946	-	-	-	-	-	-	Digital I/O module for MPV940, 32 programmable I/O lines.

VMEbus DIGITAL I/O			
Product	Number of Channels	Type	
MPV902	32	Relay contact output	28VDC at 0.5A, 10W max output rating.
MPV910	32	Optical isolated input	
MPV910NS	32	Optical isolated input	As MPV910 without power supply.
MPV910LV	32	Optical isolated input	As MPV910NS for low voltage inputs.
MPV930	48	TTL level I/O	Lines programmable as input or output in groups of eight.

VMEbus DIGITAL SIGNAL PROCESSING BOARDS	
Product	Description
SPV100	A VMEbus board for general purpose DSP, based on the Texas Instruments TMS32010. Swinging buffer data memory for pipelining of data input/output and processing. Program ROM and RAM for user programming.
FFT100 ${ }^{(1)}$	Fast Fourier Transform firmware for the SPV100. FFT-1 64 points, -3256 points, -4512 point, -5 1024 point transform.
FIL100 ${ }^{(1)}$	Digital filter firmware for the SPV100. From 5 to 89 taps.
COR100 ${ }^{(1)}$	Correlation firmware for the SPV100. Auto-and cross-correlation.
ASM310V	TMS32010 cross-assembler. Runs under VERSAdos.
MON100V	Monitor/debugger software for SPV100. Runs under VERSAdos.
$\text { APS } 100 V^{(1)}$	DSP applications software library for SPV100. Includes vector operations, correlation, trigonometric functions, interpolation and decimation, filtering, windowing and FFTs. Routines are called from FORTRAN running under VERSAdos.
SPV120	Second generation DSP board based on TMS32020. Two RS-232 ports, auxiliary input and output ports, DMA controller for faster I/O concurrent with processing. Program RAM, bipolar ROM and EPROM. Supplied with EPROM-based debug monitor.
ACX120A	Add-on program RAM module for SPV120-16k $\times 16$ bits.
ACX120B	Add-on program RAM module for SPV120-80k $\times 16$ bits.
ASM320V	TMS32020 cross-assembler for SPV120. Runs under VERSAdos.
MON120V	Monitor/debugger software for SPV120. Runs under VERSAdos.
APS120V ${ }^{(1)}$	DSP applications software library for SPV120. Includes vector operations, correlation, trigonometric functions, interpolation and decimation, filtering, windowing and FFTs. All routines are callable from FORTRAN running under VERSAdos.
MPV960	Analog input and DSP. Four channels of simultaneously sampled analog input (at 100 kHz sampling rate) plus TMS32010 processor. Applications in digital filtering, signal averaging, etc.
ACX960	Add-on program RAM/ROM module for MPV960. Includes debug monitor and basic data acquisition routines.
MPV990	Anti-aliasing filter board. Four independent programmable filters, with user-configurable front ends. Ideal for use with MPV960.

NOTE: (1) This software is also available as source code. To order, add S suffix to product code; e.g., APS100VS.

SOFTWARE DRIVERS FOR VMEbus BOARDS	
Product	Description
PSOA	
PSOA-P	pSOS drivers for MPV901, MPV904, MPV905, MPV950, MPV952. Distributed in UNIX format 5-1/4" floppy disks.
PSOB	As PSOA, but distributed in MS-DOS format disks.
PSOB-P	pSOS drivers for MPV960, SPV100. Distributed in UNIX format 5-1/4" floppy disks.
VDR100	As PSOB, but distributed in MS-DOS format disks.
VDR120	VERSAdos driver for SPV100.
	VERSAdos driver for SPV120.

SURFACE MOUNT MICROCIRCUITS

Burr-Brown is the first manufacturer to offer high performance microcircuits in a wide variety of surface mount packages. These packages permit denser layouts on one or both sides of a PC board, often saving 50% or more of the space normally required for these analog circuits. Many of these miniature devices also fit inside transducer cavities and may be used on modules or even
hybrid circuits. Packages currently available are:

- SOIC-Plastic small-outline package, gull-wing leads on 1.27 mm centers. Example: SOIC-8 has 8 leads.
- LCC-Ceramic leadless chip carrier, terminals on 1.27 mm centers. Example: LCC-20 has 20 terminals.

SURFACE MOUNT DEVICES					
Device Type	Description	Model	Package	Dimensions (mm)	Product Data Sheet
Analog Multipliers/Dividers	Low Cost Precision	$\begin{aligned} & \text { MPY100L } \\ & \text { 4213L } \end{aligned}$	$\begin{aligned} & \text { LCC-20 } \\ & \text { LCC-20 } \end{aligned}$	$\begin{aligned} & 9.0 \times 9.0 \\ & 9.0 \times 9.0 \end{aligned}$	LCC Short Form LCC Short Form
Current Transmitters/Converters	Two-Wire, $4-20 \mathrm{~mA}$ Voltage-to-Current Converters	XTR101L XTR101U XTR110L XTR110U	LCC-20 SOIC-16 LCC-20 SOIC-16	$\begin{aligned} & 9.0 \times 9.0 \\ & 10.4 \times 7.5 \\ & 9.0 \times 9.0 \\ & 10.4 \times 7.5 \end{aligned}$	LCC Short Form PDS-734 LCC Short Form PDS-731
Digital-to-Analog Converters	16-Bit, Monolithic 16-Bit, Monolithic, Military 12-Bit, $\mu \mathrm{P}$-Compatible 12-Bit, Monolithic 12-Bit, MIL Temp 12-Bit, Military 12-Bit, CMOS 16-Bit, Digital Audio	DAC700-703BL DAC703L DAC811U DAC850L DAC851L DAC870L DAC7541AU PCM55	LCC-28 LCC-28 LCC-28 LCC-28 LCC-28 LCC-28 SOIC-18 SOIC-24	$\begin{aligned} & 11.4 \times 11.4 \\ & 11.6 \times 7.5 \\ & 15.8 \times 9.0 \end{aligned}$	PDS-494 PDS-751 PDS-503 PDS-453 PDS-453 PDS-511 PDS-639 PDS-619
Instrumentation Ȧmplifiers	Frecision, ivionolitinic Low Power Unity Gain, Differential Fast, FET Input Precision, Military	iivàiûil INA101U INA102L INA105L INA105U INA110L INA110U INA258L	LOC-でu SOIC-16 LCC-20 LCC-20 SOIC-8 LCC-20 SOIC-16 LCC-20	$\begin{aligned} & \hat{v . v} \because \mathrm{~V} . \hat{\mathrm{v}} \\ & 10.4 \times 7.5 \\ & 9.0 \times 9.0 \\ & 9.0 \times 9.0 \\ & 4.9 \times 3.9 \\ & 9.0 \times 9.0 \\ & 10.4 \times 7.5 \\ & 8.9 \times 8.9 \end{aligned}$	LCO Sitũ Fúm PDS-730 LCC Short Form LCC Short Form PDS-693 LCC Short Form PDS-733 PDS-501
Operational Amplifiers	Electrometer Ultra-Low Noise Precision, Difef ${ }^{\text {© }}$ Low Cost, Difet Electrometer Grade High Speed, Quad Precision, Dual	AD515L OPA27/37L OPA27/37U OPA111L OPA121L OPA121U OPA128L OPA404L OPA2111L	LCC-20 LCC-20 SOIC-8 LCC-20 LCC-20 SOIC-8 LCC-20 LCC-20 LCC-20	$\begin{aligned} & 9.0 \times 9.0 \\ & 9.0 \times 9.0 \\ & 4.9 \times 3.9 \\ & 9.0 \times 9.0 \\ & 9.0 \times 9.0 \\ & 4.9 \times 4.9 \\ & 9.0 \times 9.0 \\ & 9.0 \times 9.0 \\ & 9.0 \times 9.0 \end{aligned}$	LCC Short Form LCC Short Form PDS-691 LCC Short Form LCC Short Form PDS-692 LCC Short Form LCC Short Form LCC Short Form
Precision Analog Multipliers	Low Cost, Monolithic Wide Bandwidth	MPY534L MPY634L	$\begin{aligned} & \text { LCC-20 } \\ & \text { LCC-20 } \end{aligned}$	$\begin{aligned} & 9.0 \times 9.0 \\ & 9.0 \times 9.0 \end{aligned}$	LCC Short Form LCC Short Form
Precision Voltage References	Ultra-Stable Low Drift	REF10L REF101L	$\begin{aligned} & \text { LCC-20 } \\ & \text { LCC-20 } \end{aligned}$	$\begin{aligned} & 9.0 \times 9.0 \\ & 9.0 \times 9.0 \end{aligned}$	LCC Short Form LCC Short Form
Voltage-to-Frequency and Frequency-to-Voltage Converters	Low Cost, Monolithic Precision, Monolithic Synchronized Precision, Monolithic	VFC32L VFC62L VFC100L VFC320L	LCC-20 LCC-20 LCC-20 LCC-20	$\begin{aligned} & 9.0 \times 9.0 \\ & 9.0 \times 9.0 \\ & 9.0 \times 9.0 \\ & 9.0 \times 9.0 \end{aligned}$	LCC Short Form LCC Short Form LCC Short Form LCC Short Form
Data Acquisition System	12-Bit, 16-Channel	SDM862/863L	LCC-68	24.3×24.3	PDS-686

Difet ${ }^{(8)}$ Burr-Brown Corp.

HIGH PERFORMANCE CHIPS

HIGH PERFORMANCE DICE BACKED BY BURR-BROWN'S TRADITION OF QUALITY

Many of Burr-Brown's high-performance monolithic products are available in die form, including D/A converters, precision operational and instrumentation amplifiers, current transmitters, voltage/frequency converters, and many more.
All Burr-Brown dice products are the same as those used in our high quality, high performance monolithic and hybrid devices and are proven in demanding applications throughout the world. The dice are manufactured and tested at our Tucson Microtechnology facility using the most advanced equipment and methods available, assuring total control of quality and reliability for every product.

The state-of-the-art performance achieved by these precision monolithic products reflects Burr-Brown's unmatched technical capabilities in low noise processing, high stability nichrome thinfilm resistors, active laser trimming, dielectric isolation, and patented circuit design.
At Burr-Brown concern for quality is a fundamental part of wafer processing. Dice are 100% visually inspected according to MIL-STD-883, Method 2010, Condition B. All wafers are 100% probe tested to specified electrical test limits.
Our newest products are described below. See also our current Integrated Circuits Data Book for additional product information.

HIGH PERFORMANCE CHIPS					
Description	Model	Die Size (mils)	Key Specifications*	Product Data Sheet	
				Die	Packaged
Unity-Gain Differential Amplifier	INA105AD	83×63	$\pm 0.01 \%$ max DC Gain Error	PDS-703	PDS-617
Precision Instrumentation Amplifier	INA110AD	139×89	$\pm 0.01 \%$ FS max Nonlinearity	PDS-702	PDS-645
Precision Analog Multiplier	MPY534AD	100×92	$\mathrm{V}_{\text {OUt }}=\mathrm{A}\left[\frac{\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)}{S F}-\left(Z_{1}-Z_{2}\right)\right]$	PDS-711	PDS-614
Difer ${ }^{(8)}$ Electrometer-Grade Operational Amplifier	OPA128JD	96×71	$\pm 40 \mathrm{pA}$ max Bias Current	PDS-704	PDS-653
High Speed Difer Operational Amplifier	OPA606KD	65×54	$\pm 2 \mathrm{mV}$ max Offset Voltage	PDS-660	PDS-598
Precision Two-Wire Transmitter	XTR101AD	150×105	4-20mA Operating Range		PDS-708
Voltage-to-Current Converter/Transmitter	XTR110AD	109×78	$\pm 0.025 \%$ of Span max Nonlinearity		PDS-605A

*These specifications are probed at the wafer level. Consult the product data sheet for the packaged device for complete characterization. Difef ${ }^{(0)}$ Burr-Brown Corp.

OPA404

NEW PACKAGE NOW AVAILABLE

Quad High-Speed Precision QRFEE OPERATIONAL AMPLUFIER

FEATURES

- WIDE BANDWIDTH: 6.4 MHz
- HIGH SLEW RATE: $35 \mathrm{~V} / \mu \mathrm{s}$
- LOW OFFSET: $\pm 750 \mu \mathrm{~V}$ max
- LOW BIAS CURRENT: ± 4 pA max
- FAST SETTLING: 1.5μ s to 0.01%
- STANDARD QUAD PINOUT

DESCRIPTION

The OPA404 is a high performance monolithic Difer ${ }^{\oplus}$ (dielectrically-isolated FET) quad operational amplifier. It offers an unusual combination of very-low bias current together with wide bandwidth and fast slew rate.
Noise, bias current, voltage offset, drift, and speed are superior to BIFET ${ }^{\circledR}$ amplifiers.
Laser trimming of thin-film resistors gives very-low offset and drift - the best available in a quad FET op amp.
The OPA404's input cascode design allows high precision input specifications and uncompromised high-speed performance.
Standard quad op amp pin configuration allows upgrading of existing designs to higher performance levels. The OPA404 is unity-gain stable.

Difer ${ }^{\ominus}$ Burr-Brown Corp., BIFET ${ }^{\ominus}$ National Semiconductor Corp.

APPLICATIONS

- PRECISION INSTRUMENTATION
- OPTOELECTRONICS
- SONAR, ULTRASOUND
- PROFESSIONAL AUDIO EQUIPMENT
- MEDICAL EQUIPMENT
- DETECTOR ARRAYS

SPECIFICATIONS

ELECTRICAL

At $\mathrm{V}_{\mathrm{cc}}= \pm 15 \mathrm{VDC}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.

PARAMETER	CONDITIONS	OPA404AG, KP			OPA404BG			OPA404SG			UNITS			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX				
INPUT														
$\begin{aligned} & \text { NOISE }^{(1)} \\ & \text { Voltage: }^{\mathrm{f}_{\mathrm{O}}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{o}}=100 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{o}}=1 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{o}}=10 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{B}}=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{B}}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \text { Current: } \mathrm{f}_{\mathrm{B}} \\ & \mathrm{f}_{\mathrm{o}}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & 0.1 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$			$\begin{gathered} 32 \\ 19 \\ 15 \\ 12 \\ 1.4 \\ 0.95 \\ 12 \\ 0.6 \end{gathered}$.	$*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$					$\begin{aligned} & n V / \sqrt{H z} \\ & n V / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mu \mathrm{~V}, \mathrm{rms} \\ & \mu \mathrm{~V}, \mathrm{p}-\mathrm{p} \\ & \mathrm{fA}, \mathrm{p}-\mathrm{p} \\ & \mathrm{~A} / \sqrt{\mathrm{Hz}} \end{aligned}$			
OFFSET VOLTAGE Input Offset Voltage KP Average Drift KP Supply Rejection KP KP Channel Separation	$\begin{gathered} V_{C M}=0 \mathrm{VDC} \\ T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ \pm V_{C C}=12 \mathrm{~V} \text { to } 18 \mathrm{~V} \\ 100 \mathrm{~Hz}, R_{\mathrm{L}}=2 \mathrm{k} \Omega \end{gathered}$	$\begin{aligned} & 80 \\ & 76 \end{aligned}$	$\begin{gathered} \pm 260 \\ \pm 750 \\ \pm 3 \\ \pm 5 \\ 100 \\ 100 \\ 10 \\ 10 \\ 125 \end{gathered}$	$\begin{gathered} \pm 1 \mathrm{mV} \\ \pm 2.5 \mathrm{mV} \end{gathered}$	86		± 750	*			$\begin{gathered} \mu V \\ \mu V \\ \mu V /{ }^{\circ} \mathrm{C} \\ \mu V /{ }^{\circ} \mathrm{C} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mathrm{~dB} \end{gathered}$			
BIAS CURRENT Input Bias Current KP	$\mathrm{V}_{\mathrm{CM}}=\mathrm{OVDC}$		$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{gathered} \pm 8 \\ \pm 12 \end{gathered}$		*	± 4		*	*	pA pA			
OFFSET CURRENT Input Offset Current KP	$\mathrm{V}_{\mathrm{CM}}=\mathrm{OVDC}$		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{gathered} 8 \\ 12 \end{gathered}$	\cdots	*	4		*	*	pA pA			
IMPEDANCE Differential Common-Mode			$\left.\begin{aligned} & 10^{13} \\ & \\| \end{aligned} \right\rvert\, 1$			*			*		$\begin{aligned} & \Omega \\| p F \\ & \Omega \\| p F \end{aligned}$			
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection KP	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{VDC}$	$\begin{gathered} \pm 10.5 \\ 88 \\ 84 \\ \hline \end{gathered}$	$\begin{gathered} +13,-11 \\ 100 \\ 100 \end{gathered}$	$\therefore \quad$.	* 92	*	.	*	*		$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$			
OPEN-LOOP GAIN, DC														
Open-Loop Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	88	100		92	*		*	*		dB			
FREQUENCY RESPONSE														
Gain Bandwidth Full Power Response Slew Rate Settling Time: 0.1\% 0.01\%	$\begin{gathered} \text { Gain }=100 \\ 20 \mathrm{~V} p-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{Gain}^{2}=-1, R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, 10 \mathrm{~V} \text { step } \end{gathered}$	$\begin{gathered} 4 \\ 24 \end{gathered}$	$\begin{gathered} 6.4 \\ 570 \\ 35 \\ 0.6 \\ 1.5 \end{gathered}$		5 28	*		*	*	,	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{kHz} \\ & \mathrm{~V} / \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$			
RATED OUTPUT														
Voltage Output Current Output Output Resistance Load Capacitance Stability Short Circuit Current	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{VDC} \\ 1 \mathrm{MHz} \text {, open loop } \\ \text { Gain }=+1 \end{gathered}$	$\begin{gathered} \pm 11.5 \\ \pm 5 \\ \\ \pm 10 \end{gathered}$	$\begin{aligned} & +13.2,-13 . \\ & \left\lvert\, \begin{array}{c} \pm 10 \\ 80 \\ 1000 \\ \pm 18 \\ \hline \end{array}\right. \end{aligned}$	± 20		*	*		*	*	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \Omega \\ \mathrm{pF} \\ \mathrm{~mA} \\ \hline \end{gathered}$			
POWER SUPPLY		.	,											
Rated Voltage Voltage Range, Derated Performance Current, Quiescent	$10=0 \mathrm{mADC}$	± 5	± 15 9	$\begin{gathered} \pm 18 \\ 10 \end{gathered}$	*	*	*	*		*	VDC VDC mA			
TEMPERATURE RANGE														
Specification KP Operating KP Storage θ Junction-Ambient KP	Ambient temp. Ambient temp. Ambient temp.	$\begin{gathered} -25 \\ 0 \\ -55 \\ -25 \\ -65 \end{gathered}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$	$\begin{gathered} +85 \\ +70 \\ +125 \\ +85 \\ +150 \end{gathered}$		*		-55	*	$+125$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$			

*Specification same as OPA404AG.
NOTES: (1) Noise testing available-inquire.

ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)
At $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{VDC}$ and $\mathrm{T}_{\mathrm{A}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$ unless otherwise noted.

PARAMETER	CONDITIONS	OPA404AG, KP			OPA404BG			OPA404SG			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
TEMPERATURE RANGE											
Specification Range KP	Ambient temp.	$\begin{gathered} -25 \\ 0 \end{gathered}$		$\begin{aligned} & +85 \\ & +70 \end{aligned}$	*		*	-55		+125	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
INPUT											
OFFSET VOLTAGE Input Offset Voltage KP Average Drift KP Supply Rejection	$V_{C M}=O V D C$	75	$\begin{gathered} \pm 450 \\ \pm 1 \\ \pm 3 \\ \pm 5 \\ 96 \\ 16 \end{gathered}$	$\begin{aligned} & 2 \mathrm{mV} \\ & \pm 3.5 \end{aligned}$	80		$\pm 1.5 \mathrm{mV}$ 100	70	$\begin{gathered} \pm 550 \\ * \\ 93 \\ 22 \end{gathered}$	$\pm 2.5 \mathrm{mV}$ 316	$\begin{gathered} \mu \mathrm{V} \\ m \mathrm{~V} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mathrm{~dB} \\ \mu \mathrm{~V} / \mathrm{V} \end{gathered}$
BIAS CURRENT Input Bias Current	$V_{C M}=0 \mathrm{VDC}$		± 32	± 200		*	± 100		± 500	$\pm 5 \mathrm{nA}$	pA
OFFSET CURRENT Input Offset Current	$V_{C M}=O V D C$		17	100		*	50		260	2.5 nA	PA
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection KP	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{VDC}$	$\begin{gathered} \pm 10.2 \\ 82 \\ 80 \end{gathered}$	$\left\lvert\, \begin{gathered} +12.7,-10.6 \\ 99 \\ 99 \end{gathered}\right.$		* 86	*		± 10 80	+12.6, -10.5		$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$
OrEN-LUUR GAAIN, UCi											
Open-Loop Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	82	94		86	*		80	88		dB
RATED OUTPUT											
Voltage Output Current Output Short Circuit Current	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{VDC} \\ \mathrm{~V}_{\mathrm{O}}=0 \mathrm{VDC} \end{gathered}$	$\begin{gathered} \pm 11.5 \\ \pm 5 \\ \pm 5 \end{gathered}$	$\begin{gathered} +12.9,-13.8 \\ \pm 9 \\ \pm 12 \end{gathered}$	± 30	*	*	*	± 11 $*$ ± 8	[$\left\lvert\, \begin{gathered}\text { +12.7, }-13.8 \\ \pm 8 \\ \pm 10\end{gathered}\right.$	*	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$
POWER SUPPLY											
Current, Quiescent	$10=0 \mathrm{mADC}$		9.3	10.5		*	*		9.4	11	mA

*Specification same as OPA404AG.

ORDERING INFORMATION

	OPA40̈4
Basic model number	
Performance grade	
$\mathrm{K}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
$\mathrm{A}, \mathrm{B}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
$\mathrm{S}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Package code	
$\mathrm{G}=14$-pin ceramic DIP	
$\mathrm{P}=14$-pin plastic DIP	

NOTE:

> Refer to complete data sheet PDS-677 for complete typical curves and applications information.

ABSOLUTE MAXIMUM RATINGS

NOTES:
(1) Packages must be derated based on $\theta_{\mathrm{JC}}=30^{\circ} \mathrm{C} / \mathrm{W}$ or $\theta_{\mathrm{JA}}=120^{\circ} \mathrm{C} / \mathrm{W}$.
(2) For supply voltages less than $\pm 18 \mathrm{VDC}$ the absolute maximum input voltage is equal to: $18 \mathrm{~V}>\mathrm{V}_{\mathrm{IN}}>-\mathrm{V}_{\mathrm{cc}}-8 \mathrm{~V}$. See Figure 2.
(3) Short circuit may be to power supply common only. Rating applies to $+25^{\circ} \mathrm{C}$ ambient. Observe dissipation limit and T_{J}.

CONNECTION DIAGRAM

MECHANICAL

NOTE: Leads in true position within .010" $(.25 \mathrm{~mm}) \mathrm{R}$ at MMC at seating plane. Pin numbers shown for reference only. Numbers may not be marked on package.					
		INCHES		MILLIMETERS	
	DIM	MIN	MAX	MIN	MAX
	A	. 670	710	17.02	18.03
	C	06	. 170	1.6	4.32
-70-0-1	D	015	021	0.38	0.53
- 1	F	. 045	. 060	1.14	1.52
-	G	100 BASIC		2.54 BASIC	
- L	H	025	. 070	0.64	1.78
G	J	008	012	0.20	0.30
Pin material and plating composition conform to Method 2003 (solderability) of MIL-STD-883 (except paragraph 3.2).	K	120	240	3.05	6.10
	L	300 BASIC		7.62 BASIC	
	M	-	. 10°	-	10°
	N	009	060	0.23	1.52

$\begin{array}{ll}\text { "P" Package } & \text { 14-pin plastic DIP } \\ \text { NOTE: Leads in true position within } 010 " \\ (.25 \mathrm{~mm}) \mathrm{R} \text { at MMC at seating plane. }\end{array}$					
Pin material and plating composition conform to Method 2003 (solderability). of MIL-STD-883 (except paragraph 3.2).	DIM	INCHES		MILLIMETERS	
		MIN	MAX	MIN	MAX
	A	. 700	800	17.78	20.32
	A_{1}	. 685	785	17.40	19.94
	B	230	290	5.85	7.38
	B_{1}	200	250	5.09	6.36
	C	120	200	3.05	5.09
	D	. 015	023	0.38	0.59
	F	. 030	070	0.76	1.78
	G	. 100	ASIC	2.54	SIC
	H	050	100	1.27	2.54
	J	008	015	0.20	0.38
	K	070	150	1.78	3.82
	L		BASIC		ASIC
	M	0°	15°	0°	15°
	N	010	030	0.25	0.76
	P	025	050	0.64	1.27

TYPICAL PERFORMANCE CURVES

$T_{A}+25^{\circ} \mathrm{C}, V_{C C}= \pm 15 \mathrm{VDC}$ unless otherwise noted

High Voltage FET-Input OPERATIONAL AMPLIFIER

FEATURES

$=$ U!IRE PRMER SUPPIV RANGE: $\pm!$!

- HIGH SLEW RATE: IOV/ $\mu \mathrm{s}$
- LOW INPUT BIAS CURRENT: 50pA max
- STANDARD-PINOUT TO-g9 PACKAGE

APPLICATIONS

- TEST EПIIIPMFNT
- HIGH VOLTAGE REGULATORS
- POWER AMPLIFIERS
- DATA ACQUISITION
- SIGNAL CONDITIONING
the use of high impedance feedback networks, thus minimizing their output loading effects. Laser trimming of the input circuitry yields low input offset voltage and drift.
The OPA445 is unity-gain stable and requires no external compensation components. It is available in both industrial $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ and military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature ranges.

SPECIFICATIONS

ELECTRICAL

At $V_{S}= \pm 40 \mathrm{~V}$ and $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise specified.

*Specification same as OPA445BM.

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS

CONNECTION DIAGRAM

MECHANICAL

TYPICAL PERFORMANCE CURVES

$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{VDC}$ unless otherwise noted.

GAIN BANDWIDTH AND SLEW RATE
VS TEMPERATURE

INPUT BIAS CURRENT
VS TEMPERATURE

GAIN BANDWIDTH AND SLEW RATE
VS SUPPLY VOLTAGE

POWER SUPPLY REJECTION
VS FREQUENCY

OPEN-LOOP
FREQUENCY RESPONSE

SUPPLY CURRENT VS TEMPERATURE

INPUT VOLTAGE NOISE SPECTRAL DENSITY

OPEN-LOOP GAIN VS TEMPERATURE

MAXIMUM OUTPUT VOLTAGE SWING VS FREQUENCY

High Power Monolithic OPERATIONAL ANMPLIF:HER

FEATURES

- POWER SUPPLIES TO $\pm 40 \mathrm{~V}$
- OUTPUT CURRENT TO IOA PEAK

- INDUSTRY-STANDARD PINOUT
- FET INPUT

DESCRHPTION

The OPA541 is a monolithic power amplifier capable of operation from power supplies up to $\pm 40 \mathrm{~V}$ and continuous output currents up to 5A. Internal current limit circuitry can be user-programmed with a single external resistor, protecting the amplifier and load from fault conditions. The OPA541 is fabricated using a proprietary bipolar/FET process.
Pinout is compatible with popular hybrid power amplifiers such as the OPA511, OPA512 and the 3573. The OPA541 uses a single current-limit resistor

APPLICATIONS

- MOTOR DRIVER
- SERVO AMPLIFIER
- S àívíliño exclitation
- AUDIO AMPLIFIER
- PROGRAMMABLE POWER SUPPLY
to set both the positive and negative current limits. Applications currently using hybrid power amplifiers requiring two current-limit resistors need not be modified.
The OPA541 is available in an industry-standard 8pin TO-3 hermetic package. The case is isolated from all circuitry, thus allowing it to be mounted directly to a heat sink without special insulators which degrade thermal performance.

[^2]
SPECIFICATIONS

ELECTRICAL

At $T_{C}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 35 \mathrm{VDC}$ unléss otherwise noted.

PARAMETER	CONDITIONS	OPA541AM			OPA541BM/SM			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT OFFSET VOLTAGE								
```Vos vs Temperature vs Supply Voltage vs Power```	Specified temperature range $V_{\mathrm{S}}= \pm 10 \mathrm{~V} \text { to } \pm \mathrm{V}_{\text {MAX }}$		$\pm 2$ $\pm 20$ $\pm 2.5$ $\pm 20$	$\pm 10$ $\pm 40$ $\pm 10$ $\pm 60$		$\pm 0.1$ $\pm 15$ $*$ $*$	$\pm 1$ $\pm 30$ $*$ $*$	$\begin{gathered} \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{W} \end{gathered}$
INPUT BIAS CURRENT								
Is vs Supply Voltage		;	$\begin{gathered} 4 \\ \pm 10 \\ \hline \end{gathered}$	50		*	*	$\stackrel{\mathrm{pA}}{\mathrm{pA} / \mathrm{V}}$
INPUT OFFSET CURRENT								
los	Specified temperature range		$\pm 1$	$\pm 30$ 5		*	*	pA
INPUT CHARACTERISTICS								
Common-Mode Voltage Range Common-Mode Rejection Input Capacitance Input Impedance, DC	Specified temperature range $V_{C M}=\left(\left\| \pm V_{\mathrm{s}}\right\|-6 \mathrm{~V}\right)$	$\pm\left(\left\|V_{s}\right\|-6\right)$ 95	$\begin{gathered} \pm\left(\left\|V_{s}\right\|-3\right) \\ 113 \\ 5 \\ 1 \end{gathered}$		*	$*$ $*$ $*$ $*$		$\begin{gathered} \mathrm{v} \\ \mathrm{~dB} \\ \mathrm{pF} \\ \mathrm{~T} \Omega \end{gathered}$
GAIN CHARACTERISTICS								
Open Loop Gain at 10Hz Gain-Bandwidth Product	$\mathrm{R}_{\mathrm{L}}=6 \Omega$	90	$\begin{gathered} 97 \\ 1.6 \end{gathered}$		*	*		$\begin{gathered} \mathrm{dB} \\ \mathrm{MHz} \end{gathered}$
OUTPUT								
Voltage Swing   Current, Peak	$\begin{gathered} I_{0}=5 \mathrm{~A}, \text { Continuous } \\ 1_{0}=2 \mathrm{~A} \\ 1_{0}=0.5 \mathrm{~A} \end{gathered}$	$\begin{gathered} \pm\left(\left\|V_{s}\right\|-5.5\right) \\ \pm\left(\left\|V_{s \mid}\right\|-4\right) \\ \pm\left(\left\|V_{s \mid}\right\|-4\right) \\ 9 \end{gathered}$	$\begin{gathered} \pm\left(\left\|\mathrm{V}_{\mathrm{s}}\right\|-4.5\right) \\ \pm\left(\left\|\mathrm{V}_{\mathrm{s}}\right\|-3.6\right) \\ \pm\left(\left\|\mathrm{V}_{\mathrm{s}}\right\|-3.2\right) \\ 10 \end{gathered}$		*	*		V V V A
AC PERFORMANCE								
Slew Rate   Power Bandwidth   Settling Time to 0.1\%   Capacitive Load   Phase Margin	$\begin{gathered} R_{L}=8 \Omega, V_{O}=20 \mathrm{Vrms} \\ 2 \mathrm{~V} \text { Step } \end{gathered}$   Specified temperature range, $G=1$   Specified temperature range, G $>10$   Specified temperature range, $\mathrm{R}_{\mathrm{L}}=8 \Omega$	$\begin{gathered} 8 \\ 45 \\ \\ 3.3 \end{gathered}$	$\begin{array}{r}10 \\ 55 \\ 2 \\ \\ \\ \hline\end{array}$	SOA	*		*	$\mathrm{V} / \mu \mathrm{s}$ kHz $\mu \mathrm{s}$ nF Degrees
POWER SUPPLY								
Power Supply Voltage, $\pm \mathrm{V}_{\mathrm{s}}$ Current, Quiescent	Specified temperature range	$\pm 10$	$\begin{gathered} \pm 30 \\ 20 \end{gathered}$	$\begin{gathered} \pm 35 \\ 25 \end{gathered}$	*	${ }_{*}^{ \pm} \times$	$\underset{*}{ \pm}$	$\begin{gathered} V \\ m A \end{gathered}$
THERMAL RESISTANCE								
```0jc, (junction to case) 0\mp@code{c} \mp@subsup{0}{\textrm{JA}}{}\mathrm{ , (junction to ambient)}```	AC output $\mathrm{f}>60 \mathrm{~Hz}$ DC output No heat sink	.	$\begin{array}{r} 1.25 \\ 1.4 \\ 30 \end{array}$	$\begin{aligned} & 1.5 \\ & 1.9 \end{aligned}$		*	*	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
TEMPERATURE RANGE								
Tcase	AM, BM SM	-25		+85	$\stackrel{*}{*}$		$*$ +125	\circ

*Specification same as OPA541AM

MECHANICAL

NOTE: Leads in true position within $0.010^{\prime \prime}(0.25 \mathrm{~mm}) \mathrm{R}$ at MMC at seating plane.

Pin numbers shown for reference only. Numbers may not be marked on package

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	1.510	1.550	38.35	39.37
B	745	770	18.92	19.56
C	240	290	6.10	7.37
D	038	042	0.97	1.07
E	080	. 105	2.03	2.67
F	$40^{\circ} \mathrm{BASIC}$		40° BASIC	
G	. 500 BASIC		12.7 BASIC	
H	1.186 BASIC		30.12 BASIC	
J	593 BASIC		15.06 BASIC	
K	400	. 500	10.16	12.70
Q	151	. 161	3.84	4.09
R	980	1.020	24.89	25.91

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, $+\mathrm{V}_{\mathrm{s}}$ to $-\mathrm{V}_{\mathrm{s}}$	90 V
Output Current see sod	
Power Dissipation, Intern	
Input Voltage: Differe	
Common-mode $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \begin{aligned} & \text { d } \\ & \text { s }\end{aligned}$	
Temperature: Pin solder, 10s .	$+300^{\circ} \mathrm{C}$
Junction ${ }^{(1)}$	+15
Temperature Range:	
Storage....................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Operating (case)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE: (1) Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTTF

ORDERING INFORMATION

$T_{A}=+25^{\circ} \mathrm{C}, V_{\mathrm{S}}= \pm 35 \mathrm{VDC}$ unless otherwise noted.

INSTALLATION INSTRUCTIONS

POWER SUPPLIES

The OPA541 is specified for operation from power supplies up to $\pm 40 \mathrm{~V}$. It can also be operated from unbalanced or single power supply as long as the total power supply voltage does not exceed 80 V . The power supplies should be bypassed with low series impedance capacitors such as ceramic or tantalum. These should be located as near as practical to the amplifier's power supply pins. Good power amplifier circuit layout is, in general, like good high frequency layout. Consider the path of large power supply and output currents. Avoid routing these connections near low-level input circuitry to avoid waveform distortion and oscillations.

CURRENT LIMIT

Internal current limit circuitry is controlled by a single external resistor, R_{CL}. Output load current flows through this external resistor. The current limit is activated when the voltage across this resistor is approximately a base-

DYNAMIC RESPONSE

$\mathrm{G}=1, \mathrm{C}_{\mathrm{L}}=4.7 \mathrm{nF}$
emitter turn-on voltage. The value of the current limit resistor is approximately:

$$
\mathrm{R}_{\mathrm{CL}}=\frac{0.809}{\left|\mathrm{I}_{\mathrm{LIM}}\right|}-0.057
$$

The current limit value decreases with increasing temperature due to the temperature coefficient of a baseemitter junction voltage. Similarly, the current limit value increases at low temperatures. Current limit versus resistor value and temperature effects are shown in the Typical Performance Curves.

The adjustable current limit can be set to provide protection from short circuits. The safe short-circuit current depends on power supply voltage. See the discussion on Safe Operating Area to determine the proper current limit value.

Since the full load current flows through R_{CL}, it must be selected for sufficient power dissipation. For a 5 A current limit, the dissipation of R_{CL} will be 3.25 W for 5 A continuous currents. Sinusoidal output will create dissipation according to the rms load current. Thus for the same 5 A current limit, AC peaks would be limited to 5 A , but the rms current would be 3.5 A and a resistor with a lower power rating could be used. Some applications
(such as voice amplification) are assured of signals with much lower duty cycles, allowing a current resistor with a lower power rating. Wire-wound resistors may be used for R_{CL}. Some wire-wound resistors, however, have excessive inductance and may cause loop-stability problems. Be sure to evaluate circuit performance with resistor type planned for production to assure proper circuit operation.

HEAT SINKING

Power amplifiers are rated by case temperature, not ambient temperature as with signal op amps. The maximum allowable power dissipation is a function of the case temperature as shown on the power derating curve. All points on the power derating slope produce a maximum internal junction temperature of $+150^{\circ} \mathrm{C}$. Sufficient heat sinking must be provided to keep the case temperature within safe bounds for the maximum ambient temperature and power dissipation. The thermal resistance of the heat sink required may be calculated by:

$$
\theta_{\mathrm{HS}}=\frac{\mathrm{T}_{\mathrm{CASE}}-\mathrm{T}_{\mathrm{AMBIENT}}}{\mathrm{P}_{\mathrm{D}}(\max)}
$$

Commercially available heat sinks often specify their thermal resistance. These ratings are often suspect, however, since they depend greatly on the mounting environment and air flow conditions. Actual thermal performance should be verified by measurement of case temperature under the required load and environmental conditions.

No insulating hardware is required when using the TO-3 package. Since mica and other similar insulators typically add approximately $0.7^{\circ} \mathrm{C} / \mathrm{W}$ thermal resistance, their
elimination significantly improves thermal performance. See Burr-Brown Application Note AN-83 for further details on heat sinking.

SAFE OPERATING AREA

The safe operating area (SOA) plot provides comprehensive information on the power handling abilities of the OPA541. It shows the allowable output current as a function of the voltage across the conducting output transistor (see Figure 1). This voltage is equal to the power supply voltage minus the output voltage. For example, as the amplifier output swings near the positive power supply voltage, the voltage across the output transistor decreases and the device can safely provide large output currents demanded by the load.

Short circuit protection requires evaluation of SOA. When the amplifier output is shorted to ground, the full power supply voltage is impressed across the conducting output transistor. The current limit must be set to a value which is safe for the power supply voltage used. For instance, with $\mathrm{V}_{\mathrm{S}} \pm 35 \mathrm{~V}$, a short to ground would force 35 V across the conducting power transistor. A current limit of 1.8 A would be safe.

Reactive, or EMF-generating, loads such as DC motors can present difficult SOA requirements. With a purely reactive load, output voltage and load current are 90° out of phase. Thus, peak output current occurs when the output voltage is zero and the voltage across the conducting transistor is equal to the full power supply voltage. See Burr-Brown Application Note AN-123 for further information on evaluating SOA.

FIGURE 1. Safe Operating Area.

OPA600

Fast-Settling Wideband OPERATIONAL AMPLIFIER

FEATURES

- GAIN BANDWIDTH PRODUCT: 5GHz
- FAST SETTLING: 80ns to $\pm 0.1 \%$ 100 ns to $\pm 0.01 \%$
- $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ AND
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ TEMPERATURE RANGES
- $\pm 10 \mathrm{~V}$ OUTPUT: 200 mA

DESCRIPTION

The OPA600 is a wideband operational amplifier specifically designed for fast settling to $\pm 0.01 \%$ accuracy. It is stable, easy to use, has good phase margin with minimum overshoot, and it has excellent DC performance. It utilizes an FET input stage to give low input bias current. Its DC stability over temperature is outstanding. The slew rate exceeds $400 \mathrm{~V} / \mu \mathrm{s}$. All of this combines to form an outstanding amplifier for large and small signals.
High accuracy with fast settling time is achieved by using a high open-loop gain which provides the accuracy at high frequencies. The thermally balanced design maintains this accuracy without droop or thermal tail. External frequency compensation allows

APPLICATIONS

- FAST VCO

- HIGH-SPEED D/A CONVERTER OUTPUT AMPLIFIER
- VIDEO AMPLIFIER
- HIGH-SPEED ADC DRIVER
- LOW-DISTORTION AMPLIFIER
- TRANSMISSION LINE BUFFER gains and load conditions.
The OPA600 is useful in a broad range of video, high speed test circuits and ECM applications. It is particularly well suited to operate as a voltage controlled oscillator (VCO) driver. It makes an excellent digital-to-analog converter output amplifier. It is a workhorse in test equipment where fast pulses, large signals, and 50Ω drive are important. It is a good choice for sample/holds, integrators, fast waveform generators, and multiplexers.
The OPA600 is specified over the industrial temperature range (OPA600BM, CM) and military temperature range (OPA600SM, TM). The OPA600 is housed in a welded, hermetic metal package.

International Airport Industrial Park - P.0. Box 11400 - Tucson. Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: B8RCORP - Telex: 66-6491

SPECIFICATIONS

ELECTRICAL

At $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{VDC}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}^{\circ}$ unless otherwise specified.

PARAMETER	CONDITIONS	OPA600CM, TM ${ }^{(1)}$			OPA600BM, SM			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX			
OUTPUT										
Voltage Current Current Pulse Resistance Short-Circuit Current	$\begin{aligned} & R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=50 \Omega^{(2)} \\ & R_{\mathrm{L}}=50 \Omega^{(2)} \\ & R_{\mathrm{L}}=50 \Omega^{(3)} \end{aligned}$ Open loop DC To COMMON only, $t_{\text {max }}=1 \mathrm{~s}^{(4)}$	$\begin{gathered} \pm 10 \\ \pm 9 \\ \pm 180 \\ \pm 180 \end{gathered}$	$\begin{gathered} \pm 200 \\ \pm 200 \\ 75 \\ 250 \end{gathered}$	300	* ${ }_{*}^{*}$	*	*	$\begin{gathered} \hline V \\ V \\ m A \\ \mathrm{~mA} \\ \Omega \\ \mathrm{~mA} \end{gathered}$		
DYNAMIC RESPONSE										
$\begin{array}{r} \text { Settling Time }{ }^{(5)}: \text { to } \pm 0.01 \%(\pm 1 \mathrm{mV}) \\ \text { to } \pm 0.1 \%(\pm 10 \mathrm{mV}) \\ \text { to } \pm 1 \%(\pm 100 \mathrm{mV}) \end{array}$	$\begin{aligned} & \Delta V_{\text {OUT }}=10 \mathrm{~V} \\ & \Delta V_{\text {OUT }}=10 \mathrm{~V} \\ & \Delta V_{\text {OUT }}=10 \mathrm{~V} \end{aligned}$		100 80 70	$\begin{gathered} 125 \\ 105 \\ 95 \end{gathered}$		*	*	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$		
Gain-Bandwidth Product (open-loop)	$\begin{aligned} & \mathrm{C}_{\mathrm{c}}=0 \mathrm{pF}, \mathrm{G}=1 \mathrm{~V} / \mathrm{V} \\ & \mathrm{C}_{\mathrm{c}}=0 \mathrm{pF}, \mathrm{G}=10 \mathrm{~V} / \mathrm{V} \\ & \mathrm{C}_{\mathrm{c}}=0 \mathrm{pF}, \mathrm{G}=100 \mathrm{~V} / \mathrm{V} \\ & \mathrm{C}_{\mathrm{c}}=0 \mathrm{pF}, \mathrm{G}=1000 \mathrm{~V} / \mathrm{V} \\ & \mathrm{C}_{\mathrm{c}}=0 \mathrm{pF}, \mathrm{G}=10,000 \mathrm{~V} / \mathrm{V} \end{aligned}$		$\begin{gathered} 150 \\ 500 \\ 1.5 \\ 5 \\ 10 \end{gathered}$.		*	.	MHz MHz GHz GHz GHz		
Bandwidth (-3 dB small signal) ${ }^{(6)}$	$\begin{aligned} & \mathrm{G}=+1 \mathrm{~V} / \mathrm{V} \\ & \mathrm{G}=-1 \mathrm{~V} / \mathrm{V} \\ & \mathrm{G}=-10 \mathrm{~V} / \mathrm{V} \\ & \mathrm{G}=-100 \mathrm{~V} / \mathrm{V} \\ & \mathrm{G}=-1000 \mathrm{~V} / \mathrm{V} \end{aligned}$		$\begin{gathered} 125 \\ 90 \\ 95 \\ 20 \\ 6 \end{gathered}$.	*		MHz MHz MHz MHz MHz		
Full Power Bandwidth	$V_{\text {OUT }}= \pm 5 \mathrm{~V}, \mathrm{G}=-1 \mathrm{~V} / \mathrm{V}, \mathrm{C}_{\mathrm{c}}=3.3 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		16			*		MHz		
Slew Rate	$\begin{aligned} & V_{\text {OUT }}= \pm 5 \mathrm{~V}, \mathrm{G}=-1000 \mathrm{~V} / \mathrm{V}, \mathrm{C}_{\mathrm{c}}=0 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\text {OUT }}= \pm 5 \mathrm{~V}, \mathrm{G}=-1 \mathrm{~V} / \mathrm{V}^{(4)} \end{aligned}$	400	$\begin{aligned} & 500 \\ & 440 \\ & \hline \end{aligned}$		*	*		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$		
Phase Margin	$\mathrm{G}=-1 \mathrm{~V} / \mathrm{V}, \mathrm{C}_{\mathrm{c}}=3.3 \mathrm{pF}$		40			*		Degrees		
GAIN										
Open-Loop Voltage Gain	$f=D C, R_{L}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	86	94		*	*		dB		
INPUT										
Offset Voltage ${ }^{(7)}$	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$.	± 1	$\begin{aligned} & \pm 4 \\ & \pm 5 \\ & \pm 6 \end{aligned}$		± 2	$\begin{gathered} \pm 5 \\ \pm 10 \\ \pm 15 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$		
Offset Voltage Drift	$\begin{aligned} & T_{A}=-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \pm 20 \\ & \pm 20 \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 80 \\ & \pm 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$		
Bias Current	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\mathrm{A}}=-25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -20 \\ & -20 \\ & \hline \end{aligned}$	$\begin{aligned} & -100 \\ & -100 \\ & \hline \end{aligned}$		*	*	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$		
Offset Current	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			*		$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$		
Power Supply Rejection Ratio Common-Mode Voltage Range Common-Mode Rejection Ratio Impedance Voltage Noise	$\begin{aligned} & V_{C C}= \pm 15 \mathrm{~V}, \pm 1 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V} \text { to }+5 \mathrm{~V} \end{aligned}$ Differential and Common-Mode 10 kHz Bandwidth	$\begin{gathered} -10 \\ 60 \end{gathered}$	$\begin{gathered} 200 \\ 80 \\ 10^{11} \\| 2 \\ 20 \\ \hline \end{gathered}$	$\begin{aligned} & 500 \\ & +7 \end{aligned}$	*	*	*	$\begin{gathered} \mu \mathrm{V} / \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~dB} \\ \Omega \\| \mathrm{pF} \\ \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{gathered}$		
POWER SUPPLY										
- Rated (Vcc) Operating Range Quiescent Current		± 9	$\begin{aligned} & \pm 15 \\ & \pm 30 \end{aligned}$	$\begin{aligned} & \pm 16 \\ & \pm 38 \end{aligned}$	*	*	*	$\begin{aligned} & \text { VDC } \\ & \text { VDC } \\ & \mathrm{mA} \end{aligned}$		
TEMPERATURE RANGE (Amblent) ${ }^{(8)}$										
Operating: BM, CM SM, TM Storage θ_{sc}, (junction to case) θ_{CA}, (case to ambient	-	$\begin{aligned} & -25 \\ & -55 \\ & -65 \end{aligned}$	30 35	$\begin{aligned} & +85 \\ & +125 \\ & +150 \end{aligned}$	*	*	*	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$		

*Specification same as OPA600CM, TM.
NOTES: (1) BM, CM grades: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. SM , TM grades: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (2) Pin 9 connected to $+\mathrm{V}_{\mathrm{cc}}$, pin 7 connected to $-\mathrm{V}_{\mathrm{cc}}$. Observe power dissipation ratings. (3) Pin 9 and pin 7 open. Single pulse $t=100 \mathrm{~ns}$. Observe power dissipation ratings. (4) Pin 9 and pin 7 open. See section on Current Boost. (5) $\mathrm{G}=$ $-1 \mathrm{~V} / \mathrm{V}$. Optimum settling time and slew rate achieved by individually compensating each device. Refer to section on Compensation. (6) Frequency compensation as discussed in section on Compensation. (7) Adjustable to zero. (8) Heat Sink (optional): IERC LBOCI-72CB with 2 each DCV-1B Clamps.

MECHANICAL

ivOTES:

1. Leads in true position within $0.010^{\prime \prime}$ (0.25 mm) R at MMC at seating plane.
2. Pin numbers shown for reference only.

ORDERING INFORMATION

	OPA600 B M Q
$\begin{aligned} & \text { Performance Grade } \\ & \qquad \mathrm{B}, \mathrm{C}=-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~S}, \mathrm{~T}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	
Package \qquad $M=\text { Metal DIP }$	
Hi -Reliability Q-Screening (optional)	

CONNECTION DIAGRAM

NOTES: (1) Refer to Figure 4 for recommended frequency compensation. (2) Connect pin 9 to pin 12 and connect pin 7 to pin 6 for maximum output current. See Application Information for further information. (3) Bypass each power supply lead as close as possible to the amplifier pins. A $1 \mu \mathrm{~F}$ CS13 tantalum capacitor is recommended. (4) There is no internal connection. An external connection may be made. (5) It is recommended that the amplifier be mounted with the case in contact with a ground plane for good thermal transfer and optimum AC performance.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

 Power Dissipation, At $T_{\text {CASE }}+125^{\circ} \mathrm{C}^{(2)} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.	
Input Voltage: Differential .. $\pm \mathrm{V}_{\mathrm{cc}}$ Common-Mode.................................... $\pm \mathrm{V}_{\text {cc }}$	
Output Short Circuit Duration to Common < 5 sec	
Temperature: Pin (soldering, 20sec) $+300^{\circ} \mathrm{C}$ 	
Temperature Range: Storage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$. Operating (case) $\ldots \ldots \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	

NOTES: (1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability. (2) Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTTF.

TYPICAL PERFORMANCE CURVES

- Typical at $T_{A}=+25^{\circ} \mathrm{C}$ and $\pm \mathrm{VCC}=15 \mathrm{VDC}$, unless otherwise specified .

INSTALLATION AND OPERATION

WIRING PRECAUTIONS

The OPA600 is a wideband, high frequency operational amplifier with a gain-bandwidth product exceeding 5 GHz . This capability can be realized by observing a few wiring precautions and using high frequency layout techniques. In general, all printed circuit board conductors should be wide to provide low resistance, low impedance signal paths and should be as short as possible. The entire physical circuit should be as small as is practical. Stray capacitances should be minimized, especially at high impedance nodes, such as the input terminals of the amplifier and compensation pins. Stray signal coupling from the output to the input should be minimized. All circuit element leads should be as short as possible and low values of resistance should be used. This will give the best circuit performance as it will minimize the time constants formed with the circuit capacitances and will eliminate stray, unwanted tuned circuits.
Grounding is the most important application consideration for the OPA600, as it is with all high frequency circuits. Ultra-high frequency transistors are used in the design of the OPA600 and oscillations at frequencies of 500 MHz and above can be stimulated if good grounding
techniques are not used. A ground plane is highly recommended. It should connect all areas of the pattern side of the printed circuit that are not otherwise used. The ground plane provides a low resistance, low inductance common return path for all signal and power returns. The ground plane also reduces stray signal pickup.

Point-to-point wiring is not recommended. However, if point-to-point wiring is used, a single-point ground should be used. The input signal return, the load signal return and the power supply common should all be connected at the same physical point. This eliminates common current paths or ground loops which can cause unwanted feedback.
Each power supply lead should be bypassed to ground as near as possible to the amplifier pins. A $1 \mu \mathrm{~F}$ CS13 tantalum capacitor is recommended. A parallel $0.01 \mu \mathrm{~F}$ ceramic may be added if desired. This is especially important when driving high current loads. Properly bypassed and modulation-free power supply lines allow full amplifier output and optimum settling time performance.
OPA600 circuit common is connected to pins 1 and 13; these pins should be connected to the ground plane. The input signal return, load return, and power supply commmon should also be connected to the ground plane.

The case of the OPA600 is internally connected to circuit common, and as indicated above, pins 1 and 13 should be connected to the ground plane. Ideally, the case should be mechanically connected to the ground plane for good thermal transfer, but because this is difficult in practice, the OPA600 should be fully inserted into the printed circuit board with the case very close to the ground plane to make the best possible thermal connection. If the case and ground plane are physically connected or are in close thermal proximity, the ground plane will provide heat sinking which will reduce the case temperature rise. The minimum OPA600 pin length will minimize lead inductance, thereby maximizing performance.

COMPENSATION

The OPA600 uses external frequency compensation so that the user may optimize the bandwidth or settling time for his particular application. Several performance curves aid in the selection of the correct compensations capacitance value. The Bode plot shows amplitude and phase versus frequency for several values of compensation. A related curve shows the recommended compensation capacitance versus closed-loop gain.
Figure 1 shows a recommended circuit schematic. Component values and compensation for amplifiers with several different closed-loop gains are shown. This circuit will yield the specified settling time. Because each device is unique and slightly different, as is each user's circuit, optimum settling time will be achieved by individually compensating each device in its own circuit, if desired. A 10% to 20% improvement in settling time has been experienced from the values indicated in the Electrical Specifications table.

FIGURE 1. Recommended Amplifier Circuits and Frequency Compensation.

The primary compensation capacitors are C_{1} and C_{2} (see Figure 1). They are connected between pins 4 and 5 and between pins 11 and 14 . Both C_{1} and C_{2} should be the same value. As Figure 1 and the performance curves show, larger closed-loop configurations require less capacitance and improved gain-bandwidth product can be realized. Note that no compensation capacitor is required for closed-loop gains equal to or above $100 \mathrm{~V} / \mathrm{V}$. If upon initial application the user's circuit is unstable, and remains so after checking for proper bypassing, grounding, etc., it may be necessary to increase the compensation slightly to eliminate oscillations. Do not over compensate. It should not be necesary to increase C_{1} and C_{2} beyond 10 pF to 15 pF . It may also be necessary to individually optimize C_{1} and C_{2} for improved performance.
The flat high frequency response of the OPA600 is preserved and high frequency peaking is minimized by connecting a small capacitor in parallel with the feedback resistor (see Figure 1). This capacitor compensates for the closed-loop, high frequency, transfer function zero that results from the time constant formed by the input capacitanice of the amplifier, typically 2 pF , and the input and feedback resistors. The selected compensation capacitor may be a trimmer, a fixed capacitor or a planned PC board capacitance. The capacitance value is strongly dependent on circuit layout and closed-loop gain. It will typically be 2 pF for a clean layout using low resistances ($1 \mathrm{k} \Omega$) and up to 10 pF for circuits using larger resitances. Using small resistor values will preserve the phase margin and avoid peaking by keeping the break frequency of this zero sufficiently high. When high closed-loop gains are required, a three-resistor attenuator is recommended to avoid using a large value resistor with its long time constant.

CAPACITIVE LOADS

The OPA600 will drive large capacitive loads (up to 100 pF) when properly compensated and settling times of under 150 ns are achievable. The effect of a capacitive load is to decrease the phase margin of the amplifier, which may cause high frequency peaking or oscillations. A solution is to increase the compensation capacitance, somewhat slowing the amplifier's ability to respond. The recommended compensation capacitance value as a function of load capacitance is shown in Figure 2. (Use two capcitors, each with the value indicated.) Alternately, without increasing the OPA600's compensation capacitance, the capacitive load may be buffered by connecting a small resistance, usually 5Ω to 50Ω, in series with the Output, pin 8.
For very-large capacitive loads, greater than 100 pF , it will be necessary to use doublet compensation. Refer to Figure 3 and discussion on slew rate. This places the dominant pole at the input stage. Settling time will be approximately 50% slower; slew rate should increase. Load capacitance should be minimized for optimum high frequency performance.
Because of its large output capability, the OPA600 is particularly well suited for driving loads via coaxial

FIGURE 2. Capacitive Load Compensation and Response.
cables. Note that the capacitance of coaxial cable (29 pF / foot of length for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated in its characteristic impedance.

SETTLING TIME

Settling time is defined as the total time required, from the input signal step, for the output to settle to within the specified error band around the final value. This error band is expressed as a percentage of the magnitude of the output transition, a 10 V step.
Settling time is a complete dynamic measure of the OPA600's total performance. It includes the slew rate time, a large signal dynamic parameter, and the time to accurately reach the final value, a small signal parameter that is a function of bandwidth and open-loop gain. Performance curves show the OPA600 settling time to $\pm 1 \%$, $\pm 0.1 \%$, and $\pm 0.01 \%$. The best settling time is achieved in low closed-loop gain circuits.
Settling time is dependent upon compensation. Undercompensation will result in small phase margin, overshoot or instability. Over-compensation will result in poor settling time.
Figure 1 shows the recommended compensation to yield the specified settling time. Improved or optimum settling time may be achieved by individually compensating each device in the user's circuit since individual devices vary slightly from one to another, as do user's circuits.

SLEW RATE

Slew rate is primarly an output, large signal parameter. It has virtually no dependence upon the closed-loop gain or small signal bandwidth. Slew rate is dependent upon compensation and decreasing the compensation capacitor value will increase the available slew rate as shown in the performance curve.
The OPA600 slew rate may be increased by using an alternate compensation as shown in Figure 3. The slew rate will increase between 700 and $800 \mathrm{~V} / \mu \mathrm{s}$ typical, with 0.01% settling time increasing to between 175 and 190 ns typical, and 0.1% settling time increasing to between 110 and 120 ns typical.

FIGURE 3. Amplifier Circuit for Increased Slew Rate.
For alternate doublet compensation refer to Figure 3. For a closed-loop gain equal to -1 , delete C_{1} and C_{2} and add a series $R C$ circuit ($R=22 \Omega, C=0.01 \mu \mathrm{~F}$) between pins 14 and 4. Make no connections to pins 11 and 5. Absolutely minimze the capacitance to these pins. If a connector is used for the OPA600, it is recommended that sockets for pins 11 and 5 be removed. For a PC board mount, it is recommended that the PC board holes be overdrilled for pins 11 and 5 and adjacent ground plane copper be removed. Effectively this compensation places the dominant pole at the input stage, allowing the output stage to have no compensation and to slew as fast as possible. Bandwidth and settling time are impaired only slightly. For closed-loop gains other than -1 , different values of R and C may be required.

OFFSET ADJUSTMENT

The offset voltage of the OPA600 may be adjusted to zero by connecting a $5 \mathrm{k} \Omega$ resistor in series with a $10 \mathrm{k} \Omega$ linear potentiometer in series with another $5 \mathrm{k} \Omega$ resistor between pins 2 and 15, as shown in Figure 4. It is important that one end of each of the two resistors be located very close to pins 2 and 15 to isolate and avoid loading these sensitive terminals. The potentiometer should be a small noninductive type with the wiper connected to the positive supply. The leads connecting these components should be short, no longer than 0.5 -inch, to avoid stray capacitance and stray signal pick-up. If the potentiometer must be located away from the immediate vicin-

FIGURE 4. Offset Null Circuit.
ity of the OPA600, extreme care must be observed with the sensitive leads. Locate the two $5 \mathrm{k} \Omega$ resistors very close to pins 2 and 15.
Never connect $+V_{C C}$ directly to pin 2 or 15 . Do not attempt to eliminate the $5 \mathrm{k} \Omega$ resistors because at extreme rotation, the notentiometer will directly connect $+V_{\text {rc }}$ to pin 2 or 15 and permanent damage will result.
Offset voltage adjustment is optional. The potentiometer and two resistors are omitted when the offset voltage is considered sufficiently low for the particular application. For each microvolt of offset voltage adjusted, the offset voltage temperature sensitivity will change by $\pm 0.004 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

CURRENT BOOST

External ability to bypass the internal current limiting resistors has been provided in the OPA600. This is referred to as current boost. Current boost enables the OPA600 to deliver large currents into heavy loads ($\pm 200 \mathrm{~mA}$ at $\pm 10 \mathrm{~V}$). To bypass the resistors and activate the current boost, connect pin 7 to $-\mathrm{V}_{\mathrm{CC}}$ at pin 6 with a short lead to minimize lead inductance and connect pin 9 to $+V_{\mathrm{CC}}$ at pin 12 with a short lead.

CAUTION-Activating current boost by bypassing the internal current limiting resistors can permanently damage the OPA600 under fault conditions. See section on short circuit protection.
Not activating current boost is especially useful for initial breadboarding. The $50 \Omega(\pm 5 \%)$ current limiting resistor in the collector circuit of each of the output transistors causes the output transistors to saturate; this limits the power dissipation in the output stage in case of a fault. Operating with the current boost not activated may also be desirable with small-signal outputs (i.e., $\pm 1 \mathrm{~V}$) or when the load current is small.
Each resistor is internally capacitively-bypassed $(0.01 \mu \mathrm{~F}$, $\pm 20 \%$) to allow the amplifier to deliver large pulses of current, such as to charge diode junctions or circuit capacitance and still respond quickly. The length of time that
the OPA600 can deliver these current pulses is limited by the RC time constant.
The internal voltage drops, output voltage available, power dissipation, and maximum output current can be determined for the user's application by knowing the load resistance and computing:

$$
V_{\text {OUT }}=14\left[R_{\text {LOAD }} \div\left(50+R_{\text {LOAD }}\right)\right]
$$

This applies for $\mathrm{R}_{\text {load }}$ less than 100Ω and the current boost not activated. When R load is large, the peak output voltage is typically $\pm 11 \mathrm{~V}$, which is determined by other factors within the OPA600.

SHORT-CIRCUIT PROTECTION

The OPA600 is short-circuit-protected for momentary short to common ($<5 \mathrm{~s}$), typical of those enountered when probing a circuit during experimental breadboarding or troubleshooting. This is true only if pins 7 and 9 are open (current boost not activated). An internal 50Ω resistor is in series with the collector of each of the output transistors, which under fault conditions will cause the output transistors to saturate and limit the power dissipation in the output stage. Extended application of an output short can damage the amplifier due to excessive power dissipation.
The OPA600 is not short-circuit-protected when the current boost is activated. The large output current capability of the OPA600 will cause excessive power dissipation and permanent damage will result even for momentary shorts to ground.
Output shorts to either supply will destroy the OPA600 whether the current boost is activated or not.

HEAT SINKING AND POWER DISSIPATION

The OPA600 is intended as a printed circuit board mounted device, and as sụch does not require a heat sink. It is specified for ambient temperature operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. However, the power dissipation must be kept within safe limits. At extreme temperature and under full load conditions, some form of heat sinking will be necessary. The use of a heat sink, or other heat dissipating means such as proximity to the ground plane, will result in cooler operating temperatures, better temperature performance, and improved reliability.
It may be necessary to physically connect the OPA600 to the printed circuit board ground plane, attach fins, tabs, etc., to dissipate the generated heat. Because of the wide variety of possibilities, this task is left to the user. For all applications it is recommended that the OPA600 be fully inserted into the printed circuit board and that the pin length be short. Heat will be dissipated through the ground plane and the AC performance will be its best.
With a maximum case temperature of $+125^{\circ} \mathrm{C}$ and not exceeding the maximum junction of $+175^{\circ} \mathrm{C}$, a maximum power dissipation of 600 mW is allowed in either output transistor.

TESTING

For static and low frequency dynamic measurements, the OPA600 may be tested in conventional operational amplifier test circuits, provided proper ground techniques are observed, excessive lead lengths are avoided, and care is maintained to avoid parasitic oscillations. The circuit in Figure 3 is recommended for low frequency functional testing, incoming inspection, etc. This circuit is less susceptible to stray capacitance, excessive lead length, parasitic tuned circuits, changing capacitive loads, etc. It does not yield optimum settling time. We recommend placing a resistor (approximately 300Ω) in series with each piece of test equipment, such as a DVM, to isolate loading effects on the OPA600.

To realize the full performance capabilities of the OPA600, high frequency techniques must be employed and the test fixture must not limit the amplifier. Settling time is the most critical dynamic test and Figure 5 shows a recommended OPA600 settling time test circuit schematic. Good grounding, truly square drive signals, minimum stray coupling, and small physical size are important.
The input pulse generator must have a flat topped, fast settling pulse to measure the true settling time of the amplifier. A circuit that generates a $\pm 5 \mathrm{~V}$ flat topped pulse is shown in Figure 6.

FIGURE 5. Settling Time and Slew Rate Test Circuit.

FIGURE 6. Flat Top Pulse Generator.

ADVANCE INFORMATION

 Subject to Change
High-Speed Precision Difel ${ }^{\circ}$ OPERATIONAL AMPLIFIER

FEATURES

- HIGH SLEW RATE: $35 \mathrm{~V} / \mu \mathrm{S}$
- LOW OFFSET: $\pm 250 \mu \mathrm{~V} \max$
- LOW BIAS CURRENT: $\pm 1 \mathrm{pA}$ max
- FAST SETTLING: 1μ s to 0.01%
- UNITY-GAIN STABLE

DESCRIPTION

The OPA602 is a precision, wide bandwidth FET operational amplifier. Monolithic Difel (dielectrically isolated FET) construction provides an unusual combination of high speed and accuracy.
Its wide bandwidth design minimizes dynamic errors. High slew rate and fast-settling behavior allow accurate signal processing in pulse and data conversion applications. Wide bandwidth and low distortion characteristics provide high performance in fre-quency-domain circuitry. All dynamic and DC specifications are rated with a $1 \mathrm{k} \Omega$ resistor in parallel with 500 pF load impedance. The OPA602 is unity-gain stable and easily drives capacitive loads up to 1500 pF .
Laser-trimmed input circuitry provides offset voltage and drift performance normally associated with precision bipolar op amps. Difef construction achieves extremely low input bias currents (1 pA \max) without compromising input voltage noise.
The OPA602's unique input cascode circuitry maintains low input bias current and precise input characteristics over its full input common-mode voltage range.

APPLICATIONS

- OPTOELECTRONICS
- SONAR, ULTRASOUND
- PROFESSIONAL AUDIO EQUIPMENT
- MEDICAL EQUIPMENT
- DATA CONVERSION

[^3]
SPECIFICATIONS

ELECTRICAL

At $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{VDC}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.

PARAMETER	CONDITIONS	OPA602AM			OPA602BM/SM			OPA602CM			UNITS				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX					
INPUT NOISE Voltage: $\begin{aligned} : f_{\mathrm{o}} & =10 \mathrm{~Hz} \\ \mathrm{f}_{\mathrm{o}} & =100 \mathrm{~Hz} \\ \mathrm{f}_{\mathrm{o}} & =1 \mathrm{kHz} \\ \mathrm{f}_{\mathrm{o}} & =10 \mathrm{kHz} \\ \mathrm{f}_{\mathrm{B}} & =10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\ \mathrm{f}_{\mathrm{B}} & =0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \end{aligned}$ Current: $\mathrm{f}_{\mathrm{B}}=0.1 \mathrm{~Hz}$ to 10 Hz $f_{0}=0.1 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}$.	$\begin{gathered} 23 \\ 19 \\ 13 \\ 12 \\ 1.4 \\ 0.95 \\ 12 \\ 0.6 \end{gathered}$,				$n V / \sqrt{H z}$ $n V / \sqrt{\mathrm{Hz}}$ $n \mathrm{~V} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mu \mathrm{V}$ rms $\mu \mathrm{Vp}-\mathrm{p}$ fAp-p $\mathrm{fA} / \sqrt{\mathrm{Hz}}$				
OFFSET VOLTAGE Input Offset Voltage Over Specified Temp. Average Drift Supply Rejection	$\begin{gathered} V_{C M}=O V D C \\ T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ \pm V_{S}=12 \mathrm{~V} \text { to } 18 \mathrm{~V} \end{gathered}$	70	$\begin{gathered} \pm 300 \\ \pm 550 \\ * \\ * \end{gathered}$	$\begin{gathered} \pm 1000 \\ \pm 15 \end{gathered}$	80	$\begin{gathered} \pm 150 \\ \pm 250 \\ \pm 3 \\ 100 \end{gathered}$	$\begin{gathered} \pm 500 \\ \pm 1000 \\ \pm 5 \end{gathered}$	86	$\begin{gathered} \pm 100 \\ \pm 200 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 250 \\ \pm 500 \\ \pm 2 \end{gathered}$	$\begin{gathered} \mu \mathrm{V} \\ \mu \mathrm{~V} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mathrm{~dB} \end{gathered}$				
BIAS CURRENT Input Bias Current Over Specified Temp. SM Grade	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{VDC}$		$\begin{gathered} \pm 2 \\ \pm 20 \end{gathered}$	$\begin{gathered} \pm 10 \\ \pm 500 \end{gathered}$		$\begin{gathered} \pm 1 \\ \pm 20 \\ \pm 200 \end{gathered}$	$\begin{gathered} \pm 2 \\ \pm 200 \\ \pm 2000 \end{gathered}$,	± 0.5 ± 10	$\begin{gathered} \pm 1 \\ \pm 100 \end{gathered}$	pA pA pA				
OFFSET CURRENT Input Offset Current Over Specified Temp. SM Grade	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{VDC}$		$\begin{gathered} 1 \\ 20 \end{gathered}$	$\begin{gathered} 10 \\ 500 \end{gathered}$		$\begin{gathered} 0.5 \\ 20 \\ 200 \end{gathered}$	$\begin{gathered} 2 \\ 200 \\ 1000 \end{gathered}$		0.5 10	$\begin{gathered} 1 \\ 100 \end{gathered}$	pA pA pA				
INPUT IMPEDANCE Differential Common-Mode			*			$\begin{aligned} & 10^{13} \\| 1 \\ & 10^{14} \\|\| \| \end{aligned}$			*		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$				
INPUT VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{VDC}$	75			$\begin{gathered} \pm 10.2 \\ 88 \end{gathered}$	$\begin{aligned} & +13, \\ & -11 \\ & 100 \end{aligned}$		92			V dB				
OPEN LOOP GAIN, DC Open-Loop Voltage Gain	$R_{L} \geq 1 \mathrm{k} \Omega$	75	*		88	100		92	*		dB				
FREQUENCY RESPONSE Gain Bandwidth Full Power Response Slew Rate Settling Time: 0.1\% 0.01\%	$\begin{gathered} \text { Gain }=100 \\ 20 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ \text { Gain }=-1, R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ C_{L}=500 \mathrm{pF}, 10 \mathrm{~V} \text { step } \end{gathered}$	$\begin{aligned} & 3.5 \\ & 20 \end{aligned}$	*	-	$\begin{gathered} 4 \\ 24 \end{gathered}$	$\begin{gathered} 6.5 \\ 570 \\ 35 \\ 0.7 \\ 1.0 \end{gathered}$		5 28	*		MHz kHz $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$				
RATED OUTPUT Voltage Output Current Output Output Resistance Load Capacitance Stability Short Circuit Current	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ \mathrm{~V}_{0}= \pm 10 \mathrm{VDC} \\ 1 \mathrm{MHz} \text {, open loop } \\ \text { Gain }=+1 \end{gathered}$	± 11 ± 25			$\begin{gathered} \pm 11.5 \\ \pm 15 \\ \pm 30 \end{gathered}$	$\begin{gathered} +12.9 \\ -13.8 \\ \pm 20 \\ 80 \\ 1500 \\ \pm 50 \end{gathered}$				*	$\begin{gathered} V \\ \mathrm{~mA} \\ \Omega \\ \mathrm{pF} \\ \mathrm{~mA} \end{gathered}$				
POWER SUPPLY Rated Voltage Voltage Range, Derated Performance Current, Quiescent Over Specified Temp.	$10=0 \mathrm{mADC}$	*		*	± 5	$\begin{gathered} \pm 15 \\ \\ 3 \\ 3.5 \end{gathered}$	± 18 4 4.5	*		*	VDC VDC mA mA				
TEMPERATURE RANGE Specification SM Grade Operating Storage θ Junction-Ambient	Ambient temp. Ambient temp. Ambient temp.				$\begin{aligned} & -25 \\ & -55 \\ & -55 \\ & -65 \end{aligned}$	200	$\begin{gathered} +85 \\ \pm 125 \\ +125 \\ +150 \end{gathered}$		*	*	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$				

ORDERING INFORMATION

	OPA602 () ()
Basic model number	
Performance grade code	
A, B, C: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Sackage Code $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
M: TO-99 Metal Package	

CONNECTION DIAGRAM

ABSOLUTE MAXIRMUM RATINGS

Supply	DC
Internal Power Dissipation ($\mathrm{T} \leq+175^{\circ} \mathrm{C}$)	+1000mW
Differential Input Voltage	Total V
Input Voltage Range	$\pm V_{s}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering 10 seconds)	.. $+300^{\circ} \mathrm{C}$
Output Short-Circuit to ground ($+25^{\circ} \mathrm{C}$)	Continuous to ground
Junction Temperature	$\ldots . . .{ }^{+175}{ }^{\circ} \mathrm{C}$

MECHANICAL

TYPICAL PERFORMANCE CURVES

$T_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{VDC}$ unless otherwise noted.

POWER SUPPLY REJECTION AND COMMON-MODE REJECTION vs TEMPERATURE

TOTAL INPUT VOLTAGE NOISE SPECTRAL DENSITY AT 1 kHz vs SOURCE RESISTANCE

TYPICAL PERFORMANCE CURVES (CONT)
 $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{VDC}$ unless otherwise noted.

POWER SUPPLY. REJECTION

COMMON-MODE REJECTION
vs INPUT COMMON MODE VOLTAGE

GAIN-BANDWIDTH AND SLEW RATE

GAIN-BANDWIDTH AND SLEW RATE
vS SUPPLY VOLTAGE

TYPICAL PERFORMANCE CURVES (CONT)
 $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{VDC}$ unless otherwise noted.

LARGE SIGNAL TRANSIENT RESPONSE

SETTLING TIME

TOTAL HARMONIC DISTORTION

APPLICATIONS INFORMATION

FIGURE 1. Settling Time and Slew Rate Test Circuit.

FIGURE 2. Offset Voltage Trim.

BURR-BROWN ${ }^{\circledR}$

OPA633

High Speed BUFFER AMPLIFIER

FEATURES

- U!!
- HIGH SLEW RATE: 2500V/ $\mu \mathrm{s}$
- HIGH OUTPUT CURRENT: 100 mA
- LOW OFFSET VOLTAGE: 1.5 mV
- REPLACES HA-5033
- IMPROVED PERFORMANCE/PRICE: LHOO33, LTC1010, HOS200

DESCRIPTION

The OPA633 is a monolithic unity-gain buffer amplifier featuring very wide bandwidth and high slew rate. A dielectric isolation process incorporating both NPN and PNP high frequency transistors achieves performance unattainable with conventional integrated circuit technology. Laser trimming provides low input offset voltage.
High output current capability allows the OPA633 to drive 50Ω and 75Ω lines, making it ideal for RF, IF and video applications. Low phase shift allows the OPA633 to be used inside amplifier feedback loops thus bringing high current output and ability to drive capacitive loads to many circuit applications. The OPA633 is available in the 12-pin TO-8 hermetic metal package with $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature ranges and a low cost plastic DIP package specified for operation from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

APPLICATIONS

- IP AMP CIIRRENT RONSTER
- VIDEO BUFFER
- LINE DRIVER
- A/D CONVERTER INPUT BUFFER

SPECIFICATIONS

ELECTRICAL

At $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ unless otherwise noted.

PARAMETER	CONDITIONS	OPA633AH			OPA633SH			OPA633KP			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
FREQUENCY RESPONSE											
Small Signal Bandwidth Full Power Bandwidth Slew Rate Rise Time, 10\% to 90\% Propagation Delay Overshoot Settling Time, 0.1\% Differential Phase Error ${ }^{(1)}$ Differential Gain Error ${ }^{(1)}$ Total Harmonic Distortion	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=1 \mathrm{Vrms}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}=500 \mathrm{mV} \end{aligned}$ $\begin{aligned} & V_{O}=1 \mathrm{Vrms}, R_{L}=1 \mathrm{k} \Omega, f=100 \mathrm{kHz} \\ & V_{O}=1 \mathrm{Vrms}, R_{L}=100 \Omega, f=100 \mathrm{kHz} \end{aligned}$	1000	$\begin{gathered} \hline 275 \\ 65 \\ 2500 \\ 2.5 \\ 1 \\ 10 \\ 50 \\ 0.1 \\ 0.1 \\ 0.005 \\ 0.02 \end{gathered}$.	*			*	$\begin{gathered} 260 \\ 40 \\ * \\ * \\ * \\ * \\ * \\ * \\ * \\ * \\ * \end{gathered}$		MHz MHz $\mathrm{V} / \mu \mathrm{s}$ ns ns $\%$ ns Degrees $\%$ $\%$ $\%$
OUTPUT CHARACTERISTICS											
Voltage Current Resistance	$\begin{aligned} & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ & R_{L}=1 \mathrm{k} \Omega, \mathrm{~V}_{S}= \pm 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 8.0 \\ & \pm 11 \\ & \pm 80 \end{aligned}$	$\begin{gathered} \pm 10 \\ \pm 13 \\ \pm 100 \\ 5 \end{gathered}$		*	*		* ${ }_{*}^{*}$	* ${ }^{*}$		$\begin{gathered} V \\ V \\ m A \\ \Omega \end{gathered}$
TRANSFER CHARACTERISTICS											
Gain	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & T_{\mathrm{A}}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$	$\begin{aligned} & 0.93 \\ & 0.92 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.99 \\ & 0.95 \end{aligned}$		*	*		*	*		V/V V/V V/V
INPUT											
Offset Voltage vs Temperature vs Supply Bias Current Noise Voltage Resistance Capacitance	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {MIN }} \text { o } T_{\text {MAX }} \\ & 10 \mathrm{~Hz} \text { to } 1 \mathrm{MHz} \end{aligned}$	54	$\begin{gathered} \pm 1.5 \\ \pm 5 \\ \pm 33 \\ 72 \\ \pm 15 \\ \pm 20 \\ 20 \\ 1.5 \\ 1.6 \end{gathered}$	$\begin{aligned} & \pm 15 \\ & \pm 25 \\ & \\ & \pm 35 \\ & \pm 50 \end{aligned}$	*	$*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$		*	± 5 ± 6 $*$ $*$ $*$ $*$ $*$ $*$ $*$		$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mathrm{~dB} \\ \mu \mathrm{~A} \\ \mu \mathrm{~A} \\ \mu \mathrm{Vp}-\mathrm{p} \\ \mathrm{M} \Omega \\ \mathrm{pF} \\ \hline \end{gathered}$
POWER SUPPLY											
Rated Supply Voltage Operating Supply Voltage Current, Quiescent	Specified performance Derated performance $\begin{aligned} & \mathrm{I}_{0}=0 \\ & \mathrm{I}_{0}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	± 5	$\begin{aligned} & \pm 12 \\ & 21 \\ & 21 \end{aligned}$	$\begin{gathered} \pm 16 \\ 25 \\ 30 \end{gathered}$	*	*	*	*	*	*	$\begin{gathered} V \\ V \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$
TEMPERATURE RANGE											
Specification, Ambient Operating, Ambient θ Junction, Ambient ${ }^{(2)}$ θ Junction, Case ${ }^{(2)}$		$\begin{aligned} & -25 \\ & -55 \end{aligned}$	99 31	+85 +125	-55 $*$	*	${ }_{*}^{+125}$	0 -25	90 27	+75 +85	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} / \mathrm{w} \\ { }^{\circ} \mathrm{C} / \mathrm{w} \end{gathered}$

* Specification same as OPA633AH.

NOTES: (1) Differential phase error in video transmission systems is the change in phase of a color subcarrier resulting from a change in picture signal from blanked to white. Differential gain error is the change in amplitude at the color subcarrier frequency resulting from a change in picture signal from blanked to white. (2) Recommended heat sinks for the TO-8 package are: Thermalloy 2204 A with $\theta_{S A}=27^{\circ} \mathrm{C} / \mathrm{W}$ and IERC Up TO-8-48CB, $\theta_{S A}=10^{\circ} \mathrm{C} / \mathrm{W}$.

CONNECTION DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Input Voltage $V_{\text {in }} \ldots \ldots \ldots . . \ldots . . . V_{s}+2$ to $-V_{s}-2$	
Output Current (peak) $\pm 200 \mathrm{~mA}$	
Internal Power Dissipation ($25^{\circ} \mathrm{C}$):	O-8 (H) 1.75W
	DIP (P) 1.95W
Junction Temperature	$200^{\circ} \mathrm{C}$
Storage Temperature Range: TO-8	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (soldering, 60s)	$300^{\circ} \mathrm{C}$

MECHANICAL
TO-8

	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	.593	.603	15.06	15.32
B	.547	.553	13.89	14.05
C	.130	.150	3.30	3.81
D	.016	.019	0.41	0.48
E	.010	.040	0.25	1.02
H	.026	.036	0.66	0.91
J	.026	.036	0.66	0.9
K	500	.562	12.70	14.27
M	45° BASIC	45° BASIC		
N	.100 BASIC	2.54 BASIC		

"P" Package, 8-Pin Plastic	NOTE: Leads in true position within $0.01^{\prime \prime}(0.25 \mathrm{~mm})$ R at MMC at seating plane.	$\square L \longrightarrow$	DIM	INCHES		MILLIMETERS		
				MIN	MAX	MIN	MAX	
			A	. 355	400	9.03	10.16	
			A_{1}	340	385	8.65	9.80	
	F		B	230	290	5.85	7.38	
$-A_{1} \longrightarrow$			B_{1}	200	250	5.09	6.36	
$\Omega \pi$	\square	-	C	. 120	200	3.05	5.09	
	- +	-	D	. 015	. 023	0.38	0.59	
	N-H	\square	F	. 030	. 070	0.76	1.78	
8	T	\square	G	. 100 B	ASIC	2.54 B	ASIC	
0	U $\\| \frac{K}{}$	-	H	. 025.	. 050	0.64	1.27	
	1 -	\%	J	. 008	. 015	0.20	0.38	
ए以ए以	$\mathrm{H} \leftarrow \rightarrow \mathrm{G} \leftarrow$ Seating	1 -	K	. 070	. 150	1.78	3.82	
\%	N- Seating	$\rightarrow-\mathrm{J}$	L	300 B	ASIC	7.63 B	ASIC	
Pin			!:	0°	15°	0°	15°	
- Pin 1			N	. 010	. 030	0.25	0.76	
			P	025	. 050	0.64	1.27	

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (CONT)

TOTAL HARMONIC DISTORTION VS FREQUENCY

TYPICAL PERFORMANCE CURVES (CONT)

OUTPUT VOLTAGE SWING VS LOAD RESISTANCE

OUTPUT ERROR VS INPUT VOLTAGE

INPUT BIAS CURRENT VS TEMPERATURE

OFFSET VOLTAGE VS TEMPERATURE

INSTALLATION AND OPERATION

CIRCUIT LAYOUT

As with any high frequency circuitry, good circuit layout technique must be used to achieve optimum performance. A circuit-board layout is provided which demonstrates the principles of good layout. Most of the applications circuits shown can be evaluated using this circuit board.
Pinout of the TO-8 package version has been designed for maximum compatibility with other buffer amplifiers. Pins 1 and 12 are internally connected to $+V_{s}$. Pins 9 and 10 are internally connected to $-\mathrm{V}_{\mathrm{s}}$. This allows the OPA633 to be used in applications presently using the LH0033 buffer amplifier. Only one of the power supply connections for $+V_{S}$ and $-V_{S}$ must be connected for proper operation.
Power supply connections must be bypassed with high frequency capacitors. Many applications benefit from the use of two capacitors on each power supply-a ceramic capacitor for good high frequency decoupling and a tantalum type for lower frequencies. They should be located as close as possible to the buffer's power supply pins. A large ground plane is used to minimize high frequency ground drops and stray coupling.
The case of the TO-8 package is connected to pin 2 , which should be grounded. Pin 6 of the DIP package connects to the substrate of the integrated circuit and should be connected to ground. In principle it could also be connected to $+\mathrm{V}_{\mathrm{s}}$ or $-\mathrm{V}_{\mathrm{s}}$, but ground is preferable. The additional lead length and capacitance associated with sockets may present problems in applications requiring the highest fidelity of high speed pulses.
Depending on the nature of the input source impedance, a series input resistor may be required for best stability. This behavior is influenced somewhat by the load impedance (including any reactive effects). A value of 50Ω to 200Ω is typical. This resistor should be located close to the OPA633's input pin to avoid stray capacitance at the input which could reduce bandwidth (see Gain and Phase Versus Frequency curve).

OVERLOAD CONDITIONS

The input and output circuitry of the OPA633 are not protected from overload. When the input signal and load characteristics are within the device's capabilities, no protection circuitry is required. Exceeding device limits can result in permanent damage.
The OPA633's small package and high output current capability can lead to overheating. The internal junction temperature should not be allowed to exceed $150^{\circ} \mathrm{C}$. Although failure is unlikely to occur until junction temperature exceeds $200^{\circ} \mathrm{C}$, reliability of the part will be degraded significantly at such high temperatures. External heat sinks can be used to reduce the temperature rise.

Since significant heat transfer takes place through the package leads, wide printed circuit traces to all leads will improve heat sinking. Sockets can reduce heat sinking significantly and thus are not recommended.
Junction temperature rise is proportional to internal power dissipation. This can be reduced by using the minimum supply voltage necessary to produce the required output voltage swing. For instance, IV video signals can be easily handled with $\pm 5 \mathrm{~V}$ power supplies thus minimizing the internal power dissipation.
Output overloads or short circuits can result in permanent damage by causing excessive output current. The 50Ω or 75Ω series output resistor used to match line impedance will, in most cases, provide adequate protection. When this resistor is not used, the device can be protected by limiting the power supply current. See "Protection Circuits."
Excessive input levels at high frequency can cause increased internal dissipation and permanent damage. See the safe input voltage versus frequency curves. When used to buffer an op amp's output, the input to the OPA633 is limited, in most cases, by the op amp. When high frequency inputs can exceed safe levels, the device must be protected by limiting the power supply current.

PROTECTION CIRCUITS

The OPA633 can be protected from damage, due to excessive currents, by the simple addition of resistors in series with the power supply pins (Figure 5a). While this limits output current, it also limits voltage swing with low impedance loads. This reduction in voltage swing is minimal for AC or high crest factor signals since only the average current from the power supply causes a voltage drop across the series resistor. Short duration loadcurrent peaks are supplied by the bypass capacitors.
The circuit of Figure $5 b$ overcomes the limitations of the previous circuit with DC loads. It allows nearly full output voltage swing up to its current limit of approximately 140 mA . Both circuits require good high frequency capacitors (e.g., tantalum) to bypass the buffer's power supply connections.

CAPACITIVE LOADS

The OPA633 is designed to safely drive capacitive loads up to $0.01 \mu \mathrm{~F}$. It must be understood, however, that rapidly changing voltages demand large output load currents:

$$
\mathrm{I}_{\mathrm{LOAD}}=\left(\mathrm{C}_{\mathrm{LOAD}}\right) \mathrm{dV} / \mathrm{dt}
$$

Thus a signal slew rate of $1000 \mathrm{~V} / \mu \mathrm{s}$ and load capacitance of $0.01 \mu \mathrm{~F}$ demands a load current of 10 A . Clearly maximum slew rates cannot be combined with large capacitive loads. Load current should be kept less than 100 mA continuous (200 mA peak) by limiting the rate of change of the input signal or reducing the load capacitance.

USE INSIDE A FEEDBACK LOOP

The OPA633 may be used inside the feedback path of an op amp such as the OPA606. Higher output current is achieved without degradation in accuracy. This approach may actually improve performance in precision applications by removing load-dependent dissipation from a precision op amp. All vestiges of load-dependent offset voltage and temperature drift can be eliminated with this technique. Since the buffer is placed within the feedback loop of the op amp, its DC errors will have a negligible effect on overall accuracy. Any DC errors contributed
by the buffer are divided by the loop gain of the op amp. The low phase shift of the OPA633 allows its use inside the feedback loop of a wide variety of op amps. To assure stability, the buffer must not add significant phase shift to the loop at the gain crossing frequency of the circuit-the frequency at which the open loop gain of the op amp is equal to the closed loop gain of the application. The OPA633 has a typical phase shift of less than 10° up to 70 MHz , thus making it useful-even with wideband op amps.

APPLICATIONS CIRCUITS

FIGURE 1. Dynamic Response Test Circuit.

FIGURE 2. Coaxial Cable Driver Circuit.

FIGURE 3. Precision High Current Buffer.

FIGURE 4. Buffered Inverting Amplifier.

FIGURE 5. Output Protection Circuits.

NOTE: The prototype circuit board layout shown may be used to test many common applications circuits. Component designations in the applications circuit diagrms refer to the component positions on this prototype board layout.

FIGURE 6. Prototype Circuit Board Layout.

Dual Low Noise Precision Difer ${ }^{\circ}$ OPERATIONAL AMPLIFIER

FEATURES

- LOW NOISE: 100% tested: $8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ max at 10 kHz
- LOW BIAS CURRENT: 4pA max
- LOW OFFSET: $500 \mu \mathrm{~V}$ max
- LOW DRIFT: $2.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- HIGH OPEN LOOP GAIN: 114dB min
- HIGH COMMON-MODE REJECTION: 96dB min

DESCRIPTION

The OPA2111 is a high precision monolithic Difet (dielectrically isolated FET) operational amplifier. Outstanding performance characteristics allow its use in the most critical instrumentation applications.
Noise, bias current, voltage offset, drift, open-loop gain, common-mode rejection, and power supply rejection are superior to BIFET® amplifiers.
Very-low bias current is obtained by dielectric isolation with on-chip guarding.
Laser trimming of thin-film resistors gives very-low offset and drift. Extremely-low noise is achieved with new circuit design techniques (patent pending). A new cascode design allows high precision input specifications and reduced susceptibility to flicker noise.
Standard dual op-amp pin configuration allows upgrading of existing designs to higher performance levels.

APPLICATIONS

- PRECIIION INSTRUMENTATION
- DATA ACQUISITION
- TEST EQUIPMENT
- PROFESSIONAL AUDIO EQUIPMENT
- MEDICAL EQUIPMENT
- detector arrays

[^4]
SPECIFICATIONS

ELECTRICAL

At $V_{c c}= \pm 15 \mathrm{VDC}$ and $\mathbf{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.

PARAMETER	CONDITIONS	OPA2111AM			OPA2111BM			OPA2111SM			OPA2111KM/KP			UNITS										
		MIN	TYP	MAX																				
INPUT																								
NOISE Voltage, $\mathrm{f}_{0}=10 \mathrm{~Hz}$ $f_{0}=100 \mathrm{~Hz}$ $f_{0}=1 \mathrm{kHz}$ $\mathrm{f}_{0}=10 \mathrm{kHz}$ $\mathrm{f}_{\mathrm{B}}=10 \mathrm{~Hz}$ to 10 kHz $\mathrm{f}_{\mathrm{B}}=0.1 \mathrm{~Hz}$ to 10 Hz Current, $f_{\mathrm{B}}=0.1 \mathrm{~Hz}$ to 10 Hz $f_{0}=0.1 \mathrm{~Hz}$ to 20 kHz	Max: 100% tested Max: 100% tested Max: 100% tested (11) (11) 111 (11) (11)		$\begin{gathered} 40 \\ 15 \\ 8 \\ 6 \\ 0.7 \\ 1.6 \\ 15 \\ 0.8 \end{gathered}$	$\begin{gathered} 80 \\ 40 \\ 15 \\ 8 \\ 1.2 \\ 3.3 \\ 24 \\ 1.3 \end{gathered}$.	$\begin{gathered} 30 \\ 1.1 \\ 7 \\ 6 \\ 0.6 \\ 1.2 \\ 12 \\ 0.6 \end{gathered}$	$\begin{gathered} 60 \\ 30 \\ 12 \\ 8 \\ 1.0 \\ 2.5 \\ 19 \\ 1.0 \end{gathered}$		$\begin{gathered} 40 \\ 15 \\ 8 \\ 6 \\ 0.7 \\ 1.6 \\ 15 \\ 0.8 \end{gathered}$	$\begin{gathered} 80 \\ 40 \\ 15 \\ 8 \\ 1.2 \\ 3.3 \\ 24 \\ 1.0 \end{gathered}$		$\begin{gathered} 40 \\ 15 \\ 8 \\ 6 \\ 0.7 \\ 1.6 \\ 15 \\ 0.8 \end{gathered}$		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$ $n \mathrm{~V} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $n \mathrm{~V} / \sqrt{\mathrm{Hz}}$ $\mu \mathrm{V}$, rms $\mu \mathrm{V}, \mathrm{p}-\mathrm{p}$ fA, p-p $\mathrm{f} / \sqrt{\mathrm{Hz}}$										
OFFSET VOLTAGE ${ }^{(2)}$ Input Offset Voltage Average Drift Match Supply Rejection Channel Separation	$V_{C M}=O V D C$ $T_{A}=T_{\text {min }}$ to $T_{\text {max }}$ $100 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	90	$\begin{gathered} \pm 0.1 \\ \pm 2 \\ \pm 1 \\ 110 \\ \pm 3 \\ 136 \end{gathered}$	$\begin{gathered} \pm 0.75 \\ \pm 6 \\ \pm 31 \end{gathered}$	96	$\begin{gathered} \pm 0.05 \\ \pm 0.5 \\ \pm 0.5 \\ 110 \\ \pm 3 \\ 136 \end{gathered}$	$\begin{aligned} & \pm 0.5 \\ & \pm 2.8 \\ & \pm 16 \end{aligned}$	90	$\begin{gathered} \pm 0.1 \\ \pm 2 \\ 2 \\ 110 \\ \pm 3 \\ 136 \end{gathered}$	$\begin{gathered} \pm 0.75 \\ \pm 6 \\ \pm 31 \end{gathered}$	86	$\begin{gathered} \pm 0.3 \\ \pm 8 \\ 2 \\ 110 \\ \pm 3 \\ 136 \end{gathered}$	$\begin{gathered} \pm 2 \\ \pm 15 \\ \pm 50 \end{gathered}$	$\begin{gathered} m \mathrm{~V} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mathrm{~dB} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mathrm{~dB} \end{gathered}$										
BIAS CURRENT ${ }^{(2)}$ Initial Bias Current Match	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{VDC}$		$\begin{aligned} & \pm 2 \\ & \pm 1 \end{aligned}$	士8		$\begin{aligned} & \pm 1.2 \\ & \pm 0.5 \end{aligned}$	± 4		$\begin{aligned} & \pm 2 \\ & \pm 1 \end{aligned}$	± 8		$\begin{gathered} \pm 3 \\ 2 \end{gathered}$	± 15	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$										
OFFSET CURRENT ${ }^{(2)}$ Input Offset Current	$V_{C M}=0 \mathrm{VDC}$		± 1.2	± 6		± 0.6	± 3		± 1.2	± 6		± 3	± 12	pA										
IMPEDANCE Differential Common-Mode	.		$\begin{aligned} & 10^{13} \\| 1 \\ & 10^{14} \\|{ }^{4} \end{aligned}$			$\begin{aligned} & 10^{13} \\| 1 \\ & 10^{14} \\| 3 \end{aligned}$			$\begin{aligned} & 10^{13} \\| 1 \\ & 10^{14} \\| 3 \end{aligned}$			$\begin{aligned} & 10^{13} \\| 1 \\ & 10^{14} \\| 3 \end{aligned}$		$\begin{aligned} & \Omega \\| p F \\ & \Omega \\| p F \end{aligned}$										
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{VDC}$	$\begin{gathered} \pm 10 \\ 90 \end{gathered}$	$\begin{gathered} \pm 11 \\ 110 \end{gathered}$	± 10	$\begin{gathered} \pm 11 \\ 96 \end{gathered}$	110	± 10	$\begin{gathered} \pm 11 \\ 90 \end{gathered}$	110		± 10 82	± 11 110		$\begin{gathered} V \\ d B \end{gathered}$										

OPEN-LOOP GAIN, DC

Open-Loop Voltage Gain Match	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	110	125 3	114	125 2	110	125 3	106	125 3	dB

FREQUENCY RESPONSE

RATED OUTPUT

Voltage Output	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 11	± 12	V						
Current Output	$V_{0}= \pm 10 \mathrm{VDC}$	± 5	± 10	mA						
Output Resistance	DC, open loop		100		100		100		100	Ω
Load Capacitance Stability	Gain $=+1$		1000		1000		1000		1000	pF
Short Circuit Current		10	40	10	40	10	40	10	40	mA

POWER SUPPLY

Rated Voltage Voltage Range, Derated Performance Current, Quiescent	$10=0 \mathrm{mADC}$	± 5	± 15 5	± 18 7	± 5	± 15 5	± 18 7	± 5	± 15 5	± 18 7	± 5	± 15 5	± 18 9	VDC VDC mA

TEMPERATURE RANGE

Specification	Am	-25		+85	-25		+85	-55		+125	0		+70	${ }^{\circ} \mathrm{C}$
Operating	Ambient temp.	-55		+125	-40		+85	-55		+125	-40		+85	${ }^{\circ} \mathrm{C}$
Storage	Ambient temp.	-65		+150	-65		+150	-65		+150	-40		$+85$	${ }^{\circ} \mathrm{C}$
θ Junction-Ambient			200			200			200			$200^{(4)}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES: (1) Sample tested-maximum parameters are guaranteed. (2) Offset voltage, offset current, and bias current are measured with the units fully warmed up. (3) Overload recovery is defined as the time required for the output to return from saturation to linear operation following the removal of a 50% input overdrive. (4) Typical $\theta_{J-A}=150^{\circ} \mathrm{C} / \mathrm{W}$ for plastic DIP.

ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)
At $V_{c C}= \pm 15 \mathrm{VDC}$ and $\mathbf{T}_{\mathrm{A}}=\mathbf{T}_{\text {Min }}$ to $\boldsymbol{T}_{\text {max }}$ unless otherwise noted.

PARAMETER	CONDITIONS	OPA2111AM			OPA2111BM			OPA2111SM			OPA2111KM/KP			UNITS
		MIN	TYP	MAX										
TEMPERATURE RANGE														
Specification Range	Ambient temp.	-25		+85	-25		+85	-55		+125	0		+70	${ }^{\circ} \mathrm{C}$
INPUT														
OFFSET VOLTAGE ${ }^{(1)}$ Input Offset Voltage Average Drift Match Supply Rejection	$V_{C M}=0 V D C$	86	$\begin{gathered} \pm 0.22 \\ \pm 2 \\ 1 \\ 100 \\ \pm 10 \end{gathered}$	$\begin{gathered} \pm 1.2 \\ \pm 6 \\ \pm 50 \end{gathered}$	90	$\begin{gathered} \pm 0.08 \\ \pm 0.5 \\ 0.5 \\ 100 \\ \pm 10 \end{gathered}$	$\begin{gathered} \pm 0.75 \\ \pm 2.8 \\ \pm 32 \end{gathered}$	86	$\begin{gathered} \pm 0.3 \\ \pm 2 \\ 2 \\ 100 \\ \pm 10 \end{gathered}$	$\begin{gathered} \pm 1.5 \\ \pm 6 \\ \pm 50 \end{gathered}$	82	$\begin{gathered} \pm 0.9 \\ \pm 8 \\ 2 \\ 100 \\ \pm 10 \end{gathered}$	$\begin{gathered} \pm 5 \\ \pm 15 \\ \pm 80 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mathrm{~dB} \\ \mu \mathrm{~V} / \mathrm{V} \end{gathered}$
BIAS CURRENT ${ }^{\text {(}}$ Initial Bias Current Match	$\mathrm{V}_{\mathrm{CM}}=\mathrm{OVDC}$		$\begin{gathered} \pm 125 \\ 60 \end{gathered}$	\pm nnA		± 75 30	± 500		$\begin{gathered} \pm 2.0 \mathrm{nA} \\ \mathrm{n} A \end{gathered}$	$\pm 16.3 \mathrm{nA}$		± 125	± 500	pA pA
OFFSET CURRENT Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{VDC}$		± 75	± 750		± 38	± 375		$\pm 1.3 n \mathrm{~A}$	$\pm 12 n A$		± 75	± 375	pA
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{VDC}$	$\begin{gathered} \pm 10 \\ 86 \end{gathered}$	$\begin{aligned} & \pm 11 \\ & 100 \end{aligned}$		$\begin{gathered} \pm 10 \\ 90 \end{gathered}$	$\begin{aligned} & \pm 11 \\ & 100 \end{aligned}$		± 10 86	$\begin{aligned} & \pm 11 \\ & 100 \end{aligned}$		± 10 80	± 11 100		V dB
OPEN-LOOP GAIN, DC														
Open-Loop Voltage Gain Match	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	106	$\begin{gathered} 120 \\ 5 \\ \hline \end{gathered}$		110	$\begin{gathered} 120 \\ 3 \\ \hline \end{gathered}$		106	$\begin{gathered} 120 \\ 5 \\ \hline \end{gathered}$		100	$\begin{gathered} 120 \\ 5 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
RATED OUTPUT														
Voltage Output Current Output Short Circuit Current	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{VDC} \\ \mathrm{~V}_{\mathrm{O}}=0 \mathrm{VDC} \end{gathered}$	± 10.5 ± 5 10	$\begin{gathered} \pm 11 \\ \pm 10 \\ 40 \end{gathered}$		± 10.5 ± 5 10	± 11 ± 10 40		± 10.5 ± 5 10	± 11 ± 10 40		± 10.5 ± 5 10	± 11 ± 10 40		V mA mA
POWER SUPPLY														
Current, Quiescent	$10=0 \mathrm{mADC}$		5	8		5	8		5	8		5	10	mA

NOTES: (1) Offset voltage, offset current, and bias current are measured with the units fully warmed up.

ORDERING INFORMATION

Basic model number
Performance grade
$\mathrm{A}, \mathrm{B}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{S}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{K}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Package Code
$\mathrm{M}=$ TO-99 metal can
$\mathrm{P}=$ Plastic DIP

ABSOLUTE MAXIMUM RATINGS

Supply	$\pm 18 \mathrm{VDC}$
Internal Power Dissipation ($\mathrm{T} \leq+175^{\circ} \mathrm{C}$)	500 mW
Differential Input Voitage Total $\mathrm{V}_{\text {cc }}$
Input Voltage Range	$\ldots . . \pm \mathrm{V}_{\text {cc }}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 seconds) $+300^{\circ} \mathrm{C}$
Output Short Circuit to ground ($+25^{\circ} \mathrm{C}$)	Continuous
Junction Temperature . .	$\ldots . . .+175^{\circ} \mathrm{C}$

CONNECTION DIAGRAMS

'P' Package-Top View

'P' Package-Plastic DIP					ating Plane
			MILLIM	TERS	
DIM	MIN	MAX	MIN	MAX	
A	. 355	400	9.02	10.16	NOTE: Leads in true position within 0.01" $(0.25 \mathrm{~mm})$ R at MMC at seating plane. Pin numbers shown for reference only. Numbers may not be marked on package. Pin material and plating composition conform to Method 2003 (solderability) of MIL-STD-883 (except paragraph 3.2).
A_{1}	340	385	8.65	9.80	
B	. 230	290	5.85	7.38	
B_{1}	200	250	5.09	6.36	
C	120	200	3.05	5.09	
D	015	023	0.38	0.59	
F	. 030	. 070	0.76	1.78	
G	. 100 BASIC		2.54 BASIC		
H	025	. 050	0.64	1.27	
J	. 008	. 015	0.20	0.38	
K	. 300 BASIC		1.78	7.63 BASIC	
M $\%$	0°	15°	0°	15°	
N	010	030	0.25	0.76	
P	025	050	0.64	1.27	

TYPICAL PERFORMANCE CURVES

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{VDC}$ unless otherwise noted.

