

Operational Amplifiers Instrumentation Amplifiers Isolation Amplifiers Analog Circuit Functions Military Products A/D Converters D/A Converters Sample/Hold Converters Multiplexers Power Supplies

Integrated Circuits Data Book Supplement

BURR-BROWN

MODEL INDEX

Model	Page
AD515	1-153
ADC10HT	5-3
ADC71	. 5-13
ADC72	. 5-21
ADC73	. 5-29
ADC76JG/KG	. 5-40
ADC76AM/BM/JM/KM.	. 5-48
ADC80	. 5-56
ADC80H	. 5-64
ADC80MAH12	87
ADC84	95
ADC85	. 5-72
ADC85H	
ADC07/0030	. 12-0
ADC574	5-80
ADC600	103
ADC674	5-93
ADC731	5-29
ADC803	5-102
ADC804	5-114
DAC10HT	6-5
DAC63	. 6-12
DAC70	. 6-20
DAC71	. 6-28
DAC71-CCD	. 6-35
DAC72	. 6-20
DAC73	. 6-41
DAC74	. 6-49
DAC80-CBI	. 6-64
DAC80-CCD	. 6-72
DAC80P	123
DAC02	. 0-70
DAC87/883B	12-24
DAC87-CBI-I	12-36
DAC90	. 6-93
DAC700	. 6-98
DAC701	. 6-98
DAC702	. 6-98
DAC702/BS9000	. 13-9
DAC703	. 6-98
DAC703/BS9000	13-10
DAC705	6-106
DAC706	6-106
DAC707	6-106
DAC707JP	131
DAC708	6-106
DAC709	6-106
DAC710	6-116
DAC711	6-116
DAC729	141
DAC736	. 6-41
DAC800	6-123
	11 2
DAC811.01/KU	151
DAC812	6-138
DAC850	6-144
DAC851	6-144
DAC870/883B	12-48
DAC1200	6-151
DAC1201	6-155
DAC1600	6-160
DAC7541	159
DAC7700 DIE	167
DAC7701 DIE	11-12
DAC8012	174
Data Communication	n

Model	Page
DIV100	4-7
DSPlay™	260
INA101	2-7
INA101/BS9000	13-11
INA101 DIE	11-18
INA101/883B	200
INA102	. 2-18
INA102 DIE	11-20
INA102KP	42
INIA 104	2-26
INA 105	2_36
104106	. 2 00
INA 110	0 46
	. 2-40
INATIORP	53
INA117	
INA258/883B	12-61
ISO100	3-6
ISO102	68
ISO106	68
LOG100	. 4-15
MCS Series	. 16-5
MP32	8-3
MPC4D	9-3
MPC8D	. 9-10
MPC8S	9-3
MPC16S	9-10
MPC800	9-17
MPC901	0.24
MP C801	. 5-24
MPY100	. 4-23
MPY100/BS9000	13-12
MPY534	. 4-31
MPY634	. 4-38
Microcomputer	
I/O Systems	. 16-2
Microterminals	. 16-1
OPA11HT	1-9
OPA21	. 1-13
OPA27	1-17
OPA27/BS9000	13-13
OPA27 DIE	11 22
OPA27 DIE	1 00
OPA27H1	. 1-29
OPA37	. 1-17
OPA37/BS9000	13-14
OPA37 DIE	11-24
OPA37HT	. 1-29
OPA101	. 1-33
OPA102	. 1-33
OPA103	. 1-45
OPA104	. 1-49
OPA105/883B	12-74
OPA106/883B	12-84
OPA111	1-53
OPA111/BS9000	12.15
OPA111 DIE	11 26
OPATTI DIE	1 00
OPA11111	. 1-03
OPA111/883B	210
OPA121	. 1-67
OPA121/BS9000	13-16
OPA128	. 1-73
OPA156	. 1-81
OPA356	. 1-81
OPA201	. 1-87
OPA404	. 1-95
OPA404KP	
OPA445	5
OPA501	1-102
OPA501/2020	200
ODAE11	222
OPA511	. 1-111
OPA512	. 1-116
OPA541	9
OPA600	15
OPA600/883B	12-94

Model	Page
OPA602	
OPA605	1-129
OPA606	1-135
OPA606 DIE	11-28
OPA633	
OPA2111	11_30
OPA2111 DIE	38
OPA8780/883B	. 12-110
OPA8785/883B	. 12-120
PCI-3000	16-4
PC1-20000	16-4
PCM52	6-164
PCM53JG	6-164
PCM53JP	6-168
PCM54	6-180
PCM55	182
PCM75	
PGA100	2-58
PGA102	2-66
PGA200	2-76
PGA201	2-76
PSB100	14-7
PWR1XX	14-9
PWR2XX	14-11
	14-13
PWR5XX	14-17
PWR6XX	
PWR7XX	237
PWR8XX	14-25
PWR70	14-27
PWR71	14-29
PWR72	14-31
PWR74	14-33
PWR1017	241
PWR5104	245
PWR5105	247
PWS725	
PWS726	
REF10	4-46
REF101	4-52
SCADAR	16-5
SDM854	8-7
SDM857	0-12 8-12
SDM862	251
SDM863	251
SHC76	7-3
SHC85	7-11
SHC298AM	7-15
SHC600	7-21
SHC803	7-24
SHC804	7-24
TM2500	7-30
TM2700	258
UAF11	4-60
UAF21	4-60
UAF41	4-68
VFC32	10-3
VFC32/BS9000	13-17
VFC32 DIE	11-32
VFC32/883B	10-11
VFC52	10-11
VFC62	10-17
VFC62/BS9000	13-18
VFC100	10-25
VFC320	10-40

Model	Page
VFC320/BS9000	13-19
XTR100	. 2-82
XTR101	. 2-94
XTR101KP	65
XTR110	2-104
XTR110 DIE	11_3/
100MS	0 17
1001015	. 3-17
546	. 14-3
550	. 14-3
551	. 14-3
552	. 14-3
553	. 14-3
554	. 14-3
556	14-3
558	14-3
550	14.2
500	. 14-0
561	. 14-3
562	. 14-3
700	14-35
710	14-37
722	14-41
724	14-45
3329/03	1-157
2460	2 10
3450	. 3-19
3451	. 3-19
3452	. 3-19
3455	. 3-19
3500	1-159
3500/883B 1	2-147
3507.1	1-161
25091	1.162
0510	1 105
3510	1-105
3510VM/883B 1	2-158
3521	1-167
3522	1-167
3523	1-170
3527	1-172
3528	1-174
2550	1.176
0550	1 100
3551	1-180
3553	1-184
3554	1-188
3571	1-196
3572	1-196
3573	1-202
3580	1-206
3581	1-206
0501	1 000
3562	1-200
3583	1-210
3584	1-214
3606	2-114
3627	2-122
3650	3-21
3652	3-21
2656	2 20
4000/05	. 3-29
4023/25	. 4-80
4085	. 4-82
4115/04	. 4-88
4127	. 4-90
4203	. 4-97
4204	4-99
4206	4-00
4010	A 105
4213	4-105
4213/BS9000	13-20
4213/883B 1	2-166
4214	4-109
4302	4-111
4340	4-117
4341	4-110
4423	4-122
	1 120

Devices 16-5

DSPlay[™] Burr-Brown Corp.

*A complete price list for these products is located inside the back cover.

SUPPLEMENT TO INTEGRATED CIRCUITS DATA BOOK

Burr-Brown Corporation • International Airport Industrial Park • P.O. Box 11400 • Tucson, Arizona 85734 USA Telephone: 602-746-1111 • Telefax: 602-746-7357 • TWX 910-952-1111 • Telex: 66-6491 BURRBROWN ATU • Cable: BBRCORP

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

© 1987 Burr-Brown Corporation

Printed in U.S.A. July, 1987

INTRODUCTION

This supplement to the Burr-Brown Integrated Circuits Data Book contains product data sheets on new products that have been developed and introduced since the Data Book was published. Product lines such as Operational, Instrumentation, and Isolation Amplifiers, Analog-to-Digital and Digital-to-Analog Converters, Military Products, Modular Power Supplies, Data Entry and Display Terminals, Microcomputer I/O Systems, and Data Acquisition Components are represented.

The Model Index list on the inside of the front cover refers to models and page numbers in both the Data Book and this supplement. Products in this supplement are set in bold type.

A Selection Guide beginning on page iii contains a summary of performance characteristics of all products in both the Data Book and this supplement.

A complete list of all Burr-Brown offices and sales representatives can be found on the inside of the back cover. If you have questions on any of our products please contact the nearest Burr-Brown office or sales representative.

SELECTION GUIDE HIGH PERFORMANCE OPERATIONAL AMPLIFIERS

GENERAL PURPOSE

These moderately priced FET and bipolar op amps offer good performance over a wide range of parameters. These are good

options when a special function op amp is not required. You can be confident that Burr-Brown's quality and reliability are inherent in their design.

	GENERAL PURPOSE													
		Offset n	Voltage, nax	Bias	Open	Freq Resp	uency bonse							
Description	Model	At 25°C, (±mV)	Temp Drift, (±µV/°C)	(25°C), max (nA)	Gain, min (dB)	Unity Gain (MHz)	Slew Rate (V/µsec)	Ra Outp (±V)	ited ut, min (±mA)	Temp Range ⁽¹⁾	Package	Page		
Low Power	OPA21GZ OPA21EZ	0.5 0.1	5 1	50 25	114 120	0.3 0.3	0.2 0.2	13.6 13.7	1.3 1.4	Ind Ind	DIP DIP	1-13 1-13		
Switchable Input	OPA201AG OPA201BG OPA201CG OPA201SG	0.5 0.2 0.1 0.2	5 2 1 2	50 40 25 40	114 114 120 114	0.5 0.5 0.5 0.5	0.1 0.1 0.1 0.1	13.5 13.5 13.5 13.5	5 5 5 5	Com Com Com MIL	DIP DIP DIP DIP	1-87 1-87 1-87 1-87		
Low Cost FET	OPA121KP* OPA121KM	3 2	10 10	±0.010 ±0.005	106 110	2 2	2 2	10 10	5 5	Com Com	DIP TO-99	1-67 1-67		
Wide Temp Range	OPA11HT	5	5 ⁽²⁾	±25	94	12.0	7.0	10	15	-55°C to +175°C	TO-99	1-9		
	OPA27HT	0.05	0.25(2)	1 <i>,</i> 1A	120	6	1.9	12	16 ⁽²⁾	-55°C to +200°C	TO-99	1-29		
	OPA37HT	0.05	0.25 ⁽²⁾	1µA	120	36	11.9	12	16 ⁽²⁾	-55°C to +200°C	TO-99	1-29		
	OPA111HT	0.5	8 ⁽²⁾	0.002	114	2	2	10	5	-55°C to +200°C	TO-99	1-63		

NOTES: (1) Com = 0 to +70°C; Ind = -25°C to +85°C; MIL = -55°C to +125°C. (2) Typical.

LOW DRIFT

Low offset voltage drift vs temperature performance in both FET and bipolar input types is obtained by our sophisticated drift compensation techniques. First, the drift is measured and then special laser trim techniques are used to minimize the drift and the initial offset voltage at 25°C. Finally, "max drift" performance is retested for conformance with specifications.