TOTAL* INPUT VOLTAGE NOISE SPECTRAL DENSITY vs SOURCE RESISTANCE

VOLTAGE AND CURRENT NOISE SPECTRAL

NOTE:
Refer to complete data sheet PDS-540 for complete typical curves and applications information.

Low Power
 High Accuracy INSTRUMENTATION AMPLIFIER

FEATURES

- LOW QUIESCENT CURRENT: $750 \mu \mathrm{~A}, \max$
- INTERNAL GAINS: X 1,10,100, 1000
- LOW GAIN DRIFT: $5 p p m /{ }^{\circ} \mathrm{C}, \max$
- HIGH CMR: 90dB, min
- LOW OFFSET VOLTAGE DRIFT: $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, max
- LOW OFFSET VOLTAGE: $100 \mu \mathrm{~V}$, max
- LOW NONLINEARITY: 0.01\%, max
- HIGH INPUT IMPEDANCE: $10^{10} \Omega$
- LOW COST

DESCRIPTION

The INA102 is a high-accuracy monolithic instrumentation amplifier designed for signal conditioning applications where low quiescent power is desired. On-chip thin-film resistors provide excellent temperature and stability performance. State-of-the-art laser trimming technology insures high gain accuracy and common-mode rejection while avoiding expensive external components. These features make the INA102 ideally suited for battery powered and high volume applications.
The INA102 is also convenient to use. A gain of 1, 10,100 , or 1000 may be selected by simply strapping the appropriate pins together. $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain drift in low gains can then be achieved without external adjustment. When higher than specified CMR is required, CMR can be trimmed using the pins provided. In addition, balanced filtering can be accomplished in the output stage.

APPLICATIONS

- AMPLIFICATION OF SIGNALS FROM SOURCES SUCH AS:
Strain Gauges
Thermocouples RTDS
- REMOTE TRANSDUCER AMPLIFIER
- LOW Level signal amplifier
- medical instrumentation
- MULTICHANNEL SYSTEMS
- BATTERY POWERED EQUIPMENT

SPECIFICATIONS

ELECTRICAL

At $T_{A}=+25^{\circ} \mathrm{C}$ with ± 15 VDC power supply and in circuit of Figure 2 unless otherwise noted.

ELECTRICAL (CONT)

MODEL	CONDITIONS	INA102AG			INA102CG			INA102KP			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
POWER SUPPLY											
Rated Voltage Voltage Range Quiescent Current ${ }^{(31}$	$\begin{gathered} V_{0}=0 \mathrm{~V} \\ T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{gathered}$	± 3.5	$\begin{gathered} \pm 15 \\ \pm 500 \end{gathered}$	$\begin{gathered} \pm 18 \\ \pm 750 \end{gathered}$	*	*	*	*	*	*	V V $\mu \mathrm{~A}$
TEMPERATURE RANGE											
Specification Operation Storage		$\begin{aligned} & -25 \\ & -25 \\ & -65 \\ & \hline \end{aligned}$		$\begin{array}{r} +85 \\ +85 \\ +150 \\ \hline \end{array}$	*		*	0 $*$ -55		+70 $*$ +125	\circ ${ }^{\circ} \mathrm{C}$

*Specifications same as for INA102AG.
NOTES: (1) The internal gain set resistors have an absolute tolerance of $\pm 20 \%$; however, their tracking is $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. R_{G} will add to the gain error if gains other than 1 , 10,100 or 1000 are set externally. (2) Adjustable to zero at any one time.

MECHANICAL

NOTE: Leads in true position within $.010^{\prime \prime}(.25 \mathrm{~mm})$ R at seating plane.
Pin numbers shown for reference only. Numbers are not marked on package.

	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX		
A	.790	.810	20.07	20.57		
C	.105	.170	2.67	4.32		
D	.015	.021	0.38	0.53		
F	.048	.060	1.22	1.52		
G	.100 BASIC	2.54		BASIC		
H	.030	.070	0.76	1.78		
J	.008	.012	0.20	0.30		
K	.120	.240	3.05	6.10		
L	.300		BASIC	7.62		BASIC
M	-	10°	-			
N	.025	.060	10°			

ABSOLUTE MAXIMUM RATINGS

ORDERING INFORMATION

Basic Model Number
Performance Grade Code
A, C: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
K: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Package Code
G: 16 -pin Hermetic DIP
P: 16 -pin Plastic DIP
INA102AG, INA102CG, INA102KP

PIN CONFIGURATION

BURR-BROWN®

Precision Fixed-Gain DIFFERENTIAL AMPLIFIER

FEATURES

- FIXED GAIN, $A=1 n$
- CMR 100dB min over temp
- NONLINEARITY 0.001\% max
- NO EXTERNAL ADJUSTMENTS REQUIRED
- EASY TO USE
- COMPLETE SOLUTION
- HIGHLY VERSATILE
- LOW COST
- TO-99 HERMETIC METAL AND LOW COST PLASTIC PACKAGES

DESCRIPTION

The INA106 is a precision fixed-gain differential amplifier. As a monolithic circuit, it offers high reliability at low cost. It consists of a premium grade operational amplifier and an on-chip precision resistor network.
The INA106 is completely self-contained and offers the user a highly versatile function. No adjustments to gain, offset, and CMR are necessary. This provides three important advantages: (1) lower initial design engineering time, (2) lower manufacturing assembly time and cost, and (3) easy cost-effective field repair of a precision circuit.

APPLICATIONS

- DIFFERENTIAL AMPLIFIER, $\mathrm{A}=10$
- basic instrumentation amplifier building BLOCK
- INVERTING AMPLIFIER, $A=-10$
- NONINVERTING AMPLIFIER, A = 10
- SUMMING AMPLIFIER, WEIGHTED
- \pm IOOV CM RANGE DIFFERENTIAL AMPLIFIER

SPECIFICATIONS
ELECTRICAL
At $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$ unless otherwise noted.

PARAMETER	CONDITIONS	INA106AM			INA106BM			INA106KP			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
GAIN Initial (1) Error vs Temperature Nonlinearity ${ }^{(2)}$	\cdots	,	$\begin{gathered} 10 \\ 0.005 \\ -4 \\ 0.0002 \end{gathered}$	$\begin{aligned} & 0.01 \\ & \pm 10 \\ & 0.001 \end{aligned}$		$*$ $*$ $*$ $*$	*		$*$ 0.01 $*$ $*$	0.025	$\begin{array}{\|c\|} \hline \mathrm{V} / \mathrm{V} \\ \% \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \% \end{array}$
OUTPUT Rated Voltage Rated Current Impedance Current Limit Capacitive Load	$\begin{gathered} \mathrm{I}_{0}=+20 \mathrm{~mA},-5 \mathrm{~mA} \\ \mathrm{E}_{0}=10 \mathrm{~V} \end{gathered}$ To common Stable operation	$\begin{gathered} 10 \\ +20,-5 \end{gathered}$	$\begin{gathered} 12 \\ 0.01 \\ +40 /-10 \\ 1000 \end{gathered}$		*			*			$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \Omega \\ \mathrm{~mA} \\ \mathrm{pF} \end{gathered}$
INPUT Impedance Voltage Range Common-mode Rejection ${ }^{(3)}$	Differential Common-mode Differential Common-mode $T_{A}=T_{\text {min }}$ to $T_{\text {max }}$	$\begin{gathered} \pm 1 \\ \pm 11 \\ 94 \end{gathered}$	$\begin{gathered} 10 \\ 110 \\ \\ 100 \end{gathered}$		$\begin{gathered} * \\ * \\ 100 \end{gathered}$	106	-	$\begin{gathered} * \\ * \\ * \\ 86 \end{gathered}$			$\begin{gathered} \mathrm{k} \Omega \\ \mathrm{k} \Omega \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~dB} \end{gathered}$
OFFSET VOLTAGE Initial vs Temperature vs Supply vs Time	$\begin{gathered} R T^{(4)} \\ \pm \mathrm{V}_{\mathrm{cc}}=6 \mathrm{~V} \text { to } 18 \mathrm{~V} \end{gathered}$		$\begin{gathered} 50 \\ 0.2 \\ 1 \\ 10 \end{gathered}$	$\begin{gathered} 100 \\ 5 \\ 10 \end{gathered}$		*	$\begin{aligned} & 2 \\ & * \end{aligned}$		*	200	$\begin{gathered} \mu \mathrm{V} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{mo} \end{gathered}$
$\begin{aligned} & \text { OUTPUT NOISE VOLTAGE } \\ & \mathrm{F}_{\mathrm{B}}=0.01 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{~F}_{\mathrm{O}}=10 \mathrm{kHz} \end{aligned}$	$\mathrm{RT} \mathrm{l}^{(5)}$		$\begin{gathered} 1 \\ 30 \end{gathered}$		\cdot	*			*		$\begin{aligned} & \mu V \mathrm{p}-\mathrm{p} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
DYNAMIC RESPONSE Gain Bandwidth Full Power BW Slew Rate Settling Time: 0.1\% 0.01\% 0.01\%	$\begin{gathered} -3 \mathrm{~dB} \\ \mathrm{~V}_{\mathrm{O}}=20 \mathrm{~V} \text { p-p } \\ \mathrm{V}_{0}=10 \mathrm{~V} \text { step } \\ \mathrm{V}_{\mathrm{O}}=10 \mathrm{~V} \text { step } \\ \mathrm{V}_{\mathrm{CM}}=10 \mathrm{~V} \text { step, } \mathrm{V}_{\text {DIFF }}=0 \mathrm{~V} \end{gathered}$	30 2	$\begin{gathered} 5 \\ 50 \\ 3 \\ 5 \\ 10 \\ 5 \end{gathered}$		*	$*$ $*$ $*$ $*$ $*$ $*$,	*	$*$ $*$ $*$ $*$ $*$ $*$		MHz . kHz $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{S}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$
POWER SUPPLY Rated Voltage Range Quiescent Current	Derated performance $V_{\text {OUT }}=0 \mathrm{~V}$	± 5	$\begin{aligned} & \pm 15 \\ & \pm 1.5 \end{aligned}$	$\begin{gathered} \pm 18 \\ \pm 2 \end{gathered}$	*	*	*	*		*	$\begin{gathered} V \\ V \\ m A \end{gathered}$
TEMPERATURE RANGE Specification Operation Storage		$\begin{aligned} & -25 \\ & -55 \\ & -65 \end{aligned}$	-	$\begin{gathered} +85 \\ +125 \\ +150 \end{gathered}$	*		*	$\begin{gathered} 0 \\ -25 \\ -40 \end{gathered}$		$\begin{aligned} & +70 \\ & +85 \\ & +85 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

* Specification same as for INA106AM.

NOTES: (1) Connected as difference amplifier (see Figure 4). (2) Nonlinearity is the maximum peak deviation from the best-fit straight line as a percent of full-scale peak-to-peak output. (3) With zero source impedance (see Maintaining CMR section). (4) Includes effects of amplifier's input bias and offset currents. (5) Includes effects of amplifier's input current noise and thermal noise contribution of resistor network.

MECHANICAL

PIN DESIGNATIONS

ORDERING INFORMATION

Basic Model Number
Performanee Grade
A, B: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
K: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Package Code
M: TO-99 metal can
P: 8-pin mini plastic DIP

PIN DESIGNATIONS

ABSOLUTE MAXIMUM RATINGS

TYPICAL PERFORMANCE CURVES

$T_{A}=25^{\circ} \mathrm{C}, \pm \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$ unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{VDC}$ unless otherwise noted.

DISCUSSION OF PERFORMANCE

BASIC POWER SUPPLY AND SIGNAL CONNECTIONS

Figure 1 shows the proper connections for power supply and signal. Supplies should be decoupled with $1 \mu \mathrm{~F}$ tantalum capacitors as close to the amplifier as possible. To avoid gain and CMR errors introduced by the external circuit, connect grounds as indicated, being sure to minimize ground resistance.

FIGURE 1. Basic Power Supply and Signal Connections.

OFFSET ADJUSTMENT

Figure 2 shows the offset adjustment circuit for the INA106. This circuit will allow $\pm 3 \mathrm{mV}$ of adjustment and will not affect the gain accuracy or CMR.

FIGURE 2. Offset Adjustment.

MAINTAINING COMMON-MODE REJECTION

Two factors are important in maintaining high CMR: (1) resistor matching and tracking (the internal INA106 circuitry does this for the user) and (2) source impedance including its imbalance.

Referring to Figure 1, the CMR depends upon the match of the internal R_{4} / R_{3} ratio to the R_{1} / R_{2} ratio. A CMR of 106 dB requires resistor matching of 0.005%. To maintain 100 dB , minimum CMR to $+85^{\circ} \mathrm{C}$, the resistor TCR tracking must be better than $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. These accuracies are difficult and expensive to reliably achieve with discrete components.
Any source impedance adds directly to the input resistors, R_{1} and R_{3}, and will degrade $D C$ and AC CMR. Likewise any wiring resistance adds directly to any of the precision difference resistors. A resistance of 0.5Ω (0.005% of $10 \mathrm{k} \Omega$) will degrade the 106 dB CMR of the INA106; 5Ω will degrade the CMR to 86 dB .
When input filters are used preceding an instrumentation amplifier, care should also be taken to match RCs on the two input lines. For example, mismatched input filters for high frequencies will reduce the CMR at lower frequencies, e.g, 60 Hz . Differential filters will not degrade AC CMR.

RESISTOR NOISE IN THE INA106

Figure 3 shows the model for calculating resistor noise in the INA106. Resistors have Johnson noise resulting from thermal agitation. The expression for this noise is:

$$
\mathrm{E}_{\mathrm{RMS}}=\sqrt{4 \mathrm{KTRB}}
$$

Where: $\mathrm{K}=$ Boltzman's constant $\left(\mathrm{J} /{ }^{\circ} \mathrm{K}\right)$
$\mathrm{T}=$ Absolute temperature $\left({ }^{\circ} \mathrm{K}\right)$
$\mathrm{R}=$ Resistance (Ω)
$\mathrm{B}=$ Bandwidth (Hz)

FIGURE 3. Resistor Noise Model.

At room temperature, this noise becomes:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{N}}=1.3^{-10} \sqrt{\mathrm{R}} \tag{Hz}
\end{equation*}
$$

The three noise sources in Figure 2 are:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{N} 1}=1.3^{-10}\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right) \sqrt{\mathrm{R}_{1}} \\
& \mathrm{E}_{\mathrm{N} 2}=1.3^{-10} \sqrt{\mathrm{R}_{2}} \\
& \mathrm{E}_{\mathrm{N} 3}=1.3^{-10}\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right) \sqrt{\mathrm{R}_{3} \| \mathrm{R}_{4}}
\end{aligned}
$$

Adding as the root of the sums squared,

$$
\mathrm{E}_{\mathrm{NO}}=193 \mathrm{nV} \sqrt{\mathrm{~Hz}}
$$

RTI, with $A=10$,

$$
\mathrm{E}_{\mathrm{NI}}=19.3 \mathrm{nV} / \sqrt{\mathrm{Hz}}
$$

For example,
E_{NO} within a
$600 \mathrm{kHz} \mathrm{BW}=0.15 \mathrm{mV} \mathrm{VMS}$

$$
\begin{aligned}
&= 0.9 \mathrm{mVp}-\mathrm{p} \text { with a crest factor of } 6 \\
& \text { (statistically includes } 99.7 \% \text { of all } \\
& \text { noise peak occurrences) }
\end{aligned}
$$

This is the noise due to the resistors alone. It is included in the noise specification of the INA106.

APPLICATIONS CIRCUITS

The INA106 is ideally suited for a wide range of circuit functions. The following figures show many applications circuits.

FIGURE 4A. Precision Difference Amplifier.

FIGURE 4B. Difference Amplifier With Gain And CMR Adjust.

For the ultimate performance high gain instrumentation amplifier, the INA106 can be combined with state-of-the-art op amps. For low source impedance applications, an input stage using OPA37s will give the best low noise, offset, and temperature drift. At source impedances above about $10 \mathrm{k} \Omega$, the bias current noise of the OPA37 reacting with the input impedance begins to dominate the noise. For these applications, using an OPA111 or a dual OPA2111 FET input op amp will provide lower noise. For an electrometer grade IA, use the OPA128. (See table below.)

Using the INA106 for the difference amplifier also extends the input common-mode range of the instrumentation amplifier to $\pm 10 \mathrm{~V}$. A conventional IA with a unity-gain difference amplifier has an input common-mode range limited to $\pm 5 \mathrm{~V}$ for an output swing of $\pm 10 \mathrm{~V}$. This is because a unity-gain difference amp needs $\pm 5 \mathrm{~V}$ at the input for 10 V at the output, allowing only 5 V additional for common mode.

$\mathbf{A}_{1}, \mathbf{A}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{1}}$ (Ω)	$\mathbf{R}_{\mathbf{2}}$ $(\mathbf{k} \Omega)$	Gain $(\mathbf{V} / \mathbf{V})$	CMRR $(\mathbf{d B})$	$\mathbf{I}_{\mathrm{b}}(\mathbf{p A})$	Nolee at 1kHz $(\mathbf{n V} / \sqrt{\mathbf{H z})}$
OPA37A	50.5	2.5	1000	128	40000	4
OPA111B	202	10	1000	110	1	10
OPA128LM	202	10	1000	118	0.075	38

FIGURE 5. Precision Instrumentation Amplifier.

FIGURE 6. Precision Inverting Amplifier with Gain of -10 .

FIGURE 7. Precision Noninverting Amplifier with Gain of 10 .

FIGURE 8. Precision Noninverting Amplifier with Gain of 11 .

FIGURE 9. Precision Summing Amplifier with Weighted Inputs.

FIGURE 10. Voltage Follower with Input Protection.

FIGURE 11. Differential-Input, Low-Impedance, Microphone Preamplifier (20dB gain).

Gain $=1 / 10$
Also: \quad Gain $=-1 / 10$ by grounding R_{4} and driving R_{2}
Gain $=1 / 10$ differential driving both R_{2} and R_{4}.
The $100 \Omega, 10 \Omega, 0.22 \mu \mathrm{~F}$ network on the output assures stability by inserting a 70 kHz zero and 700 kHz pole to decrease the loop gain by 10 at 700 kHz . With the output taken at the junction of the 100Ω and 10Ω resistors, gain accuracy is maintained, and noise gain at the output remains at unity. For a 10V output swing, the load should be limited to $10 \mathrm{k} \Omega$ since the 100Ω resistor acts as a voltage divider with the load. Also the large signal danawiatn will de limited by the abiiity oi the amplifier to slew into the $0.22 \mu \mathrm{~F}$ capacitor. Assuming 10 mA output current and a $20 \mathrm{Vp}-\mathrm{p}$ output signal, the full power bandwidth will be 1.0 kHz . Since the circuit is a $10 / 1$ attenuator, this would assume a $200 \mathrm{Vp}-\mathrm{p}$ input signal. With a 20Vp-p input signal, the bandwidth would be 10 kHz .

FIGURE 12. Precision Attenuator.

FIGURE 13. $\pm 100 \mathrm{~V}$ Common-Mode Range Difference Amplifier.

The addition of an op amp to circuit of Figure 13 can eliminate the need for CMR and gain adjustments. CMR will be 20 dB lower than that of the INA106, which is specified in a gain of 10. Gain accuracy is set strictly by the R_{5}, R_{6} ratio and the initial gain accuracy of the INA106 ($A=1+R_{6} / R_{5} \pm .01 \%$). CMR can be adjusted by adding a 10Ω resistor in series with R_{1} (pin 2) and a 20Ω pot in series with R_{3} (pin 2). Gain and CMR adjustments do not interact.

FIGURE 14. $\pm 100 \mathrm{~V}$ Common-Mode Range Difference Amplifier Requiring No Adjustments.

Fast-Settling FET-Input Very High Accuracy INSTRUMENTATION AMPLIFIER

FEATURES

- LOW BIAS CURRENT: 50pA, max
- FAST SETTLING: $4 \mu \mathrm{~s}$ to 0.01%
- HIGH CMR: 106 dB , min; 90 dB at 10 kHz
- CONVENIENT INTERNAL GAINS: 1,10,100,200,500
- VERY-LOW GAIN DRIFT: 10 to 50ppm/ ${ }^{\circ} \mathrm{C}$
- LOW OFFSET DRIFT: $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- LOW COST
- PINOUT COMPATIBLE WITH AD524 AND AD624, allowing upgrading of many existing applications

4

DESCRIPTION

The INAI10 is a monolithic FET input instrumentation amplifier with a maximum bias current of 50 pA . The circuit provides fast settling of $4 \mu \mathrm{~s}$ to 0.01%. Laser trimming guarantees exceptionally good DC performance. Voltage noise is low, and current noise is virtually zero. Internal gain set resistors guarantee high gain accuracy and low gain drift. Gains of $1,10,100,200$, and 500 are provided.
The inputs are inherently protected by P-channel FETs on each input. Differential and commonmode voltages should be limited to $\pm \mathrm{V}_{\mathrm{cc}}$. When severe overvoltage exists, use diode clamps as shown in the application section.
The INA110 is ideally suited for applications requiring large input resistors for overvoltage protection or filtering. Input signals from high source impedances can easily be handled without degrading DC performance. Fast settling for rapid scanning data acquisition systems is now achievable with one component, the INA110.

APPLICATIONS

- Fast scanning rate multiplexed input data acquisition system amplitier
- Fast differential pulse amplifier
- High speed, low drift gain block
- Amplification of low level signals from high impedance sources and sensors
- Instrumentation amplifier with input low pass filtering using large series resistors
- Instrumentation amplifier with overvoltage input protection using large series resistors
- Amplification of signals from strain gauges, thermocouples, and RTDs

SPECIFICATIONS

ELECTRICAL
At $+25^{\circ} \mathrm{C}, \pm \mathrm{V}_{\mathrm{CC}}=15 \mathrm{VDC}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ unless otherwise noted.

PARAMETER	CONDITIONS	INA110AG			INA110BG/SG			INA110KP/KU			UNITS				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX					
GAIN															
Range of Gain Gain Equation ${ }^{(1)}$ Gain Error, DC: $G=1$ $\begin{aligned} & G=10 \\ & G=100 \\ & G=200 \\ & G=500 \end{aligned}$ Gain Temp. Coefficient: $G=1$ $\mathrm{G}=10$ $G=100$ $\mathrm{G}=200$ $G=500$ Nonlinearity, DC: $\begin{aligned} & \mathrm{G}=1 \\ & \mathrm{G}=10 \\ & \mathrm{G}=100 \\ & \mathrm{G}=200 \\ & \mathrm{G}=500 \end{aligned}$.	1	$\begin{gathered} 0.002 \\ 0.01 \\ 0.02 \\ 0.04 \\ 0.1 \\ \pm 3 \\ \pm 4 \\ \pm 6 \\ \pm 10 \\ \pm 25 \\ \pm 0.001 \\ \pm 0.002 \\ \pm 0.004 \\ \pm 0.006 \\ \pm 0.01 \end{gathered}$	800 0.04 0.1 0.2 0.4 1.0 ± 20 ± 20 ± 40 ± 60 ± 100 ± 0.01 ± 0.01 ± 0.02 ± 0.02 ± 0.04	$\mathrm{G}=$	$\left[40 K /\left(R_{G}\right.\right.$ $*$ 0.005 0.01 0.02 0.05 $*$ ± 2 ± 3 ± 5 ± 10 ± 0.0005 ± 0.001 ± 0.002 ± 0.003 ± 0.005	$\begin{array}{r} * \\ +50 \Omega)] \\ 0.02 \\ 0.05 \\ 0.1 \\ 0.2 \\ 0.5 \\ \pm 10 \\ \pm 10 \\ \pm 20 \\ \pm 30 \\ \pm 50 \\ \pm 0.005 \\ \pm 0.005 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \end{array}$	*			V/V V/V $\%$ $\%$ $\%$ $\%$ $\%$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$ ppm/ $/{ }^{\circ} \mathrm{C}$ \% of FS				
OUTPUT . ${ }^{\text {a }}$															
Voltage, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ Current Short-Circuit Current Capacitive Load	Over temp Over temp Stability	$\begin{gathered} \pm 10 \\ \pm 5 \end{gathered}$	$\begin{gathered} \pm 12.7 \\ \pm 25 \\ \pm 25 \\ 5000 \end{gathered}$		*	*		*	*		V mA mA pF				
INPUT															
OFFSET VOLTAGE ${ }^{(2)}$ Initial Offset: G, P U vs Temperature vs Supply	$\begin{aligned} V_{c c} & = \pm 6 \mathrm{~V} \text { to } \\ & \pm 18 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm(100+ \\ & 1000 / \mathrm{G}) \\ & \\ & \pm(2+ \\ & 20 / \mathrm{G}) \\ & \pm(4+ \\ & 60 / \mathrm{G}) \end{aligned}$	$\begin{gathered} \pm(500+ \\ 5000 / \mathrm{G}) \\ \\ \\ \pm(5+ \\ 100 / \mathrm{G}) \\ \pm(30+ \\ 300 / \mathrm{G}) \end{gathered}$		$\begin{aligned} & \pm(50+ \\ & 600 / \mathrm{G}) \\ & \pm(1+ \\ & 10 / \mathrm{G}) \\ & \pm(2+ \\ & 30 / \mathrm{G}) \end{aligned}$	$\begin{aligned} & \pm(250+ \\ & 3000 / \mathrm{G}) \\ & \\ & \pm(2+ \\ & 50 / \mathrm{G}) \\ & \pm(10+ \\ & 180 / \mathrm{G}) \end{aligned}$		$\begin{aligned} & \pm(200+ \\ & \text { 2000/G) } \end{aligned}$	$\pm(1000+$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} / \mathrm{V}$				
BIAS CURRENT Initial Bias Current Initial Offset Current Impedance: Differential Common-Mode	Each input		$\begin{gathered} 20 \\ 2 \\ 5 \times 10^{12} \\| 6 \\ 2 \times 10^{12} \\| 1 \end{gathered}$	100 50		10 1 $*$ $*$	50 25		*	*	pA pA $\Omega \\| p F$ $\Omega \\| p F$				
VOLTAGE RANGE Range, Linear Response CMR with $1 \mathrm{k} \Omega$ Source Imbalance: $\begin{aligned} & \mathrm{G}=1 \\ & \mathrm{G}=10 \\ & \mathrm{G}=100 \\ & \mathrm{G}=200 \\ & \mathrm{G}=500 \end{aligned}$	$\begin{gathered} \text { VIN Diff. }=0 V^{(3)} \\ \text { DC } \end{gathered}$	$\begin{gathered} \pm 10 \\ \\ 70 \\ 87 \\ 100 \\ 100 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} \pm 12 \\ \\ 90 \\ 104 \\ 110 \\ 110 \\ 110 \end{gathered}$		$\begin{gathered} 80 \\ 96 \\ 106 \\ 106 \\ 106 \end{gathered}$	$\begin{aligned} & 100 \\ & 112 \\ & 116 \\ & 116 \\ & 116 \end{aligned}$: 	*	*		V dB dB dB dB dB				
NOISE, Input ${ }^{(4)}$ Voltage, $\mathrm{f}_{\mathrm{o}}=10 \mathrm{kHz}$ $\mathrm{f}_{\mathrm{B}}=0.1 \mathrm{~Hz}$ to 10 Hz Current, $\mathrm{fo}_{0}=10 \mathrm{kHz}$ NOISE, Output ${ }^{(4)}$ Voltage, $\mathrm{f}_{\mathrm{o}}=10 \mathrm{kHz}$ $\mathrm{f}_{\mathrm{B}}=0.1 \mathrm{~Hz}$ to 10 Hz	- -		$\begin{gathered} 10 \\ 1 \\ 1.8 \\ \\ 65 \\ 8 \end{gathered}$								$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$ $\mu \mathrm{Vp}-\mathrm{p}$ $\mathrm{fA} \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mu \vee \mathrm{p}-\mathrm{p}$				
DYNAMIC RESPONSE															
Small Signal: $\begin{aligned} & \mathrm{G}=1 \\ & \mathrm{G}=10 \\ & \mathrm{G}=100 \\ & \mathrm{G}=200 \\ & \mathrm{G}=500 \end{aligned}$ Full Power Slew Rate Settling Time: $\begin{aligned} 0.1 \%, \mathrm{G} & =1 \\ \mathrm{G} & =10 \\ \mathrm{G} & =100 \\ \mathrm{G} & =200 \\ \mathrm{G} & =500 \end{aligned}$	$-3 d B$ $\begin{aligned} & V_{\text {out }}= \pm 10 V \\ & R_{L}=2 \mathrm{k} \Omega \\ & G=1 \text { to } 100 \end{aligned}$ $\mathrm{V}_{\mathrm{o}}=20 \mathrm{~V}$ step	$\begin{gathered} 190 \\ 12 \end{gathered}$	$\begin{gathered} 2.5 \\ 2.5 \\ 470 \\ 240 \\ 100 \\ 270 \\ 17 \\ \\ 4 \\ 2 \\ 3 \\ 5 \\ 11 \\ \hline \end{gathered}$		*		-				MHz MHz kHz kHz kHz kHz $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$				

ELECTRICAL (CONT)

PARAMETER	CONDITIONS	INA110AG			INA110BG/SG			INA110KP/KU			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Settling Time: $\begin{aligned} 0.01 \%, \mathrm{G} & =1 \\ \mathrm{G} & =10 \\ \mathrm{G} & =100 \\ \mathrm{G} & =200 \\ \mathrm{G} & =500 \end{aligned}$ Overload Recovery ${ }^{(5)}$	$V_{0}=20 \mathrm{~V} \text { step }$ 50\% overdrive		$\begin{gathered} 5 \\ 3 \\ 4 \\ 4 \\ 7 \\ 16 \\ 1 \end{gathered}$	$\begin{gathered} 12.5 \\ 7.5 \\ 7.5 \\ 12.5 \\ 25 \end{gathered}$.	*	* ${ }_{*}^{*}$		$*$ $*$ $*$ $*$ $*$ $*$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$ $\mu \mathrm{s}$
POWER SUPPLY											
Rated Voltage Voltage Range Quiescent Current	$\mathrm{V}_{0}=0 \mathrm{~V}$	± 6	$\begin{aligned} & \pm 15 \\ & \pm 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 18 \\ & \pm 4.5 \end{aligned}$	*		*	*		*	$\begin{gathered} V \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$
TEMPERATURE RANGE											
```Specification: A, B, K S Operation Storage 0JA```		$\begin{aligned} & -25 \\ & -55 \\ & -65 \end{aligned}$	100	$\begin{array}{r} +85 \\ +125 \\ +150 \end{array}$	$*$ -55 $*$ $*$	*	$*$ +125 $*$ $*$	$\begin{gathered} 0 \\ -25 \\ -40 \end{gathered}$	*	$\begin{aligned} & +70 \\ & +85 \\ & +85 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$

* Same as INA110AG.

NOTES: (1) Gains other than $1,10,100,200$, and 500 can be set by adding an external resistor, $\mathrm{R}_{\mathrm{G}}$, between pin 3 and pins 11,12 , and 16 . Gain accuracy is a function of $R_{G}$ and the internal resistors which have $a \pm 20 \%$ tolerance with $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift. (2) Adjustable to zero. (3) For differential input voltage other than zero, see Typical Performance Curves. (4) $\mathrm{V}_{\text {NOISE ATI }}=\sqrt{\mathrm{V}_{\mathrm{N}}^{2} \text { input }+\left(\mathrm{V}_{\text {N OUTPUT }} / G a i n\right)^{2}}$. (5). Time required for output to return from saturation to linear operation following the removal of an input overdrive voltage.

## ORDERING INFORMATION

|  |  |
| :--- | :--- | :--- |
| Basic Model Number |  |
| Performance Grade Code |  |
| A, B: $-25^{\circ} \mathrm{C}$ t t $+85^{\circ} \mathrm{C}$ |  |
| S: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
| K: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |  |
| Package Code |  |
| G: 16 -Pin Hermetic DIP |  |
| P: 16-Pin Plastic DIP |  |
| U: 16-Pin Small Outline Surface Mount |  |

## PIN CONFIGURATION

$-\operatorname{In}$	1	16	$\times 200$
+ In	2	15	Output Offset Adjust
RG	3	14	Output Offset Adjust
Input Offset Adjust	4	13	$\times 10$
Input Offset Adjust	5	12	$\times 100$
Reference	6	11	$\times 500$
$-V_{c c}$	7	10	Output Sense
$+V_{c c}$	8	9	Output

## ABSOLUTE MAXIMUM RATINGS



## MECHANICAL



## Small Outline Surface Mount



NOTE: Leads in true position within $0.010^{\prime \prime}(.25 \mathrm{~mm}) R$ at MMC at seating plane.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	.400	.416	10.16	10.57
A $_{1}$	.388	.412	9.86	10.46
B	.286	.302	7.26	7.67
B $_{1}$	.268	.286	6.81	7.26
C	.093	.109	2.36	2.77
D	.015	.020	0.38	0.51
G	.050 BASIC	1.27 BASIC		
H	.022	.038	0.56	0.97
J	.008	.012	0.20	0.30
L	.391	.421	9.93	
M	$5^{\circ}$ TYP		10.69	
N	.000	.012	0.00	

(1) Performance grade identifier box for small outline surface mount. Blank indicates K grade. Part is marked INA110U.


# Precision High Common-Mode Voltage Unity-Gain DIFFERENTIAL AMPLIFIER 

## FEATURES

- HIGH COMMON-MODE RANGE: $\pm 200 V D C$ OR AC prisk, centinueuc
- UNITY GAIN: 0.02\% GAIN ERROR, max
- EXCELLENT NONLINEARITY: 0.001\% max
- HIGH CMR: 86dB, min
- 8-PIN TO-99 OR PLASTIC DIP
- LOW COST


## DESCRIPTION

The INA117 is a precision unity-gain differential amplifier offering an extremely high common-mode input voltage range. As a monolithic circuit, it offers high reliability at low cost. The INA117 consists of a premium grade operational amplifier with an onchip precision resistor network. In instances where an isolation amplifier is used for its inherent high common-mode capabilities and not for galvanic isolation, the INA117 may be substituted at substantially lower cost, especially since no costly isolation power supply is needed.
The INA117 is completely self-contained and offers the user a highly versatile function. No adjustments to gain, offset or CMR are needed. This provides three important advantages: lower initial design engineering time, lower manufacturing assembly time and cost, and easy, cost-effective field repair of a precision circuit.

## APPLICATIONS

- AC OR DC POWER LINE MONITORING
- fest equirment
- Industrial process control
- GROUND BREAKER
- INDUSTRIAL DATA ACQUISITION SYSTEMS-INPUT BUFFER WITH OVER-VOLTAGE PROTECTION



## SPECIFICATIONS

## ELECTRICAL

At $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}= \pm 15 \mathrm{~V}$ unless otherwise noted.

PARAMETER	CONDITIONS	INA117AM			INA117BM			INA117P			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
GAIN   \|nitial ${ }^{(1)}$   Error vs Temperature Nonlinearity ${ }^{(2)}$	-		$\begin{gathered} 1 \\ 0.01 \\ 2 \\ 0.0002 \end{gathered}$	$\begin{gathered} 0.05 \\ 10 \\ 0.001 \end{gathered}$		*	$\begin{gathered} 0.02 \\ * \\ * \end{gathered}$		*		$\begin{gathered} \mathrm{V} / \mathrm{V} \\ \% \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \% \end{gathered}$
OUTPUT   Rated Voltage Rated Current Impedance Current Limit   Capacitive Load	$\begin{gathered} \mathrm{l}_{0}=+20 \mathrm{~mA},-5 \mathrm{~mA} \\ \mathrm{E}_{0}=10 \mathrm{~V} \end{gathered}$   To common   Stable operation	$\begin{gathered} 10.0 \\ +20,-5 \end{gathered}$	$\begin{gathered} 12 \\ \\ 0.01 \\ +49 \\ -13 \\ 1000 \end{gathered}$	.	*			*			$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \Omega \\ \mathrm{~mA} \\ \mathrm{pF} \end{gathered}$
INPUT   Impedance   Voltage Range   Common-mode Rejection ${ }^{(3)}$   vs Temperature: DC AC, 60 Hz	Differential Common-mode Differential Common-mode, continuous $T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }}$	$\begin{gathered} \pm 10 \\ \pm 200 \\ 74 \\ 66 \\ 66 \end{gathered}$	$\begin{aligned} & 800 \\ & 400 \\ & 80 \\ & 75 \\ & 80 \end{aligned}$		86   80   *	$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & 94 \\ & 90 \\ & 94 \end{aligned}$	.	*			$k \Omega$ $k \Omega$ $V$ $V D C, A C p k$ $d B$ $d B$ $d B$
OFFSET VOLTAGE   Initial   vs Temperature   vs Supply   vs Time	$\begin{gathered} \text { RTO }^{(4)} \\ T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ \pm V_{C C}=5 \mathrm{~V} \text { to } 18 \mathrm{~V} \end{gathered}$	74	$\begin{gathered} 120 \\ 8.5 \\ 90 \\ 200 \end{gathered}$	$\begin{gathered} 1000 \\ 40 \end{gathered}$	80	*	$\begin{gathered} 500 \\ 20 \end{gathered}$	*	*	*	$\begin{gathered} \mu \mathrm{V} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{mo} \end{gathered}$
OUTPUT NOISE VOLTAGE $\begin{aligned} & \mathrm{F}_{\mathrm{B}}=0.01 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{~F}_{\mathrm{O}}=10 \mathrm{kHz} \end{aligned}$	RTO ${ }^{(5)}$		$\begin{gathered} 25 \\ 550 \end{gathered}$			*			*		$\begin{aligned} & \mu V p-p \\ & n V / \sqrt{H z} \end{aligned}$
DYNAMIC RESPONSE   Gain Bandwidth Full Power Bandwidth Slew Rate Settling Time: 0.1\% 0.01\% 0.01\%	$\begin{gathered} -3 \mathrm{~dB} \\ \mathrm{~V}_{0}=20 \mathrm{Vp-p} \\ V_{0}=10 \mathrm{~V} \text { step } \\ V_{0}=10 \mathrm{~V} \text { step } \\ \mathrm{V}_{\mathrm{CM}}=10 \mathrm{~V} \text { step, } \mathrm{V}_{\text {DIFF }}=0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 30 \\ 2 \end{gathered}$	$\begin{aligned} & 200 \\ & \\ & 2.6 \\ & 6.5 \\ & 10 \\ & 4.5 \end{aligned}$		*	*		*	*	,	kHz   kHz   $\mathrm{V} / \mu \mathrm{s}$   $\mu \mathrm{s}$   $\mu \mathrm{s}$   $\mu \mathrm{s}$
POWER SUPPLY   Rated   Voltage Range   Quiescent Current	Derated performance $V_{\text {OUT }}=O V$	$\pm 5$	$\begin{gathered} \pm 15 \\ 1.5 \end{gathered}$	$\begin{gathered} \pm 18 \\ 2.0 \end{gathered}$	*	*	*	*	*	*	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$
TEMPERATURE RANGE   Specification   Operation   Storage		$\begin{aligned} & -25 \\ & -55 \\ & -65 \end{aligned}$		$\begin{aligned} & +85 \\ & +125 \\ & +150 \end{aligned}$	*		*	$\begin{gathered} 0 \\ -25 \\ -40 \end{gathered}$	-	$\begin{aligned} & +70 \\ & +85 \\ & +85 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

*Specification same as for INA117AM.
NOTES: (1) Connected as difference amplifier. (2) Nonlinearity is the maximum peak deviation from the best-fit straight line as a percent of full-scale peak-topeak output. (3) With zero source impedance (see Offset and CMR section). (4) Includes effects of amplifier's input bias and offset currents. (5) Includes effects of amplifier's input current noise and thermal noise contribution of resistor network.

MECHANICAL


PIN DESIGNATIONS


ORDEAING INFORMATION


## ABSOLUTE MAXIMUM RATINGS



## TYPICAL PERFORMANCE CURVES <br> $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \pm \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$ unless otherwise noted.



## DISCUSSION OF SPECIFICATIONS

Refer to Figure 1. Resistor networks at the amplifier input divide the input voltages down to levels suitable for the operational amplifier's common-mode and differential signal capabilities. Feedback around the operational amplifier then restores overall circuit gain to unity for differential signals, while preserving high common-mode rejection.

## BASIC POWER SUPPLY AND SIGNAL CONNECTIONS

Figure 1 also shows the proper connections for power supply and signal. Supplies should be decoupled with $1 \mu \mathrm{~F}$ tantalum capacitors as close to the amplifier as possible. To avoid gain and CMR errors introduced by the external circuit, connect grounds as indicated, being sure to minimize ground resistance.

## OFFSET AND COMMON-MODE REJECTION

Two factors are important in maintaining high CMR: resistor matching and tracking (already trimmed in the INA117 for the user) and source impedance.
CMR depends on the accurate matching of several resistor ratios. High accuracies needed to maintain the specified CMR and CMR temperature coefficient are difficult and expensive to reliably achieve with discrete components.


FIGURE 1. Basic Power Supply and Signal Connections.

Any external resistance imbalance adds directly to these resistor ratios. These imbalances can occur either directly in series with $R_{1}$ or $R_{3}$ or in series with $R_{4}$ or $R_{5}$. For example, $4 \Omega$ added in series with pin 1 or $76 \Omega$ in series with pin 2 will degrade CMR from 86 dB to 72 dB .
When input filters are used preceding an instrumentation amplifier, care should also be taken to match RCs on the two input lines. For example, mismatched input filters for high frequencies will reduce the CMR at lower frequencies, e.g., 60 Hz . Differential filters will not degrade AC CMR.
Figures 2a, b, and c show circuitry to allow trim of both CMR and DC offset. Use of these circuits will affect gain accuracy slightly.


FIGURE 2. CMR and Vos Adjustment.

## RESISTOR NOISE IN THE INA117

Figure 3 shows the model for calculating resistor noise in the INA117. Resistors have Johnson noise resulting from thermal agitation. The expression for this noise is:

$$
\mathrm{E}_{\mathrm{RMS}}=\sqrt{2 \pi \mathrm{KTRB}}
$$

Where: $\mathrm{K}=$ Boltzman's constant $\left(\mathrm{J} /{ }^{\circ} \mathrm{K}\right)$
$\mathrm{T}=$ Absolute temperature $\left({ }^{\circ} \mathrm{K}\right)$
$\mathrm{R}=$ Resistance $(\Omega)$
$B=$ Bandwidth $(\mathrm{Hz})$
At room temperature, this noise becomes:

$$
\mathrm{E}_{\mathrm{N}}=1.3 \times 10^{-10} \sqrt{\mathrm{R}} \quad(\mathrm{~V} / \sqrt{\mathrm{Hz}})
$$

The two noise sources in Figure 3 are:

$$
\begin{array}{ll}
\mathrm{E}_{\mathrm{N} 1}=1.3 \times 10^{-10} \sqrt{\mathrm{R}_{5}} & (\mathrm{~V} / \sqrt{\mathrm{Hz}}) \\
\mathrm{E}_{\mathrm{N} 2}=1.3 \times 10^{-10} \sqrt{\mathrm{R}_{4}} & (\mathrm{~V} / \sqrt{\mathrm{Hz}})
\end{array}
$$

Referred to output,

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{NO} 1}=\mathrm{E}_{\mathrm{N} 1}\left(\mathrm{R}_{2} / \mathrm{R}_{5}\right) \\
& \mathrm{E}_{\mathrm{NO} 2}=\mathrm{E}_{\mathrm{N} 2}\left[\left(\mathrm{R}_{2} / \mathrm{R}_{1} \| \mathrm{R}_{5}\right)+1\right]
\end{aligned}
$$

Adding as the root of the sums squared:

$$
\mathrm{E}_{\mathrm{NO}}=\sqrt{\mathrm{E}_{\mathrm{NO}_{1}}^{2}+\mathrm{E}_{\mathrm{NO} 2}^{2}} \quad(\mathrm{~V} / \sqrt{\mathrm{Hz}})
$$

$\mathrm{E}_{\mathrm{NO}}$ at a 200 kHz bandwidth
$=0.27 \mathrm{mVrms}$
$=1.6 \mathrm{mVp}-\mathrm{p}$ with a crest factor of 6 (statistically includes $99.7 \%$ of all noise peak occurrences)


FIGURE 3. Resistor Noise Model.

## USE OF THE COMPENSATION TERAINAL (Pin 8)

The design of the INAll7 involves use of large-area resistors, resulting in relatively large distributed capacitances between the resistors and the underlying epitaxial layer. To preserve circuit stability, it is necessary to minimize this capacitive effect on $\mathrm{R}_{2}$. Figure 4 shows a simplified equivalent circuit diagram. Careful layout of the epitaxial layer matches the voltage gradients across $\mathrm{R}_{2}$ and the epitaxial layer when pin 8 is grounded, minimizing the distributed capacitive effects. The epitaxial bulk resistance represents a DC load of about $15 \mathrm{k} \Omega$ on the amplifier output when pin 8 is grounded. If pin 8 is left ungrounded, distributed capacitance to AC ground is still reduced, but a net shunt capacitance remains. This effect can be used to advantage in some circuits; the bandwidth of the INA117 in the unity-gain differential amplifier configuration is reduced from 200 kHz to 80 kHz typically, and results in an output noise voltage reduction by a factor of 1.6. If the INA117 is used in other circuit configurations, the effects of the shunt capacitance should be carefully evaluated.


FIGURE 4. Simplified Equivalent Circuit Diagram.

## APPLICATIONS CIRCUITS

The INAl17 is ideally suited for a wide range of circuit functions. The following figures show many applications circuits.

## BATTERY CELL MONITOR

Batteries are often charged in series. The INA117 is ideal for directly monitoring the condition of each cell. Operating range is up to $\pm 200 \mathrm{~V}$, and differential fault conditions in this range will not damage the amplifier. Since the INAll7 requires no isolated front-end power, cost per cell is very low.


FIGURE 5. Battery Cell Monitor.


FIGURE 7. Leakage Current Monitor.

## BRIDGE AMPLIFIER LOAD CURRENT MONITOR

Bridge amplifiers are popular because they double the voltage swing possible across the load with any given power supply. In this circuit $A_{1}$ and $A_{2}$ form a bridge amplifier driving a load. $\mathrm{A}_{1}$ is connected as a follower and $\mathrm{A}_{2}$ as an inverter.
At low frequencies, a sense resistor could be inserted in series with the load and an instrumentation amplifier used to directly monitor the load current. Under high frequency or transient conditions, CMR errors limit the accuracy of this approach. An alternate approach is to measure the power amplifier supply currents. To understand how it works, notice that since essentially no current flows in the amplifier inputs, $\mathrm{I}_{\text {LOAD }}=\mathrm{I}_{1}-\mathrm{I}_{2}$.
$A_{3}$ and $A_{4}$ are INA117s used to monitor $A_{1}$ supply
currents $\mathrm{I}_{1}$ and $\mathrm{I}_{2}$ across sense resistors $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$. Since the INA117 has a $\pm 200 \mathrm{~V}$ CMV range, the inputs (pins 2 and 3) can be tied to $\pm \mathrm{V}_{\mathrm{CC}}$ as long as the differential input is less than 10 V .

$$
\begin{array}{ll}
\text { If } & \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R} \\
\text { then } & \mathrm{e}_{1}=\mathrm{I}_{1} \times \mathrm{R} \\
& \mathrm{e}_{2}=-\mathrm{I}_{2} \times \mathrm{R} \\
\text { and } & \mathrm{e}_{1}+\mathrm{e}_{2}=\mathrm{I}_{\text {LOAD }} \times \mathrm{R}
\end{array}
$$

$\mathrm{A}_{5}$ is an INA105 difference amplifier connected as a noninverting summing amplifier with a gain of 5 . The accurate matching of the two $25 \mathrm{k} \Omega$ input resistors makes a very accurate summing amplifier.

$$
\begin{aligned}
& \mathrm{e}_{0}=5\left(\mathrm{e}_{1}+\mathrm{e}_{2}\right)=5\left(\mathrm{I}_{\mathrm{LOAD}} \times \mathrm{R}\right) \\
& \text { since } \mathrm{R}=0.2 \Omega \\
& \mathrm{e}_{0}=\mathrm{I}_{\mathrm{LOAD}}(\mathrm{lV} / \mathrm{A})
\end{aligned}
$$



FIGURE 8. Bridge Amplifier Load Current Monitor.


FIGURE 9. Power Supply Cürrent Monitor.


FIGURE 10. Inverting Amplifier, Gain $=18$.


FIGURE 11. Three-Phase Current Monitor.


FIGURE 12. Inverting Amplifier, Gain $=19$.

## Precision, Low Drift 4 mA to 20 mA TWO-WIRE TRANSMITTER

## FEATURES

- INSTRUMENTATION AMPLIFIER INPUT
! Loun ntfee! !n!tage, 3n, ! ! max
Low Voltage Drift, $0.75 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
Low Nonlinearity, 0.01\% max
- true two-wire operation

Power and Signal on One Wire Pair Current Mode Signal Transmission High Noise Immunity

- dUAL MATCHED CURRENT SOURCES
- WIDE SUPPLY RANGE, 11.6V to 40V
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ SPECIFICATION RANGE
- SMALL 14-PIN DIP PACKAGE, CERAMIC AND PLASTIC
APPLICATIONS
- INDUSTRIAL PROCESS CONTROL Prassure Transmitters
Temperature Transmitters Millivolt Transmitters
- RESISTANCE BRIDGE INPUTS
- THERMOCOUPLE INPUTS
- RTD INPUTS
- CURRENT SHUNT (mV) INPUTS
- PRECISION DUAL CURRENT SOURCES
- AUTOMATED MANUFACTURING
- POWER PLANT/ENERGY SYSTEM MONITORING


## DESCRIPTION

The XTR101 is a microcircuit, 4 mA to 20 mA , twowire transmitter containing a high accuracy instrumentation amplifier (IA), a voltage-controlled output current source, and dual-matched precision current reference. This combination is ideally suited for remote signal conditioning of a wide variety of transducers such as thermocouples, RTDs, thermistors, and strain gauge bridges. State-of-the-art design and laser-trimming, wide temperature range operation and small size make it very suitable for industrial process control applications. In addition the optional external transistor allows even higher precision.
The two-wire transmitter allows signal and power to be supplied on a single wire-pair by modulating the power supply current with the input signal source. The transmitter is immune to voltage drops from long runs and noise from motors, relays, actuators, switches, transformers, and industrial equipment. It
can be used by OEMs producing transmitter modules or by data acquisition system manufacturers. Also, the XTR101 is generally very useful for low-noise, current-mode signal transmission.


## SPECIFICATIONS

## ELECTRICAL

At $T_{A}=+25^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{CC}}=24 \mathrm{VDC}, R_{\mathrm{L}}=100 \Omega$ with external transistor connected unless otherwise noted.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} \& \multirow[b]{2}{*}{CONDITIONS/DESIGNATION} \& \multicolumn{3}{|c|}{XTR101AG} \& \multicolumn{3}{|c|}{XTR101BG} \& \multicolumn{3}{|c|}{XTR101AP} \& \multirow[b]{2}{*}{UNITS} \\
\hline \& \& MIN \& TYP \& MAX \& MIN \& TYP \& MAX \& MIN \& TYP \& MAX \& \\
\hline \multicolumn{12}{|l|}{OUTPUT AND LOAD CHARACTERISTICS} \\
\hline \begin{tabular}{l}
Current \\
Current Limit \\
Offset Current Error vs Temperature \\
Full Scale Output Current Error \\
Power Supply Rejection \\
Power Supply Voltage \\
Load Resistance
\end{tabular} \& \begin{tabular}{l}
Linear Operating Region Derated Performance
\[
\begin{gathered}
\text { los, } 10=4 \mathrm{~mA} \\
\Delta \mathrm{los} / \Delta T \\
\text { Full Scale }=20 \mathrm{~mA}
\end{gathered}
\] \\
\(V_{c c}\), pins 7 and 8, compliance \({ }^{(1)}\)
\[
\begin{aligned}
\& \text { At } V_{c c}=+24 \mathrm{~V}, 10=20 \mathrm{~mA} \\
\& \text { At } V_{c c}=+40 \mathrm{~V}, 10=20 \mathrm{~mA}
\end{aligned}
\]
\end{tabular} \& \[
\begin{gathered}
4 \\
3.8 \\
\\
\\
\\
110 \\
+11.6
\end{gathered}
\] \& \[
\begin{gathered}
28 \\
\pm 3.9 \\
\pm 10.5 \\
\pm 20 \\
125
\end{gathered}
\] \& \[
\begin{gathered}
\hline 20 \\
22 \\
38 \\
\pm 10 \\
\pm 20 \\
\pm 40 \\
+40 \\
600 \\
1400
\end{gathered}
\] \&  \& \(*\)
\(\pm 2.5\)
\(\pm 8\)
\(\pm 15\) \& \[
\begin{gathered}
* \\
* \\
* \\
\pm 6 \\
\pm 15 \\
\pm 30 \\
* \\
*
\end{gathered}
\] \&  \& 31
\(\pm 8.5\)
\(\pm 10.5\)
\(\pm 30\)
122 \& \[
\begin{gathered}
* \\
* \\
* \\
\pm 19 \\
\pm 20 \\
\pm 60 \\
\\
* \\
600 \\
1400
\end{gathered}
\] \& mA
mA
mA
\(\mu \mathrm{A}\)
\(\mathrm{ppm}, \mathrm{FS} /{ }^{\circ} \mathrm{C}\)
\(\mu \mathrm{A}\)
dB
VDC
\(\Omega\)
\(\Omega\) \\
\hline \multicolumn{12}{|l|}{SPAN} \\
\hline Output Current Equation Span Equation vs Temperature Untrimmed Error \({ }^{(2)}\) Nonlinearity Hysteresis Dead Band \& \begin{tabular}{l}
\(R_{S}\) in \(\Omega, e_{1}\) and \(e_{2}\) in \(V\) \\
\(R_{s}\) in \(\Omega\) \\
Excluding TCR of \(\mathrm{R}_{\mathrm{s}}\) \(\varepsilon_{\text {Span }}\) \\
\(\varepsilon_{\text {nonlinearity }}\)
\end{tabular} \& -5 \& \[
\begin{gathered}
\pm 30 \\
-2.5 \\
0 \\
0
\end{gathered}
\] \& \[
\begin{gathered}
i_{0}=4 m \\
\pm 100 \\
0 \\
0.01
\end{gathered}
\] \& \[
\begin{gathered}
A+10 . \\
S=10
\end{gathered}
\] \& \[
\begin{aligned}
\& 16 U+14 \\
\& 016 U+(4
\end{aligned}
\] \& \[
\left.\left.0 / R_{s}\right)\right]\left(e_{2}\right.
\]
\[
\left.\left.40 / R_{s}\right)\right]
\] \& \& * \& * \& A/V \(/{ }^{\circ} \mathrm{Cpm} /{ }^{\circ} \mathrm{C}\)
\(\%\)
\(\%\)
\(\%\)
\(\%\) \\
\hline \multicolumn{12}{|l|}{INPUT CHARACTERISTICS} \\
\hline \begin{tabular}{l}
Impedance: Differential \\
Common-Mode \\
Voltage Range, Full Scale \\
Offset Voltage \\
vs Temperature \\
Bias Current \\
vs Temperature \\
Offset Current \\
vs Temperature \\
Common-Mode Rejection \({ }^{(4)}\) \\
Common-Mode Range
\end{tabular} \&  \& 0

90

4 \& $$
\begin{gathered}
\hline 0.4 \| 3 \\
10 \| 3 \\
\pm 30 \\
\pm 0.75 \\
60 \\
0.30 \\
10 \\
0.1 \\
100
\end{gathered}
$$ \& \[

$$
\begin{gathered}
1 \\
\pm 60 \\
\pm 1.5 \\
150 \\
1 \\
\pm 30 \\
0.3 \\
\\
6
\end{gathered}
$$
\] \& * \& $*$

$*$
$\pm 20$
$\pm 0.35$
$*$
$*$
$*$
$*$
$*$ \& $*$
$\pm 30$
$\pm 0.75$
$*$
$*$
$\pm 20$
$*$ \& * \& * \& $*$
$\pm 100$
$*$
$*$
$*$
$*$
$*$ \& $G \Omega \| p F$ $G \Omega \| p F$ V $\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ nA $n A /{ }^{\circ} \mathrm{C}$ nA $n A /{ }^{\circ} \mathrm{C}$ dB V <br>
\hline \multicolumn{12}{|l|}{CURRENT SOURCES} <br>

\hline | Magnitude |
| :--- |
| Accuracy |
| vs Temperature |
| vs $V_{c c}$ |
| vs Time |
| Compliance Voltage |
| Ratio Match |
| Accuracy vs Temperature |
| vs $V_{c c}$ vs Time |
| Output Impedance | \& | $V_{C C}=24 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 8}-V_{\text {PIN } 10,11}=$ $19 \mathrm{~V}, \mathrm{R}_{2}=5 \mathrm{k} \Omega$, Figure 5 |
| :--- |
| With respect to pin 7 Tracking $1-I_{\text {reF }}, /_{\text {ReF } 2}$ | \& 0

10 \& $$
\begin{gathered}
1 \\
\pm 0.06 \\
\pm 50 \\
\pm 3 \\
\pm 8 \\
\\
\pm 0.014 \\
. \\
\pm 10 \\
\pm 1 \\
20
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\\
\pm 0.17 \\
\pm 80 \\
\\
v_{c c}-3.5 \\
\pm 0.06 \\
\pm 15
\end{gathered}
$$
\] \& * \& $\pm 0.025$ $\pm 30$ * *

$$
\pm 0.009
$$ \& \[

$$
\begin{gathered}
\pm 0.075 \\
\pm 50 \\
\\
\\
\pm 0.04 \\
10
\end{gathered}
$$

\] \& * \& | $\pm 0.2$ |
| :--- |
| * |
| * |
| * |
| $\pm 0.031$ |
| * |
| 15 | \& \[

$$
\begin{gathered}
\pm 0.37 \\
* \\
* \\
\pm 0.088
\end{gathered}
$$
\] \& mA

$\%$
$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{ppm} / \mathrm{V}$
$\mathrm{ppm} / \mathrm{month}$
V
$\%$
$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{ppm} / \mathrm{V}$
$\mathrm{ppm} / \mathrm{month}$
$\mathrm{m} \Omega$ <br>
\hline \multicolumn{12}{|l|}{TEMPERATURE RANGE} <br>

\hline | Specification |
| :--- |
| Operating |
| Storage | \& \& \[

$$
\begin{aligned}
& -40 \\
& -55 \\
& -55
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& +85 \\
& +125 \\
& +165
\end{aligned}
$$

\] \& * \& \& * \& \[

$$
\begin{aligned}
& -40 \\
& -40 \\
& -55 \\
& \hline
\end{aligned}
$$

\] \& \& \[

$$
\begin{gathered}
+85 \\
+85 \\
+125
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
$$
\] <br>

\hline
\end{tabular}

*Same as XTR101AG.
NOTES: (1) See Typical Performance Curves. (2) Span error shown is untrimmed and may be adjusted to zero. (3) $e_{1}$ and $\theta_{2}$ are signals on the $-\mathbb{I N}$ and $+I N$ terminals with respect to the output, pin 7 . While the maximum permissible $\Delta \mathrm{e}$ is 1 V , it is primarily intended for much lower input signal levels, e.g., 10 mV or 50 mV full scale for the XTR101A and XTR101B grades respectively. 2 mV FS is also possible with the B grade, but accuracy will degrade due to possible errors in the low value span resistance and very high amplification of offset, drift, and noise. (4) Offset voltage is trimmed with the application of a 5 V common-mode voltage. Thus the associated common-mode error is removed. See Application Information section in PDS627.

## ABSOLUTE MAXIMUM RATINGS



PIN DESIGNATIONS


MECHANICAL


## Low Cost, High Voltage, Wide Bandwidth Standard Hermetic DIP SIGNAL ISOLATION BUFFER AMPLIFIERS

## FEATURES

- INDUSTRY'S FIRST HERMETIC ISOLATION AMPLIFIERS AT LOW COST
- EASY-TO-USE COMPLETE CIRCUIT
- Rugged barrier, hV ceramic capacitors
- 100\% TESTED FOR HIGH VOLTAGE bREAKDOWN

IS0102: 4000Vrms/10s, 1500Vrms/1min
ISO106: 8000Vpk/10s, 3500Vrms/1min

- ULTRA HIGH IMR: 125 dB min at 60 Hz , ISO106
- WIDE INPUT RANGE: -IOV to + 10V
- WIDE BANDWIDTH: 70kHz
- VOLTAGE REFERENCE OUTPUT: SUDC


## DESCRIPTION

The ISO102 and ISO106 isolation buffer amplifiers are two members of a new series of low cost isolation products from Burr-Brown. They have the same electrical performance and differ only in continuous isolation voltage rating and package length. The ISO102 is rated for 1500 Vrms in a 24 -pin DIP. The ISO106 is rated for 3500 Vrms in a 40 -pin DIP. Both side-braze DIPs are 600 mil wide and have industry standard package dimensions with the exception of missing pins between input and output stages. This permits utilization of automatic insertion techniques in production. The three-chip hybrid with its generous high voltage spacing is easy to use (no external components are required).
Each buffer accurately isolates $\pm 10 \mathrm{~V}$ analog signals by digitally encoding the input voltage and uniquely coupling across a differential ceramic capacitive barrier. This design is nearly immune to variations in the barrier voltage. All elements necessary for operation are contained within the DIP. This provides low cost compact signal isolation in a hermetic package.

## APPLICATIONS

- INDUSTRIAL PROCESS CONTROL Transducer channel isolator for thermocouples, RTDs, pressure bridges, flow meters
- 4mA TO 20mA LOOP ISOLATION
- motor and scr control
- gROUND LOOP ELIMINATION
- BIOMEDICAL/ANALYTICAL MEASUREMENTS
- POWER PLANT MONITORING
- dATA ACQUISITION/TEST EQUIPMENT ISOLATION
- MILITARY EQUIPMENT


[^5]
## SPECIFICATIONS

## ELECTRICAL

At $T_{A}+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC2}}= \pm 15 \mathrm{~V}$ unless otherwise noted.

PARAMETER	CONDITIONS	ISO102, ISO106			ISO102B, ISO106B			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
ISOLATION   Voltage   Rated Continuous ${ }^{\prime \prime \prime}$   ISO102: AC. 60 Hz DC   ISO106: AC. 60 Hz DC   Test Breakdown, AC. 60 Hz ISO102 ISO106   Isolation-Mode Rejection ${ }^{\text {121 }}$   AC: ISO102   ISO106   DC   Barrier Resistance   Barrier Capacitance Leakage Current	$\begin{gathered} T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ 10 \text { seconds } \\ 10 \text { seconds } \\ V_{\text {ISO }}=- \text { Rated Continuous, } 60 \mathrm{~Hz} \\ \\ V_{\text {ISO }}=240 \mathrm{Vrms}, 60 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 1500 \\ & 2121 \\ & 3500 \\ & 4950 \\ & \\ & 4000 \\ & 8000 \\ & 115 \\ & 125 \\ & \\ & 140 \end{aligned}$	$\begin{gathered} 120 \\ 1 \\ 130 \\ 0.3 \\ 160 \\ 0.01 \\ 10^{14} \\ 6 \\ 0.5 \end{gathered}$	2   0.6   0.10   1.0				Vrms VDC Vrms VDC Vrms $V p k$ $d B$ $\mu \mathrm{Vrms} / V$ $d B$ $\mu \mathrm{Vrms} / V$ $d B$ $\mu \mathrm{VDC} / \mathrm{V}$ $\Omega$ pF $\mu \mathrm{Arms}$
G.n! ! !   Nominal Gain Initial Error ${ }^{13 \prime}$   Gain vs Temperature Nonlinearity ${ }^{(4)}$	$\mathrm{V}_{0}=10 \mathrm{~V}$ to +10 V		$\begin{gathered} 1 \\ \pm 0.1 \\ \pm 20 \\ \pm 0.04 \end{gathered}$	$\begin{gathered} \pm 0.25 \\ \pm 50 \\ \pm 0.075 \end{gathered}$		$\begin{gathered} \pm 12 \\ \pm 0.02 \end{gathered}$	$\begin{gathered} * \\ \pm 25 \\ \pm 0.025 \end{gathered}$	$\begin{gathered} \text { V/V } \\ \text { \% FSR } \\ \text { ppm FSR } /{ }^{\circ} \mathrm{C} \\ \text { \% FSR } \end{gathered}$
INPUT OFFSET VOLTAGE   Initial Offset   vs Temperature vs Power Supplies ${ }^{(5)}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ \text { Input Stage, } \mathrm{V}_{\mathrm{CC} 1}= \pm 10 \mathrm{~V} \text { to } \pm 20 \mathrm{~V} \\ \text { Output Stage, } \mathrm{V}_{\mathrm{CC} 2}= \pm 10 \mathrm{~V} \text { to } \pm 20 \mathrm{~V} \end{gathered}$		$\begin{gathered} \pm 20 \\ \pm 250 \\ 3.7 \\ -3.7 \end{gathered}$	$\begin{gathered} \pm 70 \\ \pm 500 \end{gathered}$		$*$ $\pm 150$ $*$ $*$	$\pm 250$	$\begin{gathered} \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mathrm{mV} / \mathrm{V} \\ \mathrm{mV} / \mathrm{V} \end{gathered}$
INPUT   Voltage Range   Resistance   Capacitive	Rated Operation	$\begin{array}{r} -10 \\ 75 \end{array}$	$\begin{gathered} 100 \\ 5 \end{gathered}$	+10	*	*	*	$\begin{gathered} \mathrm{V} \\ \mathrm{k} \Omega \\ \mathrm{pF} \end{gathered}$
OUTPUT   Voltage Range   Current Drive   Short Circuit Current   Ripple Voltage ${ }^{(6)}$   Resistance   Capacitive Load Drive Capability   Overload Recovery Time, 0.1\%	Rated Operation Derated Operation $\mathrm{f}=0.5 \mathrm{MHz} \text { to } 1.5 \mathrm{MHz}$ $\left\|\mathrm{V}_{0}\right\|>12 \mathrm{~V}$	$\begin{gathered} -10 \\ -12 \\ \pm 5 \\ 9 \end{gathered}$   10000	$\begin{gathered} 20 \\ 3 \\ 0.3 \\ 30 \end{gathered}$	$\begin{gathered} +10 \\ +12 \\ 50 \\ \\ 1 \end{gathered}$		* ${ }_{*}$		$\begin{gathered} V \\ \mathrm{~V} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mathrm{mVp-p} \\ \Omega \\ \mathrm{pF} \\ \mu \mathrm{~s} \\ \hline \end{gathered}$
OUTPUT VOLTAGE NOISE   Voltage: $\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz $f=0.1 \mathrm{~Hz} \text { to } 70 \mathrm{kHz}$   Dynamic Range ${ }^{(7)}: f=0.1 \mathrm{~Hz}$ to 70 kHz   $\mathrm{f}=0.1 \mathrm{~Hz}$ to 280 Hz	12-bit resolution, 1LSB, 20VFS 16-bit resolution, 1LSB, 20VFS		50 16 74 96			*		$\begin{gathered} \mu \vee p-p \\ \mu \mathrm{~V} / \sqrt{\mathrm{Hz}} \\ d \mathrm{~B} \\ \mathrm{~dB} \end{gathered}$
FREQUENCY RESPONSE   Small Signal Bandwidth   Full Power Bandwidth, 0.1\% THD   Slew Rate   Settling Time, 0.1\%   Overshoot, Small Signal ${ }^{(8)}$	$\begin{gathered} V_{0}= \pm 10 \mathrm{~V} \\ V_{0}= \pm 10 \mathrm{~V} \\ V_{0}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ \mathrm{C}_{1}=\mathrm{C}_{2}=0 \end{gathered}$		$\begin{gathered} 70 \\ 5 \\ 0.5 \\ 100 \\ 40 \\ \hline \end{gathered}$			*		$\begin{gathered} \mathrm{kHz} \\ \mathrm{kHz} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \% \end{gathered}$
VOLTAGE REFERENCES   Voltage Output, Ref1, Ref2 vs Temperature   vs Supplies vs Load   Current Output .   Short Circuit Current	No Load .	$\begin{gathered} +4.995 \\ \\ -0.1 \\ 6 \end{gathered}$	$\begin{gathered} +5.00 \\ \pm 5 \\ 10 \\ 400 \\ \\ 14 \end{gathered}$	$\begin{gathered} +5.005 \\ 20 \\ \\ 1000 \\ +5 \\ 30 \end{gathered}$	*			VDC   $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$   $\mu \mathrm{V} / \mathrm{V}$   $\mu \mathrm{V} / \mathrm{mA}$   mA   mA

ELECTRICAL (CONT)

PARAMETER	CONDITIONS	ISO102, ISO106			ISO102B, ISO106B			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
POWER SUPPLIES   Rated Voltage, $\pm \mathrm{V}_{\mathrm{cc} 1}, \pm \mathrm{V}_{\mathrm{cc}}$   Voltage Range   Quiescent Current: $+V_{\text {ccı }}$   $-V_{\mathrm{cc}}$   $+V_{c c 2}$   $-V_{c c 2}$   Power Dissipation: $\pm \mathrm{V}_{\mathrm{cc}}$   $\pm \mathrm{V}_{\mathrm{cc} 2}$	Rated Performance   No Load	$\pm 10$	$\begin{aligned} & \pm 15 \\ & \\ & +11 \\ & -9 \\ & +25 \\ & -15 \\ & 300 \\ & 600 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & +15 \\ & -12 \\ & +33 \\ & -20 \\ & 400 \\ & 800 \\ & \hline \end{aligned}$	*	$*$ $*$ $*$ $*$ $*$ $*$ $*$	$*$ $*$ $*$ $*$ $*$ $*$ $*$	V   V   mA   mA   mA   mA   mW   mW
TEMPERATURE RANGE   Specification   Operating ${ }^{(9)}$   Storage   Thermal Resistance, $\theta_{\mathrm{JA}}$		$\begin{aligned} & -25 \\ & -55 \\ & -65 \end{aligned}$	40	$\begin{array}{r} +85 \\ +125 \\ +150 \end{array}$	*	*	*	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$

* Same as ISO102, ISO106.

NOTES: (1) $100 \%$ tested at rated continuous for 1 minute. (2) Isolation-mode rejection is the ratio of the change in output voltage to a change in isolation barrier voltage. It is a function of frequency as shown in the Typical Performance Curves. This is specified for barrier voltage slew rates not exceeding $100 \mathrm{~V} / \mu \mathrm{s}$. (3) Adjustable to zero. FSR = Full Scale Range $=20 \mathrm{~V}$. (4) Nonlinearity is the peak deviation of the output voltage from the best fit straight line. It is expressed as the ratio of deviation to FSR. (5) Power Supply Rejection = change in Vos $/ 20 \mathrm{~V}$ supply change. (6) Ripple is the residual component of the barrier carrier frequency generated internally. (7) Dynamic Range $=$ FSR/(Voltage Spectral Noise Density $\times$ square root of User Bandwidth). (8) Overshoot can be eliminated by band-limiting. (9) See Typical Performance Curve E for limitations.

## ABSOLUTE MAXIMUM RATINGS



MECHANICAL


ORDERING INFORMATION



## PIN DESCRIPTIONS

$\pm \mathrm{V}_{\mathrm{cc} 1}$, Common $_{1}$	Positive and negative power supply voltages and common (or ground) for the input stage. Common ${ }_{1}$ is the analog reference voltage for input signals.
$\pm \mathrm{V}_{\text {cc2 }}$,   $\mathrm{Common}_{2}$	Positive and negative power supply voltages and common (or ground) for the ouptut stage. Common $n_{2}$ is the analog reference voltage for output signals. The voltage between Common and $_{1} \mathrm{Common}_{2}$ is the isolation voltage and appears across the internal high voltage barrier.
Vin	stage supplies. Output signal swing is limited only by the output supply voltages.
Gain Adjust	This pin is an optional signal input. A series $5 \mathrm{k} \Omega$ potentiometer between this pin and the input signal allows a guaranteed $\pm 1.5 \%$ gain adjustment range. When gain adjustment is not required, the Gain Adjust should be left open. Figure 4 illustrates the gain adjustment connection.
Reference ${ }_{1}$	+5 V reference output. This low drift zener voltage reference is necessary for setting the bipolar offset point of the input stage. This pin must be strapped to either Offset or Offset Adjust to allow the isolation amplifier to function. The reference is often useful for input signal conditioning circuits. See Typical Performance Curve K for the effect of offset voltage change with reference loading. Reference ${ }_{1}$ is identical to, but independent of, Reference ${ }_{2}$. This output is short circuit protected.
Reference ${ }_{2}$	+5 V reference output. This reference circuit is identical to, but independent of, Reference ${ }_{1}$. It controls the bipolar offset of the output stage through an internal connection. This output is short circuit protected.
Offset	Offset input. This input must be strapped to Reference, unless user adjustment of bipolar offset is required.
Offset Adjust	This pin is for optional offset control. When connected to the Reference, pin through a $1 \mathrm{k} \Omega$ potentiometer, $\pm 150 \mathrm{mV}$ of adjustment range is guaranteed. Under this condition, the Offset pin should be connected to the Offset Adjust pin. When offset adjustment is not required, the Offset Adjust pin is left open. See Figure 4.
Digital Common	Digital common or ground. This separate ground carries currents from the digital portions of the output stage circuit. The best grounding practices require that digital common current does not flow in analog common connections. In most systems the physical connection between analog and digital commons must be at the system power supplies terminal to insure digital noise is kept out of the analog signal. Difference in potentials between the Common ${ }_{2}$ and Digital Common pins can be $\pm 1 \mathrm{~V}$. See Figure 2.
Vout	Signal output. Because the isolation amplifier has unity gain, the output signal is ideally identical to the input signal. The output is low impedance and is short-circuit-protected.
$\mathrm{C}_{1}, \mathrm{C}_{2}$	Capacitors for small signal bandwidth control. These pins connect to the internal rolloff frequency controlling nodes of the output lowpass filter. Additional capacitance added to these pins will.modify the bandwidth of the buffer. $\mathrm{C}_{2}$ is always twice the value of $\mathrm{C}_{1}$. See Typical Performance Curve B for the relationship between bandwidth and $C_{1}$ and $C_{2}$. When no connections are made to these pins, the full small signal bandwidth is maintained. Be sure to shield $C_{1}$ and $C_{2}$ pins from high electric fields on the PC board. This preserves $A C$ Isolation Mode Rejection by reducing capacitive coupling effects.

## TYPICAL PERFORMANCE CURVES

$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}= \pm 15 \mathrm{VDC}$ unless otherwise noted.





## TYPICAL PERFORMANCE CURVES (CONT) <br> $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}= \pm 15 \mathrm{VDC}$ unless otherwise noted


K. EFFECT OF REFERENCE LOADING


## THEORY OF OPERATION

The ISO102 and ISO106 have no galvanic connection between the input and output. The analog input signal referenced to the input common is accurately duplicated at the output referenced to the output common. Because the barrier information is digital, potentials between the
two commons can assume a wide range of voltages and frequencies without influencing the output signal. Signal information remains undisturbed until the slew rate of the barrier voltage exceeds $100 \mathrm{~V} / \mu \mathrm{s}$. The amplifier is protected from damage for slew rates up to $100,000 \mathrm{~V} / \mu \mathrm{s}$.


FIGURE 1. Simplified Diagram of ISO102 and ISO106.

A simplified diagram of the ISO102 and ISOI06 is shown in Figure 1. The design consists of an input voltagecontrolled oscillator (VCO) also known as a voltage-tofrequency converter (VFC), differential capacitors, and output phase lock loop (PLL). The input VCO drives digital levels directly into the two 3 pF barrier capacitors. The digital signal is frequency modulated and appears differentially across the barrier while the externally applied isolation voltage appears common-mode.

A sense amplifier detects only the differential information. The output stage decodes the frequency modulated signal by the means of a PLL. The feedback of the PLL employs a second VCO that is identical to the encoder VCO. The PLL forces the second VCO to operate at the same frequency (and phase) as the encoder VCO; therefore, the two VCOs have the same input voltage. The input voltage of the decoder VCO serves as the isolation buffer's output signal after passing through a 100 kHz second order active filter.

## ABOUT THE BARRIER

For any isolation product, barrier composition is of paramount importance in achieving high reliability. Both the ISO102 and ISO106 utilize two 3pF high voltage ceramic coupling capacitors. They are constructed of tungsten thick film deposited in a spiral pattern on a ceramic substrate. Capacitor plates are buried in the package, making the barrier very rugged and hermetically sealed. Capacitance results from the fringing electric fields of adjacent metal runs. Dielectric strength exceeds 10 kV and resistance is typically $10{ }^{14} \Omega$. Input and output circuitry are contained in separate solder-sealed cavities, resulting in the industry's first fully hermetic hybrid isolation amplifier.
The ISO102 and ISO106 are free from partial discharge at rated voltages. Partial discharge is a form of localized breakdown that degrades the barrier over time. Since it does not bridge the space across the barrier, it is difficult to detect. Both isolation amplifiers have been extensively evaluated at high temperature and high voltage.

## POWER SUPPLY AND SIGNAL CONNECTIONS

Figure 2 shows the proper power supply and signal connections. Each supply should be AC-bypassed to Analog Common with $0.1 \mu \mathrm{~F}$ ceramic capacitors as close to the amplifier as possible. Short leads will minimize lead inductance. A ground plane will also reduce noise problems. Signal common lines should tie directly to the common pin if a low impedance ground plane is not used. Refer to Digital Common in the Pin Descriptions table. To avoid gain and isolation-mode rejection (IMR) errors introduced by the external circuit, connect grounds as indicated, being sure to minimize ground resistance. Any capacitance across the barrier will increase AC leakage current and may degrade high frequency IMR. The schematic in Figure 3 shows the proper technique for wiring analog and digital commons together.


FIGURE 2. Power Supply and Signal Connection for ISO102 and ISO106.


FIGURE 3. Technique for Wiring Analog and Digital Commons Together in the ISO102 and ISO106.

## DISCUSSION OF SPECIFICATIONS

The ISOI02 and ISO106 are unity gain buffer isolation amplifiers primarily intended for high level input voltages on the order of 1 V to 10 V . They may be preceded by operational, differential, or instrumentation amplifiers that precondition a low level signal on the order of millivolts and translate it to a high level.

## ISOLATION-MODE REJECTION

The ISO102 and ISOl06 provide exceptionally high isolation-mode rejection over a wide range of isolationmode voltages and frequencies. The typical performance curves should be used to insure operation within the recommended range. The maximum barrier voltage allowed decreases as the frequency of the voltage increases. As with all isolation amplifiers, a change of voltage across the barrier will induce leakage current across the barrier. In the case of the ISO102 and ISO106, there exists a threshold of leakage current through the signal capacitors that can cause over-drive of the decoder's sense amplifier. This occurs when the slew rate of the isolation voltage reaches $100 \mathrm{~V} / \mu \mathrm{s}$. The output will recover in about $50 \mu \mathrm{~s}$ from transients exceeding $100 \mathrm{~V} / \mu \mathrm{s}$.
Typical Performance Curve $C$ indicates the expected isolation-mode rejection over a wide range of isolation voltage frequencies. Also plotted is the typical leakage current across the barrier at 240 Vrms . The majority of the leakage current is between the input common pin and the output digital ground pin.
The ISO102 and ISO106 are intended to be continuously operated with fully rated isolation voltage and temperature without significant drift of gain and offset. See performance curve D for changes in gain and offset with isolation voltage.

## SUPPLY AND TEMPERATURE RANGE

The ISO102 and ISO106 are rated for $\pm 15 \mathrm{~V}$ supplies; however, they are guaranteed to operate from $\pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$. Performance is also rated for an ambient temperature range of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. For operation outside this temperature range, refer to performance curve E to establish the maximum allowed supply voltage. Supply currents are fairly insensitive to changes in supply voltage or temperature. Therefore, the maximum current limits can be used in computing the maximum junction temperature under nonrated conditions.

## OPTIONAL BANDWIDTH CONTROL

The following discussion relates optimum dynamic range performance to bandwidth, noise, and settling time.
The outputs of the ISO102 and ISO106 are the outputs of a second order low-pass Butterworth filter. Its low impedance output is rated for $\pm 5 \mathrm{~mA}$ drive and $\pm 12 \mathrm{~V}$ range with $10,000 \mathrm{pF}$ loads. The closed-loop bandwidth of the PLL is 70 kHz , while the output filter is internally
set at 100 kHz . The output filter lowers the residual voltage of the barrier FM signal to below the noise floor of the output signal.
Two pins are available for optional modification of the filter's bandwidth. Only two capacitors are required. Performance curve B gives the value of $\mathrm{C}_{1}\left(\mathrm{C}_{2}\right.$ is equal to twice $C_{1}$ ) for the desired bandwidth. Figure 4 illustrates the optional connection of both capacitors.
A tradeoff can be achieved between the required signal bandwidth and system dynamic range. The noise floor of the output limits the dynamic range of the output signal. The noise power varies with the square root of the bandwidth of the buffer. It is recommended that the bandwidth be reduced to about twice the maximum signal bandwidth for optimum dynamic range as shown in performance curve $F$. The output spectral noise density measurement is displayed in performance curve G. The noise is flat to within $5 \mathrm{~dB} \sqrt{\mathrm{~Hz}}$ between 0.1 Hz to 70 kHz .
The overall small signal gain of the buffer amplifiers is shown in performance curve $H$. This assumes no external band-limiting capacitors. The total harmonic distortion for large signal sine wave outputs is plotted in performance curve l. The phase-lock-loop displays slightly nonuniform rise and fall edges under maximum slew conditions. Reducing the output filter bandwidth to below 70 kHz smoothes the output signal and eliminates any overshoot. See the settling time performance curve J.

## OPTIONAL OFFSET AND GAIN ADJUSTMENT

In many applications the factory-trimmed offset is adequate. For situations where reduced or modified gain and offset are required, adjustment of each is easy. The addition of two potentiometers as shown in Figure 4 provides for a two step calibration.


FIGURE 4. Optional Gain Adjust, Offset Adjust, and Bandwidth Control.

Offset should be adjusted first. Gain adjustment does not interfere with offset. The potentiometer's TCR adds only $2 \%$ to overall temperature drift.

The offset and gain adjustment procedures are as follows: 1. Set $\mathrm{V}_{\text {IN }}$ to 0 V and adjust $\mathrm{R}_{1}$ to desired offset at the output.
2. Set $\mathrm{V}_{\text {IN }}$ to full scale (not zero). Adjust $\mathrm{R}_{2}$ for desired gain.

## PRINTED CIRCUIT BOARD LAYOUT

The distance across the isolation barrier, between external components, and conductor patterns, should be maximized to reduce leakage and arcing at high voltages. Good layout techniques that reduce stray capacitance will assure low leakage current and high AC IMR. For some applications, applying conformal coating compound such as urethane is useful in maintaining good performance. This is especially true where dirt, grease or moisture can collect on the PC board surface, component surface, or component pins. Following this industryaccepted practice will give best results, particularly when circuits are operated or tested in a moisture-condensing environment. Optimum coating can be achieved by administering urethane under vacuum conditions. This allows complete coverage of all areas.
Figure 5 shows the recommended layout of the DEM102 demonstration board. This board contains the ISO102 and PWS725. The PWS725 is a DC-to-DC converter with a rated barrier voltage of 1500 Vrms . It provides isolated power for the ISO102's input stage and other input circuitry that may be used. The DEM102 board illustrates the ease of use of these components. Notice that the ISO102's external high voltage spacing is maintained on both sides of the PC board layout. The placement of bypass capacitors, gain and offset potentiometers, and the PWS725's input ripple filter components are shown. The DEM106 layout in Figure 6 is similar to the DEM102. It contains the ISO106 and PWS726, which is rated for 3500 Vrms . The schematic of both demonstration boards appears in Figure 7. Boards are available from Burr-Brown to facilitate fast, easy evaluation of electrical and isolation performance.
Isolation-mode rejection can be affected by the PC board layout. The most critical pins for obtaining maximum IMR are $C_{1}$ and $C_{2}$. These are the only high impedance nodes under normal operation and can be influenced by the barrier's voltage if not shielded. Grounded rings around the $C_{1}$ and $C_{2}$ contacts on the board greatly reduce high voltage electric fields at these pins. Maximum IMR is achieved when a ground plane is provided on both sides of the $C_{1}, C_{2}$ interconnect.


FIGURE 5. Recommended Layout for ISO102 and PWS725 (Demonstration Board DEM102).


FIGURE 6. Recommended Layout for ISO106 and PWS726 (Demonstration Board DEM106).


FIGURE 7. Schematic for Layout in Figures 5 and 6.

## APPLICATIONS

The ISO102 and ISO106 isolation amplifiers are used in three categories of applications:

1. accurate isolation of signals from high voltage ground potentials,
2. accurate isolation of signals from severe ground noise, and
3. fault protection from high voltages in analog measurement systems.
Figures 8 through 18 show a variety of application circuits.


FIGURE 8. Isolated Power Current Monitor for Motor Circuit. (The ISO102 allows reliable safe measurement at high voltages.)


FIGURE 9. Isolated Pówer Line Monitor ( $0.5 \mu \mathrm{~A}$ leakage current at 120 Vrms .)


FIGURE 10. Battery Monitor for High Voltage Charging Circuit.


FIGURE 11. Isolated RTD Temperature Amplifier.


FIGURE 12. Programmable-Gain Isolation Channel with Gains of 1,10 , and 100 .


FIGURE 13. Isolation Amplifier with Isolated Bipolar Input Reference.


FIGURE 14. Low Cost Eight-Channel Isolation Amplifier Block with Channel-to-Channel Isolation.


FIGURE 15. Thermocouple Amplifier with Ground Loop Elimination, Cold Junction Compensation, and Upscale Burn-out.


FIGURE 16. Remote Isolated Thermocouple Transmitter with Cold Junction Compensation.


FIGURE 17. Isolated Instrumentation Amplifier for $300 \Omega$ Bridge. (Reference voltage from isolation amplifier is used to excite bridge.)


FIGURE 18. Right-Leg Driven ECG Amplifier (with defibrillator protection and calibrator).

# AN ERROR ANALYSIS OF THE ISO102 IN A SMALL SIGNAL MEASURING APPLICATION 

High accuracy measurements of low-level signals in the presence of high isolation mode voltages can be difficult due to the errors of the isolation amplifiers themselves.
This error analysis shows that when a low drift operational amplifier is used to preamplify the low-level source signal, a low cost, simple and accurate solution is possible.
In the circuit shown in Figure 1, a 50 mV shunt is used to measure the current in a 500 VDC motor. The OPA 27 amplifies the 50 mV by $200 \times$ to 10 V full scale. The output of the OPA27 is fed to the input of the ISO102, which is a unity-gain isolation amplifier. The $5 \mathrm{k} \Omega$ and $1 \mathrm{k} \Omega$ potentiometers connected to the ISO102 are used to adjust the gain and offset errors to zero as described in the ISO102 data sheet.

## SOME OBSERVATIONS

The total errors of the op amp and the iso amp combined are approximately $0.6 \%$ of full-scale range. If the op amp had not been used to preamplify the signal, the errors
would have been $74.4 \%$ of FSR. Clearly, the small cost of adding the op amp buys a large performance improvement:
After gain and offset nulling, the dominant errors of the iso amp are gain nonlinearity and power supply rejection. Thus, well regulated supplies will reduce the errors even further.

The RMS noise of the ISO102 with a 120 Hz bandwidth is only 0.18 mVrms , which is only $0.0018 \%$ of the 10 V fullscale output. Therefore, even though the $16 \mu \mathrm{~V} / \sqrt{\mathrm{Hz}}$ noise spectral density specification may appear large compared to other isolation amplifiers, it does not turn out to be a significant error term. It is worth noting that even if the bandwidth is increased to 10 kHz , the noise of the iso amp would only contribute $0.016 \%$ FSR error.


FIGURE 1. 50 mV Shunt Measures Current In A 500VDC Motor.

## The Errors Of The Op Amp At $25^{\circ} \mathrm{C}$ (Referred To Input, RTI)

$V_{E(O P A)}=V_{D}\left[1-\frac{1}{1+\frac{1}{\beta A_{V O L}}}\right]+V_{O S}\left[1+\frac{R_{1}}{R_{F}}\right]+I_{B} R_{T}+$ P.S.R. + Noise
$V_{E(O P A)}=$ Total Op Amp Error (RTI)
$V_{D}=$ Differential Voltage (Full Scale) Across Shunt
$\left[1-\frac{1}{1+\frac{1}{\beta A_{v o L}}}\right]=$ Gain Error Due to Finite Open Loop Gain
$\beta=$ Feedback Factor
$A_{\text {vol }}=$ Open Loop Gain at Signal Frequency
$V_{\text {Os }}=$ Input Offset Voltage
$I_{B}=$ Input Bias Current
P.S.R. $=$ Power Supply Rejection ( $\mu \mathrm{V} / \mathrm{V}$ ) [Assuming a $20 \%$ change with $\pm 15 \mathrm{~V}$ supplies. Total error is twice that due to one supply]

Noise $=5 n V \sqrt{H z}$ (for $1 \mathrm{k} \Omega$ source resistance and 1 kHz bandwidth)
ERRORIOMN (RTI)
*FSR $=$ Full-Scale Range. 50 mV at input to op amp, or 10 V at input (and output) of ISO amp.

## The Errors Of The ISO Amp At $25^{\circ} \mathrm{C}$ (RTI)

$V_{E \text { usol }}=\frac{1}{200}\left[\frac{V_{130}}{\text { IMR }}+V_{\text {Os }}+\right.$ G.E. + Nonlinearity + P.S.R. + Noise $]$
$V_{\mathrm{E} \text { usol }}=$ Total ISO Amp Error
IMR = Isolation Mode Rejection
$V_{\text {OS }}=$ Input Offset Voltage
$V_{\text {ISo }}=V_{\text {IMV }}=$ Isolation Voltage $=$ Isolation Mode Voltage
G.E. = Gain Error (\% of FSR)

Nonlinearity = Peak-to-peak deviation of output voltage from best-fit straight line. It is expressed as ratio based on full-scale range.
P.S.R. $=$ Change in Vos $/ 10 \mathrm{~V} \times$ Supply Change


ERROR ${ }_{\text {uen }}$ (RTI)		IMR		Vos		G.E.		NONLINEARITY		P.S.R.		NOISE
$V_{\text {e ( iso) }}$	$=\frac{1}{200}$	$\left[\frac{500 \mathrm{VDC}}{140 \mathrm{~dB}}\right.$	$+$	70 mV	$+$	$20 \mathrm{~V} \times \frac{0.25}{100}$	$+$	$\frac{0.75}{100} \times 20 \mathrm{~V}$	$+$	$3.7 \mathrm{mV} \times 3 \mathrm{~V} \times 2$	$+$	$16 \mu \mathrm{~V} \sqrt{120}(\mathrm{rms})]$
	$=\frac{1}{200}$	10.05 mV	$+$	70mV	$+$	50 mV	$+$	15 mV	$+$	22.2 mV	$+$	0.175 mVrms ]
Error as \% of FSR	$=$	0.0005\%	$+$	0.7\%	$+$	0.5\%	$+$	0.15\%	$+$	0.22\%	$+$	0.00175\%
After Nulling $V_{E}$ (ISO)	$\begin{aligned} & =\frac{1}{200} \\ & =\frac{1}{200} \end{aligned}$	$\begin{gathered} {[0.05 \mathrm{mV}} \\ {[37.2 \mathrm{mV}]} \end{gathered}$	$t$	OmV	+	OmV	$+$	15mV	$+$	22.2 mV	$+$	0.175 mVrms ]
	$=$	0.19 mV				-						
Error as \% of FSR	$=$	0.0005\%	$+$	0\%	$+$	0\%	$+$	0.15\%	$+$	0.22\%	$+$	0.00175\%
	$=0$	0.37\% of 50 mV										
Total Error	$=$	V ( (OPA)	$+$	Ve asor								
	$=$	0.13 mV		0.19 mV								
	$=$	0.32 mV										
	$=0$	0.64\% of 50 mV										

PWS725 PWS726

ADVANCE INFORMATION Subject to Change

## Isolated, Unregulated DC/DC CONVERTERS

## FEATURES

- ISOLATED $\pm 7$ TO $\pm 18$ VDC OUTPUT FROM SINGLE 7 TO 18VDC SUPPLY
- $\pm 15 \mathrm{~mA}$ OUTPUT AT RATED VOLTAGE ACCURACY
- high isolation voltage

PWS725: 1500Vrms
PWS726: 3500Vrms

- Low leakage capacitance: 9pF
- LOW LEAKAGE CURRENT: $2 \mu \mathrm{~A}$, max, at 240VAC 50/60Hz
- HIGH RELIABILITY DESIGN


## DESCRIPTION

The PWS725 and PWS726 convert a single 7 to 18VDC input to bipolar voltages of the same value as the input voltage. The converters are capable of providing $\pm 15 \mathrm{~mA}$ at rated voltage accuracy and up to $\pm 40 \mathrm{~mA}$ without damage. (See Output Current Rating.)
The PWS725 and PWS726 converters provide reliable, engineered solutions where isolated power is required in critical applications. The high isolation voltage rating is achieved through use of a speciallydesigned transformer and physical spacing. An additional high dielectric-strength, low leakage transformer coating increases the isolation rating of the PWS726.
Reliability and performance are designed in. The bifilar wound, wirebonded transformer simultaneously provides lower output ripple than competing

- COMPACT
- LOW COST
- EASY TO APPLY-FEW EXTERNAL PARTS


## APPLICATIONS

- MEDICAL EQUIPMENT
- INDUSTRIAL PROCESS EQUIPMENT
- TEST EQUIPMENT
- DATA ACQUISITION
designs, and a higher performance/cost ratio. The soft-start oscillator/driver design assures full operation of the oscillator before either MOSFET driver turns on, protects the switches, and eliminates high inrush currents during turn-on. Input current sensing protects both the converter and the load from possible thermal damage during a fault condition.
Special design features make these converters especially easy to apply. The compact size allows dense circuit layout while maintaining critical isolation requirements. The Sync connection allows frequency synchronization of up to eight converters. The Enable input allows control over output power in instances where shutdown is desired to conserve power, such as in battery-powered equipment, or where sequencing of power turn-on/turn-off is desired.


## SPECIFICATIONS

ELECTRICAL
$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=1.0 \mu \mathrm{~F}$ ceramic, $\mathrm{V}_{\mathrm{IN}}=15 \mathrm{VDC}$, operating frequency $=400 \mathrm{kHz}, \mathrm{V}_{\text {out }}= \pm 15 \mathrm{VDC}, \mathrm{C}_{\mathrm{IN}}=1.0 \mu \mathrm{~F}$ ceramic, lout $= \pm 15 \mathrm{~mA}$, unless otherwise noted.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{PARAMETERS} \& \& \& \& \& \multicolumn{3}{|l|}{ADVANCE INFORMATION} \& \\
\hline \& \multirow[b]{2}{*}{CONDITIONS} \& \multicolumn{3}{|c|}{PWS725} \& \multicolumn{3}{|c|}{PWS726} \& \multirow[b]{2}{*}{UNITS} \\
\hline \& \& MIN \& TYP \& MAX \& MIN \& TYP \& MAX \& \\
\hline \multicolumn{9}{|l|}{INPUT} \\
\hline Rated Voltage Input Voltage Range Input Current Input Current Ripple \& \begin{tabular}{l}
\[
\mathrm{I}_{0}= \pm 15 \mathrm{~mA}
\] \\
No external filtering \\
L-C input filter, \(L_{I N}=100 \mu \mathrm{H}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}^{(1)}\) \\
C only, \(\mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}\)
\end{tabular} \& 7 \& \[
\begin{gathered}
15 \\
82 \\
150 \\
5 \\
60
\end{gathered}
\] \& 18 \&  \&  \&  \& \begin{tabular}{l}
VDC \\
VDC \\
mA \\
mAp-p \\
mAp-p \\
mAp-p
\end{tabular} \\
\hline \multicolumn{9}{|l|}{ISOLATION} \\
\hline \begin{tabular}{l}
Test Voltages \\
Rated Voltage \\
Isolation Impedance Leakage Current
\end{tabular} \& \begin{tabular}{l}
Input to output, 10 seconds \\
Input to output, 60 seconds, minimum Input to output, continuous, AC 60Hz Input to output, continuous DC Input to output Input to output, \(240 \mathrm{Vrms}, 60 \mathrm{~Hz}\)
\end{tabular} \& \[
\begin{aligned}
\& 4000 \\
\& 1500
\end{aligned}
\] \& \[
\begin{gathered}
10^{12} \| 9 \\
1.2
\end{gathered}
\] \& \[
\begin{gathered}
1500 \\
2121 \\
\\
2.0
\end{gathered}
\] \& \[
3000
\] \&  \& \[
\begin{aligned}
\& 3500 \\
\& 4949
\end{aligned}
\] \& \begin{tabular}{l}
VDC \\
Vrms \\
Vrms \\
VDC \\
\(\Omega \| p F\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline \multicolumn{9}{|l|}{OUTPUT} \\
\hline \begin{tabular}{l}
Rated Output Voltage \\
Output Current \\
Load reguiation Ripple Voltage ( 400 kHz ) \\
Output Switching Noise Output Capacitive Load \\
Voltage Balance, \(\mathrm{V}+, \mathrm{V}-\) \\
Sensitivity to \(\Delta V_{\text {Is }}\) \\
Output Voltage Temp. Coefficient
\end{tabular} \& \begin{tabular}{l}
Balanced loads \\
Single-ended \\
 \\
No external capacitor \\
\(\mathrm{L}_{0}=10 \mu \mathrm{H}, \mathrm{C}_{0}=1 \mu \mathrm{~F}\) (Figure 1) \\
\(L_{o}=0 \mu \mathrm{H}, \mathrm{C}_{0}\) filter only \\
\(L_{0}=10 \mu \mathrm{H}, \mathrm{C}_{0}=1.0 \mu \mathrm{~F}\) \\
\(\mathrm{L}_{\mathrm{o}}=100 \mu \mathrm{H}, \mathrm{C}\) filter \\
C filter only
\end{tabular} \& 14.25 \& \[
\begin{gathered}
15.00 \\
15.0 \\
\\
60 \\
10 \\
\mathrm{Se} \\
1 \\
\\
\\
0.04 \\
1.15 \\
10 \\
\hline
\end{gathered}
\] \& 15.75
40
80
0.4

Perform
10
1 \& ance C \&  \&  \& VDC
$m A$
$m A$
$\% / m A$
$m V p-p$
$m V p-p$
$m V p-p$
$\mu \mathrm{~F}$
$\mu \mathrm{~F}$
$\%$
$\mathrm{~V} / \mathrm{V}$
$\mathrm{mV} /{ }^{\circ} \mathrm{C}$ <br>
\hline \multicolumn{9}{|l|}{TEMPERATURE} <br>
\hline Specification Operating Storage \& \& -25
-25
-25 \& \& +85
+85

+125 \& \#*: \&  \&  \& | a |
| :--- |
|  |
| ${ }^{\circ} \mathrm{C}$ |
| ${ }^{\circ} \mathrm{C}$ | <br>

\hline
\end{tabular}

*Specification same as PWS725. NOTE: (1) See Figure 1.

## PIN CONFIGURATION

## MECHANICAL




## TYPICAL PERFORMANCE CURVES

$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{VDC}$ unless otherwise noted.





OUTPUT VOLTAGE DRIFT


## THEORY OF OPERATION

The PWS725 and the PWS726 DC-to-DC converters consist of a free-running oscillator, control and switch driver circuitry, MOSFET switches, a transformer, a bridge rectifier, and filter capacitors together in a 32 -pin DIP ( 0.900 inches nominal) package. The control circuitry consists of current limiting, soft start, frequency adjust, enable, and synchronization features.

In instances where several converters are used in a system, beat frequencies developed between the converters are a potential source of low frequency noise in the supply and ground paths. This noise may couple into signal paths. By connecting the SYNC pins together, up to eight converters can be synchronized and these beat frequencies avoided. The unit with the highest natural
frequency will determine the synchronized running frequency. To avoid excess stray capacitance, the SYNC pin should not be loaded with more than 50 pF . If unused, the SYNC pin must be left open.
Soft start circuitry protects the MOSFET switches during start up. This is accomplished by holding the gate-tosource voltage of both MOSFET switches low until the free-running oscillator is fully operational. In addition to the soft start circuitry, input current sensing also protects the MOSFET switches. This current limiting keeps the FET switches operating in their safe operating area under fault conditions or excessive loads. When either of these conditions occur, the peak input current exceeds a safe limit. The result is an approximate $5 \%$ duty cycle, $300 \mu \mathrm{~s}$ drive period to the MOSFET switches. This protects the internal MOSFET switches as well as the external load from any thermal damage. When the fault or excessive load is removed, the converter resumes normal operation. A delay period of approximately $50 \mu \mathrm{~s}$ incorporated in the current sensing circuitry allows the output filter capacitors to fully charge after a fault is removed. This delay period corresponds to a filter capacitance of no more than $1 \mu \mathrm{~F}$ at either of the output pins. This provides full protection of the MOSFET switches and also sufficiently filters the output ripple voltage (see specification table). The current sensing circuitry is designed to provide thermal protection for the MOSFET switches over the operating temperature range as well. The low thermal resistance of the package ( $\theta_{\mathrm{JC}}=10^{\circ} \mathrm{C} / \mathrm{W}$ ) ensures safe operation under rated conditions. When these rated conditions are exceeded, the unit will go into its shutdown mode.
An optional potentiometer can be connected between the two FREQUENCY ADJUST pins to trim the oscillator operating frequency $\pm 10 \%$ (see Figure 1). Care should be taken when trimming the frequency near the low frequency range. If the frequency is trimmed too low, the peak inductive currents in the primary will trip the input current sensing circuitry to protect the MOSFET switches from these peak inductive currents.

The ENABLE pin allows external control of output power. When this pin is pulled low, output power is disabled. Logic thresholds are TTL compatible. When not used, the Enable input may be left open or tied to $\mathrm{V}_{\text {IN }}(\operatorname{pin} 16)$.

## OUTPUT CURRENT RATING

The total current which can be drawn from the PWS725 or PWS726 is a function of total power being drawn from both outputs (see Functional Diagram). If one output is not used, then maximum current can be drawn from the other output. If both outputs are loaded, the total current must be limited such that:

$$
\left|I_{L}+\left|+\left|I_{L}-\right| \leq 80 m A\right.\right.
$$

It should be noted that many analog circuit functions do not simultaneously draw full rated current from both the positive and negative supplies. For example, an operational amplifier may draw 13 mA from the positive supply under full load while drawing only 3 mA from the negative supply. Under these conditions, the PWS725/726 could supply power for up to five devices $(80 \mathrm{~mA} \div 16 \mathrm{~mA}$ $\approx 5$ ). Thus, the PWS725/72ú cain power more cincuits than is at first apparent.

## ISOLATION VOLTAGE RATINGS

Because a long-term test is impractical in a manufacturing situation, the generally accepted practice is to perform a production test at a higher voltage for some shorter period of time. The relationship between actual test conditions and the continuous derated maximum specification is an important one. Burr-Brown has chosen a deliberately conservative one: $\mathrm{VDC}_{\text {TEST }}=(2 \times \mathrm{VACrms}$ continuous rating) +1000 V for ten seconds. This choice is appropriate for conditions where system transient voltages are not well defined.* Where the real voltages are well-defined or where the isolation voltage is not continuous, the user may choose a less conservative derating to establish a specification from the test voltage.


FIGURE 1. PWS725/726 Functional Diagram.
*Reference National Electrical Manufacturers Association (NEMA) Standards Parts ICS I-109 and ICS I-111.

## THIS PAGE INTENTIONALLY LEFT BLANK

# Monolithic 12-Bif ANALOG-TO-DIGITAL CONVERTER 

## FEATURES

- INDUSTRY-STANDARD 12-BIT ADC

- LOW COST
- $\pm 0.012 \%$ LINEARITY
- $25 \mu$ S MAX CONVERSION TIME
- $\pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$ OPERATION
- NO MISSING CODES $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- HERMETIC 32-PIN PACKAGE
- Parallel or serial outputs
- 705mW MAX DISSIPATION


## DESCRIPTION

The ADC80MAH-12 is a 12 -bit single-chip successiveapproximation analog-to-digital converter for low cost converter applications. It is complete with a comparator, a 12 -bit DAC which includes a 6.3 V reference laser-trimmed for minimum temperature coefficient, a successive approximation register (SAR), clock, and all other associated logic functions.
Internal scaling resistors are provided for the selection of analog input signal ranges of $\pm 2.5 \mathrm{~V}$, $\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0$ to +5 V , or 0 to +10 V . Gain and offset errors may be externally trimmed to zero, enabling initial end-point accuracies of better than $\pm 0.12 \%$ ( $\pm 1 / 2$ LSB).
The maximum conversion time of $25 \mu \mathrm{~s}$ makes the ADC $80 \mathrm{MAH}-12$ ideal for a wide range of 12 -bit applications requiring system throughput sampling rates up to 40 kHz . In addition, this A/D converter may be short-cycled for faster conversion speed with
reduced resolution, and an external clock may be used to synchronize the converter to the system clock or to obtain higher-speed operation. The convert command circuits have been redesigned to allow simplified free-running operation with internal or external clock.
Data is available in parallel and serial form with corresponding clock and status signals. All digital input and output signals are TTL/LSTTL-compatible, with internal pull-up resistors included on all digital inputs to eliminate the need for external pullup resistors on digital inputs not requiring connection. The ADC80MAH-12 operates equally well with either $\pm 15 \mathrm{~V}$ or $\pm 12 \mathrm{~V}$ analog power supplies, and also requires use of a +5 V logic power supply. However, unlike many ADC80-type products, a +5 V analog power supply is not required. It is packaged in a hermetic 32 -pin side-brazed ceramic dual-in-line package.


## SPECIFICATIONS

## ELECTRICAL

At $T_{A}=+25^{\circ} \mathrm{C}, \pm \mathrm{V}_{\mathrm{cc}}=12 \mathrm{~V}$ or $15 \mathrm{~V}, \mathrm{~V}_{D D}=+5 \mathrm{~V}$ unless otherwise specified.

MODEL	ADC80MAH-12			UNITS
	MiN	TYP	MAX	
RESOLUTION			12	Bits
INPUT				
ANALOG   Voltage Ranges: Unipolar Bipolar $\text { Impedance: } \begin{aligned} & 0 \text { to }+5 \mathrm{~V}, \pm 2.5 \mathrm{~V} \\ & 0 \text { to }+10 \mathrm{~V}, \pm 5 \mathrm{~V} \\ & \pm 10 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 2.45 \\ 4.9 \\ 9.8 \\ \hline \end{array}$	$\begin{gathered} 0 \text { to }+5,0 \text { to }+10 \\ \pm 2.5, \pm 5, \pm 10 \\ 2.5 \\ 5 \\ 10 \end{gathered}$	$\begin{gathered} 2.55 \\ 5.1 \\ 10.2 \end{gathered}$	$\begin{gathered} \mathrm{v} \\ \mathrm{v} \\ \mathrm{k} \Omega \\ \mathrm{k} \Omega \\ \mathrm{k} \Omega \end{gathered}$
DIGITAL   Logic Characteristics (Over specification temperature range)   $V_{I H}$ (Logic " 1 ")   $V_{\text {IL }}$ (Logic " 0 ")   $\mathrm{I}_{\mathrm{HH}}\left(\mathrm{V}_{\mathrm{IN}}=+2.7 \mathrm{~V}\right)$   $\mathrm{IIL}_{\mathrm{L}}\left(\mathrm{V}_{\text {IN }}=+0.4 \mathrm{~V}\right)$   Convert Command Pulse Width ${ }^{\text {"1 }}$	$\begin{gathered} 2.0 \\ -0.3 \\ -20 \\ 100 \mathrm{~ns} \end{gathered}$	,	$\begin{gathered} 5.5 \\ +0.8 \\ 20 \\ 20 \end{gathered}$	V   V   $\mu \mathrm{A}$   $\mu \mathrm{A}$   $\mu \mathrm{s}$
TRANSFER CHARACTERISTICS	.			
ACCURACY   Gain Error ${ }^{(2)}$   Offset Error ${ }^{(2)}$ : Unipolar Bipolar   Linearity Error   Differential Linearity Error   Inherent Quantization Error		$\begin{gathered} \pm 0.1 \\ \pm 0.05 \\ \pm 0.1 \\ \pm 1 / 2 \\ \pm 1 / 2 \end{gathered}$	$\begin{gathered} \pm 0.3 \\ \pm 0.2 \\ \pm 0.3 \\ \pm 0.012 \\ \pm 3 / 4 \end{gathered}$	$\%$ of $\mathrm{FSR}^{(3)}$   \% of FSR   $\%$ of FSR   \% of FSR   LSB   LSB
POWER SUPPLY SENSITIVITY $\begin{aligned} & 11.4 \mathrm{~V} \leq \pm \mathrm{V}_{C C} \leq 16.5 \mathrm{~V} \\ & +4.5 \mathrm{~V} \leq \mathrm{V}_{D D} \leq+5.5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 0.003 \\ & \pm 0.002 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.009 \\ & \pm 0.005 \\ & \hline \end{aligned}$	$\%$ of FSR/ $\% \mathrm{~V}_{\text {cc }}$   $\%$ of FSR/\%VDD
DRIFT   Total Accuracy, Bipolar ${ }^{(4)}$   Gain   Offset: Unipolar   Bipolar   Linearity Error Drift   Differential Linearity over Temperature Range   No Missing Code Temperature Range   Monotonicity Over Temperature Range	-25	$\begin{gathered} \pm 10 \\ \pm 15 \\ \pm 3 \\ \pm 7 \\ \pm 1 \end{gathered}$   Guaranteed	$\begin{gathered} \pm 23 \\ \pm 30 \\ \\ \pm 15 \\ \pm 3 \\ \pm 3 / 4 \\ +85 \end{gathered}$	
CONVERSION TIME ${ }^{(5)}$		22	25	$\mu \mathrm{s}$
OUTPUT				
```DIGITAL (Bits 1-12, Clock Out, Status, Serial Out) Output Codes }\mp@subsup{}{}{(6) Parallel: Unipolar Bipolar Serial (NRZ)}\mp@subsup{}{}{(7) Logic Levels: Logic 0 (IsINk }\leq3.2\textrm{mA} Logic 1 (Isounce }\leq80\mu\textrm{A} Internal Clock Frequency```	+2.4	CSB COB, CTC CSB, COB 520	+0.4	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{kHz} \end{gathered}$
INTERNAL REFERENCE VOLTAGE Voltage Source Current Available for External Loads ${ }^{(8)}$ Temperature Coefficient	$\begin{gathered} +6.28 \\ 200 \end{gathered}$	$\begin{aligned} & +6.3 \\ & \pm 10 \end{aligned}$	$\begin{gathered} +6.32 \\ \pm 30 \end{gathered}$	
POWER SUPPLY REQUIREMENTS Rated Supply Voltages Supply Ranges: $\pm V_{\text {cc }}$ VD Supply Drain: $\begin{aligned} & +I_{c c}\left(+V_{c c}=15 \mathrm{~V}\right) \\ & -I_{c c}\left(-V_{c c}=15 \mathrm{~V}\right) \\ & I_{o D}\left(V_{c c}=5 \mathrm{~V}\right) \end{aligned}$ Power Dissipation ($\pm \mathrm{V}_{\mathrm{cc}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$) Thermal Resistance, $\theta_{J A}$	$\begin{gathered} \pm 11.4 \\ +4.5 \end{gathered}$	$\begin{gathered} +5, \pm 12 \text { or } \pm 15 \\ \\ 8.5 \\ 21 \\ 30 \\ 593 \\ 50 \end{gathered}$	$\begin{gathered} \pm 16.5 \\ +5.5 \\ 11 \\ 24 \\ 36 \\ 705 \end{gathered}$	V V V mA mA mA mW ${ }^{\circ} \mathrm{C} / \mathrm{W}$
TEMPERATURE RANGE (Ambient) Specification Operating (derated specs) Storage	$\begin{aligned} & -25 \\ & -55 \\ & -65 \end{aligned}$		$\begin{aligned} & +85 \\ & +125 \\ & +150 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

NOTES: (1) Accurate conversion will be obtained with any convert command pulse width of greater than 100ns; however, it must be limited to $20 \mu \mathrm{~s}$ (max) to assure the specified conversion time. (2) Gain and offset errors are adjustable to zero. See "Optional External Gain and Offset Adjustment" section. (3) FSR means Full-Scale Range and is 20 V for $\pm 10 \mathrm{~V}$ range, 10 V for $\pm 5 \mathrm{~V}$ and 0 to +10 V ranges, etc. (4) Includes drift due to linearity, gain, and offset drifts. (5) Conversion time is specified using internal clock. For operation with an external clock see "Clock Options" section. This converter may also be short-cycled to less than 12-bit resolution for shorter conversion time; see "Short Cycle Feature" section. (6) CSB means Complementary Straight Binary, COB means Complementary Offset Binary, and CTC means Complementary Two's Complement coding. See Table I for additional information. (7) NRZ means Non-Return-to-Zero coding. (8). External loading must be constant during conversion, and must not exceed $200 \mu \mathrm{~A}$ for guaranteed specification.

CONNECTION DIAGRAM

MECHANICAL

ORDERING INFORMATION

Model	Resolution (bits)
ADC80MAH-12	12
ADC80MAH-12/QM	

NOTE: (1) /QM suffix indicates Environmental Screening; see Table IV for details.

ABSOLUTE MAXIMUM RATINGS

$+V_{\text {cc }}$ to Analog Common 0 to +16.5 V - $V_{c c}$ to Analog Common 0 to -16.5 V $V_{D o}$ to Digital Common 0 to $+7 V$ Analog Common to Digital Common $\pm 0.5 \mathrm{~V}$ Logic Inputs (Convert Command, Clock In) to Digital Common. \qquad -0.3 V to $+\mathrm{V}_{\mathrm{cc}}$ Analog Inputs (Analog In, Bipolar Offset) to Analog Common \qquad $\pm 16.5 \mathrm{~V}$ Reference Output . Indefinite Short to Common, Momentary Short to Vcc Lead Temperature, Soldering . \qquad $+300^{\circ} \mathrm{C}, 10 \mathrm{~s}$ Maximum Junction Temperature \qquad $+160^{\circ} \mathrm{C}$ CAUTION: These devices are sensitive to electrostatic discharge. Appropriate I.C. handling procedures should be followed. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

TYPICAL PERFORMANCE CURVES

DISCUSSION OF SPECIFICATIONS

LINEARITY ERROR

Linearity error is defined as the deviation of actual code transition values from the ideal transition values. Under this definition of linearity (sometimes referred to as integral linearity), ideal transition values lie on a line drawn through zero (or minus full scale for bipolar operation) and plus full scale, providing a significantly better definition of converter accuracy than the best-straight-line-fit definition of linearity employed by some manufacturers.
The zero or minus full-scale value is located at an analog input value $1 / 2 \mathrm{LSB}$ before the first code transition $\left(\mathrm{FFF}_{\mathrm{H}}\right.$ to $\left.\mathrm{FFE}_{\mathrm{H}}\right)$. The plus full-scale value is located at an analog value $3 / 2 \mathrm{LSB}$ beyond the last code transition $\left(001_{\mathrm{H}}\right.$ to $\left.000_{\mathrm{H}}\right)$. See Figure 1. which illustrates these relationships. A linearity specification which guarantees $\pm 1 / 2$ LSB maximum linearity error assures the user that no code transition will differ from the ideal transition value by more than $\pm 1 / 2 \mathrm{LSB}$.
Thus, for a converter connected for bipolar operation and with a full-scale range (or span) of $20 \mathrm{~V}(\pm 10 \mathrm{~V}$ operation), the minus full-scale value of -10 V is 2.44 mV below the first code transition $\left(\mathrm{FFF}_{\mathrm{H}}\right.$ to $\mathrm{FFE}_{\mathrm{H}}$ at -9.99756 V) and the plus full-scale value of +10 V is 7.32 mV above the last code transition $\left(001_{\mathrm{H}}\right.$ to 000_{H} at

FIGURE 1. Transfer Characteristic Terminology.
$+9.99268 \mathrm{~V})$. Ideal transitions occur lLSB $(4.88 \mathrm{mV})$ apart, and the $\pm 1 / 2$ LSB linearity specification guarantees that no actual transition will vary from the ideal by more than 2.44 mV . The LSB weights, transition values, and code definitions for each possible ADC80 analog input signal range are described in Table I.

TABLE I. Input Voltages, Transition Values, LSB Values, and Code Definitions.

Binary Output	Input Voltage Range and LSB Values					
Analog Input Voltage Range	Defined As:	$\pm 10 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 2.5 \mathrm{~V}$	0 to +10 V	0 to +5 V
Code Designation		$\mathrm{COB}^{(1)}$ or CTC ${ }^{(2)}$	COB or CTC	COB or CTC	$\mathrm{CSB}^{(3)}$	CSB
One Least Significant Bit (LSB)	$\begin{gathered} \text { FSR } / 2^{n} \\ n=8 \\ n=10 \\ n=12 \end{gathered}$	$\begin{gathered} 20 \mathrm{~V} / 2^{\mathrm{n}} \\ 78.13 \mathrm{mV} \\ 19.53 \mathrm{mV} \\ 4.88 \mathrm{mV} \end{gathered}$	$10 \mathrm{~V} / 2^{\text {n }}$ 39.06 mV 9.77 mV 2.44 mV	$\begin{gathered} \hline 5 \mathrm{~V} / 2^{\mathrm{n}} \\ 19.53 \mathrm{mV} \\ 4.88 \mathrm{mV} \\ 1.22 \mathrm{mV} \end{gathered}$	$\begin{gathered} 10 \mathrm{~V} / 2^{\mathrm{n}} \\ 39.06 \mathrm{mV} \\ 9.77 \mathrm{mV} \\ 2.44 \mathrm{mV} \end{gathered}$	$\begin{gathered} 5 \mathrm{~V} / 2^{\mathrm{n}} \\ 19.53 \mathrm{mV} \\ 4.88 \mathrm{mV} \\ 1.22 \mathrm{mV} \end{gathered}$
Transition Values MSB LSB 001_{H} to $00 \mathrm{O}_{\mathrm{H}}$ 800_{H} to $7 \mathrm{FF}_{\mathrm{H}}$ $\mathrm{FFF}_{\mathrm{H}}$ to $\mathrm{FFE}_{\mathrm{H}}$	+ Full Scale Midscale - Full Scale	$\begin{gathered} +10 \mathrm{~V}-3 / 2 \mathrm{LSB} \\ 0 \\ -10 \mathrm{~V}+1 / 2 \mathrm{LSB} \end{gathered}$	$\begin{gathered} +5 \mathrm{~V}-3 / 2 \mathrm{LSB} \\ 0 \\ -5 \mathrm{~V}+1 / 2 \mathrm{LSB} \end{gathered}$	$\begin{gathered} +2.5 \mathrm{~V}-3 / 2 \mathrm{LSB} \\ 0 \\ -2.5 \mathrm{~V}+1 / 2 \mathrm{LSB} \end{gathered}$	$\begin{gathered} +10 \mathrm{~V}-3 / 2 \mathrm{LSB} \\ +5 \mathrm{~V} \\ 0+1 / 2 \mathrm{LSB} \end{gathered}$	$\begin{gathered} +5 \mathrm{~V}-3 / 2 \mathrm{LSB} \\ +2.5 \mathrm{~V} \\ 0+1 / 2 \mathrm{LSB} \end{gathered}$

[^6] significant bit ($\overline{M S B}$). $\overline{M S B}$ is available on pin 8. (3) $C S B=$ Complementary Straight Binary.

CODE WIDTH (QUANTUM)

Code width (or quantum) is defined as the range of analog input values for which a given output code will occur. The ideal code width is 1 LSB , which for 12 -bit operation with a 20 V span is equal to 4.88 mV . Refer to Table I for LSB values for other ADC80 input ranges.

DIFFERENTIAL LINEARITY ERROR AND NO MISSING CODES

Differential linearity error is the difference between an ideal ILSB code width (quantum) and the actual code width. A specification which guadrantees no missing codes requires that every code combination appear in a monotonically increasing sequence as the analog input is increased throughout the range, requiring that every input quantum must have a finite width. If an input quantum has a value of zero (a differential linearity error of - lLSB), a missing code will occur but the converter may still be monotonic. Thus, no missing codes represent a more stringent definition of performance than does monotonicity. ADC80 is guaranteed to have no missing códes to 12 -uit resolutioñ over its full specificationí temperature range.

QUANTIZATION UNCERTAINTY

Analog-to-digital converters have an inherent quantization error of $\pm 1 / 2 L S B$. This error is a fundamental property of the quantization process and cannot be eliminated.

UNIPOLAR OFFSET ERROR

An ADC80 connected for unipolar operation has an analog input range of 0 V to plus full scale. The first output code transition should occur at an analog input value $1 / 2 \mathrm{LSB}$ above 0 V . Unipolar offset error is defined as the deviation of the actual transition value from the ideal value, and is applicable only to converters operating in the unipolar mode.

BIPOLAR OFFSET ERROR

A/D converter specifications have historically defined bipolar offset at the first transition value above the minus full-scale value. The ADC80 follows this convention. Thus, bipolar offset error for the ADC80 is defined as the deviation of the actual transition value from the ideal transition value located $1 / 2$ LSB above minus full scale.

GAIN ERROR

The last output code transition $\left(001_{\mathrm{H}}\right.$ to $\left.000_{\mathrm{H}}\right)$ occurs for an analog input value $3 / 2 \mathrm{LSB}$ below the nominal plus full-scale value. Gain error is the deviation of the actual analog value at the last transition point from the ideal value.

ACCURACY DRIFT VS TEMPERATURE

The temperature coefficients for gain, unipolar offset, and bipolar offset specify the maximum change from the
actual $25^{\circ} \mathrm{C}$ value to the value at the extremes of the Specification temperature range. The temperature coefficient applies independently to the two halves of the temperature range above and below $+25^{\circ} \mathrm{C}$.

POWER SUPPLY SENSITIVITY

Electrical specifications for the ADC80 assume the application of the rated power supply voltages of +5 V and $\pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$. The major effect of power supply voltage deviations from the rated values will be a small change in the plus full-scale value. This change, of course, results in a proportional change in all code transition values (i.e., a gain error). The specification describes the maximum change in the plus full-scale value from the initial value for independent changes in each power supply voltage.

TIMING CONSIDERATIONS

Timing relationships of the ADC80 are shown in Figure 2. During conversion, the decision as to the proper state of any bit (bit " n ") is made on the rising edge of clock pulse "n +i ". Thus, a compieie conversion requires i3 ciock pulses with the status output dropping from logic " 1 " to logic " 0 " shortly after the falling edge of the 13 th clock pulse, and with valid output data ready to be read at that time.
Additional convert commands applied during conversion will be ignored.
Status remains high until after the falling edge of the 13th clock pulse. This allows direct use of status for latching parallel data.

FIGURE 2. Timing Diagram (nominal values at $+25^{\circ} \mathrm{C}$ with internal clock).

DEFINITION OF DIGITAL CODES

Parallel Data

Three binary codes are available on the ADC80 parallel output; all three are complementary codes, meaning that logic " 0 " is true. The available codes are complementary straight binary (CSB) for unipolar input signal ranges, and complementary offset binary (COB) and complementary two's complement (CTC) for bipolar input signal ranges. CTC coding is obtained by complementing bit 1 (the MSB) relative to its normal state for CSB or COB coding; the complement of bit 1 is available on pin 8 .

Serial Data

Two (complementary) straight binary codes are available on the serial output of the ADC80; as in the parallel case, they are CSB and COB. The serial data is available only during conversion and appears with the most significant bit (MSB) occurring first. The serial data is synchronous with the internal clock as shown in the timing diagram of Figure 2. The LSB and transition values of Table I also apply to the serial data output, except that the CTC code is not available. All clock pulses available from the ADC80 have equal pulse widths to facilitate transfer of the serial data into external logic devices without external shaping.

LAYOUT AND OPERATING INSTRUCTIONS

LAYOUT PRECAUTIONS

Analog and digital commons are not connected together internally in the ADC80, but should be connected together as close to the unit as possible, preferably to an analog common ground plane beneath the converter. If these common lines must be run separately, use wide conductor pattern and a $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ nonpolarized bypass capacitor between analog and digital commons at the unit. Low impedance analog and digital common returns are essential for low noise performance. Coupling between analog input lines and digital lines should be minimized by careful layout. For instance, if the lines must cross, they should do so at right angles. Parallel analog and digital lines should be separated from each other by a pattern connected to common. If external gain and offset potentiometers are used, the potentiometers and associated resistors should be located as close to the ADC80 as possible. Capacitive loading on comparator and input pins should be kept to a minimum to maintain converter performance.

POWER SUPPLY DECOUPLING

The power supplies should be bypassed with $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum bypass capacitors located close to the converter to obtain noise-free operation. Noise on the power supply lines can degrade the converter's performance. Noise and spikes from a switching power supply are especially troublesome.

ANALOG SIGNAL SOURCE IMPEDANCE

The signal source supplying the analog input signal to the ADC 80 will be driving into a nominal DC input impedance of $2.3 \mathrm{k} \Omega$ to $9.2 \mathrm{k} \Omega$ depending upon the range selected. However, the output impedance of the driving source should be very low, such as the output impedance provided by a wideband, fast-settling operational amplifier. Transients in A/D input current are caused by the changes in output current of the internal D/A converter as it tests the various bits. The output voltage of the driving source must remain constant while furnishing these fast current changes. If the application requires a sample/hold, select a sample/hold with sufficient bandwidth to preserve the accuracy or use a separate wideband buffer amplifier to lower the output impedance.

INPUT SCALING

The ADC80 offers five standard input ranges: 0 V to $+5 \mathrm{~V}, 0 \mathrm{~V}$ to $+10 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$. The input range should be scaled as close to the maximum input signal range as possible in order to utilize the maximum signal resolution of the converter. Select the appropriate input range as indicated by Table II. The input circuit architecture is illustrated in Figure 3. External padding resistors can be added to modify the factory-set input ranges (such as addition of a small external input resistor to change the 10 V range to a 10.24 V range). Alternatively, the gain range of the converter may easily be increased a small amount by use of a low temperature coefficient potentiometer in series with the analog input signal or by decreasing the value of the gain adjust series resistor in Figure 5.

TABLE II. Input Scaling Connections.

Input Signal Range	Output Code	Connect Pin 12 To Pin	Connect Pin 14 To	Connect Input Signal To
$\pm 10 \mathrm{~V}$	COB or CTC	11	Input Signal	14
$\pm 54 \mathrm{~V}$	COB or CTC	11	Open	13
$\pm 2.5 \mathrm{~V}$	COB or CTC	11	Pin 11	13
0 to +5 V	CSB	15	Pin 11	13
0 to +10 V	CSB	15	Open	13

FIGURE 3. Input Scaling Circuit.

CALIBRATION

Optional External Gain And Offset Adjustments

Gain and offset errors may be trimmed to zero using external offset and gain trim potentiometers connected to the ADC80 as shown in Figures 4 and 5 for both unipolar and bipolar operation. Multiturn potentiometers with $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or better TCR are recommended for minimum drift over temperature and time. These pots may be of any value between $10 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$. All fixed resistors should be 20% carbon or better. Although not necessary in some applications, pin 16 (Gain Adjust) should be preferably bypassed with a $0.01 \mu \mathrm{~F}$ nonpolarized capacitor to analog common to minimize noise pickup at this high impedance point, even if no external adjustment is required.

FIGURE 4. Two Methods of Connecting Optional Offset Adjust.

FIGURE 5. Two Methods of Connecting Optional Gain Adjust.

Adjustment Procedure

OFFSET-Connect the offset potentiometer as shown in Figure 4. Set the input voltage to the nominal zero or minus full-scale voltage plus $1 / 2 \mathrm{LSB}$. For example, referring to Table 1 , this value is $-10 \mathrm{~V}+2.44 \mathrm{mV}$ or -9.99756 V for the -10 V to +10 V range.
With the input voltage set as above, adjust the offset potentiometer until an output code is obtained which is alternating between $\mathrm{FFE}_{\mathrm{H}}$ and $\mathrm{FFF}_{\mathrm{H}}$ with approximately 50% occurrence of each of the two codes. In other words, the potentiometer is adjusted until bit 12 (the LSB) indicates a true (logic " 0 ") condition approximately half the time.
GAIN-Connect the gain adjust potentiometer as shown in Figure 5. Set the input voltage to the nominal plus full-scale value minus $3 / 2 \mathrm{LSB}$. Once again referring to Table I, this value is $+10 \mathrm{~V}-7.32 \mathrm{mV}$ or +9.99268 V for the -10 V to +10 V range. Adjust the gain potentiometer
until the output code is alternating between 000_{H} and 001_{H} with an approximate 50% duty cycle. As in the case of offset adjustment, this procedure sets the converter end-point transitions to a precisely known value.

CLOCK OPTIONS AND SHORT CYCLE FEATURE

The ADC80 is extremely versatile in that it can be operated in several different modes with either internal or external clock. Most of these options can be implemented with inexpensive TTL logic as shown in Figures 6 through 9. Pin 20 (clock inhibit) must be grounded for use with an external clock, which is applied to pin 19.
A short-cycle input (pin 21) permits the conversion to be terminated after any number of desired bits has been converted, allowing shorter conversion times in applications not requiring full 12 -bit resolution. In these situations, the short-cycle pin should be connected to the bit output pin of the next bit after the desired resolution. For example, when 10 -bit resolution is desired, pin 21 is connected to pin 28 (bit 11). In this example, the conversion cycle terminates and status is reset after the bit 10 decision. Short-cycle pin connections and associated maximum 12-, $10-$, and 8 -bit conversion times (with internal clock) are shown in Table III. Shorter conversion times are possible with an external clock applied to pin 19. With increasing clock speed, linearity performance will begin to degrade as indicated in the Typical Performance Curves. These curves should be used only as guidelines because guaranteed performance is specified and tested only with the internal clock.

TABLE III. Short-Cycle Connections and Conversion Times for 8-, 10-, and 12-Bit Resolutions-ADC80MAH-12.

Resolution (Bits)	$\mathbf{1 2}$	$\mathbf{1 0}$	$\mathbf{8}$
Connect pin 21 to	Pin 9 or NC	Pin 28	$\operatorname{Pin} 30$
Maximum Conversion Time ${ }^{(1)}$ Internal Clock ($\mu \mathrm{s}$)	25	22	18
Maximum Linearity Error at $+25^{\circ} \mathrm{C}$ (\% of FSR)	0.012	0.048	0.20

NOTE: (1) Conversion time to maintain $\pm 1 / 2$ LSB linearity error.

FIGURE 6. Continuous Conversion with External Clock. (Conversion is initiated by 14th clock pulse. Clock runs continuously.)

FIGURE 7. Continuous Conversion.

FIGURE 8. Internal Clock-Normal Operating Mode. (Conversion initiated by the rising edge of the convert command. The internal clock runs only during conversion.)

FIGURE 9. Continuous External Clock. (Conversion intitiated by rising edge of convert command. The convert command must be synchronized with clock.)

ENVIRONMENTAL SCREENING

The inherent reliability of a semiconductor device is controlled by the design, materials, and fabrication of the device-it cannot be improved by testing. However, the use of environmental screening can eliminate the majority of those units which would fail early in their lifetimes (infant mortality) through the application of carefully selected accelerated stress levels. Burr-Brown Q models are environmentally screened versions of our standard industrial products, designed to provide enhanced reliability. The screening illustrated in Table IV is performed to selected methods of MIL-STD-883. Reference to these methods provides a convenient way of communicating the screening levels and basic procedures employed; it does not imply conformance to any other military standards or to any methods of MIL-STD-883 other than those specified. Burr-Brown's detailed procedures may vary slightly, model-to-model, from those in MIL-STD-883.

TABLE IV. Screening Flow for ADC80MAH-12/QM.

Screen	MIL-STD-883 Method, Condition	Screening Level
Internal Visual	2010	.
High Temperature Storage (Stabilization Bake)	1008, C	24 hour, $+150^{\circ} \mathrm{C}$
Temperature Cycling	1010, C	$\begin{gathered} 10 \text { cycles, }-65^{\circ} \mathrm{C} \\ \text { to }+150^{\circ} \mathrm{C} \end{gathered}$
Constant Acceleration	2001, A	5000 G
Electrical Test	Burr-Brown test procedure	
Burn-in	1015, B	$\begin{gathered} 160 \text { hour, }+125^{\circ} \mathrm{C}, \\ \text { steady state } \end{gathered}$
Hermeticity: Fine Leak Gross Leak	$\begin{gathered} 1014, \mathrm{~A} 1 \text { or A2 } \\ 1014, \mathrm{C} \end{gathered}$	$5 \times 10^{-7} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$ bubble test only, pre-conditioning omitted
Final Electrical	Burr-Brown test procedure	
Final Drift	Burr-Brown test procedure	
External Visual	2009	

BURR-BROWN®

ADC84 ADC85H ADC87H

IC ANALOG-TO-DIGITAL CONVERTERS

FEATURES

- INDUSTRY STANDARD 12-BIT A/D CONVERTERS
- COMPLETE WITH CLOCK AND INPUT BUFFER
- HIGH SPEED CONVERSION: $10 \mu \mathrm{~S}$ (max)
- REDUCED CHIP COUNT-HIGH RELIABILITY
- LOWER POWER DISSIPATION: 450mW (typ)
- $\pm 0.012 \%$ MAX LINEARITY
- THREE TEMPERATURE RANGES:
$\hat{0}^{\circ} \mathrm{U}$ iu $+\boldsymbol{i} \mathrm{O}^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- NO MISSING CODES OVER FULL TEMPERATURE RANGE
- PARALLEL AND SERIAL OUTPUTS
- $\pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$ POWER SUPPLY OPERATION
- HERMETIC 32-PIN CERAMIC SIDE-BRAZED DIP
initial accuracies of better than $\pm 0.012 \%$ ($\pm 1 / 2$ LSB). The fast 10μ s conversion speed for 12-bit resolution makes these ADCs excellent for a wide range of applications where system throughput sampling rates of 100 kHz are required. In addition, they may be short cycled and the clock rate control may be used to obtain faster conversion speeds at lower resolutions.
Data is available in parallel and serial form with corresponding clock and status signals. All digital input and output signals are CMOS/TTL-compatible. Power supply voltages are $\pm 12 \mathrm{VDC}$ or $\pm 15 \mathrm{VDC}$ and +5 VDC .

SPECIFICATIONS

ELECTRICAL

Specified at $+25^{\circ} \mathrm{C}$ and rated supplies unless otherwise noted.

MODEL	ADC84KG-12 ${ }^{(1)}$			ADC85H-12			ADC87H-12			UNITS
	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
RESOLUTION			12			*			*	Bits
INPUTS										
ANALOG Voltage Ranges: Bipolar Unipolar $\begin{aligned} \text { Impedance (Direct Input): } & 0 \text { to }+5 \mathrm{~V}, \pm 2.5 \mathrm{~V} \\ & 0 \text { to }+10 \mathrm{~V}, \pm 5 \mathrm{~V} \\ & \pm 10 \mathrm{~V} \end{aligned}$ Buffer Amplifier: Impedance Bias Current Settling Time to 0.01% for 20 V step $^{(2)}$	2.45 4.9 9.8 100	$\begin{gathered} 2.5, \pm 5, \pm \\ +5,0 \text { to } \\ 2.5 \\ 5 \\ 10 \\ \\ 50 \\ \\ 2 \end{gathered}$	$\begin{gathered} \\ \hline \\ 2.55 \\ 5.1 \\ 10.2 \end{gathered}$	*		*	* ${ }_{*}^{*}$	* ${ }_{*}^{*}$	*	V V $\mathrm{k} \Omega$ $\mathrm{k} \Omega$ $\mathrm{k} \Omega$ $M \Omega$ nA $\mu \mathrm{s}$
DIGITAL ${ }^{(3)}$ Convert Command Logic Loading		Positive pul		Ons (m	trailing	ge initia	conver	*		TTL Load
TRANSFER CHARACTERISTICS										
ACCURACY Gain Error ${ }^{(4)}$ Offset Error ${ }^{(4)}$: Unipolar Bipolar Linearity Error ${ }^{(6)}$ Inherent Quantization Error Differential Linearity Error No Missing Codes Temperature Range	0	$\begin{gathered} \pm 0.1 \\ \pm 0.05 \\ \pm 0.1 \\ \pm 0.5 \\ \pm 0.5 \end{gathered}$	$\begin{gathered} \pm 0.25 \\ \pm 0.2 \\ \pm 0.25 \\ \pm 0.012 \\ \\ +70 \end{gathered}$	-25		$+85$	-55	* ${ }_{*}^{*}$	$+125$	$\%$ $\%$ of FSR (5) $\%$ of FSR $\%$ of FSR LSB LSB ${ }^{\circ} \mathrm{C}$
POWER SUPPLY SENSITIVITY Gain and Offset: $\pm 15 \mathrm{~V}$ $+5 \mathrm{~V}$		± 0.004 ± 0.001			*			*		\% of FSR/\%V \% of FSR/\%Vs
DRIFT Gain Offset: Unipolar Bipolar Linearity Monotonicity		± 3 Guarante	$\begin{aligned} & \pm 30 \\ & \pm 15 \\ & \pm 3 \end{aligned}$,	± 3	$\begin{aligned} & \pm 15 \\ & \pm 7 \\ & \pm 2 \end{aligned}$		*	$\begin{gathered} \pm 15 \\ \pm 5 \\ \pm 10 \\ \pm 2 \end{gathered}$	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\circ} \mathrm{C} \end{gathered}$
CONVERSION TIME			10			*			*	$\mu \mathrm{s}$
DIGITAL OUTPUT ${ }^{(3)}$										
(All Codes Complementary) Parallel Output Codes: Unipolar Bipolar Output Drive Serial Data Codes (NRZ) Output Drive Status Output Drive Internal Clock: Output Drive Frequency ${ }^{(7)}$	Logic	$\begin{gathered} \text { CSB } \\ \text { COB, CT } \\ 2 \\ \text { CSB, COI } \\ 2 \\ 2 \\ \text { during c } \\ 2 \\ 2 \\ 1.35 \end{gathered}$	version		$*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$		-	$*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$		TTL Loads TTL Loads TTL Loads TTL Loads MHz
INTERNAL REFERENCE VOLTAGE										
Reference Output Max. External Current With No Degradation Tempco of Drift	+6.2	+6.3	$\begin{gathered} +6.4 \\ 200 \\ \pm 20 \end{gathered}$	*	± 5	$\begin{gathered} * \\ * \\ \pm 10 \end{gathered}$	*	$*$ ± 5	$*$ $*$ ± 10	
POWER SUPPLY REQUIREMENTS										
	$\begin{aligned} & +4.75 \\ & \pm 11.4 \end{aligned}$	± 12 or 450	$\begin{gathered} +5.25 \\ \pm 16.5 \\ 20 \\ 25 \\ 10 \\ 725 \end{gathered}$	*		*	*	*	$*$ $*$ $*$ $*$ $*$ $*$	V V V mA mA mA mW
TEMPERATURE RANGE										
Specification Operating (with Derated Specs) Storage	$\begin{gathered} \hline 0 \\ -25 \\ -65 \\ \hline \end{gathered}$		$\begin{array}{r} +70 \\ +85 \\ +150 \\ \hline \end{array}$	$\begin{aligned} & -25 \\ & -55 \end{aligned}$		$\begin{gathered} +85 \\ +125 \end{gathered}$	-55		$+125$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
PACKAGE	Hermetic Ceramic			*			*			

[^7]NOTES: (1) Model ADC84KG-10 is the same as model ADC84KG-12 except for the following: (a) Resolution: 10 bits (max), (b) Linearity Error: $\pm 0.048 \%$ of FSR (max), (c) Conversion Time: $6 \mu \mathrm{~s}$ (max), (d) Internal Clock Frequency: 1.9 MHz (typ). (2) If the buffer is used, delay Convert Command until amplifier settles. (3) DTL/TTL compatible. For digital inputs Logic " 0 " $=0.8 \mathrm{~V}$ (max) and Logic " 1 " $=2.0 \mathrm{~V}$ min. For digital outputs Logic " 0 " $=0.4 \mathrm{~V}$ (max) and Logic " 1 " $=2.4 \mathrm{~V}$ (min). (4) Adjustable to zero. (5) FSR means Full Scale Range. (6) The error shown is the same as $\pm 1 / 2 \mathrm{LSB}$ max linearity error in $\%$ of FSR. (7) Internal clock is externally adjustable.

CONNECTION DIAGRAM—ADC85H SERIES

MECHANICAL

ORDERING INFORMATION

Model	Resolution (Bits)	Temp Range (${ }^{\circ}$ C $)$
ADC84KG-10	10	0 to +70
ADC84KG-12	12	0 to +70
ADC85H-12	12	-25 to +85
ADC85HQ-12*	12	-25 to +85
ADC87H-12	12	-55 to +125
ADC87HQ-12*	12	-55 to +125

* Q suffix indicates environmental screening; see Table II for details.

THEORY OF OPERATION

The accuracy of a successive approximation A/D converter is described by the transfer function shown in Figure 1. All successive approximation A/D converters have an inherent Quantization Error of $\pm 1 / 2$ LSB. The remaining errors in the A/D converter are combinations of analog errors due to the linear circuitry, matching and tracking properties of the ladder and scaling networks, power supply rejection, and reference errors. In summary, these errors consist of initial errors including Gain, Offset, Linearity, Differential Linearity and Power Supply Sensitivity. Initial Gain and Offset errors may be adjusted to zero. Gain drift over temperature rotates the line (Figure 1) about the zero or minus full scale point (all bits OFF) and Offset drift shifts the line left or right over the operating temperature range. Linearity error is unadjustable and is the most meaningful indicator of A / D converter accuracy. Linearity error is the deviation of an actual bit transition from the ideal transition value at any level over the range of the A / D converter. A Differential Linearity error of $\pm 1 / 2$ LSB means that the width of each bit step over the range of the A / D converter is $1 \mathrm{LSB} \pm 1 / 2 \mathrm{LSB}$.

The ADC84, ADC85H and ADC87H are also monotonic, assuring that the output digital code either increases or remains the same for increasing analog input signals. Burr-Brown also guarantees that these converters will have no missing codes over a specified temperature range. Figure 2 is the timing diagram.

FIGURE 1. Input vs Output for an Ideal Bipolar A/D Converter.

FIGURE 2. Timing Diagram.

DIGITAL CODES

Parallel Data

Three binary codes are available on the ADC85H series parallel output:

- complementary (logic " 0 " is true) straight binary (CSB) for unipolar input signal ranges;
- complementary two's complement (CTC) for bipolar input signal ranges;
- complementary offset binary (COB) for bipolar input signal ranges.
Table I describes the LSB, transition values and code
definitions for each possible analog input signal range for $8-, 10-$, and 12 -bit resolutions.

Serial Data

Two straight binary (complementary) codes are available on the serial output line; they are CSB and COB. The serial data is available only during conversion and appears with the most significant bit (MSB) occurring first. The serial data is synchronous with the internal clock as shown in the timing diagram of Figure 2. The LSB and transition values shown in Table I also apply to the serial data output except for the CTC code.

TABLE 1. Input Voltages, Transition Values, LSB Values, and Code Definitions.

Binary Output	Input Voltage Range and LSB Values					
Analog Input Voltage Ranges	Defined As	$\pm 10 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 2.5 \mathrm{~V}$	0 to +10 V	0 to +5 V
Code Designation		$\mathrm{COB}^{(1)}$ or CTC ${ }^{(2)}$	$\mathrm{COB}^{(1)}$ or CTC ${ }^{(2)}$	$\mathrm{COB}^{(1)}$ or CTC ${ }^{(2)}$	$\mathrm{CSB}^{(3)}$	$\mathrm{CSB}^{(3)}$
One Least Significant Bit (LSB)	$\begin{gathered} \text { FSR } / 2^{n} \\ n=8 \\ n=10 \\ n=12 \end{gathered}$	$\begin{gathered} 20 \mathrm{~V} / 2^{n} \\ 78.13 \mathrm{mV} \\ 19.53 \mathrm{mV} \\ 4.88 \mathrm{mV} \end{gathered}$	$\begin{gathered} 10 \mathrm{~V} / 2^{\mathrm{n}} \\ 39.06 \mathrm{mV} \\ 9.77 \mathrm{mV} \\ 2.44 \mathrm{mV} \end{gathered}$	$\begin{gathered} 5 \mathrm{~V} / 2^{\mathrm{n}} \\ 19.53 \mathrm{mV} \\ 4.88 \mathrm{mV} \\ 1.22 \mathrm{mV} \end{gathered}$	$\begin{gathered} 10 \mathrm{~V} / 2^{\mathrm{n}} \\ 39.06 \mathrm{mV} \\ 9.77 \mathrm{mV} \\ 2.44 \mathrm{mV} \end{gathered}$	$\begin{gathered} \hline 5 \mathrm{~V} / 2^{\mathrm{n}} \\ 19.53 \mathrm{mV} \\ 4.88 \mathrm{mV} \\ 1.22 \mathrm{mV} \end{gathered}$
Transition Values $\begin{aligned} & \text { vise LSB } \\ & 000 \ldots 000^{(4)} \\ & 011 \ldots .111 \\ & 111 \ldots 110 \end{aligned}$	+Full Scale Mid Scale -Full Scale	$\begin{gathered} +10 \mathrm{~V}-3 / 2 \mathrm{LSB} \\ 0 \\ -10 \mathrm{~V}+1 / 2 \mathrm{LSB} \end{gathered}$	$\begin{gathered} +5 \mathrm{~V}-3 / 2 \mathrm{LSB} \\ 0 \\ -5 \mathrm{~V}+1 / 2 \mathrm{LSB} \end{gathered}$	$\begin{gathered} +2.5 \mathrm{~V}-3 / 2 \mathrm{LSB} \\ 0 \\ -2.5 \mathrm{~V}+1 / 2 \mathrm{LSB} \end{gathered}$	$\begin{gathered} +10 V-3 / 2 L S B \\ +5 V \\ 0+1 / 2 L S B \end{gathered}$	$\begin{gathered} +5 \mathrm{~V}-3 / 2 \mathrm{LSB} \\ +2.5 \mathrm{~V} \\ 0+1 / 2 \mathrm{LSB} \end{gathered}$

NOTES: (1) $\mathrm{COB}=$ Complementary Offset Binary. (2) CTC = Complementary Two's Complement-obtained by using the complement of the most-significant bit (MSB). MSB is available on pin 13. (3) Complementary Straight Binary. (4) Voltages given are the nominal value for transition to the code specified.

ENVIRONMENTAL SCREENING

The inherent reliability of a semiconductor device is controlled by the design, materials, and fabrication of the device-it cannot be improved by testing. However, the use of environmental screening can eliminate the majority of those units which would fail early in their

TABLE II. Screening for ADC85HQ-12 and ADC87HQ-12.

Screen	MIL-STD-883 Method, Condition	Screening Level
Internal Visual	Burr-Brown QC4118*	
High Temperature Storage (Stabilization Bake)	1008, C	24 hour, $+150^{\circ} \mathrm{C}$
Temperature Cycling	1010, C	$\begin{aligned} & 10 \text { cycles, }-65^{\circ} \mathrm{C} \\ & . \quad \text { to }+150^{\circ} \mathrm{C} \end{aligned}$
Constant Acceleration	2001, A	5000 G
Burn-in	1015, B	160 hour, $+125^{\circ} \mathrm{C}$ steady-state
Electrical Test	Burr-Brown test procedure	.
Hermeticity: Fine Leak Gross Leak	$\begin{gathered} 1014, \text { A1 or A2 } \\ 1014, ~ C \end{gathered}$	$5 \times 10^{-7} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$ bubble test only, preconditioning omitted
Final Electrical	Burr-Brown test procedure	
Final Drift	Burr-Brown test procedure	
External Visual	QC5150*	

[^8]lifetimes. Burr-Brown Q models are environmentally screened versions of our standard industrial products, designed to provide enhanced reliability. The screening illustrated in Table II is performed to selected methods of MIL-STD-883. Reference to these methods provides a convenient way of communicating the screening levels and basic procedures employed; it does not imply conformance to any other military standards or to any methods of MIL-STD-883 other than those specified. Burr-Brown's detailed procedures may vary slightly, model-to-model, from those in MIL-STD-883.

DISCUSSION OF SPECIFICATIONS

The ADC85H series is specified to provide critical performance criteria for a wide variety of applications. The most critical specifications for an A/D converter are linearity, drift, gain and offset errors, and conversion speed effects on accuracy. These ADCs are factorytrimmed and tested for all critical key specifications.

GAIN AND OFFSET ERROR

Initial Gain and Offset errors are factory-trimmed to $\pm 0: 1 \%$ of FSR ($\pm 0.05 \%$ for unipolar offset) at $25^{\circ} \mathrm{C}$. These errors may be trimmed to zero by connecting external trim potentiometers as shown in Figures 6 and 7.

ACCURACY DRIFT VS TEMPERATURE

Three major drift parameters degrade A/D converter accuracy over temperature: gain, offset and linearity drift. The worst-case accuracy drift is the summation of all three drift errors over temperature. Statistically, these errors do not add algebraically, but are random variables which behave as root-sum-squared (RSS) or I σ errors as follows:

$$
\begin{aligned}
\mathrm{RSS} & =\sqrt{\epsilon \mathrm{g}^{2}+\epsilon \mathrm{o}^{2}+\epsilon \mathrm{e}^{2}} \\
\text { where } \epsilon \mathrm{g} & =\text { gain drift error }\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \\
\epsilon \mathrm{O} & =\text { offset drift error }\left(\mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\circ} \mathrm{C}\right) \\
\epsilon \mathrm{e} & =\text { linearity error }\left(\mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

For the ADC85H-12 operating in the unipolar mode, the total RSS drift is $\pm 15.42 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and for bipolar operation the total RSS drift is $\pm 16.7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

ACCURACY VS SPEED

In successive approximation A/D converters, the conversion speed affects linearity and differential linearity errors. The power supply sensitivity specification is a measure of how much the plus full-scale value will change from the initial value for independent changes in each power supply. This change results in a proportional change in all code transition values (i.e., a gain error).
The conversion speeds are specified for a maximum linearity error of $\pm 1 / 2$ LSB with the internal clock. Faster conversion speeds are possible but at a sacrifice in linearity (see Clock Rate Control Alternate Connections).

POWER SUPPLY SENSITIVITY

Changes in the DC power supplies will affect accuracy. Normally, regulated power supplies with 1% or less ripple are recommended for use with these ADCs. See Layout Precautions and Power Supply Decoupling.

FIGURE 3. Power Supply Rejection vs Power Supply Ripple Frequency.

LAYOUT AND OPERATING INSTRUCTIONS

LAYOUT PRECAUTIONS

Analog and digital commons are not connected internally in the ADC85H series, but should be connected together as close to the unit as possible, preferably to a large ground plane under the ADC. If these grounds must be run separately, use a wide conductor pattern and a $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ nonpolarizaed bypass capacitor between analog and digital commons at the unit. Low impedance analog and digital common returns are essential for low noise performance. Coupling between analog inputs and digital lines should be minimized by careful layout.

POWER SUPPLY DECOUPLING

The power supplies should be bypassed with tantalum or electrolytic type capacitors as shown in Figure 4 to reduce noise during operation. These capacitors should be located close to the ADC. $1 \mu \mathrm{~F}$ electrolytic type capacitors should by bypassed with $0.01 \mu \mathrm{~F}$ ceramic capacitors for improved high frequency performance.

FIGURE 4. Recommended Power Supply Decoupling.

INPUT SCALING

The analog input should be scaled as close to the maximum input signal range as possible in order to utilize the maximum signal resolution of the A / D converter. Connect the input signal as shown in Table III. See Figure 5 for circuit details.

FIGURE 5. Input Scaling Circuit.

TABLE III. Input Scaling Connections.

Input Signal Range	Output Code	Connect Pin 23 To Pin	Connect Pin 25 To	For Buffered Input ${ }^{(1)}$ Connect Pin 29 To Pin	For Direct Input ${ }^{(2)}$ Connect Input Signal To Pin
$\pm 10 \mathrm{~V}$	COB or CTC	22	Input $^{\text {In }}$	25	25
$\pm 5 \mathrm{~V}$	COB or CTC	22	Open	24	24
$\pm 2.5 \mathrm{~V}$	COB or CTC	22	Pin 22	24	24
0 to +5 V	CSB	26	Pin 22	24	24
0 to +10 V	CSB	26	Open	24	24

NOTES: (1) Connect to pin 29 or input signal as shown in next two columns. (2) If the buffer amplifier is not used, pin 30 must be connected to ground (pin 26). (3) The input signal is connected to pin 30 if the buffer amplifier is used.

OPTIONAL EXTERNAL GAIN AND OFFSET ADJUSTMENTS

Gain and Offset errors may be trimmed to zero using external gain and offset trim potentiometers connected to the ADC as shown in Figures 6 and 7. Multiturn potentiometers with $100 \mathrm{nnm} /{ }^{\circ} \mathrm{C}$ or better TCRs are recommended for minimum drift over temperature and time. These pots may be any value from $10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$. All resistors should be 20% carbon or better. Pin 27 (Gain Adjust) should be bypassed with $0.01 \mu \mathrm{~F}$ to reduce noise pickup and Pin 22 (Offset Adjust) may be left open if no external adjustment is required.

Adjustment Procedure

OFFSET-Connect the Offset potentiometer as shown in Figure 6. Sweep the input through the end point transition voltage that should cause an output transition to all bits off ($\mathrm{E}_{\mathrm{IN}}^{\mathrm{OFF}}$).
Adjust the Offset potentiometer until the actual end point transition voltage occurs at $\mathrm{E}_{\mathrm{IN}}^{\mathrm{OFF}}$. The ideal transition voltage values of the input are given in Table I.

FIGIJRE 6. Two Methods of Connecting Optional Offset Adjust.

GAIN-Connect the Gain adjust potentiometers as shown in Figure 7. Sweep the input through the end point transition voltage that should cause an output transition voltage to all bits on ($\mathrm{E}_{\mathrm{IN}}^{\mathrm{ON}}$). Adjust the Gain potentiometer until the actual end point transition voltage occurs at $\mathrm{E}_{\mathrm{IN}}^{\mathrm{ON}}$.
Table I details the transition voltage levels required.

FIGURE 7. Two Methods of Connecting Optional Gain Adjust.

Clock Rate Control Alternate Connections

If adjustment of the Clock Rate is desired for faster conversion speeds, the Clock Rate Control may be connected to an external multiturn trim potentiometer with TCR of $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less as shown in Figure 8. If the potentiometer is connected to -15 VDC , conversion time can be increased as shown in Figure 8. If these adjustments are used, delete the connections shown in Table IV for pin 17. See Typical Performance Curves for nonlinearity error vs. clock frequency, and Figure 9 for the effect of the control voltage on clock speed. Operation with clock rate control voltage of less than -IVDC is not recommended.

FIGURE 8. 12-Bit Clock Rate Control Optional Fine Adjust.

FIGURE 9. Conversion Time vs Clock Speed Control.

Additional Connections Required

The ADC85H series may be operated at faster speeds for resolutions less than 12 bits by connecting the Short Cycle input, pin 14, as shown in Table IV. Conversion
speeds, linearity and resolution are shown for reference. Specifications for 10 -bit units assume connections as shown below.
TABLE IV. Short Cycle Connections and Specifications for 8- to 12-Bit Resolution.

Resolution (Bits)	$\mathbf{1 2}$	$\mathbf{1 0}$	$\mathbf{8}$
Connect Pin 17 to ${ }^{(1)}$	Pin 15	$\operatorname{Pin} 16$	$\operatorname{Pin} 28$
Connect Pin 14 to	Pin 16	Pin 2	$\operatorname{Pin} 4$
Maximum Conversion Speed $(\mu \mathrm{s})^{(2)}$	10	6	4
Maximum Nonlinearity at $25^{\circ} \mathrm{C}(\%$ of FSR)	$0.012^{(3)}$	$0.048^{(4)}$	$0.20^{(4)}$

NOTES: (1) Connect only if clock rate control is not used. (2) Maximum conversion speeds to maintain $\pm 1 / 2$ LSB nonlinearity error. (3) 12 -bit models only. (4) 10 -or 12 -bit models.

Converter Initialization

On power-up, the state of the ADC internal circuitry is indeterminate. One conversion cycle is required to initialize the converter after power is applied.

Output Drive

Normally all ADC84, ADC85H, and ADC87H logic outputs will drive two standard TTL loads; however, if long digital lines must be driven, external logic buffers are recommended.

BURR-BROWN®

12-BIT ULTRA-HIGH SPEED A/D CONVERTER

FEATURES

- HIGH RESOLUTION: 12 bits
- SAMPIE RATE: NC to ! 0 MHz
- HIGH SINAD RATIO: 67dB
- LOW HARMONIC DISTORTION: -71dB
- LOW INTERMODULATION DISTORTION: -7OdB
- INPUT RANGE: $\pm 1.25 \mathrm{~V}$
- COMPLETE SUBSYSTEM: Contains Sample/Hold and Reference
- LOW DISSIPATION: 8.5W
$-0^{\circ} \mathrm{C}$ TO $+70^{\circ} \mathrm{C}$ AND $-40^{\circ} \mathrm{C} \mathrm{TO}+85^{\circ} \mathrm{C}$

DESCRIPTION

The ADC600 is an ultra-high speed analog-to-digital converter capable of digitizing signals at any rate from DC to 10 megasamples per second. Outstanding dynamic range has been achieved by minimizing noise and distortion.

- DIGITAL SIGNAL PROCESSING
- RADAR SIGNAL ANALYSIS
- transient signal recording
- FFT SPECTRUM ANALYSIS
- HIGH-SPEED DATA ACQUISITION
- JAM-RESISTANT SYSTEMS
- SIGINT, ECM, AND EW SYSTEMS
- DIGITAL COMMUNICATIONS
- DIGITAL OSCILLOSCOPES

The ADC600 is a two-step subranging ADC subsystem containing an ADC, sample/hold amplifier, voltage reference, timing, and error-correction circuitry. Laser-trimmed ceramic submodules are mounted on a 17 -square-inch multilayer PC motherboard. Logic is ECL.

[^9]
SPECIFICATIONS

ELECTRICAL

$T_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{MHz}$ sampling rate, $\mathrm{R}_{\mathrm{S}}=50 \Omega, \pm \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{D D 1}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD2}}=-5.2 \mathrm{~V}$, and 15 -minute warmup in normal convection environment, unless otherwise noted.

ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)
$\pm \mathrm{V}_{\mathrm{Cc}}=15 \mathrm{~V}, \mathrm{~V}_{D D 1}=+5 \mathrm{~V}, \mathrm{~V}_{D D 2}=-5.2 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, 15$-minute warmup, and $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise noted.

PARAMETER	CONDITIONS	ADC600K			ADC600B			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
TEMPERATURE RANGE								
Specification Storage	Tcase max Tambient	$\begin{gathered} \hline 0 \\ -40 \\ \hline \end{gathered}$		$\begin{gathered} +70 \\ +100 \\ \hline \end{gathered}$	-40 $*$		+85	${ }^{\circ} \mathrm{C}$
ACCURACY								
Gain Error Input Offset Integral Linearity Error Differential Linearity Error	$\begin{gathered} \mathrm{F}=200 \mathrm{~Hz} \\ \mathrm{DC} \\ \mathrm{~F}=200 \mathrm{~Hz} \\ \mathrm{~F}=200 \mathrm{~Hz} \end{gathered}$ 63% of all codes 98% of all codes 100% of all codes	DC	± 30 ± 50	1.5 0.5 1.25 1.5 10	*	*	*	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~N} /{ }^{\circ} \mathrm{C} \\ \mathrm{LSB} \\ \\ \mathrm{LSB} \\ \mathrm{LSB} \\ \mathrm{LSB} \\ \mathrm{MHz} \end{gathered}$

*Same as ADC600K
NOTE: (1) FSR: full-scale range $=2.5 \mathrm{Vp}-\mathrm{p}$. (2) Units with tested and guaranteed distortion specifications are available on special order-inquire. (3) $\mathrm{dBC}=$ level referred to carrier (input signal $\approx 0 \mathrm{~dB}$); $F=$ input signal frequency; $F_{s}=$ sampling frequency. (4) IMD is referred to the larger of the two input test signals. If referred to the peak envelope signal $(\approx 0 \mathrm{~dB})$, the intermodulation products will be 6 dB lower.

MECHANICAL

ABSOLUTE MAXIMUM RATINGS

$\pm \mathrm{V}_{\text {cc }}$	$\pm 16.5 \mathrm{~V}$
$V_{D D 1}$. +7.0V
$V_{\text {DO2 }}$. -7.0 V
Analog Input	$\pm 5.0 \mathrm{~V}$
Logic Input	. $\mathrm{V}_{\mathrm{DD} 2}$ to +0.5 V
Case Temperature $100^{\circ} \mathrm{C}$
Junction Temperature ${ }^{(1)}$. $150^{\circ} \mathrm{C}$
Storage Temperature .	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Stresses above these rat device.	it damage to the

ORDERING INFORMATION

(1). See Table I for thermal resistance data.

PIN ASSIGNMENTS

1	Common	21	Common
2	$-\mathrm{V}_{\mathrm{cc}}(-15 \mathrm{~V})$	22	Data Valid
3	$\mathrm{V}_{\text {DD2 }}(-5.2 \mathrm{~V})$	23	Bit 12 (LSB)
4	$\mathrm{V}_{\text {DD }}(+5 \mathrm{~V})$	24	Bit 11
5	$+\mathrm{V}_{\mathrm{cc}}(+15 \mathrm{~V})$	25	Bit 10
6	Common	26	Bit 9
7	$\mathrm{V}_{\text {DD2 }}(-5.2 \mathrm{~V})$	27	Bit 8
8	$V_{D D 1}(+5 \mathrm{~V})$	28	Bit 7
9	Common	29	Bit 6
10	$\mathrm{V}_{\text {DD2 }}(-5.2 \mathrm{~V})$	30	Bit 5
11	Common	31	Bit 4
12	Common	32	Bit 3
13	$+\mathrm{V}_{\mathrm{cc}}(+15 \mathrm{~V})$	33	Bit 2
14	$-V_{c c}(-15 \mathrm{~V})$	34	Bit 1 (MSB)
15	$\mathrm{V}_{\text {DD2 }}(-5.2 \mathrm{~V})$	35	$\overline{\text { Bit } 1}$ (MSB)
16	$\mathrm{V}_{\text {DD } 1}(+5 \mathrm{~V})$	36	$\mathrm{V}_{\text {DD2 }}(-5.2 \mathrm{~V})$
17	Common	37	Common
18	$\mathrm{V}_{\text {DD2 }}(-5.2 \mathrm{~V})$	38	Convert Command
19	$V_{\text {DD } 1}(+5 \mathrm{~V})$	39	Analog Input
20	$\mathrm{V}_{\text {DD2 }}(-5.2 \mathrm{~V})$	40	Analog Input Return

TYPICAL PERFORMANCE CURVE

THEORY OF OPERATION

The ADC600 is a two-step subranging analog-to-digital converter. This architecture is shown in Figure 1. The major system building blocks are: Sample/Hold Amplifier, MSB Flash encoder, DAC and Error Amplifier, LSB Flash Encoder, Digital Error Corrector, and Timing Circuits. The ADC600 uses individually tested and lasertrimmed submodules mounted on a four-layer motherboard to integrate this complex circuit into a complete analog-to-digital converter subsystem with state-of-theart performance.
Conceptually, the subranging technique is simple: sample and hold the input signal, convert to digital with a coarse ADC, convert back to analog with a coarse-resolution (but high-accuracy) DAC, subtract this voltage from the S/H output, amplify this "remainder," convert to digital with a second coarse ADC, and combine the digital output from the first ADC (MSB) with the digital output from the second ADC (LSB). In practice, however,
achieving high conversion speed without sacrificing accuracy is a difficult task.
The analog input signal is sampled by a high-speed sample/hold amplifier with low distortion, fast acquisition time and very low aperture uncertainty (jitter). A diode bridge sampling switch is used to achieve an acceptable compromise between speed and accuracy. The diode bridge switching transients are buffered from the analog input by a high input impedance buffer amplifier. Since the hold capacitor does not appear in the feedback of the diode bridge output buffer the capacitor can acquire the signal in 25 ns . The low-biascurrent output buffer is then required to settle to only the resolution (7 bits) of the first (MSB) flash encoder in 25 ns while an additional 60 ns is allowed for settling to the resolution (12 bits) of the second (LSB) flash encoder. Sample/hold droop appears as only an offset error and does not affect linearity.
Both the MSB and the LSB flash encoder (ADC) are high-speed 7-bit resolution converters formed by parallelconnecting two 6-bit flash ADCs as shown in Figure 2. The DAC +10 V reference is also used to generate reference voltages for the MSB and LSB encoders to compensate drift errors. Buffering and scaling are performed by $\mathrm{I}_{\mathrm{C} 1}$ and $\mathrm{I}_{\mathrm{C} 2}$. Laser-trimming is used to minimize voltage offset errors and optimize gain (input full-scale range) symmetry.
The subtraction DAC is an ECL 7-bit resolution DAC with 14-bit accuracy. Laser-trimmed thin-film nichrome resistors on sapphire and high-speed bipolar circuitry allow the DAC output to settle to 14-bit accuracy in only 25 ns .

A "remainder" or coarse conversion-error voltage is generated by resistively subtracting the DAC output from the output of the sample/hold amplifier. Before the second (LSB) conversion, the "remainder" is amplified by a wideband fast-settling amplifier with a gain of $32 \mathrm{~V} / \mathrm{V}$. To prevent overload on large amplitude transients, a high-speed FET switch blanks the amplifier input from the beginning of the S / H acquisition time to end of the MSB encoder update time.
The timing circuits shown in Figure 3 supply all the critical timing signals necessary for proper operation of the ADC600. Some noncritical timing signals are also generated in the digital error correction circuitry. Timing signals are laser-trimmed for both pulse width and delay. The ECL logic timing delay is stable over a wide range of temperatures and power supply voltages. Basic timing is derived from the output of a three-stage shift register driven by a synchronized 20 MHz oscillator.
The convert command pulse is differentiated by IC_{1} to allow triggering by pulses from as narrow as 5 ns to as wide as 75% duty cycle. This differentiated signal sets flip-flop IC_{2}, placing the S / H back into its sample mode.
The output of the third stage of the shift register is also differentiated by IC_{8} and used to generate a strobe for the LSB flash encoder. R_{1} is laser-trimmed to generate a precise 8 ns pulse while the oscillator frequency is adjusted to trim the strobe pulse delay. IC_{4} and IC_{5} comprise the

FIGURE 1. Block Diagram of 12-Bit 10MHz ADC600.

FIGURE 2. 7-Bit Flash Encoder.

FIGURE 3. Schematic of Timing Module.
principal elements of a 20 MHz ring oscillator. R_{2} and C_{2} add additional delay and allow laser-trimming for the LSB delay. A blanking pulse to prevent error amplifier overload is generated by the second stage of the shift register. Proper timing is generated by laser-trimming R_{3} which, along with C_{3} forms a delay element along with two gates of IC_{6}.
A strobe pulse of the MSB flash encoder is generated and trimmed in a similar circuit using IC_{7}. This technique generates a variable width S / H gate pulse which is determined by the conversion command pulse period minus the fixed 67ns ADC conversion time ADC600 conversion rates are therefore possible above the 10 MHz specification but S / H acquisition time is sacrificed and accuracy is rapidly degraded.
The output of the MSB encoder is read into a separate 7-bit latch at the same time the LSB encoder is being strobed. The latched MSB data, along with the LSB data, is then read into a 14 -bit latch 30 ns after the leading edge of the LSB strobe and before being applied to the adder, where the actual error correction takes place. This latch eliminates any critical timing problems that would result when the converter is operated at the maximum conversion rate.
The function of the digital error correction circuitry (Figure 4) is to assemble the 7 -bit words from the two flash encoders into a 12 -bit output word. In addition, the circuit uses the LSB flash encoder strobe to generate timing strobes for both data registers. A data valid (DV) pulse is also generated which is used to indicate when output data can be latched into an external register. This DV pulse is delayed 5 ns after the output data has settled
to allow a sufficient set-up time for an external ECL data latch.
The 14 -bit register output is then sent to a 12 -bit adder where the final data output word is created. The MSB data forms the most significant seven bits of a 12 -bit word, with the last five bits being assigned zeros. In a similar fashion, the LSB data from the least significant bits form the other input to the adder with the first five bits being assigned zeros. As two 12 -bit words are being added, the output of the adder could exceed 12 bits in range; however, the final data output is only a 12 -bit word, so a means of detecting an overrange is included.
To prevent reading erroneous data, the converter data output reads all ones for a full-scale positive input or overrange and reads all zeros for a negative full-scale input or overrange. The data output does not "roll-over" if the converter input exceeds its specified full-scale range of $\pm 1.25 \mathrm{~V}$.

DISCUSSION OF PERFORMANCE

dYnamic PERFORMANCE TESTING

The ADC600 is a very high performance converter and careful attention to test techniques is necessary to achieve accurate results. Spectral analysis by application of a Fast Fourier Transform (FFT) to the ADC digitial output will provide data on all important dynamic performance parameters: total harmonic distortion (THD), signal-to-noise raito (SNR) or the more severe signal-to-noise-and-distortion ratio (SINAD), total noise and distortion (TND), and intermodulation distortion(IMD).

FIGURE 4. Block Diagram of Digital Error Corrector.

A test setup for performing high-speed FFT testing of analog-to-digital converters is shown in Figure 5. This was used to generate the typical FFT performance curves shown on pages 112 through 115 .
To preserve measurement accuracy, a very low side-lobe window must be applied to the digital data before executing an FFT. A commonly used window such as the Hanning window is not appropriate for testing high performance converters; a minimum four-sample Black-man-Harris window is strongly recommended. ${ }^{(1)}$ To assure that the majority of codes are exercised in the ADC600 (12 bits), a ten-sample average of 512-point FFTs is taken.

Dynamic Performance Definitions

1. Signal-to-Noise-and-Distortion ${ }^{(2)}$ Ratio (SINAD):

$$
10 \log \frac{\text { sine wave signal power }}{\text { noise }+ \text { harmonic power }}
$$

2. Total Harmonic Distortion (THD): $10 \log \frac{\text { harmonic power (first nine harmonics) }}{\text { sinewave signal power }}$
3. Total Noise Distortion (TND):

$$
10 \log \frac{\text { noise power }}{\text { sinewave signal power }}
$$

4. Intermodulation Distortion (IMD):

$$
10 \log \frac{\text { IMD product power }}{\text { sinewave signal power }}
$$

IMD is referenced ${ }^{(3)}$ to the larger of the test signals f_{1} or f_{2}.
Five "bins" either side of peak are used for calculation of fundamental and harmonic power. The " 0 " frequency bin (DC) is not included in these calculations as it is of little importance in dynamic signal processing applications.
Attention to test set-up details can prevent errors that
contribute to poor test results. Important points to remember when testing high performance converters are:

1. The ADC analog input must not be overdriven. Using a signal amplitude slightly lower than FSR will allow a small amount of "headroom" so that noise will not overrange the ADC and "hard limit" on signal peaks.
2. Two-tone tests can produce signal envelopes that exceed FSR. Set each test signal to slightly less than -6 dB to prevent "hard limiting" on peaks.
3. Low-pass filtering (or bandpass filtering) of test signal generators is absolutely necessary for THD and IMD tests. An easily built LC low-pass filter (Figure 6) will eliminate harmonics from the test signal generator.
4. Test signal generators must have exceptional noise performance (better than -155 dBC) to achieve accurate SNR measurements ${ }^{(4)}$. Good generators together with fifth-order elliptical bandpass filters are recommended for SNR and SINAD tests.
5. The analog input of the ADC600 should be terminated directly at the input pin sockets with the correct filter terminating impedance (50Ω or 75Ω) or it should be driven by an OPA 600 buffer. Short leads are necessary to prevent digital noise pickup.
6. A low-noise (jitter) clock signal (convert command) generator is required for good ADC dynamic performance. A recommended interface circuit is shown in Figure 7. Short leads are necessary to preserve fast ECL rise times.
7. Two-tone testing will require isolation between test signal generators to prevent IMD generation in the test generator output circuits. An active summing amplifier using an OPA600 is shown in Figure 8. This circuit will provide excellent performance from DC to

FIGURE 5. Test Setup for High Speed FFT Testing.

5 MHz with harmonic and intermodulation distortion products typically better than -70 dBC . A passive hybrid transformer signal combiner can also be used (Figure 9) over a range of about 1 MHz to 30 MHz . The port-to-port isolation will be $\approx 45 \mathrm{~dB}$ between signal generators and the input-output insertion loss will be $\approx 6 \mathrm{~dB}$.
8. A very low side-lobe window must be used for FFT calculation. A minimum four-sample Blackman-Harris window function is recommended. ${ }^{(1)}$
9. Digital data must be latched into an external ECL 12-bit register only by the Data Valid output pulse. Due to the possibility of improper timing, output data cannot be latched by using the convert command!
10. Do not overload the data output logic. These outputs are already provided with internal 68Ω pull-down resistors tied to -5.2 V .
11. A well-designed, clean PC board layout will assure proper operation and clean spectral response ${ }^{(5)(6)}$. Proper grounding and bypassing, short lead lengths and separation of analog and digital signals and ground returns are particularly important for high frequency circuits. Multilayer PC boards are recommended for best performance, but a two-sided PC board with large, heavy (2oz-foil) ground planes can give excellent results, if carefully designed.
Prototyping "plug-boards" or wire-wrap boards will not be satisfactory.

NOTES:

1. On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform, Fredric J. Harris. Proceedings of the IEEE, Vol. 66, No. 1, January 1978, pp 51-83.
2. SINAD test includes harmonics whereas SNR does not include these important spurious products.
3. If IMD is referenced to peak envelope power, an improvement of 6 dB
4. Test Report: FFT Characterization of Burr-Brown ADC600K, Signal Conversion Ltd., Swansea, Wales, U.K.
5. MECL System Design Handbook, 3rd Edition, Motorola Corp.
6. Motorola MECL, Motorola Corp.

FIGURE 6. Ninth-Order Harmonic Filter.

FIGURE 7. Optional Convert Command Interface Circuit.

FIGURE 8. Active Signal Combiner.

FIGURE 9. Passive Signal Combiner.

Sample Rate $=10 \mathrm{MHz}$, Input Voltage $=$ Full-Scale $(0 \mathrm{~dB})$

Frequency (MHz)

Level re: Full-Scale (dB)	
0.6055 MHz Fundamental	$=-0.6$
Harmonics: 2 f	$=-84.7$
3 f	$=-84.6$
4 f	$=-87.5$
SINAD	$=69.6 \mathrm{~dB}$
TND	$=-70.7 \mathrm{dBC}$
THD	$=-76.4 \mathrm{dBC}$

Frequency (MHz)

TYPICAL FFT SPECTRAL PERFORMANCE (CONT)
All FFT data: 512-point FFT, 10-sample average; minimum 4-sample Blackman-Harris Window.
Sample Rate $=10 \mathrm{MHz}$, Input Voltage $=$ Half-Scale $(-6 \mathrm{~dB})$

	Level re: Full-Scale (dB)
0.6055 MHz Fundamental $=$	-6.5
Harmonics: $2 \mathrm{f}=$	-86.6
$3 \mathrm{f}=$	-84.2
4 f	$=-84.9$
SINAD	$=63.7 \mathrm{~dB}$
TND	$=-65.1 \mathrm{dBC}$
THD	$=-69.2 \mathrm{dBC}$

Level re:
Full-Scale
$\mathrm{F}_{1}: 4.9219 \mathrm{MHz}=\frac{(\mathrm{dB})}{-12.35}$
$F_{2}: 4.6484 \mathrm{MHz}=-12.45$
Peak Envelope $=-6.7$
IMD: $0.2734 \mathrm{MHz}=-85.5$
$0.4883 \mathrm{MHz}=-84.5$
$4.7656 \mathrm{MHz}=-86.3$

All FFT data: 512-point FFT, 10-sample average; minimum 4-sample Blackman-Harris Window.
Sample Rate $=\mathbf{5 M H z}$, Input Voltage $=$ Full-Scale $(0 \mathrm{~dB})$

Level re: Full-Scale (dB)
0.5859 MHz Fundamental $=-0.7$ Harmonics: $2 f=-81.4$
$4 f=-87.0$
SINAD $=69.6 \mathrm{~dB}$
TND $=-70.7 \mathrm{dBC}$
THD $=-76.1 \mathrm{dBC}$

Frequency (MHz)

Level re:
Full-Scale
(dB)
$\mathrm{F}_{1}: 2.2461 \mathrm{MHz}=-6.3$
$F_{2}: 2.4023 \mathrm{MHz}=-6.4$
Peak Envelope $=-0.7$
IMD: $0.3809 \mathrm{MHz}=-81.2$
$2.0996 \mathrm{MHz}=-82.9$
$2.4707 \mathrm{MHz}=-83.9$

TYPICAL FFT SPECTRAL PERFORMANCE (CONT)
All FFT data: 512-point FFT, 10-sample average; minimum 4-sample Blackman-Harris Window.
Sample Rate $=5 \mathrm{MHz}$, Input Voltage $=$ Half-Scale $(-6 \mathrm{~dB})$

Level re: Full-Scale (dB)
$F_{1}: 2.2461 \mathrm{MHz}=-12.4$
$\mathrm{F}_{2}: 2.4023 \mathrm{MHz}=-12.4$
Peak Envelope $=-6.8$

IMD: $1.6406 \mathrm{MHz}=-87.5$
$1.8750 \mathrm{MHz}=-86.7$
$2.4609 \mathrm{MHz}=-86.0$

DIGITIZING INPUT WAVEFORMS

The response of the ADC600 is illustrated by the digitized waveforms of Figure 10. The 4.99 MHz sine wave near the Nyquist limit is virtually identical to much lower frequency sine wave input. The under-sampled 19.999 MHz sine wave illustrates the ADC600's excellent analog input full-power bandwidth. Figure 11 shows a block diagram of this high-speed digitizer.

HISTOGRAM TESTING

Histogram testing is used to test differential nonlinearity of the ADC600. This system block diagram is shown in Figure 12 and histogram test results for a typical converter are shown in Figure 13. Note that differential nonlinearity is $1 / 2 \mathrm{LSB}$ at 200 Hz and it shows virtually no degradation near the Nyquist limit of 5 MHz ; there are no missing codes present and the peak nonlinearity does not exceed 1LSB. Histogram testing is a useful performance indicator as the width of all codes can be determined.

SPECTRUM ANALYZER TESTING

A beat-frequency technique (Figure 14) can be used to view digitized waveforms on an oscilloscope and, with care, this technique can also be used for testing highspeed ADC dynamic characteristics with an analog spectrum analyzer.
In this method a test signal is digitized by the ADC600 and the output digital data is latched into an external ECL latch by the converter Data Valid output pulse driving a divide-by-N counter. The holding register drives a 12-bit video-speed DAC which reconstructs the digital signal back into an analog replica of the ADC600 input. This analog signal also includes distortion products and noise resulting from the digitization, which can be viewed on an ordinary RF spectrum analyzer. Typical results are shown in Figures 15 and 16.
It is important to realize that the distortion and noise measured by this technique include not only that from the ADC600, but also the entire analog-to-analog test

10 MHz Sample rate, $2.5 \mathrm{Vp}-\mathrm{p}$ input signal

FIGURE 10. Digitized Waveforms (512 points).

FIGURE 11. High-Speed Digitizer.

FIGURE 12. Block Diagram of Histogram Test.
system. Nonlinearity of the reconstruction circuit must be very low to measure a high performance ADC, and this places severe requirements on the DAC, deglitcher, and buffer amplifiers.
Using the high-speed video DAC63 in the analog reconstruction circuit allows excellent test circuit linearity to be achieved. Clocking the DAC (demodulating) at $\mathrm{f}_{\mathrm{C}} / \mathrm{N}$ allows a longer settling time and keeps linearity high in the digital-to-analog portion of the test circuit. Spectrum analyzer dynamic range can be a limiting factor in this method and a sharp notch filter can be used to attenuate the high-level fundamental frequency. Attenuating the fundamental allows the spectrum analyzer to be used on a more sensitive range without generating distortion products within the input of the analyzer.

Note that even though the signal is demodulated at a frequency of sample rate/ N (here $\mathrm{N}=2$ or 4), the distortion products still maintain a correct frequency relationship to the fundamental. While this analog technique shows excellent performance, it cannot exclude some distortion products unavoidably generated within the analog reconstruction portion of the test system. For this reason, the digital FFT technique is capable of more accurate high-speed analog/digital converter dynamic performance measurements.

TIMING

The ADC600 generates all necessary timing signals in laser-trimmed submodules. Only the timing between Convert Command, Output Data, and Data Valid must

FIGURE 13. Histogram Test Results (10MHz Sample Rate).

FIGURE 14. Analog-to-Analog Spectral Analysis by Beat-Frequency Techniques.
be considered. Proper timing is shown in Figure 17. The output data cannot be timed by the conversion clock, since the data from the 12 -bit adder is not guaranteed until the Data Valid pulse is generated.
Data should be latched into an external 12-bit ECL register that can operate reliably with a set-up time of 5 ns minimum (Figure 18).
Logic conversion to TTL can be accomplished by logic level translator ICs (such as 10125 or 10124), but care must be exercised, since TTL is very noisy and maintaining a clean analog signal can be difficult. To preserve the low noise of ECL logic, any conversion to TTL should be done on a separate circuit board which is driven by differential ECL drivers.

1. FAST ${ }^{\text {™ }}$ Applications Handbook, 1987. Fairchild Semiconductor Corp.
2. Fairchild Advanced CMOS Technology, Technology Seminar Notes, 1985.
3. Impedance Matching Tweaks Advance CMOS IC Testing, Gerald C. Cox, Electronic Design, April, 1987.
4. Grounding for Electromagnetic Compatibility, Jerry H. Bogar, Design News, 23 February, 1987.

THERMAL REQUIREMENTS

The ADC600 is tested and specified over a temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (K grade) and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (B grade). The converters are tested in a forced-air environment with a 10 SCFM air flow. The ADC600 can be operated in a normal convection ambient-air environment if submodule case temperature does not exceed the upper limit of its specification. ${ }^{(1)}$
High junction temperature can be avoided by using forced-air cooling, but it is not required at moderate ambient temperatures. Worst-case junction temperature (θ_{JC}) and top-surface submodule (θ_{CA}) are presented in Table I to aid the designer in determining cooling requirements.

[^10]

FIGURE 15. Analog-to-Analog Harmonic Distortion.

FIGURE 16. Analog-to-Analog Two-Tone IMD.

TABLE I. Cooling Requirement Factors.

	Power Sissipation Submodule	$25^{\circ} \mathrm{C}$ Ambient Air Normal Convection		DIP Package Type
		$\theta_{\mathrm{CA}}\left({ }^{\circ} \mathbf{C} / \mathrm{W}\right)$		
SHC600	1.5	28.7	23.3	$24-\mathrm{pin}$
SM10343	1.6	17.5	24.4	$24-\mathrm{pin}$
SM10344	1.6	10.6	21.3	$32-\mathrm{pin}$
SM10345	1.6	17.5	21.9	$24-\mathrm{pin}$
SM10346	2.1	8.6	16.7	$40-\mathrm{pin}$
SM10347	1.1	17.3	28.2	$40-\mathrm{pin}$

FIGURE 17. ADC600 Timing Diagram.

ENVIRONMENTAL SCREENING

The inherent reliability of a semiconductor device is controlled by the design, materials, and fabrication of the device-it cannot be improved by testing. However, the use of environmental screening can eliminate the majority of those units which would fail early in their lifetimes (infant mortality) through the application of carefully selected accelerated stress levels. Burr-Brown Q models are environmentally-screened versions of our standard industrial products, designed to provide enhanced reliability. The screening illustrated in Table II is performed to selected methods of MIL-STD-883. Reference to these methods provides a convenient way of communicating the screening levels and basic procedures employed; it does not imply conformance to any other military standards or to any methods of MIL-STD-883
other than those specified. Burr-Brown's detailed procedures may vary slightly, model-to-model, from those in MIL-STD-883. Table III shows the board-level screening flow for ADC600Q.

TABLE II. Screening Flow for ADC600Q (active components).

Screen	MIL-STD-883, Method, Condition	Screening Level
Internal Visual	Burr-Brown QC4118	
Electrical Test	Burr-Brown test procedure	
High Temperature Storage (Stabilization Bake)	1008	24 hour, $+125^{\circ} \mathrm{C}$
Temperature Cycling	1010	10 cycles, $-55^{\circ} \mathrm{C}$ to $-125^{\circ} \mathrm{C}$
Constant Acceleration	$2001, \mathrm{~A}$	$2000 \mathrm{G} ;$ Y Axis only
Burn-In	$1015, \mathrm{D}$	160 hour, +85 or $+70^{\circ} \mathrm{C}$,
steady-state		

Gross Leak \& 1014, \mathrm{C}

bubble test only,

preconditioning omitted\end{array}\right|\)

TABLE III. Screening Flow for ADC600Q (board level).

Screen	MIL-STD-883, Method, Condition	Screening Level
External Visual	Burr-Brown QC Specification	
Electrical Test	Burr-Brown Data Sheet	
Stablilization Bake	1008	24 hour, $+125^{\circ} \mathrm{C}$
Burn-In	$1015, \mathrm{D}$	160 hour, $+85^{\circ} \mathrm{C}$ or $+70^{\circ} \mathrm{C}$ steady-state
Final Electrical	Burr-Brown Data Sheet	
Final External Visual	Burr-Brown QC Specification	

FIGURE 18. ECL/TTL Logic Interface.

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

Monolithic 12-Bit DIGITAL-TO-ANALOG CONVERTERS

FEATURES

- INDUSTRY STANDARD PINOUT
- LOW POWER DISSIPATION: 345mW
- FULL \pm IOV SWING WITH $V_{\text {cc }}= \pm$ I2VDC
- DIGITAL INPUTS ARE TTL- AND CMOS-COMPATIBLE
- GUARANTEED SPECIFICATIONS WITH $\pm 12 \mathrm{~V}$ AND $\pm 15 V$ SUPPLIES
- SINGLE-CHIP DESIGN
- $\pm 1 / 2$ LSB MAXIMUM NONLINEARITY, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- GUARANTEED MONOTONICITY, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- TWO PACKAGE OPTIONS: Hermetic side-brazed ceramic and low-cost molded plastic
- SETtLING TIME: $4 \mu \mathrm{~s}$ max to $\pm 0.01 \%$ of Full Scale

DESCRIPTION

This monolithic digital-to-analog converter is pin-for-pin equivalent to the industry standard DAC80, first introduced by Burr-Brown. Its single-chip design includes the output amplifier and provides a highly stable reference capable of supplying up to 2.5 mA to an external load without degradation of D/A performance.
This converter uses proven circuit techniques to provide accurate and reliable performance over temperature and power supply variations. The use of a buried zener diode as the basis for the internal reference contributes to the high stability and low noise of the device. Advanced methods of laser trimming result in precision output current and output amplifier feedback resistors, as well as low integral and differential linearity errors. Innovative circuit design enables the DAC80 to operate at supply voltages as low as $\pm 11.4 \mathrm{~V}$ with no loss in
performance or accuracy over any range of output voltage. The lower power dissipation of this $118-\mathrm{mil}$ by $121-$ mil chip results in higher reliability and greater long term stability.
Burr-Brown has further enhanced the reliability of the monolithic DAC80 by offering a hermetic, sidebrazed, ceramic package. In addition, ease of use has been enhanced by eliminating the need for a +5 V logic power supply.
For applications requiring both reliability and low cost, the DAC80P in a molded plastic package offers the same electrical performance over temperature as the ceramic model. The DAC80P is available with either voltage or current output.
For designs that require a wider temperature range, see Burr-Brown models DAC85H and DAC87H. For designs that require complementary coded decimal inputs, see Burr-Brown model DAC80-CCD-V (-I).

ELECTRICAL

Typical at $+25^{\circ} \mathrm{C}$ and $\pm \mathrm{V}_{\mathrm{cc}}=12 \mathrm{~V}$ or 15 V unless otherwise noted.

MODEL	DAC80			UNITS	
PARAMETER	MIN	TYP	MAX		
DIGITAL INPUT Resolution Logic Levels $\left(0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)^{(11)}$: $V_{\text {IH }}$ (Logic "1") $V_{\text {IL }}$ (Logic " 0 ") $\mathrm{I}_{\mathrm{IH}}\left(\mathrm{V}_{\mathrm{IN}}=+2.4 \mathrm{~V}\right)$ $I_{I L} \quad\left(\mathrm{~V}_{\text {IN }}=+0.4 \mathrm{~V}\right)$	$\begin{gathered} +2 \\ 0 \end{gathered}$		$\begin{gathered} 12 \\ +16.5 \\ +0.8 \\ +20 \\ -180 \end{gathered}$	Bits VDC VDC $\mu \mathrm{A}$ $\mu \mathrm{A}$	
ACCURACY (at $+25^{\circ} \mathrm{C}$) Linearity Error Differential Linearity Error Gain Error ${ }^{(2]}$ Offset Error ${ }^{(2)}$		$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 2 \\ & \pm 0.1 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 3 / 4 \\ & \pm 0.3 \\ & \pm 0.15 \end{aligned}$	$\begin{gathered} \text { LSB } \\ \text { LSB } \\ \% \\ \% \text { of } \mathrm{FSR}^{(3)} \end{gathered}$	
DRIFT $\left(0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)^{(4)}$ Total bipolar drift (includes gain, offset, and linearity drifts) Total Error Over $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}^{(5)}$ Unipolar Bipolar Gain: Including Internal Reference Excluding Internal Reference Unipolar Offset Bipolar Offset Differential Linearity $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Linearity Error $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Monotonicity Guaranteed	0	$\begin{gathered} \pm 10 \\ \pm 0.06 \\ \pm 0.06 \\ \pm 10 \\ \pm 5 \\ \pm 1 \\ \pm 7 \\ \pm 1 / 2 \\ \pm 1 / 4 \end{gathered}$	$\begin{gathered} \pm 25 \\ \pm 0.15 \\ \pm 0.12 \\ \pm 30 \\ \pm 10 \\ \pm 3 \\ \pm 15 \\ \pm 3 / 4 \\ \pm 1 / 2 \\ +70 \end{gathered}$	ppm of FSR $/{ }^{\circ} \mathrm{C}$ \% of FSR $\%$ of FSR $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm of FSR $/{ }^{\circ} \mathrm{C}$ ppm of FSR $/{ }^{\circ} \mathrm{C}$ LSB LSB ${ }^{\circ} \mathrm{C}$	
CONVERSION SPEED, Vout models Settling Time to $\pm 0.01 \%$ of FSR For FSR change ($2 \mathrm{k} \Omega \\| 500 \mathrm{pF}$ load) with 10k Feedback with $5 k \Omega$ Feedback For 1LSB Change Slew Rate	10	3 2 1	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\mu \mathrm{S}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$	
CONVERSION SPEED, lout models Settling Time to $\pm 0.01 \%$ of FSR For FSR change: 10Ω to 100Ω loaci $1 \mathrm{k} \Omega$ load		$\begin{gathered} 300 \\ 1 \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mu \mathrm{~s} \end{aligned}$	
ANALOG OUTPUT, V ${ }_{\text {OUt }}$ models Ranges Output Current ${ }^{(6)}$ Output Impedance (DC) Short Circuit to Common, Duration ${ }^{(7)}$	$\begin{aligned} & \pm 2.5, \pm 5, \pm 10,+5,+10 \\ & \pm\left. 5\right\|_{\text {Indefinite }} ^{0.05} \mid \end{aligned}$			$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \Omega \end{gathered}$	
ANALOG OUTPUT, Iout models Ranges: Bipolar Unipolar Output Impedance: Bipolar Unipolar Compliance	$\begin{gathered} \pm 0.96 \\ -1.96 \\ 2.6 \\ 4.6 \\ -2.5 \end{gathered}$	$\begin{gathered} \pm 1.0 \\ -2.0 \\ 3.2 \\ 6.6 \end{gathered}$	$\begin{gathered} \pm 1.04 \\ -2.04 \\ 3.7 \\ 8.6 \\ +2.5 \end{gathered}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \\ \mathrm{k} \Omega \\ \mathrm{k} \Omega \\ \mathrm{~V} \end{gathered}$	
REFERENCE VOLTAGE OUTPUT External Current (constant load) Drift vs Temperature Output Impedance	+6.23	$\begin{gathered} +6.30 \\ \pm 10 \\ 1 \end{gathered}$	$\begin{gathered} +6.37 \\ 2.5 \\ \pm 20 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \Omega \end{gathered}$	
POWER SUPPLY SENSITIVITY $V_{C C}= \pm 12 \mathrm{VDC} \text { or } \pm 15 \mathrm{VDC}$		± 0.002	± 0.006	\% FSR/ \% V ${ }_{\text {cc }}$	
POWER SUPPLY REQUIREMENTS $\pm \mathrm{V}_{\mathrm{cc}}$ Supply Drain (no load): $+\mathrm{V}_{\mathrm{cc}}$ $-V_{c c}$ Power Dissipation ($\mathrm{V}_{\mathrm{cc}}= \pm 15 \mathrm{VDC}$)	± 11.4	$\begin{gathered} 8 \\ 15 \\ 345 \end{gathered}$	$\begin{gathered} \pm 16.5 \\ 12 \\ 20 \\ 480 \end{gathered}$	VDC mA mA mW	
TEMPERATURE RANGE Specification Operating Storage: Plastic DIP Ceramic DIP	$\begin{gathered} 0 \\ -25 \\ -60 \\ -65 \\ \hline \end{gathered}$		$\begin{array}{r} +70 \\ +85 \\ +100 \\ +150 \end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	

NOTES: (1) Refer to "Logic Input Compatibility" section. (2) Adjustable to zero with external trim potentiometer. (3) FSR means full scale range and is 20 V for $\pm 10 \mathrm{~V}$ range, 10 V for $\pm 5 \mathrm{~V}$ range for $\mathrm{V}_{\text {out }}$ models; 2 mA for lout models. (4) To maintain drift spec, internal feedback resistors must be used. (5) Includes the effects of gain, offset and linearity drift. Gain and offset errors externally adjusted to zero at $+25^{\circ} \mathrm{C}$. (6) For $\pm \mathrm{V}_{\mathrm{cc}}$ less than $\pm 12 \mathrm{VDC}$, limit output current load to $\pm 2.5 \mathrm{~mA}$ to maintain $\pm 10 \mathrm{~V}$ full scale output voltage swing. For output range of $\pm 5 \mathrm{~V}$ or less, the output current is $\pm 5 \mathrm{~mA}$ over entire $\pm \mathrm{V}_{\mathrm{cc}}$ range. (7) Short circuit current is 40 mA , max.

MECHANICAL
Hermetic Ceramic 24-Lead DIP

NOTE:
Leads in true position within $0.010^{\prime \prime}(0.25 \mathrm{~mm})$ R at MMC at seating plane

Pin numbers shown for reference only. Numbers may not be marked on package.

PIN: Pin material and plating composition conform to method 2003 (solderability) of MIL-STD-883 (except paragraph 3.2). HERMETICITY: Conforms to Method 1014. Condition A1 or A2 (fine leak) and Condition C (gross leak). Metal lid of package is connected to - Vcc internally.

CASE: Ceramic MATING CONNECTOR: 0245MC WEIGHT: 4.1 grams (0.15 oz .)

FUNCTIONAL DIAGRAM AND PIN ASSIGNMENTS

DISCUSSION OF SPECIFICATIONS

DIGITAL INPUT CODES

The DAC80 accepts complementary binary digital input codes. The CBI model may be connected by the user for any one of three complementary codes: CSB, COB, or CTC (see Table I).

ACCURACY

Linearity of a D / A converter is the true measure of its performance. The linearity error of the DAC80 is specified over its entire temperature range. This means that the

TABLE I. Digital Input Codes.

DIGITAL INPUT	ANALOG OUTPUT		
$\begin{array}{lr}\text { MSB } & \text { LSB } \\ \downarrow & \downarrow\end{array}$	CSB Compl. Straight Binary	COB Compl. Offset Binary	CTC* Compl. Two's Compl.
100000000000 111111111111	+Full Scale $+1 / 2$ Full Scale 1/2 Full Scale -1LSB Zero	$\begin{gathered} \text { +Full Scale } \\ \text { Zero } \\ \text {-1LSB } \\ \text {-Full Scale } \end{gathered}$	$-1 \text { LSB }$ -Full Scale -Full Scale Zero
* Invert the MSB of the COB code with an external inverter to obtain CTC code.			

ORDERING INFORMATION

Model		
DAC80-CBI-I	Current	Ceramic
DAC80-CBI-V	Voltage	Ceramic
DAC80P-CBI-I	Current	Plastic
DAC80P-CBI-V	Voltage	Plastic
DAC80Z-CBI-I*	Current	Ceramic
DAC80Z-CBI-V*	Voltage	Ceramic

*DAC80Z is not recommended for new designs; both standard DAC80 and DAC80P now operate over extended power supply range.

ABSOLUTE MAXIMUM RATINGS

 Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

analog output will not vary by more than $\pm 1 / 2$ LSB, maximum, from an ideal straight line drawn between the end points (inputs all " 1 "s and all " 0 "s) over the specified temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Differential linearity error of a D / A converter is the deviation from an ideal ILSB voltage change from one adjacent output state to the next. A differential linearity error specification of $\pm 1 / 2 \mathrm{LSB}$ means that the output voltage step sizes can range from $1 / 2 \mathrm{LSB}$ to $3 / 2 \mathrm{LSB}$ when the input changes from one adjacent input state to the next.
Monotonicity over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range is guaranteed in the DAC80 to insure that the analog output will increase or remain the same for increasing input digital codes.

DRIFT

Gain Drift is a measure of the change in the full scale range output over temperature expressed in parts per million per ${ }^{\circ} \mathrm{C}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$. Gain drift is established by: 1) testing the end point differences for each DAC80 model at $0^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$; 2) calculating the gain error with respect to the $25^{\circ} \mathrm{C}$ value and; 3) dividing by the temperature change. This figure is expressed in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and is given in the electrical specifications both with and without internal reference.
Offset Drift is a measure of the actual change in output with all "l"s on the input over the specified temperature range. The offset is measured at $0^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$. The maximum change in Offset is referenced to the Offset at $25^{\circ} \mathrm{C}$ and is divided by the temperature range. This drift is expressed in parts per million of full scale range per ${ }^{\circ} \mathrm{C}$ (ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$).

SETTLING TIME

Settling time for each DAC80 model is the total time (including slew time) required for the output to settle within an error band around its final value after a change in input (see Figure 1).

FIGURE 1. Full Scale Range Settling Time vs Accuracy.

Voltage Output Models

Three settling times are specified to $\pm 0.01 \%$ of full scale range (FSR); two for maximum full scale range changes of $20 \mathrm{~V}, 10 \mathrm{~V}$ and one for a 1 LSB change. The 1 LSB change is measured at the major carry ($0111 \ldots 11$ to $1000 \ldots 00$), the point at which the worst case settling time occurs.

Current Output Models

Two settling times are specified to $\pm 0.01 \%$ of FSR. Each is given for current models connected with two different resistive loads: 10Ω to 100Ω and 1000Ω to 1875Ω. Internal resistors are provided for connecting nominal load resistances of approximately 1000Ω to 1800Ω for output voltage range of $\pm 1 \mathrm{~V}$ and 0 to -2 V (see Figures 11 and 12).

COMPLIANCE

Compliance voltage is the maximum voltage swing allowed on the current output node in order to maintain specified accuracy. The maximum compliance voltage of all current output models is $\pm 2.5 \mathrm{~V}$. Maximum safe voltage range of $\pm 1 \mathrm{~V}$ and 0 to -2 V . (See Figures 11 and 12).

POWER SUPPLY SENSITIVITY

Power supply sensitivity is a measure of the effect of a power supply change on the D / A converter output. It is defined as a percent of FSR per percent of change in either the positive or negative supplies about the nominal power supply voltages (see Figure 2).

FIGURE 2. Power Supply Rejection vs Power Supply Ripple.

REFERENCE SUPPLY

All DAC80 models are supplied with an internal 6.3 V reference voltage supply. This voltage (pin 24) has a tolerance of $\pm 1 \%$ and must be connected to the Reference Input (pin 16) for specified operation. This reference may be used externally also, but external current drain is limited to 2.5 mA .

If a varying load is to be driven, an external buffer amplifier is recommended to drive the load in order to isolate bipolar offset from load variations. Gain and bipolar offset adjustments should be made under constant load conditions.

LOGIC INPUT COMPATIBILITY

DAC80 digital inputs are TTL, LSTTL and 4000B, $54 / 74 \mathrm{HC}$ CMOS compatible. The input switching threshold remains at the TTL threshold over the entire supply range.
Logic "0" input current over temperature is low enough to permit driving DAC 80 directly from outputs of 4000 B and $54 / 74 \mathrm{C}$ CMOS devices.

OPERATING INSTRUCTIONS

POWER SUPPLY CONNECTIONS

Connect power supply voltages as shown in Figure 3. For optimum performance and noise rejection, power supply decoupling capacitors should be added as shown. These capacitors ($1 \mu \mathrm{~F}$ tantalum) should be located close to the DAC80.

$\pm 12 V$ OPERATION

All DAC80 models can operate over the entire power supply range of $\pm 11.4 \mathrm{~V}$ to $\pm 16.5 \mathrm{~V}$. Even with supply levels dropping to $\pm 11.4 \mathrm{~V}$, the DAC80 can swing a full $\pm 10 \mathrm{~V}$ range, provided the load current is limited to $\pm 2.5 \mathrm{~mA}$. With power supplies greater than $\pm 12 \mathrm{~V}$, the DAC 80 output can be loaded up to $\pm 5 \mathrm{~mA}$. For output swing of $\pm 5 \mathrm{~V}$ or less, the output current is $\pm 5 \mathrm{~mA}$, min. over the entire $V_{C C}$ range.

No bleed resistor is needed from $+\mathrm{V}_{\mathrm{CC}}$ to pin 24 , as was needed with prior hybrid Z versions of DAC80. Existing $\pm 12 \mathrm{~V}$ applications that are being converted to the monolithic DAC80 must omit the resistor to pin 24 to insure proper operation.

EXTERNAL OFFSET AND GAIN ADJUSTMENT

Offset and gain may be trimmed by installing external Offset and Gain potentiometers. Connect these potentiometers as shown in Figure 3 and adjust as described below. TCR of the potentiometers should be $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less. The $3.9 \mathrm{M} \Omega$ and $10 \mathrm{M} \Omega$ resistors (20% carbon or better) should be located close to the DAC80 to prevent noise pickup. If it is not convenient to use these high value resistors, an equivalent "T" network, as shown in Figure 4, may be substituted.

FIGURE 4. Equivalent Resistances.
Existing applications that are converting to the monolithic DAC80 must change the gain trim resistor on pin 23 from $33 \mathrm{M} \Omega$ to $10 \mathrm{M} \Omega$ to insure sufficient adjustment range. Pin 23 is a high impedance point and a $0.001 \mu 1 \mathrm{~F}$ to $0.01 \mu \mathrm{~F}$ ceramic capacitor should be connected from this pin to Common (pin 21) to prevent noise pickup. Refer to Figure 5 for relationship of Offset and Gain adjustments to unipolar and bipolar D/A operation.

FIGURE 3. Power Supply and External Adjustment Connection Diagrams

FIGURE 5. Relationship of Offset and Gain Adjustments for a Unipolar and Bipolar D/A Converter.

Offset Adjustment

For unipolar (CSB) configurations, apply the digital input code that should produce zero potential output and adjust the Offset potentiometer for zero output.
For bipolar (COB, CTC) configurations, apply the digital input code that should produce the maximum negative output. Example: If the Full Scale Range is connected for 20 V , the maximum negative output voltage is -10 V . See Table II for corresponding codes.

TABLE II. Digital Input/Analog Output.

DIGITAL INPUT	ANALOG OUTPUT			
	VOLTAGE *		CURRENT	
MSB LSB	0 to +10V	$\pm 10 \mathrm{~V}$	0 to -2 mA	$\pm 1 \mathrm{~mA}$
000000000000	+9.9976V	+9.9951V	$-1.9995 \mathrm{~mA}$	-0.9995mA
011111111111	$+5.0000 \mathrm{~V}$	0.0000 V	$-1.0000 \mathrm{~mA}$	0.0000 mA
100000000000	$+4.9976 \mathrm{~V}$	-0.0049V	$-0.9995 \mathrm{~mA}$	$+0.0005 \mathrm{~mA}$
111111111111	0.0000 V	$-10.0000 \mathrm{~V}$	0.0000 mA	$+1.000 \mathrm{~mA}$
One LSB	2.44 mV	4.88 mV	$0.488 \mu \mathrm{~A}$	$0.488 \mu \mathrm{~A}$
*To obtain values for other binary ranges: 0 to +5 V range divide 0 to +10 V range values by 2 . $\pm 5 \mathrm{~V}$ range: divide $\pm 10 \mathrm{~V}$ range values by 2 . $\pm 2.5 \mathrm{~V}$ range: divide $\pm 10 \mathrm{~V}$ range values by 4 .				