LOW DRIFT (≤5µV/°C)												
		Offset Voltage, max Current		Bias Current	Open Loop	Freq Res	uency bonse					
Description	Model	At 25°C (±mV)	Temp Drift (±µV/°C)	(25°C), max (nA)	Gain, min (dB)	Gain, Unity Si min Gain R (dB) (MHz) (V/		Ra Outp (±V)	ated ut, min (±mA)	Temp Range ⁽¹⁾	Package	Page
FET	OPA111AM* OPA111BM OPA111SM	0.5 0.25 0.5	5 1 5	±0.002 ±0.001 ±0.002	114 120 114	2 2 2	2 2 2	11 11 11	5 5 5	Ind Ind MIL	TO-99 TO-99 TO-99	1-53 1-53 1-53
Wideband	OPA156AM OPA356AM	2 2	5 5	0.05 0.05	94 94	6 6	14 14	10 10	5 5	MIL Com	TO-99 TO-99	1-81 1-81
	OPA606LM	0.5	5	±0.01	100	13	35	12	5	Com	TO-99	1-135
Dual FET	OPA2111BM*	0.5	2.8	±0.004	114	2	2	11	5	Ind	TO-99	1-143
Bipolar	OPA27A* OPA37A* OPA37B OPA37B OPA37C OPA37C OPA37C OPA37E OPA37F OPA27G OPA37G OPA37GP	0.025 0.025 0.060 0.100 0.100 0.025 0.025 0.060 0.060 0.100 0.100 0.100	0.6 0.6 1.3 1.8 1.8 0.6 0.6 1.3 1.3 1.8 1.8 1.8 1.8	± 40 ± 40 ± 55 ± 55 ± 80 ± 40 ± 40 ± 55 ± 55 ± 80 ± 40 ± 55 ± 80 ± 80 ± 80 ± 80 ± 80	120 120 120 120 117 117 120 120 120 120 120 117 117 117	8 63 ⁽²⁾ 8 63 ⁽²⁾ 8 63 ⁽²⁾ 8 63 ⁽²⁾ 8 63 ⁽²⁾ 8 63 ⁽²⁾	1.9 11.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	12 12 12 12 12 12 12 12 12 12 12 12 12 1	16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6	MIL MIL MIL MIL Ind Ind Ind Ind Com Com	TO-99, DIP TO-99, DIP DIP	1-17 1-17 1-17 1-17 1-17 1-17 1-17 1-17
Low Power	OPA21EZ OPA21GZ	0.1 0.5	1 5	25 50	120 114	0.3 0.3	0.2 0.2	13 13	5 5	Ind Ind	DIP DIP	1-13 1-13

NOTES: (1) Com = 0 to $+70^{\circ}$ C, Ind = -25° C to $+85^{\circ}$ C, MIL = -55° C to $+125^{\circ}$ C. (2) Gain-bandwidth product for OPA37. A_V = 5 minimum. *Available in 20-pin ceramic leadless chip carriers.

LOW BIAS CURRENT

Our many years of experience in designing, manufacturing and testing FET amplifiers gives us unique abilities in providing low and ultra low bias current op amps. These amplifiers offer bias currents as low as 75fA (75×10^{-15} amps) and low voltage drift as low as $1\mu V/^{\circ}C$. With offset voltage laser-trimmed to as low as $250\mu V$, the need for expensive trim pot adjustments is eliminated.

LOW BIAS CURRENT (S50pA)												
		Offset n	Voltage, nax	Bias	Open	Freq Resp	uency bonse					
Description	Madal ⁽¹⁾	At 25°C,	Temp Drift,	(25°C), max	Gain, min	Unity Gain	Slew Rate	Ra Outp	ated ut, min	Temp	Dookogo	Base
Description	woder	(±mv)	(±μν/°C)	(pA)	(UD)	(11112)	(v/µsec)	(±V)	(±IIIA)	nange	гаскаде	Fage
Premium Performance	OPA111AM* OPA111BM OPA111SM	0.5 0.25 0.5	5 1 5	±2 ±1 ±2	114 120 114	2 2 2	2 2 2	11 11 11	5 5 5	Ind Ind MIL	TO-99 TO-99 TO-99	1-53 1-53 1-53
Low Noise	OPA101AM OPA101BM OPA102AM OPA102BM	0.50 0.25 0.50 0.25	10 5 10 5	-15 -10 -15 -10	94 94 94 94	10 10 40 40	6.5 6.5 14 14	12 12 12 12	12 12 12 12	Ind Ind Ind Ind	TO-99 TO-99 TO-99 TO-99	1-33 1-33 1-33 1-33 1-33
Ultra-Low Bias Current	OPA128JM* OPA128KM OPA128LM OPA128SM	1 0.5 0.5 0.5	20 10 5 10	$\pm 0.300 \\ \pm 0.150 \\ \pm 0.075 \\ \pm 0.150$	94 110 110 110	1 1 1 1-	3 3 3 3	10 10 10 10	5 5 5 5	Com Com Com MIL	TO-99 TO-99 TO-99 TO-99 TO-99	1-73 1-73 1-73 1-73 1-73
Dual FET	OPA2111AM* OPA2111BM OPA2111SM OPA2111KM OPA2111KP	0.75 0.5 0.75 2 2 2	6 2.8 6 15 15	±8 ±4 ±8 ±15 ±15	110 114 110 106 106	2 2 2 2 2 2	.2 2 2 2 2 2 2	11 11 11 11 11	5 5 5 5 5	Ind Ind MIL Com Com	TO-99 TO-99 TO-99 TO-99 DIP	1-143 1-143 1-143 38 38 38
Quad FET	OPA404AG* OPA404BG OPA404SG OPA404SG	1 0.75 1 2.5	3 ⁽⁴⁾ 3 ⁽⁴⁾ 3 ⁽⁴⁾ 5 ⁽⁴⁾	±8 ±4 ±8 ±12	88 92 88 88	6.4 6.4 6.4 6.4	35 35 35 35 35	11.5 12 11.5 11.5	5 5 5 5	Ind Ind MIL Com	DIP DIP DIP DIP	1-95 1-95 1-95 1
Low Cost	OPA121KM* OPA121KP	2 3	10 10	±5 ±10	110 106	2 2	2 2	11 11	5 5	Com Com	TO-99 DIP	1-67 1-67
Wideband	OPA602AM OPA602BM OPA602CM OPA602SM	1 0.5 0.25 0.5	15 5 2 5	10 2 1 2	75 88 92 88	6.5 6.5 6.5 6.5	20 24 28 24	10 10 10 10	15 15 15 15	ind ind ind MiL	TO-99 TO-99 TO-99 TO-99 TO-99	23 23 23 23 23
	OPA606KM OPA606LM OPA606SM OPA606KP	1.5 0.5 1.5 3	5 ⁽⁴⁾ 5 5 ⁽⁴⁾ 10 ⁽⁴⁾	±15 ±10 ±15 ±25	95 100 95 90	12.5 13 12.5 12	33 35 33 30	11 12 11 11	5 5 5 5	Com Com MIL Com	TO-99 TO-99 TO-99 DIP	1-135 1-135 1-135 1-135 1-135
Low Cost, Ultra-Low Bias Current	AD515JH AD515KH AD515LH	3 1 1	50 15 25	0.300 0.150 0.075	86 92 88	0.35 0.35 0.35	1 1 1	10 10 10	5 5 5	Com Com Com	TO-99 TO-99 TO-99	1-153 1-153 1-153

NOTES: (1) "(Q)" indicates product also available with screening for increased reliability. (2) Com = 0 to $+70^{\circ}$ C, $\text{Ind} = -25^{\circ}$ C to $+85^{\circ}$ C, $\text{MIL} = -55^{\circ}$ C to $+125^{\circ}$ C. (3) Gain-bandwidth product. (4) Typical.

LOW NOISE

Now both FET and bipolar input op amps are offered with guaranteed low noise specifications. Until now the designer had to

rely on "typical" specs for his demanding low noise designs. These fully characterized parts allow a truly complete error budget calculation.

	LOW NOISE (Guaranteed en)														
	Noise Voltage Bias Offset			Frequency Response											
		at Current Voltage, ma 10kHz, (25° C), At Tem max max 25° C Dri		ge, max Temp Drift	Loop Gain, min	Gain Slew Band- Rate, width min		Rated Output, min		Temp Range					
Description	Model	(nV/√Hz)	(pA)	(±mV)	(±µV/°C)	(dB)	(MHz)	(V/µsec)	(±V)	(±mA)	ໜັ	Package	Page		
Bipolar	OPA27A*	3.8	±40nA	. 0.025	0.6	120	8	1.7	12	16.6	MIL	TO-99, DIP	1-17		
1	OPA37A*	3.8	±40nA	0.025	0.6	120	63	11	12	16.6	MIL	TO-99, DIP	1-17		
	OPA27B	3.8	±55nA	0.060	1.3	120	8	1.7	12	16.6	MIL	TO-99, DIP	1-17		
	OPA37B	3.8	±55nA	0.060	1.3	120	63	11	12	16.6	MIL	TO-99, DIP	1-17		
	OPA27C	4.5	±80nA	0.100	1.8	117	8	1.7	12	16.6	MIL	TO-99, DIP	1-17		
	OPA37C	4.5	±80nA	0.100	1.8	117	63	11	12	16.6	MIL	TO-99, DIP	1-17		
	OPA27E	3.8	±40nA	0.025	0.6	120	8	11	12	16.6	Ind	TO-99, DIP	1-17		
	OPA37E	3.8	±40nA	0.025	0.6	120	63	11	12	16.6	Ind	TO-99, DIP	1-17		
l ·	OPA27F	3.8	±55nA	0.060	1.3	120	8	1.7	12	16.6	Ind	TO-99, DIP	1-17		
	OPA37F	3.8	±55nA	0.060	1.3	120	63	. 11	12	16.6	Ind	TO-99, DIP	1-17		

*Available in 20-pin ceramic leadless chip carriers.

This table continued on next page.

Models in **boldface type** are found in this supplement; others are in the Burr-Brown Integrated Circuits Data Book.

vi

LOW NOISE (Guaranteed e _n) (CONT)													
		Noise Voltage	Bias	Offset		Open	Frequency Response						
Description	Model	at 10kHz, max	Current (25°C), max	At 25°C	Temp Drift	Loop Gain, min	Gain Band- width	Slew Rate, min	Rated Output, min		Temp Range	Backage	Page
Description		(IIV/\/H2)	(PA)	(±111V)	(±#/// С)	(UB)	(10112)	(V/µsec)	(10)	(10.6	lad		
Bipolar	OPA27G OPA37G	4.5 4.5	±80nA	0.100	1.8	117	63	1.7	12	16.6	Ind	TO-99, DIP	1-17
Wide Bandwidth	OPA101AM OPA101BM	8 8	15 10	0.5 0.25	10 5	94 94	20 20	5 5	12 12	12 12	Ind Ind	TO-99 TO-99	1-33 1-33
	OPA102AM OPA102BM	8 8	-15 -10	0.5 0.25	10 5	94 94	40 40	10 10	12 12	12 12	Ind Ind	TO-99 TO-99	1-33 1-33
FET	OPA111AM* OPA111BM OPA111SM	8 8 8	±2 ±1 ±2	0.5 0.25 0.5	5 1 5	114 120 114	2 2 2	1 1 1	11 11 11 11	5 5 5	Ind Ind MIL	TO-99 TO-99 TO-99	1-53 1-53 1-53
	OPA606LM	13	±10	0.5	5	100	13	25	12	5	Com	TO-99	1-135
Low Cost	OPA27GP OPA37GP	4.5 4.5	±80nA ±80nA	0.100 0.100	1.8 1.8	117 117	8 63	1.9 ⁽²⁾ 11.9 ⁽²⁾	10 10	16.6 16.6	Com Com	DIP DIP	1-17 1-17
Dual FET	OPA2111AM* OPA2111BM OPA2111SM OPA2111SM	8 8 6 ⁽²⁾	±8 ±4 ±4 ±15 ±15	0.75 0.5 0.75 2	6 2.8 6 15	110 114 110 106	2 2 2 2 2	1 1 1	11 11 11 11	5 5 5 5	Ind Ind MIL Com	TO-99 TO-99 TO-99 TO-99	1-143 1-143 1-143 38 38

NOTES: (1) Ind = -25°C to +85°C, MIL = -55°C to +125°C, Com = 0°C to +70°C. (2) Typical.

UNITY-GAIN BUFFER (Power Booster)

These versatile amplifiers: boost the output current capability of another amplifier; buffer an impedance that might load a critical circuit; may be used inside the feedback loop of another op amp to form a current-boosted, composite amplifier. Currents as high as ± 100 mA are available with speeds of $2000V/\mu$ sec.

	UNITY-GAIN BUFFER														
		Ra	ted	Fre	equency Resp	onse		Input							
		Outpu	ıt, min	-3dB	Full Power	Slew Rate	Gain	Impedance	Temp						
Description	Model	(±V)	(±mA)	(MHz)	BW (MHz)	(V/µsec)	(V/V)	(Ω)	Rango	Package	Page				
High Performance	3553AM	10	200	300	32	2000	≈1	10 ¹¹	Ind	TO-3	1-184				
Low Cost	OPA633AH OPA633SH OPA633KP	10 10 10	80 80 80	275 275 275	65 65 65	1000 1000 1000	≈1 ≈1 ≈1	10 ⁶ 10 ⁶ 10 ⁶	Ind MIL Com	TO-8 TO-8 DIP	29 29 29				

NOTES: (1) Ind = -25°C to +85°C, MIL = -55°C to +125°C, Com = 0°C to +70°C.

WIDE BANDWIDTH

Design expertise in wideband circuits combines with our fully developed technology to create cost effective wideband op amps.

Burr-Brown high speed amplifiers also offer outstanding DC performance specifications.

	WIDE BANDWIDTH (≥5MHz)													
		Frequency Response						Offset	Voltage,	Open				
		Gain Bandwidth	Slew Rate, min	ts Com- ±0.1% pensa-		Com- ensa- Rated Output, min		At 25°C	Temp Drift	Loop Gain, min	Temp Range			
Description	Model ⁽¹⁾	(MHz)	(V/µsec)	(nsec)	tion	(±V)	(±mA)	(±mV)	(±µV/°C)	(dB)	(/)	Package	Page	
FET	3554AM, (Q)	1700, A = 1000	1000	120	ext.	10	100	2	50	100	Ind	TO-3	1-188	
	3554BM, (Q)	1700, A = 1000	1000	120	ext.	10	100	1	15	100	Ind	TO-3	1-188	
	3554SM, (Q)	1700, A = 1000	1000	120	ext.	10	100	1	25	100	MIL	TO-3	1-188	
	3551J	50, A = 10	250	400	ext.	10	10	1	50 ⁽³⁾	88	Com	TO-99	1-180	
	3551S, (Q)	50, A = 10	250	400	ext.	10	10	1	50 ⁽³⁾	88	MIL	TO-99	1-180	
-	3550J	10, A = 10	65	400	int.	10	10	1	50 ⁽³⁾	88	Com	TO-99	1-176	
	3550K	20, A = 1	100	400	int.	10	10	1	50 ⁽³⁾	88	Com	TO-99	1-176	
	3550S, (Q)	10, A = 1	65	400	int.	10	10	1	50 ⁽³⁾	88	MIL	TO-99	1-176	
Bipolar	3508J	100, A = 100	- 0		ext.	10	10	5	30 ⁽³⁾	98	Com	TO-99	1-163	
	3507J, (Q)	20, A= 10	80	200	ext.	10	10	10	30 ⁽³⁾	83	Com	TO-99	1-161	

*Available in 20-pin ceramic leadless chip carriers. This table continued on next page. Models in **boldface type** are found in this supplement; others are in the Burr-Brown Integrated Circuits Data Book.

				WIDE BA	NDWIDTI	H (≥5N	/Hz) (C	ONT)					
		Frequency Res	sponse Slew			p,	ated	Offset m	Voltage, nax	Open Loop			
Description	Model ⁽¹⁾	Gain Bandwidth (MHz)	Rate, min (V/µsec)	ts ±0.1% (nsec)	Com- pensa- tion	Outp (±V)	ut, min (±mA)	At 25°C (±mV)	Temp Drift (±µV/°C)	Gain, min (dB)	Temp Range 2)	Package	Page
FET	OPA156AM OPA356AM	6, A = 1 6, A = 1	10 10	1.5μsec 1.5μsec	int. int.	10 10	5 5	2 2	5 5	94 94	MIL Com	TO-99 TO-99	1-81 1-81
Advance Information	OPA602AM OPA602BM OPA602CM OPA602SM	6.5 6.5 6.5 6.5	20 24 28 24	600 600 600 600	Int. int. int. int.	10 10 10 10	15 15 15 15	1 0.5 0.25 0.5	15 5 2 5	75 88 92 88	ind. Ind. Ind. MIL	TO-99 TO-99 TO-99 TO-99 TO-99	23 23 23 23 23
	OPA605H OPA605A OPA605K OPA605C	200, A=1000 200, A=1000 200, A=1000 200, A=1000	300 ⁽³⁾ 300 ⁽³⁾ 300 ⁽³⁾ 300 ⁽³⁾	300 300 300 300	ext. ext. ext. ext.	10 10 10 10	30 30 30 30	1 1 0.5 0.5	25 25 5 5	96 ⁽³⁾ 96 ⁽³⁾ 96 ⁽³⁾ 96 ⁽³⁾	Com Ind Com Ind	DIP DIP DIP DIP	1-129 1-129 1-129 1-129
	OPA606KM OPA606LM OPA606SM OPA606KP	12.5 13 12.5 12	22 25 22 20	1μsec 1μsec 1μsec 1μsec	int. int. int. int.	11 12 11 11	5 5 5 5	1.5 0.5 1.5 3	5 ⁽³⁾ 5 5 ⁽³⁾ 10 ⁽³⁾	95 100 95 90	Com Com MIL Com	TO-99 TO-99 TO-99 TO-99	1-135 1-135 1-135 1-135
Quad FET	OPA404AG OPA404BG OPA404SG OPA404KP	6.4 6.4 6.4 6.4	24 28 24 24	600 600 600 600	int. int. int. Int.	11.5 11.5 11.5 11.5	5 5 5 5	1 0.75 1 2.5	3 ⁽³⁾ 3 ⁽³⁾ 3 ⁽³⁾ 5 ⁽³⁾	88 92 88 88	ind Ind MIL Com	DIP DIP DIP DIP	1-95 1-95 1-95 1
Low Noise Bipolar	OPA27A* OPA37A* OPA37B OPA37B OPA27C OPA37C OPA37C OPA37E OPA37F OPA37F OPA37F OPA37F		1.7 11 1.7 11 1.7 11 1.7 11 1.7 11 1.7 11 1.7 11		int. ⁽⁴⁾ int. ⁽⁴⁾ int. ⁽⁴⁾ int. ⁽⁴⁾ int. ⁽⁴⁾ int. ⁽⁴⁾ int. ⁽⁴⁾ int. ⁽⁴⁾ int. ⁽⁴⁾ int. ⁽⁴⁾	12 12 12 12 12 12 12 12 12 12 12 12 12	16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6	0.025 0.025 0.060 0.060 0.100 0.100 0.025 0.025 0.025 0.060 0.060 0.100	0.6 0.6 1.3 1.3 1.8 1.8 0.6 0.6 1.3 1.3 1.3 1.8 1.8	120 120 120 120 120 117 117 120 120 120 120 120 117 117	MIL MIL MIL MIL Ind Ind Ind Ind Ind	TO-99, DIP TO-99, DIP	1-17 1-17 1-17 1-17 1-17 1-17 1-17 1-17
Low Noise FET	OPA101AM OPA101BM OPA102AM	20, A=100 20, A=100 40, A=100	5 5 10	2.5µsec 2.5µsec 1.5µsec	int. int. int.	12 12 12	12 12 12	0.5 0.25 0.5	10 5 10	94 94 94	Ind Ind Ind	TO-99 TO-99 TO-99	1-33 1-33 1-33
Fast Settling	OPA600UM OPA600VM OPA600BM OPA600CM OPA600SM OPA600TM	6000, A=1000 6000, A=1000 5000, A = 1000 5000, A = 1000 5000, A = 1000 5000, A = 1000	500 500 500 500 500 500	80 80 80 80 80 80 80	ext. ext. ext. ext. ext. ext.	9 9 9 9 9 9	180 180 180 180 180 180 180	5 4 ±5 ±4 ±5 ±4	100 20 ±80 ±40 ±100 ±80	86 86 86 86 86 86	MIL MIL Ind Ind MIL MIL	DIP DIP DIP DIP DIP DIP DIP	12-94 12-94 1-121 1-121 1-121 1-121
Unity-Gain Buffer	3553AM, (Q)	32	2000	-	-	10	200	50	300 ⁽³⁾	NA	Ind	TO-3	1-184
Low Cost	OPA27GP OPA37GP	8, A = 1 63, A = 5	1.9 ⁽³⁾ 11.9 ⁽³⁾	-	int. int. ⁽⁴⁾	12 12	16.6 16.6	0.100 0.100	1.8 1.8	117 117	Com Com	DIP DIP	1-17 1-17
Wide Temp Range	ОРА27НТ ОРА37НТ	6, A = 1 36, A = 5	1.9 11.9	-	int. int. ⁴⁰	12 12	16.6 ⁽³⁾ 16.6 ⁽³⁾	0.050 0.050	0.25 ⁽³⁾ 0.25 ⁽³⁾	120 120	-55°C to +200°C	TO-99 TO-99	1-29 1-29
	OPA11HT	12, A=1	4	1.5µsec	ext.	10	15	5 ⁽³⁾	5	98	-55°C to +200°C	TO-99	1-9

NOTES: (1) "(Q)" indicates product also available with screening for increased reliability. (2) Com = 0 to $+70^{\circ}$ C, Ind = -25° C to $+85^{\circ}$ C, MIL = -55° C to $+125^{\circ}$ C. (3) Typical. (4) G = 5 min for OPA37.

*Available in 20-pin ceramic leadless chip carriers.

				ніс	GH VOLTAG	E—HIGH	CURREN	т				
				Offset . r	Voltage, nax	Bias Current	Freq Res	uency oonse	Open			
		Rated	Output, nin	At 25° C,	Temp Drift,	(25°C), max	Unity Gain	Slew Rate	Loop Gain	Temp Range		
Description	Model ⁽¹⁾	(±V)	(±mA)	(±mV)	(±µV/°C)	(pA)	(MHz)	(V/µsec)	(dB)	(2)	Package	Page
High Power	OPA501AM OPA501BM OPA501RM OPA501SM	20 26 20 26	10A 10A 10A 10A	10 5 10 5	65 40 65 40	40nA 20nA 40nA 20nA	1 1 1	1.35 1.35 1.35 1.35	94 98 94 98	Ind Ind MIL MIL	TO-3 TO-3 TO-3 TO-3	1-103 1-103 1-103 1-103
	OPA511AM	22	5A	10	65	40	1	1	91	Ind	TO-3	1-111
	OPA512BM OPA512SM	35 35	10A 15A	6 3	65 40	30 20	4 4	2.5 2.5	110 110	Ind MIL	TO-3 TO-3	1-116 1-116
	OPA541AM OPA541BM OPA541SM	30 35 35	5A 5A 5A	10 1 1	40 30 30	50 50 50	1.6 1.6 1.6	8 8 8	90 90 90	ind. ind. MiL	TO-3 TO-3 TO-3	9 9 9
	3573AM 3572AM 3571AM, (Q)	20 30 30	2A ⁽⁵⁾ 2A ⁽⁵⁾ 1A ⁽⁴⁾	10 2 2	65 40 40	40nA 100 100	1 0.5 0.5	2.6 3 3	94 94 94	Ind Ind Ind	TO-3 TO-3 TO-3	1-202 1-196 1-196
Wideband	3554AM, (Q) 3554BM, (Q) 3554SM, (Q)	10 10 10	100 100 100	2 1 1	50 15 25	-50 -50 -50	1700 ⁽³⁾ 1700 ⁽³⁾ 1700 ⁽³⁾	1200 1200 1200	100 100 100	Ind Ind MIL	TO-3 TO-3 TO-3	1-188 1-188 1-188
High Voltage	3584JM, (Q) 3583AM 3583JM 3582J 2581J	145 140 140 145 70	15 75 75 15	3 3 3 3	25 25 25 25 25	-20 -20 -20 -20	20 ⁽³⁾ 5 5 5	150 30 30 20	126 118 118 118	Com Ind Com Com	TO-3 TO-3 TO-3 TO-3	1-214 1-210 1-210 1-206
	3580J	30	60	10	30	-20	5	15	106	Com	TO-3	1-206
Advance {	OPA445BM OPA445SM	35 35	15 15	3 1	10 10	50 50	2 2	10 10	100 100	Ind MIL	TO-99 TO-99	5 5
Booster	3553AM, (Q)	10	200	50	300(6)	-200	300	2000	NA	Ind	то-з	1-184
	OPA633AH OPA633SH OPA633KP	10 10 10	80 80 80	15 15 15	33 ⁽⁶⁾ 33 ⁽⁶⁾ 33 ⁽⁶⁾	35µА 35µА 35µА	275 ⁽⁶⁾ 275 ⁽⁶⁾ 275 ⁽⁶⁾	1000 1000 1000	NA NA NA	Ind MIL Com	TO-8 TO-8 DIP	29 29 29

NOTES: (1) "(Q)" indicates product also available with screening for increased reliability. (2) Com = 0 to $+70^{\circ}$ C, $\text{Ind} = -25^{\circ}$ C to $+85^{\circ}$ C, $\text{MIL} = -55^{\circ}$ C to $+125^{\circ}$ C. (3) Gain-bandwidth product. (4) 2A peak. (5) 5A peak. (6) Typical.