Gain Adjustment

For either unipolar or bipolar configurations, apply the digital input that should give the maximum positive output. Adjust the Gain potentiometer for this positive full scale output. See Table II for positive full scale voltages and currents.

VOLTAGE OUTPUT MODELS

Output Range Connections

Internal scaling resistors provided in the DAC80 may be connected to produce bipolar output voltage ranges of
$\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$ or $\pm 2.5 \mathrm{~V}$ or unipolar output voltage ranges of 0 to +5 V or 0 to +10 V . See Figure 6 .

FIGURE 6. Output Amplifier Voltage Range Scaling Circuit.

Gain and offset drift are minimized because of the thermal tracking of the scaling resistors with other internal device components. Connections for various output voltage ranges are shown in Table III. Settling time for a full-scale range change is specified as $4 \mu \mathrm{~s}$ for the 20 V range and 3μ s for the 10 V range.

TABLE III. Output Voltage Range Connections for Voltage Models.

Output Range	Digital Input Codes	Connect Pin 15 to	Connect Pin 17 to	Connect Pin 19 to	Connect Pin 16 to
± 10	COB or CTC	19	20	15	24
± 5	COB or CTC	18	20	NC	24
$\pm 2.5 \mathrm{~V}$	COB or CTC	18	20	20	24
0 to +10 V	CSB	18	21	NC	24
0 to +5 V	CSB	18	21	20	24

CURRENT OUTPUT MODELS

The resistive scaling network and equivalent output circuit of the current model differ from the voltage model and are shown in Figures 7 and 8.

FIGURE 7. Internal Scaling Resistors.

FIGURE 8. Current Output Model Equivalent Output Circuit.

Internal scaling resistors (Figure 7) are provided to scale an external op amp or to configure load resistors for a voltage output. These connections are described in the following sections.
If the internal resistors are not used for voltage scaling, external R_{I} (or R_{I}) resistors should have a TCR of $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less to minimize drift. This will typically add $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ plus the TCR of R_{1}. (or R_{F}) to the total drift.

Driving An External Op Amp

The current output model DAC80 will drive the summing junction of an op amp used as a current-to-voltage converter to produce an output voltage. See Figure 9.

FIGURE 9. External Op-Amp-Using Internal Feedback Resistors.

$$
\mathrm{V}_{\text {OUT }}=\mathrm{I}_{\text {OUT }} \times \mathrm{R}_{\mathrm{F}}
$$

where Iout is the DAC80 output current and R_{F} is the feedback resistor. Using the internal feedback resistors of the current output model DAC80 provides output voltage ranges the same as the voltage model DAC80. To obtain the desired output voltage range when connecting an external op amp, refer to Table IV.

TABLE IV. Voltage Range of Current Output

Output Range	Digital Input Codes	Connect A	Connect Pin 17 to	Connect Pin 19 to	Connect Pin 16 to
$\pm 10 \mathrm{~V}$	COB or CTC	19	15	A	24
$\pm 5 \mathrm{~V}$	COB or CTC	18	15	NC	24
$\pm 2.5 \mathrm{~V}$	COB or CTC	18	15	15	24
0 to +10 V	CSB	18	21	NC	24
0 to +5 V	CSB	18	21	15	24

Output Larger Than 20V Range

For output voltage ranges larger than $\pm 10 \mathrm{~V}$, a high voltage op amp may be employed with an external feedback resistor. Use $I_{\text {out }}$ values of $\pm 1 \mathrm{~mA}$ for bipolar voltage ranges and -2 mA for unipolar voltage ranges. See Figure 10. Use protection diodes when a high voltage op amp is used.
The feedback resistor, R_{F}, should have a temperature coefficient as low as possible. Using an external feedback resistor, overall drift of the circuit increases due to the lack of temperature tracking between R_{F} and the internal scaling resistor network. This will typically add $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ plus R_{F} drift to total drift.

FIGURE 10. External Op-Amp-Using External Feedback Resistors.

Driving a Resistive Load Unipolar

A load resistance, $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{L} l}+\mathrm{R}_{\mathrm{LS}}$, connected as shown in Figure 11 will generate a voltage range, $V_{\text {out }}$, determined by:

$$
V_{\text {OUT }}=-2 \mathrm{~mA}\left[\left(\mathrm{R}_{\mathrm{L}} \times \mathrm{R}_{\mathrm{O}}\right) \div\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{O}}\right)\right]
$$

FIGURE 11. Current Output Model Equivalent Circuit Connected for Unipolar Voltage Output with Resistive Load.

The unipolar output impedance R_{O} equals $6.6 \mathrm{k} \Omega$ (typ) and $R_{L I}$ is the internal load resistance of 968Ω (derived by connecting pin 15 to pin 20 and pin 18 to 19). By choosing $\mathrm{R}_{\mathrm{LS}}=210 \Omega, \mathrm{R}_{\mathrm{L}}=1178 \Omega$. R_{L} in parallel with R_{o} yields $1 \mathrm{k} \Omega$ total load. This gives an output range of 0 to $-2 V$. Since R_{o} is not exact, initial trimming per Figure 3 may be necessary; also R_{LS} may be trimmed.

Driving a Resistive Load Bipolar

The equivalent output circuit for a bipolar output voltage range is shown in Figure $12, \mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{LI}}+\mathrm{R}_{\mathrm{LS}}$. Vout is determined by:

$$
\mathrm{V}_{\text {OUT }}= \pm \operatorname{lmA}\left[\left(\mathrm{R}_{\mathrm{O}} \times \mathrm{R}_{\mathrm{L}}\right) \div\left(\mathrm{R}_{\mathrm{O}}+\mathrm{R}_{\mathrm{L}}\right)\right]
$$

By connecting pin 17 to 15 , the output current becomes bipolar ($\pm 1 \mathrm{~mA}$) and the output impedance R_{o} becomes $3.2 \mathrm{k} \Omega(6.6 \mathrm{k} \Omega$ in parallel with $6.3 \mathrm{k} \Omega) . \mathrm{R}_{\mathrm{LI}}$ is 1200Ω (derived by connecting pin 15 to 18 and pin 18 to 19). By choosing $\mathrm{R}_{\mathrm{LS}}=255 \Omega, \mathrm{R}_{\mathrm{L}}=1455 \Omega$. R_{L} in parallel with R_{o} yields $\mathrm{lk} \Omega$ total load. This gives an output range of $\pm \mathrm{IV}$. As indicated above, trimming may be necessary.

FIGURE 12. Current Output Model Connected for Bipolar Output Voltage with Resistive Load.

Microprocessor-Compatible 16-BIT DIGITAL-TO-ANALOG CONVERTERS

FEATURES

- TWO-CHIP CONSTRUCTION
- HIGH-SPEED 16-BIT PARALLEL, 8-BIT (BYTE) PARALLEL, AND SERIAL INPUT MODES
- DOUBLE-BUFFERED INPUT REGISTER CONFIGURATION
- Vout AND lout MODELS

DESCRIPTION

The DAC708 and DAC709 are 16 -bit converters designed to interface to an 8-bit microprocessor bus. 16-bit data is loaded in two successive 8 -bit bytes into parallel 8 -bit latches before being transferred into the D/A latch. The DAC708 and DAC709 are current and voltage output models respectively and are in 24-pin hermetic DIPs. Input coding is Binary Two's Complement (bipolar) or Unipolar Straight Binary (unipolar, when an external logic inverter is used to invert the MSB). In addition, the DAC708/709 can be loaded serially (MSB first).
The DAC705, DAC706, and DAC707 are designed to interface to a 16-bit bus. Data is written into a

- HIGH ACCURACY: Linearity Error $\pm 0.003 \%$ of FSR max Differential Linearity Error $\pm 0.006 \%$ of FSR max
- MONOTONIC (TO 14 BITS) OVER SPECIFIED TEMPERATURE RANGE
- LERMET!CA!LY SEAIED
- LOW COST PLASTIC VERSIONS AVAILABLE (DiAC707JP/KP)

16-bit latch and subsequently the D/A latch. The DAC705 and DAC707 are voltage output models. DAC706 is a current output model. Outputs are bipolar only (current or voltage) and input coding is Binary Two's Complement (BTC).
All models have Write and Clear control lines as well as input latch enable lines. In addition, DAC708 and DAC709 have Chip Select control lines. In the bipolar mode, the Clear input sets the D/A latch to give zero voltage or current output. They are all 14-bit accurate and are complete with reference, and, for the DAC705, DAC707, and DAC709, a voltage output amplifier.

DAC708/709 Block Diagram

DAC705/706/707 Block Diagram

International Airport Industrial Park - P.0. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

SPECIFICATIONS

ELECTRICAL

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V}$, and after a 10-minute warm-up unless otherwise noted.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline MODEL \& \multicolumn{3}{|c|}{DAC707JP} \& \multicolumn{3}{|l|}{DAC705/706/707/708/709KH, DAC707KP} \& \multicolumn{3}{|l|}{DAC705/706/707/708/ 709BH, SH} \& \multirow[b]{2}{*}{UNITS} \\
\hline \& MIN \& TYP \& MAX \& MIN \& TYP \& MAX \& MIN \& TYP \& MAX \& \\
\hline \multicolumn{11}{|l|}{INPUT} \\
\hline \begin{tabular}{l}
DIGITAL INPUT \\
Resolution Bipolar Input Code (all models) \\
Unipolar Input Code \({ }^{(11)}\) (DAC708/709 only) \\
Logic Levels \({ }^{(2)}\) : \(V_{I H}\) \\
VIL \\
\(\mathrm{I}_{\mathrm{IH}}\left(\mathrm{V}_{1}=+2.7 \mathrm{~V}\right)\) \\
\(I_{\text {IL }}\left(V_{1}=+0.4 \mathrm{~V}\right)\)
\end{tabular} \& Binary
\[
\begin{array}{r}
+2.0 \\
-1.0
\end{array}
\] \& wo's Com \& 16 ement
\[
\begin{gathered}
+5.5 \\
+0.8 \\
1 \\
1
\end{gathered}
\] \& \& ar Straight \& nary \& * \& * \& * \& \[
\begin{gathered}
\text { Bits } \\
\\
\mathrm{V} \\
\mathrm{~V} \\
\mu \mathrm{~A} \\
\mu \mathrm{~A}
\end{gathered}
\] \\
\hline \multicolumn{11}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline \begin{tabular}{l}
ACCURACY \({ }^{(3)}\) \\
Linearity Error \\
Differential Linearity Error \({ }^{(5)}\) \\
at Bipolar Zero \({ }^{(5.61}\) \\
Gain Error \({ }^{(7)}\) \\
Zero Error \({ }^{(7)}\) \\
Monotonicity Over Spec Temp Range \\
Power Supply Sensitivity: \(+V_{c c},-V_{c c}\) \(V_{D D}\)
\end{tabular} \& 13 \& \[
\begin{gathered}
\pm 0.003 \\
\pm 0.0045 \\
\pm 0.07 \\
\pm 0.05 \\
\pm 0.0015 \\
\pm 0.0001
\end{gathered}
\] \& \[
\begin{gathered}
\pm 0.006 \\
\pm 0.012 \\
\pm 0.30 \\
\pm 0.1 \\
\pm 0.006 \\
\pm 0.001
\end{gathered}
\] \& 14 \& \[
\begin{gathered}
\pm 0.0015 \\
\pm 0.003 \\
\pm 0.003 \\
* \\
* \\
* \\
*
\end{gathered}
\] \& \[
\begin{gathered}
\pm 0.003 \\
\pm 0.006 \\
\pm 0.006 \\
\pm 0.15 \\
* \\
* \\
*
\end{gathered}
\] \& 14 \& \(*\)
\(*\)
\(\pm 0.0015\)
\(\pm 0.05\)
\(*\)

$*$ \& $$
\begin{gathered}
\pm 0.003 \\
\pm 0.10
\end{gathered}
$$

\[
\pm 0.003

\] \& | $\%$ of FSR ${ }^{(4)}$ |
| :--- |
| $\%$ of FSR |
| \% of FSR \% |
| \% of FSR |
| Bits |
| $\%$ of FSR/ $/ \% V_{c c}$ |
| $\%$ of FSR/\%VDD |

\hline | DRIFT (over Spec Temp range ${ }^{(31)}$) |
| :--- |
| Total Error over Temp Range ${ }^{(8)}$ |
| Total Full Scale Drift |
| Gain Drift |
| Zero Drift: Unipolar (DAC708/709 only) |
| Bipolar (all models) |
| Differential Linearity Over Temp ${ }^{(5)}$ |
| Linearity Error Over Temp ${ }^{(5)}$ | \& \& ± 0.08

± 10
± 10

± 5 \& $$
\begin{gathered}
\pm 30 \\
\pm 15 \\
\pm 0.012 \\
\pm 0.012
\end{gathered}
$$ \& \& $*$

$*$
$*$
± 2.5

$*$ \& $$
\begin{gathered}
\pm 0.15 \\
\pm 25 \\
\pm 25 \\
\pm 5 \\
\pm 12 \\
+0.009 \\
-0.006 \\
\pm 0.006
\end{gathered}
$$ \& \& $*$

$*$
± 7
± 1.5

± 4 \& \[
$$
\begin{gathered}
\pm 0.10 \\
\pm 15 \\
\pm 15 \\
\pm 3 \\
\pm 10
\end{gathered}
$$

\] \& | \% of FSR ppm of FSR $/{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$ ppm of FSR $/{ }^{\circ} \mathrm{C}$ ppm of FSR $/{ }^{\circ} \mathrm{C}$ |
| :--- |
| $\%$ of FSR |
| \% of FSR |

\hline ```
SETTLING TIME (to }\pm0.003%\mathrm{ of FSR)}\mp@subsup{}{}{(9)
Voltage Output Models
Full Scale Step (2k\Omega load)
1LSB Step at Worst Case Code (10)
Slew Rate
Current Output Models
Full Scale Step (2mA): }10\mathrm{ to 100^ load
1k\Omega load

``` & & 4
2.5
10 & & & \[
\begin{gathered}
350 \\
1
\end{gathered}
\] & 8 & & * \({ }_{*}^{*}\) & 8 & \begin{tabular}{l}
\(\mu \mathrm{s}\) \(\mu \mathrm{s}\) \(\mathrm{V} / \mu \mathrm{s}\) \\
ns \(\mu \mathrm{s}\)
\end{tabular} \\
\hline \multicolumn{11}{|l|}{OUTPUT} \\
\hline \begin{tabular}{l}
VOLTAGE OUTPUT MODELS \\
Output Voltage Range \\
DAC709: Unipolar (USB Code) \\
Bipolar (BTC Code) \\
DAC707 Bipolar (BTC Code) \\
DAC705 Bipolar (BTC Code) \\
Output Current \\
Output Impedance \\
Short Circuit to Common Duration \\
CURRENT OUTPUT MODELS \\
Output Current Range ( \(\pm 30 \%\) typ) \\
DAC708: Unipolar (USB Code) \\
Bipolar (BTC Code) \\
DAC706 Bipolar (BTC Code) \\
Unipolar Output Impedance ( \(\pm 30 \%\) typ) \\
Bipolar Output Impedance ( \(\pm 30 \%\) typ) \\
Compliance Voltage
\end{tabular} & \(\pm 5\) & \[
\begin{gathered}
\pm 10 \\
\\
0.15 \\
\text { Indefinite }
\end{gathered}
\] & & * & \[
\begin{gathered}
0 \text { to }+10 \\
\pm 5, \pm 10 \\
* \\
\pm 5 \\
* \\
* \\
\\
\\
0 \text { to }-2 \\
\pm 1 \\
\pm 1 \\
4.0 \\
2.45 \\
\pm 2.5 \\
\hline
\end{gathered}
\] & & & \(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)

\(*\)
\(*\)
\(*\)
\(*\)
\(*\) & & \begin{tabular}{l}
V \\
V \\
V \\
V \\
mA \\
\(\Omega\) \\
mA \\
mA \\
mA \\
\(\mathrm{k} \Omega\) \\
\(k \Omega\) \\
V
\end{tabular} \\
\hline \multicolumn{11}{|l|}{POWER SUPPLY REQUIREMENTS} \\
\hline \begin{tabular}{rl} 
Voltage (all models): & \(+V_{c c}\) \\
\(-V_{c c}\) \\
\(V_{D D}\) \\
Current (No load, \\
Current Output Models: \\
& \(+V_{c c}\) \\
& \(-V_{c c}\) \\
\(V_{D D}\) \\
Voltage Ouptut Models: & \(+V_{c C}\) \\
& \(-V_{c c}\) \\
\(V_{D D}\)
\end{tabular} & \[
\begin{gathered}
+13.5 \\
-13.5 \\
+4.5
\end{gathered}
\] & \[
\begin{gathered}
+15 \\
-15 \\
+5 \\
\\
\\
+16 \\
-18 \\
+5
\end{gathered}
\] & \[
\begin{gathered}
+16.5 \\
-16.5 \\
+5.5 \\
\\
\\
+30 \\
-30 \\
+10
\end{gathered}
\] & * & \[
\begin{gathered}
+10 \\
-13 \\
+5
\end{gathered}
\] & \[
\begin{aligned}
& +25 \\
& -25 \\
& +10
\end{aligned}
\] & ** & \(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\) &  & \begin{tabular}{l}
V \\
V \\
V \\
mA \\
mA \\
mA \\
mA \\
mA \\
mA
\end{tabular} \\
\hline
\end{tabular}

ELECTRICAL (CONT)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{MODEL} & \multicolumn{3}{|c|}{DAC707JP} & \multicolumn{3}{|l|}{DAC705/706/707/708/709KH, DAC707KP} & \multicolumn{3}{|l|}{DAC705/706/707/708/ 709BH, SH} & \multirow[b]{2}{*}{UNITS} \\
\hline & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{11}{|l|}{POWER SUPPLY REQUIREMENTS (CONT)} \\
\hline Power Dissipation ( \(\pm 15 \mathrm{~V}\) supplies) Current Output Models Voltage Output Models & & 535 & & & \(\stackrel{370}{*}\) & \[
\begin{aligned}
& 800 \\
& 950 \\
& \hline
\end{aligned}
\] & & * & * & \[
\begin{aligned}
& \mathrm{mW} \\
& \mathrm{~mW}
\end{aligned}
\] \\
\hline \multicolumn{11}{|l|}{TEMPERATURE RANGE} \\
\hline \begin{tabular}{l}
Specification: BH grades \\
JP, KP, KH grades \\
SH grades \\
Storage: Ceramic \\
Plastic
\end{tabular} & 0
\[
-60
\] & & \[
\begin{aligned}
& +70 \\
& +100
\end{aligned}
\] & \(*\)
-65
\(*\) & & \(*\)
+150
\(*\) & -25
-55
-65 & & \[
\begin{aligned}
& +85 \\
& +125 \\
& +150
\end{aligned}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}
*Specification same as for models in column to the left.
NOTES: (1) MSB must be inverted externally prior to DAC708/709 input. (2) Digital inputs are TTL, LSTTL, 54/74C, \(54 / 74 \mathrm{HC}\) and \(54 / 74 \mathrm{HTC}\) compatible over the specified temperature range. (3) DAC706 and DAC708 (current-output models) are specified and tested with an external output operational amplifier connected using the internal feedback resistor in all tests. (4) FSR means Full Scale Range. For example, for \(\pm 10 \mathrm{~V}\) output, \(\mathrm{FSR}=20 \mathrm{~V}\). (5) \(\pm 0.0015 \%\) of Full Scale Range is equal to 1 LSB in 16 -bit resolution. \(\pm 0.003 \%\) of Full Scale Range is equal to 1 LSB in 15 -bit resolution, \(\pm 0.006 \%\) of Full Scale Range is equal to 1 LSB in 14 -bit resolution. (6) Error at input code \(0000_{\mathrm{H}}\). (For unipolar connection on DAC708/709, the MSB must be inverted externally prior to D/A input.) (7) Adjustable to zero with external trim potentiometer. Adjusting the gain potentiometer rotates the transfer function around the bipolar zero point. (8) With gain and zero errors adjusted to zero at \(+25^{\circ} \mathrm{C}\). (9) Maximum represents the \(3 \sigma\) limit. Not \(100 \%\) tested for this parameter. (10) The bipolar worst-case code change is \(\mathrm{FFFF}_{\mathrm{H}}\) to \(0000_{H}\) and \(000 \mathrm{O}_{\mathrm{H}}\) to \(\mathrm{FFFF}_{\mathrm{H}}\). For unipolar (DAC708/709 only) it is \(7 \mathrm{FFF}_{\mathrm{H}}\) to \(8000_{\mathrm{H}}\) and \(8000_{\mathrm{H}}\) to \(7 \mathrm{FFF}_{\mathrm{H}}\).

\section*{CONNECTION DIAGRAMS}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{DAC705/706/707} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Pin } \\
\#
\end{gathered}
\]} & \multicolumn{2}{|r|}{DAC708/709} \\
\hline Designator & Description & & Designator & Description \\
\hline Vout (DAC707 and DAC705) RF (DAC706) & Voltage output for DAC707 ( \(\pm 10 \mathrm{~V}\) ) and DAC705 ( \(\pm 5 \mathrm{~V}\) ) or an internal feedback resistor for use with an external output op amp for the DAC706. & 1 & \(\mathrm{A}_{2}\) & Latch enable for D/A latch (Active low) \\
\hline \(V_{D D}\) & Logic supply ( +5 V ) & 2 & \(A_{0}\) & Latch enable for "low byte" input (Active low). When both \(A_{0}\) and \(A_{1}\) are logic " 0 ", the serial input mode is selected and the serial input is enabled. \\
\hline DCOM & Digital common & 3 & \(A_{1}\) & Latch enable for "high byte" input (Active low). When both \(A_{0}\) and \(A_{1}\) are logic " 0 ", the serial input mode is selected and the serial input is enabled. \\
\hline ACOM & Analog common & 4 & D7 (D15) & Input for data bit 7 if enabling low byte (LB) latch or data bit 15 if enabling the high byte (HB) latch: \\
\hline SJ (DAC705 and DAC707) lout (DAC706) & Summing junction of the internal output op amp for the DAC705 and DAC707, or the current output for the DAC706. Offset adjust circuit is connected to the summing junction of the output amplifier. Refer to Block Diagram. & 5 & D6 (D14) & Input for data bit 6 if enabling LB latch or data bit 14 if enabling the HB latch. \\
\hline GA & Gain adjust pin. Refer to Connection Diagram for gain adjust circuit. & 6 & D5 (D13) & Data bit 5 (LB) or data bit 13 (HB) \\
\hline \(+\mathrm{V}_{\mathrm{cc}}\) & Positive supply voltage ( +15 V ) & 7 & D4 (D12) & Data bit 4 (LB) or data bit 12 (HB) \\
\hline \(-V_{c c}\) & Negative supply voltage ( -15 V ) & 8 & D3 (D11) & Data bit 3 (LB) or data bit 11 (HB) \\
\hline CLR & Clear line. Sets the input latch to zero and sets the D/A latch to the input code that gives bipolar zero on the D/A output (Active low) & 9 & D2 (D10) & Data bit 2 (LB) or data bit 10 (HB) \\
\hline WR & Write control line (Active low) & 10 & D1 (D9) & Data bit 1 (LB) or data bit 9 (HB) \\
\hline \(A_{1}\) & Enable for D/A converter latch (Active low) & 11 & D0 (D8)/SI & Data bit 0 (LB) or data bit 8 (HB). Serial input when serial mode is selected. \\
\hline \(A_{0}\) & Enable for input latch (Active low) & 12 & DCOM & Digital common \\
\hline D15 (MSB) & Data bit 15 (Most Significant Bit) & 13 : & \(\mathrm{RF}_{\text {F }}\) & Feedback resistor for internal or external operational amplifier. Connect to pin 14 when a 10 V output range is desired. Leave open for a 20 V output range. \\
\hline D14 & Data bit 14 & 14 & \begin{tabular}{l}
Vout \\
\(\mathrm{R}_{\mathrm{F} 1}\) (DAC708)
\end{tabular} & Voltage output for DAC709 or feedback resistor for use with an external output op amp for the DAC708. Refer to Connection Diagram for connection of external op amp to DAC708. \\
\hline D13 & Data bit 13 & 15 & ACOM & Analog common \\
\hline D12 & Data bit 12 & 16 & \begin{tabular}{l}
SJ (DAC709) \\
lout (DAC708)
\end{tabular} & Summing junction of the internal output op amp for the DAC709, or the current output for the DAC708. Refer to Connection Diagram for connection of external op amp to DAC708. \\
\hline D11 & Data bit 11 & 17 & BPO & Bipolar offset. Connect to pin 16 when operating in the bipolar mode. Leave open for unipolar mode. \\
\hline D10 & Data bit 10 & 18 & GA & Gain adjust pin \\
\hline D9 & Data bit 9 & 19. & \(+V_{c c}\) & Positive supply voltage ( +15 V ) \\
\hline D8 & Data bit 8 & 20 & \(-V_{c c}\) & Negative supply voltage ( -15 V ) \\
\hline D7 & Data bit 7 & 21 & CLR & Clear line. Sets the high and low byte input registers to zero and, for bipolar operation, sets the D/A register to the input code that gives bipolar zero on the D/A output. (In the unipolar mode, invert the MSB prior to the D/A.) \\
\hline D6 & Data bit 6 & 22 & WR & Write control line \\
\hline D5 & Data bit 5 & 23 & CS & Chip select control line \\
\hline D4 & Data bit 4 & 24 & VDo & Logic supply ( +5 V ) \\
\hline D3 & Data bit 3 & 25 & No pin & \\
\hline D2 & Data bit 2 & 26 & No pin & (The DAC708 and DAC709 are in 24-pin packages) \\
\hline D1 & Data bit 1 & 27 & No pin & \\
\hline D0 (LSB) & Data bit 0 (Least Significant Bit) & 28 & No pin & \\
\hline
\end{tabular}

MECHANICAL


\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline \(V_{\text {DD }}\) to COMMON . . . . . . . . . . . . . . . . . . . . . . . . . . . \(0 \mathrm{OV},+15 \mathrm{~V}\) & External Voltage Applied to R (pin 1, DAC706; pin 13 or 14, DAC708) ........ \(\pm 18 \mathrm{~V}\) \\
\hline + \(\mathrm{V}_{\text {cc }}\) to COMMON.............................. \(0 \mathrm{OV},+18 \mathrm{~V}\) & External Voltage Applied to D/A Output (pin 1, DAC707; pin 14, DAC708) ..... \(\pm 5 \mathrm{~V}\) \\
\hline - \(\mathrm{V}_{\text {cc }}\) to COMMON........................... \(0 \mathrm{~V},-18 \mathrm{~V}\) & Power Dissipation ......................................................... . 1000mW \\
\hline Digital Data Inputs to COMMON ........... -0.5V, V \(\mathrm{V}_{\text {DD }}+0.5\) & Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(-60^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline DC Current any Input............................. \(\pm 10 \mathrm{~mA}\) & Stresses above those listed under "Absolute Maximum Ratings" may \\
\hline Reference Out to COMMON .. Indefinite Short to COMMON & cause permanent damage to the device. Exposure to absolute maximum \\
\hline Vout (DAC707, DAC709) ...... Indefinite Short to COMMON & conditions for extended periods may affect device reliability. \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|}
\hline Model & Temperature Range & Input Configuration & Output Configuration \\
\hline \[
\begin{gathered}
\text { DAC705KH } \\
\text { BH } \\
\text { BH/QM } \\
\text { SH } \\
\text { SH/QM }
\end{gathered}
\] & \[
\begin{gathered}
0 \text { to }+70^{\circ} \mathrm{C} \\
-25 \text { to }+85^{\circ} \mathrm{C} \\
-25 \text { to }+85^{\circ} \mathrm{C} \\
-55 \text { to }+125^{\circ} \mathrm{C} \\
-55 \text { to }+125^{\circ} \mathrm{C}
\end{gathered}
\] & 16-bit port 16-bit port 16-bit port 16-bit port 16-bit port & \(\pm 5 \mathrm{~V}\) output \\
\hline DAC706KH
BH
BH/QM
SH
SH/QM & \[
\begin{gathered}
0 \text { to }+70^{\circ} \mathrm{C} \\
-25 \text { to }+85^{\circ} \mathrm{C} \\
-25 \text { to }+85^{\circ} \mathrm{C} \\
-55 \text { to }+125^{\circ} \mathrm{C} \\
-55 \text { to }+125^{\circ} \mathrm{C}
\end{gathered}
\] & 16-bit port 16-bit port 16-bit port 16-bit port 16-bit port & \begin{tabular}{l}
\(\pm 1 \mathrm{~mA}\) output \\
\(\pm 1 \mathrm{~mA}\) output
\end{tabular} \\
\hline \[
\begin{gathered}
\text { DAC707JP } \\
\text { KP } \\
\text { KH } \\
\text { BH } \\
\text { BH/QM } \\
\text { SH } \\
\text { SH/QM }
\end{gathered}
\] & \[
\begin{gathered}
0 \text { to }+70^{\circ} \mathrm{C} \\
0 \text { to }+70^{\circ} \mathrm{C} \\
0 \text { to }+70^{\circ} \mathrm{C} \\
-25 \text { to }+85^{\circ} \mathrm{C} \\
-25 \text { to }+85^{\circ} \mathrm{C} \\
-55 \text { to }+125^{\circ} \mathrm{C} \\
-55 \text { to }+125^{\circ} \mathrm{C}
\end{gathered}
\] & 16-bit port & \(\pm 10 \mathrm{~V}\) output \\
\hline DAC708KH
BH
BH/QM
SH
SH/QM & \[
\begin{gathered}
0 \text { to }+70^{\circ} \mathrm{C} \\
-25 \text { to }+85^{\circ} \mathrm{C} \\
-25 \text { to }+85^{\circ} \mathrm{C} \\
-55 \text { to }+125^{\circ} \mathrm{C} \\
-55 \text { to }+125^{\circ} \mathrm{C}
\end{gathered}
\] & \begin{tabular}{l}
8-bit port \\
8-bit port \\
8 -bit port \\
8 -bit port \\
8-bit port
\end{tabular} & \begin{tabular}{l}
\(\pm 1 \mathrm{~mA}\) output \\
\(\pm 1 \mathrm{~mA}\) output \\
\(\pm 1 \mathrm{~mA}\) output \\
\(\pm 1 m A\) output \\
\(\pm 1 \mathrm{~mA}\) output
\end{tabular} \\
\hline \[
\begin{gathered}
\text { DAC709KH } \\
\text { BH } \\
\text { BH/QM } \\
\text { SH } \\
\text { SH/QM }
\end{gathered}
\] & \[
\begin{gathered}
0 \text { to }+70^{\circ} \mathrm{C} \\
-25 \text { to }+85^{\circ} \mathrm{C} \\
-25 \text { to }+85^{\circ} \mathrm{C} \\
-55 \text { to }+125^{\circ} \mathrm{C} \\
-55 \text { to }+125^{\circ} \mathrm{C}
\end{gathered}
\] & \begin{tabular}{l}
8-bit port \\
8 -bit port \\
8 -bit port \\
8 -bit port \\
8-bit port
\end{tabular} & \begin{tabular}{l}
\(\pm 10 \mathrm{~V}\) output \\
\(\pm 10 \mathrm{~V}\) output
\end{tabular} \\
\hline
\end{tabular}

\section*{DISCUSSION OF SPECIFICATIONS}

\section*{digital input codes}

For bipolar operation, the DAC705/706/707/708/709 accept positive-true binary two's complement input code. For unipolar operation (DAC708/709 only) the input code is positive-true straight-binary provided that the MSB input is inverted with an external inverter. See Table I.

TABLE I. Digital Input Codes.
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|c|}{ Analog Output } \\
\cline { 2 - 3 } \begin{tabular}{c} 
Digital \\
Input \\
Codes
\end{tabular} & \begin{tabular}{c} 
Unipolar Straight Binary \({ }^{(1)}\) \\
(DAC708/709 only; connec- \\
ted for Unipolar operation)
\end{tabular} & \begin{tabular}{c} 
Binary Two's Complement \\
(Bipolar operation; \\
all models)
\end{tabular} \\
\hline \(7 \mathrm{FFF}_{\mathrm{H}}\) & \(+1 / 2\) Full Scale -1 \(\mathrm{LSB}^{(2)}\) & +Full Scale \\
\(0000_{\mathrm{H}}\) & Zero & Zero \\
\(\mathrm{FFFF}_{\mathrm{H}}\) & +Full Scale & -1LSB \\
\(8000_{\mathrm{H}}\) & \(+1 / 2\) Full Scale & -Full Scale \\
\hline
\end{tabular}
(1) MSB must be inverted externally. (2) Assumes MSB is inverted externally.

\section*{ACCURACY}

\section*{Linearity}

This specification describes one of the most important measures of performance of a D/A converter. Linearity error is the deviation of the analog output from a straight line drawn through the end points (-Full Scale point and + Full Scale point).

\section*{Differential Linearity Error}

Differential Linearity Error (DLE) of a D/A converter is the deviation from an ideal 1LSB change in the output when the input changes from one adjacent code to the next. A differential linearity error specification of \(\pm 1 / 2\) LSB means that the output step size can be between \(1 / 2 \mathrm{LSB}\) and 3/2LSB when the input changes between adjacent codes. A negative DLE specification of - ILSB maximum ( \(-0.0006 \%\) for 14 -bit resolution) insures monotonicity.

\section*{Monotonicity}

Monotonicity assures that the analog output will increase or remain the same for increasing input digital codes. The DAC705/706/707/708/709 are specified to be monotonic to 14 bits over the entire specification temperature range.

\section*{DRIFT}

\section*{Gain Drift}

Gain drift is a measure of the change in the full-scale range output over temperature expressed in parts per million per degree centigrade ( \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) ). Gain drift is established by: (1) testing the end point differences at \(t_{\text {min }}\), \(+25^{\circ} \mathrm{C}\) and \(\mathrm{t}_{\text {max }}\); (2) calculating the gain error with respect to the \(+25^{\circ} \mathrm{C}\) value; and (3) dividing by the temperature change.

\section*{Zero Drift}

Zero drift is a measure of the change in the output with \(0000_{\mathrm{H}}\) applied to the \(\mathrm{D} / \mathrm{A}\) converter inputs over the specified temperature range. (For the DAC708/709 in unipo-
lar mode, the MSB must be inverted.) This code corresponds to zero volts (DAC705/707 and DAC709) or zero milliamps (DAC706 and DAC708) at the analog output. The maximum change in offset at \(t_{\text {min }}\) or \(t_{\text {max }}\) is referenced to the zero error at \(+25^{\circ} \mathrm{C}\) and is divided by the temperature change. This drift is expressed in FSR \(/{ }^{\circ} \mathrm{C}\).

\section*{SETTLING TIME}

Settling time of the \(\mathrm{D} / \mathrm{A}\) is the total time required for the analog output to settle within an error, band around its final value after a change in digital input. Refer to Figure 1 for typical values for this family of products.


FIGURE 1. Final-Value Error Band Versus Full-Scale Range Settling Time.

\section*{Voltage Output}

Settling times are specified to \(\pm 0.003 \%\) of FSR \(( \pm 1 / 2\) LSB for 14 bits) for two input conditions: a full-scale range change of \(20 \mathrm{~V}( \pm 10 \mathrm{~V})\) or \(10 \mathrm{~V}( \pm 5 \mathrm{~V}\) or 0 to 10 V\()\) and a lLSB change at the "major carry", the point at which the worst-case settling time occurs. (This is the worst-case point since all of the input bits change when going from one code to the next.)

\section*{Current Output}

Settling times are specified to \(\pm 0.003 \%\) of FSR for a fullscale range change for two output load conditions: one for \(10 \Omega\) to \(100 \Omega\) and one for \(1000 \Omega\). It is specified this way because the output RC time constant becomes the dominant factor in determining settling time for large resistive loads.

\section*{COMPLIANCE VOLTAGE}

Compliance voltage applies only to current output models. It is the maximum voltage swing allowed on the output current pin while still being able to maintain specified accuracy.

\section*{POWER SUPPLY SENSITIVITY}

Power supply sensitivity is a measure of the effect of a change in a power supply voltage on the \(D / A\) converter output. It is defined as a percent of FSR change in the output per percent of change in either the positive supply \(\left(+\mathrm{V}_{\mathrm{CC}}\right)\), negative supply \(\left(-\mathrm{V}_{\mathrm{CC}}\right)\) or logic supply ( \(\mathrm{V}_{\mathrm{bD}}\) ) about the nominal power supply voltages (see Figure 2). It is specified for DC or low frequency changes. The typical performance curve in Figure 2 shows the effect of high frequency changes in power supply voltages.


FIGURE 2. Power Supply Rejection Versus Power Supply Ripple Frequency.

\section*{OPERATING INSTRUCTIONS}

\section*{POWER SUPPLY CONNECTIONS}

For optimum performance and noise rejection, power supply decoupling capacitors should be added as shown in the Connection Diagram. \(1 \mu \mathrm{~F}\) tantalum capacitors should be located close to the D/A converter.

\section*{EXTERNAL ZERO AND GAIN ADJUSTMENT}

Zero and gain may be trimmed by installing external zero and gain potentiometers. Connect these potentiometers as shown in the Connection Diagram and adjust as described below. TCR of the potentiometers should be \(100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) or less. The \(3.9 \mathrm{M} \Omega\) and \(270 \mathrm{k} \Omega\) resistors ( \(\pm 20 \%\) carbon or better) should be located close to the D/A converter to prevent noise pickup. If it is not convenient to use these high-value resistors, an equivalent "T" network, as shown in Figure 3, may be substituted in place of the \(3.9 \mathrm{M} \Omega\) resistor. \(\mathrm{A} 0.001 \mu \mathrm{~F}\) to \(0.01 \mu \mathrm{~F}\) ceramic capacitor should be connected from GAIN ADJUST to ANALOG COMMON to prevent noise pickup. Refer to Figures 4 and 5 for the relationship of zero and gain adjustments to unipolar D/A converters.


FIGURE 3. Equivalent Resistances.

\section*{Zero Adjustment}

For unipolar (USB) configurations, apply the digital input code that produces zero voltage or zero current output and adjust the zero potentiometer for zero output.
For bipolar (BTC) configurations, apply the digital input code that produces zero output voltage or current. See Table II for corresponding codes and connection diagrams for zero adjustment circuit connections. Zero calibration should be made before gain calibration.


FIGURE 4. Relationship of Zero and Gain Adjustments for Unipolar D/A Converters, DAC708 and DAC709.


FIGURE 5. Relationship of Zero and Gain Adjustments for Bipolar D/A Converters, DAC705/706/707 and DAC708/709.

TABLE II. Digital Input And Analog Output Voltage/Current Relationships.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{VOLTAGE OUTPUT MODELS} \\
\hline \multirow[b]{3}{*}{Digital Input Code} & \multicolumn{3}{|c|}{Analog Output} & \multirow[b]{3}{*}{Units} & \multirow[b]{3}{*}{Digital Input Code} & \multicolumn{6}{|c|}{Analog Output} & \multirow[b]{3}{*}{Units} \\
\hline & \multicolumn{3}{|c|}{*Unipolar, 0 to +10 V} & & & \multicolumn{3}{|c|}{Bipolar, \(\pm 10 \mathrm{~V}\)} & \multicolumn{3}{|c|}{Bipolar, \(\pm 5 \mathrm{~V}\)} & \\
\hline & 16-Bit & 15-Bit & 14-Bit & & & 16-Bit & 15-Bit & 14-Bit & 16-Bit & 15-Bit & 14-Bit & \\
\hline One LSB \({ }^{\prime} \mathrm{FFFF}_{\mathrm{H}}\) \(0000_{\mathrm{H}}\) & \[
\begin{gathered}
153 \\
+9.99985 \\
0 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
305 \\
+9.99969 \\
0 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
610 \\
+9.99939 \\
0 \\
\hline
\end{gathered}
\] & \(\mu \mathrm{V}\)
V
V & \[
\begin{aligned}
& \text { One LSB } \\
& 7 F F F_{\mathrm{H}} \\
& 8000_{\mathrm{H}}
\end{aligned}
\] & \[
\begin{gathered}
305 \\
+9.99960 \\
-10.0000
\end{gathered}
\] & \begin{tabular}{c|c} 
& 610 \\
\hline 0 & +9.99939 \\
\hline & -10.0000 \\
\hline
\end{tabular} & \[
\begin{gathered}
1224 \\
+9.99878 \\
-10.0000 \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 153 \\
+4.99980 \\
-5.0000 \\
\hline
\end{array}
\] & \[
\begin{gathered}
305 \\
+4.99970 \\
-5.0000 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
610 \\
+4.99939 \\
-5.0000
\end{gathered}
\] & \(\mu V\)
\(V\)
\(V\) \\
\hline & & & & & CURRENT & OUTPUT & T MODELS & . & & & & \\
\hline & & & alog Output & & & & & & Analog Outp & put & & \\
\hline Digital Input & & *Unipo & olar, 0 to -2 & & & & Digital Input & & Bipolar, \(\pm 1 \mathrm{~m}\) & & & \\
\hline Code & & Bit & 15-Bit & 14-Bit & Unit & & & 16-Bit & 15-Bit & 14-8 & & Units \\
\hline One LSB FFFF \(_{\mathrm{H}}\) \(000 \mathrm{O}_{\mathrm{H}}\) & - 0.031 .8 & (1) & \[
\begin{gathered}
0.061 \\
-1.99994 \\
0
\end{gathered}
\] & \[
\begin{gathered}
0.122 \\
-1.99988 \\
0
\end{gathered}
\] & \(\mu \mathrm{A}\)
mA
mA & \(\cdots\) & \[
\begin{aligned}
& \text { One LSB } \\
& 7 F F F_{\mathrm{H}} \\
& 8000_{\mathrm{H}}
\end{aligned}
\] & \[
\begin{gathered}
0.031 \\
-0.99997 \\
+1.00000
\end{gathered}
\] & \[
\begin{gathered}
\hline 0.061 \\
-0.99994 \\
+1.00000 \\
\hline
\end{gathered}
\] & \begin{tabular}{|l|r} 
& 1 \\
\hline
\end{tabular} & & \begin{tabular}{l}
\[
\mu \mathrm{A}
\] \\
mA \\
mA
\end{tabular} \\
\hline
\end{tabular}
*MSB assumed to be inverted externally.

\section*{Gain Adjustment}

Apply the digital input that gives the maximum positive output voltage. Adjust the gain potentiometer for this positive full-scale voltage. See Table II for positive fullscale voltages and the Connection Diagrams for gain adjustment circuit connections.

\section*{INTERFACE LOGIC AND TIMING \\ DAC708/709}

The signals CHIP SELECT ( \(\overline{\mathrm{CS}}\) ), WRITE \((\overline{\mathrm{WR}})\), register enables ( \(\overline{\mathrm{A}_{0}}, \overline{\mathrm{~A}}_{1}\), and \(\overline{\mathrm{A}_{2}}\) ) and CLEAR ( \(\left.\overline{\mathrm{CLR}}\right)\), provide the control functions for the microprocessor interface. They are all active in the "low" or logic " 0 " state. \(\overline{\mathrm{CS}}\) must be low to access any of the registers. \(\overline{\mathrm{A}_{0}}\) and \(\overline{\mathrm{A}_{1}}\) steer the input 8 -bit data byte to the low- or high-byte input latch respectively. \(\overline{\mathrm{A}_{2}}\) gates the contents of the two input latches through to the D/A latch in parallel. The contents are then applied to the input of the D/A converter. When \(\overline{\mathrm{WR}}\) goes low, data is strobed into the latch or latches which have been enabled.
The serial input mode is activated when both \(\bar{A}_{0}\) and \(\overline{\mathrm{A}}_{1}\) are logic " 0 " simultaneously. The D0 (D8)/SI input data line accepts the serial data MSB first. Each bit is clocked in by a \(\overline{W R}\) pulse. Data is strobed through to the \(D / A\) latch by \(\overline{\mathrm{A}}_{2}\) going to logic " 0 " the same as in the parallel input mode.
Each of the latches can be made "transparent" by maintaining its enable signal at logic "0". However, as stated above, when both \(\overline{\mathrm{A}_{0}}\) and \(\overline{\mathrm{A}_{1}}\) are logic " 0 " at the same time, the serial mode is selected.
The \(\overline{\text { CLR }}\) line resets both input latches to all zeros and sets the \(\mathrm{D} / \mathrm{A}\) latch to \(0000_{\mathrm{H}}\). This is the binary code that gives a null, or zero, at the output of the \(D / A\) in the bipolar mode. In the unipolar mode, activating \(\overline{\operatorname{CLR}}\) will cause the output to go to one-half of full scale.
The maximum clock rate of the latches is 10 MHz . The minimum time between write (WR) pulses for successive enables is 20 ns . In the serial input mode (DAC708 and DAC709), the maximum rate at which data can be clocked into the input shift register is 10 MHz . The timing of the control signals is given in Figure 6.


FIGURE 6. Logic Timing Diagram.

\section*{DAC706/707}

The DAC705/706/707 interface timing is the same as that described above except instead of two 8-bit sepa-rately-enabled input latches, it has a single 16-bit input latch enabled by \(\overline{\mathrm{A}}_{0}\). The D/A latch is enabled by \(\overline{\mathrm{A}_{1}}\). Also, there is no serial-input mode and no \(\overline{\mathrm{CHIP}}\) \(\overline{\text { SELECT }}(\overline{\mathrm{CS}})\) line.

\section*{INSTALLATION CONSIDERATIONS}

Due to the extremely-high accuracy of the D/A converter, system design problems such as grounding and contact resistance become very important. For a 16-bit converter with a +10 V full-scale range, 1 LSB is \(153 \mu \mathrm{~V}\). With a load current of 5 mA , series wiring and connector resistance of only \(30 \mathrm{~m} \Omega\) will cause the output to be in error by lLSB. To understand what this means in terms
of a system layout, the resistance of typical 1 ounce copper-clad printed circuit board material is approximately \(1 / 2 \mathrm{~m} \Omega\) per square. In the example above, a 10 milliinch-wide conductor 60 milliinches long would cause a 1LSB error.
In Figures 7 and 8, lead and contact resistances are represented by \(R_{1}\) through \(R_{5}\). As long as the load resistance \(\mathrm{R}_{\mathrm{L}}\) is constant, \(\mathrm{R}_{2}\) simply introduces a gain error


FIGURE 7. DAC705/707/709 Bipolar Output Circuit (Voltage Out).


FIGURE 8. DAC706/708 Bipolar Output Circuit (with External Op Amp).
and can be removed with gain calibration. \(\mathrm{R}_{3}\) is part of \(\mathrm{R}_{\mathrm{L}}\) if the output voltage is sensed at ANALOG COMMON.

Figures 8 and 9 show two methods of connecting the currrent output model with an external precision output op amp. By sensing the output voltage at the load resistor (connecting \(\mathrm{R}_{\mathrm{F}}\) to the output of the amplifier at \(\mathrm{R}_{\mathrm{L}}\) ) the effect of \(R_{1}\) and \(R_{2}\) is greatly reduced. \(R_{1}\) will cause a gain error but is independent of the value of \(R_{L}\) and can be eliminated by initial calibration adjustments. The effect of \(R_{2}\) is negligible because it is inside the feedback loop of the output op amp and is therefore greatly reduced by the loop gain.


FIGURE 9. Alternate Connection for Ground Sensing at the Load (Current Output Models).

In many applications it is impractical to sense the output voltage at ANALOG COMMON. Sensing the output voltage at the system ground point is permissible because these converters have separate analog and digital common lines and the analog return current is a nearconstant 2 mA and varies by only \(10 \mu \mathrm{~A}\) to \(20 \mu \mathrm{~A}\) over the entire input code range. \(\mathrm{R}_{4}\) can be as large as \(3 \Omega\) without adversely affecting the linearity of the \(\mathrm{D} / \mathrm{A}\) converter. The voltage drop across \(\mathrm{R}_{4}\) is constant and appears as a zero error that can be nulled with the zero calibration adjustment.
Another approach senses the output at the load as shown in Figure 9. In this circuit the output voltage is sensed at the load common and not at the \(\mathrm{D} / \mathrm{A}\) converter common as in the previous circuits. The value of \(R_{6}\) and \(\mathrm{R}_{7}\) must be adjusted for maximum common-mode rejection across \(R_{L}\). The effect of \(R_{4}\) is negligible as explained previously.
The D/A converter and the wiring to its connectors should be located to provide optimum isolation from sources of RFI and EMI. The key to elimination of RF radiation or pickup is small loop area. Signal leads and their return conductors should be kept close together such that they present a small flux-capture cross section for any external field.

\section*{ENVIRONMENTAL SCREENING}
/QM Screening
All BH and SH models are available with Burr-Brown's /QM environmental screening for enhanced reliability. The screening, tabulated below, is performed to selected methods of MIL-STD-883. Keference to these methods provides a convenient method of communicating the
screening levels and basic procedures employed; it does not imply conformance to any other military standards or to any methods of MIL-STD-883 other than those specified below. Burr-Brown's detailed procedures may vary slightly, model-to-model, from those in MIL-STD883.

SCREENING FLOW FOR / QM MODELS
\begin{tabular}{|c|c|c|c|}
\hline Screen & MIL-STD-883 Method & Condition & Comments \\
\hline Internal Visual & 2017 & B & \\
\hline \begin{tabular}{l}
High Temperature \\
Storage (Stabilization Bake)
\end{tabular} & 1008 & C & \(+150^{\circ} \mathrm{C}, 24 \mathrm{hrs}\) \\
\hline Temperature Cycling & 1010 & C & \begin{tabular}{l}
\[
-65 \text { to }+150^{\circ} \mathrm{C}
\] \\
10 cycles
\end{tabular} \\
\hline Burn-in & 1015 & B & \(+125^{\circ} \mathrm{C}, 160 \mathrm{hrs}\) \\
\hline Constant Acceleration 28-pin pkg. 24-pin pkg. & 2001 & \[
\begin{aligned}
& B \\
& E
\end{aligned}
\] & \[
\begin{aligned}
& 10,000 \mathrm{G} \\
& 30,000 \mathrm{G}
\end{aligned}
\] \\
\hline Hermeticity Fine Leak 28-pin pkg. 24-pin pkg. Gross Leak & \[
\begin{aligned}
& 1014 \\
& 1014
\end{aligned}
\] & \begin{tabular}{l}
A1 or A2 \\
C
\end{tabular} & \(2 \times 10^{-7} \mathrm{atmcc} / \mathrm{sec}\) \(5 \times 10^{-8} \mathrm{atmcc} / \mathrm{sec}\) 60psig, 2hr \\
\hline External Visual & 2009 & & \\
\hline
\end{tabular}

\section*{APPLICATIONS}

\section*{LOADING THE DAC709 SERIALLY ACROSS AN ISOLATION BARRIER}

A very useful application of the DAC709 is in achieving low-cost isolation that preserves high accuracy. Using the serial input feature of the input register pair, only three signal lines need to be isolated. The data is applied to pin 11 in a serial bit stream, MSB first. The WR input is used as a data strobe, clocking in each data bit. A RESET signal is provided for system startup and reset. These three signals are each optically isolated. Once the 16 bits of serial data have been strobed into the input register pair, the data is strobed through to the \(D / A\) register by the "carry" signal out of a 4-bit binary synchronous counter that has counted the 16 WR pulses used to clock in the data. The circuit diagram is given in Figure 10.

\section*{CONNECTING MULTIPLE DAC707s TO A 16-BIT MICROPROCESSOR BUS}

Figure 11 illustrates the method of connecting multiple DAC707s to a 16-bit microprocessor bus. The circuit shown has two DAC707s and uses only one address line to select either the input register or the \(\mathrm{D} / \mathrm{A}\) register. An external address decoder selects the desired converter.


FIGURE 10. Serial Loading of Electrically Isolated DAC708/709.


FIGURE 11. Connecting Multiple DAC707s to a 16Bit Microprocessor.

\section*{Ultra-High Resolution 18-Bit DIGITAL-TO-ANALOG CONVERTER}

\section*{FEATURES}
= 16-RIT !!NEARITY EUARANTEED (K GRADE)
- USER ADJUSTABLE TO 18-BIT LINEARITY (K GRADE)
- PRECISION INTERNAL REFERENCE NOT DEDICATED
- FAST SETTLING, LOW NOISE INTERNAL OP AMP NOT DEDICATED
- LOW TEMPERATURE DRIFT
- HERMETIC 40-PIN CERAMIC PACKAGE
- lout OR Vout OPERATION

\section*{DESCRIPTION}

The DAC729 sets the standard in very high accuracy digital-to-analog conversion. It is supplied from the factory at a guaranteed linearity of 16 bits, and is useradjustable to 18 -bit linearity (1LSB \(=\) FSR \(/ 262144\) ).
To attain this high level of accuracy, the design takes advantage of Burr-Brown's thin-film monolithic DAC process, dielectric op amp process, hybrid capabilities, and advanced test and laser-trim techniques.
The DAC729 hybrid layout is specifically partitioned to minimize the effect of external load-currentinduced thermal errors. The op amp design consists of a fast settling precision op amp with a current buffer within the feedback loop. This architecture isolates the load from the op amp, which results in a fast settling ( \(15 \mu\) s to 18 bits) op amp that boasts an open-loop gain of over 500 k . The standard 40 -pin package offers full hermeticity, contributing to the excellent reliability of the DAC729.


\section*{SPECIFICATIONS}

\section*{ELECTRICAL}

Typical at \(25^{\circ} \mathrm{C}, \pm \mathrm{V}_{\text {cc }}=15 \mathrm{VDC}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
MODEL \\
PARAMETER
\end{tabular}} & \multicolumn{3}{|c|}{DAC729JH} & \multicolumn{3}{|c|}{DAC729KH} & \multirow[b]{2}{*}{UNITS} \\
\hline & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{8}{|l|}{INPUT} \\
\hline \begin{tabular}{l}
DIGITAL INPUT \\
Resolution Digital Inputs \({ }^{(1)}: \mathrm{V}_{\mathrm{IH}}\) VIL \(\mathrm{I}_{\mathrm{H}}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}\) \(I_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}\)
\end{tabular} & \[
\begin{gathered}
+2.4 \\
0
\end{gathered}
\] & 18 & \[
\begin{aligned}
& +V_{\mathrm{L}} \\
& +0.8 \\
& +5.0 \\
& -300
\end{aligned}
\] & * & * & * & \begin{tabular}{l}
Bits \\
V \\
V \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline \multicolumn{8}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline ```
ACCURACY \({ }^{(2)}\)
Linearity Error \({ }^{(3)}\)
Differential Linearity Error
Gain Error \({ }^{(5)}\)
Offset Error \({ }^{(5)}\) : Voltage, \(\mathrm{COB}^{(6)}\)
\(\mathrm{CSB}^{(6)}\)
    Current, COB
CSB
Monotonicity \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.70^{\circ} \mathrm{C}\right)\)
Differential Linearity Adjustment Resolution \({ }^{(7)}\).
``` & 15 & \[
\begin{gathered}
\pm 0.05 \\
\pm 5 \\
\pm 0.5 \\
\\
16 \\
17
\end{gathered}
\] & \[
\begin{gathered}
\pm 0.0015 \\
\pm 0.003 \\
\pm 0.10 \\
\pm 10 \\
\pm 0.8 \\
\pm 5 \\
\pm 1
\end{gathered}
\] & & \begin{tabular}{l}
17 \\
18
\end{tabular} & \[
\begin{aligned}
& \pm 0.0007 \\
& \pm 0.0015
\end{aligned}
\] & \[
\begin{gathered}
\% \text { of } \text { FSR }^{(4)} \\
\% \text { of } \operatorname{FSR} \\
\% \\
m V \\
\mathrm{mV} \\
\mu \mathrm{~A} \\
\mu \mathrm{~A} \\
\text { Bits } \\
\text { Bits }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
DRIFT (Over Specification Temperature Range) \\
Total Voltage Error Over Temperature \(\left(0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)^{(8)}\) \\
Total Full-Scale Drift \\
Gain Drift (Excluding Reference Drift) \\
Offset Drift (Excluding Reference Drift): COB \\
CSB \\
Linearity Error Over Temperature \\
Differential Linearity Error Over Temperature
\end{tabular} & & \[
\begin{gathered}
\pm 0.050 \\
\pm 9 \\
\pm 1 \\
\pm 2.0 \\
\pm 0.5 \\
\pm 0.5 \\
\pm 0.5
\end{gathered}
\] & \[
\begin{gathered}
\pm 0.100 \\
\pm 0.18 \\
\pm 3.0 \\
\pm 5.0 \\
\pm 2.0 \\
\pm 1.0 \\
\pm 1.0
\end{gathered}
\] & & \[
\begin{gathered}
* \\
\pm 7 \\
\pm \\
* \\
* \\
* \\
\pm 0.25 \\
\pm 0.25
\end{gathered}
\] & \[
\begin{gathered}
\pm 15 \\
* \\
* \\
* \\
\pm 0.50 \\
\pm 0.50
\end{gathered}
\] & \[
\begin{gathered}
\% \text { of FSR } \\
\text { ppm of FSR } /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\circ} \mathrm{C} \\
\mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline \multicolumn{8}{|l|}{OUTPUT} \\
\hline \begin{tabular}{l}
VOLTAGE OUTPUT MODE \\
Ranges: COB CSB \\
Output Current \\
Output Impedance \\
Short Circuit Duration
\end{tabular} & \begin{tabular}{l}
\[
\pm 5
\] \\
Ind
\end{tabular} & \[
\begin{gathered}
2.5, \pm 5, \pm 1 \\
\text { to } 10,0 \text { to } \\
0.15
\end{gathered}
\]
nite to Con & & & ite to C & & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~V} \\
\mathrm{~mA} \\
\Omega
\end{gathered}
\] \\
\hline \begin{tabular}{l}
CURRENT OUTPUT MODE \\
COB Ranges \\
Output Impedance \\
CSB Ranges \\
Output Impedance \\
Output Current Tolerance \\
Compliance Voltage
\end{tabular} & & \[
\begin{gathered}
\pm 1.0 \\
2.86 \\
0 \text { to }-2 \\
4.0 \\
-1 \text { to }+5
\end{gathered}
\] & \(\pm 0.1\) & . & & * & \(m A\)
\(k \Omega\)
\(m A\)
\(k \Omega\)
\(\%\) of FSR
\(V\) \\
\hline ```
SETTLING TIME (TO }\pm0.00038% of FSR) (9)
Voltage (Load = 2k\Omega|100pF):
 Full-Scale Step
 1LSB Step (Major Carry) }\mp@subsup{}{}{(10)
Slew Rate
Switching Transient Peak
Switching Transient Energy
Current Full-Scale Step (2mA × 10\Omega)
``` & & \[
\begin{gathered}
5 \\
4 \\
20 \\
500 \\
0.45 \\
300
\end{gathered}
\] & 8 & & * & * & \(\mu \mathrm{s}\) \(\mu \mathrm{s}\) \(\mathrm{V} / \mu \mathrm{s}\) mV \(\mathrm{V}-\mu \mathrm{s}\) ns \\
\hline \begin{tabular}{l}
REFERENCE \\
Output (pin 32): Voltage \\
Source Current \({ }^{(11)}\) \\
Temperature Coefficient \\
Short-Circuit Duration \\
Input Voltage Tolerance (external) \\
Reference Load: Unipolar Mode \\
Bipolar Mode
\end{tabular} & \[
\begin{aligned}
& +9.990 \\
& \text { Ind } \\
& +9.990
\end{aligned}
\] & \[
\begin{gathered}
10.000 \\
\pm 1.0 \\
\text { nite to Cor } \\
10
\end{gathered}
\] & \[
\begin{gathered}
10.010 \\
+4.0 \\
\pm 2.5 \\
\text { mon } \\
10.010 \\
-1.0 \\
-2.0
\end{gathered}
\] & * &  & mon & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline
\end{tabular}

ELECTRICAL (CONT)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{MODEL. PARAMETER} & \multicolumn{3}{|c|}{DAC729JH} & \multicolumn{3}{|c|}{DAC729KH} & \multirow[b]{2}{*}{UNITS} \\
\hline & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{8}{|l|}{POWER SUPPLY REQUIREMENTS} \\
\hline ```
Voltage: +V Vc
    -V cc
    +V
Current: +V Vc
    -Vcc
    +V
Power Dissipation (Typical Supplies)
Power Supply Sensitivity, Unipolar: \pm15VDC
                        +5VDC
Bipolar: \pm15VDC
    +5VDC
Gain: \pm15VDC
    +5VDC
``` & \[
\begin{array}{r}
+13.5 \\
-16.5 \\
+4.75
\end{array}
\] & \[
\begin{gathered}
+15 \\
-15 \\
+5 \\
+30 \\
-40 \\
+18 \\
1.14 \\
\pm 0.0001 \\
\pm 0.0001 \\
\pm 0.0004 \\
\pm 0.0001 \\
\pm 0.0005 \\
\pm 0.0001 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline+16.5 \\
-13.5 \\
+5.25 \\
+40 \\
-55 \\
+25 \\
1.55 \\
\pm 0.0005 \\
\pm 0.0005 \\
\pm 0.0015 \\
\pm 0.0005 \\
\pm 0.0015 \\
\pm 0.0005
\end{gathered}
\] & * & & \(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\) & V
V
V
mA
mA
mA
W
\(\%\) of \(\mathrm{FSR} / \% \mathrm{~V}_{\mathrm{s}}\)
\(\%\) of \(\mathrm{FSR} / \% \mathrm{~V}_{\mathrm{s}}\) \\
\hline \multicolumn{8}{|l|}{ENVIRONMENTAL SPECIFICATIONS} \\
\hline Temperature Range: Specification Storage & \[
\begin{gathered}
0 \\
-60 \\
\hline
\end{gathered}
\] & & \[
\begin{array}{r}
+70 \\
+150 \\
\hline
\end{array}
\] & * & . & * & \[
{ }^{\circ} \mathrm{C}
\] \\
\hline
\end{tabular}
*Specification same as DAC729JH.
NOTES: (1) TTL and CMOS compatible. (2) Specified for Vour mode using the internal op amp. (3) \(\pm 0.00076 \%\) of full-scale range is \(1 / 2 L S B\) of 16 -bit resolution. (4) FSR means full-scale range, 20 V for \(\pm 10 \mathrm{~V}\) range, etc. (5) Adjustable to zero error with an external potentiometer. (6) COB is complementary offset binary (bipolar); CSB is complementary straight binary (unipolar). (7) Using the MSB adjustment circuit, the user may improve the DAC linearity to \(1 / 2\) LSB of this specification. (8) With gain and offset errors adjusted to zero at \(25^{\circ} \mathrm{C}\). (9) Maximum represents 3 sigma limit, not \(100 \%\) production tested. (10) At the major carry; 20000 to 1FFFF Hex and from 1FFFF to 20000 Hex. (11) Maximum with no degradation in specifications. External loads must be constant.

\section*{MECHANICAL}

\section*{ABSOLUTE MAXIMUM RATINGS}
\(+V_{D D}\) to Common .. 0 oV to +7 V
\(+V_{\text {cc }}\) to Common.. oV to +18 V
- \(V_{c c}\) to Common.. . OV to -18 V
Digital Data Inputs (pins 1-18) to Common +0.5 V to +18 V
Reference out (pin 32) to Common Indefinite Short to Common
External Voltage Applied to D/A Output (pin 29) -5 V to +5 V
\(V_{\text {out }}\) (pin 23)
Indefinite Short to Common
Power Dissipation.. . 3000mW
Storage Temperature
\(-60^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
NOTE: Stresses above those listed under "Absolute Maximum Ratings"
may cause permanent damage to the device. Exposure to absolute
maximum conditions for extended periods may affect device reliability.

\section*{PIN CONNECTIONS}
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{DAC729} & \\
\hline Bit 1 & 1 & 40 & \(V_{\text {Pot }}\) \\
\hline Bit 2 & 2 & 39 & Bit 1 Adjust \\
\hline Bit 3 & 3 & 38 & Bit 2 Adjust \\
\hline Bit 4 & 4 & 37 & Bit 3 Adjust \\
\hline Bit 5 & 5 & 36 & Bit 4 Adjust \\
\hline Bit 6 & 6 & 35 & Reference Adjust \\
\hline Bit 7 & 7 & 34 & Gain Adjust \\
\hline Bit 8 & 8 & 33 & Reference Common \\
\hline Bit 9 & 9 & 32 & Reference Out \\
\hline Bit 10 & 10 & 31 & Reference In \\
\hline Bit 11 & 11 & 30 & Analog Common \\
\hline Bit 12 & 12 & 29 & lout \\
\hline Bit 13 & 13 & 28 & \(5 \mathrm{k} \Omega\) Feedback \\
\hline Bit 14 & 14 & 27 & \(5 \mathrm{k} \Omega\) Feedback \\
\hline Bit 15 & 15 & 26 & 10k \(\Omega\) Feedback \\
\hline Bit 16 & 16 & 25 & 10k \(\Omega\) Feedback \\
\hline Bit 17 & 17 & 24 & Summing Junction \\
\hline Bit 18 & 18 & 23 & Vout \\
\hline \(+\mathrm{V}_{\mathrm{L}}(5 \mathrm{~V})\) & 19 & 22 & \(+\mathrm{V}_{\mathrm{cc}}(15 \mathrm{~V})\) \\
\hline Power Ground & 20 & 21 & \(-\mathrm{V}_{\text {cc }}(15 \mathrm{~V})\) \\
\hline
\end{tabular}

\section*{THEORY OF OPERATION}

The DAC729 is an 18-bit digital-to-analog converter system, including a precision reference, low noise, fast settling operational amplifier, and the 18 -bit current source/DAC chip contained in a hermetic 40-pin ceramic dual-in-line package.

\section*{THE INTERNAL REFERENCE}

The reference consists of a very low temperature coefficient closed-loop reference zener circuit that has been slope-compensated by laser-trimming current-setting resistors to a zener current to achieve less than \(1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) temperature drift of \(\mathrm{V}_{\mathrm{REF}}\).
By strapping pin 32 (Reference Out) to pin 31 (Reference In), the DAC will be properly biased from the internal reference. The internal reference may be fine adjusted using pin 35 as shown in Figure 7. The reference has an output buffer that will supply 4 mA for use external to the DAC729. This load must remain constant because changing load on the reference may change the reference current to the DAC.
In systems where several components need to track the same system reference, the DAC729 may be used with an external 10 V reference, however, the internal reference has lower noise (\(6 \mu \mathrm{Vp}-\mathrm{p}\)) and better stability than other references available.

\section*{THE OPERATIONAL AMPLIFIER}

To support a DAC of this accuracy, the operational amplifier must have a maximum gain-induced error of less than 1/3LSB, independent of output swing (the op amp must be linear!). To support 15 bits (1/2-bit linearity) the op amp must have a gain of \(130,000 \mathrm{~V} / \mathrm{V}\). For 18 bits, the minimum gain is well over \(500,000 \mathrm{~V} / \mathrm{V}\). Since thermal feedback is the major limitation of gain for mono op amps, the amplifier was designed as a high gain, fast settling mono op amp, followed by a monolithic, unity gain current buffer to isolate the thermal effects of external loads from the input stages of the gain transistors. The op amp and buffer are separated from the DAC chip, minimizing thermally-induced linearity errors in the DAC circuit. The op amp, like the reference, is not dedicated to the DAC729. The user may want to add a network, or select a different amplifier. The DAC729 internal op amp is intended to be the best choice for settling, speed, and noise.

\section*{THE DAC CHIP}

The heart of the DAC729 is a monolithic current source and switch integrated circuit. The absolute linearity, differential linearity, and the temperature performance of the DAC729 are the result of the design, which utilizes the excellent element matching of the current sources and switch transistors to each other, and the tracking of the current setting resistors to the feedback resistors. Older, more discrete designs cannot achieve the performance of this monolithic DAC design.

The two most significant bits are binarily weighted inner-digitized current sources. The currents for bits 3 through 18 are scaled with both current sources weighting and an R-2R ladder. The circuit design is optimized for low noise and low superposition error, with the current sources arranged to minimize both code-dependent thermal errors and IR drop errors. As a result, the superposition errors are typically less than \(20 \mu \mathrm{~V}\).
The DAC chip is biased from a servo amplifier feeding into the base line of the current sources. This servo amplifier sets the collector current to be mirrored and scaled in the DAC chip current sources. The reference current for the servo is established by the reference voltage applied to pin 31 feeding an internal resistor (\(10 \mathrm{k} \Omega\)) to the virtual ground of the servo amplifier.

\section*{DISCUSSION OF SPECIFICATIONS}

\section*{DIGITAL INPUT CODES}

The DAC729 accepts complementary digital input codes in either binary format (CSB, Unipolar or COB, Bipolar; see Table I).

TABLE I. Digital Input Coding.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ Digital Input } & \multicolumn{4}{|c|}{ DAC Analog Output } \\
\cline { 2 - 5 } & COB & 20V FSR & CSB & 10V FSR \\
\hline 000000000000000000 & + Full Scale & 9.999924 V & + Full Scale \\
11111111111111111 & - Full Scale & -10V & - Full Scale & OV962 \\
\hline
\end{tabular}

\section*{ACCURACY}

\section*{Linearity}

This specification describes one of the most important measures of performance of a D/A converter. Linearity error is the deviation of the analog output from a straight line drawn through the end points (all bits ON point and all bits OFF point).

\section*{Differential Linearity Error}

Differential Linearity Error (DLE) of a D/A converter is the deviation from an ideal 1LSB change in the output from one adjacent output state to the next. A differential linearity error specification of \(\pm 1 / 2\) LSB means that the output step sizes can be between \(1 / 2 \mathrm{LSB}\) and \(3 / 2 \mathrm{LSB}\) when the input changes from one adjacent input state to the next. A negative DLE specification of no more than -1 LSB (\(-0.0015 \%\) for 16 -bit resolution) insures monotonicity

\section*{Monotonicity}

Monotonicity assures that the analog output will increase or remain the same for increasing input digital codes. The DAC729 is specified to be monotonic to 16 bits over the entire specification temperature range.

\section*{DRIFT}

Gain Drift
Gain drift is a measure of the change in the full-scale
range output over temperature expressed in parts per million per degree centigrade (\(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\)). Gain drift is measured by: (1) testing the end point differences for each D/A at \(\mathrm{t}_{\mathrm{MIN}},+25^{\circ} \mathrm{C}\) and \(\mathrm{t}_{\mathrm{MAX}}\); (2) calculating the gain error with respect to the \(+25^{\circ} \mathrm{C}\) value; and (3) dividing by the temperature change.

\section*{Offset Drift}

Offset drift is a measure of the change in the output with \(3 \mathrm{FFFF}_{\mathrm{H}}\) applied to the digital inputs over the specified temperature range. The maximum change in offset at \(t_{\text {MIN }}\) or \(t_{\text {max }}\) is referenced to the offset error at \(+25^{\circ} \mathrm{C}\) and is divided by the temperature change. This drift is expressed in parts per million of full-scale range per degree centigrade (ppm of FSR \(/{ }^{\circ} \mathrm{C}\)).

\section*{SETTLING TIME}

Settling time of the \(\mathrm{D} / \mathrm{A}\) is the total time required for the analog output to settle within an error band around its final value after a change in digital input.

\section*{Voltage Output}

Settling times are specified to \(\pm 0.00075 \%\) of FSR (\(\pm 1 / 2 \mathrm{LSR}\) for 16 bits) for two input conditions: a fullscale range change of 20 V (COB) or 10 V (CSB) and a 1LSB change at the "major carry," the point at which the worst-case settling time occurs. (This is the worst-case point since all of the input bits change when going from one code to the next.)

\section*{Current Output}

Settling times are specified to \(\pm 0.00075 \%\) of FSR for a full-scale range change with an output load resistance of \(10 \Omega\). It is specified this way because the output RC time constant becomes the dominant factor in determining settling time for large resistive loads.

\section*{COMPLIANCE VOLTAGE}

Compliance voltage applies only to current output models. It is the maximum voltage swing allowed on the output current pin while still being able to maintain specified linearity.

\section*{POWER SUPPLY SENSITIVITY}

Power supply sensitivity is a measure of the effect of a change in a power supply voltage on the \(\mathrm{D} / \mathrm{A}\) converter output. It is defined as a percent of FSR change in the output per percent of change in either the positive supply \(\left(+\mathrm{V}_{\mathrm{CC}}\right)\), negative supply \(\left(-\mathrm{V}_{\mathrm{Cc}}\right)\) or logic supply \(\left(\mathrm{V}_{\mathrm{L}}\right)\) about the nominal power supply voltages (see Figure 1). It is specified for DC or low frequency changes. The typical performance curve in Figure 1 shows the effect of high frequency changes in power supply voltages using internal reference, DAC, and op amp.

\section*{OPERATING INSTRUCTIONS}

\section*{POWER SUPPLY CONNECTIONS}

For optimum performance and noise rejection, power supply decoupling capacitors should be added as shown in

FIGURE 1. Power Supply Rejection vs Frequency Using Internal Reference and Op Amp.

Figure 2. These capacitors (\(1 \mu \mathrm{~F}\) to \(10 \mu \mathrm{~F}\) tantalum recommended) should be located close to the DAC729. Electrolytic capacitors, if used, should be paralleled with \(0.01 \mu \mathrm{~F}\) ceramic capacitors for best high frequency performance.

FIGURE 2. Ground Connections and Supply Bypass.

\section*{EXTERNAL OFFSET AND GAIN ADJUSTMENT}

Offset and gain may be trimmed by installing external offset and gain potentiometers. Connect these potentiometers as shown in Figure 3 and adjust as described below. TCR of the potentiometers should be \(100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) or less. The \(3.9 \mathrm{M} \Omega\) and \(510 \mathrm{k} \Omega\) resistors (\(20 \%\) carbon or better) should be located close to the DAC729 to prevent noise pickup. If it is not convenient to use these high-value resistors, an equivalent " \(T\) " network, as shown in Figure 4 , may be substituted in place of the \(3.9 \mathrm{M} \Omega\). \(\mathrm{A} 0.001 \mu \mathrm{~F}\) to \(0.01 \mu \mathrm{~F}\) ceramic capacitor should be connected from Gain Adjust (pin 34) to common to shunt noise pickup. Refer

FIGURE 3. Typical Gain and Offset Adjust Hook-Up.

FIGURE 4. Equivalent Resistances.
to Figures 5 and 6 for relationship of offset and gain adjustments to unipolar and bipolar D/A converters.

\section*{OFFSET ADJUSTMENT}

For unipolar (CSB) configurations, apply the digital input code that should produce zero potential output and adjust the offset potentiometer for zero output.

FIGURE 5. Relationship of Offset and Gain Adjustments for a Unipolar D/A Converter.

For bipolar (COB) configurations, apply the digital input code that should produce the maximum negative output voltage. See Table II for corresponding codes and Figures 2 and 3 for offset adjustment connections. Offset adjust

FIGURE 6. Relationship of Offset and Gain Adjustments for a Bipolar D/A Converter.
should be made prior to gain adjust.

\section*{GAIN ADJUSTMENT}

For either unipolar or bipolar configurations, apply the digital input that should give the maximum positive output voltage. Adjust the gain potentiometer for this positive full-scale voltage. See Table II for positive full-scale voltages and Figure 3 for gain adjustment connections.

TABLE II. Output Range Connections.
\begin{tabular}{|c|c|c|c|c|}
\hline Output Range & Code & Connect Pin 23 & Connect Pin 31 & Connect Pin 24 \\
\hline \(\pm 10 \mathrm{~V}\) & COB & to Pin 25 & to Pin 26 & to Pin 29 \\
\hline \(\pm 5 \mathrm{~V}\) & COB & to Pin 27 & to. Pin 26 & to Pin 29 \\
\hline \(\pm 2.5 \mathrm{~V}\) & COB & to Pin 27 & to Pin 26 & to Pins 29 \& 25 \\
\hline 0 to 10 V & CSB & to Pin 27 & N/C & to Pin 29 \\
\hline 0 to 5 V & CSB & to Pins 27 \& 28 & N/C & to Pin 29 \\
\hline
\end{tabular}

\section*{REFERENCE ADJUSTMENT}

The internal reference may be fine adjusted using pin 35 as shown in Figure 7. Adjusting the reference has a similar effect on the DAC as gain adjust, except the transfer function rotates around bipolar zero for a bipolar hookup. The transfer function is shown in Figure 8.
The value of the setting resistor may be selected from the graph. The range of adjustment should be minimized to limit the effects of drift and noise from the external resistor and potentiometer.

\section*{LAYOUT/APPLICATIONS SUGGESTIONS}

Obviously, the management of IR drops, power supply noise, thermal stability, and environmental noise becomes much more critical as the accuracy of the system increases. The DAC729 has been designed to minimize these applications problems to a large degree. The basics of "Kelvin sensing" and "holy point" grounding will be the most important considerations in optimizing the absolute accuracy of the system. Figure 9 shows the proper connection of the DAC with the holy-point ground and

FIGURE 7. V \({ }_{\text {REF }}\) Adjust.

FIGURE 8. Effect of \(\mathrm{V}_{\text {Ref }}\) Adjust on a COB Connected Device.
the Kelvin-voltage-output connection at the load.
The DAC729 has three separate supply common (ground) pins. Reference common (pin 33) carries the return current from the internal reference and the output I/V converter common. The current in pin 33 is stable and independent of code or load. Power common (pin 20) carries the variable currents of the biasing circuits. Analog common (pin 30) is the termination of the R-2R ladder and also carries the "waste current" from the off side of the current switches. These three ground pins must be star connected to system ground for the DAC to bias properly and accurately. Good ground connections are essential,

FIGURE 9. Typical Hook-Up Diagram with "Holy Point" Ground and Kelvin Sense Load, Using Internal Op Amp and Reference.
because an IR drop of just \(39 \mu \mathrm{~V}\) completely swamps out a 10V FSR 18-bit LSB.
Temperature variations of the part may cause accuracy errors. Careful attention must be paid to the effects of the load that the DAC is driving. Although the internal current buffer will drive substantial loads (25 mA or more typically), the thermals produced internally will affect the individual current sources of the DAC. The package has a thermal resistance of about \(25^{\circ} \mathrm{C} / \mathrm{W}\). This thermal resistance will show up as a thermal gradient across the DAC chip and could cause linearity problems. These problems may appear as a code dependent error for DC or slow data rates. To overcome the problems of a heavy load, it is suggested that an external current buffer be used (Figure 10), and located so as not to affect the DAC temperature.

\section*{TRUE 18-BIT PERFORMANCE (LINEARITY ADJUSTMENT)}

To take full advantage of the DAC729's accuracy, the four MSBs have adjustment capabilities. A simplified schematic (Figure 11) shows the internal structure of the DAC current source and the adjustment input terminal. The suggested network for adjusting the linearity is shown in Figure 12. This circuit has nearly twice the range that is required for the DAC729JH. The range is intentionally narrow so as to minimize the effect of temperature drift or stability problems in the potentiometers. The potentiometers are biased in an identical fashion to the internal DAC current sources to minimize power supply rejection problems and temperature drift problems.
The linearity adjustment requires a digital voltmeter with 7 digits of resolution on the 10 V range (\(1 \mu \mathrm{~V}\) resolution) and excellent linearity. For the DAC, 1 LSB of the 0 V to 10 V scale (10 FSR) is \(38 \mu \mathrm{~V}\). To be \(1 / 2 \mathrm{LSB}\) linear, the

FIGURE 10. Using an External Op Amp with Buffer and External Reference for \(\pm 10 \mathrm{~V}\) Output.
measurement must resolve \(19 \mu \mathrm{~V}\). The meter must be properly calibrated and linear to lppm of range.
With the DAC connected for 0 to 10 V output (Figure 13), the adjustment procedure is to set the DAC code and measure as follows.

FOURTH MSB ADJUSTMENT
1. Code \(=111100000000000000\)
2. Measure
3. Code \(=111011111111111111\)
4. Measure and difference.
5. Adjust 4th MSB potentiometer to make difference \(+38 \mu \mathrm{~V}\).
6. Repeat steps 1 through 5 to confirm.

THIRD MSB ADJUSTMENT
1. Code \(=111000000000000000\)
2. Measure
3. Code \(=110111111111111111\)
4. Measure and difference.
5. Adjust 3rd MSB potentiometer to make difference \(+38 \mu \mathrm{~V}\).
6. Repeat steps 1 through 5 to confirm.

\section*{SECOND MSB ADJUSTMENT}
1. Code \(=110000000000000000\)
2. Measure
3. Code \(=101111111111111111\)
4. Measure and difference.
5. Adjust 2nd MSB potentiometer to make difference \(+38 \mu \mathrm{~V}\).
6. Repeat steps 1 through 5 to confirm.

\section*{MSB ADJUSTMENT}
1. Code \(=100000000000000000\)
2. Measure
3. Code \(=011111111111111111\)
4. Measure and difference.
5. Adjust the MSB potentiometer to make difference \(+38 \mu \mathrm{~V}\).
6. Repeat steps 1 through 5 to confirm.

FIGURE 11. DAC729 Simplified Schematic.

FIGURE 12. Differential Linearity Adjustment Circuit for the 4MSBs.

FIGURE 13. 0 to 10 V FSR.

\section*{APPLICATIONS}

The DAC729 is the DAC of choice for applications requiring very high resolution, accuracy, and wide dynamic range.

\section*{DIGITAL AUDIO}

The excellent linearity and differential linearity are ideal for PCM professional audio and waveform generation applications.
The DAC729 offers superb dynamic range. Dynamic range is a measure of the ratio of the smallest signals the converter can produce to the full-scale range, usually expressed in decibels (dB). The theoretical dynamic range of a converter is approximately 6 dB per bit. For the DAC729 the theoretical range is 108 dB ! The actual dynamic range is limited by noise (signal-to-noise) and linearity errors. The DAC729's \(6 \mu \mathrm{~V}\) typical noise floor,
fast settling op amp, and adjustable 18-bit linearity minimize the limitation.
Total harmonic distortion (THD) is the measure of the magnitude and distribution of the linearity error, differential linearity error, noise, and quantization error. The THD is defined as the ratio of the square root of the sum of the squares of the harmonics to the values of the input fundamental frequency. The RMS value of a DAC error can be shown to be
\[
\epsilon_{\mathrm{rms}}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left[E_{L}(i)+E_{Q}(i)\right]^{2}}
\]
where n is the number of samples in one cycle of any given sine wave, \(\mathrm{E}_{\mathrm{L}}(\mathrm{i})\) is the linearity error of the DAC729 at each sampling point, and \(\mathrm{E}_{\mathrm{Q}}(\mathrm{i})\) is the quantization error at each sampling point. The THD can then be expressed as
\(\mathrm{THD}=\frac{\epsilon_{\mathrm{rms}}}{\mathrm{E}_{\mathrm{rms}}}=\frac{\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left[\mathrm{E}_{\mathrm{L}}(\mathrm{i})+\mathrm{E}_{\mathrm{Q}}(\mathrm{i})\right]^{2}}}{\mathrm{E}_{\mathrm{rms}}} \times 100 \%\)
where Erms is the rms signal-voltage level.
This coppression indicates that, in general, there is a correlation between the THD and the square root of the sum of the squares of the linearity errors at each digital word of interest. However, this expression does not mean that the worst-case linearity error of the \(\mathrm{D} / \mathrm{A}\) is directly correlated to the THD.
The DAC729 has demonstrated THD of better than \(0.0009 \%\) of full scale (at 1 kHz). This is the level of distortion that is desired to test other professional audio products, making the DAC729 ideal for professional audio test equipment.
The ability to adjust the linearity of the 4 MSBs , the 18-bit resolution, fast settling and low noise give the DAC729 unmatched performance.

\section*{AUTOMATIC TEST EQUIPMENT}

The ability to adjust the absolute linearity and the ability to run several DACs from the same reference make the DAC729 ideal as the reference DAC for an entire data conversion system. Since the feedback resistors are absolute value (\(\pm 0.1 \%\)), the addition of a \(240 \Omega\) resistor makes the output 10.24 V . This feature makes discrete 10 mV steps easy to create with a resolution of \(39 \mu \mathrm{~V}\) for \(10.24 V\) FSR. Figure 14 shows the DAC729 connected for 0 V to 10.24 V operation and using an external reference. The two \(240 \Omega\) resistors are in series with the parallel \(10 \mathrm{k} \Omega\) internal resistors, resulting in 10.24 V out. This hook-up minimizes the thermal coefficient of resistance problems associated with this accuracy.
The low superposition error of the DAC729 makes the system calibration routines become much less complicated. There is seldom a need to iterate through the calibration routine. Repeatability of the DAC output voltage is many times better than competitive products. This feature cuts system overhead time, improves accuracy, and cuts guardbands for the user. The entire set of test head DACs could be upgraded from 16 bits to 18 bits by replacing the existing 16-bit DACs.

\section*{THE HEART OF AN 18-BIT ADC}

The DAC729 makes a good building block in ADC applications. The key to ADC accuracy is differential linearity of the DAC. The ability to adjust to 18 -bit linearity, coupled with the fast settling time of the DAC729 makes the design cycle for an 18 -bit successive approximation ADC much faster, and the production more consistent. Figure 15 shows the DAC as the heart of a successive approximation ADC. The clock and successive approximation register could be implemented in 7400 series TTL, as a simple gate-array or standard cell, or part of a local processor.
With the DAC out of the way, the comparator is the toughest part of the ADC design. To resolve an 18-bit LSB, and interface to a TTL logic device, the comparator must have a gain of \(500 \mathrm{kV} / \mathrm{V}\) (5 X actual) as well as low hysteresis, low noise, and low thermally induced offsets. With this much gain, a slow comparator may be desired to reduce the risk of instability.
The feedback resistors of the DAC are the input scaling resistors of the ADC. An OPA404 and an OPA633 make an excellent buffer for the input signal, giving a very high input impedance to the signal (minimizing IR drop) while maintaining the linearity.

FIGURE 14. 0 V to 10.24 V Using Internal Op Amp and Internal References.

FIGURE 15. Block Diagram of an 18 -Bit \(\pm 10 \mathrm{~V}_{\text {IN }}\) ADC.

\title{
Microprocessor-Compatible 12-BIT DIGITAL-TO-ANALOG CONVERTER (Small-Outline Surface-Mount Package)
}

\section*{FEATURES}
- SINGLE INTEGRATED CIRCUIT CHIP
- MICROCOMPUTER INTERFACE: DOUBLE-BUFFERED LATCH
- VOLTAGE OUTPUT: \(\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V},+10 \mathrm{~V}\)
- MONOTONICITY GUARANTEED OVER TEMPERATURE
- \(\pm 3 / 4\) LSB MAXIMUM NONLINEARITY OVER TEMPERATURE
- Guaranteed specifications at mi2V and \(\pm 15 \mathrm{~V}\) SUPPLIES
- TTL/5V CMOS-COMPATIBLE LOGIC INPUTS

\section*{DESCRIPTION}

The DAC811U is a complete single-chip integratedcircuit microcomputer-compatible 12 -bit digital-toanalog converter packaged in a 28 -lead plastic SOIC. The chip includes a precision voltage reference, microcomputer interface logic, double-buffered latch, and a 12 -bit \(\mathrm{D} / \mathrm{A}\) converter with a voltage output amplifier. Fast current switches with laser-trimmed thin-film resistors provide a highly accurate and fast D/A converter.
Microcomputer interfacing is facilitated by a doublebuffered latch. The input latch is divided into three 4 -bit nybbles to permit interfacing to 4 -, 8 -, 12 - or 16 -bit buses and to handle right- or left-justified data. The 12 -bit data in the input latches is transferred to the D/A latch to hold the output value.
Input gating logic is designed so that loading the last byte of data can be accomplished simultaneously with the transfer of data (previously stored in adjacent latches) from adjacent input latches to the D/A latch. This feature avoids spurious analog output values and saves computer instructions.

The DAC811 is laser trimmed at the wafer level and is specified to \(\pm 1\) /4LSB maximum linearity error (\(K\) grade) at \(25^{\circ} \mathrm{C}\) and \(\pm 3 / 4\) LSB maximum over the temperature range. All grades are guaranteed monotonic over the specification temperature range.
DAC811JU and KU are specified over the temperature range of \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).