INSTRUMENTATION AMPLIFIERS AND PROGRAMMABLE GAIN AMPLIFIERS

				INSTRUM	ENTATION	AMPLIFIERS					
			Gain			. Input Pa	arameters	Dynamic			
Description	Model	Gain Range	Accuracy, G = 100, 25°C, max (%)	Gain Drift, G = 100 (ppm/°C)	Non- Linearity, G = 100, max (%)	CMR, DC to 60Hz, G = 10, 1kΩ Unbal., min (dB)	Offset Voltage vs Temp, max (µV/°C)	Response, G = 100, ±3dB BW (kHz)	Temp Range (1)	Package	Page
Very-High	INA104HP	1-1000(2)	0.15	22	±0.007	96	$\pm (2 \pm 20/G)$	25	Com	DIP	2-26 2-26
Accuracy	INA104JP INA104KP	1-1000 ⁽²⁾ 1-1000 ⁽²⁾	0.15	22 22 22 ⁽³⁾	±0.003 ±0.003	96	$\pm (0.25 \pm 10/G)$ $\pm (0.75 \pm 10/G)$ $\pm (2 \pm 20/G)$	25 25	Com	DIP	2-26
	INA104AM INA104BM	1-1000	0.15	22 ⁽³⁾	±0.003	96	$\pm (0.75 \pm 10/G)$	25	Ind	DIP	2-26
	INA104CM INA104SM	1-1000 ⁽²⁾ 1-1000 ⁽²⁾	0.15	22 ⁽³⁾	± 0.003 ± 0.003	96	$\pm (0.25 \pm 10/G)$ $\pm (0.75 \pm 10/G)$	25 25	MIL	DIP	2-26
	INA101AM* INA101CM INA101SM	1-1000 ⁽²⁾ 1-1000 ⁽²⁾ 1-1000 ⁽²⁾	0.03 0.03 0.03	22 ⁽⁴⁾ 22 ⁽⁴⁾ 22 ⁽⁴⁾	±0.007 ±0.004 ±0.004	96 96 96	\pm (2 + 20/G) \pm (0.25 + 10/G) \pm (0.25 + 10/G)	25 25 25	Ind Ind MIL	TO-100 TO-100 TO-100	2-7 2-7 2-7
	INA101AG	1-1000 ⁽²⁾	0.03	22 ⁽³⁾ 22 ⁽³⁾	±0.007 ±0.003	96 96	$\pm (2 + 20/G)$ $\pm (0.25 + 10/G)$	25 25	Ind	DIP	2-7 2-7
	INA1016G	1-1000	0.03	22(3)	±0.003	96	$\pm(0.25 + 10/G)$	25	MIL	DIP	2-7
	INA101HP	1-1000 ⁽²⁾ 1-1000 ⁽²⁾	0.3 0.3	22 ⁽³⁾ 22 ⁽³⁾	±0.007 ±0.007	. 90 90	$\pm (2 + 20/G)$ typ $\pm (2 + 20/G)$ typ	25 25	Com	SOIC	xxiii
Low Quiescent Power	INA102AG* INA102CG	} 1, 10, 100, 1000	0.25 0.15	20 15	±0.05 ±0.02	80 90	$\pm (5 \pm 10/G)$ $\pm (2 \pm 5/G)$	3 3	Ind Ind	DIP DIP	2-18 2-18

*Available in 20-pin ceramic leadless chip carriers.

i his table continued on next page.

			INS	TRUMENT	ATION AM	PLIFIERS (COM	ŃT)				
Description	Model	Gain Range	Gain Accuracy, G = 100, 25°C, max (%)	Gain Drift, G = 100 (ppm/°C)	Non- Linearity, G = 100, max (%)	Input P CMR, DC to 60Hz, G = 10, 1kΩ Unbal., min (dB)	arameters Offset Voltage vs Temp, max (µV/°C)	Dynamic Response, G = 100, ±3dB BW (kHz)	Temp Range : (1)	Package	Page
Fast Settling FET Input	INA110AG* INA110BG INA110SG INA110KP INA110KU	1, 10, 100, 200, 500 1, 10, 100 200, 500	0.2 0.1 0.1 0.2 0.2	40 20 20 6 typ 6 typ	±0.02 ±0.01 0.01 0.02 0.02	87 96 96 87 87	$\begin{array}{c} \pm (5 + 100/G) \\ \pm (2 + 50/G) \\ \pm (2 + 50/G) \\ \pm (2 + 20/G) \ typ \\ \pm (2 + 20/G) \ typ \end{array}$	470 470 470 470 470	Ind Ind MIL Com Com	DIP DIP DIP DIP SOIC	2-46 2-46 53 53 53
Buffer, Unity-Gain	3627AM 3627BM	1V/V, fixed 1V/V, fixed	0.01 0.01	5 5	±0.001 ⁽³⁾ ±0.001 ⁽³⁾	90 100	30 20	800 ⁽³⁾ 800 ⁽³⁾	Ind Ind	TO-99 TO-99	2-122 2-122
Differential	INA105AM* INA105BM INA105KP INA105KU	1V/V, fixed 1V/V, fixed 1V/V, fixed 1V/V, fixed	0.01 0.01 0.025 0.025	5 5 5 5	±0.001 ⁽³⁾ ±0.001 ⁽³⁾ ±0.001 ⁽³⁾ ± 0.001 ⁽³⁾	80 ⁽⁶⁾ 86 ⁽⁶⁾ 72 ⁽⁶⁾ 72⁽⁶⁾	20 10 5 typ 5	1000 ⁽³⁾ 1000 ⁽³⁾ 1000 ⁽³⁾ 1000 ⁽³⁾	Ind Ind Com Com	TO-99 TO-99 DIP SOIC	2-36 2-36 2-36 xxiii
Gain of 10 Differential	INA106AM INA106BM INA106KP	10V/V fixed 10V/V fixed 10V/V fixed	0.01 0.01 0.025	10 10 4 typ	0.001 0.001 0.001	94 ⁽⁶⁾ 100 ⁽⁶⁾ 86 ⁽⁶⁾	5 2 0.2 typ	500 ⁽⁵⁾ 500 ⁽⁵⁾ 500 ⁽⁵⁾	Ind Ind Com	DIP DIP DIP	45 45 45
High Common Mode Voltage Differential (200VDC CMV)	INA117AG INA117BG INA117P	1V/V fixed 1V/V fixed 1V/V fixed	0.05 ⁽³⁾ 0.02 ⁽³⁾ 0.05 ⁽³⁾	10 ⁽³⁾ 10 ⁽³⁾ 10 ⁽³⁾	0.001 ⁽³⁾ 0.001 ⁽³⁾ 0.001 ⁽³⁾	74 ^(3,6) 86 ^(3,6) 74 ^(3,6)	40 20 40	200 ⁽³⁾ 200 ⁽³⁾ 200 ⁽³⁾	ind Ind Com	TO-99 TO-99 DIP	57 57 57
			F	ROGRAM	ABLE GA	IN AMPLIFIER	S				,
Noninverting Multiplexed Input	PGA100AG PGA100BG	Gain set with 4-bit word 1, 2, 4, 8128	0.05	10 10	±0.01 ±0.005	NA NA	6 typ 6 typ	5MHz 5MHz	Ind Ind	DIP DIP	2-58 2-58
r	PGA102AG PGA102BG PGA102SG PGA102KP	Gain set with 2-bit word 1, 10 100	0.02 0.01 0.01 0.02	20 20 20 50	0.01 0.01 0.01 0.01		$\begin{array}{l} 3, \ G = 100 \\ 3, \ G = 100 \end{array}$	250 250 250 250	Ind Ind Ind Com	DIP DIP DIP DIP	2-66 2-66 2-66 2-66
Instrumen- tation Amplifier Input	PGA200AG PGA200BG	Gain set with 2-bit word 1, 10, 100, 1000	0.05 0.02	20 10	±0.007 ±0.003	96 96	2, G = 100 0.4, G = 100	30 30	Ind Ind	DIP DIP	2-76 2-76
Differential Input	3606AG 3606AM 3606BG 3606BM	Gain set with 3-bit word 1, 2, 4 81024	0.05 0.05 0.02 0.02	10 10 10 10	0.004 0.004 0.004 0.004	90, G = 1 90, G = 1 90, G = 1 90, G = 1	$\begin{array}{c} \pm (3+50/G) \\ \pm (3+50/G) \\ \pm (1+20/G) \\ \pm (1+20/G) \end{array}$	40 40 40 40	Ind Ind Ind Ind	DIP DIP DIP DIP	2-114 2-114 2-114 2-114

NOTES: (1) Com = 0°C to +70°C, Ind = -25° C to +85°C, MIL = -55° C to +125°C. (2) Set with external resistor. (3) Unity-gain. (4) With zero TC external resistor. (5) Gain = 10. (6) No source imbalance.

				1	PRECISION	TRANSMIT	TERS						
			Span		Inp	ut Parameters		. 0	utput Param	eters			
Description	Model	Un- trimmed Error, max (%)	Non- Linearity, max (%)	Temp Drift ⁽¹⁾ (ppm/°C)	Offset Voltage,	Offset Voltage vs Temp, max (uV/°C)	CMR, DC, min (dB)	Current Range (mA)	Offset Current Error, max (uA)	FS Output Current Error, max (uA)	Temp Range	Pack-	Page
Two-Wire	XTR100AM XTR100AP XTR100BM XTR100BP	3 3 3 3	0.01 0.01 0.01 0.01 0.01	±100 ±100 ±100 ±100	±50 ±50 ±25 ±25	±1 ±1 ±0.5 ±0.5	90 90 90 90	4-20 4-20 4-20 4-20	±4 ±4 ±4 ±4	±20 ±20 ±20 ±20	Ind Ind Ind Ind	DIP DIP DIP DIP DIP	2-82 2-82 2-82 2-82 2-82
	XTR101AG* XTR101BG	5 5	0.01 0.01	±100 ±100	±60 ±30	±1.5 ±0.75	90 90	4-20 4-20	±10 ±6	±40 ±30	Ind Ind	DIP DIP	2-94 2-94
	XTR101AP XTR101AU	5 5	0.01 0.01	±100 ±100	±100 ±100	±1.5 ±1.5	90 90	4-20 4-20	±19 ±19	±60 ±60	Ind ⁽³⁾ Ind ⁽³⁾	DIP SOIC	65 xxiii
Three- Wire and Current Source	XTR110AG* XTR110BG XTR110KP XTR110KU	0.6 0.2 0.6 0.6	0.025 0.005 0.025 0.025	50 30 50 50				4-20, 0-20, 5-25 (4)	±64 ±16 ±64 ± 64	±96 ±32 ±96 ± 96	Ind Ind Com Com	DIP DIP DIP SOIC	2-104 2-104 2-104 xxiii

NOTES: (1) With zero TC span resistor. (2) Com = 0 to $+70^{\circ}$ C, Ind = -25° C to $+85^{\circ}$ C, MIL = -55° C to $+125^{\circ}$ C. (3) -40° C to $+85^{\circ}$ C. (4) Many more ranges with appropriate circuit.

*Available in 20-pin ceramic leadless chip carriers.

ISOLATION PRODUCTS

						TRANS	SFOR	MER C	OUPLE	AMPLI	FIERS						
		Isola Voltaç Contin- uous,	ition ge (V) Pulse/ Test,	Isola Mode tion DC	ation Rejec- typ. 60Hz	Leakage Current at Test Voltage	lsola Impe	ation dance	G Nonli max	ain nearity typ.	Voltage Drift, (±µV/°C)	Bias Cur- rent,	±3dB Freq.	External Isolation Power	Temp. Range		
Description	Model	peak	peak	(dB)	(dB)	(µA)	(Ω)	(pF)	(%)	(%)	max	max	(kHz)	Required	(1)	Package	Page
Low Drift ⁽²⁾	3450	±500	±2000	160	120	-1	10 ¹²	16	±0.005	±0.0015	100	50nA	1.5	No	Com	Module	3-19
Low Bias FET	3451 3452 3455	±500 ±2000 (3)	±2000 ±5000 (3)	160 160 160	120 120 120	1 1 (3)	10 ¹² 10 ¹² 10 ¹²	16 16 16	${\pm 0.025} \\ {\pm 0.025} \\ {\pm 0.025}$	$\pm 0.005 \\ \pm 0.005 \\ \pm 0.005$	100 100 100	25pA 10pA 20pA	2.5 2.5 2.5	No No ⁽⁴⁾ No ⁽⁴⁾	Com Com Com	Module Module Module	3-19 3-19 3-19
Highest Isolation Voltage	3656AG 3656BG	±3500 ±3500	±8000 ±8000	160 160	125 125	0.5 0.5	10 ¹² 10 ¹²	6 6	±0.1 ±0.05	±0.03 ±0.03	25 + (500/G ₁) 5 +	100nA 100nA	30 30	No No	Ind Ind	DIP DIP	3-29 3-29
	3656HG	±3500	±8000	160	125	0.5	10 ¹²	6	±0.15	±0.03	200 + (1000/G1)	100nA	30	No	Com	` DIP	3-29
	3656JG 3656KG	±3500 ±3500	±8000 ±8000	160 160	125 125	0.5 0.5	10 ¹² 10 ¹²	6 6	±0.1 ±0.1	±0.03 ±0.03	50 + (750/G ₁) 10 + (350/G ₁)	100nA 100nA	30 30	No No	Com Com	DIP DIP	3-29 3-29
						OPT	ICALL	Y CO	UPLED /	AMPLIFIE	RS						
Balanced Current Input	3650HG 3650JG 3650KG 3650MG	$\pm 2000 \\ \pm 2000 \\ \pm 2000 \\ \pm 2000 \\ \pm 2000$	$\pm 5000 \\ \pm 5000 \\ \pm 5000 \\ \pm 5000 \\ \pm 5000$	140 140 140 140	120 120 120 120	0.25 ⁽⁵⁾ 0.25 ⁽⁵⁾ 0.25 ⁽⁵⁾ 0.25 ⁽⁵⁾	10 ¹² 10 ¹² 10 ¹² 10 ¹² 10 ¹²	1.8 1.8 1.8 1.8	${\pm 0.2} {\pm 0.1} {\pm 0.05} {\pm 0.2}$	$\pm 0.05 \\ \pm 0.03 \\ \pm 0.02 \\ \pm 0.05$	25 10 5 100	10nA 10nA 10nA 10nA	15 15 15 15	Yes ⁽⁶⁾ Yes ⁽⁶⁾ Yes ⁽⁶⁾ Yes ⁽⁶⁾	Ind Ind Ind Ind	DIP DIP DIP DIP DIP	3-21 3-21 3-21 3-21 3-21
Balanced FET Input	3652HG 3652JG 3652MG	±2000 ±2000 ±2000	±5000 ±5000 ±5000	140 140 140	120 120 120	0.25 ⁽⁵⁾ 0.25 ⁽⁵⁾ 0.25 ⁽⁵⁾	10 ¹² 10 ¹² 10 ¹²	1.8 1.ຮ 1.8	±0.2 ±0.1 ±0.2	±0.05 ±0.05 ±0.05	50 25 100	50nA 50nA 50nA	15 15 15	Yes Yes Yes	Ind Ind Ind	DIP DIP DIP	3-21 3-21 3-21
Low Drift Wide Bandwidth	ISO100AP ISO100BP ISO100CP	750 750 750	2500 2500 2500	146 ⁽⁶⁾ 146 ⁽⁶⁾ 146 ⁽⁶⁾	108 ⁽⁶⁾ 108 ⁽⁶⁾ 108 ⁽⁶⁾	0.3 0.3 0.3	10 ¹² 10 ¹² 10 ¹²	2.5 2.5 2.5	0.4 0.1 0.07	0.1 0.01 0.02	10 ⁽⁶⁾ 4 ⁽⁶⁾ 4 ⁽⁶⁾	10nA 10nA 10nA	60 60 60	Yes Yes Yes	Ind Ind Ind	DIP DIP DIP	3-6 3-6 3-6
				CA	PACIT	OR COL	IPLED	, HER	METICA	LLY SEAL	ED AMP	LIFIERS	5				
1500VAC Isolation	ISO102 ISO102B	±2121 ±2121	±4000 ±4000	160 160	120 120	1.0 1.0	10 ¹⁴ 10 ¹⁴	6 6	0.075 0.025	0.04 0.02	±500 ±250	100μA 100μA	70 70	Yes Yes	Ind Ind	DIP DIP	68 68
3500VAC Isolation	ISO106 ISO106B	±4950 ±4950	±8000 ±8000	160 160	130 130	1.0 1.0	10 ¹⁴ 10 ¹⁴	6 6	0.075 0.025	0.04 0.02	±500 ±250	100μA 100μA	70 70	Yes Yes	Ind Ind	DIP DIP	68 68

NOTES: (1) Com = 0°C to +70°C, Ind = -25°C to +85°C. (2) Bipolar. (3) Isolation voltage tested at 2500V, rms, 60Hz; leakage current tested for 2μ A max at 240V, rms, 60Hz. (4) ±15V at ±15mA isolated power available to power external circuitry. (5) At 240V/60Hz. (6) R_{IN} = 10K, Gain = 100.

	•					ISOLA	TION	POWE	ER SUPPLIES(1)	·		_		
		lsoia Voltag	tion le (V)	inp	out	Leakage Current.			Rated Current.	Max Current. ⁽¹⁾	Sensitivity To			
Description		Contin- uous	Pulse/ Test	Volt (VE	age DC)	240VAC, 60Hz	Isola Imper	ation dance	Balanced Loads On All	Balanced Loads On All	To Input Voltage	Temp Range	Deal	D
Description	Model	Реак	Реак	Min	мах	(μΑ)	(12)	(pF)	Outputs (mA)	Outputs (mA)	Change (V/V)	(2)	Раскаде	Page
Single ±15V Output	700 700U 725 726	1500 2000 2121 4950	4200 5000 4000 8000	10 10 7 7	18 18 18 18	1 1 1.2 1.2	10 ¹⁰ 10 ¹⁰ 10 ¹² 10 ¹²	5 3 9 9	±3-30 ±3-30 ±15 ±15	±60 ±60 ±40 ±40	1.08 1.08 1.15 1.15	Ind Ind Ind Ind	Module Module DIP DIP	14-35 14-35 82 82
Dual ±15V Output	722	4950	8000	.5	16	1	10 ¹⁰	6	±3-40	±50	1.13	Ind	Module	14-41
Quad ±15V Output	710	1000	3100	10	18	1	10 ¹⁰	8	±9.5	±60	1.08	Ind	Module	14-37
Quad ±8V	724	1000	3000	5	16	1	10 ¹⁰	6	±3-16	±60	0.63	Ind	Module	14-45

NOTE: (1) See complete data sheet for full specifications, especially regarding output current capabilities. (2) Ind = -25°C to +85°C.

ANALOG CIRCUIT FUNCTIONS

MULTIPLIERS/DIVIDERS

You can select accuracy from 0.25% to 2% max from this complete line of integrated circuit multipliers. Most provide full fourquadrant multiplication. All are laser-trimmed for accuracy—no trim pots are needed to meet specified performance. These compact models bring the cost of high performance down to acceptable levels.

			MULTIPLIER	S/DIVIDERS					
Model	Transfer Function	Error at +25°C, max (%)	Temperature Coefficient (%/°C)	Feed- through (mV)	Offset Voltage (mV)	1% Band- width (kHz)	Temp Range	Package	Page
MPY100A* MPY100B MPY100C MPY100S	$[(X_1 - X_2)(Y_1 - Y_2)/10] + Z_2$	±2 ±1 ±0.5 ±0.5	0.017 0.008 0.008 0.025	100 30 30 30	50 10 7 7	70 70 70 70	Ind Ind Ind MIL	TO-100 TO-100 TO-100 TO-100	4-23 4-23 4-23 4-23
MPY534JH* MPY534JD MPY534KH MPY534KD MPY534LH MPY534LD MPY534SH MPY534SD MPY534TH MPY534TD	# # # # # # # #	$\begin{array}{c} \pm 1.0 \\ \pm 1.0 \\ \pm 0.5 \\ \pm 0.5 \\ \pm 0.25 \\ \pm 0.25 \\ \pm 1.0 \\ \pm 1.0 \\ \pm 0.5 \\ \pm 0.5 \end{array}$	0.022 0.022 0.015 0.015 0.008 0.008 0.02 0.02 0.02 0.01 0.01	0.3% 0.3% 0.15 0.15% 0.05% 0.05% 0.3% 0.3% 0.15%	5 5 2 2 2 2 5 5 2 2 2 2	3MHz 3MHz 3MHz 3MHz 3MHz 3MHz 3MHz 3MHz	Com Com Com Com Com MIL MIL MIL MIL	TO-100 DIP TO-100 DIP TO-100 DIP TO-100 DIP TO-100 DIP	4-31 4-31 4-31 4-31 4-31 4-31 4-31 4-31
MPY634AM* MPY634BM MPY634SM MPY634KP MPY634KU AD632A AD632B AD632B AD632S AD632T	* * * * * *	$\begin{array}{c} \pm 1.0 \\ \pm 0.5 \\ \pm 1.0 \\ \pm 2.0 \\ \pm 2.0 \\ \end{array}$ 1 0.5 1 0.5	0.022 0.015 0.02 0.03 0.03 0.02 0.01 0.02 0.01	0.3% 0.15% 0.3% 0.3% 0.3 0.3 0.15 0.3 0.15	5 2 5 25 25 30 15 30 15	10MHz 10MHz 10MHz 10MHz 10MHz 50 50 50 50 50	Ind Ind MIL Ind Com Ind Ind MIL MIL	TO-100 TO-100 TO-100 DIP SOIC TO-100, DIP	4-38 4-38 4-38 xxiii Advance Information

\$Same as model above.

NOTE: (1) Com = 0°C to +70°C, Ind = -25°C to +85°C, MIL = -55°C to +125°C.

*Available in 20-pin ceramic leadless chip carriers.

SPECIAL FUNCTIONS

This group of models offers many different functions that are the quick, easy way to solve a wide variety of analog computational

problems. Most are in integrated circuit packages and are laser-trimmed for excellent accuracy.

		SPECIAL F	UNCTIONS			
Function	Model	Description	Comments	Temp Range ⁽¹⁾	Package	Page
Multifunction Converter	4302	Y (Z/X) ^m This function may be used to multiply, divide, raise to powers, take roots and form sine and cosine functions.	Plastic package.	Ind	DIP	4-111
	LOG100JP	K Log (I ₁ /I ₂)	Optimized for log ratio of current inputs. Specified over six decades of input (1nA to 1mA), 55mV total error, 0.25% log conformity.	Com	DIP	4-15
Logarithmic Amplifier	4127JG 4127KP	K Log (I₁/I _{RE} ⊧)	A more versatile part which contains an internal reference and a current inverter. 1% and 0.5% accuracy.	Com Com	DIP DIP	4-90 4-90
$\sqrt{\frac{1}{T}\int_0^T E_{IN}^2(t) dt}$	4341	True rms-to-DC conversion based on a log-antilog occupational approach.	Some external trimming required. Lower cost in plastic package. Pin compatible with 4340.	Ind	DIP	4-119
Peak Detector	4085BM 4085KG 4085SM	These are analog memory circuits which hold and provide read-out of a DC voltage equal to peak value of a complex input waveform.	Digital mode control provides reset capability and allows selection of peaks within a desired time interval. May be used to make peak-to-peak detector.	Com Ind MIL	DIP DIP DIP	4-82 4-82 4-82

NOTE: (1) Com = 0°C to +70°C, Ind = -25°C to +85°C, MIL = -55°C to +125°C.

DIVIDERS

The use of a special log/antilog committed divider design overcomes the major problem encountered when trying to use a multiplier in a divider circuit. Outstanding accuracy is maintained even at very low denominator voltages.

				יוס	VIDERS				
Model	Transfer Function	Input Range	Accuracy, max D = 250mV (%)	Temperature Coefficient (%/°C)	0.5% Bandwidth (kHz)	Rated Output, min	Temp Range ⁽¹⁾	Package .	Page
DIV100HP DIV100JP DIV100KP	N/D 10 N/D 10 N/D 10	250mV to 10V	1.0 0.5 0.25	0.2 0.2 0.2	15 15 15	±10V, ±5mA ±10V, ±5mA ±10V, ±5mA	Ind Ind Ind	DIP DIP DIP	4-7 4-7 4-7

NOTE: (1) Ind = -25° C to $+85^{\circ}$ C.

FREQUENCY PRODUCTS

This group of products consists of precision oscillators and active

filters for both signal generation and attenuation. Both fixed frequency and user-selected frequency units are available.

		FREC	QUENCY PRODUCTS			
Function	Model	Description	Comments	Temp Range ⁽¹⁾	Package	Page
Oscillator	4423	Very-low cost in plastic package. Provides resistor programmable quadrature outputs (sine and cosine wave outputs simultaneously available).	Frequency range: 0.002Hz to 20kHz. Frequency stability: 0.01%/°C. Quadrature phase error: ±0.1%.	Com	DIP	4-123
Universal Active Filter	UAF41 UAF21	These filters provide a complex pole pair. Based on state variable approach, low-pass, high-pass and bandpass outputs are available.	Add only resistors to determine pole location (frequency and Q). Easily cascaded for complex filter responses.	Ind Ind	DIP DIP	4-68 4-60

NOTE: (1) Com = 0 to $+70^{\circ}$ C, Ind = -25° C to $+85^{\circ}$ C.