SPECIFICATIONS
ELECTRICAL
\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} . \pm \mathrm{V}_{\mathrm{cc}}=12 \mathrm{~V}\) or 15 V unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MODEL & \multicolumn{3}{|c|}{DAC811JU} & \multicolumn{3}{|c|}{DAC811KU} & \multirow[b]{2}{*}{UNITS} \\
\hline PARAMETER & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \begin{tabular}{l}
DIGITAL INPUT \\
Resolution \\
Codes \({ }^{\text {(1) }}\) \\
Digital Inputs Over Temperature Range \({ }^{(2)}\) \\
\(\mathrm{V}_{\mathrm{IH}}\) \\
\(V_{1 L}\) \\
\(\mathrm{I}_{\mathrm{H}}, \mathrm{V}_{1}=+2.7 \mathrm{~V}\) \\
\(\mathrm{I}_{\mathrm{L}}, \mathrm{V}_{1}=+0.4 \mathrm{~V}\) \\
Digital Interface Timing Over Temperature Range \({ }^{(3)}\) \(t_{\text {wp }}, \overline{W R}\) pulse width \\
\(t_{A w} 1, \overline{N_{x}}\) and \(\overline{L D A C}\) valid to end of \(\overline{W R}\) tow, data valid to end of \(\overline{W R}\) \(t_{\mathrm{DH}}\), data valid hold time
\end{tabular} & \[
\begin{gathered}
+2.0 \\
0.0 \\
\\
\\
50 \\
50 \\
80 \\
0
\end{gathered}
\] & USB, BO & 12
\[
\begin{aligned}
& +15 \\
& +0.8 \\
& +10 \\
& \pm 20
\end{aligned}
\] & * & * & * & \begin{tabular}{l}
Bits \\
VDC \\
VDC \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
ns \\
ns \\
ns \\
ns
\end{tabular} \\
\hline \multicolumn{8}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline \begin{tabular}{l}
ACCURACY \\
Linearity Error Differential Linearity Error \\
Gain Error \({ }^{(4)}\) \\
Offset Error \({ }^{(4,5)}\) \\
Monotonicity \\
Power Supply Sensitivity: \(+\mathrm{V}_{\mathrm{cc}}\) \\
\(-V_{c c}\) \\
\(V_{D D}\)
\end{tabular} & & \begin{tabular}{l}
\[
\begin{aligned}
& \pm 1 / 4 \\
& \pm 1 / 2 \\
& \pm 0.1 \\
& \pm 0.05
\end{aligned}
\] \\
uarantee \\
\(\pm 0.001\) \\
\(\pm 0.002\) \\
\(\pm 0.0005\)
\end{tabular} & \[
\begin{array}{r}
\pm 1 / 2 \\
\pm 3 / 4 \\
\pm 0.2 \\
\pm 0.15 \\
d \quad \pm 0.003 \\
\pm 0.006 \\
\pm 0.0015
\end{array}
\] & & \(\pm 1 / 8\)
\(\pm 1 / 4\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\) & \(\pm 1 / 4\)
\(\pm 1 / 2\)
\(*\)
\(*\) & LSB
LSB
\(\%\)
\(\%\) of \(\mathrm{FSR}^{(6)}\)
\(\%\) of \(\mathrm{FSR} / \% \mathrm{~V}_{\mathrm{cc}}\)
\(\%\) of \(\mathrm{FSR} / \% \mathrm{~V}_{\text {cc }}\)
\(\%\) of \(\mathrm{FSR} / \% \mathrm{~V}_{\text {Do }}\) \\
\hline \begin{tabular}{l}
DRIFT \(\left(0^{\circ} \mathrm{C}\right.\) to \(+70^{\circ} \mathrm{C}\)) \\
Gain \\
Unipolar Offset \\
Bipolar Zero \\
Linearity Error Over Temperature Range \\
Monotonicity Over Temperature Range
\end{tabular} & & \[
\begin{gathered}
\pm 10 \\
\pm 5 \\
\pm 5 \\
\pm 1 / 2
\end{gathered}
\]
darante & \[
\begin{aligned}
& \pm 30 \\
& \pm 10 \\
& \pm 10 \\
& \pm 3 / 4
\end{aligned}
\] & & \(*\)
\(*\)
\(*\)
\(\pm 1 / 4\) & * \({ }_{*}\) & ```
 ppm/ }\mp@subsup{}{}{\circ}\textrm{C
ppm of FSR/ }\mp@subsup{}{}{\circ}\textrm{C
ppm of FSR/}\mp@subsup{}{}{\circ}\textrm{C
 LSB
``` \\
\hline \multicolumn{8}{|l|}{CONVERSION SPEED} \\
\hline \begin{tabular}{l}
SETTLING TIME \({ }^{(7)}\) (to within \(\pm 0.01 \%\) of FSR of final value, \(2 \mathrm{k} \Omega\) load) \\
For Full-Scale Range Change: 20V Range 10V Range \\
For 1LSB Change at Major Carry \({ }^{(8)}\) Slew Rate \({ }^{(7)}\)
\end{tabular} & 8 & 3
3
1
12 & 4 & * & * \({ }_{*}^{*}\) & * & \begin{tabular}{l}
\(\mu \mathrm{s}\) \\
\(\mu \mathrm{s}\) \\
\(\mu \mathrm{s}\) \\
\(\mathrm{V} / \mu \mathrm{s}\)
\end{tabular} \\
\hline \multicolumn{8}{|l|}{OUTPUT} \\
\hline \begin{tabular}{l}
ANALOG OUTPUT \\
Voltage Range ( \(\left.\pm \mathrm{V}_{\mathrm{cc}}=15 \mathrm{~V}\right)^{(9)}\). Unipolar Bipolar \\
Output Current \\
Output Impedance (at DC) \\
Short Circuit to Common Duration
\end{tabular} & \(\pm 5\) & \[
\begin{gathered}
0 \text { to }+10 \\
\pm 5, \pm 10 \\
\\
0.2 \\
\text { Indefinite }
\end{gathered}
\] & & * & * & & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~V} \\
\mathrm{~mA} \\
\Omega
\end{gathered}
\] \\
\hline \begin{tabular}{l}
REFERENCE VOLTAGE \\
Voltage \\
Source Current Available for External Loads Temperature Coefficient Short Circuit to Common Duration
\end{tabular} & \[
\begin{aligned}
& +6.2 \\
& +2.0
\end{aligned}
\] & \[
\begin{gathered}
+6.3 \\
\pm 10 \\
\text { Indefinite }
\end{gathered}
\] & \[
\begin{aligned}
& +6.4 \\
& \pm 30
\end{aligned}
\] & * & * & * & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline \multicolumn{8}{|l|}{POWER SUPPLY REQUIREMENTS} \\
\hline \begin{tabular}{l}
\[
\begin{array}{ll}
\text { Voltage: } & +V_{c c} \\
-V_{c c} \\
V_{D D} \\
\text { Current (no load): } & +V_{c c} \\
& \\
& -V_{c c} \\
& V_{D D}
\end{array}
\] \\
Potential at DCOM with Respect to ACOM \({ }^{(10)}\) Power Dissipation
\end{tabular} & \[
\begin{gathered}
+11.4 \\
-11.4 \\
+4.5
\end{gathered}
\] & \[
\begin{gathered}
+15 \\
-15 \\
+5 \\
+16 \\
-23 \\
+8
\end{gathered}
\] & \[
\begin{gathered}
+16.5 \\
-16.5 \\
+5.5 \\
+25 \\
-35 \\
+15 \\
\pm 0.5 \\
800
\end{gathered}
\] & * & * & * \({ }_{*}^{*}\) & \begin{tabular}{l}
VDC \\
VDC \\
VDC \\
mA \\
mA \\
mA \\
V \\
mW
\end{tabular} \\
\hline \multicolumn{8}{|l|}{TEMPERATURE RANGE} \\
\hline Specification Storage & \[
\begin{gathered}
0 \\
-60
\end{gathered}
\] & & \[
\begin{gathered}
+70 \\
+100
\end{gathered}
\] & * & & * & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}
*Same as DAC811JU.
NOTES: (1) USB = Unipolar Straight Binary, BOB = Bipolar Offset Binary. (2) TTL-, LSTTL-, 74HC CMOS-compatible (3) Refer to Figures 6 and 7. (4) Adjustable to zero with external trim potentiometer. (5) Error at input code \(000_{16}\) for both unipolar and bipolar ranges. (6) FSR means Full Scale Range and is 20 V for the \(\pm 10 \mathrm{~V}\) range. (7) Maximum represents the \(3 \sigma\) limit. Not \(100 \%\) tested for this parameter. (8) At the major carry, \(7 \mathrm{FF}_{16}\) to \(800_{16}\) and \(800_{16}\) to \(7 \mathrm{FF}_{16}\). (9) Minimum supply voltage required for \(\pm 10 \mathrm{~V}\) output swing is \(\pm 13.5 \mathrm{~V}\). Output swing for \(\pm 11.4 \mathrm{~V}\) supplies is at least -8 V to +8 V with no external load. (10) The maximum voltage at which ACOM and DCOM may be separated without affecting accuracy specifications.


ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|}
\hline \multirow[b]{9}{*}{\begin{tabular}{l}
\(V_{o s}\) to DCOM ................. 0 to +7 V Input Voltage Range \(\ldots \ldots \ldots \ldots . . \pm \mathrm{V}_{\mathrm{cc}}\) Digital Inputs ........... -0.4 V to \(\mathrm{V}_{\mathrm{cc}}\) Lead Temp, Wave Soldering \\
( 3 seconds max)............ \(+260^{\circ} \mathrm{C}\) Output Short Circuit \\
to Common ............. Continuous \\
Power Dissipation ................... 1W \\
NOTE: Stresses above those listed may cause permanent damage to the device. Exposures to absolute maximum conditions for extended periods may effect device reliability.
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

\section*{MECHANICAL}


NOTE: Leads in true position within \(0.010^{\prime \prime}(.25 \mathrm{~mm}) R\) at MMC at seating plane.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ DIM } & \multicolumn{2}{|c|}{ INCHES } & \multicolumn{2}{|c|}{ MILLIMETERS } \\
\cline { 2 - 5 } & MIN & MAX & MIN & MAX \\
\hline A & .700 & .716 & 17.78 & 18.19 \\
\hline B & .286 & .302 & 7.26 & 7.67 \\
\hline C & .093 & .109 & 2.36 & 2.77 \\
\hline D & .015 & .019 & 0.38 & 0.48 \\
\hline G & .050 BASIC & \multicolumn{2}{|c|}{1.27 BASIC } \\
\hline H & .022 & .038 & \multicolumn{2}{|c|}{0.56} & 0.97 \\
\hline J & .008 & .012 & \multicolumn{2}{|c|}{0.20} & 0.30 \\
\hline L & .281 & .309 & \multicolumn{2}{|c|}{7.14} & 7.85 \\
\hline M & \multicolumn{2}{|c|}{\(5^{\circ}\) TYP } & \multicolumn{2}{|c|}{\(5^{\circ}\) TYP } \\
\hline N & .007 & .011 & \multicolumn{2}{|c|}{0.18} & 0.28 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PIN & NAME & FUNCTION & PIN & NAME & FUNCTION \\
\hline 1 & VDD & Logic Supply, +5V & 15 & DCOM & DIGITAL COMMON, Vod supply return \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{\(\overline{W R}\)} & \multirow[t]{2}{*}{WRITE, command signal to load latches, Logic low loads latches.} & 16 & \(\mathrm{D}_{0}\) & DATA, Bit 1, LSB \\
\hline & & & 17 & \(\mathrm{D}_{1}\) & DATA, Bit 2 \\
\hline 3 & \multirow[t]{2}{*}{\(\overline{\text { LDAC }}\)} & \multirow[t]{2}{*}{LOAD D/A CONVERTER, enables \(\overline{W R}\) to load the \(D / A\) latch. Logic low enables.} & 18 & \(\mathrm{D}_{2}\) & DATA, Bit 3 \\
\hline & & & 19 & \(\mathrm{D}_{3}\) & DATA, Bit 4 \\
\hline 4 & \(\overline{N_{A}}\) & NYBBLE A, enables WR to load input latch A (the most significant nybble). Logic low enables. & 20 & \(+\mathrm{V}_{\mathrm{cc}}\) & Analog Supply Input, +15 V or +12 V \\
\hline \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{\(\overline{N_{B}}\)} & \multirow[t]{2}{*}{NYBBLE B, enables \(\overline{W R}\) to load input latch \(B\). Logic low enables.} & 21 & \(-V_{c c}\) & Analog Supply Input, -15 V or -12 V \\
\hline & & & 22 & GAIN ADJ & To externally adjust gain \\
\hline \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{\(\overline{N_{c}}\)} & \multirow[t]{2}{*}{NYBBLE C, enables \(\overline{W R}\) to load input latch C (the least significant nybble). Logic low enables.} & 23 & ACOM & ANALOG COMMON, \(\pm \mathrm{V}_{\text {cc }}\) supply return \\
\hline & & & 24 & Vout & D/A converter voltage output \\
\hline 7 & \(\mathrm{D}_{1}\) & DATA, Bit 12, MSB, positive true. & 25 & 10V RANGE & Connect to pin 24 for 10V Range \\
\hline 8 & \(\mathrm{D}_{10}\) & DATA, Bit 11 & 26 & SJ & SUMMING JUNCTION of output amplifier \\
\hline 9 & \(\mathrm{D}_{9}\) & DATA, Bit 10 & 27 & BPO & BIPOLAR OFFSET. Connect to pin 26 for \\
\hline 10 & \(\mathrm{D}_{8}\) & DATA, Bit 9 & & & Bipolar Operation. \\
\hline 11 & \(\mathrm{D}_{7}\) & DATA, Bit 8 & 28 & REF OUT & 6.3 V reference output \\
\hline 12 & \(\mathrm{D}_{6}\) & DATA, Bit 7 & & & \\
\hline 13 & \(\mathrm{D}_{5}\) & DATA, Bit 6 & & & \\
\hline 14 & \(\mathrm{D}_{4}\) & DATA, Bit 5 & & & \\
\hline
\end{tabular}

\section*{CONNECTION DIAGRAM}


\section*{DISCUSSION OF SPECIFICATIONS}

\section*{INPUT CODES}

The DAC811 accepts positive true binary input codes. It may be connected by the user for any one of the following codes: USB (unipolar straight binary), BOB (bipolar offset binary) or, using an external inverter on the MSB line, BTC (binary two's complement). See Table I.

TABLE I. Digital Input Codes.
\begin{tabular}{|c|c|c|c|}
\hline DIGITAL INPUT & \multicolumn{3}{|c|}{ANALOG OUTPUT} \\
\hline  & \begin{tabular}{l}
USB \\
Unipolar Straight Binary
\end{tabular} & \begin{tabular}{l}
BOB \\
Bipolar Offset Binary
\end{tabular} & \begin{tabular}{l}
BTC* \\
Binary \\
Two's \\
Complement
\end{tabular} \\
\hline 111111111111 & +Full Scale & +Full Scale & -1LSB \\
\hline 100000000000 & +1/2 Full Scale & Zero & -Full Scale \\
\hline 011111111111 & 1/2 Full Scale -1LSB & -1LSB & +Full Scale \\
\hline 000000000000 & Zero & -Full Scale & Zero \\
\hline
\end{tabular}
*Invert the MSB of the BOB code with external inverter to obatin BTC
code.

\section*{LINEARITY ERROR}

Linearity error as used in \(\mathrm{D} / \mathrm{A}\) converter specifications by Burr-Brown is the deviation of the analog output from a straight line drawn between the end points (inputs all " 1 's" and all " 0 's"). The DAC811 linearity error is specified at \(\pm 1 / 4 \mathrm{LSB}\) (max) at \(+25^{\circ} \mathrm{C}\) for the K grade and \(\pm 1 / 2 L S B\) (max) for the \(J\) grade.

\section*{DIFERENTIAL LINEARITY ERROR}

Differential linearity error (DLE) is the deviation from a 1LSB output change from one adjacent state to the next. A DLE specification of \(1 / 2 \mathrm{LSB}\) means that the output step size can range from \(1 / 2 \mathrm{LSB}\) to \(3 / 2 \mathrm{LSB}\) when the input changes from one state to the next. Monotonicity requires that DLE be less than 1 LSB over the temperature range of interest.

\section*{MONOTONICITY}

A \(\mathrm{D} / \mathrm{A}\) converter is monotonic if the output either increases or remains the same for increasing digital inputs. The DAC811 is monotonic over the entire specification temperature range.

\section*{DRIFT}

Gain drift is a measure of the change of the full-scale range output over the specification temperature range. Drift is expressed in parts per million per degree centigrade ( \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) ). Gain drift is established by testing the full-scale range value (e.g., + FS minus - FS) at high temperature, \(+25^{\circ} \mathrm{C}\), and low temperature; calculating the error with respect to the \(+25^{\circ} \mathrm{C}\) value and dividing by the temperature change.
Unipolar offset drift is a measure of the change in output with all 0 's on the input over the specification temperature range. Offset is measured at high temperature, \(+25^{\circ} \mathrm{C}\), and low temperature. The maximum change in offset referred to the \(+25^{\circ} \mathrm{C}\) value divided by the temperature change is the offset drift. It is expressed in parts per million of full-scale range per degree centigrade ( ppm of FSR \(/{ }^{\circ} \mathrm{C}\) ).
Bipolar zero drift is measured at a digital input of \(800_{16}\), the code that gives zero volts output for bipolar operation.

\section*{SETTLING TIME}

Settling time is the total time (including slew time) for the output to settle within an error band around its final value after a change in input. Three settling times are specified to \(\pm 0.01 \%\) of full-scale range (FSR): two for maximum full-scale range changes of 20 V and 10 V , and one for a 1LSB change. The 1LSB change is measured at the major carry ( \(7 \mathrm{FF}_{16}\) to \(800_{16}\) and \(800_{16}\) to \(7 \mathrm{FF}_{16}\) ), the input transition at which worst-case settling time occurs.

\section*{REFERENCE SUPPLY}

DAC811 contains an on-chip 6.3 V reference. This voltage (pin 28) has a tolerance of \(\pm 0.1 \mathrm{~V}\). The reference output may be used to drive external loads, sourcing at least 2.0 mA . This current should be constant for best performance of the \(\mathrm{D} / \mathrm{A}\) converter.

\section*{POWER SUPPLY SENSITIVITY}

Power supply sensitivity is a measure of the effect of a power supply change on the \(\mathrm{D} / \mathrm{A}\) coonverter output. It is defined as a percent of FSR output change per percent of change in either the positive, negative, or logic supply voltages about the nominal voltages. Figure 1 shows typical power supply rejection versus power supply ripple frequency.

\section*{OFFSET AND GAIN ADJUSTMENTS}

Figures 2 and 3 illustrate the relationship of offset and gain adjustments to unipolar and bipolar D/A converter output.


FIGURE 1. Power Supply Rejection versus Power Supply Ripple Frequency.


FIGURE 2. Relationship of Offset and Gain Adjustments for a Unipolar D/A Converter.


FIGURE 3. Relationship of Offset and Gain Adjustments for a Bipolar D/A Converter.


FIGURE 4. DAC811 Rlock Diagram.

\section*{OPERATION}

DAC811 is a complete single IC chip 12-bit D/A converter. The chip contains a 12 -bit \(\mathrm{D} / \mathrm{A}\) converter, voltage reference, output amplifier, and microcomputer-compatible input logic as shown in Figure 4.

\section*{\(\pm 12 V\) OPERATION}

The DAC811 is fully specified for operation on \(\pm 12 \mathrm{~V}\) power supplies. However, in order for the output to swing to \(\pm 10\), the power supplies must be \(\pm 13.5 \mathrm{~V}\) or greater. When operating with \(\pm 12 \mathrm{~V}\) supplies, the output swing is restricted to approximately \(\pm 8 \mathrm{~V}\).

\section*{LOGIC INPUT COMPATIBILITY}

The DAC811 digital inputs are TTL, LSTTL, and \(54 / 74 \mathrm{HC}\) CMOS-compatible over the operating range of \(\mathrm{V}_{\mathrm{DD}}\). The input switching threshold remains at the TTL threshold over the supply range.

\section*{INTERFACE LU̇GIC}

Input latches \(\mathrm{A}, \mathrm{B}\), and C hold data temporarily while a complete 12 -bit word is assembled before loading into the \(\mathrm{D} / \mathrm{A}\) register. This double-buffered organization prevents the generation of spurious analog output values. Each register is independently addressable.
These input latches are controlled by \(\overline{\mathrm{N}}_{\mathrm{A}}, \overline{\mathrm{N}}_{\mathrm{B}}, \overline{\mathrm{N}}_{\mathrm{C}}\) and \(\overline{\mathrm{WR}} \cdot \overline{\mathrm{N}_{\mathrm{A}}}, \overline{\mathbf{N}_{\mathrm{B}}}\), and \(\overline{\mathrm{N}_{\mathrm{C}}}\) are internally NORed with \(\overline{\mathrm{WR}}\) so that the input latches transmit data when both \(\overline{\mathrm{N}_{\mathrm{A}}}\) (or \(\overline{\mathrm{N}_{\mathrm{B}}}, \overline{\mathrm{N}_{\mathrm{C}}}\) ) and \(\overline{\mathrm{WR}}\) are at logic " 0 ." When either \(\overline{\mathrm{N}_{\mathrm{A}}}\) (or \(\overline{\mathrm{N}_{\mathrm{B}}}\), \(\left.\overline{N_{C}}\right)\) and \(\overline{\mathrm{WR}}\) go to logic " 1 ," the input data is latched into the input registers and held until both \(\overline{\mathbf{N}_{\mathrm{A}}}\) (or \(\overline{\mathrm{N}}_{\mathrm{B}}\), \(\bar{N}_{\mathrm{c}}\) ) and \(\overline{\mathrm{WR}}\) go to logic " 0 ."
The D/A latch is controlled by \(\overline{\mathrm{LDAC}}\) and \(\overline{\mathrm{WR}} . \overline{\mathrm{LDAC}}\) and \(\overline{W R}\) are internally NORed so that the latches
transmit data to the D/A switches when both LDAC and \(\overline{W R}\) are at logic " 0 ." When either \(\overline{\mathrm{LDAC}}\) or \(\overline{\mathrm{WR}}\) are at logic " 1 ," the data is latched in the D/A latch and held until \(\overline{\text { LDAC }}\) and \(\overline{W R}\) go to logic " 0 ."

All latches are level-triggered. Data present when the control signals are logic " 0 " will enter the latch. When any one of the control signals returns to logic " 1 ," the data is latched. A truth table for all latches is given in Table II and Relatative Timing Diagrams are shown in Figures 5 and 6.
TABLE II. DAC811 Interface Logic Truth Table.
\begin{tabular}{|c|cccc|l|}
\hline\(\overline{\text { WR }}\) & \(\overline{N_{A}}\) & \(\overline{N_{B}}\) & \(\overline{N_{C}}\) & \(\overline{\text { LDAC }}\) & \multicolumn{1}{c|}{ OPERATION } \\
\hline 1 & X & X & X & X & No Operation \\
0 & 0 & 1 & 1 & 1 & Enables Input Latch 4MSBs \\
0 & 1 & 0 & 1 & 1 & Enables Input Latch 4 Middle Bits \\
0 & 1 & 1 & 0 & 1 & Enables Input Latch 4LSBs \\
0 & 1 & 1 & 1 & 0 & Loads D/A Latch From Input Latches \\
0 & 0 & 0 & 0 & 0 & All Latches Transparent \\
\hline
\end{tabular}
"X" = Don't Care


FIGURE 5. Write Cycle \#1 (Data Latched from Data Bus).


FIGURE 6. Write Cycle \#2 (Data Transferred to DAC).

\section*{EXTERNAL OFFSET AND GAIN ADJUSTMENT}

Offset and gain may be trimmed by installing external offset and gain potentiometers. Connect these potentiometers as shown in the Connection Diagram. TCR of the potentiometers should be \(100 \mathrm{ppmm} /{ }^{\circ} \mathrm{C}\) or less. The \(1.0 \mathrm{M} \Omega\) and \(3.9 \mathrm{M} \Omega\) resistors ( \(20 \%\) carbon or better) should be located close to the DAC811 to prevent noise pickup. If it is not convenient to use these high value resistors, an equivalent " \(T\) " network, as shown in Figure 7, may be substituted in each case. The Gain Adjust (pin 22 ) is a high impedance point and a \(0.0022 \mu \mathrm{~F}\) ceramic capacitor should be connnected from this pin to analog common to reduce noise pickup in all applications, including those not employing external gain adjustment.


FIGURE 7. Equivalent Resistances.

\section*{Offset Adjustment}

For unipolar (USB) configurations, apply the digital input code that should produce zero voltage output and adjust the offset potentiometer for zero output. For bipolar (BOB, BTC) configurations, apply the digital input code that should produce the maximum negative output voltage and adjust the offset potentiometer for minus full-scale voltage. Example: If the full-scale range is connected for 20 V , the maximum negative output voltage is -10 V . See Table III for corresponding codes.

\section*{Gain Adjustment}

For either unipolar or bipolar configurations, apply the digital input that should give the maximum positive voltage output. Adjust the gain potentiometer for this positive full-scale voltage. See Table III for positive fullscale voltages.

TABLE III. Digital Input/Analog Output, \(\pm \mathrm{V}_{\mathrm{Cr}}= \pm 15 \mathrm{~V}\).
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{ DIGITAL INPUT } & \multicolumn{3}{|c|}{ ANALOG OUTPUT VOLTAGE } \\
\cline { 2 - 4 } & 0 to 10 V & \(\pm 5 \mathrm{~V}\) & \(\pm 10 \mathrm{~V}\) \\
\hline \multicolumn{2}{|c|}{ 2-Bit Resolution } & & \\
MSB LSB & & & \\
\(\vdots\) & \(\vdots\) & & \\
111111111111 & +9.9976 V & +4.9976 V & +9.9951 V \\
100000000000 & +5.0000 V & 0.0000 V & 0.0000 V \\
01111111111 & +4.9976 V & -0.0024 V & -0.0049 V \\
000000000000 & 0.0000 V & -5.0000 V & -10.0000 V \\
1 1LSB & 2.44 mV & 2.44 mV & 4.88 mV \\
\hline
\end{tabular}

\section*{OUTPUT RANGE CONNECTIONS}

Internal scaling resistors provided in the DAC811 may be connected to produce bipolar output voltage ranges of \(\pm 10 \mathrm{~V}\) and \(\pm 5 \mathrm{~V}\) or unipolar output voltage range of 0 to +10 V . The 20 V range ( \(\pm 10 \mathrm{~V}\) bipolar range) is internally connected. Refer to Figure 8. Connections for the output ranges are listed in Table IV.


FIGURE 8. Output Amplifier Voltage Range Scaling Circuit.

TABLE IV. Output Range Connections.
\begin{tabular}{|l|l|c|c|}
\hline \begin{tabular}{c} 
Output \\
Range
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Digital \\
Input Codes
\end{tabular}} & \begin{tabular}{c} 
Connect \\
Pin 25 To
\end{tabular} & \begin{tabular}{c} 
Connect \\
Pin 27 To
\end{tabular} \\
\hline 0 to +10V & USB & 24 & 23 \\
\(\pm 5 \mathrm{~V}\) & BOB or BTC & 24 & 26 \\
\(\pm 10 \mathrm{~V}\) & BOB or BTC & NC & 26 \\
\hline
\end{tabular}

\section*{INSTALLATION}

\section*{POWER SUPPLY CONECTIONS}

Decoupling: For optimum performance and noise rejection, power supply decoupling capacitors should be added as shown in the Connection Diagram.
These capacitors ( \(1 \mu \mathrm{~F}\) tantalum recommended) should be located close to the DAC811.
The DAC811 features separate digital and analog power supply returns to permit optimum connections for low noise and high speed performance. The analog common (pin 23) and digital common (pin 15) should be connected together at one point. Separate returns minimize current flow in low level signal paths if properly connected.

Logic return currents are not added into the analog signal return path. \(\mathrm{A} \pm 0.5 \mathrm{~V}\) difference between ACOM and DCOM is permitted for specified operation. High frequency noise on DCOM with respect to ACOM may cause noise to be coupled through to the analog output, therefore, some caution is requried in applying these common connections.
The analog common is the high quality return for the D/A converter and should be connected directly to the analog reference point of the system. The load driven by the output amplifier should be returned to the analog common.

\section*{APPLICATIONS \\ MICROCOMPUTER BUS INTERFACING}

The DAC811 interface logic allows easy interface to microcomputer bus structures. The control signal \(\overline{\mathrm{WR}}\) is derived from external device select logic and the I/O Write or Memory Write (depending upon the system design) signals from the microcomputer.
The latch enable lines \(\overline{\mathrm{N}_{\mathrm{s}}}, \overline{\mathrm{N}_{\mathrm{B}}}, \overline{\mathrm{N}}_{\mathrm{C}}\), and LDC which of the latches are enabled. It is permissible to enable two or more latches simultaneously as shown in some of the following examples.
The double-buffered latch permits data to be loaded into the input latches of several DAC811s and later strobed into the \(\mathrm{D} / \mathrm{A}\) latch of all \(\mathrm{D} / \mathrm{As}\), simultaneously updating all analog outputs. All the interface schemes shown below use a base address decoder. If blocks of memory are unused, the base address decoder can be simplified or eliminated altogether. For instance if half the memory space is unused, address line \(\mathrm{A}_{15}\) of the microcomputer can be used as the chip select control.

\section*{4-BIT INTERFACE}

An interface to a 4-bit microcomputer is shown in Figure 9. Each DAC811 occupies four address locations. A 74 LS 139 provides the two to four decoder and selects these with the base address. Memory Write ( \(\overline{\mathrm{WR}}\) ) of the microcomputer is connected directly to the \(\overline{\mathrm{WR}}\) pin of the DAC811. An 8205 decoder is an alternative device to use instead of the 74LS139.

\section*{8-BIT INTERFACE}

The control logic of DAC811 permits interfacing to right- or left-justified data formats illustrated in Figure 10. When a 12 -bit \(\mathrm{D} / \mathrm{A}\) converter is loaded from an 8 -bit bus, two bytes of data are required. Figures 11 and 12 show an addressing scheme for right-justified and leftjustified data respectively. The base address is decoded from the high-order address bits. \(\mathrm{A}_{0}\) and \(\mathrm{A}_{1}\) address the appropriate latches. Note that adjacent addresses are used. For the right-justified format \(\mathrm{X}_{10} 0_{16}\) loads the 8 LSBs and \(\mathrm{X} 01_{16}\) loads the 4 MSBs and simultaneously transfers input latch data to the D/A latch. Addresses \(\mathrm{X} 00_{16}\) and \(\mathrm{X} 11_{16}\) are not used.


FIGURE 9. Addressing and Control for 4-Bit Microcomputer Interface.


FIGURE 10. 12-Bit Data Formats for 8-Bit Systems.


FIGURE 11. Right-Justified Data Bus Interface.

Left-justified data is handled in a similar manner, shown in Figure 12. The DAC811 still occupies two adjacent locations in the microcomputer's memory map.


FIGURE 12. Left-Justified Data Bus Interface

\section*{INTERFACING MULTIPLE DAC811s IN 8-BIT SYSTEMS}

Many applications require that the outputs of several D/A converters be updated simultaneously such as automatic test systems. The interface shown in Figure 13 uses a 74LS 138 decoder to decode a set of eight adjacent addresses to load the input latches of four DAC811s. The example shows a right-justified data format.
A ninth address using \(\mathrm{A}_{3}\) causes all DAC811s to be updated simultaneously. If a particular DAC811 is always loaded last, for instance, \(D / A^{\#} 4, A_{3}\) is not needed, thus saving eight address spaces for other uses. Incorporate \(A_{3}\) into the Base Address Decoder, remove the inverter, connect the common LDAC line to \(\bar{N}_{c}\) of \(\mathrm{D} / \mathrm{A}\) \#4, and connect \(\mathrm{G}_{1}\) of the 74 LS 138 to +5 .

\section*{12- AND 16-BIT MICROCOMPUTER INTERFACE}

For this application the input latch enable lines, \(\overline{\mathrm{N}}_{\mathrm{A}}, \overline{\mathrm{N}}_{\mathrm{B}}\), and \(\overline{\mathrm{N}}_{\mathrm{c}}\) are tied low, causing the latches to be transparent. The D/A latch, and therefore DAC811, is selected by the address decoder and strobed by \(\overline{\mathrm{WR}}\).

FIGURE 13. Interfacing Multiple DAC811s to an 8Bit Bus.


\section*{DAC7541A}

\section*{Low Cost 12-Bit CMOS Four-Quadrant Multiplying DIGITAL-TO-ANALOG CONVERTER}

\section*{FEATURES}
- FULL FOUR-QUADRANT MULTIPLICATION
- 12-BIT END-POINT LINEARITY
- DIFFERENTIAL LINEARITY \(\pm 1 / 2 L S B\) MAX OVER temperature (K/b/T GRADES)
- MONOTONICITY GUARANTEED OVER TEMPERATURE
- TTL-/CMOS-COMPATIBLE
- SINGLE +5V TO +15V SUPPLY
- LATCH-UP RESISTANT
- 7521/7541/7541A REPLACEMENT
- PACKAGES: HERMETIC DIP, PLASTIC DIP, PLASTIC SOIC

\section*{DESCRIPTION}

The Burr-Brown DAC7541A is a low cost 12-bit, four-quadrant multiplying digital-to-analog converter. Laseei-tiinimed thin-film resisters on a monolithic CMOS circuit provide true 12 -bit integral and differential linearity over the full specified temperature ranges.
The DAC7541A is a direct, improved pin-for-pin replacement for 7521, 7541, and 7541A industry standard parts. In addition to standard 18 -pin plastic and hermetic ceramic packages, the DAC7541A is also available in a surface-mount plastic 18 -pin SOIC.
- LOW COST

FUNCTIONAL DIAGRAM


\footnotetext{
International Airport Industrial Park • P.O. Box 11400 - Tucson, Arizona 85734 • Tel.: (602) 746-1111
}

\section*{SPECIFICATIONS}

\section*{ELECTRICAL}
\(\mathrm{At}+25^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V}\) or \(+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {PIN }}=\mathrm{V}_{\text {PIN } 2}=0 \mathrm{~V}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
MODEL \\
PARAMETER
\end{tabular}} & \multicolumn{4}{|c|}{DAC7541A} & \multirow[b]{2}{*}{TEST CONDITIONS/COMMENTS} \\
\hline & GRADE & \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & \(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}{ }^{(1)}\) & UNITS & \\
\hline \begin{tabular}{l}
ACCURACY \\
Resolution \\
Relative Accuracy \\
Differential Non-linearity \\
Gain Error \\
Gain Temperature Coefficient \\
( \(\Delta\) Gain/ \(\Delta\) Temperature) \\
Output Leakage Current: Out, (Pin 1) \\
\(\mathrm{Out}_{2}(\mathrm{Pin} 2)\)
\end{tabular} & All
\[
J, A, S
\]
K, B, T
\[
\cdot J, A, S
\]
\[
\mathrm{K}, \mathrm{~B}, \mathrm{~T}
\]
\[
J, A, S
\]
\[
\mathrm{K}, \mathrm{~B}, \mathrm{~T}
\]
\[
\begin{aligned}
& \text { All } \\
& \text { J, K } \\
& \text { A, B } \\
& \text { S, T } \\
& \text { J, K } \\
& \text { A, B } \\
& \text { S, T }
\end{aligned}
\] & \[
\begin{gathered}
12 \\
\pm 1 \\
\pm 1 / 2 \\
\pm 1 \\
\pm 1 / 2 \\
\pm 6 \\
\pm 1 \\
\\
\\
\pm 5 \\
\pm 5
\end{gathered}
\] & \[
\begin{gathered}
12 \\
\pm 1 \\
\pm 1 / 2 \\
\pm 1 \\
\pm 1 / 2 \\
\pm 8 \\
\pm 3 \\
\\
5 \\
\pm 10 \\
\pm 10 \\
\pm 200 \\
\pm 10 \\
\pm 10 \\
\pm 200
\end{gathered}
\] & \begin{tabular}{l}
Bits \\
LSB max \\
\(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) max \\
nA max \\
nA max \\
nA max \\
nA max \\
\(n A \max\) \\
\(n A \max\)
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& \pm 1 \text { LSB }= \pm 0.024 \% \text { of FSR. } \\
& \pm 1 / 2 \mathrm{LSB}= \pm 0.012 \% \text { of FSR. }
\end{aligned}
\] \\
All grades guaranteed monotonic to 12 bits, \(T_{\text {min }}\) to \(T_{\text {max }}\). \\
Measured using internal \(R_{F B}\) and includes effect of leakage current and gain T.C. Gain error can be trimmed to zero. \\
Typical value is \(2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\). \\
All digital inputs \(=0 \mathrm{~V}\). \\
All digital inputs \(=V_{D D}\).
\end{tabular} \\
\hline \begin{tabular}{l}
REFERENCE INPUT \\
Voltage (Pin 17 to GND) Input Resistance (Pin 17 to GND)
\end{tabular} & \begin{tabular}{l}
All \\
All
\end{tabular} & \[
\begin{gathered}
-10 /+10 \\
7-18
\end{gathered}
\] & \[
\begin{gathered}
-10 /+10 \\
7-18
\end{gathered}
\] & \(V \cdot \min / \max\) \(k \Omega\) min/max & \begin{tabular}{l}
Typical input resistance \(=11 \mathrm{k} \Omega\). \\
Typical input resistance temperature coefficient is \(-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).
\end{tabular} \\
\hline \begin{tabular}{l}
DIGITAL INPUTS \\
\(V_{I H}\) (Input High Voltage) \\
VIL (Input Low Voltage) \\
Iin (Input Current) \\
\(\mathrm{C}_{\text {IN }}\) (Input Capacitance) \({ }^{(2)}\)
\end{tabular} & \begin{tabular}{l}
All \\
All \\
All \\
All
\end{tabular} & \[
\begin{gathered}
2.4 \\
0.8 \\
\pm 1 \\
8
\end{gathered}
\] & \[
\begin{gathered}
2.4 \\
0.8 \\
\pm 1 \\
8
\end{gathered}
\] & \begin{tabular}{l}
\(V_{\text {min }}\) \\
\(V\) max \\
\(\mu \mathrm{A}\) max \\
pF max
\end{tabular} & Logic inputs are MOS gates. \(\operatorname{lin} \operatorname{typ}\left(25^{\circ} \mathrm{C}\right)=1 \mathrm{nA}\).
\[
V_{I N}=O V
\] \\
\hline \begin{tabular}{l}
POWER SUPPLY REJECTION \\
\(\Delta G a i n / \Delta V_{D D}\)
\end{tabular} & All & \(\pm 0.01\) & \(\pm 0.02\) & \% per \% max & \(V_{D D}=+11.4 \mathrm{~V}\) to +16 V \\
\hline \begin{tabular}{l}
POWER SUPPLY \\
\(V_{D D}\) Range \\
ID
\end{tabular} & All
All & \[
\begin{gathered}
+5 \text { to }+16 \\
2 \\
100
\end{gathered}
\] & \[
\begin{gathered}
+5 \text { to }+16 \\
2 \\
500
\end{gathered}
\] & \(V \min\) to \(V\) max mA max \(\mu \mathrm{A}\) max & \begin{tabular}{l}
Accuracy is not guaranteed over this range. \\
All digital inputs \(\mathrm{V}_{\mathrm{IL}}\) or \(\mathrm{V}_{\mathrm{IH}}\). \\
All digital inputs OV or \(\mathrm{V}_{\text {DD }}\).
\end{tabular} \\
\hline
\end{tabular}

\section*{AC PERFORMANCE CHARACTERISTICS}

These characteristics are included for design guidance only and are not production tested.
\(\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}\) except where stated, \(\mathrm{V}_{\text {PIN } 1}=\mathrm{V}_{\text {PIN } 2}=0 \mathrm{~V}\), output amp is OPA606 except where stated.
\begin{tabular}{|c|c|c|c|c|c|}
\hline PROPAGATION DELAY (from Digital Input change to 90\% of Final Analog Output) & All & 100 & - & ns typ & \begin{tabular}{l}
Out, Load \(=100 \Omega, C_{\text {Ext }}=13 \mathrm{pF}\). \\
Digital Inputs \(=O V\) to \(V_{D D}\) or \(V_{D D}\) to \(O V\).
\end{tabular} \\
\hline DIGITAL-TO-ANALOG GLITCH IMPULSE & All & 1000 & - & nV-s typ & \(V_{\text {REF }}=O \mathrm{~V}\), all digital inputs \(O \mathrm{~V}\) to \(\mathrm{V}_{\mathrm{DD}}\) or \(\mathrm{V}_{\mathrm{DD}}\) to OV. Measured using OPA606 as output amplifier. \\
\hline MULTIPLYING FEEDTHROUGH ERROR ( \(\mathrm{V}_{\text {fef }}\) to \(\mathrm{Out}_{1}\) ) & All & 1.0 & - & mVp-p max & \(\mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}, 10 \mathrm{kHz}\) sine wave. \\
\hline OUTPUT CURRENT SETTLING TIME & \begin{tabular}{l}
All \\
All
\end{tabular} & \[
\begin{aligned}
& 0.6 \\
& 1.0
\end{aligned}
\] & - & \begin{tabular}{l}
\(\mu \mathrm{s}\) typ \\
\(\mu \mathrm{s}\) max
\end{tabular} & \begin{tabular}{l}
To \(0.01 \%\) of Full Scale Range. \\
Out \({ }_{1}\) load \(=100 \Omega, C_{\text {EXT }}=13 \mathrm{pF}\). \\
Digital inputs: \(O V\) to \(V_{D D}\) or \(V_{D D}\) to OV .
\end{tabular} \\
\hline \begin{tabular}{l}
OUTPUT CAPACITANCE \\
Cout 1 (Pin 1) \\
Cout 2 (Pin 2) \\
Cout , (Pin 1) \\
Cout 2 (Pin 2)
\end{tabular} & \begin{tabular}{l}
All \\
All \\
All \\
All
\end{tabular} & \[
\begin{gathered}
100 \\
60 \\
70 \\
100
\end{gathered}
\] & \[
\begin{gathered}
100 \\
60 \\
70 \\
100
\end{gathered}
\] & pF max pF max pF max pF max & \begin{tabular}{l}
Digital Inputs \(=\mathrm{V}_{1 \mathrm{H}}\) \\
Digital Inputs \(=V_{I H}\) \\
Digital Inputs \(=V_{1 L}\) \\
Digital Inputs \(=V_{I L}\)
\end{tabular} \\
\hline
\end{tabular}

NOTES: (1) Temperature ranges are: 0 to \(+70^{\circ} \mathrm{C}\) for JP, KP, JU and KU versions; \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) for \(\mathrm{AH}, \mathrm{BH}\) versions; \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) for \(\mathrm{SH}, \mathrm{TH}\) versions. (2) Guaranteed by design but not production tested.

MECHANICAL
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{} & \multicolumn{2}{|c|}{ INCHES } & \multicolumn{2}{c|}{ MILLIMETERS } \\
\cline { 2 - 5 } & MIN & MAX & MIN & MAX \\
\hline A & .450 & .466 & 11.43 & 11.84 \\
\hline \(\mathrm{~A}_{1}\) & .443 & .446 & 11.25 & 11.33 \\
\hline B & .286 & .302 & 7.26 & 7.67 \\
\hline \(\mathrm{~B}_{1}\) & .270 & .285 & 6.86 & 7.24 \\
\hline C & .093 & .108 & 2.36 & 2.74 \\
\hline D & .015 & .019 & 0.38 & 0.48 \\
\hline G & .050 BASIC & \multicolumn{1}{|c|}{1.27 BASIC } \\
\hline H & .026 & .034 & 0.66 & 0.86 \\
\hline J & .008 & .012 & 0.20 & 0.30 \\
\hline L & .390 & .422 & 9.91 & 10.72 \\
\hline M & \(0^{\circ}\) & \(10^{\circ}\) & \(0^{\circ}\) & \(10^{\circ}\) \\
\hline N & .000 & .012 & 0.00 & 0.30 \\
\hline
\end{tabular}


\section*{ABSOLUTE MAXIMUM RATINGS*}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(V_{\text {DD }}(\operatorname{pin} 16)\) to Ground ............................. +17 V} \\
\hline \multicolumn{2}{|l|}{\(V_{\text {ref }}\) (pin 17) to Ground .................................. \(\pm 25 \mathrm{~V}\)} \\
\hline \(V_{\text {RPB }}\) (pin 18) to Ground & nd .............................. \(\pm 25 \mathrm{~V}\) \\
\hline \multicolumn{2}{|l|}{Digital Input Voltage (pins 4-15) to Ground... -0.4 V , V VD} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Power Dissipation (any package):} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Lead Temperature (soldering, 10s) ................. \(+300^{\circ} \mathrm{C}\) \\
Storage Temperature: Ceramic Package .......... \(+150^{\circ} \mathrm{C}\) \\
Plastic Package ............ \(+125^{\circ} \mathrm{C}\)
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}
*Stresses above those listed above may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{PIN CONNECTIONS}


\section*{CAUTION}

The DAC7541A is an ESD (electrostatic discharge) sensitive device. The digital control inputs have a special FET structure, which turns on when the input exceeds the supply by 18 V , to minimize ESD damage. However,
permanent damage may occur on unconnected devices subject to high energy electrostatic fields. When not in use, devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

\section*{ENVIRONMENTAL SCREENING (QM SCREENING)}

Burr-Brown / QM models are environmentally screened versions of our standard industrial products, designed to provide enhanced reliability. The screening is performed to selected methods of MIL-STD-883. Reference to these methods provides a convenient method of communicating the screening levels and procedures employed; it does not imply conformance to any other military standards or to any methods of MIL-STD-883 other than those specified. All of the DAC7541xH grades are available with / QM screening.
/ QM Screening (hermetic packages only)
\begin{tabular}{|c|c|c|}
\hline Screen & \[
\begin{aligned}
& \text { MIL-STD-883 } \\
& \text { Method, Condition }
\end{aligned}
\] & Comments \\
\hline Internal Visual & 2010, B & \\
\hline High Temperature Storage & 1008, C & \(150^{\circ} \mathrm{C}, 24 \mathrm{hrs}\) \\
\hline Temperature Cycle & 1010, C & \[
\begin{gathered}
-65 \text { to }+150^{\circ} \mathrm{C}, \\
10 \text { cycles }
\end{gathered}
\] \\
\hline Burn-in & 1015, B & \(+125^{\circ} \mathrm{C}\) \\
\hline Constant Acceleration & 2001, E & 30,000G \\
\hline Hermeticity: Fine Leak Gross Leak & 1014, A1 or A2 1014, C & \(5 \times 10^{-8} \mathrm{~atm} \mathrm{cc} / \mathrm{s}\) 60psig, 2hrs \\
\hline External Visual & 2009 & \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline Model & \begin{tabular}{c} 
Relative \\
Accuracy (LSB)
\end{tabular} & Gain Error (LSB) & Package & \begin{tabular}{c} 
Temperature \\
Range \(\left({ }^{\circ} \mathrm{C}\right.\) )
\end{tabular} \\
\hline DAC7541AJP & \(\pm 1\) & \(\pm 6\) & Plastic DIP & 0 to +70 \\
DAC7541AKP & \(\pm 1 / 2\) & \(\pm 1\) & Plastic DIP & 0 to +70 \\
DAC7541AJU & \(\pm 1\) & \(\pm 6\) & Plastic SOIC & 0 to +70 \\
DAC7541AKU & \(\pm 1 / 2\) & \(\pm 1\) & Plastic SOIC & 0 to +70 \\
DAC7541AAH & \(\pm 1\) & \(\pm 6\) & Hermetic DIP & -25 to +85 \\
DAC7541ABH & \(\pm 1 / 2\) & \(\pm 1\) & Hermetic DIP & -25 to +85 \\
DAC7541ASH & \(\pm 1\) & \(\pm 6\) & Hermetic DIP & -55 to +125 \\
DAC7541ATH & \(\pm 1 / 2\) & \(\pm 1\) & Hermetic DIP & -55 to +125 \\
\hline
\end{tabular}

\section*{TYPICAL PERFORMANCE CURVES}
\(T_{A}=+25^{\circ} \mathrm{C}, V_{D D}=+15 \mathrm{~V}\) unless otherwise noted.


\section*{DISCUSSION OF SPECIFICATIONS}

\section*{Relative Accuracy}

This term (also known as linearity) describes the transfer function of analog output to digital input code. The linearity error describes the deviation from a straight line between zero and full scale.

\section*{Differential Nonlinearity}

Differential Nonlinearity is the deviation from an ideal 1LSB change in the output, from one adjacent output state to the next. A differential nonlinearity specification of \(\pm 1.0\) LSB guarantees monotonicity.

\section*{Gain Error}

Gain error is the difference in measure of full-scale output versus the ideal DAC output. The ideal output for the DAC7541A is \(-(4095 / 4096) \times\left(\mathrm{V}_{\mathrm{REF}}\right)\). Gain error may be adjusted to zero using external trims.

\section*{Output Leakage Current}

The measure of current which appears at Out \({ }_{1}\) with the DAC loaded with all zeros, or at Out \({ }_{2}\) with the DAC loaded to all ones.

\section*{Multiplying Feedthrough Error}

This is the AC error output due to capacitive feedthrough from Vreference to Out \({ }_{1}\) with the DAC loaded to all zeros. This test is performed at 10 kHz .

\section*{Output Current Settling Time}

This is the time required for the output to settle to a tolerance of \(\pm 0.5 \mathrm{LSB}\) of final value from a change in code of all zeros to all ones, or all ones to all zeros.

\section*{Propagation Delay}

This is the measure of the delay of the internal circuitry and is measured as the time from a digital code change to the point at which the output reaches \(90 \%\) of final value.

\section*{Digital-to-Analog Glitch Impulse}

This is the measure of the area of the glitch energy measured in nV-seconds. Key contributions to glitch energy are digital word-bit timing differences, internal circuitry timing differences, and charge injected from digital logic.

The measurement is performed with \(\mathrm{V}_{\text {reference }}=\) Ground, an OPA606 as the output op amp, and \(\mathrm{C}_{1}\) \((\) phase compensation \()=0 \mathrm{pF}\).

\section*{Monotonicity}

Monotonicity assures that the analog output will increase or stay the same for increasing digital input codes. The DAC7541A is guaranteed monotonic to 12 bits.

\section*{Power Supply Rejection}

Power supply rejection is the measure of the sensitivity of the output (full scale) to a change in the power supply voltage.

\section*{CIRCUIT DESCRIPTION}

The DAC7541A is a 12 -bit multiplying D/A converter consisting of a highly stable thin-film R-2R ladder network and 12 pairs of current steering switches on a monolithic chip. Most applications require the addition of a voltage or current reference and an output operational amplifer.
A simplified circuit of the DAC7541A is shown in Figure 1. The R-2R inverted ladder binarily divides the input currents that are switched between Iout 1 and Iout 2 bus lines. This switching allows a constant current to be maintained in each ladder leg independent of the input code.
The input resistance at \(\mathrm{V}_{\text {reference }}\) (Figure 1) is always equal to \(R_{\text {LDR }}\) ( \(\mathrm{R}_{\mathrm{LDR}}\) is the \(\mathrm{R} / 2 \mathrm{R}\) ladder characteristic resistance and is equal to value " \(R\) "). Since \(R_{\text {IN }}\) at the \(V_{\text {reference }}\) pin is constant, the reference terminal can be driven by a reference voltage or a reference current, AC or \(D C\), of positive or negative polarity.


FIGURE 1. Simplified DAC Circuit.

\section*{EQUIVALENT CIRCUIT ANALYSIS}

Figures 2 and 3 show the equivalent circuits for all digital inputs low and high respectively. The reference current is switched to Iout 2 when all inputs are low and Iout 1 when inputs are high. The I I \({ }_{\text {leakage }}\) current source is the combination of surface and junction leakages to the substrate; the \(1 / 4096\) current source represents the constant one-bit current drain through the ladder termi-
nating resistor. The output capacitance is dependent upon the digital input code, and is therefore modulated between the low and high values.


FIGURE 2. DAC7541A Equivalent Circuit (All Inputs Low).


FIGURE 3. DAC7541A Equivalent Circuit (All Inputs High).

\section*{DYNAMIC PERFORMANCE}

\section*{Output Impedance}

The output resistance, as in the case of the output capacitance, is also modulated by the digital input code. The resistance looking back into the Iout 1 terminal may be anywhere between \(10 \mathrm{k} \Omega\) (the feedback resistor alone when all digital inputs are low) and \(7.5 \mathrm{k} \Omega\) (the feedback resistor in parallel with approximately \(30 \mathrm{k} \Omega\) of the R-2R ladder network resistance when any single bit logic is high).The static accuracy and dynamic performance will be affected by this modulation. The gain and phase stability of the output amplifier, board layout, and power supply decoupling will all affect the dynamic performance of the DAC7541A. The use of a compensation capacitor may be required when high-speed operational amplifiers are used. It may be connected across the amplifier's feedback resistor to provide the necessary phase compensation to critically dampen the output. See Figures 4 and 6.

\section*{APPLICATIONS}

\section*{op Amp Considerations}

The input bias current of the op amp flows through the feedback resistor, creating an error voltage at the output of the op amp. This will show up as an offset through all
codes of the transfer characteristics. A low bias current op amp such as the OPA606 is recommended.
Low offset voltage and \(V_{\text {os }}\) drift are also important. The output impedance of the DAC is modulated with the digital code. This impedance change (approximately \(10 \mathrm{k} \Omega\) to \(30 \mathrm{k} \Omega\) ) is a change in closed-loop gain to the op amp. The result is that \(V_{o s}\) will be multiplied by a factor of one to two depending on the code. This shows up as a linearity error. Offset can be adjusted out using Figure 4. Gain may be adjusted using Figure 5.


FIGURE 4. Basic Connection With Op Amp Vos Adjust:
Unipolar (two-quadrant) Multiplying
Configuration.


FIGURE 5. Basic Connection with Gain Adjust (allows adjustment up or down).

\section*{UNIPOLAR BINARY OPERATION (TWO-QUADRANT MULTIPLICATION)}

Figure 4 shows the analog circuit connections required for unipolar binary (two-quadrant multiplication) operation. With a DC reference voltage or current (positive or negative polarity) applied at pin 17 , the circuit is a
unipolar D/A converter. With an AC reference voltage or current, the circuit provides two-quadrant multiplication (digitally controlled attenuation). The input/output relationship is shown in Table I.
\(\mathrm{C}_{1}\) phase compensation ( 10 to 25 pF ) in Figure 4 may be required for stability when using high speed amplifiers. \(\mathrm{C}_{1}\) is used to cancel the pole formed by the DAC internal feedback resistance and output capacitance at Out \({ }_{1}\).

TABLE I. Unipolar Codes.
\begin{tabular}{|c|c|}
\hline Binary Input & Analog Output \\
\hline MSB LSB & \\
\hline 111111111111 & - \(\mathrm{V}_{\text {feF }}(4095 / 4096)\) \\
\hline 100000000000 & - \(\mathrm{V}_{\text {REF }}(2048 / 4096)\) \\
\hline 000000000001 & - \(\mathrm{V}_{\text {ReF }}(1 / 4096)\) \\
\hline 000000000000 & 0 Volts \\
\hline
\end{tabular}
\(\mathrm{R}_{1}\) in Figure 5 provides full scale trim capability-load the DAC register to 111111111111 , adjust \(\mathrm{R}_{1}\) for \(\mathrm{V}_{\text {out }}=\) - Vref (4095/4096). Alternatively, full scale can be ajdusted by omitting \(P_{1}\) and \(P_{2}\) and trimming the reference voltage magnitude.

\section*{BIPOLAR FOUR-QUADRANT OPERATION}

Figure 6 shows the connections for bipolar four-quadrant operation. Offset can be adjusted with the \(A_{1}\) to \(A_{2}\) summing resistor, with the input code set to 10000000 0000 . Gain may be adjusted by varying the feedback resistor of \(\mathrm{A}_{2}\). The input/output relationship is shown in Table II.


FIGURE 6. Bipolar Four-Quadrant Multiplier.

TABLE II. Bipolar Codes.
\begin{tabular}{|l|l|}
\hline Binary Input & \multicolumn{1}{|c|}{ Analog Output } \\
\hline MSB LSB & \\
111111111111 & \(+V_{\text {REF }}(2047 / 2048)\) \\
100000000000 & 0 Volts \(^{011111111111}\) \\
000000000000 & \(-V_{\text {REF }}(1 / 2048)\) \\
& \(-V_{\text {REF }}(2048 / 2048)\) \\
\hline
\end{tabular}

\section*{DIGITALLY CONTROLLED GAIN BLOCK}

The 7541A may be used in a digitally controlled gain block as shown in Figure 7. This circuit gives a range of gain from one (all bits \(=\) one \()\) to \(4096(\) LSB \(=\) one \()\). The transfer function is:
\[
V_{\text {OUT }}=\frac{-V_{\text {IN }}}{\left(\frac{B_{1}}{2}+\frac{B_{2}}{4}+\frac{B_{3}}{8}+\cdots+\frac{B_{12}}{4096}\right)}
\]

All bits off is an illegal state, as division by zero is impossible (no op amp feedback). Also, errors increase as gain increases, and errors are minimized at major carries (only one bit on at a time).


FIGURE 7. Digitally Programmable Gain Block.

\section*{Low-Cost 12-Bit CMOS Buffered Multiplying DIGITAL-TO-ANALOG CONVERTER}

\section*{FEATURES}
- FOUR-OUADRANT MULTIPLICATION
- LOW GAIN TC: 2PPM/ \({ }^{\circ} \mathrm{C}\) typ
- monotonicity guaranteed over temperature
- SINGLE 5V TO ISV SUPPLY
- TTL/CMOS LOGIC COMPATIBLE
- VERY LOW OUTPUT LEAKAGE: 1OnA max
- VERY LOW OUTPUT CAPACITANCE: 70pF max
- VERY LOW GLITCH ENERGY: 250nV-s typ
- PROTECTION SCHOTTKY NOT REQUIRED
- DIRECT REPLACEMENT FOR AD7545, PM7545A

\section*{DESCRIPTION}

The DAC7545 is a low-cost CMOS, 12-bit fourquadrant multiplying, digital-to-analog converter with input data latches. The input data is loaded into the DAC as a 12-bit data word. The data flows through to the DAC when both the chip select ( \(\overline{\mathrm{CS}}\) ) and the write \((\overline{\mathrm{WR}})\) pins are at a logic low.
Laser-trimmmed thin-film resistors and excellent CMOS current switches provide true 12-bit integral and differential linearity. The device operates on a
single +5 V to +15 V supply and is available in 20-pin side-brazed DIP, 20-pin plastic DIP or a 20 -lead plastic SOIC package. Devices are specified over the commercial, industrial, and military temperature ranges and are available with additional reliability screening.
The DAC7545 is well suited for battery or other low power applications because the power dissipation is less than 0.5 mW when used with CMOS logic inputs and. \(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\).


\footnotetext{
International Airport Industrial Park - P.0. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: B8RCORP - Telex: 66-6491
}

\section*{SPECIFICATIONS}

\section*{ELECTRICAL}
\(\mathrm{V}_{\mathrm{REF}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT} 1}=0 \mathrm{~V}, \mathrm{ACOM}=\mathrm{DCOM}\) unless otherwise specified.


NOTES: (1) Temperature ranges-JP, KP, LP, GLP: \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\). \(\mathrm{AH}, \mathrm{BH}, \mathrm{CH}, \mathrm{GCH}:-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C} . \mathrm{SH}, \mathrm{TH}, \mathrm{UH}, \mathrm{GUH}:-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\). (2) Th is includes the effect of 5 ppm max gain TC. (3) Guaranteed but not tested. (4) \(\mathrm{DB}_{0}-\mathrm{DB}_{11}=0 \mathrm{~V}\) to \(\mathrm{V}_{00}\) or \(\mathrm{V}_{00}\) to 0 V . (5) Typical. (6) Feedthrough can be further reduced by connecting the metal lid on the ceramic package (suffix H) to DCOM. (7) Minimum. (8) Logic inputs are MOS gates. Typical input current ( \(+25^{\circ} \mathrm{C}\) ) is less than 1 nA . (9) Sample tested at \(+25^{\circ} \mathrm{C}\) to ensure compliance.

MECHANICAL
\begin{tabular}{lll}
\hline
\end{tabular}


PIN DESIGNATIONS


ABSOLUTE MAXIMUM RATINGS*


\section*{WRITE CYCLE TIMING DIAGRAM}


\section*{ENVIRONMENTAL SCREENING (QM SCREENING)}

Burr-Brown / QM models are environmentally screened versions of our standard industrial products, designed to provide enhanced reliability. The screening is performed to selected methods of MIL-STD-883. Reference to these methods provides a convenient method of communicating the screening levels and procedures employed; it does not imply conformance to any other military standards or to any methods of MIL-STD-883 other than those specified.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Screen} & \multicolumn{2}{|l|}{MIL-STD-883} & \multirow[b]{2}{*}{Comments} \\
\hline & Method & Condition & \\
\hline Internal Visual & 2010 & B & \\
\hline High Temperature Storage & 1008 & C & \(+150^{\circ} \mathrm{C}, 24 \mathrm{hrs}\) \\
\hline Temperature Cycle & 1010 & C & \[
\begin{gathered}
-65 \text { to }+150^{\circ} \mathrm{C}, \\
10 \text { Cycles }
\end{gathered}
\] \\
\hline Burn-In & 1015 & B & \(+125^{\circ} \mathrm{C}\), Figure 1 \\
\hline Constant Acceleration. & 2001 & E & 30,000G \\
\hline Hermeticity: Fine Leak Gross Leak & \[
\begin{aligned}
& 1014 \\
& 1014
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{A} 1 \text { or } \mathrm{A} 2 \\
\mathrm{C}
\end{gathered}
\] & \[
\begin{gathered}
5 \times 10^{-8} \mathrm{~atm} \mathrm{cc} / \mathrm{s} \\
60 \mathrm{psig}, 2 \mathrm{hrs}
\end{gathered}
\] \\
\hline External Visual & 2009 & & \\
\hline
\end{tabular}

\section*{DISCUSSION OF SPECIFICATIONS}

\section*{Relative Accuracy}

This term (also known as linearity) describes the transfer function of analog output to digital input code. The linearity error describes the deviation from a straight line from zero to full scale (zero- and full-scale adjusted).

\section*{Differential Nonlinearity}

Differential nonlinearity is the deviation from an ideal 1LSB change in the output, for adjacent input code changes. A differential nonlinearity specification of \(\pm\) 1.0 LSB guarantees monotonicity.

\section*{Gain Error}

Gain error is the difference in measure of full-scale output versus the ideal DAC output. The ideal output for the DAC7545 is \(-(4095 / 4096)\left(V_{\text {REF }}\right)\). Gain error may be adjusted to zero using external trims as shown in the applications section.

\section*{Output Leakage Current}

The measure of current which appears at OUT 1 with the DAC loaded with all zeros.

\section*{Multiplying Feedthrough Error}

This is the AC error output due to capacitive feedthrough from \(\mathrm{V}_{\mathrm{REF}}\) to OUT 1 with the DAC loaded to all zeros. This test is performed at 10 kHz .

\section*{Output Current Settling Time}

This is the time required for the output to settle to a tolerance of \(\pm 0.5 \mathrm{LSB}\) of final value from a change in code of all zeros to all ones, or all ones to all zeros.

\section*{Propagation Delay}

This is the measure of the delay of the internal circuitry and is measured as the time from a digital code change to the point at which the output reaches \(90 \%\) of final value.

\section*{Digital-To-Analog Glitch Impulse}

This is the measure of the area of the glitch energy measured in nanovoit-seconds. Ǩey contributions to glitch energy are internal circuitry timing differences and charge injected from digital logic. The measurement is performed with \(\mathrm{V}_{\mathrm{REF}}=\) GND and an OPA600 as the output op amp and \(C_{1}\) (phase compensation) \(=0 \mathrm{pF}\).

\section*{Monotonicity}

Monotonicity assures that the analog output will increase or stay the same for increasing digital input codes. The DAC7545 is guaranteed monotonic to 12-bit accuracy, except the J, A, S grades are specified to be 10 -bit monotonic.

\section*{Power Supply Rejection}

Power supply rejection is the measure of the sensitivity of the output (full scale) to a change in the power supply voltage.


FIGURE 1. Burn-In Circuit.

\section*{Propogation Delay}

This is the measure of the time that is required for the analog output to reach \(90 \%\) of its final value for a change in digital input code.

\section*{CIRCUIT DESCRIPTION}

Figure 2 shows a simplified schematic of the digital-toanalog converter portion of the DAC7545. The current from the \(\mathrm{V}_{\text {REF }}\) pin is switched from \(\mathrm{I}_{\text {out }}\) to AGND by the FET switch. This circuit architecture keeps the resistance at the reference pin constant and equal to \(R_{L D R}\), so the reference could be provided by either a voltage or current, AC or DC, positive or negative polarity, and have a voltage range up to \(\pm 20 \mathrm{~V}\) even with \(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\). The \(R_{\text {LDR }}\) is equal to " \(R\) " and is typically \(11 k \Omega\). The output capacitance of the DAC7545 is code dependent and varies from a minimum value \((70 \mathrm{pF})\) at code \(000_{\mathrm{H}}\) to a maximum \((200 \mathrm{pF})\) at code \(\mathrm{FFF}_{\mathrm{H}}\).


FIGURE 2. Simplified DAC Circuit of the DAC 7545.

The input buffers are CMOS inverters, designed so that when the DAC7545 is operated from a 5 V supply ( \(\mathrm{V}_{\mathrm{DD}}\) ), the logic threshold is TTL-compatible. Being simple CMOS inverters, there is a range of operation where the inverters operate in the linear region and thus draw more supply current than normal. Minimizing this transition time and insuring that the digital inputs are operated as close to the rails as possible will minimize the supply drain current.

\section*{APPLICATIONS}

Figure 3 shows the DAC7545 connected for unipolar operation. The high-grade DAC7545 is specified for a ILSB gain error, so gain adjust is typically not needed. However, the resistors shown are for adjusting full-scale errors. The value of \(R_{1}\) should be minimized to reduce the effects of mismatching temperature coefficients between the internal and external resistors. A range of adjustment of 1.5 times the desired range will be adequate. For example, for a DAC7545JP, the gain error is specified to be \(\pm 25 L S B\). A range of adjustment of
\(\pm 37 \mathrm{LSB}\) will be adequate. The equation below results in a value of \(458 \Omega\) for the potentiometer (use \(500 \Omega\) ).
\[
\mathrm{R}_{1}=\frac{\mathrm{R}_{\mathrm{LADDER}}}{4096}(3 \times \text { Gain Error })
\]


FIGURE 3. Unipolar Binary Operation.
The addition of \(\mathrm{R}_{1}\) will cause a negative gain error. To compensate for this error, \(\mathbf{R}_{2}\) must be added. The value of \(R_{2}\) should be one-third the value of \(R_{1}\).
The capacitor across the feedback resistor is used to compensate for the phase shift due to stray capacitances of the circuit board, the DAC output capacitance, and op amp input capacitance. Eliminating this capacitor will result in excessive ringing and an increase in glitch energy. This capacitor should be as small as possible to minimize settling time.
The circuit of Figure 3 may be used with input voltages up to \(\pm 20 \mathrm{~V}\) as long as the output amplifier is biased to handle the excursions. Table I represents the analog output for four codes into the DAC for Figure 3.

TABLE I. Unipolar Codes.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Binary Code } & \multicolumn{1}{|c|}{ Analog Output } \\
\hline MSB LSB & \\
1111 & 11111111 \\
1000 & 00000000 \\
000000000001 & \(-V_{\text {IN }}(4095 / 4096)\) \\
000000000000 & \(-V_{\text {IN }}(2048 / 4096)=1 / 2 V_{\text {IN }}\) \\
\hline
\end{tabular}

Figure 4 shows the connections for bipolar four-quadrant operation. Offset can be adjusted with the \(A_{1}\) to \(A_{2}\) summing resistor, with the input code set to 10000000 0000 . Gain may be adjusted by varying the feedback


FIGURE 4. Bipolar Four-Quadrant Multiplier.
resistor of \(\mathrm{A}_{2}\). The input/output relationship is shown in Table II.

TABLE II. Bipolar Codes.
\begin{tabular}{|c|l|}
\hline Binary Code & \multicolumn{1}{c|}{ Analog Output } \\
\hline MSB \(\quad\) LSB & \\
1111 & 1111 \\
1111 & \(+V_{\text {REF }}(2047 / 2048)\) \\
1000 & 0000 \\
0111 & 1111 \\
0000 & 1111
\end{tabular}

Figure 5 shows a hook-up for a digitally-controlled gain block. The feedback for the op amp is made up of the FET switch and the R-2R ladder. The input resistor to the gain block is the \(\mathrm{R}_{\mathrm{FB}}\) of the DAC7545. Since the FET switch is in the feedback loop, a "zero code" into the DAC will result in the op amp having no feedback, and a saturated op amp output.


FIGURE 5. Digitally-Controlled Gain Block.

\section*{APPLICATIONS HINTS}

CMOS DACS such as the DAC7545 exhibit a codedependent output resistance. This resistance and the \(V_{o s}\) of the op amp cause error currents to flow that look like linearity and superposition errors. To minimize these errors, an op amp with a Vos of less than 0.1LSB should be selected. Also, the op amp should have a gain that is sufficient to keep \(V_{\text {os }}\) below 0.1LSB for the desired swing and load at the op amp output.
As with all analog circuits, the care in designing the ground system is critical to system accuracy. Static (DC) errors should be held to less than 0.1LSB for any point in the analog ground path. Holy point sensing is encouraged, so that all analog circuits are referenced to the same potential.

THIS PAGE INTENTIONALLY LEFT BLANK

\section*{DAC8012}

\section*{ADVANCE INFORMATION Subject to Change}

\section*{Low Cost 12-Bit CMOS Latched-Readback Multiplying DIGITAL-TO-ANALOG CONVERTER}

\section*{FEATURES}
- dATA READBACK CAPABILITY
- FOUR-QUADRANT MULTIPLICATION
- LOW-GAIN TC: 2PPM/º typ
- MONOTONICITY GUARANTEED OVER TEMPERATURE
- SINGLE 5V TO I5V SUPPLY
- VERY LOW OUTPUT LEAKAGE (IOnA max)
- VERY LOW OUTPUT CAPACITANCE (70pF max)
- VERY LOW GLITCH ENERGY (400nVs max)
- PROTECTION SCHOTTKY NOT REQUIRED
- DIRECT REPLACEMENT FOR PMI DAC8012

\section*{DESCRIPTION}

The DAC8012 is a low-cost CMOS, 12-bit, fourquadrant multiplying, digital-to-analog converter with input data latches and readback capabilities. The input data is loaded into the DAC as a 12-bit
data word. The data is loaded into the DAC from the bus when both the data strobe ( \(\overline{\mathrm{DS}}\) ) and the read/write (RD/ \(\overline{\mathrm{WR}}\) ) pins are held low. Data may be read back from the DAC by holding \(\overline{\mathrm{DS}}\) low and ( \(\mathrm{RD} / \overline{\mathrm{WR}}\) ) high. This readback feature enables the user to monitor the state of multiple DACs on a single bi-directional bus.
Laser-trimmed thin-film resistors and excellent CMOS current switches provide true 12-bit integral and differential linearity. The device operates on a single +5 V to +15 V supply and is available in 20-pin side-brazed DIP, 20-pin plastic DIP or a 20 -lead plastic SOIC package. Devices are specified over the commercial, industrial, and military temperature ranges and are available with additional reliability screening.
The DAC8012 is well suited for battery or other lowpower applications because the power dissipation is less than 0.5 mW when used with CMOS logic inputs and \(V_{D D}=5 \mathrm{~V}\).


\section*{SPECIFICATIONS}

\section*{ELECTRICAL CHARACTERISTICS}
\(V_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}} 1=0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}\) unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{DAC8012B, \(\mathrm{K}, \mathrm{T}^{(1)}\)} & \multicolumn{3}{|c|}{DAC8012A, J, \({ }^{(1)}\)} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{9}{|c|}{\(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}\) or +15 V} \\
\hline \begin{tabular}{l}
STATIC ACCURACY \\
Resolution \\
Relative Accuracy \\
Differential Nonlinearity \({ }^{(2)}\) \\
Gain Error \({ }^{(314)}\) \\
Gain Temperature Coefficient \\
\(\Delta\) Gain/ \(\Delta\) Temperature \({ }^{(5)(6)}\) \\
DC Supply Rejection \(\Delta\) Gain \(/ \Delta V_{D 0}{ }^{(5)}\) \\
Output Leakage Current at OUT 1
\end{tabular} & \begin{tabular}{l}
\(T_{A}=\) Full temperature range \\
\(\mathrm{T}_{\mathrm{A}}=\) Full temperature range
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature Range
\[
T_{A}=+25^{\circ} \mathrm{C}\left(\Delta V_{D D}= \pm 5 \%\right)
\] \\
\(T_{A}=\) Full temperature range \\
( \(\Delta V_{D D}= \pm 5 \%\) )
\[
T_{A}=+25^{\circ} \mathrm{C}, \mathrm{RD} / \overline{\mathrm{WR}}=\overline{\mathrm{DS}}=0 \mathrm{~V},
\] \\
all digital inputs \(=0 \mathrm{~V}\) \\
\(T_{\mathrm{A}}=\) Full temperature range \\
S , T versions \\
\(J, K, A, B\) versions
\end{tabular} & 12 & & \[
\begin{gathered}
\pm 1 / 2 \\
\pm 1 \\
\pm 1 \\
\pm 2 \\
\pm 5 \\
0.002 \\
0.004 \\
\\
10 \\
\\
200 \\
25
\end{gathered}
\] & 12 & & \[
\begin{gathered}
\pm 1 \\
\pm 1 \\
\pm 3 \\
\pm 4 \\
\\
\pm 5 \\
0.002 \\
0.004 \\
\\
10 \\
\\
200 \\
25
\end{gathered}
\] & Bits
LSB
LSB
LSB
LSB
\(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\)
\(\% / \%\)
\(\% / \%\)
nA
nA
nA \\
\hline \begin{tabular}{l}
DYNAMIC PERFORMANCE \\
Propagation Delay \({ }^{(51)(7)(8)}\) \\
Current Settling Time \({ }^{(5)(8)}\) \\
Glitch Fnergy \({ }^{(5)}, V_{\text {PEE }}=A G N D\) \\
AC Feedthrough at lout \(1^{\text {(5k11) }}\)
\end{tabular} & \begin{tabular}{l}
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
(OUT 1 Load \(=100 \Omega, \mathrm{C}_{\mathrm{EXT}}=13 \mathrm{pF}\) ) \\
\(T_{A}=\) Full temperature range (to \(1 / 2\) LSB) lour, Load \(=100 \Omega\)
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range \(T_{A}=\) Full temperature range, \\
\(V_{\text {REF }}= \pm 10 \mathrm{~V}, \mathrm{f}=10 \mathrm{kHz}\)
\end{tabular} & & & \[
\begin{gathered}
300 \\
1 \\
400 \\
500 \\
5
\end{gathered}
\] & & & \[
\begin{gathered}
300 \\
1 \\
400 \\
500 \\
\\
5 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{ns} \\
\\
\mu \mathrm{~s} \\
\mathrm{nVs} \\
\mathrm{nVs} \\
\\
\mathrm{mVp}-\mathrm{p}
\end{gathered}
\] \\
\hline REFERENCE INPUT Input Resistance (Pin 19 to GND) \({ }^{(12)}\) & \(T_{A}=\) Full temperature range & 7 & 11 & 15 & 7 & 11 & 15 & \(\mathrm{k} \Omega\) \\
\hline \begin{tabular}{l}
ANALOG OUTPUTS \\
Output Capacitance \({ }^{(5)}\) \\
Cout 2 \\
Cout 1
\end{tabular} & \(T_{A}=\) Full temperature range \(\mathrm{DBO}-\mathrm{DB} 11=0 \mathrm{~V}, \mathrm{RD} / \overline{\mathrm{WR}}=\overline{\mathrm{DS}}=0 \mathrm{~V}\) \(\mathrm{DB0} 0-\mathrm{DB} 11=\mathrm{V}_{\mathrm{DD}}, \mathrm{RD} / \overline{\mathrm{WR}}=\overline{\mathrm{DS}}=0 \mathrm{~V}\) & & & \[
\begin{gathered}
70 \\
150
\end{gathered}
\] & & & \[
\begin{gathered}
70 \\
150
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline \multicolumn{9}{|c|}{\(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}\)} \\
\hline \begin{tabular}{l}
DIGITAL INPUTS \\
Input High Voltage Input Low Voltage Input Current \({ }^{\text {(9) }}\) \\
Input Capacitance \({ }^{(5)}: \begin{aligned} & \text { DB0-DB11 } \\ & \text { RD/ } \overline{W R}, \overline{\text { DS }}\end{aligned}\) RD/ \(\overline{W R}, \overline{D S}\)
\end{tabular} & \begin{tabular}{l}
\(T_{A}=\) Full temperature range \\
\(T_{A}=\) Full temperature range
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range \\
\(T_{A}=\) Full temperature range \\
\(T_{A}=\) Full temperature range
\end{tabular} & 2.4 & , & \[
\begin{gathered}
0.8 \\
1 \\
10 \\
12 \\
6
\end{gathered}
\] & 2.4 & & \[
\begin{gathered}
0.8 \\
1 \\
10 \\
12 \\
6
\end{gathered}
\] & \begin{tabular}{l}
V \\
V \(\mu \mathrm{A}\) \(\mu \mathrm{A}\) pF pF
\end{tabular} \\
\hline \begin{tabular}{l}
DIGITAL OUTPUTS \\
Output High Voltage Output Low Voltage Three-State Output Leakage Current
\end{tabular} & \[
\begin{gathered}
\mathrm{I}_{\mathrm{o}}=400 \mu \mathrm{~A} \\
\mathrm{I}_{\mathrm{O}}=-1.6 \mathrm{~mA}
\end{gathered}
\] & 4.0 & & \[
\begin{gathered}
0.4 \\
10
\end{gathered}
\] & 4.0 & & \[
\begin{gathered}
0.4 \\
10
\end{gathered}
\] & \[
\begin{gathered}
V \\
V \\
\mu \mathrm{~A}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
SWITCHING CHARACTERISTICS \({ }^{(10)}\) \\
Write to Data Stobe Setup Time \\
Data Strobe to Write Hold Time \\
Read to Data Strobe Setup Time \\
Data Strobe to Read Hold Time \\
Write Mode Data Strobe Width \\
Read Mode Data Strobe Width \\
Data Setup Time \\
Data Hold Time \\
Data Strobe to Output Valid Time \({ }^{(13)}\) \\
Output Active Time from Deselection
\end{tabular} & \begin{tabular}{l}
See timing diagram
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\end{tabular} & \[
\begin{gathered}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
180 \\
250 \\
220 \\
290 \\
210 \\
250 \\
0 \\
0
\end{gathered}
\] & & \[
\begin{aligned}
& 300 \\
& 400 \\
& 215 \\
& 375
\end{aligned}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
180 \\
250 \\
220 \\
290 \\
210 \\
250 \\
0
\end{gathered}
\] & & \[
\begin{aligned}
& 300 \\
& 400 \\
& 215 \\
& 375
\end{aligned}
\] &  \\
\hline \begin{tabular}{l}
POWER SUPPLY \\
Supply Current
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}=\) Full temperature range (all digital inputs \(\mathrm{V}_{\mathrm{INL}}\) or \(\mathrm{V}_{\mathrm{INH}}\) ) \(T_{A}=\) Full temperature range (all digital inputs OV or \(\mathrm{V}_{\mathrm{oD}}\) ) & & 10 & \[
\begin{gathered}
2 \\
100
\end{gathered}
\] & & 10 & \[
\begin{gathered}
2 \\
100
\end{gathered}
\] & \begin{tabular}{l}
mA \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (CONT)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{DAC8012B, \(K\), \(\mathrm{T}^{(1)}\)} & \multicolumn{3}{|c|}{DAC8012A, J, \({ }^{(1)}\)} & \multirow[t]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{9}{|c|}{\(\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}\)} \\
\hline \begin{tabular}{l}
DIGITAL INPUTS \\
Input High Voltage Input Low Voltage Input Current \({ }^{(9)}\) \\
Input Capacitance \({ }^{(5)}\) : DB0-DB11 RD/ \(\overline{W R}, \overline{D S}\)
\end{tabular} & \begin{tabular}{l}
\(T_{A}=\) Full temperature range \\
\(T_{A}=\) Full temperature range
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range \\
\(T_{A}=\) Full temperature range \\
\(T_{A}=\) Full temperature range
\end{tabular} & 13.5 & . & \[
\begin{gathered}
1.5 \\
1 \\
10 \\
12 \\
10
\end{gathered}
\] & 13.5 & & \[
\begin{gathered}
1.5 \\
1 \\
10 \\
12 \\
10
\end{gathered}
\] & \(V\)
\(V\)
\(\mu A\)
\(\mu A\)
\(p F\)
\(p F\) \\
\hline \begin{tabular}{l}
DIGITAL OUTPUTS \\
Output High Voltage Output Low Voltage Three-State Output Leakage Current
\end{tabular} & \[
\begin{aligned}
& 1_{0}=3 \mathrm{~mA} \\
& 1_{0}=-3 \mathrm{~mA}
\end{aligned}
\] & 13.5 & & \[
\begin{aligned}
& 1.5 \\
& 10
\end{aligned}
\] & 13.5 & , & \[
\begin{aligned}
& 1.5 \\
& 10
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~V} \\
\mu \mathrm{~A}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
SWITCHING CHARACTERISTICS \({ }^{(10)}\) \\
Write to Data Strobe Setup Time \\
Data Strobe to Write Hold Time \\
Read to Data Strobe Setup Time \\
Data Strobe to Read Hold Time \\
Write Mode Data Strobe Width \\
Read Mode Data Strobe Width \\
Data Setup Time \\
Data Hold Time \\
Data Strobe to Output Valid Time \\
Output Active Time for Deselection
\end{tabular} & \begin{tabular}{l}
See Timing Diagram
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=\) Full temperature range
\end{tabular} & \[
\begin{gathered}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
100 \\
120 \\
110 \\
150 \\
90 \\
120 \\
0 \\
0
\end{gathered}
\] & & \[
\begin{aligned}
& 180 \\
& 220 \\
& 180 \\
& 250
\end{aligned}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
100 \\
120 \\
110 \\
150 \\
90 \\
120 \\
0 \\
0
\end{gathered}
\] & , & \[
\begin{aligned}
& 180 \\
& 220 \\
& 180 \\
& 250
\end{aligned}
\] &  \\
\hline \begin{tabular}{l}
POWER SUPPLY \\
Supply Current
\end{tabular} & \(T_{A}=\) Full temperature range (all digital inputs \(\mathrm{V}_{\mathrm{INL}}\) or \(\mathrm{V}_{\mathrm{INH}}\) ) \(T_{A}=\) Full temperature range (all digital inputs OV or \(V_{D D}\) ) & & 10 & \[
\begin{gathered}
2 \\
100 \\
\hline
\end{gathered}
\] & & 10 & 2
100 & mA
\(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTES: (1) \(T_{A}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) for \(\mathrm{S}, \mathrm{T}\) grades. \(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) for \(\mathrm{A}, \mathrm{B}\) grades. \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) for \(\mathrm{J}, \mathrm{K}\) grades. (2) 12-bit monotonic over full temperature range. (3) Includes the effects of 5 ppm max gain T.C. (4) Using internal RFB. DAC register loaded with 11111111 1111. (5) Guaranteed but not tested. (6) Typical value is \(2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) for \(V_{D D}=+5 \mathrm{~V}\). (7) From digital input change to \(90 \%\) of final analog output. (8) All digital inputs \(=0 \mathrm{~V}\) to \(\mathrm{V}_{D D}\); or \(V_{D D}\) to \(O V\). (9) Logic inputs are MOS gates, typical input current (at \(+25^{\circ} \mathrm{C}\) ) is less than 1 nA . (10) Sample tested at \(+25^{\circ} \mathrm{C}\) to ensure compliance. (11) Feedthrough can further be reduced by connecting the metal lid on the sidebraze package (Suffix H) to DGND. (12) Resistor T.C. \(=+100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \(\max\). (13) \(\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\).

MECHANICAL



PIN DESIGNATIONS


ABSOLUTE MAXIMUM RATINGS


TIMING DIAGRAM


\section*{ENVIRONMENTAL SCREENING (QM SCREENING)}

Burr-Brown / QM models are environmentally-screened versions of our standard industrial products, designed to provide enhanced reliability. The screening is performed to selected methods of MIL-STD-883. Reference to these methods provides a convenient method of communicating the screening levels and procedures employed; it does not imply conformance to any other military standards or to any method of MIL-STD-883 other than those specified.
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Screen } & \begin{tabular}{c} 
MIL-STD-883 \\
Method, Condition
\end{tabular} & Comments \\
\hline Internal Visual & \(2010, \mathrm{~B}\) & \\
\hline High Temperature Storage & \(1008, \mathrm{C}\) & \(150^{\circ} \mathrm{C}, 24 \mathrm{hrs}\) \\
\hline Temperature Cycle & \(1010, \mathrm{C}\) & \begin{tabular}{c}
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\), \\
10 Cycles
\end{tabular} \\
\hline Burn-In & \(1015, \mathrm{~B}\) & \(+125^{\circ} \mathrm{C}\), Figure 1 \\
\hline Constant Acceleration & \(2001, \mathrm{E}\) & \(30,000 \mathrm{G}\) \\
\hline Hermeticity: Fine Leak & \(1014, \mathrm{~A} 1\) or A2 & \(5 \times 10^{-8} \mathrm{~atm} \mathrm{cc} / \mathrm{s}\) \\
\hline \multicolumn{1}{|c|}{ Gross Leak } & \(1014, \mathrm{C}\) & \(60 \mathrm{psig}, 2 \mathrm{hrs}\) \\
\hline External Visual & 2009 & \\
\hline
\end{tabular}

\section*{DISCUSSION OF SPECIFICATIONS}

\section*{Relative Accuracy}

This term (also known as linearity) describes the transfer function of analog output to digital input code. The linearity error describes the deviation from a straight line from zero to full scale (zero and full scale adjusted).

\section*{Differential Nonlinearity}

Differential nonlinearity is the deviation from an ideal lLSB change in the output, for adjacent input code changes. A differential nonlinearity specification of \(\pm 1\) LSB guarantees monotonicity.

\section*{Gain Error}

Gain error is the difference in measure of full-scale output versus the ideal DAC output. The ideal output for the DAC8012 is \(-(4095 / 4096)\left(\mathrm{V}_{\text {REF }}\right)\). Gain error may be adjusted to zero using external trims as shown in the applications section.

\section*{Output Leakage Current}

The measure of current which appears at \(\mathrm{OUT}_{1}\) with the DAC loaded with all zeros.

\section*{Multiplying Feedthrough Error}

This is the AC error output due to capacitive feedthrough from \(\mathrm{V}_{\mathrm{REF}}\) to \(\mathrm{OUT}_{1}\) with the DAC loaded to all zeros. This test is performed at 10 kHz .

\section*{Output Current Settling Time}

This is the time required for the output to settle a tolerance of \(\pm 1 / 2 \mathrm{LSB}\) of final value from a change in code of all zeros to all ones, or all ones to all zeros.

\section*{Propagation Delay}

This is the measure of the delay of the internal circuitry and is measured as the time from a digital code change to the point at which the output reaches \(90 \%\) of final value.

\section*{Digital-To-Analog Glitch Impulse}

This is the measure of the area of the glitch energy measured in nanovolt-seconds. Key contributions to glitch energy are internal circuitry timing differences and charge injected from digital logic. The measurement is performed with \(\mathrm{V}_{\mathrm{REF}}=\mathrm{GND}\).

\section*{Monotonicity}

Monotonicity assures that the analog output will increase or stay the same for increasing digital input codes. The DAC8012 is guaranteed monotonic to 12-bit accuracy except the J, A, S grades are specified 10 -bit monotonic.

\section*{Power Supply Rejection}

Power supply rejection is the measure of the sensitivity of the output (full scale) to a change in the power supply voltage.

\section*{Propogation Delay}

This is the measure of the time that is required for the analog output to reach \(90 \%\) of its final value for a change in digital input code.


FIGURE 1. Burn-In Circuit.

\section*{CIRCUIT DESCRIPTION}

\section*{DIGITAL-TO-ANALOG SECTION}

Figure 2 shows a simplified schematic of the digital-toanalog portion of the DAC8012. The current from the \(\mathrm{V}_{\text {Ref }}\) pin is switched from Iout: to AGND by the FET switch for that bit. This circuit architecture keeps the resistance at the reference pin constant and equal to \(\mathrm{R}_{\mathrm{LDR}}\), so the reference could be provided by either a voltage or


FIGURE 2. Simplified Circuit of the DAC8012.
current, AC or DC, positive or negative polarity, and have a voltage range up to \(\pm 20 \mathrm{~V}\) even with \(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\). The \(R_{L D R}\) is equal to " \(R\) " and is typically \(11 \mathrm{k} \Omega\).
The output capacitance of the DAC8012 is code dependent and varies from a minimum value ( 70 pF ) at code \(000_{\mathrm{H}}\) to a maximum \((200 \mathrm{pF})\) at code \(\mathrm{FFF}_{\mathrm{H}}\).
The input buffers are CMOS inverters, designed so that when the DAC8012 is operated from a 5 V supply ( \(\mathrm{V}_{\mathrm{DD}}\) ), the logic threshold is TTL compatible. Being simple CMOS inverters, there is a range of operation where the inverters operated in the linear region and thus draw more supply current than normal. Minimizing the tran-
sition time and insuring that the digital inputs are operated as close to the rails as possible will minimize the supply drain current.

\section*{DIGITAL SECTION}

Figure 3 shows the basic current switch. Figure 4 shows the schematic of the input/output buffers. When the \(\overline{\mathrm{DS}}\) and the \(\mathrm{RD} / \overline{\mathrm{WR}}\) are held low the latches are transparent and pass data from the data bus to the DAC. When the \(\overline{\mathrm{DS}}\) is held low and the RD/ \(\overline{\mathrm{WR}}\) line is held high, the three-state buffer becomes active and the data at the DAC is presented to the digital input/output lines for data readback.


FIGURE 3. N-Channel Current Steering Switch.


FIGURE 4. Digital Input/Output Structure.

\section*{APPLICATIONS}

Figure 5 shows the DAC8012 connected for unipolar operation. The high-grade DAC8012 is specified for a 1LSB gain error, so gain adjust is typically not needed. However, the resistors shown are for adjusting full-scale errors. The value of \(R_{1}\) should be minimized to reduce the effects of mismatching temperature coefficients


FIGURE 5. Unipolar Binary Operation.
between the internal and external resistors. A range of adjustment of 1.5 times the desired range will be adequate. For example, for a DAC8012JP, the gain error is specified to be \(\pm 3 \mathrm{LSB}\). A range of adjustment of \(\pm 4.5 \mathrm{LSB}\) will be adequate. The equation shows a minimum value of \(33 \Omega\) for the pot.
\[
\mathrm{R}_{1}=\left(\mathrm{R}_{\text {LADDER }} / 4096\right) \times(3 \times \text { Gain Error })
\]

The addition of \(\mathrm{R}_{1}\) will cause a negative gain error. To compensate for this error, \(\mathrm{R}_{2}\) must be added. The value of \(R_{2}\) should be one third the value of \(R_{1}\).
The capacitor across the feedback resistor is used to compensate for the phase shift due to stray capacitances of the circuit board, the DAC output capacitance, and op amp input capacitance. Eliminating this capacitor will result in excessive ringing and an increase in glitch energy in higher speed applications. This capacitor should be as small as possible to minimize settling time.
The circuit of Figure 5 may be used with input voltages of up to \(\pm 20 \mathrm{~V}\) as long as the output amplifier is biased to handle the excursions. Table I presents the analog ouput for four codes into the DAC for Figure 5.
TABLE I. Unipolar Output Code for Figure 5.
\begin{tabular}{|c|l|}
\hline Binary Code & \multicolumn{1}{c|}{ Analog Output } \\
\hline MSB \(\downarrow \quad\) LLSB & \\
111111111111 & \(-V_{I N}(4095 / 4096)\) \\
100000000000 & \(-V_{I N}(2048 / 4096)=1 / 2 V_{\text {IN }}\) \\
000000000001 & \(-V_{I N}(1 / 4096)\) \\
000000000000 & 0 Volts \\
\hline
\end{tabular}

\section*{BIPOLAR FOUR-QUADRANT OPERATION}

Figure 6 shows the connections for bipolar four-quadrant operation. Offset can be adjusted with the \(A_{1}\) to \(A_{2}\) summing resistor, with the input code set to 10000000 0000 . Gain may be adjusted by varying the feedback resistor of \(\mathrm{A}_{2}\). The input/output relationship is shown in Table II.


FIGURE 6. Bipolar Four-Quadrant Mulitplier.
TABLE II. Bipolar Codes and Analog Output for Figure 6.
\begin{tabular}{|c|l|}
\hline Binary & \multicolumn{1}{c|}{ Analog Output } \\
\hline MSB \(\downarrow \quad \downarrow\) LSB & \\
1111 & 1111 \\
1000 & 1111 \\
0000 & 0000 \\
0111 & 1111 \\
0000 & 1111
\end{tabular}

Figure 7 shows a hook-up for a digitally-controlled gain block. The feedback for the op amp is made up of the FET switch and the R-2R ladder. The input resistor to the gain block is the \(\mathrm{R}_{\mathrm{FB}}\) of the DAC8012. Since the FET switch is in the feedback loop, a "zero code" into the DAC will result in the op amp having no feedback and a saturated op amp output. The DAC8012 readback feature makes the DAC8012 especially good for this configuration


FIGURE 7. Digitally-Controlled Gain Block.
when an automatic gain or automatic calibration routine is used. If the logic were set up to calibrate a value via logic external to the processor (successive approximation register), then when the calibration is done, the processor could read the DAC8012 to store away the calibration code.
Figure 8 shows the DAC8012 interfaced to a 16 -bit


FIGURE 8. 16-Bit Microprocessor to DAC8012 Interface.
microprocessor. The interface requires only address decoding to select the DAC to be written to or read from.
Figure 9 shows an interface scheme for using the DAC8012 with an 8-bit microprocessor. The data for the first 4 bits are written and latched into the external write
latch and the next 8 bits are presented on the bus. The DAC8012 is then instructed to pass the data through the internal DAC latch ( \(\overline{\mathrm{WR}}+\overline{\mathrm{DS}}\) ) and all 8 bits are transferred into the DAC. Reading data back is done in the same manner.


FIGURE 9. 8-Bit Processor to DAC8012 Interface.

\section*{Serial Input 16-Bit Monolithic DIGITAL-TO-ANALOG CONVERTER}

\section*{FEATURES}
- SERIAL INPUT
- LOW COST
- NO EXTERNAL COMPONENTS REQUIRED
- 16-bit resolution
- 15-BIT MONOTONICITY, TYP
- 0.001\% OF FSR TYP DIFFERENTIAL LINEARITY ERROR
- 0.0025\% MAX THD (FS Input, K Grade, 16 Bits)
- 0.02\% MAX THD (-20dB Input, K Grade, 16 Bits)
- \(1.5 \mu \mathrm{~S}\) SETTLING TIME, TYP (Voltage Out)
- 96dB DYNAMIC RANGE
- \(\pm 3 \mathrm{~V}\) or \(\pm 1 \mathrm{~mA}\) AUDIO OUTPUT
- EIAJ STC-007-COMPATIBLE
- OPERATES \(0 \mathrm{~N} \pm 5 \mathrm{~V}\) to \(\pm 12 \mathrm{~V}\) SUPPLIES
- PINOUT ALLOWS Iout OPTION
- PLASTIC DIP PACKAGE

\section*{DESCRIPTION}

The PCM56P is a state-of-the-art, fully monotonic, digital-to-analog converter that is designed and specified for digital audio applications. This device employs ultra-stable nichrome ( NiCr ) thin-film resistors to provide monotonicity, low distortion, and low differential linearity error (especially around bipolar zero) over long periods of time and over the full operating temperature.

This converter is completely self-contained with a stable, low noise, internal zener voltage reference; high speed current switches; a resistor ladder network; and a fast settling, low noise output operational amplifier all on a single monolithic chip. The converters are operated using two power supplies that can range from \(\pm 5 \mathrm{~V}\) to \(\pm 12 \mathrm{~V}\). Power dissipation with \(\pm 5 \mathrm{~V}\) supplies is typically less than 200 mW . Also included is a provision for external adjustment of the MSB error (differential linearity error at bipolar zero) to further improve total harmonic distortion (THD) specifications if desired. Few external components are necessary for operation, and all critical specifications are \(100 \%\) tested. This helps assure the user of high system reliability and outstanding overall system performance.
The PCM56P is packaged in a high-quality 16-pin molded plastic DIP package and has passed operating life tests under simultaneous high-pressure, high-temperature, and high-humidity conditions.


\section*{SPECIFICATIONS}

ELECTRICAL

Typical at \(+25^{\circ} \mathrm{C}\) and nominal power supply voltages of \(\pm 5 \mathrm{~V}\) unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{MODEL} & \multicolumn{3}{|c|}{PCM56P/-J/-K} & \multirow[b]{2}{*}{UNITS} \\
\hline & MIN & TYP & MAX & \\
\hline \multicolumn{5}{|l|}{INPUT} \\
\hline \begin{tabular}{l}
DIGITAL INPUT \\
Resolution \(\begin{aligned} \text { Digital Inputs }{ }^{\text {(1). }} & V_{I H} \\ & V_{I L} \\ & I_{I H,}, V_{I N}=+2.7 \mathrm{~V} \\ & \mathrm{I}_{I L}, V_{I N}=+0.4 \mathrm{~V}\end{aligned}\) \\
Input Clock Frequency
\end{tabular} & \[
\begin{gathered}
+2.4 \\
0 \\
10.0
\end{gathered}
\] & 16 & \(+V_{L}\)
+0.8
+1.0
-50 & \[
\begin{gathered}
\text { Bits } \\
V \\
V \\
\mu \mathrm{~A} \\
\mu \mathrm{~A} \\
\mathrm{MHz}
\end{gathered}
\] \\
\hline \multicolumn{5}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline \begin{tabular}{l}
ACCURACY \\
Gain Error \\
Bipolar Zero Error \\
Differential Linearity Error \\
Noise (rms, 20Hz to 20kHz) at Bipolar Zero (Vout models)
\end{tabular} & & \[
\begin{gathered}
\pm 2.0 \\
\pm 30 \\
\pm 0.001 \\
6
\end{gathered}
\] & & \[
\begin{gathered}
\% \\
m V \\
\% \text { of } F S^{(2)} \\
\mu V
\end{gathered}
\] \\
\hline TOTAL HARMONIC DISTORTION & & \[
\begin{gathered}
0.002 \\
0.002 \\
0.002 \\
0.018 \\
0.018 \\
0.010 \\
1.8 \\
1.8 \\
1.8
\end{gathered}
\] & \[
\begin{gathered}
0.0025 \\
0.004 \\
0.008 \\
0.020 \\
0.040 \\
0.040 \\
2.0 \\
4.0 \\
4.0
\end{gathered}
\] & \[
\begin{aligned}
& \% \\
& \% \\
& \% \\
& \% \\
& \% \\
& \% \\
& \% \\
& \% \\
& \%
\end{aligned}
\] \\
\hline MONOTONICITY & & 15 & & Bits \\
\hline \begin{tabular}{l}
DRIFT \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\) \\
Total Drift \({ }^{(3)}\) \\
Bipolar Zero Drift
\end{tabular} & & \[
\begin{gathered}
\pm 25 \\
\pm 4
\end{gathered}
\] & & \begin{tabular}{l}
ppm of \(\mathrm{FSR} /{ }^{\circ} \mathrm{C}\) \\
ppm of FSR \(/{ }^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline \begin{tabular}{l}
SETTLING TIME (to \(\pm 0.006 \%\) of FSR) \\
Voltage Output: 6V Step \\
1LSB \\
Slew Rate \\
Current Output, 1 mA Step: \(10 \Omega\) to \(100 \Omega\) load \(1 \mathrm{k} \Omega\) load \({ }^{(4)}\)
\end{tabular} & & \[
\begin{gathered}
1.5 \\
1.0 \\
12 \\
350 \\
350
\end{gathered}
\] & & \(\mu \mathrm{S}\) \(\mu \mathrm{S}\) \(\mathrm{V} / \mu \mathrm{s}\) ns ns \\
\hline WARM-UP TIME & 1 & & & Min \\
\hline \multicolumn{5}{|l|}{OUTPUT} \\
\hline \begin{tabular}{l}
Voltage Output Configuration: Bipolar Range Output Current Output Impedance Short Circuit Duration \\
Current Output Configuration: \\
Bipolar Range ( \(\pm 30 \%\) ) \\
Output Impedance ( \(\pm 30 \%\) )
\end{tabular} & \begin{tabular}{l}
\(\pm 8.0\) \\
Ind
\end{tabular} & \begin{tabular}{l}
\(\pm 3.0\) \\
0.10 \\
ite to C \\
\(\pm 1.0\) \\
1.2
\end{tabular} & & \begin{tabular}{l}
V \\
mA \\
\(\Omega\) \\
mA \\
\(\mathrm{k} \Omega\)
\end{tabular} \\
\hline \multicolumn{5}{|l|}{POWER SUPPLY REQUIREMENTS \({ }^{(5)}\)} \\
\hline  & \[
\begin{aligned}
& +4.75 \\
& -4.75
\end{aligned}
\] & \[
\begin{gathered}
+5.00 \\
-5.00 \\
+10.0 \\
-25.0 \\
+12.0 \\
-27.0 \\
175 \\
468
\end{gathered}
\] & \[
\begin{aligned}
& +13.2 \\
& -13.2 \\
& +17.0 \\
& -35.0
\end{aligned}
\] & \begin{tabular}{l}
V \\
V \\
mA \\
mA \\
mA \\
mA \\
mW \\
mW
\end{tabular} \\
\hline \multicolumn{5}{|l|}{TEMPERATURE RANGE} \\
\hline Specification Operation Storage & \[
\begin{gathered}
0 \\
-25 \\
-60
\end{gathered}
\] & & \[
\begin{array}{r}
+70 \\
+70 \\
+100 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

NOTES: (1) Logic input levels are TTL/CMOS-compatible. (2) FSR means full-scale range and is equivalent to \(6 \mathrm{~V}( \pm 3 \mathrm{~V})\) for PCM56 in the Vout mode. (3) This is the combined drift error due to gain, offset, and linearity over temperature. (4) Measured with an active clamp to provide a low impedance for approximately 200ns. (5) All specifications assume \(+V_{s}\) connected to \(+V_{\mathrm{L}}\) and \(-\mathrm{V}_{\mathrm{s}}\) connected to \(-\mathrm{V}_{\mathrm{L}}\). If supplies are connected separately, \(-V_{L}\) must not be more negative than \(-V_{S}\) supply voltage to assure proper operation. No similar restriction applies to the value of \(+V_{\mathrm{L}}\) with respect to \(+\mathrm{V}_{\mathrm{s}}\).

MECHANICAL


NOTE: Leads in true position within \(.010^{\prime \prime}(.25 \mathrm{~mm}) \mathrm{R}\) at MMC at seating plane.
PINS: Pin material and plating composition conform to method 2003 (solderability) of MIL-STD883 (except paragrah 3.2).
CASE: Plastic
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{} & \multicolumn{2}{|c|}{ INCHES } & \multicolumn{2}{c|}{ MILLIMETERS } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & .740 & .800 & 18.80 & 20.32 \\
\hline A \(_{1}\) & .725 & .785 & 18.42 & 19.94 \\
\hline B & .230 & .290 & 5.85 & 7.38 \\
\hline B \(_{1}\) & .200 & .250 & 5.09 & 6.36 \\
\hline C & .120 & .200 & 3.05 & 5.09 \\
\hline D & .015 & .023 & 0.38 & 0.59 \\
\hline F & .030 & .070 & \multicolumn{2}{|c|}{0.76} & 1.78 \\
\hline G & .100 BASIC & \multicolumn{2}{|c|}{2.54 BASIC } \\
\hline H & 0.02 & 0.05 & \multicolumn{2}{|c|}{0.51} & 1.27 \\
\hline J & .008 & .015 & 0.20 & 0.38 \\
\hline K & .070 & .150 & 1.78 & 3.82 \\
\hline L & .300 BASIC & \multicolumn{2}{|c|}{7.63 BASIC } \\
\hline M & \multicolumn{2}{|c|}{\(0^{\circ}\)} & \(15^{\circ}\) & \multicolumn{2}{|c|}{\(0^{\circ}\)} \\
\hline N & .010 & .030 & \multicolumn{2}{|c|}{0.25} & 0.76 \\
\hline P & .025 & .050 & \multicolumn{2}{|c|}{0.64} & 1.27 \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Model } & THD at FS (\%) \\
\hline PCM56P & 0.008 Max \\
PCM56P-J & 0.004 \\
PCM56P-K & 0.0025 \\
\hline
\end{tabular}

\section*{PIN ASSIGNMENTS}
\begin{tabular}{|r|l|l|}
\hline 1 & \(-V_{S}\) & Analog Negative Supply \\
2 & LOG COM & Logic Common \\
3 & \(+V_{L}\) & Logic Positive Supply \\
4 & NC & No Connection \\
5 & CLK & Clock Input \\
6 & LE & Latch Enable Input \\
7 & DATA & Serial Data Input \\
8 & \(-V_{\mathrm{L}}\) & Logic Negative Supply \\
9 & Vout & Voltage Output \\
10 & RF & Feedback Resistor \\
11 & SJ & Summing Junction \\
12 & ANA COM & Analog Common \\
13 & lout & Current Output \\
14 & MSB ADJ & MSB Adjustment Terminal \\
15 & TRIM & MSB Trim-pot Terminal \\
16 & \(+V_{S}\) & Analog Positive Supply \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{DC Supply Voltages................................ \(\pm 16 \mathrm{VDC}\)} \\
\hline \multicolumn{2}{|l|}{Input Logic Voltage . ....................... -1 V to \(+\mathrm{V}_{\mathrm{S}} /+\mathrm{V}_{\mathrm{L}}\)} \\
\hline Power Dissipation & 850 mW \\
\hline Operating Temperatu & \(-25^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(60^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) \\
\hline ad Temperature Dur & 10s at \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{DISCUSSION OF SPECIFICATIONS}

The PCM56P is specified to provide critical performance criteria for a wide variety of applications. The most critical specifications for a D/A converter in audio applications are Total Harmonic Distortion, Differential Linearity Error, Bipolar Zero Error, parameter shifts with time and temperature, and settling time effects on accuracy.
The PCM56P is factory-trimmed and tested for all critical key specifications.
The accuracy of a \(D / A\) converter is described by the transfer function shown in Figure 1. Digital input to analog output relationship is shown in Table I. The errors in the \(\mathrm{D} / \mathrm{A}\) converter are combinations of analog errors due to the linear circuitry, matching and tracking properties of the ladder and scaling networks, power supply rejection, and reference errors. In summary, these errors consist of initial errors including Gain, Offset, Linearity, Differential Linearity, and Power Supply Sensitivity. Gain drift over temperature rotates the line (Figure 1) about the bipolar zero point and Offset drift shifts the line left or right over the operating temperature range. Most of the Offset and Gain drift with temperature

CONNECTION DIAGRAM

or time is due to the drift of the internal reference zener diode. The converter is designed so that these drifts are in opposite directions. This way the Bipolar Zero voltage is virtually unaffected by variations in the reference voltage.


FIGURE 1. Input vs Output for an Ideal Bipolar D/A Converter.

TABLE I. Digital Input to Analog Output Relationship.
\begin{tabular}{|c|l|c|c|}
\hline Digital Input & \multicolumn{3}{|c|}{ Analog Output } \\
\hline \begin{tabular}{c} 
Binary Twos \\
Complement (BTC)
\end{tabular} & DAC Output & \begin{tabular}{c} 
Voltage (V), \\
Vout Mode
\end{tabular} & \begin{tabular}{c} 
Current (mA), \\
Iout Mode
\end{tabular} \\
\hline 7FFF Hex & + Full Scale & +2.999908 & -0.999970 \\
8000 Hex & - Full Scale & -3.000000 & +1.000000 \\
0000 Hex & Bipolar Zero & 0.000000 & 0.000000 \\
FFFF Hex & Zero - 1LSB & -0.000092 & \(+0.030500 \mu \mathrm{~A}\) \\
\hline
\end{tabular}

\section*{DIGITAL INPUT CODES}

The PCM56P accepts serial input data (MSB first) in the Binary Twos Complement (BTC) form. Refer to Table I for input/output relationships.

\section*{BIPOLAR ZERO ERROR}

Initial Bipolar Zero Error (Bit 1 "on" and all other bits "off") is the deviation from 0 V out and is factorytrimmed to typically \(\pm 30 \mathrm{mV}\) at \(+25^{\circ} \mathrm{C}\).

\section*{DIFFERENTIAL LINEARITY ERROR}

Differential Linearity Error (DLE) is the deviation from an ideal 1LSB change from one adjacent output state to the next. DLE is important in audio applications because excessive DLE at Bipolar Zero (at the "major carry") can result in audible crossover distortion for low level output signals. Initial DLE on the PCM56P is factory trimmed to typically \(\pm 0.001 \%\) of FSR. The MSB DLE is adjustable to zero using the circuit shown in Figure 6.

\section*{POWER SUPPLY SENSITIVITY}

Changes in the DC power supplies will affect accuracy.
The PCM56P power supply sensitivity is shown by Figure 2. Normally, regulated power supplies with \(1 \%\) or less ripple are recommended for use with the DAC. See also Power Supply Connections paragraph in the Installation and Operating Instructions section.


FIGURE 2. Power Supply Sensitivity.

\section*{SETTLING TIME}

Settling time is the total time (including slew time) required for the output to settle within an error band around its final value after a change in input (see Figure \(3)\).

Settling times are specified to \(\pm 0.006 \%\) of FSR: one for a large output voltage change of 6 V and one for a ILSB change. The 1LSB change is measured at the major carry ( 0000 hex to ffff hex), the point at which the worst-case settling time occurs.


FIGURE 3. Full Scale Range Settling Time vs Accuracy.

\section*{STABILITY WITH TIME AND TEMPERATURE}

The parameters of a \(D / A\) converter designed for audio applications should be stable over a relatively wide temperature range and over long periods of time to avoid undesirable periodic readjustment. The most important parameters are Bipolar Zero Error, Differential Linearity Error, and Total Harmonic Distortion. Most of the Offset and Gain drift with temperature or time is due to the drift of the internal reference zener diode. The PCM56P is designed so that these drifts are in opposite directions so that the Bipolar Zero voltage is virtually unaffected by variations in the reference voltage. Both DLE and THD are dependent upon the matching and tracking of resistor ratios and upon \(\mathrm{V}_{\mathrm{BE}}\) and \(\mathrm{h}_{\mathrm{FE}}\) of the current-source transistors. The PCM56P was designed so that any absolute shift in these components has virtually no effect on DLE or THD. The resistors are made of identical links of ultra-stable nichrome thinfilm. The current density in these resistors is very low to further enhance their stability.

\section*{DYNAMIC RANGE}

The Dynamic Range is a measure of the ratio of the smallest signals the converter can produce to the fullscale range and is usually expressed in decibels (dB). The theoretical dynamic range of a converter is approximately \(6 \times \mathrm{n}\), or about 96 dB of a 16 -bit converter. The actual, or useful, dynamic range is limited by noise and linearity errors and is therefore somewhat less than the theoretical limit. However, this does point out that a resolution of at least 16 bits is required to obtain a 90 dB minimum dynamic range, regardless of the accuracy of the converter. Another specification that is useful for audio applications is Total Harmonic Distortion.

\section*{TOTAL HARMONIC DISTORTION}

THD is useful in audio applications and is a measure of the magnitude and distribution of the Linearity Error,

Differential Linearity Error, and Noise, as well as Quantization Error. To be useful, THD should be specified for both high level and low level input signals. This error is unadjustable and is the most meaningful indicator of D/A converter accuracy for audio applications.
The THD is defined as the ratio of the square root of the sum of the squares of the values of the harmonics to the value of the fundamental input frequency and is expressed in percent or dB . The rms value of the PCM56P error referred to the input can be shown to be
\[
\begin{equation*}
\epsilon_{\mathrm{rms}}=\sqrt{1 / \mathrm{n} \sum_{i=1}^{\mathrm{n}}\left[\mathrm{E}_{\mathrm{L}}(\mathrm{i})+\mathrm{E}_{Q}(\mathrm{i})\right]^{2}} \tag{1}
\end{equation*}
\]
where n is the number of samples in one cycle of any given sine wave, \(\mathrm{E}_{\mathrm{L}}(\mathrm{i})\) is the linearity error of the PCM56P at each sampling point, and \(\mathrm{E}_{\mathrm{Q}}(\mathrm{i})\) is the quantization error at each sampling point. The THD can then be expressed as
\[
\begin{align*}
\mathrm{THD} & =\epsilon_{\mathrm{rms}} / \mathrm{E}_{\mathrm{rms}}  \tag{2}\\
& =\frac{\sqrt{1 / \mathrm{n} \sum_{i=1}^{\mathrm{n}}\left[\mathrm{E}_{\mathrm{L}}(\mathrm{i})+\mathrm{E}_{\mathrm{Q}}(\mathrm{i})\right]^{2}}}{\mathrm{E}_{\mathrm{rms}}} \times 100 \%
\end{align*}
\]
where \(\mathrm{E}_{\mathrm{rms}}\) is the rms signal-voltage level.
This expression indicates that, in general, there is a correlation between the THD and the square root of the sum of the squares of the linearity errors at each digital word of interest. However, this expression does not mean that the worst-case linearity error of the \(\mathrm{D} / \mathrm{A}\) is directly correlated to the THD.
For the PCM56P the test period was chosen to be \(22.7 \mu \mathrm{~s}\) \((44.1 \mathrm{kHz})\), which is compatible with the EIAJ STC-007 specification for PCM audio. The test frequency is 991 Hz and the amplitude of the input signal is 0 dB , -20 dB , and -60 dB down from full scale.
Figure 4 shows the typical THD as a function of output voltage.


FIGURE 4. Total Harmonic Distortion (THD) vs Vout.

Figure 5 shows typical THD as a function of frequency.


FIGURE 5. Total Harmonic Distortion (THD) vs Frequency.

\section*{INSTALLATION AND OPERATING INSTRUCTIONS} POWER SUPPLY CONNECTIONS
For optimum performance and noise rejection, power supply decoupling capacitors should be added as shown in the Connection Diagram. These capacitors ( \(1 \mu \mathrm{~F}\) tantalum or electrolytic recommended) should be located close to the converter.

\section*{MSB ERROR ADJUSTMENT PROCEDURE (OPTIONAL)}

The MSB error of the PCM56P can be adjusted to make the differential linearity error (DLE) at BPZ essentially zero. This is important when the signal output levels are very low, because zero crossing noise (DLE at BPZ) becomes very significant when compared to the small code changes occurring in the LSB portion of the converter.
Differential linearity error at bipolar zero and THD are guaranteed to meet data sheet specifications without any external adjustment. However, a provision has been made for an optional adjustment of the MSB linearity point which makes it possible to eliminate DLE error at BPZ. Two procedures are given to allow either static or dynamic adjustment. The dynamic procedure is preferred because of the difficulty associated with the static method (accurately measuring 16-bit LSB steps).
To statically adjust DLE at BPZ, refer to the circuit shown in Figure 6 or the PCM56 connection diagram.


FIGURE 6. MSB Adjustment Circuit.

After allowing ample warm-up time ( \(5-10\) minutes) to assure stable operation of the PCM56, select input code FFFF hexadecimal (all bits on except the MSB). Measure the audio output voltage using a \(6-1 / 2\) digit voltmeter and record it. Change the digital input code to 0000 hexadecimal (all bits off except the MSB). Adjust the \(100 \mathrm{k} \Omega\) potentiometer to make the audio output read \(92 \mu \mathrm{~V}\) more than the voltage reading of the previous code (a 1 LSB step \(=92 \mu \mathrm{~V}\) ).
A much simpler method is to dynamically adjust the DLE at BPZ. Again, refer to Figure 6 for circuitry and component values. Assuming the device has been installed in a digital audio application circuit, send the appropriate digital input to produce a -80 dB level sinusoidal output. While measuring the THD of the audio circuit output, adjust the \(100 \mathrm{k} \Omega\) potentiometer until a minimum level of distortion is observed.

\section*{INPUT TIMING CONSIDERATIONS}

Figures 7 and 8 refer to the input timing required to interface the inputs of PCM56P to a serial input data stream. Serial data is accepted in Binary Twos Complement (BTC) with the MSB being loaded first. Data is clocked in on positive going clock (CLK) edges and is latched into the DAC input register on negative going latch enable (LE) edges.

The latch enable input must be high for at least one clock cycle before going low, and then must be held low for at least one clock cycle. The last 16 data bits clocked into the serial input register are the ones that are transferred to the DAC input register when latch enable goes low. In other words, when more than 16 clock cycles occur between a latch enable, only the data present during the last 16 clocks will be transferred to the DAC input register.
One requirement for clocking in all 16 bits is the necessity for a "17th" clock pulse. This automatically occurs when the clock is continuous (last bit shifts in on the first bit of the next data word). When the clock is
stopped before the " 17 th" clock cycle occurs, however, the last serial input shift will not occur (the MSB will be in the bit 2 position). In any application where clock is noncontinuous, attention must be given to providing enough clocks to fully input the data word.
Figure 7 refers to the general input format required for the PCM56P. Figure 8 shows the specific relationships between the various signals and their timing constraints.


FIGURE 8. Input Timing Relationships.

\section*{INSTALLATION CONSIDERATIONS}

If the optional external MSB error circuitry is used, a potentiometer with adequate resolution and a TCR of \(100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) or less is required. Also, extra care must be taken to insure that no leakage path (either AC or DC) exists to pin 14. If the circuit is not used, pins 14 and 15 should be left open.
The PCM converter and the wiring to its connectors should be located to provide the optimum isolation from sources of RFI and EMI. The important consideration in the elimination of RF radiation or pickup is loop area;


NOTES: (1) If clock is stopped between input of 16 -bit data words, latch enable (LE) must remain low until after the first clock of the next 16-bit data word stream. (2) Data format is binary two's complement (BTC). Individual data bits are clocked in on the corresponding positive clock edge. (3) Latch enable (LE) must remain low at least one clock cycle after going negative. (4) Latch enable (LE) must be high for at least one clock cycle before going negative.

FIGURE 7. Input Timing Diagram.
therefore, signal leads and their return conductors should be kept close together. This reduces the external magnetic field along with any radiation. Also, if a signal lead and its return conductor are wired close together, they represent a small flux-capture cross section for any external field. This reduces radiation pickup in the circuit.

\section*{APPLICATIONS}

Figures 9 and 10 show a circuit and timing diagram for a single PCM56P used to obtain both left- and rightchannel output in a typical digital audio system. The audio output of the PCM56P is alternately time-shared
between the left and right channels. The design is greatly simplified because the PCM56P is a complete D/A converter requiring no external reference or output op amp.
A sample/hold ( \(\mathrm{S} / \mathrm{H}\) ) amplifier, or "deglitcher" is required at the output of the \(\mathrm{D} / \mathrm{A}\) for both the left and right channel, as shown in Figure 9. The \(\mathrm{S} / \mathrm{H}\) amplifier for the left channel is composed of \(A_{1}, S W_{1}\), and associated circuitry. \(A_{1}\) is used as an integrator to hold the analog voltage in \(\mathrm{C}_{1}\). Since the source and drain of the FET swtich operate at a virtual ground when " \(C\) " and " B " are connected in the sample mode, there is no increase in distortion caused by the modulation effect of \(\mathrm{R}_{\mathrm{ON}}\) by the audio signal.


FIGURE 9. A Sample/Hold Amplifier (Deglitcher) is Required at the Digital-to-Analog Output for Both Left and Right Channels.


FIGURE 10. Timing Diagram for the Deglitcher Control Signals.

Figure 10 shows the deglitcher controls for both left and right channels which are produced by timing control logic. A delay of \(1.5 \mu \mathrm{~s}(\mathrm{t} \omega)\) is provided to allow the output of the PCM56P to settle within a small error band around its final value before connecting it to the channel output. Due to the fast settling time of the PCM56P it is possible to minimize the delay between the left- and right-channel outputs when using a single \(\mathrm{D} / \mathrm{A}\) converter for both channels. This is important because the right- and left-channel data are recorded in-phase and the use of a slower D/A converter would result in significant phase error at higher frequencies.
The obvious solution to the phase shift problem in a two-channel system would be to use two D/A converters (one per channel) and time the outputs to change simultaneously. Figure 11 shows a block diagram of the final test circuitry used for PCM56P. It should be noted that no deglitching circuitry is required on the DAC output to meet specified THD performance. This means that when one PCM56P is used per channel, the need for all the sample/hold and controls circuitry associated with a single DAC (two-channel) design is effectively eiiminated. The \(\overline{\text { PCivijó }} \bar{F}\) is tested to meet its \(1 H D\) specifications without the need for output deglitching.
A low-pass filter is required after the PCM56P to remove all unwanted frequency components caused by the sampling frequency as well as those resulting from the discrete nature of the \(\mathrm{D} / \mathrm{A}\) output. This filter must have a flat frequency response over the entire audio band \((0-20 \mathrm{kHz})\) and a very high attenuation above 20 kHz .

Most previous digital audio circuits used a higher order (9-13 pole) analog filter. However, the phase response of an analog filter with these amplitude characteristics is nonlinear and can disturb the pulse-shaped characteristic transients contained in music.

\section*{SECOND GENERATION SYSTEMS}

One method of avoiding the problems associated with a higher order analog filter would be to use digital filter oversampling techniques. Oversampling by a factor of two would move the sampling frequency \((88.2 \mathrm{kHz})\) out to a point where only a simple low-order phase-linear analog filter is required after the deglitcher output to remove unwanted intermodulation products. In a digital compact disc application, various VLSI chips perform the functions of error detection/correction, digital filtering, and formatting of the digital information to provide the clock, latch enable, and serial input to the PCM56P. These VLSI chips are available from several sources (Sony, Yamaha, Signetics, etc.) and are specifically optimized for digital audio applications.
Oversampled circuitry requires a very fast \(\mathrm{D} / \mathrm{A}\) converter since the sampling freuqency is multiplied by a factor of two or more (for each output channel). A single PCM56P can provide two-channel oversampling at a 4 X rate \((176.4 \mathrm{kHz} /\) channel) and still remain well within the settling time requirements for maintaining specified THD performance. This would reduce the complexities of the analog filter even further from that used in 2 X oversampling circuitry.


FIGURE 11. Block Diagram of Distortion Test Circuit.

THIS PAGE INTENTIONALLY LEFT BLANK

\title{
Monolithic 16-Bit Military DIGITAL-TO-ANALOG CONVERTER
}

\section*{FEATURES}
- FULLY COMPLIANT MIL-STD-883 PROCESSING
- MONOLITHIC CONSTRUCTION
- HIGH ACCURACY:

Linearity Error \(\pm \mathbf{0 . 0 0 3 \%}\) of FSR max Differential Linearity Error \(\pm 0.006 \%\) of FSR max
- MONOTONIC (at 14 bits) OVER FULL MILITARY TEMPERATURE RANGE
- PIN-COMPATIBLE WITH DAC72 (COB model)
- DUAL-IN-LINE AND LCC PACKAGES

\section*{DESCRIPTION}

This is a complete 16 -bit bipolar output ( \(\pm 10 \mathrm{~V}\) ) digital-to-analog converter that includes a precision buried-zener voltage reference and a low-noise, fastsettling output operational amplifier, all on one small monolithic chip. A combination of currentswitch design techniques accomplishes not only 14bit monotonicity over the military operating temperature range but also a maximum end-point linearity error of \(\pm 0.003 \%\) of full-scale range (at \(+25^{\circ} \mathrm{C}\) ). Differential linearity at \(+25^{\circ} \mathrm{C}\) is \(0.006 \%\) of FSR.
Digital inputs are complementary binary coded and are TTL-, LSTTL-, \(54 / 74 \mathrm{C}\) - and \(54 / 74 \mathrm{HC}\) compatible over the entire temperature range.

Two product assurance levels are available: Standard and /883B. The Standard product assurance level offers Hi-Rel manufacturing where many MIL-STD-883 screens are performed routinely. The /883B product assurance level, /883B suffix, offers Hi-Rel manufacturing, \(100 \%\) screening per MIL-STD-883 method 5004 and \(5 \%\) PDA. Quality assurance further processes /883B devices, by performing group A and \(B\) inspections on each inspection lot and group C and D inspections as required by MIL-STD-883. A report containing the most recent group A, B, C, and D tests is available for a nominal charge.

\section*{DETAILED SPECIFICATION MICROCIRCUITS, LINEAR DIGITAL-TO-ANALOG CONVERTER MONOLITHIC, SILICON}

\section*{1. SCOPE}
1.1 Scope. This specification covers the detail requirements for a 16 -bit, voltage output, digital-to-analog converter monolithic microcircuit.
1.2 Part number. The complete part number is as shown below.

Basic Model Number

(see 1.2.1)

(see 1.2.3)

Designator (see 1.2.2)
1.2.1 Device type. The device is a single 16-bit bipolar voltage output digital-to-analog converter. The input coding is complementary offset binary (COB). There is one electrical performance grade (V grade). This grade features specifications and testing over the Military temperature range \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\). Electrical specifications and tests are shown in Tables I and II.
1.2.2 Device class. The device class is similar to the class B product assurance level as defined in MIL-M-38510. The Hi-Rel product designator portion of the part number distinguishes the product assurance levels available as follows:

Hi-Rel product
designator

\section*{Requirements}
/883B
Standard model plus \(100 \%\) MIL-STD-883B class B screening, with 5\% PDA, plus Quality Conformance Inspection (QCI) consisting of Groups A and B performed on each inspection lot, plus Groups C and D performed as required by MIL-STD-883.
(none) Standard model including \(100 \%\) electrical testing.
1.2.3 Case outline. Two case outlines are available.
1.2.3.1 24-pin ceramic side-brazed (DIP). The "G" package identifier is utilized to specify the 24-pin ceramic side-brazed package, which is MIL-M-38510, Appendix C, designator D-3, configuration 3. Figure 1 depicts the case outline for this package type.
1.2.3.2 28-terminal leadless chip carrier (LCC). The "L" package identifier is utilized to specify the 28 -terminal square leadless chip carrier package, which is MIL-M-38510, Appendix C, designator C-4. Figure 1 depicts the case outline for this package type.
1.2.4 Absolute maximum ratings.
\begin{tabular}{|c|c|}
\hline Supply voltage, \(\mathrm{V}_{\mathrm{CC}}\) to common & \(\pm 18 \mathrm{VDC}\) \\
\hline Supply voltage, V \(\mathrm{V}_{\text {D }}\) to common & 0 VDC to +18 VDC \\
\hline Digital data input voltage to common & -1VDC to +7VDC \\
\hline \multicolumn{2}{|l|}{Short circuit duration:} \\
\hline Reference output to common & Continuous \\
\hline D/A voltage out to common & Continuous \\
\hline External voltage applied to D/A output & -5 V to +5 V \\
\hline Storage temperature range & \(-65^{\circ} \mathrm{C}\) to \(+165^{\circ} \mathrm{C}\) \\
\hline Temperature (soldering 10s) & \(+300^{\circ} \mathrm{C}\) \\
\hline Junction temperature & \(\mathrm{t}_{\mathrm{J}}=+175^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
1.2.5 Recommended operating conditions.

> Supply voltage, \(\pm \mathrm{V}_{\mathrm{CC}}\)
> Supply voltage, \(\pm \mathrm{V}_{\mathrm{DD}}\)
\(\pm 15\) VDC
\(+5 \mathrm{VDC}\)
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
1.2.6 Power and thermal characteristics.
\begin{tabular}{|c|c|c|c|}
\hline Package & Case outline & Maximum allowable power dissipation & \[
\begin{gathered}
\text { Maximum } \\
\theta \mathrm{J}-\mathrm{C} \\
\hline
\end{gathered}
\] \\
\hline 24-lead DIP & Figure 1 & 1000 mW & \(25^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline 28-terminal LCC & Figure 1 & 1000 mW & \(48^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ DIM } & \multicolumn{2}{|c|}{ INCHES } & \multicolumn{2}{c|}{ MILLIMETERS } \\
\cline { 2 - 5 } & MIN & MAX & MIN & MAX \\
\hline A & 1.185 & 1.215 & 30.10 & 30.86 \\
\hline B & .600 & .620 & 15.24 & 15.75 \\
\hline C & .125 & .171 & 3.18 & 4.34 \\
\hline D & .015 & .021 & 0.38 & 0.53 \\
\hline F & .035 & .060 & 0.89 & 1.52 \\
\hline G & .100 BASIC & \multicolumn{2}{|c|}{2.54 BASIC } \\
\hline H & .030 & .070 & \multicolumn{2}{|c|}{0.76} & 1.78 \\
\hline J & .008 & .012 & 0.20 & 0.30 \\
\hline K & .120 & .240 & \multicolumn{2}{|c|}{2.05} & 6.10 \\
\hline L & \multicolumn{2}{|c|}{600 BASIC } & \multicolumn{2}{|c|}{15.24 BASIC } \\
\hline M & - & \(10^{\circ}\) & \multicolumn{2}{|c|}{-} & \(10^{\circ}\) \\
\hline N & .025 & .060 & \multicolumn{2}{|c|}{0.64} & 1.52 \\
\hline
\end{tabular}
(a) 24-pin side braze; package ID: " G ".

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DIM} & \multicolumn{2}{|l|}{: A C:!} & \multicolumn{2}{|l|}{:ïLLingieTEnS} \\
\hline & MIN & MAX & MIN & MAX \\
\hline A & 442 & . 458 & 11.23 & 11.63 \\
\hline B & . 442 & 458 & 11.23 & 11.63 \\
\hline C & . 064 & . 100 & 1.63 & 2.54 \\
\hline F & . 022 & . 028 & 0.56 & 0.71 \\
\hline G & \multicolumn{2}{|l|}{050 BASIC} & \multicolumn{2}{|l|}{1.27 BASIC} \\
\hline H & \multicolumn{2}{|l|}{.008R TYP} & \multicolumn{2}{|l|}{0.20R TYP} \\
\hline
\end{tabular}
(b) 28-terminal LCC; package ID: "L"

FIGURE 1. Case Outlines.

\section*{2. APPLICABLE DOCUMENTS}
2.1 Government specification and standard. Unless otherwise specified, the following specifications and standards form a part of this specification to the extent specified herein.
```