VOLTAGE REFERENCE

These products are precision voltage references which provide a + 10V

output. The output can be adjusted with minimal effect on drift or stability.

			VOLTAGE RE	FERENCE				
		Minimum	Maximum	Power S	upply	Temp		
Model	Output (V)	Output (mA)	Drift (ppm/°C)	(V)	(mA)	Range ⁽¹⁾	Package	Page
REF10KM* REF10JM REF10SM REF10RM	$+10.00 \pm 0.005$ +10.00 ± 0.005 +10.00 ± 0.005 +10.00 ± 0.005	10 10 10 10	1 2 3 6	+13.5/35 +13.5/35 +13.5/35 +13.5/35	4.5 4.5 4.5 4.5	Com Com MIL MIL	TO-99 TO-99 TO-99 TO-99 TO-99	4-46 4-46 4-46 4-46
REF101KM* REF101JM REF101SM REF101RM	$^{+10.00 \pm 0.005}_{+10.00 \pm 0.005}_{+10.00 \pm 0.005}_{+10.00 \pm 0.005}_{+10.00 \pm 0.005}$	10 10 10 10	1 2 3 6	+13.5/35 +13.5/35 +13.5/35 +13.5/35	4.5 4.5 4.5 4.5	Com Com MIL MIL	TO-99 TO-99 TO-99 TO-99 TO-99	4-52 4-52 4-52 4-52

*Available in 20-pin ceramic leadless chip carriers.

NOTE: (1) Com = 0 to $+70^{\circ}$ C, MIL = -55 to $+125^{\circ}$ C.

DATA CONVERSION AND DATA ACQUISITION

				ANAL	OG-TO-DIG	ITAL CONVE	RTERS			
Description	Model	Q ⁽¹⁾ Screen	Reso- lution (Bits)	Linearity Error (% FSR)	Conver- sion Time (µs)	Gain Tempco (ppm/°C)	Temp Range ⁽²⁾	Input Range ⁽³⁾ (V)	Package	Page
Very High Speed	ADC803	Q	12	±0.012	1.5	30	MIL, Ind	10, 20, U/B	Hermetic Metal DIP	5-102
Ultra High Speed	ADC600		12	±0.015	0.1	30	Com	1.25 B	Module	103
Serial Out	ADC804	Q	12	±0.012	17	30	MIL, Com, Ind	5, 10, 20 U/B	Hermetic Ceramic DIP	5-114
Low Cost, Micro- processor Interface	ADC574 ADC674	Q Q	12 12	±0.012 ±0.012	25 15	25 25	} MIL, Com, ind	10, 20 U/B 10, 20 U/B	Hermetic Ceramic DIP Hermetic Ceramic DIP	5-80 5-93
Low Cost	ADC80AG	Q QМ	12 12	±0.012 ± 0.012	25 25	30 30	Ind Ind	5, 10, 20 U/B 5, 10, 20 U/B	Hermetic Ceramic DIP Hermetic Ceramic DIP	5-56 87
High Temp	ADC10HT		12	±0.012	50	35	-55°C to +200°C	10, 20, U/B	Hermetic Ceramic DIP	5-3
High Speed, Low Cost	ADC84	Q	12	±0.012	10	30	Com	5, 10, 20 U/B	Hermetic Ceramic DIP	95
High Speed, Wide Temp	ADC85H ADC87H	a a	12 12	±0.012 ±0.012	10 10	30 30	Ind MIL	5, 10, 20 U/B 5, 10, 20 U/B	Hermetic Ceramic DIP Hermetic Ceramic DIP	95 95
High Resolution	ADC71 ADC72 ADC76	0 0 0	16 16 16	±0.003 ±0.003 ±0.003	50 50 17	15 15 15	Ind, Com Ind, Com Ind, Com	5, 10, 20 U/B 5, 10, 20 U/B 5, 10, 20 U/B	Ceramic DIP Hermetic Metal DIP Ceramic DIP	5-13 5-21 5-40
Audio	PCM75	r	16	0.006% THD	17	20	Com	5, 10, 20 U/B	Ceramic DIP	5-122

NOTES: (1) "Q" or "QM" indicates product available with screening for enhanced reliability. (2) Com = 0°C to +70°C, Ind = -25° C to +85°C, MIL = -55° C to +125°C. (3) U = Unipolar, B = Bipolar.

				DIG	ITAL-TO-A	NALOG CO	ONVERTERS			
Description	Model	Q ⁽¹⁾ Screen	Reso- lution (Bits)	Linearity Error (% FSR)	Settling Time (µs)	Gain Tempco (ppm/°C)	Temp Range ⁽²⁾	Output Range ⁽³⁾	Package	Page
Very High Resolution	DAC729	Q	18	±0.00075	5	15	Com	10V, 20V U/B	Hermetic Ceramic DIP	141
High Resolution	DAC700 DAC701 DAC702 DAC703	QM QM QM QM	16 16 16 16	±0.0015 ±0.0015 ±0.0015 ±0.0015	1 8 1 8	10 10 10 10	MIL, Com, Ind MIL, Com, Ind MIL, Com, Ind MIL, Com, Ind	−1mA 10V, 20V U/B ±1mA 10V, 20V U/B	Hermetic Ceramic DIP, Plastic DIP, LCC, Die	6-98 6-98 6-98 6-98
Bus Interface, High Resolution	DAC705 DAC706	QM QM	16 16	±0.003 ±0.003	8 1	15 15	MIL, Com, Ind MIL, Com, Ind	10V, 20V U/B ±1mA	Hermetic Ceramic DIP Hermetic Ceramic DIP	6-106 6-106
	DAC707	QM	16	±0.003	8	15	MIL, Com, Ind	10V, 20V U/B	Hermetic Ceramic DIP, Plastic DIP	6-106
	DAC708 DAC709	QM QM	16 16	±0.003 ±0.003	1 8	15 15	MIL, Com, Ind MIL, Com, Ind	2mA, ±1mA 10V, 20V U/B	Hermetic Ceramic DIP Hermetic Ceramic DIP	6-106 6-106
High Resolution	DAC70BH DAC71 DAC72BH	QM QM QM	16 16 16	±0.003 ±0.003 ±0.003	1, 10 1, 10 1, 10	20 20 20	Ind Com Ind	10V, 20V, 2mA U/B 10V, 20V, 2mA U/B 10V, 20V, 2mA U/B	Hermetic Ceramic DIP Hermetic Ceramic DIP Hermetic Ceramic DIP	6-20 6-28 6-20
Low Cost, High Resolution	DAC710 DAC711		16 16	±0.003 ±0.003	1 8	50 50	Com Com	±1mA 10V, 20V U/B	Hermetic Ceramic DIP, Plastic DIP	6-116 6-116
Low Cost, Bus Interface	DAC811	QM	12	±0.006	4	20	MIL, Com, Ind	10V, 20V U/B	Hermetic Ceramic DIP, Plastic DIP, SOIC, Die	6-130
CMOS	DAC7541	QM	12	±0.012	2	5	MIL, Com, Ind	Multiplying	Hermetic Ceramic DIP, Plastic DIP, SOIC, Die	159
CMOS, Bus Interface	DAC7545 DAC8012	QM QM	12 12	±0.012 ±0.012	2	5 5	MIL, Com, Ind MIL, Com, Ind	Multiplying Multiplying	Hermetic Ceramic DIP, Plastic DIP, SOIC, Die	167 174
Low Cost, Industry Standard	DAC80		12	±0.012	0.3, 3 typ	30	Com	10V, 20V, 2mA U/B	Hermetic Ceramic DIP, Plastic DIP, Die	6-64
	DAC85H	QM	12	±0.012	0.3, 3 typ	20	Ind	10V, 20V, 2mA U/B	Hermetic Ceramic DIP	6-85
Military Temp, Industry Standard	DAC87H	QM	12	±0.012	0.3, 3 typ	20	MIL	10V, 20V, 2mA U/B	Hermetic Ceramic DIP	6-85

This table continued on next page.

	DIGITAL-TO-ANALOG CONVERTERS (CONT)											
Description	Model	Q ⁽¹⁾ Screen	Reso- lution (Bits)	Linearity Error (% FSR)	Settling Time (µs)	Gain Tempco (ppm/°C)	Temp Range ⁽²⁾	Output Range ⁽³⁾	Package	Page		
Ultra High Speed ECL	DAC63	Q	12	±0.012	0.05	30	MIL, Ind	10mA, U/B	Ceramic DIP, Metal Can	6-12		
Uİtra High Speed TTL	DAC812	Q	12	±0.012	0.065	20	Ind	10mA, U/B	Ceramic DIP, Metal Can	6-138		

NOTES: (1) "Q" or "QM" indicates product available with screening for enhanced reliability. (2) MIL = -55°C to +125°C, Com = 0°C to +70°C, Ind = -25°C to +85°C. (3) U = Unipolar, B = Bipolar.

		VC	LTAGE-TO-FR	EQUENCY CONVER	TERS			
Description	Model ⁽¹⁾	Frequency Range (kHz)	V _{IN} Range (V)	Linearity, max (% of FSR)	Tempco, max (ppm of FSR/°C)	Temp Range ⁽²⁾	Package	Page
Low Cost, Monolithic	VFC32KP* VFC32BM, (Q) VFC32SM, (Q)	User- selected, 500kHz, max	Selected	±0.01 at 10kHz ±0.05 at 100kHz ±0.2 at 500kHz	75 typ ±100 ±150	Com Ind MIL	DIP TO-100 TO-100	10-3 10-3 10-3
Low Cost Complete	VFC42BP VFC42SM VFC52BP VFC52SM	0 to 10 0 to 10 0 to 100 0 to 100	0 to +10 0 to +10 0 to +10 0 to +10	± 0.01 ± 0.01 ± 0.05 ± 0.05	±100 ±100 ±150 ±150	Ind MIL Ind MIL	DIP DIP DIP DIP	10-11 10-11 10-11 10-11
Precision Monolithic	VFC62BG* VFC62BM VFC62SM VFC62CG VFC62CM	User- selected, 1MHz max	User- selected	±0.005 at 10kHz ±0.005 at 10kHz ±0.005 at 10kHz ±0.002 at 10kHz ±0.002 at 10kHz	±50 ±50 ±50 ±20 ±20	Ind Ind MIL Ind Ind	DIP TO-100 TO-100 DIP TO-100	10-17 10-17 10-17 10-17 10-17
	VFC320BG* VFC320BM VFC320SM VFC320CG VFC320CM	User- selected, 1MHz max	User- selected	±0.005 at 10kHz ±0.005 at 10kHz ±0.005 at 10kHz ±0.002 at 10kHz ±0.002 at 10kHz	±50 ±50 ±50 ±20 ±20	Ind Ind MIL Ind Ind	DIP TO-100 TO-100 DIP TO-100	10-40 10-40 10-40 10-40 10-40
Synchronized Monolithic	VFC100AG* VFC100BG VFC100SG	Clock Programmed, 2MHz max	0 to +10 0 to +10 0 to +10	0.025 at 100kHz 0.1 at 1MHz 0.025 at 100kHz	±100 ±50 ±100	Ind Ind MIL	DIP DIP DIP	10-25 10-25 10-25

NOTES: (1) "(Q)" indicates product also available with screening for increased reliability. (2) Com = 0 to $+70^{\circ}$ C, Ind = -25° C to $+85^{\circ}$ C, MIL = -55° C to $+125^{\circ}$ C.

*Available in 20-pin ceramic leadless chip carriers.

	SAMPLE/HOLD AMPLIFIERS												
Description	Model	Q ⁽¹⁾ Screen	Gain Error (% FSR)	Offset Error (mV)	Charge Offset (mV)	Amplifier Band- width, 3dB (MHz)	Hold Transient Settling (µs to 1mV)	Acqui- sition Time (µs) (0.01% FSR)	Aper- ture Time (ns)	Aper- ture Jitter (ns)	Input Range (Vp-p)	Package	Page
Ultra High Speed	SHC600	Q	0.1	5	10 max	70	0.015	0.05	8	0.009	2.5	Ceramic DIP	7-21
High Speed With Buffer	SHC803	Q	0.1	3	5 max	16	0.15	0.35	25	0.025	20	Hermetic Metal DIP	7-24
High Speed	SHC804	Q	0.1	3	5 max	16	0.15	0.35	25	0.025	20	Hermetic Metal DIP	7-24
Low Cost	SHC5320	Ø		0.5	1 typ	1.5	0.25	1.5	25	0.3	20	Hermetic Ceramic DIP	7-30
	SHC85 SHC298	Q	0.01 0.01	2 7	2 max 25 max		0.5 1.5	4.5 10	30 200	1.5 15	20 20	Hermetic Metal DIP TO-99	7-11 7-15

NOTE: (1) "Q" indicates product available with screening for enhanced reliability.