SPECIFICATION
MILITARY
MIL-M-38510-Microcircuits, general specification for.
STANDARD
MILITARY
MIL-STD-883-Test methods and procedures for microcircuits.

```
2.2 Order of precedence. In the event of a conflict between the text of this specification and the references cited herein, the text of this specification shall take precedence.

\section*{3. REQUIREMENTS}
3.1 General. Burr-Brown used production and test facilities and a quality and reliability assurance program adequate to assure successful compliance with this specification.
3.1.1 Detail specifications. The individual item requirements are specified herein. In the event of conflicting requirements, the order of precedence will be the purchase order, this specification, and then the reference documents.
3.2 Design, construction, and physical dimensions.
3.2.1 Package, metals, and other materials. The packages, metal surfaces, and other materials are in accordance with MIL-M-38510.
3.2.2 Design documentation. The design documentation is in accordance with MIL-M-38510.
3.2.3 Internal conductors and internal wires. The internal conductors and internal lead wires are in accordance with MIL-M-38510.
3.2.4 Lead material and finish. The lead material and finish is in accordance with MIL-M-38510 and is solderable per MIL-STD-883, method 2003.
3.2.5 Die thickness. The die thickness is in accordance with MIL-M-38510.
3.2.6 Physical dimensions. The physical dimensions are in accordance with paragraph 1.2.3 herein and are shown in Figure 1 .
3.2.7 Circuit diagram and terminal connections. The circuit diagram and terminal connections are shown in Figures 2 and 3 .
3.2.8 Glassivation. The microcircuit dice are glassivated.
3.3 Electrical performance characteristics. The electrical performance characteristics are specified in Table I and apply over the full operating ambient temperature range of \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) unless otherwise specified.
3.4 Electrical test requirements. Electrical test requirements are shown in Table II. The subgroups of Table I, which constitute the minimum electrical test requirements for screening, qualification, and quality conformance inspection, are specified in Table II.


FIGURE 2. "G" Package Circuit Diagram and Terminal Connections.


FIGURE 3. "L" Package Circuit Diagram and Terminal Connections.

TABLE I. Electrical Performance Characteristics.
( \(T_{A}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\), Supply Voltages: \(\pm \mathrm{V}_{C C}= \pm 15 \mathrm{VDC}, \mathrm{V}_{D D}=+5 \mathrm{VDC}\) )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTICS} & \multirow[b]{2}{*}{CONDITIONS} & \multirow[t]{2}{*}{GROUP A SUBGROUPS} & \multicolumn{3}{|c|}{DAC703 "V" GRADE} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline \multicolumn{7}{|l|}{INPUT} \\
\hline \begin{tabular}{l}
DIGITAL INPUT \\
Resolution 1/ Digital Inputs 2/ \(\mathrm{V}_{\mathrm{IH}}\) \(V_{\text {IL }}\) lin ILL
\end{tabular} & \[
\begin{aligned}
& V_{1}=+2.7 \mathrm{~V} \\
& V_{1}=+0.4 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& +2.4 \\
& -1.0
\end{aligned}
\] & & \[
\begin{array}{r}
16 \\
+V_{c c} \\
+0.8 \\
+40 \\
-0.5
\end{array}
\] & \[
\begin{gathered}
\text { Bits } \\
V \\
V \\
\mu A \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline \multicolumn{7}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline \begin{tabular}{l}
ACCURACY \\
Linearity Error \\
Differential Linearity Error \\
Gain Error 4/ \\
Zero Error 4/ \\
Monotonicity over Temp. Range 1/
\end{tabular} & \[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
&-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \\
& \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\
&-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& T_{A}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{gathered}
1 \\
2,3 \\
1 \\
2,3 \\
1 \\
1 \\
1,2,3
\end{gathered}
\] & \[
\begin{gathered}
-0.003 \\
-0.006 \\
-0.006 \\
-0.006 \\
-0.1 \\
-0.1 \\
14
\end{gathered}
\] & & \[
\begin{gathered}
+0.003 \\
+0.006 \\
+0.006 \\
+0.009 \\
+0.1 \\
+0.1
\end{gathered}
\] & \begin{tabular}{l}
\% of FSR \(3 /\) \\
\% of FSR \\
Bits
\end{tabular} \\
\hline \begin{tabular}{l}
DRIFT \\
Gain Drift \\
Zero Drift \\
Total Error over Temperature
\end{tabular} & & \[
\begin{aligned}
& 2,3 \\
& 2,3
\end{aligned}
\] & \[
\begin{aligned}
& -20 \\
& -15 \\
& -0.1
\end{aligned}
\] & & \[
\begin{aligned}
& +20 \\
& +15 \\
& +0.1
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\(\%\) of FSR
\end{tabular} \\
\hline \multicolumn{7}{|l|}{DYNAMIC CHARACTERISTICS} \\
\hline \begin{tabular}{l}
Settling Time \\
Slew Rate
\end{tabular} & to \(\pm 0.003 \%, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) Full-Scale Output Step
\[
R_{1}=2 k \Omega
\] & \[
9
\]
\[
9
\] & 10 & 4 & 8 & \[
\begin{gathered}
\mu \mathrm{s} \\
\mathrm{~V} / \mu \mathrm{s} \\
\hline
\end{gathered}
\] \\
\hline \begin{tabular}{l}
OUTPUT \\
Output Voltage \\
Output Current \\
Output Impedance
\end{tabular} & & 1 & \(\pm 5\) & \[
\begin{aligned}
& \pm 10 \\
& 0.15 \\
& \hline
\end{aligned}
\] & & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA} \\
\Omega
\end{gathered}
\] \\
\hline Reference Voltage Source Current Temperature Coefficient & For external loads & \[
\begin{aligned}
& 1,2,3 \\
& 1,2,3
\end{aligned}
\] & \[
\begin{aligned}
& +6.0 \\
& -15 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +6.3 \\
& +2.5
\end{aligned}
\] & \[
\begin{aligned}
& +6.6 \\
& +15
\end{aligned}
\] &  \\
\hline \multicolumn{7}{|l|}{POWER SUPPLY REQUIREMENTS} \\
\hline  & \[
\begin{gathered}
\text { Delta }+V_{c C}= \pm 1 V T_{A}=25^{\circ} \mathrm{C} \\
\text { Delta-V }-V_{c C}= \pm 1 V T_{A}=25^{\circ} \mathrm{C} \\
\text { Delta } V_{D D}= \pm 1 V T_{A}=25^{\circ} \mathrm{C}
\end{gathered}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{gathered}
+13.5 \\
-13.5 \\
+4.5
\end{gathered}
\] & \[
\begin{gathered}
+15 \\
-15 \\
+5
\end{gathered}
\] & \[
\begin{gathered}
\hline+16.5 \\
-16.5 \\
+16.5 \\
+30 \\
-30 \\
+8 \\
4 \\
4 \\
4 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
V \\
V \\
V \\
mA. \\
mA \\
mA \\
\(\mathrm{mV} / \mathrm{V}\) \\
\(\mathrm{mV} / \mathrm{V}\) \\
\(\mathrm{mV} / \mathrm{V}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{NOTES:}

1/ \(1 \mathrm{LSB}=0.305 \mathrm{mV}\).
2/ Digital Inputs are TTL-, LSTTL-, 54/74C-, 54/74HC-, and 54/74HTC-compatible over the operating voltage range of \(\mathrm{V}_{D D}=+5 \mathrm{~V}\) to +15 V and over the operating temperature range. The input switching threshold remains at the TTL threshold of 1.4 V over the supply range of \(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}\) to +15 V . As logic
" 0 " and " 1 " inputs vary over \(O \mathrm{~V}\) to +0.8 V and +2.4 V to +10 V respectively, the change in the \(\mathrm{D} / \mathrm{A}\) converter output voltage will not exceed \(\pm 0.003 \%\) of FSR .
3/ \(\mathrm{FSR}=\) full-scale range \(=20 \mathrm{~V}\).
4/ Adjustable to zero.
TABLE II. Electrical Test Requirements.
(The individual tests within the subgroups appear in Table 1)
\begin{tabular}{|l|c|c|c|}
\hline & \multicolumn{1}{c|}{ MODELS } & \begin{tabular}{c} 
DAC703VG/883B \\
DAC703VL/883B
\end{tabular} & \begin{tabular}{c} 
DAC703GL \\
DAC703VL
\end{tabular} \\
\hline MIL-STD-883 TEST REQUIREMENTS & \multicolumn{2}{|c|}{ Subgroups (see table I) } \\
\hline Interim electrical parameters (preburn-in) (method 5005) & 1 & 1 \\
\hline Fina! electrical test parameters (method 5005) & \(1 *, 2,3\) & - & \(1,2,3\) \\
\hline Group A test requirements (method 5005) & \(1,2,3\) & \(\mathrm{~N} / \mathrm{A}\) \\
\hline Group C and D end point electrical parameters (method 5005) & 1 and Table 111 & \(\mathrm{~N} / \mathrm{A}\) \\
\hline Additional electrical subgroups performed in addition to Group C inspection & \(9 * *\) & N/A \\
\hline
\end{tabular}
**PDA applies to subgroup 1. **Performed to an LTPD of 5.

TABLE III. Additional End-Point Limits (after 1000 Hr Life Test).
\begin{tabular}{l}
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & LIMIT \\
\hline Gain Error & \(\pm 0.2 \%\) of \(\mathrm{FSR}^{*}\) \\
Linearity Error & \(\pm 5 \mathrm{LSB}^{* *}\) \\
Differential Linearity Error & \(\pm 8 \mathrm{LSB}\) \\
\hline
\end{tabular} \\
\hline FSR \(=\) full-scale range. \(\quad * * 1 \mathrm{LSB}=0.305 \mathrm{mV}\)
\end{tabular}
3.5 Marking. Marking is in accordance with MIL-M-38510. The following marking is placed on each microcircuit as a minimum:
a. Part number (see paragraph 1.2)
b. Inspection lot identification code \(1 /\)
c. Manufacturer's identification (
d. Manufacturer's designating symbol (CEBS)
e. Country of origin
f. Electrostatic sensitivity identifier \((\Delta)\)
3.6 Workmanship. These microcircuits are manufactured, processed, and tested in a workmanlike manner. Workmanship is in accordance with good engineering practices, workmanlike instructions, inspection and test procedures and training, prepared in fulfillment of Burr-Brown's product assurance program.
3.6.1 Rework provisions. Rework provisions, including rebonding for the "/883B" product designation, are in accordance with MIL-M-38510.
3.7 Traceability. Traceability for the "/883B" product designation is in accordance with MIL-M-38510. Each microcircuit is traceable to the production lot and to the component vendor's component lot.
3.8 Product and process change. Burr-Brown will not implement any major change to the design, materials, construction, or manufacturing process which may affect the performance, quality or interchangeability of the microcircuit without full or partial requalification.
3.9 Screening. Screening for the "/833B" Hi-Rel product designation is in accordance with MIL-STD-883B, method 5004, class B, and as specified herein.
Screening for the standard model includes Burr-Brown QC4118 internal visual inspection, stabilization bake, fine leak, gross leak, constant acceleration (condition A), temperature cycle (condition C), and external visual per MIL-STD883B method 2009.
For the " \(/ 883 \mathrm{~B}\) " product designation, all microcircuits will have passed the screening requirements prior to qualification or quality conformance inspection.
3.10 Qualification. Qualification is not required. See paragraph 4.2 herein.
3.11 Quality conformance inspection. Quality conformance inspection (QCI), for the "/883B" product designation, is in accordance with MIL-STD-883, and as specified in paragraph 4.4 herein. The microcircuit inpsection lot will have passed quality conformance inspection prior to microcircuit delivery.

\section*{4. PRODUCT ASSURANCE PROVISIONS}
4.1 Sampling and inspection. Sampling and inspection procedures are in accordance with MIL-M-38510 and MIL-STD-883, method 5005.
4.2 Qualification. Qualification is not required unless specifically required by contract or purchase order. When so required, qualification will be in accordance with the inspection routine of MIL-M-38510. The inspections to be performed are those specified herein for Groups A, B, C, and D inspections (see paragraphs 4.4.1, 4.4.2, 4.4.3, and 4.4.4 herein.).
4.3 Screening. Screening for the "/883B" Hi-Rel product designation is in accordance with MIL-STD-883, method 5004 , class B , and is conducted on all devices. The following criteria apply:
a. Interim and final test parameters are specified in Table II.
b. Burn-in test (MIL-STD-883, method 1015) conditions:
(1) Test condition B.
(2) Test circuit is Figure 4.
(3) \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\).
(4) Test duration is 160 hours minimum.
c. Percent defective allowable (PDA). The PDA, for "/883B" product designation only, is five percent and includes both parametric and catastrophic failures from Group A, Subgroub 1 test, after cool-down as final electrical test in accordance with MIL-STD-883, method 5005, and with no intervening electrical measurements. If interim electrical parameter tests are performed prior to burn-in, failures resulting from preburn-in screening failures may be excluded from the PDA. If interim electrical parameter tests are omitted, all screening failures shall be included in the PDA. The verified failures of Group A, Subgroup 1, after burn-in are used to determine the Percent Defective for each manufacturing lot, and the lot is accepted or rejected based on PDA.
d. External visual inspection need not include measurement of case and lead dimensions.
4.4 Quality conformance inspection. Groups A and B inspections of MIL-STD-883, method 5005, class B, are performed on each inspection lot. Groups \(C\) and \(D\) inspections of MIL-STD-883, method 5005, class B are performed as required by MIL-STD-883.
A report of the most recent Group C and D inspections is available from Burr-Brown.
4.4.1 Group A inspection. Group A inspection consists of the test subgroups and LTPD values shown in MIL-STD883, method 5005, and as specified in Table II herein.
4.4.2 Group B inspection. Group B inspection consists of the test subgroups and LTPD values shown in MIL-STD883, method 5005, class B.
4.4.3 Group C inspection. Group C inspection consists of the subgroups and LTPD values shown in MIL-STD-883, method 5005, class B, and as follows:
a. Operating life test (MIL-STD-883, method 1005) conditions:
(1) Test condition \(B\).
(2) Test circuit is Figure 4.
(3) \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) minimum.
(4) Test duration is 1000 hours minimum.
b. End point electrical parameters are specified in Table II herein.
4.4.4 Group D inspection. Group D inspection consists of the test subgroups and LTPD values shown in MIL-STD883, method 5005. End point electrical parameters are specified in Table II herein.
4.4.5 Inspection of packaging. Inspection of packaging shall be in accordance with MIL-M-38510.
4.5 Methods of examination and test. Methods of examination and test are specified in the appropriate tables. Electrical test circuits are as prescribed herein or in the referenced test methods of MIL-STD-883.
4.5.1 Voltage and current. All voltage values given, except the input offset voltage (or differential voltage) are referenced to the external zero reference level of the supply voltage. Currents given are conventional current and positive when flowing into the referenced terminal.

\section*{5. PACKAGING}
5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.


FIGURE 4. Test Circuit for Burn-In and Operating Life Test.

\section*{6. NOTES}
6.1 Notes. The notes specified in MIL-M-38510 are applicable to this specification.
6.2 Intended use. Microcircuits conforming to this specification are intended for use in applications where the use of screened parts is required or desirable.
6.3 Ordering Data. The contract or purchase order should specify the following:
a. Complete part number (see paragraph 1.2).
b. Requirement for certificate of compliance, if desired.
6.4 Microcircuit group assignment. These microcircuits are assigned to technology group D with a microcircuit group number of 56 as defined in MIL-M-38510, Appendix E.
6.5 Electrostatic sensitivity. Caution-these microcircuits may be damaged by electrostatic discharge. Precautions should be observed at all times.
6.6 Definitions.
6.6.1 Linearity. This specification describes one of the most important measures of performance of a D/A converter. Linearity error is the deviation of the analog output from a straight line drawn through the end points (all bits ON point and all bits OFF point).
6.6.2 Differential linearity error. Differential linearity error (DLE) of a D/A converter is the deviation from its ideal lLSB change in the output from one adjacent output state to the next. A differential linearity error specification of \(\pm 1 / 2 L S B\) means that the output step sizes can be between \(1 / 2 L S B\) and \(3 / 2 L S B\) when the input changes from one adjacent input state to the next. A negative DLE specification of no more than -1LSB ( \(-0.006 \%\) FSR for 14 -bit resolution) insures monotonicity.
6.6.3 Monotonicity. Monotonicity assures that the analog output will increase or remain the same for increasing input digital codes. The DAC703 is specified to be monotonic to 14 bits over the entire specification temperature range.
6.6.4 Gain error. Gain error is the difference between the ideal full-scale output and the actual output of the \(\mathrm{D} / \mathrm{A}\) converter. For the DAC703 this is at 0000 H and FFFFH.
6.6.5 Zero error. Zero error is the difference between zero volts and the actual D/A converter output at the zero outpút code ( 7 FFFH ).

\section*{7. APPLICATION INFORMATION.}
7.1 Power supply decoupling. For optimum performance and noise rejection, each power supply should be decoupled by connecting a \(1 \mu \mathrm{~F}\) tantalum or electrolytic capacitors, is used, should be parralleled with \(0.01 \mu \mathrm{~F}\) ceramic capacitors for best high-frequency performance.
7.2 Power-supply sensitivity. Power-supply sensitivity is specified in Table I. Power-supply sensitivity versus ripple frequency is shown in Figure 5.
7.3 External zero and gain error adjustment. The untrimmed accuracy of the DAC can be adjusted using the circuitry shown in Figures 2 and 3.
7.3.1 Zero adjustment. Apply the digital input code 7FFFH, which should produce zero volts output. Adjust the offset potentiometer until the output is zero volts.
7.3.2 Gain adjustment. Apply the digital input code 0000 H , which should produce 9.99969 volts output. Adjust the gain potentiometer to produce 9.99969 volts.
7.4 Further information. Further application information can be found in Burr-Brown's commercial data sheet for the DAC700/702, DAC701/703.


FIGURE 5. Power Supply Rejection Versus Power Supply Ripple Frequency.

\section*{Very High Accuracy Military INSTRUMENTATION AMPLIFIER}

\section*{FEATURES}
- FULLY COMPLIANT MIL-STD-883 PROCESSING
- ULTRA-LOW VOLTAGE DRIFT: \(1.75 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(\mathrm{A}=1000)\)
- LOW OFFSET VOLTAGE: \(50 \mu \mathrm{~V}\)
- LOW NONLINEARITY: 0.005\%
- LOW NOISE: \(13 \mathrm{nV} / \sqrt{\mathrm{Hz}}\) at \(\mathrm{f}_{0}=1 \mathrm{kHz}\)
- HIGH CMR: 106dB at 60 Hz
- HIGH INPUT IMPEDANCE: \(10^{10} \Omega\)

\section*{DESCRIPTION}

The INA101 is a high-accuracy, multistage, militarygrade, integrated-circuit instrumentation amplifier designed for signal conditioning requirements where very high performance is desired. All circuits, including the interconnected laser-trimmed thin-film resistors, are integrated on a single monolithic substrate. A multiamplifier design is used to provide the highest performance and maximum versatility with monolithic construction for low cost. The input stage uses Burr-Brown's ultra-low drift, low-noise technology to provide exceptional input characteristics.

\section*{APPLICATIONS}
- AMPLIFICATION OF SIGNALS FROM SOURCES SUCH AS:
Strain Gauges
Thermocouples
RTDs
- REMOTE TRANSDUCERS
- LOW LEVEL SIGNALS

Two product assurance levels are available: Standard and /883B. The Standard product assurance level offers Hi-Rel manufacturing where many MIL-STD-883 screens are performed routinely. The /883B product assurace level, /883B suffix, offers Hi-Rel manufacturing, \(100 \%\) screening per MIL-STD-883 method 5004 and \(5 \%\) PDA. Quality assurance further processes / 883 devices, by performing lot and group C and D inspections as required by MIL-STD-883. A report containing the most recent group \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and D tests is available for a nominal charge.

\title{
DETAILED SPECIFICATION \\ MICROCIRCUITS, LINEAR \\ INSTRUMENTATION AMPLIFIER MONOLITHIC, SILICON
}

\section*{1. SCOPE}
1.1 Scope. This specification covers the detail requirements for a very high accuracy instrumentation amplifier. For description of operation see paragraph 8.
1.2 Part Number. The complete part number is as shown below.

1.2.1 Device type. The device is a single instrumentation amplifier. One electrical performance grade ("V") is provided. The "V" grade offers specifications and operation over the Military temperature range ( \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) ). Electrical performance characteristics are shown in Table I, and Electrical tests are shown in Tables II and III.
1.2.2 Device class. The device class is similar to the product assurance level B, as defined in MIL-M-38510. The Hi-Rel product designator portion of the part number distinguishes the product assurance level as follows:
\begin{tabular}{cl}
\begin{tabular}{c} 
Hi-Rel product \\
designator
\end{tabular} & \multicolumn{1}{c}{\begin{tabular}{l} 
Requirements
\end{tabular}} \\
/883B & \begin{tabular}{l} 
Standard model, plus \(100 \%\) MIL-STD- 883 class \\
quality conformance inspection (QCI) consisting of Groups A and B performed on \\
each inspection lot, plus Groups C and D performed initially and annually thereafter.
\end{tabular} \\
(none) & \begin{tabular}{l} 
Standard model including \(100 \%\) electrical testing.
\end{tabular}
\end{tabular}
1.2.3 Case outline. Two package options are available (" \(G\) " and " \(M\) ").
a. The " G " package is a 14 -terminal ceramic side braze DIP and is case outline \(\mathrm{D}-1\), configuration 3 , as defined in MIL-M-38510, Appendix C (see Figure la).
b. The " M " package is a 10 -lead can, TO-100, and is case outline D-1 as defined in MIL-M-38510, Appendix C (see Figure 1b).
1.2.4 Absolute maximum ratings.
\begin{tabular}{ll} 
Positive supply voltage \(\left(+\mathrm{V}_{\mathrm{cc}}\right)\) & 0 to +20 VDC \\
Negative supply voltage \(\left(-\mathrm{V}_{\mathrm{Cc}}\right)\) & 0 to -20 VDC \\
Duration output short circuit to ground & Continuous \\
Lead temperature (soldering, 10 s\()\) & \(+300^{\circ} \mathrm{C}\) \\
Junction temperature & \(+175^{\circ} \mathrm{C}\) \\
Storage temperature range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
1.2.5 Recommended operating conditions.

Positive supply voltage \(\left(+V_{c c}\right) \quad+11 \mathrm{VDC}\) to +20 VDC
Negative supply voltage ( \(-\mathrm{V}_{\mathrm{cc}}\) ) -11VDC to -20VDC
Ambient temperature range \(\quad-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
1.2.6 Power and thermal characteristics.
\begin{tabular}{|c|c|c|c|}
\hline Package & Case outline & Maximum allowable power dissipation & Maximum \(\theta_{\mathrm{Jc}}\) \\
\hline 10-lead TO-100 & Figure 1 & 600 mW & \(60^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline 14-lead DIP & Figure 1 & 600 mW & \(50^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

\section*{2. APPLICABLE DOCUMENTS}
2.1 The following form a part of this specification to the extent specified herein.

SPECIFICATION
MILITARY
MIL-M-38510-Microcircuits, general specification for.
STANDARD
MILITARY
MIL-STD-883-Test methods and procedures for microcircuits.

TABLE I. Electrical Performance Characteristics.
All characteristics at \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \pm \mathrm{V}_{\mathrm{CC}}=15 \mathrm{VDC}\), unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTICS} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{INA101VM/883B INA101VM INA101VG/883B INA101VG} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline \begin{tabular}{l}
GAIN \\
Range of Gain Gain Equation Error \\
Gain Tempco 2/ \\
DC Nonlinearity
\end{tabular} & \begin{tabular}{l}
\(A_{v}\) \\
\(E_{A V}\) \\
\(\Delta A_{v} / \Delta T\) \\
NL
\end{tabular} & \[
\begin{aligned}
& A_{V}=1+\left(40 \mathrm{k} / \mathrm{R}_{G}\right) 1 j \\
& A_{V}=1, T_{A}=+25^{\circ} \mathrm{C} \\
& \dot{A}_{V}=10, T_{A}=+25^{\circ} \mathrm{C} \\
& A_{V}=100, T_{A}=+25^{\circ} \mathrm{C} \\
& A_{V}=1000, T_{A}=+25^{\circ} \mathrm{C} \\
& A_{V}=1 \\
& A_{V}=10 \\
& A_{V}=100 \\
& A_{V}=1000 \\
& A_{V}=1, T_{A}=+25^{\circ} \mathrm{C} \\
& A_{V}=10, T_{A}=+25^{\circ} \mathrm{C} \\
& A_{V}=100, T_{A}=+25^{\circ} \mathrm{C} \\
& A_{V}=1000, T_{A}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & 1 & \[
\begin{gathered}
2 \\
20 \\
22 \\
22
\end{gathered}
\] & \[
\begin{array}{r}
1000 \\
0.05 \\
0.10 \\
0.10 \\
0.40 \\
\\
\\
\\
0.005 \\
0.005 \\
0.007 \\
0.025
\end{array}
\] & \begin{tabular}{l}
V/V \\
\% FS \\
\% FS \\
\% FS \\
\% FS \\
ppm \(/{ }^{\circ} \mathrm{C}\) \\
\(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\% \\
\% \\
\% \\
\%
\end{tabular} \\
\hline \begin{tabular}{l}
RATED OUTPUT \\
Voltage Current Impedance
\end{tabular} & \[
\begin{aligned}
& \text { Vap } \\
& I_{0} \\
& \mathrm{Z}_{0}
\end{aligned}
\] & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & \[
\begin{gathered}
\pm 10 \\
\pm 5
\end{gathered}
\] & 0.2 & & \[
\begin{gathered}
V \\
m A \\
\Omega
\end{gathered}
\] \\
\hline \begin{tabular}{l}
INPUT OFFSET VOLTAGE \\
Initial 3/ \\
vs Temperature \\
vs Supply
\end{tabular} & \(V_{10}\) \(V_{10}\) \(\Delta V_{10} / \Delta T\) PSRR & \[
\begin{aligned}
& A_{V}=10, T_{A}=+25^{\circ} \mathrm{C} \\
& A_{V}=1000, T_{A}=+25^{\circ} \mathrm{C} \\
& A_{V}=10,-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \\
& A_{V}=1000,-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \\
& A_{V}=1, \Delta V_{C C}= \pm 5 V D C, T_{A}=+25^{\circ} \mathrm{C} \\
& A_{V}=1000, \Delta V_{C C}= \pm 5 V D C, T_{A}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & & & \[
\begin{gathered}
\pm 75 \\
\pm 50 \\
\pm 2.5 \\
\pm 1.75 \\
35 \\
2
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{V}\) \\
\(\mu \mathrm{V}\) \\
\(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\(\mu \mathrm{V} / \mathrm{V}\) \\
\(\mu \mathrm{V} / \mathrm{V}\)
\end{tabular} \\
\hline \begin{tabular}{l}
INPUT BIAS CURRENT \\
Initial \\
Tempco
\end{tabular} & \[
\begin{gathered}
\mathrm{l}_{\mathrm{IB}} \\
\Delta \mathrm{l}_{\mathrm{IB}} / \Delta \mathrm{T}
\end{gathered}
\] & \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & & \(\pm 0.2\) & \(\pm 30\) & \[
\begin{gathered}
n A \\
n A /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
INPUT OFFSET CURRENT \\
Initial \\
Tempco
\end{tabular} & \[
\begin{gathered}
l_{10} \\
\Delta 1_{10} / \Delta T
\end{gathered}
\] & \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & & \(\pm 0.5\) & \(\pm 30\) & \[
\begin{gathered}
\mathrm{nA} \\
\mathrm{nA} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
INPUT IMPEDANCE \\
Differential Common Mode
\end{tabular} & \[
\begin{aligned}
& Z_{\text {ID }} \\
& Z_{\text {ICM }}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & & \[
\begin{aligned}
& 10^{10} \| 3 \\
& 10^{10} \| 3
\end{aligned}
\] & & \[
\begin{aligned}
& \Omega \| p F \\
& \Omega \| p F
\end{aligned}
\] \\
\hline \begin{tabular}{l}
INPUT VOLTAGE \\
Linear Response Range Common-Mode Rejection
\end{tabular} & \[
\begin{aligned}
& V_{\mathbb{I N}} \\
& \text { CMR }
\end{aligned}
\] & \[
\begin{aligned}
& D C-60 \mathrm{~Hz}, A_{V}=1 \mathrm{k} \Omega \text { Source Imbalance } \\
& T_{A}=+25^{\circ} \mathrm{C} \\
& D C-60 \mathrm{~Hz}, A_{V}=10,1 \mathrm{k} \Omega \text { Source Imbalance } \\
& T_{A}=+25^{\circ} \mathrm{C} \\
& D C-60 \mathrm{~Hz}, A_{V}=100-1000 . \\
& 1 \mathrm{k} \Omega \text { Source Imbalance, } T_{A}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{gathered}
\pm 10 \\
80 \\
96 \\
106
\end{gathered}
\] & & \(\cdot\) & \begin{tabular}{l}
V \\
\(d B\) \\
\(d B\) \\
dB
\end{tabular} \\
\hline HNPUT NOISE Input Voltage Noise Input Current Noise & \begin{tabular}{l}
\(E_{\text {NPP }}\) \(E_{N}\) \\
\(I_{\text {NPP }}\) \(I_{N}\)
\end{tabular} & \[
\begin{aligned}
& f_{B}=0.01 \text { to } 10 \mathrm{~Hz}, T_{A}=+25^{\circ} \mathrm{C} \\
& A_{V}=1000, f_{0}=10 \mathrm{~Hz}, T_{A}=+25^{\circ} \mathrm{C} \\
& A_{V}=1000, f_{0}=100 \mathrm{~Hz}, T_{A}=+25^{\circ} \mathrm{C} \\
& A_{V}=1000, f_{0}=1 \mathrm{kHz}, T_{A}=+25^{\circ} \mathrm{C} \\
& f_{B}=0.01 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}, T_{A}=+25^{\circ} \mathrm{C} \\
& f_{0}=10 \mathrm{~Hz}, T_{A}=+25^{\circ} \mathrm{C} \\
& f_{0}=100 \mathrm{~Hz}, T_{A}=+25^{\circ} \mathrm{C} \\
& f_{0}=1 \mathrm{kHz}, T_{A}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & , & \[
\begin{aligned}
& 0.8 \\
& 18 \\
& 15 \\
& 13 \\
& 50 \\
& 0.8 \\
& 0.46 \\
& 0.35
\end{aligned}
\] & & \[
\begin{aligned}
& \mu V, \mathrm{p}-\mathrm{p} \\
& \mathrm{nV} / \sqrt{\mathrm{Hz}} \\
& \mathrm{nV} / \sqrt{\mathrm{Hz}} \\
& \mathrm{nV} / \sqrt{\mathrm{Hz}} \\
& \mathrm{pA}, \mathrm{p}-\mathrm{p} \\
& \mathrm{pA} / \sqrt{\mathrm{Hz}} \\
& \mathrm{pA} / \sqrt{\mathrm{Hz}} \\
& \mathrm{pA} / \sqrt{\mathrm{Hz}}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
DYNAMIC RESPONSE \\
Slew Rate \\
Bandwidth \\
Settling Time
\end{tabular} & \begin{tabular}{l}
SR \\
BW \\
BW \\
Ts
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& A_{V}=1 \text { to } 100, R_{L}=2 \mathrm{k} \Omega, T_{A}=+25^{\circ} \mathrm{C} \\
& 3 \mathrm{~dB} \text { small signal, } A_{V}=1, T_{A}=+25^{\circ} \mathrm{C} \\
& A_{V}=10, T_{A}=+25^{\circ} \mathrm{C} \\
& A_{V}=100, T_{A}=+25^{\circ} \mathrm{C} \\
& A_{V}=1000, T_{A}=+25^{\circ} \mathrm{C}
\end{aligned}
\] \\
Full power \(A_{V}=1\) to \(1000, T_{A}=+25^{\circ} \mathrm{C}\)
\[
\begin{aligned}
0.01 \%, A_{V} & =1, T_{A}=+25^{\circ} \mathrm{C} \\
A_{V} & =100, T_{A}=+25^{\circ} \mathrm{C} \\
A_{V} & =1000, T_{A}=+25^{\circ} \mathrm{C}
\end{aligned}
\]
\end{tabular} & 0.2 & \[
\begin{gathered}
300 \\
140 \\
25 \\
2.5 \\
6.4 \\
30 \\
50 \\
500
\end{gathered}
\] & & \begin{tabular}{l}
\(\mathrm{V} / \mu \mathrm{s}\) \\
kHz \\
kHz \\
kHz \\
kHz \\
kHz \\
\(\mu \mathrm{s}\) \\
\(\mu \mathrm{S}\) \\
\(\mu \mathrm{s}\)
\end{tabular} \\
\hline \begin{tabular}{l}
POWER SUPPLY \\
Rated Voltage Quiescent Current
\end{tabular} & \[
\begin{gathered}
\pm \mathrm{V}_{\mathrm{cc}} \\
\mathrm{I}_{0}
\end{gathered}
\] & \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & \(\pm 5\) & \(\pm 15\) & \[
\begin{gathered}
\pm 20 \\
\pm 8.5
\end{gathered}
\] & \[
\begin{gathered}
V \\
m A .
\end{gathered}
\] \\
\hline
\end{tabular}

NOTES:
1/ Typically the tolerance of \(R_{G}\) will be the major source of gain error.
2/ Not including TCR of RG.
3/ Adjustable to zero at any one gain.

TABLE II. Electrical Test Requirements.
(The individual tests within the subgroups appear in Table III)
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ MIL-STD-883 REQUIREMENTS (Class B) } & \begin{tabular}{c} 
INA101VM/883B \\
INA101VG/883B
\end{tabular} & \begin{tabular}{c} 
INA101VM \\
INA101VG
\end{tabular} \\
\hline Interim electrical parameters (preburn-in) (method 5004) & 1 & \\
Final electrical test parameters (method 5004) & \(1 *, 2,3,4\) & \(1,2,3,4\) \\
Group A test requirements (method 5005) & \(1,2,3,4\) & - \\
Group C and D end point electrical parameters (method 5005) & 1 & - \\
\hline
\end{tabular}
*PDA applies to subgroup 1 (see 4.3.c).

TABLE III. Group A Inspection.


NOTES:
\(1 / E_{1}=0 \mathrm{~V}\) and \(E_{2}\) is varied to enable nonlinearity error to be measured by sampling 21 points between \(-10 \mathrm{~V} \leq \mathrm{E}_{\text {Out }} \leq+10 \mathrm{~V}\) and determining worst case deviation from straight line connecting these end points at each gain setting.

NOTE: Leads in true position within \(0.01^{\prime \prime}\) ( 0.25 mm ) R at MMC at seating plane.
Pin numbers shown for reference only. Numbers may not be marked on package.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ DIM } & \multicolumn{2}{|c|}{ INCHES } & \multicolumn{2}{c|}{ MILLIMETERS } \\
\cline { 2 - 5 } & MIN & MAX & MIN & MAX \\
\hline A & .670 & .710 & 17.02 & 18.03 \\
\hline C & .055 & .170 & 1.65 & 4.32 \\
\hline D & .015 & .021 & 0.38 & 0.53 \\
\hline F & .045 & .060 & 1.14 & 1.52 \\
\hline G & .100 BASIC & \multicolumn{2}{|c|}{2.54 BASIC } \\
\hline H & .025 & .070 & 0.64 & 1.78 \\
\hline J & .008 & .012 & 0.20 & 0.30 \\
\hline K & .120 & .240 & \multicolumn{2}{|c|}{3.05} & 6.10 \\
\hline L & .300 BASIC & 7.62 BASIC \\
\hline M & \multicolumn{2}{|c|}{-} & \(10^{\circ}\) & \multicolumn{2}{|c|}{-} \\
\hline N & .009 & .060 & \(10^{\circ}\) \\
\hline
\end{tabular}
(a) 14-Pin Ceramic Side Braze-Package ID: "G"


NOTE: Leads in true position within \(0.01^{\prime \prime}(0.25 \mathrm{~mm}) R\) at MMC at seating plane.
Pin numbers shown for reference only. Numbers may not be marked on package.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ DIM } & \multicolumn{2}{|c|}{ INCHES } & \multicolumn{2}{c|}{ MILLIMETERS } \\
\cline { 2 - 5 } & MIN & MAX & MIN & MAX \\
\hline A & .335 & .370 & 8.51 & 9.40 \\
\hline B & .305 & .335 & 7.75 & 8.51 \\
\hline C & .165 & .185 & 4.19 & 4.70 \\
\hline D & .016 & .021 & 0.41 & 0.53 \\
\hline E & .010 & .040 & 0.25 & 1.02 \\
\hline F & .010 & .040 & 0.25 & 1.02 \\
\hline G & .230 BASIC & \multicolumn{2}{|c|}{5.84 BASIC } \\
\hline H & .028 & .034 & \multicolumn{2}{|c|}{0.71} \\
\hline J & .029 & .045 & 0.86 \\
\hline K & .500 & - & 0.74 & 1.14 \\
\hline L & .120 & .160 & \multicolumn{2}{|c|}{3.70} \\
\hline M & \multicolumn{2}{|c|}{\(36^{\circ}\) BASIC } & -2.06 \\
\hline N & .110 & .120 & \multicolumn{2}{|c|}{\(36^{\circ}\) BASIC } \\
\hline
\end{tabular}
(b) TO-100 Metal Can-Package ID: "M"


Bottom View


FIGURE 1. Case Outlines.

\section*{3. REQUIREMENTS}
3.1 General. Burr-Brown uses production and test facilities and a quality and reliability assurance program adequate to assure successful compliance with this specification.
3.1.1 Detail specifications. The individual item requirements are specified herein. In the event of conflicting requirements, the order of precedence will be the purchase order, this specification, and then the reference documents.
3.2 Design, construction and physical dimensions.
3.2.1 Package, metals, and other materials. The package, metal surfaces, and other materials are in accordance with MIL-M-38510.
3.2.2 Design documentation. The design documentation is in accordance with MIL-M-38510.
3.2.3. Internal conductors and internal lead wires. The internal conductors and internal lead wires are in accordance with MIL-M-38510.
3.2.4. Lead material and finish. The lead material and finish (gold plate) are in accordance with MIL-M-38510 and is solderable per MIL-STD-883, method 2003.
3.2.5 Die thickness. The die thickness is in accordance with MIL-M-38510.
3.2.6 Physical dimensions. The physical dimensions are in accordance with paragraph 1.2 .3 herein.
3.2.7 Circuit diagram and terminal connections. The circuit diagram and terminal connections are shown in Figure 2.


FIGURE 2. Circuit Diagram and Terminal Connections.
3.2.8 Glassivation. The microcircuit die is glassivated.
3.3 Electrical performance characteristics. The electrical performance characteristics are specified in Table I and apply over the full operating ambient temperature range of \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) unless otherwise specified.
3.4 Electrical test requirements. Electrical test requirements are shown in Table II. The subgroups of Table III which constitute the minimum electrical test requirements for screening, qualification, and quality conformance, are specified in Table II.
3.5 Marking is in accordance with MIL-M-38510. The following marking is placed on each microcircuit as a minimum:
a. Part number (see paragraph 1.2)
b. Inspection lot identification code \(1 /\)
c. Manufacturer's identification ( Eunn-anown \({ }^{(1)}\) )
d. Manufacturer's designating symbol (CEBS)
e. Country of origin
f. Electrostatic sensitivity identifier \((\Delta)\)
3.6 Workmanship. These microcircuits are manufactured, processed, and tested in a workmanlike manner. Workmanship is in accordance with good engineering practices, workmanlike instructions, inspection and test procedures, and training prepared in fulfillment of Burr-Brown's product assurance program.
3.6.1. Rework provisions. Rework provisions, including rebonding for the "/883B" Hi-Rel product designation are in accordance with MIL-M-38510.
3.7 Traceability. Traceability for the "/883B" Hi-Rel product designation is in accordance with MIL-M-38510. Each microcircuit is traceable to the production lot and to the component vendor's component lot.
3.8 Product and process change. Burr-Brown will not implement any major change to the design, materials, construction, or manufacturing process which may affect the performance, quality, or interchangeability of the microcircuit without full or partial requalification.

\subsection*{3.9 Screening.}
a. Screening for the "/883B" Hi-Rel product designation is in accordance with MIL-STD-883, method 5004, class \(B\), except as modified in paragraph 4.3 herein. All microcircuits will have passed the screening requirements prior to qualification or quality conformance inspection.
b. Screening for the standard model (no Hi-Rel product designation) includes Burr-Brown QC4118 internal visual inspection, stabilization bake, fine leak, gross leak, constant acceleration (condition E), temperature cycle (condition C), and external visual per MIL-STD-883, method 2009.
3.10 Qualification. Qualification is not required. See paragraph 4.2 herein.
3.11 Quality conformance inspection. Quality conformance inspection, for the "/883B" Hi-Rel product designation is in accordance with MIL-STD-883 and MIL-M-38510, except as modified in paragraph 4.4 herein. The microcircuit inspection lot will have passed quality conformance inspection prior to microcircuit delivery.

\section*{4. PRODUCT ASSURANCE PROVISIONS}
4.1 Sampling and inspection. Sampling and inspection procedures are in accordance with MIL-M-38510 and MIL-STD-883, method 5005, except as modified herein.
4.2 Qualification. Qualification is not required unless specifically required by contract or purchase order. When so required, qualification will be in accordance with the inspection routine of MIL-M-38510, paragraph 4.4.2.1. The inspections to be performed are those specified herein for Groups A, B, C, and D inspections (see paragraphs 4.4.1, 4.4.2, 4.4.3, and 4.4.4). Burr-Brown has performed and successfully completed qualification inspection as described above. The most recent report is available from Burr-Brown.
4.3 Screening. Screening for the "/883B" Hi-Rel product designation is in accordance with MIL-STD-883, method 5004 , class B, and is conducted on all devices. The following criteria apply:
a. Interim and final test parameters are specified in Table II.
b. Burn-In test (MIL-STD-883, method 1015) conditions:
(1) Test condition B.
(2) Test circuit is shown in Figure 3.
(3) \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) minimum.
(4) Test duration 160 hours minimum.
c. Percent defective allowable (PDA). The PDA, for the "/883B" Hi-Rel product designation only, is \(5 \%\) based on failures from Group A, subgroup 1 test after cool-down as final electrical in accordance with MIL-STD883, method 5004, and with no intervening electrical measurements. If interim electrical parameter tests performed prior to burn-in are omitted, all screening failures shall be included in the PDA calculation. The verified failures of group A, subgroup 1 after burn-in for each manufacturing lot are used to determine the percent defective for that lot. Each lot is accepted or rejected based on the PDA.
d. External visual inspection does not include measurement of case and lead dimensions.


FIGURE 3. Test Circuit-Burn-In and Operating Life Test.
4.4 Quality conformance inspection. Groups A and B inspection of MIL-STD-883, method 5005, class B, are performed on each inspection lot. Group C and D inspections of MIL-STD-883, method 5005, class B are performed as required by MIL-STD-883. A report of the most recent group C and D inspections is available from Burr-Brown.
4.4.1 Group A inspection. Group A inspection consists of the test subgroups and LTPD values shown in MIL-STD883, method 5005, and as specified in Table II herein.
 883 , method 5005 , class B.
4.4.3 Group C inspection. Group C inspection consists of the test subgroups and LTPD values shown in MIL-STD883, method 5005, and as follows:
a. Operating life test (MIL-STD-883, method 1005) conditions:
(1) Test condition B.
(2) Test circuit is shown in Figure 3.
(3) \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) minimum.
(4) Test duration is 1000 hours minimum.
b. End point electrical parameters are specified in Table II.
4.4.4 Group D. Group D inspection consists of the test subgroups and LTPD values shown in MIL-STD-883, method 5005 , end point electrical parameters.
4.4.5 Inspection of packaging. Inspection of packaging shall be in accordance with MIL-M-38510.
4.5 Methods of examination and test. Methods of examination and test are specified in the appropriate tables. Electrical test circuits are as prescribed herein or in the referenced test methods of MIL-STD-883.
4.5.1 Voltage and current. All voltage values given are referenced to the external zero reference level of the supply voltage. Currents given are conventional current and positive when flowing into the referenced terminal.

\section*{5. PACKAGING}
5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

\section*{6. NOTES}
6.1 Notes. The notes specified in MIL-M-38510 are applicable to this specification.
6.2 Intended use. Microcircuits conforming are intended for use in applications where the use of screened parts is required or desirable.
6.3 Ordering Data. The contract or purchase order should specify the following:
a. Complete part number (see paragraph 1.2).
b. Requirement for certificate of compliance, if desired.
6.4 Microcircuit group assignment. These microcircuits are assigned to Technology Group D as defined in MIL-M38510, Appendix E.
6.5 Electrostatic sensitivity. CAUTION—these microcircuits may be damaged by electrostatic discharge. Precautions should be observed at all times.

\subsection*{7.0 ELECTRICAL PERFORMANCE CURVES}
(Typical at \(+25^{\circ} \mathrm{C}\) unless otherwise specified.)








INPUT NOISE VOLTAGE




\section*{8. APPLICATION INFORMATION}
8.1 Description. The INA101 is a three-amplifier device which provides all the desirable characteristics of a premium performance instrumentation amplifier. In addition, it has features not normally found in integrated circuit instrumentation amplifiers. See simplified schematics in Figure 2.
The input section ( \(\mathrm{A}_{1}\) and \(\mathrm{A}_{2}\) ) incorporates high performance, low drift amplifier circuitry. The amplifiers are connected in the noninverting configuration to provide the high input impedance ( \(10^{10} \Omega\) ) desirable in the instrumentation amplifier function. The offset voltage and offset voltage versus temperature are low due to the monolithic design, and are improved even further by state-of-the-art laser-trimming techniques.
The output section \(\left(\mathrm{A}_{3}\right)\) is connected in a unity-gain difference amplifier configuration. A critical part of this stage is the matching of the four \(10 \mathrm{k} \Omega\) resistors which provide the difference. These resistors must be initially well matched and the matching must be maintained over temperature and time in order to retain excellent common-mode rejection.
8.2 Using the INA101. Figure 4 shows the simplest configuration of the INA101. The gain is set by the external resistor, \(\mathrm{R}_{\mathrm{G}}\), with a gain equation of \(\mathrm{G}=1+\left(40 \mathrm{k} / \mathrm{R}_{\mathrm{G}}\right)\). The reference and TCR of \(\mathrm{R}_{\mathrm{G}}\) contribute directly to the gain accuracy and drift.
For gains greater than unity, resistor \(\mathrm{R}_{\mathrm{G}}\) is connected externally. At high gains, where the value of \(\mathrm{R}_{\mathrm{G}}\) becomes small, additional resistance (i.e., relays, sockets) in the \(\mathrm{R}_{\mathrm{G}}\) circuit will contribute to a gain error. Care should be taken to minimize this effect.
8.3 Typical applications. Many applications of instrumentation amplifiers involve the amplification of low-level differential signals from bridges and transducers such as strain gauges, thermocouples, and RTD's. Some of the important parameters include common-mode rejection (differential cancellation of common-mode offset and noise), input impedance, offset voltage and drift, gain accuracy, linearity, and noise. The INA101 accomplishes all these with high precision.


FIGURE 4. Basic Circuit Configuration.


\title{
Low Noise Precision Difet \({ }^{\circledR}\) Military OPERATIONAL AMPLIFIER
}

\section*{FEATURES}
- FULLY COMPLIANT MIL-STD-883 PROCESSING
- LOW NOISE: \(100 \%\) tested, \(8 \mathrm{nV} / \sqrt{\mathrm{Hz}}\) max at 10 kHz
- LOW BIAS CURRENT: 2pA max
- LOW OFFSET: \(500 \mu \mathrm{~V}\) max
- LOW DRIFT: \(10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) max
- HIGH OPEN-LOOP GAIN: 114dB min
- HIGH COMMON-MODE REJECTION: 9OdB min

\section*{DESCRIPTION}

The OPAlll/883B is a precision monolithic dielec-trically-isolated FET (Difet) operational amplifier. Outstanding performance characteristics allow its use in the most critical instrumentation applications. The /883B versions are fully compliant to the requirements of MIL-STD-883.
Noise, bias current, voltage offset, drift, open-loop gain, common-mode rejection, and power supply rejection are superior to \(\mathrm{BIFET}^{\circledR}\) amplifiers.

Difet \({ }^{(8)}\) Burr-Brown Corp., BIFET® National Semiconductor Corp.

\section*{APPLICATIONS}
- PRECISION INSTRUMENTATION
- DATA ACQUISITION
- TEST EQUIPMENT
- OPTOELECTRONICS
- RADIATION-HARD EQUIPMENT

Very low bias current is obtained by dielectric isolation with on-chip guarding.
Laser-trimming of thin-film resistors gives very low offset and drift. Extremely low noise is achieved with new circuit design techniques (patented). A new cascode design allows high precision input specifications and reduced susceptibility to flicker noise.
Standard 741 pin configuration allows upgrading of existing designs to higher performance levels.

\title{
DETAILED SPECIFICATION MICROCIRCUITS, LINEAR LOW NOISE PRECISION Difet \({ }^{\circledR}\) OPERATIONAL AMPLIFIER MONOLITHIC, SILICON
}

\section*{1. SCOPE}
1.1 Scope. This specification covers the detail requirements for a precision low noise dielectrically-isolated (Difer) operational amplifier
1.2 Part Number. The complete part number is as shown below.

1.2.1 Device type. The device is a single precision dielectrically-isolated (Difef) low noise operational amplifier. One electrical performance grade (V) is provided. The V grade offers specifications and operation over the "MIL" temperature range \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\). Electrical specifications are shown in Table I, and electrical tests are shown in Tables II and III.
1.2.2 Device class. The device class is similar to the class B product assurance level as defined in MIL-M-38510. The


> Hi-Rel product designator
> /883B

(none)

\section*{Requirements}

Standard model, plus \(100 \%\) MIL-STD-883 class B screening, with \(5 \%\) PDA, plus quality conformance inspection ( QCI ) consisting of groups A and B performed on each inspection lot, plus groups C and D performed as required by MIL-STD-883.
Standard model including \(100 \%\) electrical testing.
1.2.3 Case outline. The case outline is A-1 (8-lead, TO-99) as defined in MIL-M-38510, Appendix C and is shown in Figure 1. The case is metal and is conductive.



NOTE: Leads in true position within \(.010^{\prime \prime}(.25 \mathrm{~mm}) \mathrm{R}\) at MMC at seating plane.
\begin{tabular}{|c|r|r|r|r|}
\hline \multirow{2}{*}{ DIM } & \multicolumn{2}{|c|}{ INCHES } & \multicolumn{2}{c|}{ MILLIMETERS } \\
\cline { 2 - 5 } & MIN & \multicolumn{1}{c|}{ MAX } & MIN & MAX \\
\hline A & .335 & .370 & 8.51 & 9.40 \\
\hline B & .305 & .335 & 7.75 & 8.51 \\
\hline C & .165 & .185 & 4.19 & 4.70 \\
\hline D & .016 & .021 & 0.41 & 0.53 \\
\hline E & .010 & .040 & 0.25 & 1.02 \\
\hline F & .010 & .040 & \multicolumn{2}{|c|}{0.25} \\
\hline G & .200 BASIC & \multicolumn{2}{|c|}{5.08 BASIC } \\
\hline H & .028 & .034 & \multicolumn{2}{|c|}{0.71} \\
\hline J & .029 & .045 & \multicolumn{1}{|c|}{0.74} & 1.14 \\
\hline K & .500 & - & 12.7 & - \\
\hline L & .110 & .160 & \multicolumn{2}{|c|}{2.79} \\
\hline M & \(45^{\circ}\) BASIC & 4.06 \\
\hline N & \multicolumn{2}{|c|}{.095} & .105 & \multicolumn{2}{|c|}{2.41} & 2.67 \\
\hline
\end{tabular}

FIGURE 1. Case Outline (TO-99) Package Configuration.
1.2.4 Absolute maximum ratings:
\begin{tabular}{ll} 
Supply voltage \(+\mathrm{V}_{\mathrm{cc}}\) & \(\pm 18 \mathrm{VDC}\) \\
Input voltage range & \(\pm 18 \mathrm{VDC} 1 /\) \\
Differential input voltage & \(\pm 36 \mathrm{VDC} 1 /\) \\
Internal power dissipation & 500 mW \\
Output short circuit duration & continuous to power supply common only \\
Storage temperature range & \(-65^{\circ} \mathrm{C}\) to \(+165^{\circ} \mathrm{C}\) \\
Temperature (soldering 10 s ) & \(+300^{\circ} \mathrm{C}\) \\
Junction temperature & \(\mathrm{T}_{\mathrm{J}}=+175^{\circ} \mathrm{C}\)
\end{tabular}

\subsection*{1.2.5 Recommended operating conditions}
\begin{tabular}{ll} 
Supply voltage & \(\pm 15 \mathrm{VDC}\) \\
Ambient temperature range & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\end{tabular}
1.2.6 Power and thermal characteristics
\(\frac{\text { Package }}{8 \text {-lead can }} \quad \frac{\text { Case outline }}{\text { Figure } 1} \quad \frac{\text { Maximum allowable power dissipation }}{500 \mathrm{~mW}} \quad \frac{\text { Maximum } \theta_{\mathrm{JC}}}{60^{\circ} \mathrm{C} / \mathrm{W}}\)

\section*{2. APPLICABLE DOCUMENTS}
2.1 The following form a part of this specification to the extent specified herein.
```

SPECIFICATION
MILITARY

```
        MIL-M-38510-Microcircuits, general specification for.
STANDARD
    MILITARY

MIL-STD-883-Test methods and procedures for microcircuits.

\section*{3. REQUIREMENTS}
3.1 General. Burr-Brown uses production and test facilities and a quality and reliability assurance program adequate to ensure successful compliance with this specification.
3.1.1 Detail specifications. The individual item requirements are specified herein. In the event of conflicting requirements, the order of precedence will be the purchase order, this specification, and then the reference documents.
3.2 Design, construction and physical dimensions.
3.2.1 Package, metals, and other materials. The package, metal surfaces, and other materials are in accordance with MIL-M-38510.
3.2.2 Design documentation. The design documentation is in accordance with MIL-M-38510.
3.2.3. Internal conductors and internal lead wires. The internal conductors and internal lead wires are in accordance with MIL-M-38510.
3.2.4. Lead material and finish. The lead material and finish is in accordance with MIL-M-38510 and is solderable per MIL-STD-883, method 2003.
3.2.5 Die thickness. The die thickness is in accordance with MIL-M-38510.
3.2.6 Physical dimensions. The physical dimensions are in accordance with paragraph 1.2 .3 herein and are shown in Figure 1 .
3.2.7 Circuit diagram and terminal connections. The circuit diagram and terminal connections are shown in Figure 2.


(b) Terminal Connections
*Patented
(a) Circuit Diagram

FIGURE 2. Circuit Diagram and Terminal Connections.
3.2.8 Glassivation. The microcircuit dice are glassivated.
3.3 Electrical performance characteristics. The electrical performance characteristics are specified in Table I and apply over the full operating ambient temperature range of \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) unless otherwise specified.

TABLE I. Electrical Performance Characteristics.
All characteristics at \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \pm \mathrm{V}_{\mathrm{CC}}=15 \mathrm{VDC}\), pin 8 connected to ground unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTICS} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{CONDITIONS \(1 /\)}} & \multicolumn{3}{|c|}{OPA111VM/883B OPA111VM} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & \\
\hline \multicolumn{8}{|l|}{GAIN} \\
\hline Open-Loop Voltage Gain & Avs & \(\left.\begin{array}{l}R_{L}=2 \mathrm{k} \Omega \\ \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{~F}=0 \mathrm{~Hz}\end{array}\right\}\) & \[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& 114 \\
& 110
\end{aligned}
\] & & & \[
\begin{aligned}
& \mathrm{dB} \\
& \mathrm{~dB}
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{RATED OUTPUT} \\
\hline \begin{tabular}{l}
Voltage \\
Current \\
Output Resistance \\
Load Capacitance Stability \\
Short Circuit Current
\end{tabular} & \[
\begin{aligned}
& V_{O P} \\
& \text { lo } \\
& R_{0} \\
& C_{L} \\
& \text { los }
\end{aligned}
\] & \begin{tabular}{l}
\[
\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega
\] \\
DC, Open Loop \\
Gain \(=+1\) \\
To Ground
\end{tabular} & \[
\begin{aligned}
& T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 10 \\
& \pm 5 \\
& \\
& \pm 10
\end{aligned}
\] & \[
\begin{gathered}
100 \\
1000
\end{gathered}
\] & & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA} \\
\Omega \\
\mathrm{pF} \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline \multicolumn{8}{|l|}{DYNAMIC RESPONSE} \\
\hline \begin{tabular}{l}
Bandwidth \\
Bandwidth \\
Slew Rate \\
Settling Time (0.1\%) \\
Settling Time (0.01\%) \\
Overload Recovery 2/
\end{tabular} & \begin{tabular}{l}
BW \\
BW \\
SR \\
\(\mathrm{T}_{\mathrm{s}}\) \\
Ts \\
\(\mathrm{T}_{\mathrm{R}}\)
\end{tabular} & Unity Gain-Small Signal Full Power
\[
\begin{aligned}
& R_{\mathrm{L}}=2!\Omega, V_{-}- \pm 10! \\
& G=-1, R_{L}=2 k \Omega, 10 \mathrm{~V} \text { step } \\
& G=-1, R_{L}=2 k \Omega, 10 \mathrm{~V} \text { step } \\
& G=-1
\end{aligned}
\] & \[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& T_{A}=+25^{\circ} \mathrm{C} \\
& T_{M}=+25^{\circ} \mathrm{C} \\
& T_{A}=+25^{\circ} \mathrm{C} \\
& T_{A}=+25^{\circ} \mathrm{C} \\
& T_{A}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & 16
1 & \[
\begin{gathered}
2 \\
\\
6 \\
10 \\
5
\end{gathered}
\] & & MHz
kHz
\(\because \mathrm{V}^{\prime} \mu \mathrm{s}\)
\(\mu \mathrm{s}\)
\(\mu \mathrm{s}\)
\(\mu \mathrm{s}\) \\
\hline \multicolumn{8}{|l|}{INPUT OFFSET VOLTAGE 3 /} \\
\hline \begin{tabular}{l}
Initial Offset \\
Temperature Sensitivity \\
vs Power Supply
\end{tabular} & \[
\begin{gathered}
V_{10} \\
D V_{10} \\
\text { PSRR }
\end{gathered}
\] & \[
\begin{aligned}
& V_{C M}=O V D C \\
& \frac{V_{10}\left(T_{A}\right)-V_{10}\left(+25^{\circ} C\right)}{\Delta T} \\
& V_{C C}= \pm 10 V_{C C}= \pm 18 \mathrm{VDC}
\end{aligned}
\] & \[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& -55 \leq T_{A} \leq+125^{\circ} \mathrm{C} \\
& T_{A}=+25^{\circ} \mathrm{C} \\
& -55 \leq T_{A} \leq+125^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline-500 \\
\\
-10 \\
-31 \\
-50 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& +500 \\
& \\
& +10 \\
& +31 \\
& +50 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{V}\) \\
\(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\(\mu \mathrm{V} / \mathrm{V}\) \\
\(\mu \mathrm{V} / \mathrm{V}\)
\end{tabular} \\
\hline \multicolumn{8}{|l|}{INPUT BIAS CURRENT 3/} \\
\hline Initial Bias vs Supply Voltage & \(1 / 8\) & \(V_{C M}=0\) & \[
\begin{aligned}
& T_{A}=+\cdot 25^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline-2 \\
-4100 \\
\hline
\end{array}
\] & & \[
\begin{gathered}
+2 \\
+4100
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{pA} \\
& \mathrm{pA}
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{INPUT OFFSET CURRENT 3/} \\
\hline Initial Offset & 110 & \(\mathrm{V}_{\mathrm{CM}}=0\) & \[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline-1.5 \\
-3100 \\
\hline
\end{array}
\] & . & \[
\begin{gathered}
+1.5 \\
+3100
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{pA} \\
& \mathrm{pA}
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{INPUT IMPEDANCE} \\
\hline Differential Common-Mode & \[
\begin{gathered}
Z_{10} \\
Z_{1 C M}
\end{gathered}
\] & . & \[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& T_{A}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & \(10^{13} \| \mid 1\)
\(10^{14} \| 3\) & & & \[
\begin{aligned}
& \Omega \| p F \\
& \Omega \| p F
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{INPUT NOISE} \\
\hline \begin{tabular}{l}
Voltage \\
Current
\end{tabular} & \begin{tabular}{l}
\(\mathrm{e}_{\mathrm{N}}\) \\
\(\mathrm{i}_{\mathrm{N}}\)
\end{tabular} & \[
\begin{aligned}
& f_{0}=10 \mathrm{~Hz} \\
& f_{0}=100 \mathrm{~Hz} \\
& f_{0}=1 \mathrm{kHz} \\
& f_{0}=10 \mathrm{kHz} \\
& f_{\mathrm{B}}=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\
& f_{\mathrm{B}}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\
& f_{0}=0.1 \mathrm{~Hz} \text { thru } 20 \mathrm{kHz}
\end{aligned}
\] & \[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& T_{A}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & & \[
\begin{aligned}
& 7.5 \\
& 0.4
\end{aligned}
\] & \[
\begin{gathered}
80 \\
40 \\
1.5 \\
8 \\
1.2
\end{gathered}
\] & \begin{tabular}{l}
\(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\(\mu \mathrm{V}\) rms \\
fA, p-p \\
(A \(\sqrt{\mathrm{Hz}}\)
\end{tabular} \\
\hline \multicolumn{8}{|l|}{INPUT VOLTAGE RANGE} \\
\hline Common-Mode Common-Mode Rejection & Vicm CMRR & \(\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}\) & \[
\begin{aligned}
& \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{gathered}
\pm 10 \\
90 \\
86
\end{gathered}
\] & & & V
dB
dB \\
\hline \multicolumn{8}{|l|}{POWER SUPPLY} \\
\hline Rated Voltage Voltage Range Quiescent Current & \begin{tabular}{l}
\(V_{c c}\) \\
lo
\end{tabular} & & - & \(\pm 5\) & \(\pm 15\) & \[
\begin{aligned}
& \pm 18 \\
& \pm 3.5
\end{aligned}
\] & \[
\begin{aligned}
& \text { VDC } \\
& \text { VDC } \\
& \mathrm{mA}
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{TEMPERATURE RANGE (ambient)} \\
\hline Operating Storage & & & & \[
\begin{aligned}
& \hline-55 \\
& -65
\end{aligned}
\] & & \[
\begin{aligned}
& +125 \\
& +150 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

1/ Optimum device performance is characterized in a reduced ambient light environment.
2/ Overload recovery is defined as the time required for the output to return from saturation to linear operation following the removal of a \(50 \%\) input overdrive signal.
3/ Offset voltage, offset current, and bias current are measured with units fully warmed up.
3.4 Electrical test requirements. Electrical test requirements are shown in Table II. The subgroups of Table III which constitute the minimum electrical test requirements for screening, qualification, and quality conformance inspection, are specified in Table II.

TABLE II. Electrical Test Requirements.
The individual tests within the subgroups appear in Table III.
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ MIL-STD-883 REQUIREMENTS } & \multicolumn{2}{|c|}{ MODELS } \\
\cline { 2 - 3 } & OPA111VM/883B & OPA111VM \\
\hline Interim electrical parameters (pre burn-in, method 5004) & \(1 *\) & 1 \\
\hline Final electrical test parameters (method 5004) & \(1,2,3,4,5,6,7\) & \(1,2,3,4,5,6,7\) \\
\hline Group A test requirements (method 5005) & \(1,2,3,4,5,6,7\) & - \\
\hline Group C and D end point electrical parameters (method 5005) & 1 & - \\
\hline
\end{tabular}
*PDA applies to subgroup 1 (see 4.3d).
TABLE III. Group A Inspection.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{SUBGROUP} & \multirow[b]{3}{*}{SYMBOL} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { MIL-STD-883 } \\
& \text { METHOD OR } \\
& \text { EQUIVALENT }
\end{aligned}
\]} & \multirow[b]{3}{*}{\begin{tabular}{l}
CONDITIONS
\[
\pm \mathrm{V}_{\mathrm{cc}}= \pm 15 \mathrm{VDC}
\] \\
unless otherwise specified
\end{tabular}} & & & \multirow[b]{3}{*}{UNITS} \\
\hline & & & & \multicolumn{2}{|l|}{OPA111VM/883B OPA111VM} & \\
\hline & & & & MIN & MAX & \\
\hline \[
T_{A}=\stackrel{1}{+25^{\circ} \mathrm{C}}
\] & \(V_{10}\) \(\mathrm{I}_{18}\) 110 PSRR CMRR \(\pm\) lcc los & \[
\begin{aligned}
& 4001 \\
& 4001 \\
& 4001 \\
& 4003
\end{aligned}
\] & \[
V_{C M}=O V D C
\]
\[
\begin{gathered}
V_{\mathrm{CC}}= \pm 10 \mathrm{VDC} \text { to } \pm 18 \mathrm{VDC} \\
\mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V} \\
\mathrm{I}_{0}=0 \mathrm{~mA}
\end{gathered}
\] & \[
\begin{gathered}
-500 \\
-2 \\
-1.5 \\
-31 \\
90 \\
\\
\pm 10
\end{gathered}
\] & \[
\begin{gathered}
+500 \\
+2 \\
+1.5 \\
+31 \\
\\
\pm 3.5
\end{gathered}
\] & \[
\begin{gathered}
\mu \mathrm{V} \\
\mathrm{pA} \\
\mathrm{pA} \\
\mu \mathrm{~V} / \mathrm{V} \\
\mathrm{~dB} \\
\mathrm{~mA} \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline \[
\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}
\] & DV 10 \(l_{18}\) \(l_{10}\) PSRR CMRR \(\pm\) loc los & \begin{tabular}{l}
4001 \\
4001. \\
4001 \\
4003
\end{tabular} & \[
V_{C M}=O V D C
\]
\[
\begin{aligned}
& V_{c c}= \pm 10 \mathrm{VDC} \text { to } \pm 18 \mathrm{VDC} \\
& \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V} \\
& \mathrm{I}_{0}=0 \mathrm{~mA}
\end{aligned}
\] & \[
\begin{gathered}
-10 \\
-4100 \\
-3100 \\
-50 \\
86 \\
\pm 10
\end{gathered}
\] & \[
\begin{gathered}
+10 \\
+4100 \\
+3100 \\
+50 \\
\\
\pm 3.5
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
pA pA \(\mu \mathrm{V} / \mathrm{V}\) \\
dB \\
mA \\
mA
\end{tabular} \\
\hline \[
T_{A}=-55^{\circ} \mathrm{C}
\] & DV \({ }_{10}\) \(l_{18}\) Io PSRR CMRR \(\pm\) lcc los & \[
\begin{aligned}
& 4001 \\
& 4001 \\
& 4001 \\
& 4003
\end{aligned}
\] & \[
V_{C M}=0 V D C
\]
\[
\begin{gathered}
\mathrm{V}_{\mathrm{cc}}= \pm 10 \mathrm{VDC} \text { to } \pm 18 \mathrm{VDC} \\
\mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V} \\
\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}
\end{gathered}
\] & \[
\begin{gathered}
-10 \\
-4100 \\
-3100 \\
86 \\
\pm 10 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
+10 \\
+4100 \\
+3100 \\
\pm 50 \\
\\
\pm 3.5
\end{gathered}
\] & \[
\begin{gathered}
\mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\
\mathrm{pA} \\
\mathrm{pA} \\
\mu \mathrm{~V} / \mathrm{V} \\
\mathrm{~dB} \\
\mathrm{~mA} \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline \[
\begin{gathered}
4 \\
T_{A}=+25^{\circ} \mathrm{C}
\end{gathered}
\] & \begin{tabular}{l}
\[
\pm \mathrm{V}_{\mathrm{OP}}
\] \\
Avs
\end{tabular} & 4004 & \[
\begin{aligned}
& R_{\mathrm{L}}=2 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\
& \hline
\end{aligned}
\] & 114 & \(\pm 10\) & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~dB} \\
\hline
\end{gathered}
\] \\
\hline \[
\begin{gathered}
5 \\
T_{\mathrm{A}}=+125^{\circ} \mathrm{C}
\end{gathered}
\] & \begin{tabular}{l}
\(\pm V_{\text {op }}\) \\
Avs
\end{tabular} & 4004 & \[
\begin{aligned}
& R_{L}=2 \mathrm{k} \Omega \\
& R_{L} \geq 2 \mathrm{k} \Omega
\end{aligned}
\] & 110 & \(\pm 10\) & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~dB}
\end{gathered}
\] \\
\hline \[
T_{A}=\frac{6}{-55^{\circ} \mathrm{C}}
\] & \begin{tabular}{l}
\(\pm \mathrm{V}_{\mathrm{op}}\) \\
Avs
\end{tabular} & 4004 & \[
\begin{aligned}
& R_{L}=2 \mathrm{k} \Omega \\
& R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\
& \hline
\end{aligned}
\] & 110 & +10 & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~dB}
\end{gathered}
\] \\
\hline \[
\mathrm{T}_{\mathrm{A}}=\stackrel{7}{+25^{\circ} \mathrm{C}}
\] & \begin{tabular}{l}
SR \\
\(\mathrm{e}_{\mathrm{N}}\) \\
BWFP
\end{tabular} & 4002 & \[
\begin{gathered}
\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\
\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\
\mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz} \\
\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz} \\
\mathrm{f}_{\mathrm{O}}=10 \mathrm{kHz} \\
\mathrm{f}_{\mathrm{B}}=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}
\end{gathered}
\] & \begin{tabular}{l}
1 \\
16
\end{tabular} & \[
\begin{gathered}
80 \\
40 \\
15 \\
8 \\
1.2
\end{gathered}
\] & \(\mathrm{V} / \mu \mathrm{s}\) \(n V \sqrt{H z}\) \(n V \sqrt{\mathrm{~Hz}}\) \(n V \sqrt{\mathrm{~Hz}}\) \(n V \sqrt{\mathrm{~Hz}}\) \(\mu \mathrm{Vrms}\) kHz \\
\hline
\end{tabular}
3.5 Marking. Marking is in accordance with MIL-M-38510. The following marking is placed on each microcircuit as a minimum:
a. Part number (see paragraph 1.2)
b. Inspection lot identification code \(1 /\)
c. Manufacturer's identification ( Unenamour )
d. Manufacturer's designating symbol (CEBS)
e. Country of origin
f. Electrostatic sensitivity identifier ( \(\Delta\) )
3.6 Workmanship. These microcircuits are manufactured, processed, and tested in a workmanlike manner. Workmanship is in accordance with good engineering practices, workmanlike instructions, inspection and test procedures and training, prepared in fulfillment of Burr-Brown's product assurance program.
3.6.1 Rework provisions. Rework provisions, including rebonding for the "/883B" product designation, are in accordance with MIL-M-38510.
3.7 Traceability. Traceability for the "/883B" product designation is in accordance with MIL-M-38510. Each microcircuit is traceable to the production lot and to the component vendor's component lot.
3.8 Product and process change. Burr-Brown will not implement any major change to the design, materials, construction, or manufacturing process which may affect the performance, quality, or interchangeability of the microcircuit without full or partial requalification.
3.9 Screening. Screening for the "/883B" Hi-Rel product designation is in accordance with MIL-STD-883, method 5004 , class B, except as modified herein.
Screening for the standard model includes Burr-Brown QC4118 internal visual inspection, stabilization bake, fine leak, gross leak, constant acceleration (condition A), temperature cycle (condition C), and external visual per MIL-STD883, method 2009.
For the " \(;\) ô3n" product designation, all microcircuits will have passed the screening requirements prior to qualification or quality conformance inspection.
3.10 Qualification. Qualification is not required. See paragraph 4.2 herein.
3.11 Quality conformance inspection. Quality conformance inspection, for the "/883B" product designation, is in accordance with MIL-M-38510, except as modified in paragraph 4.4 herein. The microcircuit inspection lot will have passed quality conformance inspection prior to microcircuit delivery.

\section*{4. PRODUCT ASSURANCE PROVISIONS}
4.1 Sampling and inspection. Sampling and inspection procedures are in accordance with MIL-M-38510 and MIL-STD-883, method 5005, except as modified herein.
4.2 Qualification. Qualification is not required unless specifically required by contract or purchase order. When so required, qualification will be in accordance with the-inspection routine of MIL-M-38510, paragraph 4.4.2.1. The inspections to be performed are those specified herein for groups \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and D inspections (see paragraphs 4.4.1, 4.4.2, 4.4.3, and 4.4.4).

Burr-Brown has performed and successfully completed qualification inspections as described above. The most recent report is available from Burr-Brown.
4.3 Screening. Screening for the "/883B" Hi-Rel product designation is in accordance with MIL-STD-883, method 5004 , class B, and is conducted on all devices. The following criteria apply:
a. Interim and final test parameters are specified in Table II.
b. Burn-in test (MIL-STD-883, method 1015) conditions:
(1) Test condition B.
(2) Test circuit is Figure 3.
(3) \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) minimum.
(4) Test duration is 160 hours minimum.
c. Percent defective allowable (PDA). The PDA, for "/883B" product designation only, is five percent and includes both parametric and catastrophic failures from group A, subgroup 1 test, after cool-down as final electrical test in accordance with MIL-STD-883, method 5005, and with no intervening electrical measurements. If interim electrical parameter tests are performed prior to burn-in, failures resulting from preburn-in screening failures may be excluded from the PDA. If interim electrical parameter tests are omitted, all screening failures shall be included in the PDA. The verified failures of group A, subgroup 1, after burn-in are used to determine the percent defective for each manufacturing lot, and the lot is accepted or rejected based on PDA.
d. External visual inspection need not include measurement of case and lead dimensions.
4.4 Quality conformance inspection. Groups A and B inspections of MIL-STD-883, method 5005, class B, are performed on each inspection lot. Groups \(C\) and \(D\) inspections of MIL-STD-883, method 5005, class B are performed as required by MIL-STD-883.

A report of the most recent group C and D inspections is available from Burr-Brown.
4.4.1 Group A inspection. Group A inspection consists of the test subgroups and LTPD values shown in MIL-STD883, method 5005 , and as specified in Table II herein.
4.4.2 Group B inspection. Group B inspection consists of the test subgroups and LTPD values shown in MIL-STD883 , method 5005 , class B.
4.4.3 Group C inspection. Group C inspection consists of the subgroups and LTPD values shown in MIL-STD-883, method 1005, class B, and as follows:
a. Operating life test (MIL-STD-883, method 1005) conditions:
(1) Test condition B.
(b) Test circuit is Figure 3.
(3) \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) minimum.
(4) Test duration is 1000 hours minimum.
b. End point electrical parameters are specified in Table II herein.


FIGURE 3. Test Circuit, Burn-In and Operating Life Test.
4.4.4 Group D inspection. Group D inspection consists of the test subgroups and LTPD values shown in MIL-STD883, method 5005.
4.4.5 Inspection of packaging. Inspection of packaging shall be in accordance with MIL-M-38510.
4.5 Methods of examination and test. Methods of examination and test are specified in the appropriate tables. Electrical test circuits are as prescribed herein or in the referenced test methods of MIL-STD-883.
4.5.1 Voltage and current. All voltage values given, except the input offset voltage (or differential voltage) are referenced to the external zero reference level of the supply voltage. Currents given are conventional current and positive when flowing into the referenced terminal.

\section*{5. PACKAGING}
5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
6. NOTES
6.1 Notes. The notes specified in MIL-M-38510 are applicable to this specification.
6.2 Intended use. Microcircuits conforming to this specification are intended for use in applications where the use of screened parts is required or desirable.
6.3 Ordering data. The contract or purchase order should specify the following:
a. Complete part number (see paragraph 1.2).
b. Requirement for certificate of compliance, if desired.
6.4 Microcircuit group assignment. These microcircuits are assigned to Technology Group E with a microcircuit group number of 61 as defined in MIL-M-38510, Appendix E.
6.5 Electrostatic sensitivity. CAUTION-these microcircuits may be damaged by electrostatic discharge. Precautions should be observed at all times.
7. ELECTRICAL PERFORMANCE CURVES.
\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{VDC}\) unless otherwise noted.


TOTAL* INPUT VOLTAGE NOISE SPECTRAL







BIAS AND OFFSET CURRENT


POWER SUPPLY REJECTION
vs FREQUENCY



COMMON-MODE REJECTION
vs INPUT COMMON MODE VOLTAGE







GAIN-BANDWIDTH AND SLEW RATE vs SUPPLY VOLTAGE



\section*{8. APPLICATION INFORMATION}
8.1 Offset voltage adjustment. Although the OPA111/883B Series has a low initial offset voltage ( \(500 \mu \mathrm{~V}\) ), some applications may require external nulling of this small offset. Figure 4 shows the recommended circuit for adjustment of the offset voltage. External offset voltage adjustment changes the laser-adjusted offset-voltage temperature drift slightly. The drift will change approximately \(0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) for every \(100 \mu \mathrm{~V}\) of offset adjustment.


FIGURE 4. Offset Voltage Trim.
8.2 Guarding and shielding. The ultra-low bias current and high input impedance of the OPA111/883B Series are well-suited to a number of stringent applications; however, careless signal wiring of printed circuit board layout can degrade circuit performance several orders of magnitude below the capability of the OPAll1/883B Series.
As in any situation where high impedances are involved, careful shielding is required to reduce "hum" pickup in input leads. If large feedback resistors are used, they should also be shielded along with the external input circuitry.

Leakage currents across printed circuit boards can easily exceed the amplifier's bias current of the OPA111/883B Series. To avoid leakage problems, it is recommended that the signal input lead of the OPAlll/883B Series be wired to a Teflon \({ }^{\text {M }}\) standoff. If the OPA111/883B Series is to be soldered directly into a printed circuit board, utmost care must be used in planning the board layout. A "guard" pattern should completely surround the two amplifier input leads and should be connected to a low input impedance point which is at the signal input potential.
The amplifier case should be connected to any input shield or guard via pin 8 . This insures that the amplifier itself is fully surrounded by guard potential, minimizing both leakage and noise pickup. Figure 5 illustrates the use of the guard. The resistor \(R_{3}\) shown in Figure 5 is optional. It may be used to compensate effects of very large source resistances. However, note that its use would also increase the noise due to the thermal noise of \(R_{3}\).
8.3 Additional application information. Additional application information is presented in the commercial OPAlll data sheet.


FIGURE 5. Connection of Input Guard.

\title{
High Current, High Power Military OPERATIONAL AMPLIFIER
}

\section*{FEATURES}
- WIDE SUPPLY RANGE, \(\pm 10 \mathrm{~V}\) to \(\pm 40 \mathrm{~V}\)
- HIGH OUTPUT CURRENT, \(\pm 10 \mathrm{~A}\) Peak
- HIGH OUTPUT POWER, 26OW Peak
- LOW DC THERMAL IMPEDANCE: \(2.2^{\circ} \mathrm{C} / \mathrm{W}\)
- MIL-STD-883 SCREENING

\section*{DESCRIPTION}

The OPA501 is a high power operational amplifier. Its high current output stage delivers \(\pm 10 \mathrm{~A}\), yet the amplifier is unity-gain stable and it can be used in any operational amplifier configuration. The 260 W peak output capability allows the OPA501 to drive loads (such as motors) with a greater safety margin.
Safe operating area is fully specified and output current limiting is provided to protect both the amplifier and the load from excessive current.
This hybrid IC is housed in an 8-pin hermetic TO-3 package. The electrically-isolated package allows direct mounting to chassis or heat sink without an insulating washer or spacer which would increase thermal resistance.
Two electrical performance grades are available. The premium grade operates from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) and is designed for military, aerospace, and demanding industrial applications. The \(U\) grade has specifications for operation from \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) and from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\). Applications include test equip-
ment, shipboard, and ground support equipment where operation is normally between \(-25^{\circ} \mathrm{C}\) and \(+85^{\circ} \mathrm{C}\) and full temperature range operation must be assured.
The OPA501/883B Series is manufactured on a separate Hi -Rel manufacturing line with impeccable clean room conditions, which assures inherent quality and provides for long product life.
Two product assurance levels are available: Standard and /883B. The Standard product assurance level offers Hi-Rel manufacturing where many MIL-STD-883 screens are performed routinely. The /883B product assurance level, /883B suffix, offers \({ }^{-} \mathrm{Hi}-\mathrm{Rel}\) manufacturing, \(100 \%\) screening per MIL-STD-883 method 5008 and \(10 \%\) PDA. Quality assurance further processes / 883B devices, by performing group A and B inspections on each inspection lot and group C and D inspections as required by MIL-STD-883. A report containing the most recent group \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and D tests is available for a nominal charge.

\footnotetext{
NOTE: This device was previously identified as OPA8785/883B
Series.
}

\title{
DETAILED SPECIFICATION MICROCIRCUITS, LINEAR HIGH CURRENT, HIGH POWER OPERATIONAL AMPLIFIER HYBRID, SILICON
}

\section*{1. SCOPE}
1.1 Scope. This specification covers the detail requirements for a high current, high power operational amplifier.
1.2 Part Number. The complete part number is as shown below.
\(\frac{\text { OPA501 }}{\text { Basic model }}\)\begin{tabular}{c} 
number
\end{tabular} \(\frac{\mathrm{T}}{\)\begin{tabular}{c}
\text { Grade } \\
\text { (see 1.2.1) }
\end{tabular}}\(\frac{\frac{\mathrm{T}}{\text { Package }}}{\)\begin{tabular}{c}
\text { (see 1.2.3) }
\end{tabular}}\(\quad \frac{\frac{1883 \mathrm{~B}}{\text { Hi-Rel product }}}{\)\begin{tabular}{c}
\text { designator (see 1.2.1) }
\end{tabular}}
1.2.1 Device type. The device is a single operational amplifier. Two electrical performance grades are provided. The V grade offers performance specifications over the MIL temperature range \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\) and the U grade is specified over the industrial temperature range \(\left(-25^{\circ} \mathrm{C}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\). Electrical specifications are shown in Table I and electrical tests are shown in Tables II and III.
1.2.2 Device class. The device class is similar to the class B product assurance level as defined in MIL-M-38510. The Hi-Rel piouduct designatū portion of the pait number distinguishes the product ascurance levels available as follows:

Hi-Rel Product
Designator

\section*{Requirements}
/883B Standard model plus \(100 \%\) MIL-STD-883 class B screening, with \(10 \%\) PDA, plus quality conformance inspection (QCI) consisting of Groups A and B performed on each inspection lot, plus Groups C and D performed as required by MIL-STD-883.
(none) Standard model including \(100 \%\) electrical testing.
1.2.3 Case Outline. The case outline is an 8-pin TO-3 package and is depicted in Figure 1.


NOTE: Leads in true position within \(.010^{\prime \prime}\) (.25mm) R at MMC at seating plane.
Pin numbers shown for reference only. Numbers may not be marked on package.
\begin{tabular}{|c|r|r|r|r|}
\hline \multirow{2}{*}{ DIM } & \multicolumn{2}{|c|}{ INCHES } & \multicolumn{2}{c|}{ MILLIMETERS } \\
\cline { 2 - 5 } & \multicolumn{1}{|c|}{ MIN } & MAX & MIN & MAX \\
\hline A & 1.510 & 1.550 & 38.35 & 39.37 \\
\hline B & .745 & .770 & 18.92 & 19.56 \\
\hline C & .260 & .340 & 6.60 & 8.64 \\
\hline D & .038 & .042 & 0.97 & 1.07 \\
\hline E & .080 & .105 & 2.03 & 2.67 \\
\hline F & \(40^{\circ}\) BASIC & \multicolumn{1}{c|}{\(40^{\circ}\) BASIC } \\
\hline G & .500 BASIC & \multicolumn{2}{|c|}{12.7 BASIC } \\
\hline H & 1.186 BASIC & \multicolumn{2}{|c|}{30.12 BASIC } \\
\hline J & .593 BASIC & \multicolumn{2}{|c|}{15.06 BASIC } \\
\hline K & .400 & .500 & 10.16 & 12.70 \\
\hline Q & .151 & .161 & 3.84 & 4.09 \\
\hline R & .980 & 1.020 & 24.89 & 25.91 \\
\hline
\end{tabular}

FIGURE 1. Case Outline (TO-3) Package Configuration.
1.2.4 Absolute maximum ratings.
\begin{tabular}{|c|c|}
\hline Supply Voltage \(\mathrm{V}_{\mathrm{c}}\) & \(\pm 40 \mathrm{VDC}\) \\
\hline Differential input voltage & \(\pm \mathrm{V}_{\mathrm{cc}}-3\) \\
\hline DC internal power dissipation & 80W 1/ \\
\hline AC internal power dissipation (10k & 160W 1/ \\
\hline Output short circuit duration & Continuous to ground \\
\hline Storage temperature range & \(-65^{\circ} \mathrm{C}\) to \(+165^{\circ} \mathrm{C}\) \\
\hline Lead temperature (soldering, 60 sec ). & \(300^{\circ} \mathrm{C}\) \\
\hline Junction temperature & \(\mathrm{T}_{\mathrm{j}}=200^{\circ} \mathrm{C}\) \\
\hline Common-mode input voltage & \(\pm \mathrm{V}_{\text {CC }}\) \\
\hline
\end{tabular}
1.2.5 Recommended operating conditions.

Supply voltage Range .......................................... \(\mathbf{4}\) 3VDC (see Table I)
Ambient temperature range
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
1.2.6 Power and thermal characteristics.
\begin{tabular}{cccc} 
& Case & Maximum allowable & Maximum \\
Package & \(\underline{\text { outline }}\) & power dissipation & \(\underline{\theta-\mathrm{W}}\) \\
8-lead TO-3 & Figure 1 & & \(2.2^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular}

\section*{2. APPLICABLE DOCUMENTS}
2.1 The following documents form a part of this specification to the extent specified herein.
SPECIFICATION
MILITARY
MIL-M- 38510 -Microcircuits, general specifications for.
STANDARD
MILITARY
MIL-STD-883-Test methods and procedures for microcircuits.

\section*{3. REQUIREMENTS}
3.1 General. Burr-Brown uses production and test facilities and a quality and reliability assurance program adequate to assure successful compliance with this specification.
3.1.1 Detail specifications. The individual item requirements are specified herein. In the event of conflicting requirements the order of precedence will be the purchase order, this specification, and then the reference documents.
3.2 Design, construction, and physical dimensions.
3.2.1 Package, metals, and other materials. The packages, metal surfaces, and other materials are in accordance with MIL-M-38510.
3.2.2 Design Documentation. The design documentation is in accordance with MIL-M-38510.
3.2.3 Internal conductors and internal lead wires. The internal conductors and internal lead wires are in accordance with MIL-M-38510.
3.2.4 Lead material and finish. The lead material and finish is in accordance with MIL-M-38510 and is solderable per MIL-STD-883, method 2003.
3.2.5 Die thickness. The die thickness is in accordance with MIL-M-38510.
3.2.6 Physical dimensions. The physical dimensions are in accordance with paragraph 1.2.3 herein.
3.2.7 Circuit diagram and terminal connections. The circuit diagram and terminal connections are shown in Figure 2.
3.2.8 Glassivation. The microcircuit dice are glassivated.
3.3 Electrical performance characteristics. The electrical performance charactersitics are specified in Table I and apply over the full operating ambient temperature range of \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) unless otherwise specified.

1/ \(\mathrm{T}_{\mathrm{A}} \leq+25^{\circ} \mathrm{C}\).

(a) Circuit Diagram

(b) Terminal Connections-Top View

FIGURE 2. Circuit Diagram and Terminal Connections.

TABLE I. Electrical Performance Characteristics.
All characteristics at \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \pm \mathrm{V}_{\mathrm{cc}}=34 \mathrm{VDC}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTICS} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|r|}{OPA501VM/883B OPA501VM} & \multicolumn{3}{|c|}{OPA501UM/883B OPA501UM} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \begin{tabular}{l}
RATED OUTPUT \(1 / 2 /\) \\
Output Current Continuous 3/ Output Voltage 3/
\end{tabular} & \[
\begin{aligned}
& \mathrm{l}_{\text {OP }} \\
& \mathrm{V}_{\mathrm{OP}} \\
& \mathrm{~V}_{\mathrm{P}}
\end{aligned}
\] & \[
\begin{aligned}
& R_{L}=2.6 \Omega, T_{A}=+25^{\circ} \mathrm{C} \\
& R_{L}=10 \mathrm{k} \Omega \\
& \mathrm{I}_{\mathrm{O}}=10 \mathrm{~A} \text { peak, } 10 \mathrm{kHz} \text { sine wave, } \\
& T_{A}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& -10 \\
& -30 \\
& \\
& -26
\end{aligned}
\] & & \[
\begin{aligned}
& +10 \\
& +30 \\
& +26
\end{aligned}
\] & \[
-20
\] & & \[
+20
\] & \[
\begin{aligned}
& A \\
& \text { V } \\
& \text { V }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
DYNAMIC RESPONSE \\
Bandwidth \\
Bandwidth \\
Slew Rate
\end{tabular} & \begin{tabular}{l}
BW \\
BW \\
SR
\end{tabular} & \[
\begin{aligned}
& \text { Unity Gain, Small Signal } T_{A}=+25^{\circ} \mathrm{C} \\
& \text { Full Power } V_{O}=40 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=8 \Omega \text {, } \\
& T_{A}=+25^{\circ} \mathrm{C} \\
& R_{L}=6.5 \Omega
\end{aligned}
\] & \[
\begin{gathered}
10 \\
1.35
\end{gathered}
\] & 1 & & * & * & & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{kHz} \\
& \mathrm{~V} / \mu \mathrm{s}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
INPUT OFFSET VOLTAGE \\
Initial Offset \\
Tempco \\
Vs Supply Voltage
\end{tabular} & \begin{tabular}{l}
\(V_{10}\) DV \({ }_{10}\) \\
PSRR
\end{tabular} & \[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& {\left[V_{10}\left(T_{A}\right)-V_{10}\left(+25^{\circ} \mathrm{C}\right)\right] \div \Delta T} \\
& -55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \\
& -25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C} \\
& V_{C C}= \pm 10, V_{C C}= \pm 40, T_{A}=+25^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& -5 \\
& -40 \\
& -100 \\
& -200
\end{aligned}
\] & & \[
\begin{aligned}
& +5 \\
& +40 \\
& +100 \\
& +200
\end{aligned}
\] & \[
\begin{aligned}
& -10 \\
& -65
\end{aligned}
\] & & \[
\begin{aligned}
& +10 \\
& +65
\end{aligned}
\] & \begin{tabular}{l}
mV \\
\(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\(\mu \mathrm{V} / \mathrm{V}\) \\
\(\mu \mathrm{V} / \mathrm{V}\)
\end{tabular} \\
\hline INPUT BIAS CURRENT Initial
Vs Supply & \(I_{18}\) & \[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \\
& -25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}
\end{aligned}
\] & & \(\pm 0.02\) & \(\pm 20\)
\(\pm 35\) & & \(\pm 0.02\) & \[
\begin{aligned}
& \pm 40 \\
& \pm 50
\end{aligned}
\] & \[
\begin{gathered}
n A \\
n A \\
n A \\
n A / V
\end{gathered}
\] \\
\hline INPUT DIFFERENCE CURRENT Initial & los & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\
& -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}
\end{aligned}
\] & & & \(\pm 3\)
\(\pm 7\) & & & \[
\begin{aligned}
& \pm 10 \\
& \pm 7
\end{aligned}
\] & \[
\begin{aligned}
& n A \\
& n A \\
& n A
\end{aligned}
\] \\
\hline OPEN LOOP GAIN, DC & Avs & \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & 94 & & & 90 & & , & dB \\
\hline INPUT IMPEDANCE & \[
\begin{aligned}
& Z_{10} \\
& Z_{1 \mathrm{CM}}
\end{aligned}
\] & & & \[
\begin{gathered}
10 \\
250
\end{gathered}
\] & & & * & & \[
\begin{aligned}
& M \Omega \\
& M \Omega
\end{aligned}
\] \\
\hline
\end{tabular}

TABLE I. Electrical Performance Characteristics (cont).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTICS} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{OPA501VM/883B OPA501VM} & \multicolumn{3}{|r|}{OPA501UM/883B OPA501UM} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \begin{tabular}{l}
INPUT NOISE \\
Voltage Noise \\
Current Noise
\end{tabular} & \begin{tabular}{l}
\(e_{n}\) \\
\(\mathrm{i}_{\mathrm{n}}\)
\end{tabular} & \[
\begin{aligned}
& f_{n}=0.3 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\
& f_{n}=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\
& f_{n}=0.3 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\
& f_{n}=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}
\end{aligned}
\] & & \begin{tabular}{c}
3 \\
5 \\
20 \\
4.5 \\
\hline
\end{tabular} & & & * \({ }^{*}\) & & \begin{tabular}{l}
\(\mu \mathrm{V}\), p-p \\
\(\mu \mathrm{V}\), rms \\
pA, p-p \\
pA, rms \({ }^{\prime}\)
\end{tabular} \\
\hline \begin{tabular}{l}
INPUT VOLTAGE RANGE \\
Common-mode \\
Common-mode Rejection
\end{tabular} & \(V_{\text {ICm }}\) CMRR & Linear Operation
\[
\begin{aligned}
& F=D C, V_{1 C M}= \pm 22 V \\
& T_{A}=+25^{\circ} \mathrm{C}
\end{aligned}
\] &  & & & \(*\)
70
70 & & & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~dB} \\
\mathrm{~dB}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
POWER SUPPLY \\
-Rated Voltage Operating Voltage Range Current, Quiescent
\end{tabular} & \begin{tabular}{l}
\(V_{c c}\) \\
lo
\end{tabular} & , & \(\pm 10\) & \(\pm 34\) & \[
\begin{aligned}
& \pm 40 \\
& \pm 10
\end{aligned}
\] & * & * & * & \[
\begin{gathered}
V \\
V \\
m A
\end{gathered}
\] \\
\hline \begin{tabular}{l}
TEMPERATURE RANGE \\
Specification \\
Storage
\end{tabular} & & \(\cdots\) & \[
\begin{aligned}
& -55 \\
& -65
\end{aligned}
\] & & \[
\begin{aligned}
& +125 \\
& +150
\end{aligned}
\] & \({ }^{-25}\) & & +85
\(*\) & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}
*Specification same as OPA501 "V" grade.
NOTES:
1/ Package must be derated based on a junction-to-case thermal resistance of \(2.2^{\circ} \mathrm{C} / \mathrm{W}\) or a junction-to-ambient thermal resistance of \(30^{\circ} \mathrm{C} / \mathrm{W}\).
2/ Safe Operating Area and Power Derating Curves must be observed.
\(3 /\) With \(\pm \mathrm{R}_{\mathrm{sc}}=0\). Peak output current is typically greater than 10A if duty cycle and pulse width limitations are observed. Output current greater than 10A is not guaranteed.
3.4 Electrical test requirements. Electrical test requirements are shown in Table II. The subgroups of Table III which constitute the minimum electrical test requirements for screening, qualification, and quality conformance are specified in Table II.

TABLE II. Electrical Test Requirements.
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{2}{*}{ MIL-STD-883 REQUIREMENTS (HYBRID CLASS) } & \multicolumn{4}{|c|}{ MODELS } \\
\cline { 2 - 6 } & OPA501VM/883B & OPA501VM & OPA501UM/883B & OPA501UM \\
\hline Interim electrical parameters (Preburn-in) (method 5008) & 1 & 1 & 1 & 1 \\
\hline Final electrical test parameters (method 5008) & \(1 *, 2,3,4,5,6,7\) & \(1,2,3,4,5,6,7\) & \(1 *, 2,3,4,5,6,7\) & \(1,2,3,4,5,6,7\) \\
\hline Group A test requirements (method 5008) & \(1,2,3,4,5,6,7\) & - & \(1,2,3,4,5,6,7\) & \\
\hline Group C end point electrical parameters (method 5008) & 1 & - & 1 & - \\
\hline
\end{tabular}
*PDA applies to subgroup 1 for /883B Hi-Rel designator (see 4.3c).

TABLE III. Group A Inspection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{SUBGROUP} & \multirow[b]{3}{*}{SYMBOL} & \multirow[b]{3}{*}{MIL-STD-883 METHOD OR EQUIVALENT} & \multirow[b]{3}{*}{\begin{tabular}{l}
CONDITIONS
\[
\pm \mathrm{V}_{\mathrm{cc}}= \pm 34 \mathrm{VDC}
\] \\
unless otherwise specified
\end{tabular}} & \multicolumn{4}{|c|}{LIMITS} & \multirow[b]{3}{*}{UNITS} \\
\hline & & & & \multicolumn{2}{|l|}{OPA501VM/883B OPA501VM} & \multicolumn{2}{|l|}{OPA501UM/883B OPA501UM} & \\
\hline & & & & MIN & MAX & MIN & MAX & \\
\hline 1 & \(V_{10}\) & 4001 & & -5 & +5 & -10 & +10 & mV \\
\hline \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & lis+ & 4001 & & -20 & +20 & -40 & +40 & nA \\
\hline & lis- & 4001 & & -20 & +20 & -40 & +40 & nA \\
\hline & 110 & 4001 & & -3 & +3 & -10 & +10 & nA \\
\hline & +PSRR & 4003 & \(-\mathrm{V}_{\mathrm{cc}}=34 \mathrm{VDC},+\mathrm{V}_{\mathrm{cc}}=10\) to 40VDC & -100 & +100 & * & * & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline & -PSRR & 4003 & \(+\mathrm{V}_{\mathrm{cc}}=34 \mathrm{VDC},-\mathrm{V}_{\mathrm{cc}}=10\) to 40 VDC & -100 & +100 & * & * & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline & CMRR & 4003 & \(\mathrm{V}_{\mathrm{CM}}= \pm 22 \mathrm{~V}, \mathrm{~F}=\mathrm{DC}\) & 80 & & 70 &  & dB \\
\hline & Icc+ & 4005 & \(V_{C M}=0\), no load condition & & +10 & & * & mA \\
\hline & Icc- & 4005 & \(V_{C M}=0\), no load condition & -10 & & * & & mA \\
\hline
\end{tabular}

TABLE III. Group A Inspection (cont).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{SUBGROUP} & \multirow[b]{3}{*}{SYMBOL} & \multirow[b]{3}{*}{MIL-STD-883 METHOD OR EQUIVALENT} & \multirow[b]{3}{*}{\begin{tabular}{l}
CONDITIONS
\[
\pm V_{c C}= \pm 34 \mathrm{VDC}
\] \\
unless otherwise specified
\end{tabular}} & \multicolumn{4}{|c|}{LIMITS} & \multirow[b]{3}{*}{UNITS} \\
\hline & & & & \multicolumn{2}{|l|}{OPA501VM/883B OPA501VM} & \multicolumn{2}{|l|}{OPA501UM/883B OPA501UM} & \\
\hline & & & & MIN & MAX & MIN & MAX & \\
\hline \[
\begin{gathered}
2 \\
\mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}
\end{gathered}
\] & \[
\begin{gathered}
\text { DV } \mathrm{I}_{10} \\
I_{1 \mathrm{~B}+} \\
I_{1 \mathrm{~B}-} \\
I_{10} \\
+ \text { PSRR } \\
- \text { PSRR } \\
\text { CMRR } \\
I_{\mathrm{cc}+} \\
I_{\mathrm{cc}} .
\end{gathered}
\] & \begin{tabular}{l}
4001 \\
4001 \\
4001 \\
4001 \\
4003 \\
4003 \\
4003 \\
4005 \\
4005
\end{tabular} & \[
\left[V_{10}\left(+125^{\circ} \mathrm{C}\right)-V_{10}\left(+25^{\circ} \mathrm{C}\right)\right] \div 100
\]
\[
\begin{gathered}
-V_{c c}=34 \mathrm{VDC},+V_{c c}=10 \text { to } 40 \mathrm{VDC} \\
+V_{c c}=34 \mathrm{VDC},-V_{c c}=10 \text { to } 40 \mathrm{VDC} \\
V_{C M}= \pm 22 \mathrm{~V}, F=D C \\
V_{C M}=0, \text { no load condition } \\
V_{C M}=0, \text { no load condition }
\end{gathered}
\] & \[
\begin{gathered}
-40 \\
-35 \\
-35 \\
-7 \\
-200 \\
-200 \\
76 \\
-10
\end{gathered}
\] & \[
\begin{gathered}
+40 \\
+35 \\
+35 \\
+7 \\
+200 \\
+200 \\
+10
\end{gathered}
\] & \[
\begin{gathered}
-65 \\
-60 \\
-60 \\
-20 \\
* \\
* \\
70
\end{gathered}
\] & \[
\begin{aligned}
& +65 \\
& +60 \\
& +60 \\
& +20
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
nA \\
nA \\
nA \\
\(\mu \mathrm{V} / \mathrm{V}\) \\
\(\mu \mathrm{V} / \mathrm{V}\) \\
dB \\
mA \\
mA
\end{tabular} \\
\hline \[
\begin{gathered}
3 \\
T_{A}=-55^{\circ} \mathrm{C}
\end{gathered}
\] & DV \({ }_{10}\)
\(I_{18+}\)
\(I_{18-}\)
\(I_{10}\)
+ PSRR
-PSRR
CMRR
\(I_{\text {cct }}\)
\(I_{\text {cc- }}\) & 4001
4001
4001
4001
4003
4003
4003
4005
4005 & \[
\left[V_{10}\left(+25^{\circ} \mathrm{C}\right)-V_{10}\left(-55^{\circ} \mathrm{C}\right)\right] \div 80
\]
\[
\begin{gathered}
-V_{c C}=34 \mathrm{VDC},+V_{C C}=10 \text { to }+40 \mathrm{VDC} \\
+V_{C C}=34 \mathrm{VDC},-V_{C C}=10 \text { to } 40 \mathrm{VDC} \\
V_{C M}= \pm 22 \mathrm{~V}, F=D C \\
V_{C M}=0, \text { no load condition } \\
V_{C M}=0 \text {, no load condition }
\end{gathered}
\] & \[
\begin{gathered}
-40 \\
-35 \\
-35 \\
-7 \\
-200 \\
-200 \\
76 \\
-10
\end{gathered}
\] & \[
\begin{gathered}
+40 \\
+35 \\
+35 \\
+7 \\
+200 \\
+200 \\
+10
\end{gathered}
\] & \[
\begin{gathered}
-65 \\
-60 \\
-60 \\
-20 \\
* \\
* \\
70
\end{gathered}
\] & \[
\begin{aligned}
& +65 \\
& +60 \\
& +60 \\
& +20
\end{aligned}
\] & \[
\begin{gathered}
\mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\
\mathrm{nA} \\
\mathrm{nA} \\
\mathrm{nA} \\
\mu \mathrm{~V} / \mathrm{V} \\
\mu \mathrm{~V} / \mathrm{V} \\
\mathrm{~dB} \\
\mathrm{~mA} \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline \[
\begin{gathered}
4 \\
\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\end{gathered}
\] & \[
\begin{aligned}
& V_{\mathrm{OP}^{* *}} \\
& \text { lop }^{* *} \\
& \text { Avs }
\end{aligned}
\] & \[
\begin{aligned}
& 4004 \\
& 4004 \\
& 4004
\end{aligned}
\] & \(\mathrm{I}_{\mathrm{o}}=10 \mathrm{~A}\) peak, 10 kHz sine wave \(R_{L}=2.6 \Omega, 10 \mathrm{kHz}\) sine wave \(R_{\mathrm{L}}=10 \mathrm{k} \Omega\). & \[
\begin{gathered}
-26 \\
-10 \\
94
\end{gathered}
\] & \[
\begin{aligned}
& +<00 \\
& +10
\end{aligned}
\] & \[
\begin{gathered}
-20 \bar{u} \\
* \\
90
\end{gathered}
\] & \[
+20
\] & \[
\begin{gathered}
V \\
A \\
d B
\end{gathered}
\] \\
\hline \[
\begin{gathered}
5 \\
\mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}
\end{gathered}
\] & \[
\begin{aligned}
& V_{o p} \\
& A_{\mathrm{Vs}}
\end{aligned}
\] & \[
\begin{array}{r}
4004 \\
4004 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& R_{\mathrm{L}}=10 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega
\end{aligned}
\] & \[
\begin{gathered}
-30 \\
94
\end{gathered}
\] & +30 & \[
90
\] & * & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~dB}
\end{gathered}
\] \\
\hline \[
T_{A}=-55^{\circ} \mathrm{C}
\] & \[
V_{o p}
\]
Avs & \[
\begin{aligned}
& 4004 \\
& 4004 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& R_{\mathrm{L}}=10 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega
\end{aligned}
\] & \[
\begin{gathered}
-30 \\
94 \\
\hline
\end{gathered}
\] & +30 & \[
90
\] & * & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~dB}
\end{gathered}
\] \\
\hline \[
\begin{gathered}
7 \\
\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\end{gathered}
\] & SR & 4002 & \(\mathrm{R}_{\mathrm{L}}=6.5 \Omega\) & 1.35 & & * & & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline
\end{tabular}
* Specification same as OPA501 "V" grade.
** Performed in final electrical only.
3.5 Marking. Marking is in accordance with MIL-M-38510. The following marking is placed on each microcircuit as a minimum:
a. Part number (see paragraph 1.2)
b. Inspection lot identification code \(1 /\)

d. Manufacturer's designating symbol (CEBS)
e. Country of origin
f. Electrostatic sensitivity identifier ( \(\Delta\) )
3.6 Workmanship. These microcircuits are manufactured, processed, and tested in a workmanlike manner. Workmanship is in accordance with good engineering practices, workmanlike instructions, inspection and test procedures and training, prepared in fulfillment of Burr-Brown's product assurance program.
3.6.1 Rework provisions. Rework provisions, including rebonding for the \(/ 883 \mathrm{~B}\) product designation, are in accordance with MIL-M-38510.
3.7 Traceability. Traceability for the /883B product designation is in accordance with MIL-M-38510. Each microcircuit is traceable to the production lot and to the component vendor's component lot.
3.8 Product and process change. Burr-Brown will not implement any major change to the design, materials, construction, or manufacturing process which may affect the performance, quality or interchangeability of the microcircuit without full or partial requalification.
3.9 Screening. Screening for / 883B Hi-Rel product designation is in accordance with MIL-STD-883, method 5008, class B, except as modified in paragraph 4.3 herein.
Screening for the standard model includes Burr-Brown QC4118 internal visual inspection, stabilization bake, fine leak, gross leak, constant acceleration (condition A), temperature cycle (condition C), and external visual per MIL-STD-883, method 2009.

For the / 883 B product designation, all microcircuits will have passed the screening requirements prior to qualification or quality conformance inspection.
3.10 Qualification. Qualification is not required. See paragraph 4.2 herein.
3.11 Quality conformance inspection. Quality conformance inspection, for the \(/ 883 \mathrm{~B}\) product designation, is in accordance with MIL-M-38510, except as modified in paragraph 4.4 herein. The microcircuit inspection lot will have passed quality conformance inspection prior to microcircuit delivery.

\section*{4. PRODUCT ASSURANCE PROVISIONS}
4.1 Sampling and inspection. Sampling and inspection procedures are in accordance with MIL-M-38510 and MIL-STD-883, method 5008, except as modified herein.
4.2 Qualification. Qualification is not required unless specifically required by contract or purchase order. When so required, qualification will be in accordance with the inspection routine of MIL-M-38510, paragraph 4.4.2.1. The inspections to be performed are those specified herein for groups \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) and D inspections (see paragraphs 4.4.1, 4.4.2, 4.4.3, and 4.4.4).

Burr-Brown has performed and successfully completed qualification inspection as described above. The most recent report is available from Burr-Brown.
4.3 Screening. Screening for the /883B Hi-Rel product designation is in accordance with MIL-STD-883, method 5008, class B , and is conducted on all devices. The following criteria apply:
a. Interim and final test parameters are specified in Table II.
b. Burn-in test (MIL-STD-883, method 1015) conditions:
(1) Test condition B or D
(2) Test circuit is Figure 3 herein for condition \(B\)
(3) \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) minimum
(4) Test duration is 160 hours minimum
c. Percent defective allowable (PDA). The PDA, for /883B product designation only, is 10 percent and includes both parametric and catastrophic failures. It is based on failures from group A, subgroup 1 test, after cool-down as final electrical test in accordance with MIL-STD-883, method 5008, and with no intervening electrical measurements. If interim electrical parameter tests are performed prior to burn-in, failures resulting from preburn-in screening failures may be excluded from the PDA. If interim electrical parameter tests are omitted, all screening failures shall be included in the PDA. The verified failures of group A, subgroup 1, after burn-in are used to determine the percent defective for each manufacturing lot, and the lot is accepted or rejected based on the PDA:
d. External visual inspection need not include measurement of case and lead dimensions.


FIGURE 3. Test Circuit-Burn-in and Operating Life Test (Condition B).
4.4 Quality conformance inspection. Groups A and B inspections of MIL-STD-883, method 5008, class B, are performed on each inspection lot. Groups ' C and D inspections of MIL-STD-883, method 5008, class B are performed as required by MIL-STD-883. A report of the most recent group C and D inspections is available from Burr-Brown.
4.4.1 Group A inspection. Group A inspection consists of the test subgroups and LTPD values shown in MIL-STD883, method 5008, and as specified in Table II herein.
4.4.2 Group B inspection. Group B inspection consists of the test subgroups and LTPD values shown in MIL-STD883, method 5008 , class B.
4.4.3 Group C inspection. Group C inspection consists of the test subgroups and LTPD values shown in MIL-STD883, method 5008 , class B and as follows:
a. Operating life test (MIL-STD-883, method 1005) conditions:
(1) Test condition B or D
(2) Test circuit is Figure 3 herein for condition B
(3) \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) minimum
(4) Test condition is 1000 hours minimum
b. End point electrical parameters are specified in Table II herein.
4.4.4 Group D inspection. Group D inspection consists of the test subgroups and LTPD values shown in MIL-STD883, method 5008 and as follows:
a. End point electrical parameters are specified in Table II herein.
4.4.5 Inspection of packaging. Inspection of packaging shall be in accordance with MIL-M-38510.
4.5 Methods of examination and test. Methods of examination and test are specified in the appropriate tables. Electrical test circuits are as prescribed herein or in the referenced test methods of MIL-STD-883.
4.5.1 Voltage and current. All voltage values given, except the input offset voltage (or differential voltage) are referenced to the external zero reference level of the supply voltage. Currents given are conventional current and positive when flowing into the referenced terminal.

\section*{5. PACKAGING}
5.1 Packaging requirements. The requirments for packaging shall be in accordance with MIL-M-38510.

\section*{6. NOTES}
6.1 Notes. The notes specified in MIL-M-38510 are applicable to this specification.
6.2 Intended use. Microcircuits conforming to this specification are intended for use in applications where the use of screened parts is required or desirable.
6.3 Ordering data. The contract or purchase order should specify the following:
a. Complete part number (see paragraph 1.2).
h. Requirement for certificate of compliance, if desired.
6.4 Microcircuit group assignment. These microcircuits are assigned to Technology Group I as defined in MIL-M38510, Appendix E.
6.5 Electrostatic sensitivity. CAUTION-these microcircuits may be damaged by electrostatic discharge. Precautions should be observed at all times.

\section*{7. ELECTRICAL PERFORMANCE CURVES}

Typical at \(+25^{\circ} \mathrm{C}\) case and \(\pm \mathrm{V}_{\mathrm{cc}}=28 \mathrm{VDC}\) unless otherwise noted.


OUTPUT VOLTAGE SWING



COMMON MODE REJECTION
VS FREQUENCY


FULL POWER RESPONSE



INPUT BIAS CURRENT VS TEMPERATURE





\section*{8. APPLICATION INFORMATION}
8.1 Grounding. Because of the high output current capability of the OPA501/883B Series, the user is cautioned to observe proper grounding techniques. Figure 4 illustrates a recommended technique.
Note that the connections are such that the load current does not flow through the wire connecting the signal ground point to the power supply common. Also, power supply and load leads should be run physically separated from the amplifier input and signal leads.


FIGURE 4. Proper Power Supply Connections.
8.2 Supply bypassing. The OPA501 power supplies should be bypassed with \(50 \mu \mathrm{~F}\) tantalum capacitors connected as close as possible to pins 3 and 6 . These bypass capacitors should be connected to the load ground rather than the signal ground.
8.3 Current limits. OPA501 amplifier is designed so that both positive and negative load current limits can be set independently with external resistors \(+\mathrm{R}_{\mathrm{Sc}}\) and \(-\mathrm{R}_{\mathrm{Sc}}\) respectively. The approximate value of these resistors is given by the equation:
\[
\mathrm{R}_{\mathrm{SC}}=\left[\left(0.65 \div \mathrm{I}_{\text {LIMIT }}\right)-0.0437\right] \text { ohms }
\]

I \(_{\text {Limit }}\) is the desired maximum current in amperes. The power dissipation of the current limit resistor is:
\[
\mathbf{P}_{\max }=\mathrm{R}_{\mathrm{SC}}\left(\mathrm{I}_{\mathrm{LIMIT}}\right)^{2} \text { watts }
\]
\(\mathbf{R}_{\text {SC }}\) is in ohms and \(\mathrm{I}_{\text {LIMIT }}\) is in amperes.
Current limit resistors carry the full amplifier output current so lead lengths should be minimized. Highly inductive resistors can cause loop instability. Variation in limit with case temperature is shown in the Typical Performance Curves, paragraph 7.

The amplifier should be used with as low a current limit as possible for its particular application. This will minimize the chance of damaging the amplifier under abnormal load conditions and will increase reliability by limiting internal power dissipation.
The current limits may be used to generate other functions such as constant current supplies and torque or stall current limits for servomotor applications.
8.4 Heat sinking. The OPA501 requires a heat sink to limit output transistor junction temperature \(\left(\mathrm{T}_{\mathrm{J}}\right)\) to an absolute maximum of \(+200^{\circ} \mathrm{C}\). The steady-state thermal circuit is illustrated in Figure 5.


FIGURE 5. Simplified Steady-State Heat Flow Model.
Junction temperature \(\left(\mathrm{T}_{\mathrm{J}}\right)\) is found from the equation:
\[
\text { where } \quad \begin{aligned}
& \mathrm{T}_{\mathrm{J}}=\mathrm{P}_{\mathrm{D}}\left(\theta_{\mathrm{JC}}+\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}\right)+\mathrm{T}_{\mathrm{A}} \\
& \mathrm{P}_{\mathrm{D}}=\text { average amplifier power dissipation }(\mathrm{W}) \\
& \theta_{\mathrm{JC}}=\text { junction-to-case thermal resistance }\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& \theta_{\mathrm{CS}}=\text { case-to-sink thermal resistance }\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& \theta_{\mathrm{SA}}=\text { sink-to-ambient thermal resistance }\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& \mathrm{T}_{\mathrm{A}}=\text { ambient temperature }\left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
\]

For most heat sink calculations the quiescent power dissipation is very low ( \(<1 \mathrm{~W}\) ) and can be disregarded with only a small error.

The maximum size heat sink can be found as follows:
Example: Find the maximum thermal resistance (smallest heat sink) that can be used for an OPA501 with \(\pm \mathrm{V}_{\mathrm{CC}}=28 \mathrm{VDC}\). Output voltage is +10 VDC across a \(10 \Omega\) resistor and ambient temperature is \(+50^{\circ} \mathrm{C}\) :
\[
\theta_{\mathrm{SA}}=\left[\left(\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{A}}\right) \div \mathrm{PD}\right]-\theta_{\mathrm{CS}}-\theta_{\mathrm{JC}}
\]

As large a heat sink as possible should be used. \(\theta_{\text {CS }}\) depends on the flatness of the heat sink, the thermal compound used, and the roughness of the mating surfaces. Typical values are between \(0.1^{\circ} \mathrm{C} / \mathrm{W}\) and \(0.3^{\circ} \mathrm{C} / \mathrm{W}\) for \(\mathrm{TO}-3\) package properly mounted on a heat sink.
The OPA501 mounting flange is electrically-isolated and can be mounted directly to a heat sink without insulating washers or spacers.
The output transistor thermal resistance \(\left(\theta_{\mathrm{Jc}}\right)\) is a function of the output current pulse width, pulse shape, and duty cycle. Long duration pulses allow the junction temperature to approach its steady state value while shorter pulses cause a lower peak junction temperature due to the junction's thermal time constant. Heat is conducted away from the junction rapidly so that as the duty cycle decreases, junction temperature decreases.
Steady state \(\theta_{\mathrm{JC}}\) is rated at \(2.2^{\circ} \mathrm{C} / \mathrm{W}\) maximum. In applications where the amplifier's output current alternates between output transistors-for example, an AC amplifier-the transistor \(\theta_{\mathrm{JC}}\) will depend on frequency as shown in Figure 6.


FIGURE 6. Effective \(\theta_{\mathrm{JC}}\) for Applications Where Output Current Alternates Between Output Transistors.
8.5 Safe operating area (SOA). In addition to the limits imposed by power dissipation, the amplifier's output transistors are also limited by a second breakdown region. This occurs because of increased emitter current density due to current crowding at higher operating voltages. Both the dissipation and second breakdown limits depend on time and temperature. Figure 7 shows each output transistor's SOA at a case temperature of \(+25^{\circ} \mathrm{C}\).


FIGURE 7. Transistor Safe Operating Area at \(+25^{\circ} \mathrm{C}\) Case Temperature.

Limits for short pulse widths are substantially greater than for steady state (DC). At a case temperature of \(+125^{\circ} \mathrm{C}\) the SOA limits are reduced (see Figure 8). The SOA shown in these curves is based on a conservative linear derating of both the power dissipation and the second breakdown region.


FIGURE 8. Transistor Safe Operating Area at \(+125^{\circ} \mathrm{C}\) Case Temperature.

Resistive loads are easy to analyze by simply plotting load lines on the SOA curve. If the curve representing the load line stays within the OPA501 output transistor's SOA curve and all other parameters are observed, such as case temperature, etc., the amplifier will be safe. The load line can swing through the larger SOA limits if their time duration constraints are strictly observed.

Reactive loads present a more complex problem since the output voltage and current are not in phase. This results in the reactive load line becoming elliptical (when plotted on linear axes) which requires a larger SOA for safe operation.
Although detailed analysis is beyond the scope of this data sheet, the load line can be viewed on an oscilloscope as shown in Figure 9. The X-Y display is driven by the voltage across the load and by the current into the load. This setup can also display voltage and current stress across the OPA501 output transistors as shown in Figure 10. This data can then be compared to the SOA limits.
The amplifier is designed to operate with electromotive force generating loads such as servomotors, relays, and actuators. Careful attention must be paid to both the load characteristics and the amplifier's SOA to ensure safe operation.


FIGURE 9. Loadline Display.


FIGURE 10. Output Transistor Safe Operating Area Stress Display.

Figure 11 shows the OPA501 configured as a DC permanent magnet motor driver. The armature current ( \(\mathrm{I}_{\mathrm{A}}\) ) and motor voltage \(\left(\mathrm{V}_{\mathrm{M}}\right)\) are monitored by an oscilloscope in the \(\mathrm{X}-\mathrm{Y}\) mode. Slewing the motor with a 4 Hz sine wave results in the motor power ellipse of Figure 12. The input level has been adjusted to give \(\pm 20 \mathrm{~V}\), peak across the motor. An examination of the power ellipse indicates that the instantaneous power delivered to the motor exceeds the amplifier's output transistors safe operating area at a case temperature of \(+25^{\circ} \mathrm{C}\). The point at which the motor shows 0 V at -6.9 A is a problem. The voltage across the output is \(28 \mathrm{~V}-0 \mathrm{~V}=28 \mathrm{~V}\). Checking the SOA curve shows that the amplifier can safely withstand this condition for slightly under 5 msec . At 4 Hz this transient swing outside the DC SOA region is exceeded for much longer than 5 msec . Continued operation under these conditions will result in device failure. Peak junction temperatures should not exceed \(+200^{\circ} \mathrm{C}\). Perhaps a motor with a higher impedance winding should be considered for this application. Current limiting and lower supply voltage can also reduce dissipation.


FIGURE 11. Servomotor Amplifier.

Motors used in servo applications often require a surprisingly large current to accelerate quickly. Worst-case conditions occur when the motor is operating at full speed and is suddenly slammed into reverse ("plugging"). This condition is illustrated in Figure 13 when a DC servomotor is driven by a bipolar square wave. As the motor reverses direction, a large surge current flows, causing very-high peak power dissipation in the amplifier. After several time constants (determined by the inertia moment) the current drops to a lower steady-state value. Loading the motor increases the motor average power and amplifier dissipation. SOA curves should be checked for safe operation under these surge conditions.
The OPA501 current limits may be set to clip the high surge currents to a safe level. This is shown in Figure 14. Note that the current limit does limit the servomotor peak acceleration.
Inductive loads should be investigated for high peak transients generated by a collapsing magnetic field. Resistive damping can reduce this problem and although the amplifier has a substrate as part of the Darlington output transistor structure, external diodes are recommended for heavy clamping.
Fast diodes such as those normally used as rectifiers in switching power supplies are suitable.


FIGURE 12. DC Servomotor Load Line.


PMI U12M4T Motor, No Load \(\mathrm{f}=4 \mathrm{~Hz}\), Square Wave
\(\pm \mathrm{V}_{\mathrm{cc}}=28 \mathrm{~V}, \mathrm{~T}_{\mathrm{c}}=25^{\circ}\) \(A_{v}=+10\)

FIGURE 13. Servomotor Drive-"Plugging"


FIGURE 14. Servomotor Drive With Current Limit.

\section*{5W Rated Outpuî Power REGULATED DC/DC CONVERTER SERIES}

\section*{FEATURES}
- Isolation Voltage Tested per UL544, VDE750, and CSAC22.2 Dielectric Withstand Requirement
- Barrier Leakage Current 100\% Tested at 240VAC
- Single Channel
- Șingie or ūuai r̂eguiaieu ôuipuis

\section*{DESCRIPTION}

The PWR7XX Series offers a large selection of regulated 5W DC/DC converters for use in such diverse applications as process control, telecommunications, portable equipment, medical systems, airborne and shipboard electronic circuits, and automatic test equipment.
Thirty-six models allow the user to select input voltages ranging from +5 VDC to +48 VDC and output voltages of \(+5,+12,+15, \pm 5, \pm 12\), or \(\pm 15 \mathrm{~V}\).

Surface-mounted devices and manufacturing processes are used in the PWR7XX Series to give the user a device which is more environmentally rugged than most DC/DC converters. The use of surfacemount technologies also gives the PWR7XX Series superior isolation voltage. Each PWR7XX Series unit is tested in compliance with the dielectric withstand voltage requirements of UL544, VDC750, and CSAC22.2.