	MULTIPLEXERS											
Description	Model	Channels	Input Range (V)	On Resistance, max (Ω)	Crosstalk (% of Off Channel)	Settling Time (to 0.01%)	Package	Page				
Protected Inputs	MPC8S MPC4D MPC16S MPC8D	8 Single 4 Differential 16 Single 8 Differential	±15 ±15 ±15 ±15	1.8k 1.8k 1.8k 1.8k 1.8k	0.005 0.005 0.005 0.005	5μs 5μs 4μs 4μs	DIP DIP DIP DIP	9-3 9-3 9-10 9-10				
High Speed	MPC800KG MPC800SG MPC801KG MPC801SG	16 Single or 8 Differential 16 Single or 8 Differential 8 Single or 4 Differential 8 Single or 4 Differential	±15 ±15 ±15 ±15	750 750 750 750 750	0.004 0.004 0.004 0.004	800ns 800ns 800ns 800ns	DIP DIP DIP DIP	9-17 9-17 9-24 9-24				

MILITARY PRODUCTS

ANALOG-TO-DIGITAL CONVERTERS											
Model	Resolution (Bits)	Linearity, max (±LSB)	Conversion Time, max (µs)	Gain Drift, max (±ppm/°C)	Input Range (V)	Operating Temperature Range	Package	Page			
ADC87/883B ADC87 ADC87U/883B ADC87U ADC87U ADC87V/883B ADC87V	12 12 12 12 12 12 12	1/2 1/2 1/2 1/2 1/2 1/2	10 10 10 10 10 10	15 15 15 15 15 15	$\begin{array}{c} \pm 2.5, \pm 5, \pm 10, \\ 0 \text{ to } +5, \\ 0 \text{ to } +10 \end{array}$	MIL MIL MIL MIL MIL MIL	32-pin DIP 32-pin DIP 32-pin DIP 32-pin DIP 32-pin DIP 32-pin DIP	12-8 12-8 12-8 12-8 12-8 12-8 12-8			

	DIGITAL-TO-ANALOG CONVERTERS										
Model	Resolution (Bits)	, Linearity, max (±LSB)	Monotonicity (°C)	Gain Drift, max (±ppm/°C)	Settling Time, max	Output Ranges (V)	Operating Temperature Range	Package	Page		
DAC87-CBI-V/B DAC87-CBI-V DAC87U-CBI-V/B DAC87U-CBI-V DAC87-CBI-I/B DAC87-CBI-I DAC87U-CBI-I/B DAC87U-CBI-I	12 12 12 12 12 12 12 12 12	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	$\begin{array}{r} -55 \text{ to } +125 \\ -55 \text{ to } +125 \\ -25 \text{ to } +85 \\ -25 \text{ to } +85 \\ -55 \text{ to } +125 \\ -55 \text{ to } +125 \\ -55 \text{ to } +125 \\ -25 \text{ to } +85 \\ -25 \text{ to } +85 \end{array}$	20 20 20 20 20 20 20 20 20 20	7µsec 7µsec 7µsec 7µsec 400nsec 400nsec 400nsec 400nsec	±2.5, ±5, ±10, +5, +10 0 to 2mA, ±1mA	MIL MIL MIL MIL MIL MIL MIL	24-pin DIP 24-pin DIP 24-pin DIP 24-pin DIP 24-pin DIP 24-pin DIP 24-pin DIP 24-pin DIP	12-24 12-24 12-24 12-24 12-24 12-24 12-24 12-24 12-24		
DAC870V/883B DAC870V DAC870U/883B DAC870U DAC870VL/883B DAC870VL DAC870VL DAC870UL/883B DAC870UL	12 12 12 12 12 12 12 12 12 12	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	-55 to +125 -55 to +125 -25 to +85 -25 to +85 -55 to +125 -55 to +125 -25 to +85 -25 to +85	25 25 20 20 25 25 20 20	7µsес 7µsес 7µsес 7µsес 7µsес 7µsес 7µsес 7µsес	±2.5, ±5, ±10, 0 to +5, 0 to +10	MIL MIL MIL MIL MIL MIL MIL	24-pin DIP ceramic 28-term. leadless chip carrier	12-48 12-48 12-48 12-48 12-48 12-48 12-48 12-48 12-48		
DAC703VG/883B DAC703VG DAC703VL/883B DAC703VL/883B	16 16 16 16	±.003% FSR ±.003% FSR ±.003% FSR ±.003% FSR	-55 to +125 ⁽¹⁾ -55 to +125 ⁽¹⁾ -55 to +125 ⁽¹⁾ -55 to +125 ⁽¹⁾	20 20 20 20	8µsec 8µsec 8µsec 8µsec	±10 ±10 ±10 ±10	MIL MIL MIL MIL	24-pin DIP 24-pin DIP 28-term. LCC	191 191 191 191		

NOTE: (1) Monotonicity to 14-bit accuracy.

VOLTAGE-TO-FREQUENCY CONVERTERS												
Model	V _{IN} Range (V) Four Range, max (kHz) Linearity, max at 10kHz (% FSR) Full Scale Drift, max (ppm FSR/°C) Operating Temp-erature Range Package Page +10 200 +0.006 +100 et 10kHz MII TO-100 12-135											
VFC32WM/883B VFC32WM VFC32VM/883B VFC32VM VFC32UM/883B VFC32UM/883B VFC32UM	±10 ±10 ±10 ±10 ±10 ±10	200 200 200 200 200 200 200	$\begin{array}{c} \pm 0.006 \\ \pm 0.006 \\ \pm 0.01 \end{array}$	±100 at 10kHz ±100 at 10kHz -400, +150 at 200kHz -400, +150 at 200kHz ±150 at 10kHz ±150 at 10kHz	MIL MIL MIL MIL MIL MIL	TO-100 TO-100 TO-100 TO-100 TO-100 TO-100	12-135 12-135 12-135 12-135 12-135 12-135 12-135					

MULTIPLIERS											
Model	Accuracy at 25°C, max (±%)	Accuracy at 125° C, max (±%)	Feedthrough, max (±mV)	Output Offset, max (±mV)	Output, min (V, mA)	Operating Temperature Range	Package	Page			
4213WM/883B 4213WM 4213VM/883B 4213VM	1/2 1/2 1	4 4 4	50 50 100	25 25 30	$\pm 10, \pm 5$ $\pm 10, \pm 5$ $\pm 10, \pm 5$ $\pm 10, \pm 5$	MIL MIL MIL	TO-100 TO-100 TO-100	12-166 12-166 12-166			
4213UM/883B 4213UM	1	2 ⁽¹⁾ 2 ⁽¹⁾	100 100 100	50 50 50	±10, ±5 ±10, ±5 ±10, ±5	MIL MIL	TO-100 TO-100 TO-100	12-166 12-166			

NOTES: (1) At +85°C.

	OPERATIONAL AMPLIFIERS											
Description	Model	Offset	Voltage Drift, max	Bias Current,	Bandwidth Unity Gain,	Slew Rate, min	ts ±0.01%	Compen-	Output, min	Opera- ting Temp. Pango	Packago	Page
Wideband	OPA600VM/883B	111ax (±111V) 2	20	-100pA		400	125	external	±10, ±200	MIL)	12-94
	OPA600VM OPA600UM/883B OPA600UM	2 5 5	20 80 80	-100pA -100pA -100pA	5000, ⁽¹⁾ A = 1000	400 400 400	125 150 150	external external external	±10, ±200 ±10, ±200 ±10, ±200	MIL MIL MIL	DIP	12-94 12-94 12-94
General Purpose Bipolar	3500R/883B 3500U/883B	5 5	20 20 ⁽²⁾	±30 ±30	1	0.6 0.6		internal internal	±10, ±10 ±10, ±10	MIL MIL	TO-99 TO-99	12-147 12-147
Precision Bipolar	3510VM/883B	0.12	2	±25	0.25	0.5	-	internal	±10, ±10	MIL	TO-99	12-158
Low Drift, Low Bias	OPA105WM/883B OPA105WM OPA105VM/883B OPA105VM OPA105VM OPA105UM/883B OPA105UM	0.250 0.250 0.250 0.250 0.250 0.250 0.250	2 2 5 15 ⁽²⁾ 15 ⁽²⁾	-1pA -1pA -1pA -1pA -1pA -1pA -1pA	1 1 1 1 1	0.9 0.9 0.9 0.9 0.9 0.9		internal internal internal internal internal internal	$\begin{array}{c} \pm 10, \pm 10 \\ \pm 10, \pm 10 \end{array}$	MIL MIL MIL MIL MIL MIL	TO-99 TO-99 TO-99 TO-99 TO-99 TO-99	12-74 12-74 1 <u>2-74</u> 12-74 12-74 12-74
Ultra Low Bias Current	OPA106WM/883B OPA106WM OPA106VM/883B OPA106VM OPA106UM/883B OPA106UM	0.250 0.250 0.250 0.250 0.250 0.250 0.250	5 5 10 20 ⁽²⁾ 20 ⁽²⁾	-100fA -100fA -150fA -150fA -300fA -300fA	1 1 1 1 1	1.2 1.2 1.2 1.2 1.2 1.2 1.2	11-11-1	internal internal internal internal internal internal	$\pm 10, \pm 5$ $\pm 10, \pm 5$	MIL MIL MIL MIL MIL MIL	TO-99 TO-99 TO-99 TO-99 TO-99 TO-99 TO-99	12-84 12-84 12-84 12-84 12-84 12-84
Low Drift, Low Bias, Low Noise	OPA111VM/883B OPA111UM	0.500 0.500	10 10	±2pA ±2pA	2 2	1 1	11	internal Internal	±10, ±5 ±10, ±5	MIL MIL	TO-99 TO-99	210 210
Power	OPA501VM/883B OPA501VM OPA501UM/883B OPA501UM	5 5 10 10	40 40 65 65	±20 ±20 ±40 ±40	1 1 1 1	1.35 1.35 1.35 1.35		internal internal internal internal	±26, ±10A ±26, ±10A ±20, ±10A ±20, ±10A	MIL MIL MIL MIL	TO-3 TO-3 TO-3 TO-3	222 222 222 222 222
	OPA8780VM/883B OPA8780VM OPA8780UM/883B OPA8780UM	10 10 10 10	30 30 50 50	-0.05 -0.05 -0.05 -0.05	5 5 5 5	15 15 15 15		internal internal internal internal	$\pm 30, \pm 60$ $\pm 30, \pm 60$ $\pm 30, \pm 60$ $\pm 30, \pm 60$	MIL MIL MIL MIL	TO-3 TO-3 TO-3 TO-3	12-1110 12-1110 12-1110 12-1110

NOTES: (1) Gain-bandwidth product. (2) -25°C to +85°C.

	INSTRUMENTATION AMPLIFIERS										
						Input Pa	rameters				
Description	Model	Gain Range [®]	Gain Accuracy, G = 100, At 25°C, max (%FS)	Gain Drift, G = 100, typ (ppm/°C)	Non- linearity G = 100 max	CMR, DC to 60Hz, G = 10, min, 1kΩ Unbal. (dB)	Offset Voltage vs Temp, G = 1000, max (µV/°C)	Dynamic Response, G = 100, ±3dB BW (kHz)	Temp Range	Package	Page
Very High Accuracy	INA101VG/883B INA101VG INA101VM/883B INA101VM	1-1000 1-1000 1-1000 1-1000	0.10 0.10 0.10 0.10	22 22 22 22 22	0.007 0.007 0.007 0.007	96 96 96 96	1.75 1.75 1.75 1.75	25 25 25 25	MIL MIL MIL MIL	DIP DIP TO-100 TO-100	200 200 200 200
	INA258WG/883B INA258WG INA258VG INA258VG/883B INA258UG/883B INA258UC/883B INA258UL/883B INA258VL/883B INA258VL/883B INA258VL/883B INA258UL/883B	1-1000 1-1000 1-1000 1-1000 1-1000 1-1000 1-1000 1-1000 1-1000 1-1000 1-1000	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	22 22 22 22 22 22 22 22 22 22 22 22 22	0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007	96 96 96 96 96 96 96 96 96 96 96 96	0.5 0.5 1.0 3.0 3.0 0.5 1.0 1.0 3.0 3.0 3.0	25 25 25 25 25 25 25 25 25 25 25 25 25 2	MIL MIL MIL MIL MIL MIL MIL MIL MIL	DIP DIP DIP DIP DIP DIP 20- terminal leadless chip carrier	12-61 12-61 12-61 12-61 12-61 12-61 12-61 12-61 12-61 12-61 12-61 12-61

NOTES: (1) Set with external resistor.