```

- Linear Output Regulation
- Wide Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
- Input and Output Filtering

```


\footnotetext{
International Airport Industrial Park - P.0. Box 11400 - Tucson. Arizona 85734 - Tel. [602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491
}

\section*{SPECIFICATIONS}

ELECTRICAL SPECIFICATIONS \({ }^{(1)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Rated Output Voltage (VDC)} & \multirow[t]{2}{*}{Rated Output Current (mA)} & \multicolumn{2}{|r|}{Input Current} & \multirow[t]{2}{*}{Reflected Ripple Current, typ (mA) p-p} & \multicolumn{2}{|l|}{Regulation} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Efficiency, } \\
& \min (\%)
\end{aligned}
\]} \\
\hline & & & & No Load, typ (mA) & Rated Load, typ (mA) & & Line, typ (\%) & Load, typ (\%) & \\
\hline PWR700 & 5 & 5 & 1000 & 168 & 1600 & 30 & . 02 & . 04 & 61 \\
\hline PWR701 & . & 12 & 417 & 168 & 1535 & 30 & . 02 & . 04 & 63 \\
\hline PWR702 & & 15 & 334 & 168 & 1490 & 30 & . 02 & . 04 & 65 \\
\hline PWR703 & & \(\pm 5\) & \(\pm 500\) & 168 & 1560 & 30 & . 02 & . 04 & 62 \\
\hline PWR704 & & \(\pm 12\) & \(\pm 209\) & 168 & 1490 & 30 & . 02 & . 04 & 65 \\
\hline PWR705 & & \(\pm 15\) & \(\pm 167\) & 168 & 1450 & 30 & . 02 & . 04 & 67 \\
\hline PWR706 & 12 & 5 & 1000 & 38 & 620 & 10 & . 02 & . 04 & 61 \\
\hline PWR707 & & 12 & 417 & 38 & 550 & 10 & . 02 & . 04 & 63 \\
\hline PWR708 & & 15 & 334 & 38 & 535 & 10 & . 02 & . 04 & 65 \\
\hline PWR709 & & \(\pm 5\) & \(\pm 500\) & 38 & 640 & 10 & . 02 & . 04 & 62 \\
\hline PWR710 & & \(\pm 12\) & \(\pm 209\) & 38 & 550 & 10 & . 02 & . 04 & 65 \\
\hline PWR711 & & \(\pm 15\) & \(\pm 167\) & 38 & 535 & 10 & . 02 & . 04 & 67. \\
\hline PWR712 & 15 & 5 & 1000 & 35 & 510 & 10 & . 02 & . 04 & 61 \\
\hline PWR713 & & 12 & 417 & 35 & 490 & 10 & . 02 & . 04 & 63 \\
\hline PWR714 & & 15 & 334 & 35 & 470 & 10 & . 02 & . 04 & 65 \\
\hline PWR715 & & \(\pm 5\) & \(\pm 500\) & 35 & 520 & 10 & . 02 & . 04 & 62 \\
\hline PWR716 & & \(\pm 12\) & \(\pm 209\) & 35 & 480 & 10 & . 02 & . 04 & 65 \\
\hline PWR717 & & \(\pm 15\) & \(\pm 167\) & 35 & 455 & 10 & . 02 & . 04 & 67 \\
\hline PWR718 & 24 & 5 & 1000 & 33 & 320 & 20 & . 02 & . 04 & 61 \\
\hline PWR719 & & 12 & 417 & 33 & 305 & 20 & . 02 & . 04 & 63 \\
\hline PWR720 & - & 15 & 334 & 33 & 300 & 20 & . 02 & . 04 & 65 \\
\hline PWR721 & & \(\pm 5\) & \(\pm 500\) & 33 & 330 & 20 & . 02 & . 04 & 62 \\
\hline PWR722 & & \(\pm 12\) & \(\pm 209\) & 33 & 310 & 20 & . 02 & . 04 & 65 \\
\hline PWR723 & & \(\pm 15\) & \(\pm 167\) & 33 & 305 & 20 & . 02 & . 04 & 67 \\
\hline PWR724 & 28 & 5 & 1000 & 33 & 280 & 20 & . 02 & . 04 & 61 \\
\hline PWR725 & & 12 & 417 & . 33 & 270 & 20 & . 02 & . 04 & 63 \\
\hline PWR726 & & 15 & 334 & 33 & 260 & 20 & . 02 & . 04 & 65 \\
\hline PWR727 & & \(\pm 5\) & \(\pm 500\) & 33 & 280 & 20 & . 02 & . 04 & 62 \\
\hline PWR728 & & \(\pm 12\) & \(\pm 209\) & 33 & 270 & 20 & . 02 & . 04 & 65 \\
\hline PWR729 & & \(\pm 15\) & \(\pm 167\) & 33 & 260 & 20 & . 02 & . 04 & 67 \\
\hline PWR730 & 48 & 5 & 1000 & 31 & 165 & 10 & . 02 & . 04 & 61 \\
\hline PWR731 & & - 12 & 417 & 31 & 160 & 10 & . 02 & . 04 & 63 \\
\hline PWR732 & & 15 & 334 & 31 & 155 & 10 & . 02 & . 04 & 65 \\
\hline PWR733 & & \(\pm 5\) & \(\pm 500\) & 31 & 165 & 10 & . 02 & . 04 & 62 \\
\hline PWR734 & & \(\pm 12\) & \(\pm 209\) & 31 & 155 & 10 & . 02 & . 04 & 65 \\
\hline PWR735 & & \(\pm 15\) & \(\pm 167\) & 31 & 155 & 10 & . 02 & . 04 & 67 \\
\hline
\end{tabular}

COMMON SPECIFICATIONS \({ }^{(1)}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Conditions & Min & Typ & Max & Units \\
\hline INPUT Voltage Range & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}\) Models \\
\(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}\) Models \\
\(\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}\) Models \\
\(\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}\) Models \\
\(\mathrm{V}_{\mathrm{IN}}=28 \mathrm{~V}\) Models \\
\(\mathrm{V}_{\mathrm{IN}}=48 \mathrm{~V}\) Models
\end{tabular} & \[
\begin{array}{r}
4.65 \\
11.00 \\
13.70 \\
21.00 \\
25.00 \\
44.50
\end{array}
\] & , & \[
\begin{array}{r}
6 \\
15 \\
17 \\
27 \\
31 \\
53
\end{array}
\] & VDC VDC VDC VDC VDC VDC \\
\hline \begin{tabular}{l}
ISOLATION \\
Rated Voltage \\
Test Voltage \\
Resistance \\
Capacitance \\
Leakage Current
\end{tabular} & \begin{tabular}{l}
60 Seconds, 60 Hz \\
240 V rms, 60 Hz
\end{tabular} & \[
\begin{aligned}
& 1000 \\
& 3000
\end{aligned}
\] & \[
\begin{gathered}
10 \\
170
\end{gathered}
\] & 25 & \[
\begin{gathered}
\mathrm{VDC} \\
\mathrm{~V}_{\mathrm{PK}} \\
\mathrm{G} \mathrm{\Omega} \\
\mathrm{pF} \\
\mu \mathrm{~A}, \mathrm{rms}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
OUTPUT \\
Voltage Accuracy \\
Voltage Balance \\
Temperature Coefficient Ripple and Noise
\end{tabular} & \begin{tabular}{l}
Dual Output Units Only \\
\(-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}\) \\
\(\mathrm{BW}=\mathrm{DC}\) to 10 MHz
\end{tabular} & & \[
\begin{gathered}
\pm 0.5 \\
\pm 0.3 \\
\pm 0.01 \\
30
\end{gathered}
\] & \(\pm 1\) & \[
\begin{gathered}
\% \\
\% \\
\% /{ }^{\circ} \mathrm{C} \\
\mathrm{mV}, \mathrm{p}-\mathrm{p}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
TEMPERATURE \\
Specification \\
Operation \\
Storage
\end{tabular} & & \[
\begin{aligned}
& -25 \\
& -40 \\
& -55
\end{aligned}
\] & & \[
\begin{array}{r}
+85 \\
+100 \\
+125
\end{array}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

NOTE: (1) Specifications typical at \(T_{A}=+25^{\circ} \mathrm{C}\), nominal input voltage, and rated output current unless otherwise noted.

\section*{MECHANICAL}

(Side View-"A" Package Option)

\section*{NOTES:}

All dimensions are in inches (millimeters)
GRID: 0.100 inches ( \(\mathbf{2 . 5 4}\) millimeters)
*Common pins are missing on single output models.
MATERIAL: Units are encapsulated in a low thermal resistance molding compound which has excellent chemical resistance, wide operating temperature range, and good electrical properties under high humidity environments. Lead material is brass with a hot-solder-dipped surface to allow ease of solderability.

(Bottom View-"B" Package Option)

(Side View-"B" Package Option)

(Bottom View-"C" Package Option)

(Side View-"C" Package Option)

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline Input Voltage & 120\% of nominal \\
\hline Output Short-Circuit Duration & . 5 seconds \\
\hline Internal Power Dissipation & ....... 3.5W \\
\hline Lead Temperature (soldering, 10 seconds) & \(\ldots . . .300^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & .... \(+150^{\circ} \mathrm{C}\) \\
\hline Package Thermal Resistance, Junction-to- & t, \(\theta_{\mathrm{JA}} \ldots{ }^{15}{ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

\section*{APPLICATION NOTES}

\section*{TESTING ISOLATION BARRIER CHARACTERISTICS}

The insulation and spacings of the PWR7XX Series are \(100 \%\) tested to meet the dielectric withstand requirements of UL544, paragraph 31 . A 60 Hz essentially sinusoidal potential is applied between the primary and secondary for a period of one minute. The potential used for this test is twice the maximum rated voltage plus 1000 V . For the PWR7XX Series the test voltage is 3000 V peak.
Dielectric withstand testing is intended to be done at the manufacturer's site only. This test will not be repeated. Exposing the dielectric material of the isolation barrier to repeated testing causes microscopic carbonizing of the dielectric, resulting in a weakened barrier. A low resistance path will eventually be created across the barrier.

\section*{PRESERVING ISOLATION CHARACTERISTICS}

If intrinsic safety is required, care should be taken in the layout and assembly of the printed wiring board (PWB) to avoid degrading the isolation barrier of the PWR7XX. Precautionary measures include cleaning the PWB prior to installing the PWR7XX to prevent trapping contaminates under the unit. Use nonconductive spacers to keep the PWR7XX off the PWB. Use epoxy solder mask to isolate PWB conductive traces which must run under or close to the PWR7XX. In the layout of the PWB, avoid placing PWB traces under the unit. Do not use conductive inks on the PWB under the unit; e.g., inks used in inspection stamps or component identification marking.

\section*{OUTPUT POWER DISTRIBUTION}

Figure 1 shows the recommended method of connecting multiple loads to the PWR7XX. Single-point power distribution prevents ground loops and interaction between parallel load circuits.


FIGURE 1. Recommended Power Distribution.

\section*{MEASURING NOISE}

Measuring the input and output noise performance of a \(\mathrm{DC} / \mathrm{DC}\) converter is a very difficult task that should be attempted only in a controlled laboratory test environment due to extraneous noise sources.

Figure 2 illustrates two recommended methods for testing output voltage ripple and noise. Reflected input current ripple and noise should be measured with a high performance current probe. Measuring input current and noise into a "known" impedance with a voltage probe should be avoided.


FIGURE 2. Recommended Noise Measurement Methods.

\title{
Four-Channel, Dual-Ourpur, Synchronizable UNREGULATED DC/DC CONYERTER
}

\section*{FEATURES}
- Sunchronizable
- All Outputs Isolated
- Output Power to 3W
- High Isolation Voltage-1000Vpk
- Six-Sided Shielding
- Input and Output Filtering
- Low Profile Package-0.4" High

\section*{DESCRIPTION}

The PWR1017 is a four-channel, dual-output unregulated DC/DC converter designed for low noise applications where high efficiency and switching synchronization are required.
Any unit whose slave pin is connected to another unit's master pin will cause the oscillators to lock together. The PWR 1017 may also be driven from a system master clock. The free running switching frequency is 250 kHz .
The PWR1017 has four isolated plus and minus output voltages approximately equal to the magnitude of the input voltage. It operates over an input voltage range of 10VDC to 18VDC. Rated output current for the PWR1017 is 25 mA for all outputs.

\section*{APPLICATIONS}
- Power for High Resolution Data Acquisition
- Precision Test Equipment
- Spot Regulator
- Process Control
- Portable Equipment
- Multiple Power Supplies

\section*{CONNECTION DIAGRAM}


MECHANICAL


SPECIFICATIONS
ELECTRICAL
At \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=15 \mathrm{VDC}\), I LOAD \(= \pm 25 \mathrm{~mA}\) and in free running mode unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{PWR1017} & \multirow[b]{2}{*}{UNITS} \\
\hline PARAMETER & & MIN & NORM & MAX & \\
\hline \begin{tabular}{l}
INPUT \\
Rated Voltage \({ }^{(1)}\) Voltage Range Input Current \\
Ripple Current
\end{tabular} & \[
\begin{gathered}
I_{\text {LOAD }}=0 \\
I_{\text {LOAD }}=\text { Rated Load } \\
I_{\text {LOAD }}=\text { Rated Load }
\end{gathered}
\] & 10 & \[
\begin{gathered}
15 \\
70 \\
285 \\
80
\end{gathered}
\] & \[
\begin{array}{r}
18 \\
350
\end{array}
\] & \[
\begin{gathered}
\text { VDC } \\
\text { VDC } \\
\mathrm{mA} \\
\mathrm{~mA} \\
\mathrm{~mA}, \mathrm{p}-\mathrm{p} \\
\hline
\end{gathered}
\] \\
\hline \begin{tabular}{l}
ISOLATION \\
Rated Voltage Resistance Capacitance Leakage Current
\end{tabular} & Ratings apply input-to-output and channel-to-channel Test: \(60 \mathrm{sec}, 60 \mathrm{~Hz}, 3000 \mathrm{~V}, \mathrm{pk}\)
\[
V_{\text {ISO }}=240 \mathrm{VAC}, 60 \mathrm{~Hz}
\] & 1000 & \[
\begin{aligned}
& 10 \\
& 15 \\
& 0.9
\end{aligned}
\] & 3 & VDC \(G \Omega\) pF \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
OUTPUT \\
Rated Voltage Voltage Range \\
Rated Current \\
Current Range \\
Line Regulation Load Regulation Ripple Voltage
\end{tabular} & \begin{tabular}{l}
\(\mathrm{I}_{\text {load }}=0 \mathrm{~mA}\) \\
\(\mathrm{I}_{\text {LOAD }}=\) Rated Load \\
Each output \\
Total of all outputs \\
Each output \\
Total of all outputs \\
\(10 \mathrm{VDC}<\mathrm{V}_{\text {IN }}<18 \mathrm{VDC}\) \\
\(0>\) LIOAD \(>25 \mathrm{~mA}\) \\
\(I_{\text {LOAD }}=0\) \\
L LOAD \(=\) Rated Load
\end{tabular} & \[
\begin{gathered}
\pm 16 \\
\pm 14.25 \\
\pm 25 \\
200 \\
0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
\pm 15 \\
\pm 16.5
\end{gathered}
\]
\[
\begin{aligned}
& 1.16 \\
& 12.5 \\
& \pm 10
\end{aligned}
\] & \[
\begin{gathered}
\pm 18 \\
\pm 15.75 \\
\\
\pm 40 \\
500 \\
\\
\pm 100
\end{gathered}
\] & \begin{tabular}{l}
VDC \\
VDC \\
VDC \\
mA \\
mA \\
mA \\
mA \\
\(\mathrm{mV} / \mathrm{mV}\) \\
\(\mathrm{mV} / \mathrm{mA}\) \\
\(\mathrm{mV}, \mathrm{pk}\) \\
\(\mathrm{mV}, \mathrm{pk}\)
\end{tabular} \\
\hline \begin{tabular}{l}
SYNCHRONIZATION \({ }^{(2)}\) \\
\(\mathrm{f}_{\text {SYnc }}\) Range \\
\(V_{\text {SYnc }}\) Range \\
Oscillator Output Fanout \\
\(V_{\text {sync, }}\) max \\
\(V_{\text {sync }}\) Duty Cycle
\end{tabular} & \begin{tabular}{l}
\[
\begin{gathered}
V_{\text {SYNC }}>6.4 V \mathrm{Vp}-\mathrm{p} \\
400 \mathrm{kHz}<\mathrm{f}_{\text {SYNC }}<700 \mathrm{kHz}
\end{gathered}
\] \\
Max deviation from - \(V_{\text {IN }}\)
\end{tabular} & \[
\begin{gathered}
400 \\
6.4 \\
5
\end{gathered}
\] & 50 & \[
\begin{gathered}
700 \\
36 \\
2 \\
50 \\
60
\end{gathered}
\] & kHz
\(V, \mathrm{p}-\mathrm{p}\)
Synch Inputs
V
\(\%\) \\
\hline \begin{tabular}{l}
TEMPERATURE \\
Specification Operating Storage
\end{tabular} & & \[
\begin{aligned}
& -25 \\
& -40 \\
& -55
\end{aligned}
\] & - & \[
\begin{gathered}
+85 \\
+100 \\
+125
\end{gathered}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

NOTE: (1) Other voltages available on request. (2) Operating frequency (in sync mode) \(=\mathrm{f}_{\text {sync }} / 2\). Oscillator frequency (pin 4, free running) \(=2\) (f operation). Oscillator frequency (pin 4, sync mode) \(=\mathrm{f}_{\text {sync. }}\).

\section*{TYPICAL PERFORMANCE CURVES}


OUTPUT VOLTAGE VS
LOAD CURRENT


INPUT CURRENT VS OUTPUT CURRENT
\(T_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=15 \mathrm{VDC}\); each output loaded to indicated value.


\section*{TYPICAL PERFORMANCE CURVES (CONT)}



fsync VS OUTPUT VOLTAGE AND INPUT CURRENT


OUTPUT POWER
derating

temperature CHARACTERISTICS
\(\mathrm{V}_{\mathrm{IN}}=+15 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}= \pm 25 \mathrm{~mA}\), free running.


\section*{APPLICATIONS}
tyPical output connections


\section*{TYPICAL INPUT CONNECTIONS}

\section*{Single Rail Input Supply}

The PWR1017 can be hooked up in a number of configurations for single input voltages. Each unit may become either a master or a slave. The most common configuration is with a single master and multiple slave units.


The PWR 1017 may also be connected in series where the first unit can either be a master or a slave driven by the system clock.


Any combination of serial or parallel may be used.


\section*{APPLICATION NOTES}

\section*{TESTING ISOLATION BARRIER CHARACTERISTICS}

The insulation and spacings of the PWR1017 are \(100 \%\) tested to meet the dielectric withstand requirements of UL544, paragraph 31 . A 60 Hz essentially sinusoidal potential is applied between the primary and secondary for a period of one minute. The potential used for this test is twice the maximum rated voltage plus 1000 V . For the PWR1017 the test voltage is 3000 V peak.
Dielectric withstand testing is intended to be done at the manufacturer's site only. This test will not be repeated. Exposing the dielectric material of the isolation barrier to repeated testing causes mciroscopic carbonizing of the dielectric, resulting in a weakened barrier. A low resistance path will eventually be created across the barrier.

\section*{Split Rail Input Supply}

PWR1017s may be driven by a differential supply and still be synchronized together. Care should be taken not to exceed the 50 V maximum deviation from any \(-\mathrm{V}_{\mathrm{IN}}\).


Tha master pin is a buffered output designed to drive other slave inputs. In split rail applications it is recommended that the external oscillator drive only one unit and all others be driven from the master outputs of other PWR1017s.


\section*{PRESERVING ISOLATION CHARACTERISTICS}

If intrinsic safety is required, care should be taken in the layout and assembly of the printed wiring board (PWB) to avoid degrading the isolation barrier of the PWR1017. Precautionary measures include cleaning the PWB prior to installing the PWR1017 to prevent trapping contaminates under the unit. Use nonconductive spacers to keep the PWR1017 off the PWB. Use epoxy solder mask to isolate PWB conductive traces which must run under or close to the PWR1017. In the layout of the PWB, avoid placing PWB traces under the unit. Do not use conductive inks on the PWB under the unit; e.g., inks used in inspection stamps or component identification marking.

2.75 WMits -Triple-Ouipuit DC/DC CONVERTER

\section*{FEATURES}
- Isolation Voltage 500 VDC
- Barrier Leakage Current 100\% Tested at 240VAC
- Low Cost
- Wide Operating Temperature Range
- Input and Output Filtering
- Six-Sided Shielding

\section*{DESCRIPTION}

The PWR5038 offers a triple output 2.75W DC to DC converter for use in such diverse applications as process control, telecommunications, portable equipment medical systems, airborne and shipboard electronic circuits, and automatic test equipment.

This model gives the user an output voltage of +5 and \(\pm 15 \mathrm{VDC}\) with an input voltage of +5 VDC .
Surface-mounted devices and manufacturing processes are used in the PWR5038 to give the user a device which is more environmentally rugged than most DC to DC converters. The use of surface-mount technology also gives the PWR5038 a low cost reflected in our low prices.


\section*{SPECIFICATIONS}

\section*{ELECTRICAL CHARACTERISTICS}

Specifications Typical at \(\mathrm{Ta}=+25 \mathrm{deg} \mathrm{C}\). . nominal input voltage and rated output current unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITION & MIN & TYP & MSX & UNT \\
\hline INPUT VOLTAGE RANGE CURRENT RIPPLE CURRENT & NO LOAD FULL LOAD FULL LOAD & 4.75 & \[
\begin{aligned}
& 5.00 \\
& 150 \\
& 60
\end{aligned}
\] & \[
\begin{gathered}
5.25 \\
1.0
\end{gathered}
\] & \[
\begin{gathered}
V D C \\
V D C \\
m A \\
A \\
m A \\
p-p
\end{gathered}
\] \\
\hline \begin{tabular}{l}
OUTPUT 1 VOLTAGE CURRENT ACCURACY \\
RIPPLE
\end{tabular} & \begin{tabular}{l}
\[
\begin{gathered}
-25 \text { to }+85 \text { DEG C } \\
\text { I LOAD }
\end{gathered}
\] \\
50 mA to 150 mA INPUT VOLTAGE 4.75 to 5.25 V DC to 10 MHz
\end{tabular} & 4.75 & \begin{tabular}{l}
5 \\
20
\end{tabular} & \[
150
\]
\[
5.25
\] & VDC mA
\[
\begin{gathered}
m V \\
p-p
\end{gathered}
\] \\
\hline \begin{tabular}{l}
OUTPUT 2 VOLTAGE CURRENT ACCURACY \\
RIPPLE
\end{tabular} & \[
\begin{aligned}
& -25 \text { to }+85 \text { DEG C } \\
& \text { I LOAD } \\
& 33 \mathrm{~mA} \text { to } 67 \mathrm{~mA} \\
& \text { INPUT VOLTAGE } \\
& 4.75 \text { to } 5.25 \mathrm{~V} \\
& \text { DC to } 10 \mathrm{MHz}
\end{aligned}
\] & 13.5 & \(\pm 15\)
\[
300
\] & \[
67
\]
\[
16.5
\] & VDC mA
\[
\begin{aligned}
& \mathrm{mV} \\
& \mathrm{p}-\mathrm{p}
\end{aligned}
\] \\
\hline ISOLATION VOLTAGE RESISTANCE CAPACITANCE LEAKAGE CURRENT & Viso \(=240 \mathrm{VAC}\) & 500 & \[
\begin{aligned}
& 10 \\
& 45
\end{aligned}
\] & 5 & VDC M \(\Omega\) pF \(\mu \mathrm{A}\) \\
\hline TEMPERATURE SPECIFICATION OPERATION Storage & & \[
\begin{aligned}
& -25 \\
& -40 \\
& -55
\end{aligned}
\] & & \[
\begin{aligned}
& +85 \\
& +100 \\
& +125
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\)
\({ }^{\circ} \mathrm{C}\)
\({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|}
\hline Input Voltage. & \(120 \% \times\) rated voltage \\
\hline Output Short-Circuit Duration. & ......... Momentary \\
\hline Internal Power Dissipation & . 4 W \\
\hline Junction Temperature & 2W \\
\hline Package Thermal Resistance & \(+150^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (soldering, 10 seconds) & \[
+300^{\circ} \mathrm{C}
\] \\
\hline
\end{tabular}

\section*{MECHANICAL}


NOTES:
All dimensions are in inches (millimeters) GRID: 0.100 inches ( 2.54 millimeters)
MATERIAL: Low thermal resistance molding compound which has excellent chemical resistance, wide operating temperature range and good electrical properties under high humidity environments. Lead material is brass with a hot-solder-dipped surface to allow ease of solderability.

\section*{9W Rated Output Power REGULATED DC-TO-DC CONVERTER}

\section*{FEATURES}
- LOW COST
- Lū̃ī̃ nuūise
- linear output regulation
- WIDE OPERATING TEMPERATURE RANGE:
\(-40^{\circ} \mathrm{C}\) TO \(+100^{\circ} \mathrm{C}\)
- \(\pm 12\) VDC AND \(\pm 15\) VDC OUTPUTS

- SIX-SIDED SHIELDING
- BARRIER LEAKAGE CURRENT 100\% TESTED AT 240VAC

\section*{DESCRIPTION}

The PWR5104 and PWR5105 offer respectively \(\pm 12 \mathrm{VDC}\) and \(\pm 15 \mathrm{VDC}\) ouputs of regulated 9 W power driven from your +5 V system bus. These units are designed for use in such diverse applications as process control, telecommunications, portable equipment, medical systems, airborne and shipboard electronic circuits, and automatic test equipment.
The PWR5104 and PWR5105 offer a low cost alternative to the models currently in the market. In addition these models utilize high frequency switching in order to maintain a low EMI and RFI environment. Both models incorporate input and
output filtering along with six-sided shielding to keep unwanted noise from your circuit.
Surface-mounted devices and manufacturing processes are used in the PWR5104 and PWR5105 to give you a device which is more environmentally rugged than most DC-to-DC converters. These manufacturing and design technologies also give superior isolation voltage. The PWR5104 and PWR5105 are tested in compliance with the dielectric withstand voltage requirements of UL544, VDC750, and CSAC22.2.


International Airport Industrial Park - P.0. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

\section*{SPECIFICATIONS}

\section*{ELECTRICAL}

Specifications typical at \(T_{A}=+25^{\circ} \mathrm{C}\), nominal input voltage and rated output current unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{PWR5104/5105} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & \\
\hline \begin{tabular}{l}
INPUT \\
Nominal Voltage Voltage Range \({ }^{(1)}\) Input Current Input Current Ripple Current
\end{tabular} & No load Rated load At rated load & 4.75 & \[
\begin{gathered}
5.00 \\
60 \\
2400 \\
5
\end{gathered}
\] & \[
\begin{aligned}
& 5.25 \\
& 2570
\end{aligned}
\] & \[
\begin{gathered}
\text { VDC } \\
\text { VDC } \\
m A \\
m A \\
m A, p-p
\end{gathered}
\] \\
\hline \begin{tabular}{l}
OUTPUT \\
PWR5104 Rated Voltage \\
PWR5105 Rated Voltage \\
Accuracy \\
Voltage Balance \\
Temperature \\
Coefficient \\
PWR5104 Rated Current \\
PWR5105 Rated Current \\
Ripple and Noise \\
Line Regualtion \\
Load Regulation \\
Efficiency
\end{tabular} & \[
\begin{aligned}
& -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
& \mathrm{BW}=\mathrm{DC} \text { to } 10 \mathrm{MHz}
\end{aligned}
\] & \[
\begin{gathered}
\pm 375 \\
\pm 300 \\
\\
70
\end{gathered}
\] & \[
\begin{gathered}
\pm 12 \\
\pm 15 \\
\pm 0.5 \\
\pm 0.3 \\
\\
\pm 0.01 \\
\\
6 \\
0.02 \\
0.04 \\
75
\end{gathered}
\] & \(\pm 1.0\) & VDC
VDC
\(\%\)
\(\%\)
\(\% /{ }^{\circ} \mathrm{C}\)
mA
mA
\(\mathrm{mV}, \mathrm{p}-\mathrm{p}\)
\(\%\)
\(\%\)
\(\%\) \\
\hline \begin{tabular}{l}
ISOLATION \\
Rated Voltage \\
Resistance \\
Capacitance \\
Leakage Current
\end{tabular} & \(240 \mathrm{Vrms}, 60 \mathrm{~Hz}\) & 750 & \[
\begin{aligned}
& 10 \\
& 50
\end{aligned}
\] & 15 & \[
\begin{gathered}
\mathrm{VDC} \\
\mathrm{G} \Omega \\
\mathrm{pF} \\
\mu \mathrm{~A}, \mathrm{rms}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
GENERAL \\
Switching Frequency
\end{tabular} & & & 50 & & kHz \\
\hline \begin{tabular}{l}
TEMPERATURE \\
Specification \\
Operation Storage
\end{tabular} & , & \[
\begin{aligned}
& -25 \\
& -40 \\
& -55
\end{aligned}
\] & & \[
\begin{gathered}
+85 \\
+100 \\
+125
\end{gathered}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

NOTE: (1) Other voltage ranges available. Contact factory.

\section*{ABSOLUTE MAXIMUM RATINGS}


\section*{MECHANICAL}


\section*{TYPICAL PERFORMANCE CURVES}



\section*{RELARARUTY}

All Burr-Brown DC/DC converters are manufactured using stringent in-process controls and quality inspections. The customer may also choose one of two additional levels of screening to meet specific requirements.



The advanced reliability program is designed to reduce infant mortality, system rework, field failures, and equipment downtime.


\section*{APPLICATION NOTES} PRESERVING ISOLATION CHARACTERISTICS

If intrinsic safety is required, care should be taken in the layout and assembly of the printed wiring board (PWB) to avoid degrading the isolation barrier of the PWR510X. Precautionary measures include cleaning the 510X prior to installing the PWR510X to prevent trapping contaminates under the unit. Use nonconductive spacers to keep the PWR510X off the PWB. Use epoxy solder mask to isolate PWB conductive traces which must run under or close to the PWR510X. In the layout of the PWB, avoid placing PWB traces under the unit. Do not use conductive inks on the PWB under the unit; e.g., inks used in inspection stamps or component identification marking.

\section*{OUTPUT POWER DISTRIBUTION}

Figure 1 shows the recommended method of connecting multiple loads to the PWR510X. Single-point power distribution prevents ground loops and interaction between parallel load circuits.


FIGURE 1. Recommended Power Distribution.

\section*{MEASURING NOISE}

Measuring the input and output noise performance of a DC/DC converter is a very difficult task that should be attempted only in a controlled laboratory test environment due to extraneous noise sources.

Figure 2 illustrates two recommended methods for testing output voltage ripple and noise. Reflected input current ripple and noise should be measured with a high performance current probe. Measuring input current and noise into a "known" impedance with a voltage probe should be avoided.


FIGURE 2. Recommended Noise Measurement Methods.

\section*{16 Single Ended / 8 Differential Input 12-BIT DATA ACQUISITION SYSTEMS}

\section*{FEATURES}
- COMPLETE 12-BIT DATA ACQUISITION SYSTEM in a miniature package
- injưuī OR BIPOLAR OPERATION
- THROUGHPUT RATES
\[
\text { 8-BIT ACCURACY }-45 \mathrm{KHz}
\]

12-BIT ACCURACY - 33 KHz
- SELECTABLE GAINS OF 1,10 and 100
- FULL MICROPROCESSOR COMPATIBLE INTERFACE
- GUARANTEED NO MISSING CODES OVER TEMPERATURE
- SURFACE MOUNT OR PIN GRID ARRAY PACKAGE OPTIONS
- FULL SPECIFICATION OVER 3 TEMPERATURE RANGES
\[
0 \text { to }+70^{\circ} \mathrm{C}
\]
-25 to \(+85^{\circ} \mathrm{C}\)
-55 to \(+125^{\circ} \mathrm{C}\)

\section*{DESCRIPTION}

The SDM862 and SDM863 are complete data acquisition systems housed in a hermetically sealed 1 " square leadless chip carrier or a 1.1" scluare nin grid array. The small package outlines and low power consumption provide an ideal data acquisition solution where space is at a premium.
The devices comprise of an input multiplexer (SDM862 16 single-ended inputs, SDM863 8 differential inputs), instrumentation amplifier with selectable gains, sample/ hold amplifier and A/D converter with microprocessor interface and 3 -state buffers.

The SDM862 and SDM863 will accept unipolar or bipolar voltage inputs in the range 0 to \(+10 \mathrm{~V}, \pm 5 \mathrm{~V}\) and \(\pm 10 \mathrm{~V}\). For low level signals jumper-selectable gains of 10 or 100 can be applied. The number of input channels can be expanded by the addition of multiplexers. The microprocessor interface and the facility of the sample/hold amplifier being controlled directly by the A/D converter simplifies system integration.


\footnotetext{
International Airport Industrial Park - P.0. Box 11400-Tucson, Arizona 85734-Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491
}

SPECIFICATIONS
ELECTRICAL At \(25^{\circ} \mathrm{C}, \mathrm{V}_{C C}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\), external sample/hold capacitor of 4700 pF .


NOTES: [1] Measured at the sample and hold output. [2] Measured with all input channels grounded. [3] The range of voltage on any input with respect to common over which accuracy and leakage current is guaranteed. [4] Applicable over full operating temperature range. [5] Adjustable to zero using external potentiometer or select-on-test resistor. \(\star\) Specification as per SDM862/863 J, A, R. NO MISSING CODES GUARANTEED OVER TEMPERATURE RANGE.
ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|}
\hline +VCC TO ACOM ...................................................................................................................................................................................... 16 V
- VCC TO ACOM
+ VDD TO DCOM............ & ANALOG INPUT SIGNAL RANGE DIGITAL INPUT SIGNAL \(+V C C+20 V\) TO -VCC - 20V ACOM TO DCOM -0.5 V TO + VDD
\(\ldots . . . . . . . . . . . .\).
\(\pm 1 \mathrm{~V}\) \\
\hline
\end{tabular}

ANALOG TIMING SPECIFICATIONS
\begin{tabular}{|l|c|c|c|c|}
\hline PARAMETER & MIN & TYP & MAX & UNITS \\
\hline MULTIPLEXER & & & & \\
Switching time (between channels) & & +1.5 & & \(\mu \mathrm{~S}\) \\
Settling time (10V step to 0.02\%) & & 2.5 & & \(\mu \mathrm{~S}\) \\
Enable time 'ON' & \\
OFF' & & 1 & 2 & \(\mu \mathrm{~S}\) \\
INSTRUMENTATION AMPLIFIER & & 0.25 & 0.5 & \(\mu \mathrm{~S}\) \\
Settling time to 0.01\% & & & & \\
\(\quad \mathrm{G}=1\) & & 5 & 12.5 & \(\mu \mathrm{~S}\) \\
\(\quad \mathrm{G}=10\) \\
\(\mathrm{G}=100\) & & 3 & 7.5 & \(\mu \mathrm{~S}\) \\
Slew rate & & 4 & 7.5 & \(\mu \mathrm{~S}\) \\
S/H AMPLIFIER & 17 & & \(\mathrm{~V} / \mu \mathrm{S}\) \\
Acquisition time (10V step to 0.01\%) & & & 5 & \\
Aperture delay & & & \\
Hold mode settling time & & 50 & & nS \\
Slew rate & & 1.5 & & \(\mu \mathrm{~S}\) \\
\hline
\end{tabular}

Note: Specifications are at \(+25^{\circ} \mathrm{C}\) and measured at \(50 \%\) level of transition.


DIGITAL TIMING SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{6}{|l|}{CONVERT MODE} \\
\hline tdsc & Status delay from CE & & 100 & 200 & nS \\
\hline thec & CE Pulse width & 50 & 30 & & nS \\
\hline tssc & \(\overline{\text { CS }}\) to CE setup & 50 & 20 & & nS \\
\hline thsc & \(\overline{\text { CS }}\) low during CE high & 50 & 20 & & nS \\
\hline tsic & R/C 10 CE setup & 50 & 0 & & nS \\
\hline thre & R/C̄ low during CE high & 50 & 20 & & nS \\
\hline Isac & Byte select to CE setup & 0 & 0 & & nS \\
\hline thac & Byte selected valid during CE high & 50 & 20 & & nS \\
\hline Ic & Conversion line. 12 bit cycle & 15 & 20 & 25 & \(\mu \mathrm{S}\) \\
\hline & 8 bit cycle & 10 & 13 & 17 & \(\mu \mathrm{S}\) \\
\hline \multicolumn{6}{|l|}{READ MODE} \\
\hline tdd & Access time from CE & & 75 & 150 & nS \\
\hline thd & Data vald atter CE low & 25 & 35 & & nS \\
\hline thl & Output float delay & & 100 & 150 & nS \\
\hline Issr & \(\overline{\text { CS }}\) to CE setup & 50 & 0 & & nS \\
\hline tsrr & R/C to CE setup & 0 & 0 & & nS \\
\hline tsar & Byte select to CE setup & 50 & 25 & & nS \\
\hline thsr & CS valid after CE Low & 0 & 0 & & nS \\
\hline thri & \(\mathrm{R} \bar{C}\) high after CE low & 0 & 0 & & nS \\
\hline thar & Byte select valid after CE low & 50 & 25 & & nS \\
\hline ths & Status delay atter data valid & 300 & 500 & 1000 & nS \\
\hline
\end{tabular}

\section*{PIN CONFIGURATIONS}

\begin{tabular}{|c|c|c|}
\hline PIN DESIGNATION & DEFINITION & COMMENTS \\
\hline \begin{tabular}{l}
CH 0 to CH 15 \\
CHO to CH7 (+,-) \\
(PINS 40 to 47,54 to 61 )
\end{tabular} & Channel Inputs & Analog Inputs (Total 16) for single-ended and differential operation. Unused inputs must be connected to analog common. \\
\hline \begin{tabular}{l}
MUX OUT+/AMP IN+ \\
(PIN 65)
\end{tabular} & MULTIPLEXER "HI" OUTPUT & On the SDM862 this is the multiplexer output. On the SDM 863 it is the output of the positive selected inputs. It is connected internally to the positive input of the instrumentation amplifier. \\
\hline MUXOUT (PIN 67) & MULTIPLEXER "LO" OUTPUT & This pin is used on the SDM863 only. It should be connected to the negative input of the instrumentation amplifier. \\
\hline AMPIN (PIN 66) & Negative Input of Instrumentation Amplifier & On the SDM862 this should be connected to analog common. On the SDM863 it should be conencted to Muxout-(Pin 67). \\
\hline AMPOUT (PIN 1) & Output of instrumentation amplifier & This pin should be connected to the input of the S/H amplifier (Pin 39). \\
\hline AMP SENSE (PIN 68) & Output sense line of instrumentaiton amplifier & This pin will normally be connected direct to \(A\) input (Pin 1) \\
\hline AMP REF (PIN 2) & Reference for amplifier output & This pin will normally be connected to analog common. Care should be taken to minimise tracking and contact resistance to analog common to optimise system accuracy. \\
\hline S/H OUT (PINS 35/37) & Output of sample/hold amplifier & Two pins are provided to facilitate a guard ring around the hold capacitor pin. These pins should be connected to either ADC in (20V) or ADC in (10V) depending on the desired range. \\
\hline HOLD CAP (PIN 36) & Connection for hold capacitor on S/H amplifier & The tracking to the hold capacitor should be as short as possible and a guard ring employed using Pins 35 and 37. \\
\hline ADC IN (20V) ADC IN (10V) (PINS 21, 22) & Inputs to A/D convertor & Connect to S/H amplifier output. Use appropriate Pin for desired range. \\
\hline RG, G10, G100 (PINS 62, 63, 64) & Gain setting Pins on instrumentation amplifier & \[
\begin{aligned}
& \text { For Gain }=1, \text { no connections } \\
& \text { For Gain }=10, \text { connect G10 to RG. } \\
& \text { For Gain }=100, \text { connect G100 to RG. }
\end{aligned}
\] \\
\hline REF OUT (PIN 26) & 10 V Reference voltage & This is the reference voltage for the A/D convertor. \\
\hline REF IN, BIP OFF (PINS 24, 23) & Reference input and offset input to A/D convertor & Connect trim potentiometers (or select-on-test resistors) to these pins for unipolar or biploar operation as shown in figure 4. \\
\hline S/H IN (PIN 39) & Input to sample/hold amplifier & Connect to amp out (Pin 1). \\
\hline MUX ENABLE (PIN 48) & Multiplex enable/disable & Logic ' 1 ' on this pin will enable a selected channel on the internal multiplexer. Logic ' 0 ' de-selects all channels. \\
\hline MUX ADD0 to MUX ADD3 (PINS 49 to 52) & Address inputs for channel selection & These address lines select a particular channel as specified in figure 2. \\
\hline S/H CONT (PIN 33) & Track/Hold control on S/H amplifier & Logic ' 1 ' holds an analog value for conversion by the A/D convertor. This line may be controlled by the status (Pin 6 ) of the convertor to simplify external timing control. \\
\hline S/H COM (PIN 34) & Reference for'S/H logic control & Connect to digital common \\
\hline D0 to D11 (PINS 7 to 18) & 3-state digital outputs & The 12 or 8 -bit result of a conversion is available as output on these pins (DOLSB, D11-MSB). \\
\hline STATUS (PIN 6) & Status of A/D conversion & This output pin is at logic ' 1 ' while the internal A/D convertor is carrying out a conversion. This pin may be used to directly control the S/H amplifier. \\
\hline CE (PIN 28) & Chip enable & This input must be at logic ' 1 ' to either initiate a conversion or read output data (see figure 1). \\
\hline CS̄(PIN 31) & Chip select & This input must be at logic ' 0 ' to either initiate a conversion or read output data (see figure 1). \\
\hline R/C̄ (PIN 29) & Read/convert & Data can be read when this Pin is logic ' 1 ' or a conversion can be initiated when this Pin is logic ' 0 '. This Pin is typically connected to the \(R / \bar{W}\) control line of a microprocessor-bases system (see figure 1). \\
\hline DATA MODE (PIN 30) & Select 12 or 8 Bit Data & When data mode is at logic ' 1 ' all 12 output data bits are enabled simultaneously. When data mode is at logic ' 0 ' MSB's AND LSB's are controlled by byte select (Pin 32). \\
\hline BYTE SELECT (PIN 32) & Byte address, short cycle & When reading output data, byte select at logic ' 0 ' enables the 8 MSB's. Byte select at logic ' 1 ' enables the 4 LSB's. The 4 LSB's can therefore be connected to four of the MSB lines for inter-connection to an 8-bit bus. In start convert mode, logic ' 0 ' enables a 12 -bit conversion while logic ' 1 ' will short cycle the conversion to 8 -bits (see figure 1). \\
\hline +15V(1), +15V(2) (PINS 3, 27) & Power Supply & Connect to +15 V supply using decoupling as indicated in figure 5. \\
\hline -15V(1), \(-15 \mathrm{~V}(2)\) (PINS, 4, 20) & Power Supply & Connect to -15 V supply using decoupling as indicated in figure 5. \\
\hline A COM (1), A COM (2) (PINS 53, 25) & Analog common & Analog common connection. Note that a common (including digital common) should be connected together at one point close to the device. \\
\hline +5V (PIN 5) & Logic power supply & Connect to +5 V digital supply line with decoupling as indicated in figure 5 . \\
\hline ADC DCOM (PIN 19) & Reference for A/D convertor control lines & Connect to S/H commmon at one point close to device. \\
\hline NC (PIN 38) & No. internal connection & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CE & \(\overline{\mathrm{CS}}\) & \(\mathrm{R} / \overline{\mathrm{C}}\) & \[
\begin{aligned}
& \hline \text { DATA } \\
& \text { MODE }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { BYTE } \\
& \text { SELECT }
\end{aligned}
\] & OPERATION \\
\hline 0 & X & X & X & X & None \\
\hline x & 1 & X & X & X & None \\
\hline \(\uparrow\) & 0 & 0 & X & 0 & Initiate 12-bit conversion \\
\hline i & 0 & 0 & X & 1 & Initiate 8-bit conversion \\
\hline 1 & \(\downarrow\) & 0 & X & 0 & Initiate 12-bit conversion \\
\hline 1 & \(\downarrow\) & 0 & X & 1 & Initiate 8-bit conversion \\
\hline 1 & 0 & 1 & X & 0 & Initiate 12-bit conversion \\
\hline 1 & 0 & \(\downarrow\) & X & 1 & Initiate 8-bit conversion \\
\hline 1 & 0 & 1 & 1 & X & Enable 12-bit output \\
\hline 1 & 0 & 1 & 0 & 0 & Ebable 8 MSBs only \\
\hline 1 & 0 & 1 & 0 & 1 & Enable 4 LSBs plus 4 trailing zeros \\
\hline
\end{tabular}

FIGURE 1. CONTROL INPUT TRUTH TABLE
\begin{tabular}{|c|c|c|c|}
\hline RANGE & \begin{tabular}{l}
- FS \(+1 / 2\) LSB \\
OOOTO OOI TRANSITION)
\end{tabular} & \begin{tabular}{l} 
+FS \(-1 / 2\) LSB \\
(FFE TO FFF TRANSITION)
\end{tabular} & 1 LSB EQUALS \\
\hline \(0-10 \mathrm{~V}\) & +0.0012 V & +9.9963 V & 2.44 mV \\
\(\pm 5 \mathrm{~V}\) & -4.9988 V & +4.9963 V & 2.44 mV \\
\(\pm 10 \mathrm{~V}\) & -9.9976 V & +9.9927 V & 4.88 mV \\
& & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{SDM862} & \multicolumn{5}{|l|}{SDM863} \\
\hline \[
\left\lvert\, \begin{aligned}
& \text { MUX } \\
& \text { ADD3 }
\end{aligned}\right.
\] & \[
\begin{aligned}
& \text { MUX } \\
& \text { ADD2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MUX } \\
& \text { ADD1 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MUX } \\
& \text { ADDO }
\end{aligned}
\] & MUX ENABLE & \begin{tabular}{l}
CHANNEL \\
SELECTED
\end{tabular} & \[
\begin{array}{|c|c|}
\text { MUX } \\
\text { ADD2 }
\end{array}
\] & \[
\begin{aligned}
& \text { MUX } \\
& \text { ADD1 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MUX } \\
& \text { ADDO }
\end{aligned}
\] & \[
\begin{gathered}
\text { MUX } \\
\text { ENABLE }
\end{gathered}
\] & \[
\begin{gathered}
\text { CHANNEL } \\
\text { PAIR } \\
\text { SELECTED }
\end{gathered}
\] \\
\hline X & X & X & X & L & NONE & \(X\) & X & X & L & NONE \\
\hline L & L & L & L & H & 0 & L & L & L & H & 0 \\
\hline L & L & L & H & H & 1 & L & L & H & H & 1 \\
\hline L & L & H & L & H & 2 & L & H & L & H & 2 \\
\hline L. & L & H & H & H & 3 & L & H & H & H & 3 \\
\hline L & H & L & L & H & 4 & H & L & L & H & 4 \\
\hline L & H & L & H & H & 5 & H & L & H & H & 5 \\
\hline L & H & H & L & H & 6 & & H & L & H & 6 \\
\hline L & H & H & H & H & 7 & & H & H & H & 7 \\
\hline H & L & L & L & H & 8 & & & - & & \\
\hline H & \(L\) & L & H & H & 9 & & & - & & \\
\hline H & L & H & L & H & 10 & & & - & & \\
\hline H & L & H & H & H & 11 & & & - & & \\
\hline H & H & L & L & H & 12 & & & - & & \\
\hline H & H & L & H & H & 13 & & & - & & \\
\hline H & H & H & \(L\) & H & 14 & & & - & & \\
\hline H & H & H & H & H & 15 & & & - & & \\
\hline
\end{tabular}

FIGURE 3. CODE TRANSITION RANGES


FIGURE 4. CALIBRATION


FIGURE 5. POWER SUPPLY CONNECTIONS AND RECOMMENDED DECOUPLING

\section*{P.G.A. MECHANICAL OUTLINE}


\section*{L.C.C. MAECHANICAL OUTLINE}


\section*{ORDERING INFORMATION*}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{SDM 862 16 SINGLE ENDED INPUTS} & \multicolumn{5}{|c|}{SDM 863
8 DIFFERENTIAL INPUTS} \\
\hline \multirow[t]{2}{*}{GRADE} & \multicolumn{2}{|l|}{68 PIN
PACKAGE} & \multirow[t]{2}{*}{ACCURACY \% FSR} & \multirow[t]{2}{*}{TEMP. RANGE (DEG. C)} & \multirow[t]{2}{*}{GRADE} & \multicolumn{2}{|l|}{68 PIN
PACKAGE} & \multirow[t]{2}{*}{ACCURACY \% FSR} & \multirow[t]{2}{*}{TEMP RANGE (DEG. C)} \\
\hline & LCC & PGA & & & & LCC & PGA & & \\
\hline \(J\) & L & H & \(\pm 0.024\) & 0-70 & \(J\) & L & H & \(\pm 0.024\) & 0-70 \\
\hline K & L & H & \(\pm 0.012\) & 0-70 & K & L & H & \(\pm 0.012\) & 0-70 \\
\hline A & L & H & \(\pm 0.024\) & \(-25+85\) & A & L & H & \(\pm 0.024\) & \(-25+85\) \\
\hline B & L & H & \(\pm 0.012\) & \(-25+85\) & B & 1 & H & \(\pm 0.012\) & -25 +85 \\
\hline R & L & H & \(\pm 0.024\) & \(-55+125\) & R & L & H & \(\pm 0.024\) & \(-55+125\) \\
\hline S & L & H & \(\pm 0.012\) & \(-55+125\) & S & L & H & \(\pm 0.012\) & \(-55+125\) \\
\hline
\end{tabular}
*i.e. 16 single ended inputs in LCC with accuracy of \(0.024 \%\) FSR and Temp Range of \(0-70\) Deg. \(\mathrm{C}=\mathrm{SDM} 862 \mathrm{JL}\).

\section*{NOTES}
1. J, K, A, B Grades are burned in AT \(+85^{\circ} \mathrm{C}\) for a minimum of 48 hrs.
R.S. Grades are burned in AT \(+125^{\circ} \mathrm{C}\) for a minimum of 48 hrs.
2. All units are supplied serialised and with a printout of their electrical test results \(\left(25^{\circ} \mathrm{C}\right)\).

SDM 862/863 evaluation board part number: PC 862/863-1
68 Pin L.C.C. Socket Part Number: MC 0068-1

\section*{WHY REINVENT AN OPERATOR INTERFACE?}

Is your microprocessor-based equipment used or serviced by human beings? If so, you may be interested in a new line of operator interface terminals from Burr-Brown. The operator interface provides the way for an operator to setup and run equipment; it may also provide diagnostic/service access for a repairman.
For most new products, the operator interface is custom designed because no off-the-shelf product has been available which adequately addresses this need. This means that engineering resources are needed, which will place an additional demand on already limited manpower. The availability now of commercial/industrial operator interfaces allows companies to concentrate their resources in the area of their greatest expertise, and therefore, to get the best return on engineering investment.
Operatoi interifaces arc ucod in a yariety of equipment. There are numerous controller applications such as machine controllers, motor controllers, process controllers, HVAC controllers, programmable controllers, and motion controllers. Other applications include operator interface for instruments, test machines, data acquisition systems, weighing systems, imaging systems, and medical equipment.
Consider these issues when looking for an operator interface:
Display-ls it easily readable in your operating environment?
Keyboard-Is the tactile response appropriate for your needs? Can the keys be clearly marked for your application?
Operation-Will the units operate in a mode that is convenient in your application?
Communications-What interface do you need? RS-232C is a good choice for many applications. RS-422 is useful for distances of greater than 50 feet or for electrically noisy environments.
Package-Will the package fit into your equipment, aesthetically and physically? Is it easy to mount? Does the package need to be sealed?

Environment-Under what conditions must the unit operate?
Burr-Brown has recently introduced a line of operator interface terminals, the TM2500 and the TM2700, which uses standard ASCII communications. They are low cost, easy-to-use, easy-to-design-in units. In many applications it is no longer necessary to design an expensive long-lead-time custom operator interface. These units provide a large liquid-crystal display with a wide viewing angle. The terminals go through an automatic self-test every time power is applied. The keyboard offers excellent tactile response, providing a numeric keypad, six user-programmable function keys, and six control keys. The function keys are back-lighted under host computer control. They can also be programmed to transmit any sequence of up to four characters. Each function key has a label area adjoining it so that the user can easily customize each key.
The terminals operate in one of three modes. In character mode, a character is transmitted as each key is pressed. The character may be echoed to the display as defined. In the block mode, all characters are internally buffered and displayed as keys are pressed. The entire line of data is then transmitted when the enter key is pressed. The polled mode is the third way to operate these units. In the polled mode, data is entered as in the block mode; however, the data is not transmitted until the host processor requests it. Another option in this mode is to assign each terminal an address so that a number of terminals may be committed to the same host interface line.
Other options include baud rate, line termination, turnaround delay, display viewing angle, hand check protocol, local echo, key repeat, and key click. All options are user selectable and stored in nonvolatile EEPROM.
The TM2500 is available with an RS-232C interface, while the TM2700 is provided with an RS422 interface.

These microterminals provide an easy-to-use, off-the-shelf interface in many new equipment designs.


\section*{OEM MICROTERMINALS}

\section*{BENEFITS/FEATURES}
- MINIMIZES DEVELOPMENT TIME AND EXPENSE
- LARGE, HIGH CONTRAST 16-CHARACTER LCD DISPLAY
- 80-CHARACTER DISPLAY BUFFER
- SIX PROGRAMMABLE BACKLIT FUNCTION KEYS
- POSITIVE TACTILE FEEDBACK KEYBOARD
- EASILY CUSTOMIZED LABELS
- ADJUSTABLE VIEWING ANGLE

\section*{DESCRIPTION}

The TM2500/TM2700 are low cost, compact, industrial data entry and display terminals. They are designed to be used as operator panels, as well as service and diagnostic equipment. The terminals can also be used as a simple keyboard entry data collection terminal. The TM2500 and TM2700 are similar units, differing only in communications interface-RS-232C on the TM2500 and RS-422 on the TM2700.
Both terminals are lightweight, 10.5 ounces, and are enclosed within a \(4.102^{\prime \prime} \times 7.102^{\prime \prime} \times 1.060^{\prime \prime}\) case. The terminals have six backlit programmable function keys. Space is provided to customize the keyboard

\section*{- NONVOLATILE CONFIGURATION STORAGE}
- POWERUP SELF-TEST
- ALL OPTIONS USER-SELECTABLE

\section*{APPLICATIONS \\ - operator panel \\ - SERVICE/DIAGNOSTIC DEVICE \\ - DATA COLLECTION TERMINAL}

\section*{KEYBOARD}

A numeric keypad with six programmable function keys is provided for operator input. The keys are widely spaced for ease of entry. The silicon rubber keyboard provides environmental sealing with good tactile feedback. A unique characteristic of the keyboard is that each function key is backlit. The backlighting is under host computer control to give maximum flexibility to the operator. The keyboard also features key click and key repeat functions. If an invalid key is pressed, the terminal responds with an audible tone.

\section*{DISPLAY}

The display is a 16 -character LCD with large, easy to read characters. An 80-character display buffer with scroll keys allows the operator to slide the 16 -character window across the 80 -character line. The high contrast display on the terminals provides sufficient alphanumeric display capability for most panel-mount applications.

\section*{CASE}

The case for the Tivi \(2500 \hat{0} / T \mathrm{ivi} 2700 \hat{u}\) is designed for either surface or recessed mounting. The keyboard and display are sealed in the ABS plastic case so that when properly mounted, the terminal is protected against dust and moisture.

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Display................ 16-character alphanumeric LCD} \\
\hline Character S & \(0.38^{\prime \prime}(9.66 \mathrm{~mm})\) character height \\
\hline Display Buf & \\
\hline \multicolumn{2}{|l|}{Keyboard} \\
\hline \multicolumn{2}{|l|}{Scrolling Keys.......................... Two Twanual} \\
\hline \multicolumn{2}{|l|}{Keypad ................................... . Numeric} \\
\hline \multicolumn{2}{|l|}{Number of Keys................................... 24} \\
\hline \multicolumn{2}{|l|}{Operation Life ................ 1,000,000 operations} \\
\hline \multicolumn{2}{|l|}{Function Keys.......... Six, programmable, backlit} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Indicators \(\ldots \ldots \ldots \ldots\). Audible tone, flashing display,}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Communications ................ TM2500-RS-232C,} \\
\hline & int-to-point; TM2700—RS-422, multidrop up to 32 terminals \\
\hline \multirow[t]{3}{*}{wer} & 5 VDC or 7.5 to 10 VDC at \\
\hline & 250mA max, TM2500 \\
\hline & 350mA max, TM2700 \\
\hline Baud Rate & 300, 1200, 9600 \\
\hline Modes. & Character and block \\
\hline \multicolumn{2}{|l|}{Operaing Temperaiuió... \(\hat{v}^{\circ} \mathrm{C}\) to \(+50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.\) to \(\left.122^{\circ} \mathrm{F}\right)\)} \\
\hline \multirow[t]{2}{*}{Storage Temperature .} & \(-20^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline & \(\left(-4^{\circ} \mathrm{F}\right.\) to \(\left.+158^{\circ} \mathrm{F}\right)\) \\
\hline \multicolumn{2}{|l|}{Dimensions . . . . . . . . . . . . . . . . . . 4.102" \(\times 7.102^{\prime \prime} \times 1.060^{\prime \prime}\)} \\
\hline \multicolumn{2}{|l|}{Weight .................................... 10.5 ounce} \\
\hline \multicolumn{2}{|l|}{Mounting . . . . . . . . . . . . . . . Flush or surface mounted} \\
\hline \multicolumn{2}{|l|}{Case \(\ldots \ldots \ldots \ldots\). Dust and moisture sealed ABS plastic} \\
\hline
\end{tabular}

\title{
DSPlay \({ }^{\text {Tm }}\)
}


The DSPlay product family is designed to assist those involved in the analysis of real-world signals by simplifying the implementation of digital signal processing (DSP). Typical applications include vibration analysis; process, medical and analytical instrumentation; audio, sonar and voice signal processing; and test or quality control applications.

The DSPlay Software Package transforms the IBM \({ }^{\circledR}\) PC/XT/AT or compatible into an easy-touse DSP workstation, even for the nonexpert. DSPlay Software features a menu-driven interface with pull-up lists to process, analyze, and display real-world signals. Built-in editor functions make program development and modification simple; and, the package utilizes a concept familiar to the user for program development-the block diagram approach.

Each block represents a process function such as correlation, signal source, filter or FFT operation. Once the program is developed, DSPlay offers three different ways to view the data. The "Windows" display provides an overview of up to six signal windows. The "Active" display allows a concentrated examination of one signal window, and the "Landscape" display offers a comparison of signal frames by presenting a series in 3-D perspective.
DSPlay requires 512k bytes memory, one doublesided floppy drive, and an IBM color graphics board for operation.
The execution time of DSPlay Software may be enhanced by implementing DSPlay \(\mathrm{XL}^{\text {u }}\). Using a powerful accelerator board, the software's performance is improved by two orders of magnitude (typically). Even higher performance improvements can be achieved in operations requiring numerous sequential calculations-for example, where large filters or transforms are processed frequently.
DSPlay XL is slated for introduction in the fourth quarter of 1987.
For more information about DSPlay products, contact the factory at 602-741-1155 or write DSP Marketing, Burr-Brown Corporation, 6550 S. Bay Colony, Tucson, AZ 85706.

DSPlay \({ }^{\text {™ }}\), DSPlay XLTw, Burr-Brown Corp.; IBM \({ }^{\text {® }}\) IBM Corp.

\section*{STD BUS INDUSTRIAL I/O PRODUCTS}

The Burr-Brown STD Bus products provide the most cost-effective tool for solving the applica-tion-oriented problems of process control and system integration.
The modularity and simplicity offered by this well-defined standard have led to the development of a complete line of STD Bus products. The line includes a disk controller and operating system, a Z80 CPU with onboard DMA, various memory boards, a 32-channel 12-bit A/D converter, two CRT controllers, an IEEE-488 interface card, and two types of discrete I/O cards.


\section*{DATA COMRMUNCATIONS PRODUCTS}


Burr-Brown Data Communications products provide the most cost-effective tool for solving the local data communications problems for industrial and institutional facilities.
Limited Distance and Fiber Optic Modems provide extension of RS-232 ports up to several miles. In addition, electrical isolation for wire units is provided by transformers and optical couplers, eliminating ground loops, equipment damage, and noise pickup. Surge suppression devices are internally mounted on all field inputs and outputs. The LDM422 serves as a Limited Distance Modem and as an RS-232-to-RS-422 converter with multipoint capability. It has two complete high speed transmit and receive channels for data and hand-

shake. It features 1000 V isolation and surge protection.
Fiber optic modems offer the maximum in isolation and EMI/RFI immunity. The LDM80 is signal powered from RS-232 ports and transmits up to 3.5 km at 19.2 k bits per second. The LDM85 is a unique multipoint-capable modem with data rates to 5 M bits per second.
Other products include:
- LDM35-Signal-Powered Limited-Distance Modem
- LDM70-High Speed Ruggedized Industrial Modem
- APA120-Personal-Computer-Based Protocol Analyzer.

\title{
NORTH AMERICAN SALES DIRECTORY \\ For Component Products \\ \\ BURR-BROWN OFFICES AND SALES REPRESENTATIVES
} \\ \\ BURR-BROWN OFFICES AND SALES REPRESENTATIVES
}

ALABAMA
Rep, Inc.
205-881-9270 Huntsville, AL

\section*{ALASKA}

Burr-Brown Corporation 206-455-2611 Bellevue, WA

\section*{ARIZONA}

Burr-Brown Corporation 602-746-1111 Tucson, AZ

\section*{ARKANSAS}

Burr-Brown Corporation
214-681-5781 Garland, TX
CALIFORNIA (Northern)
Burr-Brown Corporation
408-559-8600 San Jose, CA
CALIFORNIA (Southern) Burr-Brown Corporation 818-991-8544 Agoura, CA 805-496-7581 Agoura, CA 714-835-0712 Santa Ana, CA

\section*{CANADA}

Allan Crawford Associates 416-890-2010 Mississauga, ONT
COLORADO
Burr-Brown Corporation 303-663-4440 Loveland, CO
CONNECTICUT
Burr-Brown Corporation 914-964-5252 Yonkers, NY

\section*{DELAWARE}

QED Electronics, Inc. 215-643-9200 Spring House, PA

\section*{FLORIDA}

Burr-Brown Corporation 305-740-7900 Orlando, FL 305-586-7162 Palm Beach, FL

\section*{GEORGIA}

Rep, Inc.
404-938-4358 Atlanta, GA

\section*{hawall}

Burr-Brown Corporation 818-991-8544 Agoura, CA

\section*{IDAHO}

Burr-Brown Corporation
206-455-2611 Bellevue, WA

\section*{ILLINOIS}

Burr-Brown Corporation 312-832-6520 Addison, IL
INDIANA
Burr-Brown Corporation
513-891-4711 Cincinnati, OH

IOWA
Rep Associates Corporation 319-373-0152 Marion, IA

\section*{KANSAS}

BC Electronic Sales, Inc. 913-342-1211 Kansas City, KS 316-722-0104 Wichita, KS
KENTUCKY
Burr-Brown Corporation 513-891-4711 Cincinnati, OH
LOUISIANA (Northern) Burr-Brown Corporation 214-681-5781 Garland, TX
LOUISIANA (Southern)
Burr-Brown Corporation 713-988-6546 Houston, TX

\section*{MAINE}

Burr-Brown Corporation 617-273-9022 Burlington, MA

\section*{MARYLAND}

Marktron, Inc.
301-628-1111 Hunt Valley, MD
301-251-8990 Rockville, MD
MASSACHUSETTS
Burr-Brown Corporation 617-273-9022 Burlington, MA

\section*{MICHIGAN}

Burr-Brown Corporation 313-474-6533 Farmington, MI

\section*{MINNESOTA}

Electronic Sales Agency, Inc. 612-884-8291 Bloomington, MN

\section*{MISSISSIPPI}

Rep, Inc.
404-938-4358 Atlanta, GA

\section*{MISSOURI}

BC Electronic Sales, Inc. 314-521-6683 St. Louis, MO

\section*{MONTANA}

Aspen Sales, Inc.
801-467-2401. Salt Lake City, UT

\section*{NEBRASKA}

BC Electronic Sales, Inc. 913-342-1211 Kansas City, KS
NEVADA (Northern)
Burr-Brown Corporation 408-559-8600 San Jose, CA

NEVADA (Southern)
Burr-Brown Corporation 818-991-8544 Agoura, CA

\section*{NEW HAMPSHIRE}

Burr-Brown Corporation
617-273-9022 Burlington, MA

\section*{NEW JERSEY}

Burr-Brown Corporation 914-964-5252 Yonkers, NY

\section*{NEW MEXICO}

Thorson Desert States, Inc.*
505-293-8555 Albuquerque, NM
NEW YORK (Metro Area) Burr-Brown Corporation 914-964-5252 Yonkers, NY

\section*{NEW YORK}

Advanced Components Corp.
315-853-6438 Clinton, NY
607-785-3191 Endicott, NY 315-699-2671 N. Syracuse, NY
716-544-7017 Rochester, NY
716-889-1429 Scottsville, NY
NORTH CAROLINA
Murcota Corporation
919-722-9445 Winston-
Salem, NC
NORTH DAKOTA
Electronic Sales Agency, Inc. 612-884-8291 Bloomington, MN

\section*{OHIO}

Burr-Brown Corporation 513-891-4711 Cincinnati, OH
OHIO (Northeastern) K-T/DEPCO Marketing, Inc. 216-442-6200 Cleveland, OH

\section*{OKLAHOMA}

Burr-Brown Corporation 214-681-5781 Garland, TX

\section*{OREGON}

Burr-Brown Corporation 206-455-2611 Bellevue, WA
PENNSYLVANIA (Eastern)
QED Electronics, Inc. 215-643-9200 Spring House, PA
PENNSYLVANIA (Western)
K-T/DEPCO Marketing, Inc. 412-367-1011 Pittsburgh, PA

\section*{RHODE ISLAND}

Burr-Brown Corporation 617-273-9022 Burlington, MA

\section*{SOUTH CAROLINA}

Murcota Corporation
919-722-9445 WinstonSalem, NC

\section*{SOUTH DAKOTA}

Electronic Sales Agency, Inc. 612-884-8291 Bloomington, MN

\section*{TENNESSEE}

Rep, Inc.
615-475-4105 Jefferson City, TN
TEXAS (Northern)
Burr-Brown Corporation
214-681-5781 Garland, TX
TEXAS (Southern)
Burr-Brown Corporation
713-988-6546 Houston, TX
TEXAS (EI Paso)
Thorson Desert States, Inc.*
505-293-8555 Albuquerque, NM

\section*{UTAH}

Aspen Sales, Inc.
801-467-2401 Salt Lake City, UT

\section*{VERMONT}

Burr-Brown Corporation
617-273-9022 Burlington, MA
VIRGINIA
Marktron, Inc.
301-251-8990 Rockville, MD

\section*{WASHINGTON}

Burr-Brown Corporation
206-455-2611 Bellevue, WA
WASHINGTON,D.C.
Marktron, Inc.
301-251-8990 Rockville, MD

\section*{WEST VIRGINIA}

Burr-Brown Corporation 513-891-4711 Cincinnati, OH
WISCONSIN (Eastern)
Burr-Brown Corporation
312-832-6520 Addison, IL
WISCONSIN (Western)
Electronic Sales Agency, Inc.
612-884-8291 Bloomington, MN

\section*{WYOMING}

Aspen Sales, Inc.
801-467-2401 Salt Lake City, UT

\footnotetext{
* Microcircuits only.
}

\section*{CUSTOMER PRICE LIST-COMPONENT PRODUCTS}

Prices in U.S. dollars
F.O.B. Tucson, Arizona

Quantity discounts available.
Effective June 1, 1987
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MODEL & F00T
NOTE & 1-24 & 25-99 & 100-249 & MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 \\
\hline 0100MS & & 14.98 & 12.74 & 10.34 & 3500U/883B & + & 30.00 & 26.00 & 24.00 \\
\hline 0145MC & & 5.21 & 4.43 & 3.78 & 3501S & & 28.56 & 22.41 & 17.80 \\
\hline 0546 & & 104.00 & 99.00 & 96.00 & 3507J & & 13.05 & 10.42 & 8.72 \\
\hline 0548MC & & 28.00 & 27.00 & 26.00 & 3507JQ & & 19.43 & 15.07 & 12.97 \\
\hline 0700 & & 50.00 & 48.00 & 46.00 & 3508J & & 11.48 & 8.91 & 7.77 \\
\hline 0700M & & 53.00 & 51.00 & 49.00 & 3510AM & & 10.47 & 8.10 & 6.25 \\
\hline 07000 & & 44.00 & 43.00 & 41.00 & 3510BM & & 13.27 & 10.15 & 7.82 \\
\hline 0700um & & 60.00 & 58.00 & 56.00 & 3510CM & & 20.44 & 15.39 & 12.18 \\
\hline 0710 & & 121.00 & 117.00 & 112.00 & 3510SM & & 20.44 & 15.39 & 12.18 \\
\hline 0722 & & 52.96 & 40.77 & 36.23 & 3510VM/883B & + & 70.00 & 60.00 & 50.00 \\
\hline 0722BG & & 67.59 & 53.14 & 47.09 & 3521H & & 27.65 & 21.65 & 16.49 \\
\hline 0722MG & & 60.87 & 47.03 & 40.74 & 3521 J & & 39.50 & 28.80 & 22.31 \\
\hline 0724 & & 73.85 & 56.86 & 50.98 & 3521.10 & & 52.00 & 38.55 & 30.87 \\
\hline 0803HS & & 4.20 & 3.24 & 2.84 & 3521 K & & 59.30 & 43.20 & 35.96 \\
\hline 0803MC & & 5.75 & 4.43 & 4.04 & 3521 L & & 83.50 & 61.45 & 49.35 \\
\hline 0804HS & & 5.61 & 4.32 & 3.94 & 3521 R & & 97.00 & 76.50 & 58.49 \\
\hline 0805HS & & 25.25 & 19.44 & & 3521 RQ & & 137.75 & 105.65 & 86.78 \\
\hline 0807HS & & 1.54 & 1.19 & 1.00 & 3522 J & & 20.60 & 16.00 & 12.34 \\
\hline 2014MC & & 17.00 & 14.00 & 11.00 & 3522K & & 27.00 & 21.55 & 16.80 \\
\hline 2020MC & & 9.00 & 7.00 & 6.00 & 3522L & & 37.78 & 28.10 & 22.16 \\
\hline 2026MC & & 39.00 & 32.00 & 26.00 & 3522S & & 53.40 & 41.50 & 31.34 \\
\hline 2302MC & & 9.00 & 8.60 & 8.20 & 3522SQ & & 71.15 & 57.80 & 45.83 \\
\hline 2350MC & & 14.00 & 13.50 & 13.00 & 3523J & & 38.50 & 29.20 & 22.73 \\
\hline 2525 MC & & 28.00 & 23.00 & 19.00 & 3523JQ & & 50.75 & 41.20 & 33.08 \\
\hline 3291/14 & & 125.00 & 120.00 & 115.00 & 3523K & & 45.80 & 36.00 & 28.93 \\
\hline 3292/14 & & 125.00 & 120.00 & 115.00 & 3523L & & 54.90 & 42.00 & 33.39 \\