MODULAR POWER SUPPLIES

DC/DC CONVERTERS										
Description	Model	Input (VDC)	Output	Isolation (VDC)	Leakage Current, max (µA)	Package	Page			
Unregulated	PWR1xx	5 to 48	450mW	1000	5	Module	14-9			
Unregulated	PWR2xx	5 to 48	1.5W	1000	5	Module	14-11			
Unregulated	PWR3xx	5 to 48	2W, dual channel	. 1000	5	Module	14-13			
Unregulated	PWR4xx	5 to 48	3W	1000	- 5	Module	14-15			
Unregulated	PWR5xx	5 to 48	4Ŵ	750	15	Module	14-17			
Regulated	PWR6xx	5 to 48	2W	1000	20	Module	14-19			
Regulated	PWR7xx	5 to 48	5W	1000	25	Module	237			
Unregulated	PWR8xx	5 to 48	5W, triple output	1000	5	Module	14-25			
Unregulated	PWR70	10 to 18	±15VDC, ±15mA	2000	2	Module	14-27			
Unregulated	PWR71	10 to 18	±15VDC, ±25mA	1000	3	Module	14-29			
Unregulated	PWR72	5 to 22	±15VDC, ±100mA	1000	3 .	Module	14-31			
Unregulated	PWR74	10 to 20	\pm 15VDC, \pm 25mA	1500	2	Module	14-33			
Unregulated	PWR1017	10 to 18	±15VDC, ±25mA,	1000	3	Module	241			
Regulated	PWR5038	4.75 to 5.25	2 75W, triple output	500	5	Module	245			
Regulated	PWR5104	4.75 to 5.25	+12VDC. +370mA	750	15	Module	247			
Regulated	PWR5105	4.75 to 5.25	±15VDC, ±300mA	750	15	Module	247			

NOTES: (1) Models 700 and 700M have separate internal input and output shields. Models 700U and 700UM have no internal shields. Models 700M and 700UM are similar to models 700 and 700U, but in addition, they are 100% screened to patient-connected circuit requirements for the leakage current (par. 27.5) and withstand voltage (par. 31.11) of UL544. Additional per-unit charge for 700M or 700UM. (2) Model 710 provides four channels (sets) of isolated outputs.

RELIABILITY

All Burr-Brown PWR Series DC/DC converters are manufactured using stringent in-process controls and quality inspections. The customer may also choose one of two additional levels of screening to meet specific requirements. The advanced reliability program is designed to reduce infant mortality, system rework, field failures, and equipment downtime.

Standard Manufacturing Process	/G-Level Screening	/T-Level II Screening				
Incoming Material Inspection	I Standard Manufacturing Process	Standard Manufacturing Process				
Component Attachment	I Burn-in, MIL-STD-883, 	Stabilization Bake, MIL-STD-883, method 1008, 24 hours, $T_A = +125^{\circ}C$				
100% Visual Inspection	Final Electrical Test	Temperature Cycling, MIL-STD-883, method 1010. Condition B (-55°C to +125°C)				
100% Electrical Test	QA Lot Acceptance Testing, AQL = 0.5					
Seal		Burn-in, MIL-STD-883, method 1015, 160 hours, $T_A = +125^{\circ}C$				
100% Final Electrical Test		Final Electrical Test				
External Visual		QA Lot Acceptance Testing, AQL = 0.25				
QA Lot Acceptance Testing, $AQL = 1.0$						

BURR-BROWN—A WORLDWIDE LEADER IN MICROCIRCUITS AND MICROPROCESSOR-BASED SYSTEMS AND SUBSYSTEMS

Burr-Brown first introduced VMEbus products in 1983 and now manufactures a comprehensive line of specialized products for the industrial instrumentation, control, and automation markets. Utilizing Burr-Brown's high performance data conversion products (e.g. ADC803), Burr-Brown is able to offer products which set new performance standards in the VMEbus market. When these are operated with the digital signal processing boards, a wide range of applications can be addressed.

With over ten years experience in the design and manufacture of board-level products, you can rely on the market leaders for VMEbus data acquisition boards.

THE SYSTEMS APPROACH

A systems approach has been taken in the design of the bus interface. This ensures software compatibility between the boards as well as giving the system designer a wide range of VMEbus features.

- Configuration A24, D16, DTB slave
- Address block selectable within 16M bytes memory space

- Short addressing available if required (64 bytes)
- 150ns response to CPU interrogation
- 7-level interrupt priority selection
- Full interrupt vector selection—8 lines (256 options)
- Double Eurocard format, 160mm × 233mm

SUPPORT DOCUMENTATION

Each VMEbus board is fully supported with a comprehensive operating manual. In addition to detailed set-up and operating instructions, the manual includes schematics and assembly language software written for the 68000 processor.

TOP-QUALITY VMEbus PRODUCTS FROM BURR-BROWN

In addition to the full Q.C. inspection of incoming components, the boards are subjected to a comprehensive temperature-cycled burn-in (8 cycles between -20° C and $+50^{\circ}$ C).

Exhaustive tests before and after burn-in ensure that any problems are identified before the product leaves the factory.

				VMEbus	3 ANALOG I/C) BOARDS	
		Input			Output		
	Resolution	Number of	Sampling	Resolution	Number of	Sampling	-
Product	(Bits)	Channels	Rate (kHz)	(Bits)	Channels	Rate (kHz)	Description
MPV901	12	32SE/16DIF	11	-			General purpose, analog input.
MPV901A	12	32SE/16DIF	11 1	12	. 2	200	As MPV901, with analog output.
MPV901P	12	32SE/16DIF	1 11	12	2	200	As MPV901A, with software-programmable gain.
MPV904	- '	l - '	_ '	12	16	285Hz	Low-cost analog output (voltage output).
MPV905	l - '	'	1 - 1	12	8	285Hz	Current output.
MPV906	12	64SE/32DIF	33	-	-	-	High-density analog input, optically isolated, optional digital I/O
ACX906	l — '	1 - 1	_ '	_ '	1 - !	1 -	Digital I/O module for MPV906/907, 32 I/O lines.
MPV907	12	32SE/16DIF	33	1 – '	!	1 -	Low-cost analog input, optional digital I/O.
MPV911	16	8SE	45	'	1 – 1	1 -	High resolution analog input, with on-board data buffer.
MPV950S	12	16SE	330	1	_ '	- 1	High speed analog input.
MPV950D	12	8SE + 8DIF	330	_ '	_ !	1 -	As MPV950S, with 8 user-configurable input amplifiers.
MPV952	12	8SE	330	1 '	_ !	1 -	High speed analog input, with on-board data buffer.
MPV954	i '	_ '	_ '	12	8	858	High speed analog output, with on-board data buffer.
MPV940	. –	-	-	-	-	-	Intelligent I/O controller—6800 CPU, optically isolated I/O expansion interface.
ACX945A	12	16SE/8DIF	33	1 – '	1 – 1	1 -	Analog input module for MPV940.
ACX945B	12	16SE/8DIF	33	12	4	500	As ACX945A, with 12-bit analog output.
ACX945C	12	16SE/8DIF	33	16	4	83	As ACX945A, with 16-bit analog output.
ACX946	1 – '	1 – 1	- '	- '	1 - !	1 -	Digital I/O module for MPV940, 32 programmable I/O
1 '	1	1 1	1 '	1	1 !	1	lines.

VMEbus DIGITAL I/O										
Product	Number of Channels	Туре	Description							
MPV902	32	Relay contact output	28VDC at 0.5A, 10W max output rating.							
MPV910	32	Optical isolated input								
MPV910NS	32	Optical isolated input	As MPV910 without power supply.							
MPV910LV	32	Optical isolated input	As MPV910NS for low voltage inputs.							
MPV930	48	TTL level I/O	Lines programmable as input or output in groups of eight.							

•	VMEbus DIGITAL SIGNAL PROCESSING BOARDS								
Product	Description								
SPV100	A VMEbus board for general purpose DSP, based on the Texas Instruments TMS32010. Swinging buffer data memory for pipelining of data input/output and processing. Program ROM and RAM for user programming.								
FFT100 ⁽¹⁾	Fast Fourier Transform firmware for the SPV100. FFT-1 64 points, -3 256 points, -4 512 point, -5 1024 point transform.								
FIL100 ⁽¹⁾	Digital filter firmware for the SPV100. From 5 to 89 taps.								
COR100 ⁽¹⁾	Correlation firmware for the SPV100. Auto-and cross-correlation.								
ASM310V	TMS32010 cross-assembler. Runs under VERSAdos.								
MON100V	Monitor/debugger software for SPV100. Runs under VERSAdos.								
APS100V ⁽¹⁾	DSP applications software library for SPV100. Includes vector operations, correlation, trigonometric functions, interpolation and decimation, filtering, windowing and FFTs. Routines are called from FORTRAN running under VERSAdos.								
SPV120	Second generation DSP board based on TMS32020. Two RS-232 ports, auxiliary input and output ports, DMA controller for faster I/O concurrent with processing. Program RAM, bipolar ROM and EPROM. Supplied with EPROM-based debug monitor.								
ACX120A	Add-on program RAM module for SPV120—16k × 16 bits.								
ACX120B	Add-on program RAM module for SPV120–80k × 16 bits.								
ASM320V	TMS32020 cross-assembler for SPV120. Runs under VERSAdos.								
MON120V	Monitor/debugger software for SPV120. Runs under VERSAdos.								
APS120V ⁽¹⁾	DSP applications software library for SPV120. Includes vector operations, correlation, trigonometric functions, interpolation and decimation, filtering, windowing and FFTs. All routines are callable from FORTRAN running under VERSAdos.								
MPV960	Analog input and DSP. Four channels of simultaneously sampled analog input (at 100kHz sampling rate) plus TMS32010 processor. Applications in digital filtering, signal averaging, etc.								
ACX960	Add-on program RAM/ROM module for MPV960. Includes debug monitor and basic data acquisition routines.								
MPV990	Anti-aliasing filter board. Four independent programmable filters, with user-configurable front ends. Ideal for use with MPV960.								

NOTE: (1) This software is also available as source code. To order, add S suffix to product code; e.g., APS100VS.

SOFTWARE DRIVERS FOR VMEbus BOARDS								
Product	Description							
PSOA PSOA-P PSOB PSOB-P VDR100 VDR120	pSOS drivers for MPV901, MPV904, MPV905, MPV950, MPV952. Distributed in UNIX format 5-1/4" floppy disks. As PSOA, but distributed in MS-DOS format disks. pSOS drivers for MPV960, SPV100. Distributed in UNIX format 5-1/4" floppy disks. As PSOB, but distributed in MS-DOS format disks. VERSAdos driver for SPV100. VERSAdos driver for SPV100.							

SURFACE MOUNT MICROCIRCUITS

Burr-Brown is the first manufacturer to offer high performance microcircuits in a wide variety of surface mount packages. These packages permit denser layouts on one or both sides of a PC board, often saving 50% or more of the space normally required for these analog circuits. Many of these miniature devices also fit inside transducer cavities and may be used on modules or even hybrid circuits. Packages currently available are:

• SOIC—Plastic small-outline package, gull-wing leads on 1.27mm centers. Example: SOIC-8 has 8 leads.

• LCC—Ceramic leadless chip carrier, terminals on 1.27mm centers. Example: LCC-20 has 20 terminals.

	SURFACE M	OUNT DEVICES			
Device Type	Description	Model	Package	Dimensions (mm)	Product Data Sheet
Analog Multipliers/Dividers	Low Cost Precision	MPY100L 4213L	LCC-20 LCC-20	$\begin{array}{c} 9.0 \times 9.0 \\ 9.0 \times 9.0 \end{array}$	LCC Short Form LCC Short Form
Current Transmitters/Converters	Two-Wire, 4-20mA Voltage-to-Current Converters	XTR101L XTR101U XTR110L XTR110U	LCC-20 SOIC-16 LCC-20 SOIC-16	$\begin{array}{c} 9.0 \times 9.0 \\ 10.4 \times 7.5 \\ 9.0 \times 9.0 \\ 10.4 \times 7.5 \end{array}$	LCC Short Form PDS-734 LCC Short Form PDS-731
Digital-to-Analog Converters	16-Bit, Monolithic 16-