\hline 3293/14 & & 125.00 & 120.00 & 115.00 & 3523LQ & & 73.85 & 60.65 & 51.40 \\
\hline 3329/03 & & 43.23 & 35.64 & 25.20 & 3527AM & & 18.20 & 13.72 & 11.50 \\
\hline 3354/25 & & 165.00 & 159.00 & 152.00 & 3527AMQ & & 24.42 & 18.52 & 15.59 \\
\hline 3355/25 & & 133.00 & 128.00 & 123.00 & 3527BM & & 24.36 & 17.82 & 15.38 \\
\hline 3356/25 & & 125.00 & 120.00 & 115.00 & 3527BMQ & & 29.96 & 23.81 & 20.21 \\
\hline 3450 & & 280.00 & 269.00 & 258.00 & 3527 CM & & 37.13 & 28.89 & 24.47 \\
\hline 3451 & & 228.00 & 219.00 & 210.00 & 3528AM & & 22.68 & 17.12 & 13.60 \\
\hline 3452 & & 240.00 & 230.00 & 221.00 & 3528AMQ & & 30.30 & 23.27 & 18.32 \\
\hline 3500A & & 11.54 & 8.80 & 6.72 & 3528BM & & 27.83 & 20.90 & 18.43 \\
\hline 3500B & & 19.71 & 15.61 & 11.39 & 3528BMQ & & 36.96 & 28.03 & 24.78 \\
\hline 3500 C & & 25.14 & 20.14 & 14.91 & 3528CM & & 33.88 & 26.08 & 23.00 \\
\hline 3500 E & & 40.60 & 30.24 & 23.36 & 3528CMQ & & 45.86 & 36.34 & 30.45 \\
\hline 3500MP & & 40.60 & 30.24 & 23.36 & 3550J & & 34.94 & 27.00 & 22.52 \\
\hline 3500R & & 23.80 & 17.93 & 13.13 & 3550K & & 44.52 & 33.75 & 26.78 \\
\hline 3500R/883B & + & 40.00 & 36.00 & 34.00 & 3550S & & 64.74 & 50.60 & 37.49 \\
\hline 3500RQ & & 32.40 & 25.00 & 18.90 & 3550SQ & & 87.36 & 69.66 & 53.55 \\
\hline 3500 S & & 36.96 & 27.27 & 22.26 & 3551J & & 35.62 & 27.27 & 22.52 \\
\hline 3500SQ & & 52.48 & 38.72 & 31.60 & 3551 S & & 62.89 & 49.95 & 37.49 \\
\hline 3500 T & & 59.64 & 44.28 & 35.28 & 3551SQ & & 78.40 & 64.80 & 51.45 \\
\hline 3500TQ & & 82.72 & 62.87 & 50.40 & 3553AM & & 40.32 & 31.21 & 23.57 \\
\hline
\end{tabular}

Page No. 2
Prices in U.S. dollars

\section*{CUSTOMER PRICE LIST--COMPONENT PRODUCTS}
F.O.B. Tucson, Arizona Quantity discounts available.

Effective June 1, 1987
\begin{tabular}{lrrrr|lrrrr} 
MODEL & FOOT & \(1-24\) & \(25-99\) & \(100-249\) & \multicolumn{1}{l}{ MODEL } & FOOT & \(1-24\) & \(25-99\) & \(100-249\) \\
& NOTE & & & & & & \\
\hline
\end{tabular}

Prices in U.S. dollars
CUSTOMER PRICE LIST-COMPONENT PRODUCTS
F.O.B. Tucson, Arizona Quantity discounts available.

Page No. 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 & MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOIE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 \\
\hline 4213SL-BSS4 & & 68.09 & 56.93 & 45.54 & ADC76BM & & 330.75 & 264.60 & 226.80 \\
\hline 4213SM & & 58.30 & 48.80 & 38.90 & ADC76JG & & 156.45 & 135.45 & 103.95 \\
\hline 4213SM-BS & & 58.30 & 48.80 & 38.90 & ADC76JM & & 193.20 & 154.35 & 132.30 \\
\hline 4213SM-BSS1 & & 196.02 & 162.53 & 128.37 & ADC76KG & & 179.55 & 153.30 & 124.95 \\
\hline 4213SM-BSS2 & & 75.79 & 63.44 & 50.57 & ADC76KM & & 242.55 & 194.25 & 165.90 \\
\hline 4213SM-BSS3 & & 62.04 & 56.12 & 44.74 & ADC803BM & & 239.00 & 199.00 & 162.00 \\
\hline 4213SM-BSS4 & & 64.13 & 53.68 & 42.79 & ADC803BMQ & & 321.00 & 256.00 & 205.00 \\
\hline 4213UM & & 31.00 & 26.00 & 23.00 & ADC803CM & & 292.00 & 225.00 & 180.00 \\
\hline 4213UM/883B & + & 43.00 & 37.00 & 29.00 & ADC803CMQ & & 369.00 & 293.00 & 234.00 \\
\hline 4213VM & & 45.00 & 39.00 & 31.00 & ADC803SM & & 382.00 & 304.00 & 243.00 \\
\hline 4213VM/883B & + & 60.49 & 38.00 & 35.00 & ADC803SMQ & & 502.00 & 399.00 & 319.00 \\
\hline 4213 WM & & 60.00 & 60.00 & 49.00 & ADC804BH & & 66.15 & 47.25 & 40.95 \\
\hline 4213WM/883B & + & 75.00 & 62.00 & 48.00 & ADC80, \({ }^{\text {A }}\) & & 102.00 & 72.45 & 57.75 \\
\hline 4214AP & & 28.28 & 22.95 & 17.64 & ADC804SH & & 124.95 & 87.15 & 69.30 \\
\hline 4214BP & & 41.94 & 33.70 & 28.35 & ADC804SHQ & & 156.45 & 109.20 & 87.15 \\
\hline 4214RM & & 34.16 & 26.95 & 24.52 & ADC80AG-10 & & 83.48 & 66.15 & 46.20 \\
\hline 4214SM & & 55.33 & 45.36 & 38.59 & ADC80AG-12 & & 85.05 & 67.20 & 46.73 \\
\hline 4302 & & 58.86 & 42.88 & 33.76 & ADC80AG-120 & & 110.25 & 88.20 & 60.90 \\
\hline 4340 & & 108.90 & 79.95 & 70.65 & ADC80AGZ-12 & & 85.05 & 67.20 & 46.73 \\
\hline 4341 & & 32.70 & 25.97 & 18.85 & ADC80H-AH-12 & & 85.05 & 67.20 & 46.73 \\
\hline 4423 & & 27.10 & 21.06 & 17.48 & ADC80H-AH-12Q & & 110.25 & 88.20 & 60.90 \\
\hline 8300201XC & & 170.00 & 163.00 & 155.00 & ADC80KD & E, 0 & & 33.00 & 33.00 \\
\hline AD515JH & & 19.04 & 14.31 & 9.98 & ADC80MAH-12 & & 52.00 & 42.00 & 35.00 \\
\hline AD515JL & & 19.50 & 15.75 & 12.00 & ADC80MAH-12/QM & & 67.00 & 54.00 & 45.00 \\
\hline AD515KH & & 25.48 & 19.71 & 14.54 & ADC82AG & & 78.75 & 54.60 & 46.20 \\
\hline AD515KL & & 25.25 & 20.75 & 16.35 & ADC82AM & & 113.40 & 78.75 & 66.15 \\
\hline AD515LH & & 31.36 & 24.30 & 18.90 & ADC82AMQ & & 153.30 & 115.50 & 105.00 \\
\hline AD515LL & & 30.50 & 25.00 & 20.50 & ADC84KG-10 & & 92.40 & 73.50 & 61.95 \\
\hline ADC10HT & & 577.50 & 477.75 & 414.75 & ADC84KG-12 & & 97.65 & 77.70 & 65.10 \\
\hline ADC574AJH & & 45.00 & 36.00 & 30.00 & ADC85-10 & & 158.55 & 143.85 & 103.95 \\
\hline ADC574AKH & & 59.00 & 47.20 & 39.50 & ADC85-12 & & 179.55 & 144.90 & 110.25 \\
\hline ADC574ASH & & 124.00 & 99.00 & 91.35 & ADC85H-12 & & 131.25 & 105.00 & 88.20 \\
\hline ADC574ATH & & 177.00 & 141.00 & 118.50 & ADC85HQ-12 & & 163.80 & 131.25 & 110.25 \\
\hline ADC600B & C & & 2375.00 & 2090.00 & ADC87 & & 119.00 & 102.00 & 94.00 \\
\hline ADC600K & C & & 1695.00 & 1495.00 & ADC87/883B & + & 130.00 & 113.00 & 105.00 \\
\hline ADC674AJH & & 58.50 & 46.75 & 39.25 & ADC87H-12 & & 173.25 & 138.60 & 115.50 \\
\hline ADC674AKH & & 75.00 & 60.00 & 50.25 & ADC87HQ-12 & & 216.30 & 173.25 & 143.85 \\
\hline ADC674ASH & & 158.00 & 126.00 & 106.00 & ADC87U & & 110.00 & 94.00 & 91.00 \\
\hline ADC674ATH & & 228.00 & 182.00 & 153.00 & ADC87U/883B & + & 121.00 & 104.00 & 96.00 \\
\hline ADC71JG & & 98.70 & 86.10 & 66.15 & ADC87V & & 119.00 & 102.00 & 94.00 \\
\hline ADC71KG & & 122.85 & 107.10 & 81.90 & ADC87V/883B & + & 130.00 & 113.00 & 105.00 \\
\hline ADC72AM & & 239.40 & 203.70 & 156.45 & DAC10HT & & 355.95 & 241.50 & 178.50 \\
\hline ADC72BM & & 298.20 & 254.10 & 195.30 & DAC1200KP-V & & 9.50 & 9.50 & 5.95 \\
\hline ADC72JM & & 199.50 & 170.10 & 131.25 & DAC1201KP-V & & 11.20 & 11.20 & 6.95 \\
\hline ADC72KM & & 249.90 & 212.10 & 162.75 & DAC1600JP-V & & 15.10 & 14.35 & 8.95 \\
\hline ADC76AM & & 281.40 & 224.70 & 193.20 & DAC1600KP-V & & 16.70 & 15.95 & 9.95 \\
\hline
\end{tabular}

Page No. 4
Prices in U.S. dollars
CUSTOMER PRICE LIST-COMPONENT PRODUCTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 & MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & .1-24 & 25-99 & 100-249 \\
\hline DAC60-10 & & 155.00 & 149.00 & 143.00 & DAC703BL/QM & & 109.20 & 82.95 & 71.40 \\
\hline DAC60-12 & & 165.00 & 159.00 & 152.00 & DAC703CH & & 88.20 & 67.20 & 56.70 \\
\hline DAC63BG & & 121.80 & 97.65 & 91.35 & DAC703JP & & 23.10 & 19.58 & 17.85 \\
\hline DAC63BM & & 141.75 & 117.60 & 107.10 & DAC703KH & & 48.30 & 36.75 & 30.45 \\
\hline DAC63CG & & 137.55 & 109.20 & 101.85 & DAC703KP & & 25.20 & 22.03 & 19.95 \\
\hline DAC63CM & & 160.65 & 131.25 & 117.60 & DAC703LH & & 71.40 & 54.60 & 46.20 \\
\hline DAC63SM & & 252.00 & 210.00 & 192.15 & DAC703SH & & 92.40 & 70.35 & 58.80 \\
\hline DAC63TM & & 276.15 & 234.15 & 212.10 & DAC703SH/QM & & 107.10 & 80.85 & 68.25 \\
\hline DAC700BH & & 60.90 & 48.30 & 40.95 & DAC703SL & & 154.35 & 122.85 & 103.95 \\
\hline DAC700BH/QM & & 73.50 & 55.65 & 47.25 & DAC703SL/QM & & 177.45 & 140.70 & 119.70 \\
\hline DAC700BL & & 95.55 & 72.45 & 61.95 & DAC703vG & I & 102.00 & 77.00 & 64.50 \\
\hline DAC700BL/OM & & 109.20 & 82.95 & 71.40 & DAC703VG/883B & I & 118.50 & 89.00 & 75.00 \\
\hline DAC700CH & & 88.20 & 67.20 & 56.70 & DAC703VL & I & 143.50 & 108.00 & 90.00 \\
\hline DAC700KH & & 48.30 & 36.75 & 30.45 & DAC703VL/883B & I & 165.50 & 125.00 & 105.00 \\
\hline DAC700LH & & 71.40 & 54.60 & 46.20 & DAC705BH & & 76.65 & 72.45 & 56.70 \\
\hline DAC700SH & & 92.40 & 70.35 & 58.80 & DAC705BH/QM & & 88.20 & 82.95 & 65.10 \\
\hline DAC700SH/QM & & 107.10 & 80.85 & 68.25 & DAC705KH & & 66.15 & 53.55 & 46.20 \\
\hline DAC700SL & & 154.35 & 122.85 & 103.95 & DAC705SH & & 99.75 & 97.65 & 77.17 \\
\hline DAC700SL/QM & & 177.45 & 140.70 & 119.70 & DAC705SH/QM & & 114.45 & 108.15 & 89.30 \\
\hline DAC701BH & & 60.90 & 48.30 & 40.95 & DAC706BH & & 76.65 & 72.45 & 59.54 \\
\hline DAC7018H/QM & & 73.50 & 55.65 & 47.25 & DAC706BH/QM & & 88.20 & 82.95 & 68.36 \\
\hline DAC701BL & & 95.55 & 72.45 & 61.95 & DAC706KH & & 66.15 & 53.55 & 48.51 \\
\hline DAC7018L/QM & & 109.20 & 82.95 & 71.40 & DAC706SH & & 99.75 & 93.45 & 77.17 \\
\hline DAC701CH & & 88.20 & 67.20 & 56.70 & DAC706SH/OM & & 114.45 & 108.15 & 89.30 \\
\hline DAC701KH & & 48.30 & 36.75 & 30.45 & DAC707BH & & 76.65 & 72.45 & 59.54 \\
\hline DAC701LH & & 71.40 & 54.60 & 46.20 & DAC707BH/QM & & 88.20 & 82.95 & 65.10 \\
\hline DAC701SH & & 92.40 & 70.35 & 58.80 & DAC707JP & & 27.30 & 21.53 & 18.37 \\
\hline DAC701SH/QM & & 107.10 & 80.85 & 68.25 & DAC707KH & & 66.15 & 53.55 & 46.20 \\
\hline DAC701SL & & 154.35 & 122.85 & 103.95 & DAC707KP & & 32.55 & 25.73 & 22.05 \\
\hline DAC701SL/QM & & 177.45 & 140.70 & 119.70 & DAC707SH & & 99.75 & 93.45 & 73.50 \\
\hline DAC702BH & & 60.90 & 48.30 & 40.95 & DAC707SH/QM & & 114.45 & 108.15 & 85.05 \\
\hline DAC702BH/QM & & 73.50 & 55.65 & 47.25 & DAC708BH & & 76.65 & 72.45 & 56.70 \\
\hline DAC702BL & & 95.55 & 72.45 & 61.95 & DAC708BH/QM & & 88.20 & 82.95 & 65.10 \\
\hline DAC702BL/QM & & 109.20 & 82.95 & 71.40 & DAC708KH & & 66.15 & 53.55 & 46.20 \\
\hline DAC702CH & & 88.20 & 67.20 & 56.70 & DAC708SH & & 99.75 & 93.45 & 73.50 \\
\hline DAC702.JP & & 23.10 & 19.58 & 17.85 & DAC708SH/QM & & 114.45 & 108.15 & 85.05 \\
\hline DAC702KH & & 48.30 & 36.75 & 30.45 & DAC709BH & & 76.65 & 72.45 & 56.70 \\
\hline DAC702KP & & 25.20 & 21.95 & 19.95 & DAC709BH/QM & & 88.20 & 82.95 & 65.10 \\
\hline DAC702LH & & 71.40 & 54.60 & 46.20 & DAC709KH & & 66.15 & 53.55 & 46.20 \\
\hline DAC702SH & & 92.40 & 70.35 & 58.80 & DAC709SH & & 99.75 & 93.45 & 73.50 \\
\hline DAC702SH/QM & & 107.10 & 80.85 & 68.25 & DAC709SH/QM & & 114.45 & 108.15 & 85.05 \\
\hline DAC702SL & & 154.35 & 122.85 & 103.95 & DAC70BH-COB-I & & 150.15 & 113.40 & 94.50 \\
\hline DAC702SL/OM & & 177.45 & 140.70 & 119.70 & DAC70BH-CSB-I & & 150.15 & 113.40 & 94.50 \\
\hline DAC703BH & & 60.90 & 48.30 & 40.95 & DAC71-CCD-I & & 67.10 & 52.80 & 46.20 \\
\hline DAC703BH/OM & & 73.50 & 55.65 & 47.25 & DAC71-CCD-V & & 70.40 & 57.20 & 52.80 \\
\hline DAC703BL & & 95.55 & 72.45 & 61.95 & DAC71-COB-I & & 56.70 & 44.10 & 38.85 \\
\hline
\end{tabular}

CUSTOMER PRICE LIST-COMPONENT PRODUCTS
Prices in U.S. dollars
F.O.B. Tucson, Arizona Quantity discounts available.

Page No. 5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 & MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 \\
\hline DAC71-COB-V & & 59.85 & 47.25 & 40.95 & DAC8118H/QM & & 35.75 & 28.25 & 23.75 \\
\hline DAC71-CSB-I & & 56.70 & 44.10 & 38.85 & DAC811BL & & 37.00 & 29.25 & 24.60 \\
\hline DAC71-CSB-V & & 59.85 & 47.25 & 40.95 & DAC811BL/QM & & 46.50 & 37.00 & 31.00 \\
\hline DAC710KH & & 42.00 & 35.70 & 30.45 & DAC811JD & E & & 15.25 & 9.60 \\
\hline DAC711KH & & 42.00 & 35.70 & 30.45 & DAC811JP & & 18.60 & 14.90 & 11.90 \\
\hline DAC72BH-COB-I & & 87.15 & 66.15 & 53.55 & DAC811Ju & & 20.50 & 16.40 & 13.50 \\
\hline DAC72BH-COB-V & & 90.30 & 70.14 & 55.65 & DAC811KP & & 24.75 & 19.80 & 15.85 \\
\hline DAC72BH-CSB-I & & 87.15 & 66.15 & 53.55 & DAC811KU & & 26.50 & 21.20 & 17.20 \\
\hline DAC72BH-CSB-V & & 90.30 & 69.30 & 55.65 & DAC811RH & & 79.00 & 63.00 & 53.00 \\
\hline DAC736J & & 375.00 & 360.00 & 345.00 & DAC811RH/QM & & 91.00 & 73.00 & 61.00 \\
\hline DAC736K & & 415.00 & 399.00 & 382.00 & DAC811RL & & 103.00 & 82.00 & 69.00 \\
\hline DAC73J & & 373.00 & 358.00 & 344.00 & DAC811RL/QM & & 119.00 & 95.00 & 80.00 \\
\hline  & & 412.00 & 395.00 & 300.00 & Dacsils & & 130.00 & 106.00 & 86.00 \\
\hline DAC7541AAH & & 13.10 & 10.75 & 7.95 & DAC811SH/QM & & 150.00 & 122.00 & 99.00 \\
\hline DAC7541AAH/QM & & 16.20 & 12.70 & 9.30 & DAC811SL & & 169.00 & 138.00 & 112.00 \\
\hline DAC7541ABH & & 14.45 & 11.85 & 8.75 & DAC811SL/QM & & 195.00 & 159.00 & 129.00 \\
\hline DAC7541ABH/QM & & 17.90 & 14.10 & 10.20 & DAC812BM & & 137.55 & 126.00 & 96.60 \\
\hline DAC7541AJP & & 11.80 & 9.70 & 7.15 & DAC812CM & & 183.75 & 139.65 & 127.05 \\
\hline DAC7541AJU & & 14.15 & 11.65 & 8.55 & DAC82KG & & 40.95 & 28.35 & 24.15 \\
\hline DAC7541AKP & & 13.10 & 10.75 & 7.95 & DAC850-CBI-I & & 38.12 & 27.30 & 23.10 \\
\hline DAC7541AKU & & 15.70 & 12.90 & 9.55 & DAC850-CBI-I/QM & & 47.36 & 34.12 & 28.87 \\
\hline DAC7541ASH & & 38.35 & 31.35 & 23.25 & DAC850-CBI-V & & 40.43 & 29.40 & 24.68 \\
\hline DAC7541ASH/QM & & 57.00 & 44.70 & 32.60 & DAC850-CBI-V/QM & & 50.82 & 36.75 & 30.98 \\
\hline DAC7541ATH & & 44.75 & 36.60 & 27.10 & DAC850BL-I & & 49.35 & 35.70 & 30.45 \\
\hline DAC7541ATH/QM & & 66.50 & 52.20 & 38.00 & DAC850BL-I/QM & & 62.37 & 45.15 & 38.33 \\
\hline DAC7700KD & E & & 25.20 & 18.37 & DAC850BL-V & & 53.03 & 37.80 & 32.02 \\
\hline DAC7701KD & E & & 25.20 & 18.37 & DAC850BL-V/QM & & 66.99 & 47.25 & 40.43 \\
\hline DAC80-CBI-I & & 23.00 & 18.25 & 15.25 & DAC851-CBI-I & & 56.59 & 40.95 & 34.65 \\
\hline DAC80-CBI-V & & 24.00 & 19.00 & 16.00 & DAC851-CBI-I/QM & & 65.20 & 47.25 & 39.90 \\
\hline DAC80-CCD-I & & 42.00 & 37.50 & 25.00 & DAC851-CBI-V & & 61.21 & 44.62 & 37.27 \\
\hline DAC80-CCD-V & & 42.50 & 38.00 & 26.00 & DAC851-CBI-V/QM & & 70.36 & 51.45 & 43.05 \\
\hline DAC800-CBI-I & & 24.15 & 19.95 & 15.75 & DAC851SL-I & & 74.03 & 53.55 & 45.15 \\
\hline DAC800-CBI-V & & 28.87 & 24.15 & 18.90 & DAC851SL-I/QM & & 85.58 & 61.95 & 51.98 \\
\hline DAC800P-CBI-I & & 21.26 & 17.01 & 14.33 & DAC851SL-V & & 79.80 & 58.80 & 48.30 \\
\hline DAC800P-CBI-V & & 26.25 & 22.05 & 16.80 & DAC851SL-V/QM & & 91.35 & 67.20 & 55.65 \\
\hline DAC80KD-I & E & & 15.25 & 9.60 & DAC85H-CBI-I & & 36.23 & 28.87 & 25.20 \\
\hline DAC80KD-V & E & & 15.25 & 9.60 & DAC85H-CBI-I/QM & & 44.10 & 35.18 & 30.98 \\
\hline DAC80P-CBI-I & & 20.00 & 16.00 & 13.25 & DAC85H-CBI-V & & 37.80 & 30.45 & 26.25 \\
\hline DAC80P-CBI-V & & 21.00 & 16.37 & 14.00 & DAC85H-CBI-V/QM & & 46.20 & 35.18 & 32.02 \\
\hline DAC80Z-CBI-I & & 23.00 & 18.25 & 15.25 & DAC87-CBI-I & J & & & \\
\hline DAC802-CBI-V & & 24.00 & 19.00 & 16.00 & DAC87-CBI-I/B & J, + & & & \\
\hline DAC811AH & & 23.25 & 18.35 & 14.90 & DAC87-CBI-V & & 98.00 & 78.50 & 70.50 \\
\hline DAC811AH/QM & & 29.15 & 23.00 & 18.75 & DAC87-CBI-V/B & + & 105.00 & 85.00 & 76.50 \\
\hline DAC811AL & & 29.25 & 23.25 & 19.40 & DAC870u & & 45.00 & 40.00 & 35.00 \\
\hline DAC811AL/QM & & 36.75 & 29.25 & 24.25 & DAC870U/883B & + & 65.00 & 60.00 & 55.00 \\
\hline DAC811BH & & 28.50 & 22.50 & 18.90 & DAC870UL & & 50.00 & 45.00 & 40.00 \\
\hline
\end{tabular}

Page No. 6
Prices in U.S. dollars

\section*{CUSTOMER PRICE LIST-COMPONENT PRODUCTS}
F.O.B. Tucson, Arizona Quantity discounts available.

Effective June 1, 1987
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 & MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOIE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 \\
\hline DAC870UL/883B & + & 70.00 & 65.00 & 60.00 & INA101CL-BSS1 & & 68.97 & 53.79 & 50.66 \\
\hline DAC870V & & 80.00 & 75.00 & 67.00 & INA101CL-BSS2 & & 27.17 & 21.19 & 19.96 \\
\hline DAC870V/883B & + & 100.00 & 95.00 & 80.00 & INA101CL-BSS3 & & 24.04 & 18.75 & 17.65 \\
\hline DAC870VL & & 85.00 & 80.00 & 72.00 & INA101CL-BSS4 & & 22.99 & 17.93 & 16.89 \\
\hline DAC870VL/883B & + & 105.00 & 100.00 & 90.00 & INA101CM & & 20.61 & 14.90 & 13.49 \\
\hline DAC87H-CBI-V & & 82.95 & 66.15 & 57.75 & INA101CM-BS & & 20.61 & 14.90 & 13.49 \\
\hline DAC87H-CBI-V/QM & & 100.80 & 80.85 & 70.35 & INA101CM-BSS1 & & 60.72 & 45.54 & 42.14 \\
\hline DAC87U-CBI-I & J & & & & INA101CM-BSS2 & & 26.79 & 19.37 & 17.54 \\
\hline DAC87U-CBI-I/B & J, + & & & & INA101CM-BSS3 & & 23.70 & 17.14 & 15.51 \\
\hline DAC87U-CBI-V & & 58.00 & 48.80 & 44.00 & INA101CM-BSS4 & & 22.67 & 16.39 & 14.84 \\
\hline DAC87U-CBI-V/B & + & 61.00 & 49.50 & 47.00 & INA101HP & & 7.37 & 5.67 & 5.10 \\
\hline DAC90BG & & 25.30 & 20.12 & 16.96 & INA101KU & & 8.29 & 6.26 & 5.51 \\
\hline DAC90SG & & 35.07 & 28.06 & 23.46 & INAIOISG & & 27.72 & 19.98 & 18.53 \\
\hline DEMIO2 KIT & & 75.00 & & & INAIO1SGQ & & 39.20 & 29.16 & 26.25 \\
\hline DEM106 KIt & & 85.00 & & & INA101SL & & 22.00 & 17.15 & 16.45 \\
\hline DIV100HP & & 33.88 & 26.19 & 19.06 & INAIO1SL-BS & & 22.00 & 17.15 & 16.45 \\
\hline DIV100.JP & & 47.32 & 39.15 & 29.14 & INA101SL-BSS1 & & 72.60 & 56.60 & 54.29 \\
\hline DIV100KP & & 67.59 & 56.11 & 41.84 & INA101SL-BSS2 & & 28.60 & 22.30 & 21.39 \\
\hline INA101AD & & & 8.90 & 4.95 & INA101SL-BSS3 & & 25.30 & 19.72 & 18.92 \\
\hline INA101AG & & 17.95 & 13.50 & 11.00 & INA101SL-BSS4 & & 24.20 & 18.87 & 18.10 \\
\hline INA101AL. & & 16.50 & 13.00 & 9.75 & INA101SM & & 21.84 & 15.82 & 14.65 \\
\hline INA101AL-BS & & 16.50 & 13.00 & 9.75 & INA101SM-BS & & 21.84 & 15.82 & 14.65 \\
\hline INA101AL-BSS1 & & 54.45 & 42.90 & 32.18 & INA101SM-BSS1 & & 64.35 & 48.35 & 46.04 \\
\hline INA101AL-BSS2 & & 21.45 & 16.90 & 12.68 & INA101SM-BSS2 & & 28.39 & 20.57 & 19.05 \\
\hline INA101AL-BSS3 & & 18.98 & 14.95 & 11.21 & INA101SM-BSS3 & & 25.12 & 18.19 & 16.85 \\
\hline INA101AL-BSS4 & & 18.15 & 14.30 & 10.73 & INA101SM-BSS4 & & 24.02 & 17.40 & 16.12 \\
\hline INA101AM & & 14.00 & 10.50 & 7.25 & INA101SMQ & & 31.36 & 22.68 & 21.00 \\
\hline INA101AM-BS & & 14.00 & 10.50 & 7.25 & INAIOIVG & I & 46.00 & 41.60 & 39.50 \\
\hline INA101AM-BSS1 & & 46.20 & 34.65 & 23.93 & INA101VG/883B & I & 49.50 & 44.75 & 42.50 \\
\hline INA101AM-BSS2 & & 18.20 & 13.65 & 9.43 & INALOIVM & I & 43.75 & 39.50 & 37.50 \\
\hline INA101AM-BSS3 & & 16.10 & 12.08 & 8.34 & INA101VM/883B & 1 & 47.25 & 42.50 & 40.50 \\
\hline INA101AM-BSS4 & & 15.40 & 11.55 & 7.98 & INAIO2AD & & & 9.35 & 5.20 \\
\hline INA101BL & & 19.50 & 15.25 & 11.30 & INA102AG & & 13.95 & 11.15 & 7.95 \\
\hline INA101BL-BS. & & 19.50 & 15.25 & 11.30 & INA102AL & & 16.45 & - 13.65 & 10.45 \\
\hline INA101BL-BSS1 & & 64.35 & 50.33 & '37.29 & INA102CG & & 20.61 & 17.12 & 11.92 \\
\hline INA101BL-BSS2 & & 25.35 & 19.83 & 14.69 & INA102CL & & 20.90 & 18.35 & 13.85 \\
\hline INA101BL-BSS3 & & 22.43 & 17.54 & 13.00 & INA102KP & & 7.60 & 5.95 & 5.40 \\
\hline INA101BL-BSS4 & & 21.45 & 16.78 & 12.43 & INAIO2SL & & 26.40 & 23.10 & 17.25 \\
\hline INA101BM-BS & & 18.70 & 17.00 & 16.15 & InA104AM & & 27.16 & 20.79 & 18.85 \\
\hline INA101BM-BSS1 & & 56.10 & 42.08 & 29.04 & INA104BM & & 32.48 & 25.11 & 22.73 \\
\hline INA101BM-BSS2 & & 24.31 & 22.10 & 21.00 & INA104CM & & 41.94 & 32.24 & 29.24 \\
\hline INA101BM-BSS3 & & 21.51 & 19.55 & 18.57 & INA104HP & & 21.00 & 16.15 & 14.65 \\
\hline INA101BM-BSS4 & & 20.57 & 18.70 & 17.77 & INA104JP & & 25.20 & 19.39 & 17.59 \\
\hline INA101CG & & 23.00 & 17.25 & 16.35 & INA104KP & & 32.48 & 25.11 & 22.73 \\
\hline INA101CL & & 20.90 & 16.30 & 15.35 & INA104SM & & 44.80 & 34.29 & 31.13 \\
\hline INAIO1CL-BS & & 20.90 & 16.30 & 15.35 & INA105AD & & & 4.65 & 3.50 \\
\hline
\end{tabular}

Prices in U.S. dollars

CUSTOMER PRICE LIST-COMPONENT PRODUCTS
F.O.B. Tucson, Arizona Quantity discounts available.

Page No. 7
Effective June 1, 1987
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MODEL & \[
\begin{aligned}
& \text { F0OT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 & MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 \\
\hline INA105AL & & 12.45 & 9.95 & 8.45 & IS0106 & & 34.00 & 26.60 & 22.00 \\
\hline INA105AM & & 9.50 & 7.15 & 5.75 & IS0106B & & 45.90 & 35.95 & 29.75 \\
\hline INA105AM-BS & & 9.50 & 7.15 & 5.75 & LOG100.JP & & 48.16 & 37.80 & 31.50 \\
\hline INA105AM-BSS1 & & 32.84 & 24.59 & 19.64 & MA51414 & & & & \\
\hline INA105AM-BSS2 & & 12.35 & 9.30 & 7.48 & MP22BG & & 340.20 & 271.95 & 227.85 \\
\hline INA105AM-BSS3 & & 10.93 & 8.22 & 6.61 & MP32BG & & 340.20 & 271.95 & 227.85 \\
\hline INA105AM-BSS4 & & 10.45 & 7.87 & 6.33 & MP32CG & & 425.25 & 340.20 & 285.60 \\
\hline INA105BL & & 15.25 & 12.00 & 10.15 & MPC16S & & 24.37 & 21.06 & 17.85 \\
\hline INA105BM & & 11.85 & 8.95 & 7.20 & MPC4D & & 13.62 & 11.81 & 9.97 \\
\hline INA105BM-BS & & 11.85 & 8.95 & 7.20 & MPC800KG & & 29.25 & 24.21 & 20.18 \\
\hline INA105BM-BSS1 & & 42.08 & 31.35 & 25.25 & MPC800SG & & 58.45 & 48.37 & 40.31 \\
\hline INA105BM-BSS2 & & 15.41 & 11.64 & 9.36 & MPC801KG & & 15.23 & 12.60 & 10.50 \\
\hline INA105BM-BSS3 & & 13.63 & 10.29 & 8.28 & MPC8015G & & 31.50 & 26.07 & 21.72 \\
\hline INA105BM-BSS4 & & 13.04 & 9.85 & 7.92 & MPC8D & & 24.37 & 21.06 & 17.85 \\
\hline INA105KP & & 6.25 & 4.65 & 3.50 & MPC8S & & 13.62 & 11.77 & 9.97 \\
\hline INA105KU & & 7.34 & 5.35 & 3.99 & MPY100AG & & 15.51 & 13.94 & 12.26 \\
\hline INA105SL & & 19.10 & 14.85 & 12.45 & MPY100AL & & 13.85 & 12.45 & 10.00 \\
\hline INA106AM & & 10.00 & 7.50 & 6.05 & MPY100AL-BS & & 13.85 & 12.45 & 10.00 \\
\hline INA106BM & & 12.45 & 9.40 & 7.55 & MPY100AL-BSS1 & & 45.71 & 41.09 & 30.00 \\
\hline INA106KP & & 6.50 & 4.89 & 3.65 & MPY100AL-BSS2 & & 18.01 & 16.19 & 13.00 \\
\hline INA110AD & & & 9.45 & 5.25 & MPY100AL-BSS3 & & 15.93 & 14.32 & 11.50 \\
\hline INAILOAG & & 16.85 & 12.65 & 8.85 & MPY100AL-BSS4 & & 15.24 & 13.70 & 11.00 \\
\hline INA110AL & & 19.35 & 15.15 & 11.35 & MPY100AM & & 11.76 & 10.58 & 8.40 \\
\hline INAl10BG & & 26.43 & 19.17 & 12.97 & MPY100AM-BS & & 11.76 & 10.58 & 8.40 \\
\hline INA110BL & & 26.10 & 20.25 & 14.85 & MPY100AM-BSS1 & & 37.46 & 32.84 & 24.75 \\
\hline INA110KP & & 7.40 & 5.80 & 5.50 & MPY100AM-BSS2 & & 15.29 & 13.75 & 10.92 \\
\hline INA110KU & & 8.74 & 6.59 & 6.09 & MPY100AM-BSS3 & & 13.52 & 12.17 & 9.66 \\
\hline INA110SG & & 28.11 & 20.36 & 18.85 & MPY100AM-BSS4 & & 12.94 & 11.64 & 9.24 \\
\hline INAI10SL & & 27.60 & 21.35 & 20.45 & MPY100BG & & 25.14 & 22.09 & 17.22 \\
\hline INA258UG & & 38.15 & 36.00 & 26.50 & MPY100BL & & 20.85 & 18.75 & 14.15 \\
\hline INA258UG/883B & + & 42.40 & 40.30 & 29.70 & MPY100BL-BS & & 20.85 & 18.75 & 14.15 \\
\hline INA258UL & & 41.35 & 39.20 & 28.60 & MPY100BL-BSS1 & & 68.81 & 61.88 & 46.70 \\
\hline INA258UL/883B & + & 45.60 & 43.50 & 32.86 & MPY100BL-BSS2 & & 27.11 & 24.38 & 18.40 \\
\hline INA258VG & & 49.80 & 43.45 & 40.30 & MPY100BL-BSS3 & & 23.98 & 21.56 & 16.27 \\
\hline INA258VG/883B & + & 65.70 & 58.30 & 56.20 & MPY100BL-BSS4 & & 22.94 & 20.63 & 15.57 \\
\hline INA258VL & & 54.00 & 47.70 & 44.50 & MPY100BM & & 19.04 & 16.69 & 12.23 \\
\hline INA258VL/883B & + & 74.20 & 64.65 & 61.50 & MPY100BM-BS & & 19.04 & 16.69 & 12.23 \\
\hline INA258WG & & 63.60 & 55.10 & 51.95 & MPY100BM-BSS1 & & 60.56 & 53.63 & 38.45 \\
\hline INA258WG/883B & + & 84.80 & 74.20 & 69.95 & MPY100BM-BSS2 & & 24.75 & 21.70 & 15.90 \\
\hline INA258WL & & 69.95 & 60.40 & 56.20 & MPY100BM-BSS3 & & 21.90 & 19.19 & 14.06 \\
\hline INA258WL/883B & + & 93.30 & 81.60 & 76.30 & MPY100BM-BSS4 & & 20.94 & 18.36 & 13.45 \\
\hline IS0100AP & & 36.40 & 31.05 & 26.78 & MPY100CG & & 37.74 & 33.48 & 27.56 \\
\hline IS0100BP & & 39.65 & 34.13 & 30.08 & MPY100CL & & 30.50 & 27.35 & 23.00 \\
\hline IS0100CP & & 44.24 & 39.20 & 35.28 & MPY100CL-BS & & 30.50 & 27.35 & 23.00 \\
\hline IS0102 & & 25.50 & 19.50 & 16.50 & MPY100CL-BSS1 & & 100.65 & 90.26 & 75.90 \\
\hline IS0102B & & 34.45 & 26.95 & 22.30 & MPY100CL-BSS2 & & 39.65 & 35.56 & 29.90 \\
\hline
\end{tabular}

Page No. 8
Prices in U.S. dollars
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 & MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 \\
\hline MPY100CL-BSS3 & & 35.08 & 31.45 & 26.45 & MPY534KL-BSS1 & & 122.10 & 98.51 & 73.76 \\
\hline MPY100CL-BSS4 & & 33.55 & 30.09 & 25.30 & MPY534KL-BSS2 & & 48.10 & 38.81 & 29.06 \\
\hline MPY100CM & & 28.56 & 25.33 & 20.95 & MPY534KL-BSS3 & & 42.55 & 34.33 & 25.70 \\
\hline MPY100CM-BS & & 28.56 & 25.30 & 20.95 & MPY534KL-BSS4 & & 40.70 & 32.84 & 24.59 \\
\hline MPY100CM-BSS1 & & 92.40 & 82.01 & 67.65 & MPY534LD & & 70.45 & 58.23 & 43.48 \\
\hline MPY100CM-BSS2 & & 37.13 & 32.89 & 27.24 & MPY534LH & & 57.23 & 47.14 & 34.81 \\
\hline MPY100CM-BSS3 & & 32.84 & 29.10 & 24.09 & MPY534LH-BS & & 57.23 & 47.14 & 34.81 \\
\hline MPY100CM-BSS4 & & 31.42 & 27.83 & 23.05 & MPY534LH-BSS1 & & 168.14 & 131.84 & 97.35 \\
\hline MPY100SG & & 56.62 & 50.22 & 33.60 & MPY534LH-BSS2 & & 74.40 & 61.28 & 45.25 \\
\hline MPY100SGQ & & 77.28 & 67.50 & 48.83 & MPY534LH-BSS3 & & 65.81 & 54.21 & 40.03 \\
\hline MPY100SL & & 44.50 & 39.45 & 30.50 & MPY534LH-BSS4 & & 62.95 & 51.85 & 38.29 \\
\hline MPY100SL-BS & & 44.50 & 39.45 & 30.50 & MPY534LL & & 53.45 & 42.45 & 32.00 \\
\hline MPY100SL-BSS1 & & 146.85 & 130.19 & 100.65 & MPY534LL-BS & & 53.45 & 42.45 & 32.00 \\
\hline MPY100SL-BSS2 & & 57.85 & 51.29 & 39.65 & MPY534LL-BSS1 & & 176.39 & 140.09 & 105.60 \\
\hline MPY100SL-BSS3 & & 51.18 & 45.37 & 35.08 & MPY534LL-BSS2 & & 69.49 & 55.19 & 41.60 \\
\hline MPY100SL-BSS4 & & 48.95 & 43.40 & 33.55 & MPY534LL-BSS3 & & 61.47 & 48.82 & 36.80 \\
\hline MPY100SM & & 42.84 & 38.02 & 28.61 & MPY534LL-BSS4 & & 58.80 & 46.70 & 35.20 \\
\hline MPY100SM-BS & & 42.84 & 38.02 & 28.61 & MPY534SD & & 89.50 & 74.28 & 55.46 \\
\hline MPY100SM-BSS1 & & 138.60 & 121.94 & 92.40 & MPY534SH & & 76.41 & 62.95 & 47.02 \\
\hline MPY100SM-BSS2 & & 55.69 & 49.43 & 37.19 & MPY534SH-BS & & 76.41 & 62.95 & 47.02 \\
\hline MPY100SM-BSS3 & & 49.27 & 43.72 & 32.90 & MPY534SH-BSS1 & & 224.24 & 176.06 & 131.51 \\
\hline MPY100SM-BSS4 & & 47.12 & 41.88 & 31.47 & MPY534SH-BSS2 & & 99.33 & 81.84 & 61.13 \\
\hline MPY100SMQ & & 58.24 & 51.30 & 43.05 & MPY534SH-BSS3 & & 87.87 & 72.39 & 54.07 \\
\hline MPY534AD & & & 12.57 & 9.38 & MPY534SH-BSS4 & & 84.05 & 69.25 & 51.72 \\
\hline MPY534JD & & 32.98 & 27.67 & 19.77 & MPY534SL & & 70.45 & 55.85 & 42.35 \\
\hline MPY534JH & & 25.37 & 21.18 & 15.16 & MPY534SL-BS & & 70.45 & 55.85 & 42.35 \\
\hline MPY534JH-BS & & 25.37 & 21.18 & 15.16 & MPY534SL-BSS1 & & 232.49 & 184.31 & 139.76 \\
\hline MPY534JH-BSS1 & & 74.42 & 59.23 & 42.41 & MPY534SL-BSS2 & & 91.59 & 72.61 & 55.06 \\
\hline MPY534JH-BSS2 & & 32.98 & 27.53 & 19.71 & MPY534SL-BSS3 & & 81.02 & 64.23 & 48.70 \\
\hline MPY534JH-BSS3 & & 29.18 & 24.36 & 17.43 & MPY534SL-BSS4 & & 77.50 & 61.44 & 46.59 \\
\hline MPY534JH-BSS4 & & 27.91 & 23.30 & 16.68 & MPY534TD & & 107.40 & 89.50 & 64.00 \\
\hline MPY534JL & & 25.05 & 20.45 & 15.35 & MPY534TH & & 91.80 & 76.50 & 54.50 \\
\hline MPY534JL-BS & & 25.05 & 20.45 & 15.35 & MPY534TH-BS & & 91.80 & 76.50 & 54.50 \\
\hline MPY534JL-BSS1 & & 82.67 & 67.49 & 50.66 & MPY534TH-BSS1 & & 317.39 & 252.45 & 179.85 \\
\hline MPY534JL-BSS2 & & 32.57 & 26.59 & 19.96 & MPY534TH-BSS2 & & 119.34 & 99.45 & 70.85 \\
\hline MPY534JL-BSS3 & & 28.81 & 23.52 & 17.65 & MPY534TH-BSS3 & & 105.57 & 87.98 & 62.68 \\
\hline MPY534JL-BSS4 & & 27.56 & 22.50 & 16.89 & MPY534TH-BSS4 & & 100.98 & 84.15 & 59.95 \\
\hline MPY534KD & & 47.14 & 39.94 & 29.09 & MPY534TL & & 98.68 & 79.00 & 57.00 \\
\hline MPY534KH & & 38.76 & 32.27 & 23.42 & MPY534TL-BS & & 98.68 & 79.00 & 57.00 \\
\hline MPY534KH-BS & & 38.76 & 32.27 & 23.42 & MPY534TL-BSS1 & & 325.64 & 260.70 & 188.10 \\
\hline MPY534KH-BSS1 & & 113.85 & 90.26 & 65.51 & MPY534TL-BSS2 & & 128.28 & 102.70 & 74.10 \\
\hline MPY534KH-BSS2 & & 50.39 & 41.95 & 30.45 & MPY534TL-BSS3 & & 113.48 & 90.85 & 65.55 \\
\hline MPY534KH-BSS3 & & 44.57 & 37.11 & 26.93 & MPY534TL-BSS4 & & 108.55 & 86.90 & 62.70 \\
\hline MPY534KH-BSS4 & & 42.64 & 35.50 & 25.76 & HPYG34AL & & 20.00 & 16.35 & 12.45 \\
\hline MPY534KL & & 37.00 & 29.85 & 22.35 & MPY634AL-BS & & 20.00 & 16.35 & 12.45 \\
\hline MPY534KL-BS & & 37.00 & 29.85 & 22.35 & MPY634AL-BSS1 & & 66.00 & 53.95 & 41.09 \\
\hline
\end{tabular}

\section*{Prices in U.S. dollars}

CUSTOMER PRICE LIST-COMPONENT PRODUCTS
F.O.B. Tucson, Arizona Quantity discounts available.

Page No. 9
Effective June 1, 1987
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MODEL & \[
\begin{aligned}
& \text { rOOT } \\
& \text { NOIE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 & manel & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 \\
\hline MPY634AL-BSS2 & & 26.00 & 21.26 & 16.19 & OPA105UM & & 27.00 & 23.50 & 22.00 \\
\hline MPY634AL-BSS3 & & 23.00 & 18.80 & 14.32 & OPA105UM/883B & + & 32.00 & 28.00 & 25.00 \\
\hline MPY634AL-BSS4 & & 22.00 & 17.99 & 13.70 & OPA105VM & & 37.00 & 32.00 & 30.00 \\
\hline MPY634AM & & 18.65 & 14.96 & 10.45 & OPA105VM/883B & + & 50.00 & 44.00 & 40.00 \\
\hline MPY634AM-BS & & 18.65 & 14.96 & 10.45 & OPA105HM & & 47.00 & 42.00 & 40.25 \\
\hline MPY634AM-BSS1 & & 57.75 & 45.71 & 32.84 & OPA105WM/883B & + & 68.00 & 59.00 & 52.00 \\
\hline MPY634AM-BSS2 & & 24.25 & 19.45 & 13.59 & OPA106UM & & 30.00 & 25.00 & 22.00 \\
\hline MPY634AM-BSS3 & & 21.45 & 17.20 & 12.02 & OPA106UM/883B & + & 36.00 & 32.00 & 28.00 \\
\hline MPY634AM-BSS4 & & 20.52 & 16.45 & 11.50 & OPA106VM & & 40.00 & 35.00 & 32.00 \\
\hline MPY634BL & & 28.45 & 23.05 & 17.75 & OPA106VM/883B & + & 55.00 & 49.00 & 44.00 \\
\hline MPY634BL-BS & & 28.45 & 23.05 & 17.75 & OPA106WM & & 52.00 & 45.00 & 42.00 \\
\hline MPY634BL-BSS1 & & 93.89 & 76.07 & 58.58 & OPA106WM/883B & + & 72.00 & 63.00 & 57.00 \\
\hline MPY634BL-BSS2 & & 36.99 & 29.97 & 23.08 & OPA111AD & & & 7.29 & 4.04 \\
\hline MPY634BL-BSS3 & & 32.72 & 26.51 & 20.41 & UPA111AL & & 12.25 & 10.45 & 7.95 \\
\hline MPY634BL-BSS4 & & 31.30 & 25.36 & 19.53 & OPA111AL-BS & & 12.25 & 10.45 & 7.95 \\
\hline MPY634BM & & 27.72 & 22.19 & 16.01 & OPA111AL-BSS1 & & 40.43 & 34.49 & 26.24 \\
\hline MPY634BM-BS & & 27.72 & 22.19 & 16.01 & OPA111AL-BSS2 & & 15.93 & 13.59 & 10.34 \\
\hline MPY634BM-BSS1 & & 85.64 & 67.82 & 50.33 & OPA111AL-BSS3 & & 14.09 & 12.02 & 9.14 \\
\hline MPY634BM-BSS2 & & 36.04 & 28.85 & 20.81 & OPA111AL-BSS4 & & 13.48 & 11.50 & 8.75 \\
\hline MPY634BM-BSS3 & & 31.88 & 25.52 & 18.41 & OPA111AM & & 10.92 & 8.59 & 5.72 \\
\hline MPY634BM-BSS4 & & 30.49 & 24.41 & 17.61 & OPA111AM-BS & & 10.92 & 8.59 & 5.72 \\
\hline MPY634KP & & 14.39 & 11.50 & 8.35 & OPA111AM-BSS1 & & 32.18 & 26.24 & 17.99 \\
\hline MPY634SL & & 65.15 & 52.35 & 40.35 & OPAl11AM-BSS2 & & 14.20 & 11.17 & 7.44 \\
\hline MPY634SL-BS & & 65.15 & 52.35 & 40.35 & OPA111AM-BSS3 & & 12.56 & 9.88 & 6.58 \\
\hline MPY634SL-BSS1 & & 214.99 & 172.76 & 133.16 & OPA111AM-BSS4 & & 12.01 & 9.45 & 6.29 \\
\hline MPY634SL-BSS2 & & 84.70 & 68.06 & 52.46 & OPA111BL & & 17.85 & 14.75 & 12.45 \\
\hline MPY634SL-BSS3 & & 74.92 & 60.20 & 46.40 & OPA111BL-BS & & 17.85 & 14.75 & 12.45 \\
\hline MPY634SL-BSS4 & & 71.67 & 57.59 & 44.39 & OPA111BL-BSS1 & & 58.90 & 48.68 & 41.09 \\
\hline MPY634SM & & 66.81 & 53.84 & 39.74 & OPA111BL-BSS2 & & 23.21 & 19.18 & 16.19 \\
\hline MPY634SM-BS & & 66.81 & 53.84 & 39.74 & OPA111BL-BSS3 & & 20.53 & 16.96 & 14.32 \\
\hline MPY634SM-BSS1 & & 206.75 & 164.51 & 124.91 & OPA111BL-BSS4 & & 19.64 & 16.23 & 13.70 \\
\hline MPY634SM-BSS2 & & 86.85 & 69.99 & 51.66 & OPA1118M & & 17.19 & 13.23 & 10.45 \\
\hline MPY634SM-BSS3 & & 76.83 & 61.92 & 45.70 & OPA1118M-BS & & 17.19 & 13.23 & 10.45 \\
\hline MPY634SM-BSS4 & & 73.49 & 59.22 & 43.71 & OPA111BM-BSS1 & & 50.66 & 40.43 & 32.84 \\
\hline 0245MC & & 6.05 & 5.05 & 4.85 & OPA111BM-BSS2 & & 22.35 & 17.20 & 13.59 \\
\hline OPA101AM & & 42.00 & 33.45 & 25.60 & OPA111BM-BSS3 & & 19.77 & 15.21 & 12.02 \\
\hline OPA101BM & & 52.20 & 42.00 & 36.00 & OPA111BM-8SS4 & & 18.91 & 14.55 & 11.50 \\
\hline OPA102AM & & 44.40 & 35.56 & 26.70 & OPA111HT & & 63.30 & 50.70 & 40.70 \\
\hline OPA102BM & & 54.00 & 43.30 & 36.85 & OPA111SL & & 19.35 & 16.45 & 14.45 \\
\hline OPA103AM & & 11.76 & 9.29 & 7.14 & OPA111SL-BS & & 19.35 & 16.45 & 14.45 \\
\hline OPA103BM & & 15.90 & 12.37 & 9.40 & OPA111SL-BSS1 & & 63.86 & 54.29 & 47.69 \\
\hline OPA103CM & & 20.83 & 16.04 & 12.13 & OPA111SL-BSS2 & & 25.16 & 21.39 & 18.79 \\
\hline OPA103DM & & 33.43 & 25.76 & 19.43 & OPA111SL-8SS3 & & 22.25 & 18.92 & 16.62 \\
\hline OPA104AM & & 19.60 & 15.07 & 10.76 & OPA111SL-BSS4 & & 21.29 & 18.10 & 15.90 \\
\hline OPAI04BM & & 26.49 & 20.47 & 15.23 & OPA111SM & & 20.25 & 15.65 & 13.15 \\
\hline OPA104CM & & 33.04 & 25.38 & 19.95 & OPA111SM-BS & & 20.25 & 15.65 & 13.15 \\
\hline
\end{tabular}

Page No. 10
Prices in U.S. dollars

CUSTOMER PRICE LIST-COMPONENT PRODUCTS
F.O.B. Tucson, Arizona Quantity discounts available.

Effective June 1, 1987
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 & MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOIE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 \\
\hline OPA111SM-BSS1 & & 55.61 & 46.04 & 39.44 & OPA128KL & & 27.50 & 22.50 & 18.00 \\
\hline OPAl11SM-BSS2 & & 26.33 & 20.35 & 17.10 & OPA128KL-BS & & 27.50 & 22.50 & 18.00 \\
\hline OPA111SM-BSS3 & & 23.29 & 18.00 & 15.12 & OPA128KL-BSS1 & & 90.75 & 74.25 & 59.40 \\
\hline OPA111SM-BSS4 & & 22.28 & 17.22 & 14.47 & OPA128KL-BSS2 & & 35.75 & 29.25 & 23.40 \\
\hline OPA111SMQ & & 27.30 & 21.85 & 17.55 & OPA128KL-BSS3 & & 31.63 & 25.88 & 20.70 \\
\hline OPAl1IVM & I & 26.00 & 20.50 & 17.00 & OPA128KL-BSS4 & & 30.25 & 24.75 & 19.80 \\
\hline OPA111VM/883B & I & 35.00 & 30.00 & 27.00 & OPA128KM & & 32.80 & 25.75 & 19.50 \\
\hline OPA11HT & & 58.80 & 52.15 & 43.15 & OPA128KM-BS & & 32.80 & 25.75 & 19.50 \\
\hline OPA121KL & & 9.35 & 7.00 & 5.90 & OPA128KM-BSS1 & & 82.50 & 66.00 & 51.15 \\
\hline OPA121KL-BS & & 9.35 & 7.00 & 5.90 & OPA128KM-BSS2 & & 42.64 & 33.48 & 25.35 \\
\hline OPA121KL-BSS1 & & 30.86 & 23.10 & 19.47 & OPA128KM-BSS3 & & 37.72 & 29.61 & 22.43 \\
\hline OPA121KL-BSS2 & & 12.16 & 9.10 & 7.67 & OPA128KM-BSS4 & & 36.08 & 28.33 & 21.45 \\
\hline OPA121KL-BSS3 & & 10.75 & 8.05 & 6.79 & OPA128LL & & 34.00 & 27.50 & 22.50 \\
\hline OPA121KL-BSS4 & & 10.29 & 7.70 & 6.49 & OPA128LL-BS & & 34.00 & 27.50 & 22.50 \\
\hline OPA121KM & & 6.85 & 4.50 & 3.40 & OPA128LL-BSS1 & & 112.20 & 90.75 & 74.25 \\
\hline OPA121KM-BS & & 6.85 & 4.50 & 3.40 & OPA128LL-BSS2 & & 44.20 & 35.75 & 29.25 \\
\hline OPA121KM-BSS1 & & 22.61 & 14.85 & 11.22 & OPA128LL-BSS3 & & 39.10 & 31.63 & 25.88 \\
\hline OPA121KM-BSS2 & & 8.91 & 5.85 & 4.42 & OPA128LL-BSS4 & & 37.40 & 30.25 & 24.75 \\
\hline OPA121KM-BSS3 & & 7.88 & 5.18 & 3.91 & OPA128LM & & 41.38 & 32.02 & 25.15 \\
\hline OPA121KM-BSS4 & & 7.54 & 4.95 & 3.74 & OPA128LM-BS & & 41.38 & 32.02 & 25.15 \\
\hline OPA121KP & & 5.65 & 3.65 & 2.75 & OPA128LM-BSS1 & & 103.95 & 82.50 & 66.00 \\
\hline OPA121KU & & 7.78 & 4.27 & 3.20 & OPA128LM-BSS2 & & 53.79 & 41.63 & 32.70 \\
\hline OPA121SL & & 15.05 & 11.55 & 8.75 & OPA128LM-BSS3 & & 47.59 & 36.82 & 28.92 \\
\hline OPA121SL-BS & & 15.05 & 11.55 & 8.75 & OPA128LM-BSS4 & & 45.52 & 35.22 & 27.67 \\
\hline OPA121SL-BSS1 & & 49.67 & 38.12 & 28.88 & OPA128SL & & 56.75 & 47.45 & 41.00 \\
\hline OPA121SL-BSS2 & & 19.57 & 15.02 & 11.38 & OPA128SL-BS & & 56.75 & 47.45 & 41.00 \\
\hline OPA121SL-BSS3 & & 17.31 & 13.28 & 10.06 & OPA128SL-BSS1 & & 187.28 & 156.59 & 135.30 \\
\hline OPA121SL-BSS4 & & - 16.56 & 12.71 & 9.63 & OPA128SL-BSS2 & & 73.78 & 61.69 & 53.30 \\
\hline OPA121SM-BS & & 12.55 & 9.05 & 6.25 & OPA128SL-BSS3 & & 65.26 & 54.57 & 47.15 \\
\hline OPA121SM-BSS1 & & 41.42 & 29.87 & 20.63 & OPA128SL-BSS4 & & 62.43 & 52.20 & 45.10 \\
\hline OPA121SM-BSS2 & & 16.32 & 11.77 & 8.13 & OPA128SM & & 60.76 & 48.55 & 40.43 \\
\hline OPA121SM-BSS3 & & 14.43 & 10.41 & 7.19 & OPA128SM-BS & & 60.76 & 48.55 & 40.43 \\
\hline OPA121SM-BSS4 & & 13.81 & 9.96 & 6.88 & OPA128SM-BSS1 & & 179.03 & 148.34 & 127.05 \\
\hline OPA128JD & & & 14.58 & 8.66 & OPA128SM-BSS2 & & 78.99 & 63.12 & 52.56 \\
\hline OPA128JL & & 20.00 & 16.45 & 12.75 & OPA128SM-BSS3 & & 69.87 & 55.83 & 46.49 \\
\hline OPA128JL-BS & & 20.00 & 16.45 & 12.75 & OPA128SM-BSS4 & & 66.84 & 53.41 & 44.47 \\
\hline OPA128JL-BSS1 & & 66.00 & 54.29 & 42.08 & OPA156AM & & 12.60 & 9.67 & 7.09 \\
\hline OPA128JL-BSS2 & & 26.00 & 21.39 & 16.58 & OPA201AG & & 9.00 & 6.30 & 4.35 \\
\hline OPA128JL-BSS3 & & 23.00 & 18.92 & 14.66 & OPA201BG & & 14.00 & 9.80 & 6.80 \\
\hline OPA128JL-BSS4 & & 22.00 & 18.10 & 14.03 & OPA201CG & & 16.75 & 11.70 & 8.20 \\
\hline OPA128JM & & 21.25 & 16.95 & 12.50 & OPA201SG & & 18.30 & 12.05 & 9.00 \\
\hline OPA128JM-BS & & 21.25 & 16.95 & 12.50 & OPA2111AD & & & 10.75 & 7.30 \\
\hline OPA128JM-BSS1 & & 57.75 & 46.04 & 33.83 & OPA2111AL & & 18.15 & 14.45 & 12.45 \\
\hline OPA128JM-BSS2 & & 27.63 & \(22.04{ }^{\circ}\) & 16.25 & OPA2111AM & & 16.24 & 12.42 & 10.45 \\
\hline OPA128JM-BSS3 & & 24.44 & 19.49 & 14.38 & OPA2111BL & & 29.50 & 24.20 & 19.35 \\
\hline OPA128JM-BSS4 & & 23.38 & 18.65 & 13.75 & OPA2111BM & & 29.06 & 22.52 & 17.33 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOIE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 & MODEL & \begin{tabular}{l}
F00T \\
NOTE
\end{tabular} & 1-24 & 25-99 & 100-249 \\
\hline OPA2111KM & & 9.90 & 7.90 & 5.25 & OPA27CL-BSS1 & & 43.40 & 33.99 & 27.89 \\
\hline OPA2111KP & & 7.90 & 5.50 & 4.25 & OPA27CL-BSS2 & & 17.10 & 13.39 & 10.99 \\
\hline OPA2111SL & & 31.15 & 24.50 & 19.60 & OPA27CL-BSS3 & & 15.12 & 11.84 & 9.72 \\
\hline OPA2111SM & & 29.68 & 22.90 & 17.59 & OPA27CL-BSS4 & & 14.47 & 11.33 & 9.30 \\
\hline OPA2IEZ & & 10.02 & 7.72 & 6.25 & OPA27CZ & & 9.95 & 7.50 & 5.95 \\
\hline OPA21GZ & & 4.98 & 3.89 & 3.10 & OPA27CZQ & & 16.45 & 12.00 & 9.25 \\
\hline 0PA27AJ & & 19.95 & 15.65 & 12.50 & OPA27EJ & & 11.00 & 8.35 & 6.65 \\
\hline OPA27AJ-BS & & 19.95 & 15.65 & 12.50 & OPA27EJ-BS & & 11.00 & 8.35 & 6.65 \\
\hline OPA27AJ-BSS1 & & 70.46 & 53.63 & 41.25 & OPA27EJ-BSS1 & & 38.78 & 28.71 & 21.95 \\
\hline OPA27AJ-BSS2 & & 25.94 & 20.35 & 16.25 & OPA27EJ-BSS2 & & 14.30 & 10.86 & 8.65 \\
\hline OPA27AJ-BSS3 & & 22.94 & 18.00 & 14.38 & OPA27EJ-BSS3 & & 12.65 & 9.60 & 7.65 \\
\hline 0PA27AJ-BSS4 & & 21.95 & 17.22 & 13.75 & OPA27EJ-BSS4 & & 12.10 & 9.19 & 7.32 \\
\hline OPA27AJQ & & 32.85 & 25.00 & 18.75 & OPA27EL & & 14.25 & 11.20 & 9.15 \\
\hline 0PA27AL & & 23.85 & 18.75 & 15.00 & OPA27EL-BS & & 14.25 & 11.20 & 9.15 \\
\hline 0PA27AL-BS & & 23.85 & 18.75 & 15.00 & OPA27EL-BSS1 & & 47.03 & 36.96 & 30.20 \\
\hline OPA27AL-BSS1 & & 78.71 & 61.88 & 49.50 & OPA27EL-BSS2 & & 18.53 & 14.56 & 11.90 \\
\hline 0PA27AL-BSS2 & & 31.01 & 24.38 & 19.50 & OPA27EL-BSS3 & & 16.39 & 12.88 & 10.52 \\
\hline OPA27AL-BSS3 & & 27.43 & 21.56 & 17.25 & OPA27EL-BSS4 & & 15.68 & 12.32 & 10.07 \\
\hline OPA27AL-BSS4 & & 26.24 & 20.63 & 16.50 & OPA27EZ & & 11.00 & 8.35 & 6.65 \\
\hline OPA27AZ & & 19.95 & 15.65 & 12.50 & OPA27FJ & & 8.55 & 5.95 & 4.95 \\
\hline OPA27AZQ & & 32.85 & 25.00 & 18.75 & OPA27FJ-BS & & 8.55 & 5.95 & 4.95 \\
\hline \(0 \mathrm{PA27BJ}\) & & 12.85 & 9.65 & 7.65 & OPA27FJ-BSS1 & & 30.20 & 20.46 & 16.34 \\
\hline 0PA27BJ-8S & & 12.85 & 9.65 & 7.65 & OPA27FJ-BSS2 & & 11.12 & 7.74 & 6.44 \\
\hline 0PA27BJ-BSS1 & & 45.38 & 33.00 & 25.25 & OPA27FJ-BSS3 & & 9.83 & 6.84 & 5.69 \\
\hline 0PA27BJ-BSS2 & & 16.71 & 12.55 & 9.95 & OPA27FJ-BSS4 & & 9.41 & 6.55 & 5.45 \\
\hline OPA27BJ-BSS3 & & 14.78 & 11.10 & 8.80 & OPA27FL & & 11.65 & 8.70 & 7.45 \\
\hline OPA27BJ-BSS4 & & 14.14 & 10.62 & 8.42 & OPA27FL-BS & & 11.65 & 8.70 & 7.45 \\
\hline OPA27BJQ & & 21.20 & 15.45 & 11.85 & 0PA27FL-BSS1 & & 38.45 & 28.71 & 24.59 \\
\hline OPA27BL & & 16.25 & 12.50 & 10.15 & OPA27FL-BSS2 & & 15.15 & 11.31 & 9.69 \\
\hline OPA27BL-BS & & 16.25 & 12.50 & 10.15 & OPA27FL-BSS3 & & 13.40 & 10.01 & 8.57 \\
\hline OPA27BL-BSS1 & & 53.63 & 41.25 & 33.50 & OPA27FL-BSS4 & & 12.82 & 9.57 & 8.20 \\
\hline OPA27BL-BSS2 & & 21.13 & 16.25 & 13.20 & OPA27FZ & & 8.55 & 5.95 & 4.95 \\
\hline OPA27BL-BSS3 & & 18.69 & 14.38 & 11.67 & OPA27GD & & & 4.20 & 2.80 \\
\hline OPA27BL-BSS4 & & 17.88 & 13.75 & 11.17 & OPA27GJ & & 6.00 & 4.95 & 4.00 \\
\hline OPA27BZ & & 12.85 & 9.65 & 7.65 & OPA27GJ-BS & & 6.00 & 4.95 & 4.00 \\
\hline OPA27BZQ & & 21.20 & 15.45 & 11.85 & OPA27GJ-BSS1 & & 21.29 & 17.00 & 13.20 \\
\hline OPA27CD & & & 6.30 & 4.20 & OPA27GJ-BSS2 & & 7.80 & 6.44 & 5.20 \\
\hline OPA27CJ & & 9.95 & 7.50 & 5.95 & OPA27GJ-BSS3 & & 6.90 & 5.69 & 4.60 \\
\hline OPA27CJ-BS & & 9.95 & 7.50 & 5.95 & OPA27GJ-BSS4 & & 6.60 & 5.45 & 4.40 \\
\hline OPA27CJ-BSS1 & & 35.15 & 25.74 & 19.64 & OPA27GL & & 8.95 & 7.65 & 6.50 \\
\hline OPA27CJ-BSS2 & & 12.94 & 9.75 & 7.74 & OPA27GL-BS & & 8.95 & 7.65 & 6.50 \\
\hline OPA27CJ-BSS3 & & 11.44 & 8.63 & 6.84 & OPA27GL-BSS1 & & 29.54 & 25.25 & 21.45 \\
\hline OPA27CJ-BSS4 & & 10.95 & 8.25 & 6.55 & OPA27GL-BSS2 & & 11.64 & 9.95 & 8.45 \\
\hline OPA27CJQ & & 16.45 & 12.00 & 9.25 & OPA27GL-BSS3 & & 10.29 & 8.80 & 7.48 \\
\hline OPA27CL & & 13.15 & 10.30 & 8.45 & OPA27GL-BSS4 & & 9.85 & 8.42 & 7.15 \\
\hline OPA27CL-BS & & 13.15 & 10.30 & 8.45 & OPA27GP & & 5.25 & 4.15 & 2.95 \\
\hline
\end{tabular}

Page No. 12
Prices in U.S. dollars

CUSTOMER PRICE LIST-COMPONENT PRODUCTS
F.O.B. Tucson, Arizona Quantity discounts available.

Effective June 1, 1987
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 & MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOIE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 \\
\hline OPA27GU & & 5.95 & 4.45 & 3.25 & OPA37CL-BSS3 & & 15.12 & 11.84 & 9.72 \\
\hline OPA27GZ & & 6.00 & 4.95 & 4.00 & OPA37CL-BSS4 & & 14.47 & 11.33 & 9.30 \\
\hline OPA27HT & & 67.09 & 55.46 & 44.10 & OPA37CZ & & 9.95 & 7.50 & 5.95 \\
\hline OPA356AM & & 8.12 & 6.43 & 4.73 & OPA37CZQ & & 16.45 & 12.00 & 9.25 \\
\hline OPA37AJ & & 19.95 & 15.65 & 12.50 & OPA37EJ & & 11.00 & 8.35 & 6.65 \\
\hline OPA37AJ-BS & & 19.95 & 15.65 & 12.50 & OPA37EJ-BS & & 11.00 & 8.35 & 6.65 \\
\hline OPA37AJ-BSS1 & & 70.46 & 53.63 & 41.25 & OPA37EJ-BSS1 & & 38.78 & 28.71 & 21.95 \\
\hline OPA37AJ-BSS2 & & 25.94 & 20.35 & 16.25 & OPA37EJ-BSS2 & & 14.30 & 10.86 & 8.65 \\
\hline OPA37AJ-BSS3 & & 22.94 & 18.00 & 14.38 & OPA37EJ-BSS3 & & 12.65 & 9.60 & 7.65 \\
\hline OPA37AJ-BSS4 & & 21.95 & 17.22 & 13.75 & OPA37EJ-BSS4 & & 12.10 & 9.12 & 7.32 \\
\hline OPA37AJQ & & 32.85 & 25.00 & 18.75 & OPA37EL & & 14.25 & 11.20 & 9.15 \\
\hline OPA37AL & & 23.85 & 18.75 & 15.00 & OPA37EL-BS & & 14.25 & 11.20 & 9.15 \\
\hline OPA37AL-BS & & 23.85 & 18.75 & 15.00 & OPA37EL-BSS1 & & 47.03 & 36.96 & 30.20 \\
\hline OPA37AL-BSS1 & & 78.71 & 61.88 & 49.50 & OPA37EL-BSS2 & & 18.53 & 14.56 & 11.90 \\
\hline OPA37AL-BSS2 & & 31.01 & 24.38 & 19.50 & OPA37EL-BSS3 & & 16.39 & 12.88 & 10.52 \\
\hline OPA37AL-BSS3 & & 27.43 & 21.56 & 17.25 & OPA37EL-BSS4 & & 15.68 & 12.32 & 10.07 \\
\hline OPA37AL-8SS4 & & 26.24 & 20.63 & 16.50 & OPA37EZ & & 11.00 & 8.35 & 6.65 \\
\hline OPA37AZ & & 19.95 & 15.65 & 12.50 & OPA37FJ & & 8.55 & 5.95 & 4.95 \\
\hline OPA37AZQ & & 32.85 & 25.00 & 18.75 & OPA37FJ-BS & & 8.55 & 5.95 & 4.95 \\
\hline OPA37BJ & & 12.85 & 9.65 & 7.65 & OPA37FJ-BSS1 & & 30.20 & 20.46 & 16.34 \\
\hline OPA37BJ-8S & & 12.85 & 9.65 & 7.65 & OPA37FJ-BSS2 & & 11.12 & 7.74 & 6.44 \\
\hline OPA37BJ-BSS1 & & 45.38 & 33.00 & 25.25 & OPA37FJ-BSS3 & & 9.83 & 6.84 & 5.69 \\
\hline OPA37BJ-BSS2 & & 16.71 & 12.55 & 9.95 & OPA37FJ-BSS4 & & 9.41 & 6.55 & 5.45 \\
\hline OPA37BJ-BSS3 & & 14.78 & 11.10 & 8.80 & OPA37FL & & 11.65 & 8.70 & 7.45 \\
\hline OPA37BJ-BSS4 & & 14.14 & 10.62 & 8.42 & OPA37FL-BS & & 11.65 & 8.70 & 7.45 \\
\hline OPA37BJQ & & 21.20 & 15.45 & 11.85 & OPA37FL-BSS1 & & 38.45 & 28.71 & 24.59 \\
\hline OPA37BL & & 16.25 & 12.50 & 10.15 & OPA37FL-BSS2 & & 15.15 & 11.31 & 9.69 \\
\hline OPA37BL-BS & & 16.25 & 12.50 & 10.15 & OPA37FL-BSS3 & & 13.40 & 10.01 & 8.57 \\
\hline OPA37BL-BSS1 & & 53.63 & 41.25 & 33.50 & OPA37FL-BSS4 & & 12.82 & 9.57 & 8.20 \\
\hline OPA37BL-BSS2 & & 21.13 & 16.25 & 13.20 & OPA37FZ & & 8.55 & 5.95 & 4.95 \\
\hline OPA37BL-BSS3 & & 18.69 & 14.38 & 11.67 & OPA37GD & & & 4.20 & 2.80 \\
\hline OPA37BL-BSS4 & & 17.88 & 13.75 & 11.17 & OPA37GJ & & 6.00 & 4.95 & 4.00 \\
\hline OPA37BZ & & 12.85 & 9.65 & 7.65 & OPA37GJ-BS & & 6.00 & 4.95 & 4.00 \\
\hline OPA37BZQ & & 21.20 & 15.45 & 11.85 & OPA37GJ-BSS1 & & 21.29 & 17.00 & 13.20 \\
\hline OPA37CD & & & 6.30 & 4.20 & OPA37GJ-BSS2 & & 7.80 & 6.44 & 5.20 \\
\hline OPA37CJ & & 9.95 & 7.50 & 5.95 & OPA37GJ-BSS3 & & 6.90 & 5.69 & 4.60 \\
\hline OPA37CJ-BS & & 9.95 & 7.50 & 5.95 & OPA37GJ-BSS4 & & 6.60 & 5.45 & 4.40 \\
\hline OPA37CJ-BSS1 & & 35.15 & 25.74 & 19.64 & OPA37GL & & 8.95 & 7.65 & 6.50 \\
\hline OPA37CJ-BSS2 & & 12.94 & 9.75 & 7.74 & OPA37GL-BS & & 8.95 & 7.65 & 6.50 \\
\hline OPA37CJ-BSS3 & & 11.44 & 8.63 & 6.84 & OPA37GL-BSS1 & & 29.54 & 25.25 & 21.45 \\
\hline OPA37CJ-BSS4 & & 10.95 & 8.25 & 6.55 & OPA37GL-BSS2 & & 11.64 & 9.95 & 8.45 \\
\hline OPA37CJQ & & 16.45 & 12.00 & 9.25 & OPA37GL-BSS3 & & 10.29 & 8.80 & 7.48 \\
\hline OPA37CL & & 13.15 & 10.30 & 8.45 & OPA37GL-BSS4 & & 9.85 . & 8.42 & 7.15 \\
\hline OPA37CL-BS & & 13.15 & 10.30 & 8.45 & OPA37GP & & 5.25 & 3.95 & 2.95 \\
\hline OPA37CL-BSS1 & & 43.40 & 33.99 & 27.89 & OPA37GU & & 5.95 & 4.45 & 3.25 \\
\hline OPA37CL-BSS2 & & 17.10 & 13.39 & 10.99 & OPA37GZ & & 6.00 & 4.95 & 4.00 \\
\hline
\end{tabular}

CUSTOMER PRICE LIST-COMPONENT PRODUCTS
Prices in U.S. dollars
F.O.B. Tucson, Arizona Quantity discounts available.

Page No. 13
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 & MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 \\
\hline OPA37HT & & 67.09 & 55.46 & 44.10 & OPA8780VM & J & & & \\
\hline OPA404AD & & & 8.59 & 6.25 & OPA8780VM/883B & J, + & & & \\
\hline OPA404AG & & 16.74 & 13.50 & 9.40 & PCM53JG-I & & 50.00 & 40.63 & 28.75 \\
\hline OPA404AL & & 17.45 & 15.00 & 11.45 & PCM53JG-V & & 50.00 & 40.63 & 28.75 \\
\hline OPA404BG & & 22.12 & 17.01 & 13.49 & PCM53JP-I & & 22.05 & 20.48 & 12.76 \\
\hline OPA404BL' & & 22.25 & 18.25 & 15.35 & PCM53JP-V & & 22.05 & 20.48 & 12.76 \\
\hline OPA404KP & & 11.85 & 9.25 & 6.95 & PCM53KP-I & & 24.68 & 22.31 & 13.91 \\
\hline OPA404SG & & 32.76 & 25.11 & 20.95 & PCM53KP-V & & 24.68 & 22.31 & 13.91 \\
\hline OPA404SL & & 31.75 & 25.75 & 22.45 & PCM54HP & & 19.43 & 18.38 & 11.45 \\
\hline OPA501AM & & 59.81 & 43.20 & 34.13 & PCM54JP & & 22.05 & 20.48 & 12.76 \\
\hline OPA501BM & & 70.56 & 51.68 & 39.74 & PCM54KP & & 24.68 & 22.31 & 13.91 \\
\hline OPA501RM & & 76.72 & 53.19 & 44.63 & PCM55HP & & 19.43 & 17.90 & 11.45 \\
\hline OPA501SM & & 91.84 & 64.64 & 52.45 & PCM55JP & & 22.05 & 20.56 & 12.76 \\
\hline OPA501SMQ & & 125.44 & 93.96 & 75.60 & PCM56P & & 20.48 & 19.43 & 12.60 \\
\hline OPA501UM & & 86.00 & 75.75 & 68.10 & PCM56P-J & & 23.10 & 21.53 & 13.91 \\
\hline OPA501UM/883B & + & 94.75 & 83.40 & 74.85 & PCM56P-K & & 25.73 & 23.36 & 15.23 \\
\hline OPA501VM & & 96.00 & 84.50 & 76.00 & PCM75JG & & 137.55 & 119.70 & 91.35 \\
\hline OPA501VM/8838 & + & 100.00 & 88.00 & 79.00 & PCM75KG & & 156.45 & 135.45 & 103.95 \\
\hline OPA511AM & & 45.00 & 38.50 & 34.50 & PGA100AG & & 72.80 & 59.40 & 51.98 \\
\hline OPA512BM & & 63.50 & 53.95 & 48.50 & PGA100BG & & 80.64 & 66.96 & 56.70 \\
\hline OPA512SM & & 76.50 & 66.50 & 61.50 & PGA102AD & & & 4.43 & 3.57 \\
\hline OPA541AM & & 29.50 & 21.40 & 16.85 & PGA102AG & & 12.26 & 9.72 & 8.03 \\
\hline OPA541BM & & 34.75 & 25.20 & 19.85 & PGA102BG & & 22.34 & 17.55 & 14.44 \\
\hline OPA541SM & & 49.90 & 36.30 & 28.60 & PGA102KP & & 6.66 & 5.13 & 4.15 \\
\hline OPA600BM & & 101.85 & 85.05 & 77.70 & PGA102SG & & 27.38 & 21.55 & 17.59 \\
\hline OPA600CM & & 124.95 & 106.05 & 101.85 & PGA200AG & & 57.68 & 43.15 & 36.49 \\
\hline OPA600SM & & 128.10 & 106.05 & 101.85 & PGA200BG & & 64.79 & 50.49 & 43.05 \\
\hline OPA600TM & & 156.45 & 141.75 & 135.45 & PGA201AG & & 57.68 & 43.15 & 36.49 \\
\hline OPA600UM & & 143.00 & 115.00 & 102.00 & PGA201BG & & 64.79 & 50.49 & 43.05 \\
\hline OPA600UM/883B & + & 165.00 & 145.00 & 137.75 & PWR 70 & K & 43.00 & 37.00 & 30.10 \\
\hline OPA600VM & & 175.00 & 153.00 & 143.00 & PWR 71 & K & 61.00 & 52.00 & 42.70 \\
\hline OPA600VM/8838 & + & 195.00 & 176.00 & 163.00 & PWR 72 & K & 49.00 & 42.00 & 34.30 \\
\hline OPA605AM & & 76.80 & 61.00 & 52.80 & PWR 74 & K & 48.00 & 41.00 & 33.60 \\
\hline OPA605CM & & 106.80 & 83.45 & 73.45 & PWR 1XX & K & 33.00 & 29.00 & 23.00 \\
\hline OPA605HG & & 61.80 & 50.40 & 44.55 & PWR 2XX & K & 38.00 & 33.00 & 27.00 \\
\hline OPA605KG & & 91.98 & 75.00 & 63.25 & PWR 3XX & K & 43.00 & 37.00 & 30.00 \\
\hline OPA606KD & & & 3.78 & 2.42 & PWR 4XX & K & 49.00 & 42.00 & 34.00 \\
\hline 0PA606KM & & 6.38 & 4.70 & 3.68 & PWR 5XX & K & 59.00 & 51.00 & 41.00 \\
\hline OPA606KP & & 4.20 & 3.10 & 2.60 & PWR 6XX & K & 54.00 & 46.00 & 38.00 \\
\hline OPA606LM & & 15.51 & 10.75 & 8.65 & PWR 7XX & K & 81.00 & 69.00 & 57.00 \\
\hline OPA606SM & & 15.96 & 11.07 & 8.95 & PWR 8XX & K & 92.00 & 79.00 & 65.00 \\
\hline OPA633AH & & 10.95 & 9.10 & 7.60 & PWR1017 & K & 76.00 & 68.00 & 58.75 \\
\hline OPA633KP & & 5.80 & 4.85 & 4.00 & PWR5038 & K & 65.00 & 50.00 & 35.00 \\
\hline OPA633SH & & 24.50 & 20.35 & 16.95 & PWR510X & K & 65.00 & 59.00 & 51.00 \\
\hline OPA8780UM & J & & & & PWS 725 & I & 36.00 & 27.70 & 21.30 \\
\hline OPA8780UM/883B & J, + & & & & PWS 726 & I & 46.80 & 36.00 & 27.70 \\
\hline
\end{tabular}

Page No. 14
Prices in U.S. dollars

\section*{CUSTOMER PRICE LIST-COMPONENT PRODUCTS}
F.O.B. Tucson, Arizona Quantity discounts available.

Effective June 1, 1987
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 & MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 \\
\hline REF101JL & & 35.85 & 31.70 & 25.65 & SDM863KH & & 145.00 & 129.00 & 118.00 \\
\hline REF101JM & & 34.61 & 30.02 & 23.63 & SDM863KL & L,M & 145.00 & 129.00 & 118.00 \\
\hline REF101KL & & 44.10 & 39.25 & 32.15 & SDM863RH & & 239.00 & 204.00 & 189.00 \\
\hline REF101KM & & 43.12 & 37.80 & 30.24 & SDM863RL & L,M & 239.00 & 204.00 & 189.00 \\
\hline REF101RL & & 38.95 & 34.75 & 28.45 & SDM863SH & & 298.00 & 255.00 & 235.00 \\
\hline REF101RM & & 37.80 & 33.16 & 26.46 & SDM863SL & L,M & 298.00 & 255.00 & 235.00 \\
\hline REF101RMQ & & 53.20 & 46.44 & 36.75 & SHC298AM & & 8.35 & 5.78 & 4.73 \\
\hline REF101SL & & 48.25 & 43.40 & 35.85 & SHC5320KH & & 13.40 & 11.60 & 9.80 \\
\hline REF101SM & & 47.43 & 42.07 & 34.02 & SHC5320SH & & 61.00 & 52.75 & 44.70 \\
\hline REF101SMQ & & 66.08 & 58.32 & 48.30 & SHC600BH & D & & 304.50 & 280.35 \\
\hline REFI0JL & & 21.30 & 18.95 & 16.25 & SHC76BM & & 99.00 & 75.00 & 63.00 \\
\hline REF10JM & & 19.49 & 16.90 & 14.02 & SHC76KM & & 85.05 & 65.10 & 54.60 \\
\hline REF10KL & & 26.10 & 23.15 & 19.75 & SHC803BM & & 182.70 & 141.75 & 129.15 \\
\hline REF 10 KM & & 24.47 & 21.22 & 17.59 & SHC803BMQ & & 234.15 & 177.45 & 160.65 \\
\hline REF10RL & & 24.05 & 21.35 & 18.30 & SHC803CM & & 212.10 & 160.65 & 147.00 \\
\hline REF10RM & & 22.34 & 19.39 & 16.12 & SHC803CMQ & & 265.65 & 201.60 & 182.70 \\
\hline REF10RMQ & & 31.36 & 27.00 & 22.94 & SHC804BM & & 168.00 & 127.05 & 115.50 \\
\hline REF10SL & & 34.25 & 30.15 & 25.70 & SHC804BMQ & & 207.90 & 158.55 & 143.85 \\
\hline REFIOSM & & 32.93 & 28.46 & 23.63 & SHC804CM & & 183.75 & 138.60 & 127.05 \\
\hline REF10SMQ & & 45.92 & 39.42 & 33.44 & SHC804CMQ & & 229.95 & 174.30 & 158.55 \\
\hline RF-500-108 & & 8.95 & 8.25 & 7.65 & SHC80KP & & 64.05 & 43.05 & 35.70 \\
\hline SDM853 & G & 346.00 & 333.00 & 319.00 & SHC85 & & 112.70 & 78.20 & 65.55 \\
\hline SDM854AG & & 241.50 & 193.20 & 162.15 & SHC85ET & & 170.20 & 126.50 & 121.90 \\
\hline SDM854BG & & 267.95 & 215.05 & 179.40 & SHC85ETQ & & 215.25 & 186.30 & 178.25 \\
\hline SDM856JG & & 208.15 & 166.75 & 139.15 & SHC85Q & & 180.55 & 126.50 & 105.80 \\
\hline SDM856KG & & 251.85 & 201.25 & 169.05 & SHM60 & & 150.00 & 144.00 & 138.00 \\
\hline SDM857JG & & 223.10 & 178.25 & 149.50 & TM25-300HT & & 320.00 & 267.00 & 226.00 \\
\hline SDM857KG & & 266.80 & 213.90 & 178.25 & TM25-300NT & & 320.00 & 267.00 & 226:00 \\
\hline SDM862AH & & 154.00 & 129.00 & 111.00 & TM2500 & & 325.00 & 290.00 & 195.00 \\
\hline SDM862AL & L,M & 154.00 & 129.00 & 111.00 & TM27-12 & & 320.00 & 267.00 & 226.00 \\
\hline SDM862BH & & 178.00 & 146.00 & 127.00 & TM2700 & & 350.00 & 315.00 & 210.00 \\
\hline SDM862BL & L,M & 178.00 & 146.00 & 127.00 & TM70 & & 595.00 & 496.00 & 402.00 \\
\hline SDM862JH & & 128.00 & 117.00 & 103.00 & TM71 & & 675.00 & 582.00 & 456.00 \\
\hline SDM862JL & L,M & 128.00 & 117.00 & 103.00 & TM71-10 & & 790.00 & 658.00 & 533.00 \\
\hline SDM862KH & & 145.00 & 129.00 & 118.00 & TM76 & & 595.00 & 496.00 & 402.00 \\
\hline SDM862KL & L,M & 145.00 & 129.00 & 118.00 & TM76K & & 705.00 & 587.00 & 476.00 \\
\hline SDM862RH & & 239.00 & 204.00 & 189.00 & TM77 & & 675.00 & 562.00 & 456.00 \\
\hline SDM862RL & L,M & 239.00 & 204.00 & 189.00 & TM77-I/0 & & 790.00 & 658.00 & 533.00 \\
\hline SDM862SH & & 298.00 & 255.00 & 235.00 & TM77K & & 805.00 & 671.00 & 543.00 \\
\hline SDM862SL & L,M & 298.00 & 255.00 & 235.00 & TM77K-10 & & 895.00 & 746.00 & 604.00 \\
\hline SDM863AH & & 154.00 & 129.00 & 111.00 & UAF11 & & 64.35 & 45.60 & 29.05 \\
\hline SDM863AL & L,M & 154.00 & 129.00 & 111.00 & UAF21 & & 102.60 & 88.10 & 58.69 \\
\hline SDM863BH & & 178.00 & 148.00 & 127.00 & UAF41 & & 23.35 & 15.23 & 12.08 \\
\hline SDM863BL & L,M & 178.00 & 148.00 & 127.00 & VFC100AG & & 10.45 & 8.70 & 6.95 \\
\hline SDM863JH & & 128.00 & 117.00 & 103.00 & VFC100AL & & 12.95 & 11.20 & 9.45 \\
\hline SDM863JL & L,M & 128.00 & 117.00 & 103.00 & VFC100BG & & 16.40 & 13.65 & 10.95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline model & FOOT NOTE & 1-24 & 25-99 & 100-249 & MODEL & \[
\begin{aligned}
& \text { foot } \\
& \text { Note }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 \\
\hline VFC100bl & & 18.90 & 16.15 & 13.45 & VFC32BL-BSS3 & & 18.00 & 14.89 & 12.02 \\
\hline VFC100SG & & 18.95 & 15.95 & 13.65 & VFC32BL-BSS4 & & 17.22 & 14.25 & 11.50 \\
\hline vFC100SL & & 21.45 & 18.45 & 16.15 & VFC328M & & 11.95 & 9.95 & 7.95 \\
\hline vFC320bg & & 15.95 & 11.75 & 8.95 & VFC32BM-8S & & 11.95 & 9.95 & 7.95 \\
\hline VFC320bl & & 19.65 & 14.45 & 11.50 & VFC32BM-BSS 1 & & 43.40 & 34.48 & 26.24 \\
\hline VFC320BL-BS & & 19.65 & 14.45 & 11.50 & VFC32BM-8SS2 & & 15.54 & 12.94 & 10.34 \\
\hline VFC3208L-BSS 1 & & 64.85 & 47.69 & 37.95 & VFC32BM-BSS3 & & 13.75 & 11.44 & 9.14 \\
\hline VFC 320BL-BSS2 & & 25.25 & 18.79 & 14.95 & VFC32BM-BSS4 & & 13.15 & 10.95 & 8.75 \\
\hline vFC320BL-BSS3 & & 22.60 & 16.62 & 13.23 & VFC32BMQ & & 18.87 & 15.07 & 12.55 \\
\hline VFC320BL-BSS4 & & 21.62 & 15.90 & 12.65 & VFC32KP & & 8.95 & 7.45 & 5.95 \\
\hline vfC320bm & & 15.60 & 11.40 & 8.75 & VFC32SL & & 21.45 & 17.65 & 14.35 \\
\hline VFC320BM-BS & & 15.60 & 11.40 & 8.75 & VFC32SL-BS & & 21.45 & 17.65 & 14.35 \\
\hline VFC320sM-BSS1 & & 56.59 & 39.44 & 29.70 & VFC32SL-BSS1 & & 70.79 & 58.25 & 47.36 \\
\hline v+Ç̌zübm-bsjz & & 20.28 & 14.82 & 11.38 &  & & 27.09 & 22.95 & iô.ôô \\
\hline VFC320BM-BSS3 & & 17.94 & 13.11 & 10.06 & VFC32SL-BSS3 & & 24.67 & 20.30 & 16.50 \\
\hline VFC320BM-BSS4 & & 17.76 & 12.55 & 9.63 & VFC32SL-BSS4 & & 23.60 & 19.42 & 15.79 \\
\hline vFC320CG & & 20.72 & 14.74 & 12.08 & VFC32SM & & 18.30 & 14.98 & 11.85 \\
\hline VFC320CL & & 20.75 & 15.50 & 13.25 & VFC32SM-BS & & 18.30 & 14.98 & 11.85 \\
\hline VFC320CL-BS & & 20.75 & 15.50 & 13.25 & VFC32SM-BSS1 & & 62.54 & 50.00 & 39.11 \\
\hline VFC320CL-BSS1 & & 68.48 & 51.15 & 43.73 & VFC32SM-BSS2 & & 23.79 & 19.47 & 15.41 \\
\hline VFC320CL-BSS2 & & 26.98 & 20.15 & 17.23 & VFC32SM-BSS3 & & 21.05 & 17.23 & 13.63 \\
\hline VFC320CL-BSS3 & & 23.86 & 17.83 & 15.24 & VFC32SM-BSS4 & & 20.13 & 16.48 & 13.04 \\
\hline VFC320CL-BSS4 & & 22.83 & 17.05 & 14.58 & VFC32SMQ & & 24.70 & 20.25 & 16.00 \\
\hline vFC320CM & & 18.59 & 13.45 & - 10.97 & VFC32UM & & 15.00 & 11.00 & 10.45 \\
\hline VFC320CM-BS & & 18.59 & 13.45 & 10.97 & VFC32UM/883B & + & 20.00 & 16.00 & 15.20 \\
\hline VFC320CM-BSS 1 & & 60.23 & 42.90 & 35.48 & VFC 32VM & & 24.00 & 19.50 & 18.50 \\
\hline VFC320CM-BSS2 & & 24.17 & 17.49 & 14.26 & vFC32VM/8838 & + & 36.00 & 28.75 & 27.25 \\
\hline VFC320CM-BSS3 & & 21.38 & 15.47 & 12.62 & VFC 32 HM & & 30.00 & 24.00 & 22.75 \\
\hline VFC320CM-BSS4 & & 20.45 & 14.80 & 12.07 & VFC32 HM/883B & + & 34.00 & 27.50 & 26.00 \\
\hline vFC320SL & & 25.20 & 18.90 & 16.30 & VFC42BM & & 33.21 & 27.16 & 23.05 \\
\hline VFC320SL-BS & & 25.20 & 18.90 & 16.30 & VFC42BP & & 23.91 & 18.74 & 16.49 \\
\hline VFC320SL-BSS1 & & 83.16 & 62.37 & 53.79 & VFC42SM & & 40.32 & 32.40 & 25.88 \\
\hline VFC320SL-BSS2 & & 32.76 & 24.57 & 21.19 & VFC528M & & 33.21 & 27.00 & 23.05 \\
\hline VFC320SL-BSS3 & & 28.98 & 21.73 & 18.75 & VFC52BP & & 23.91 & 18.74 & 16.49 \\
\hline VFC320SL-BSS4 & & 27.72 & 20.79 & 17.93 & VFC52SM & & 40.32 & 32.40 & 25.88 \\
\hline VFC320SM & & 23.13 & 16.85 & 14.07 & VFC62BG & & 17.86 & 12.69 & 9.40 \\
\hline VFC320SM-BS & & 23.13 & 16.85 & 14.07 & VFC62BL & & 19.65 & 14.45 & 11.50 \\
\hline VFC320SM-BSS1 & & 74.91 & 54.12 & 45.54 & VFC62BL-BS & & 19.65 & 14.45 & 11.50 \\
\hline VFC320SM-BSS2 & & 30.07 & 21.91 & 18.29 & VFC62BL-BSS1 & & 64.85 & 47.69 & 37.95 \\
\hline VFC320SM-BSS3 & & 26.60 & 19.38 & 16.18 & VFC62BL-BSS2 & & 25.55 & 18.79 & 14.95 \\
\hline vFC320SM-BSS4 & & 25.44 & 18.54 & 15.48 & VFC62BL-BSS3 & & 22.60 & 16.62 & 13.23 \\
\hline vFC3280 & & & 8.45 & 5.55 & VFC62BL-BSS4 & & 21.62 & 15.90 & 12.65 \\
\hline vFC32BL & & 15.65 & 12.95 & 10.45 & VFC62BM & & 17.47 & 12.31 & 9.19 \\
\hline VFC328L-BS & & 15.65 & 12.95 & 10.45 & VFC62BM-BS & & 17.47 & 12.31 & 9.19 \\
\hline vFC32BL-BSS1 & & 51.65 & 42.73 & 34.49 & VFC62BM-BSS1 & & 56.59 & 39.44 & 29.70 \\
\hline VFC32BL-BSS2 & & 20.35 & 16.84 & 13.59 & VFC62BM-BSS2 & & 22.71 & 16.00 & 11.95 \\
\hline
\end{tabular}

Page No. 16
Prices in U.S. dollars

\section*{CUSTOMER PRICE LIST-COMPONENT PRODUCTS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 & MODEL & \[
\begin{aligned}
& \text { FOOT } \\
& \text { NOTE }
\end{aligned}
\] & 1-24 & 25-99 & 100-249 \\
\hline VFC62BM-BSS3 & & 20.09 & 14.16 & 10.57 & VFC62SM-BSS2 & & 32.24 & 22.75 & 19.18 \\
\hline VFC62BM-BSS4 & & 19.22 & 13.54 & 10.11 & VFC62SM-BSS3 & & 28.52 & 20.13 & 16.96 \\
\hline VFC62CG & & 22.20 & 15.30 & 12.65 & VFC62SM-BSS4 & & 27.28 & 19.25 & 16.23 \\
\hline VFC62CL & & 20.75 & 15.50 & 13.25 & XIR100AM & & 42.56 & 38.50 & 30.40 \\
\hline VFC62CL-BS & & 20.75 & 15.50 & 13.25 & XTR100AP & & 33.60 & 30.02 & 25.04 \\
\hline VFC62CL-BSS1 & & 68.48 & 51.15 & 43.73 & XTR100BM & & 51.52 & 46.82 & 37.75 \\
\hline VFC62CL-BSS2 & & 26.98 & 20.15 & 17.23 & XTR100BP & & 40.32 & 36.67 & 30.71 \\
\hline VFC62CL-BSS3 & & 23.86 & 17.83 & 15.24 & XTR101AD & & & 7.30 & 5.50 \\
\hline VFC62CL-BSS4 & & 22.83 & 17.05 & 14.58 & XTRI01AG & & 11.75 & 9.75 & 8.25 \\
\hline VFC62CM & & 19.95 & 13.95 & 11.45 & XTR101AL & & 14.25 & 12.25 & 10.75 \\
\hline VFC62CM-BS & & 19.95 & 13.95 & 11.45 & XTR101AP & & 8.50 & 7.05 & 5.95 \\
\hline VFC62CM-BSS1 & & 60.23 & 42.90 & 35.48 & XTR101AU & & 8.95 & 7.40 & 6.25 \\
\hline VFC62CM-BSS2 & & 25.94 & 18.14 & 14.89 & XTR101BG & & 17.35 & 14.45 & 12.25 \\
\hline VFC62CM-BSS3 & & 22.94 & 16.04 & 13.17 & XTR101BL & & 19.85 & 16.95 & 14.75 \\
\hline VFC62CM-BSS4 & & 21.95 & 15.35 & 12.60 & XTR101SL & & 25.05 & 21.30 & 18.45 \\
\hline VFC62SL & & 25.20 & 18.90 & 16.30 & XTR110AD & & & 7.45 & 4.95 \\
\hline VFC62SL-BS & & 25.20 & 18.90 & 16.30 & XTR110AG & & 10.85 & 8.75 & 7.45 \\
\hline VFC62SL-BSS1 & & 83.16 & 62.37 & 53.79 & XTR110AL & & 14.25 & 11.65 & 10.15 \\
\hline VFC62SL-BSS2 & & 32.76 & 24.57 & 21.19 & XTR110BG & & 16.25 & 13.10 & 11.10 \\
\hline VFC62SL-BSS3 & & 28.98 & 21.73 & 18.75 & XTR110BL & & 20.05 & 16.15 & 13.95 \\
\hline VFC62SL-BSS4 & & 27.72 & 20.79 & 17.93 & XTR110KP & & 7.45 & 5.95 & 4.95 \\
\hline VFC62SM & & 24.80 & 17.50 & 14.75 & XTR110KU & & 8.40 & 6.55 & 5.40 \\
\hline VFC62SM-BS & & 24.80 & 17.50 & 14.75 & XTR110SL & & 25.30 & 20.25 & 17.40 \\
\hline VFC62SM-BSS1 & & 74.91 & 54.12 & 45.54 & & & & & \\
\hline
\end{tabular}
A) Not necessarily pin or spec compatible.
B) Expected date of last order \(6 / 30 / 88\).
C) ADC600K pricing: 1-4 \$1995; 5-9 \$1895; 10-24 \$1795; ADC600B; 1-4 \$2790; 5-9 \$2650; 10-24 \$2510.
D) SHC600BH pricing: 1-4 \$329; 5-9 \$321; 10-24 \$314.
E) 25 piece minimum.
F) Minimum order is 10 pieces.
G) Connector supplied with each unit.
H) These products slated to be discontinued June 30, 1987.
I) Prices effective upon introduction.
J) Consult factory.
K) /G level I screening add 25\% to pricing above; / T level II screening add \(45 \%\) to pricing indicated above.
L) Eurocard evaluation PCB part \#PC862/863-1 \$16.00 each.
M) 68 pin LCC socket (Note N) part \#MC0068-1 \$14.00.
N) Manufacturer and part \# for this socket is "Robinson Nugent" part \#ICC503 68-2-G (It is a U.S. part).
O) ADC80KD must be ordered in multiples of 36 .
\(\dagger\) Qualification reports \(\$ 100\) each.
Prices subject to change without notice. Minimum order \(\$ 75\).
©1987 Burr-Brown Corp. MKT-173B Printed in U.S.A. June, 1987
```


[^0]: NOTES: (1) $\mathrm{Com}=0$ to $+70^{\circ} \mathrm{C}$, Ind $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, MIL $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (2) Gain-bandwidth product for OPA37. $\mathrm{A}_{\mathrm{v}}=5$ minimum.
 *Available in 20 -pin ceramic leadless chip carriers.

[^1]: *Available in 20 -pin ceramic leadless chip carriers.

[^2]: International Airport Industrial Park - P.0. Box 11400 - Tucson. Arizona 85734 - Tel. [602] 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

[^3]: Difef ${ }^{\circledR}$ Burr-Brown Corp.

[^4]: BIFET® National Semiconductor Corp., Difet ${ }^{\circ}$ Burr-Brown Corp.

[^5]: International Airport Industrial Park • P.0. Box 11400 - Tucson, Arizona 85734 - Tel.: (602) 746-1111 - Twx: 910-952-1111 • Cable: B8RCORP • Telex: 66-6491

[^6]: NOTES: (1) $\mathrm{COB}=$ Complementary Offset Binary. (2) CTC = Complementary Two's Complement-obtained by using the complement of the most

[^7]: *Specification is the same as ADC84KG-12.

[^8]: * Available upon request.

[^9]: International Airport Industrial Park - P.0. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

[^10]: 1. Maximizing Heat Transfer from PCBs, Machine Design, March 26, 1987, Jeilong Chung.
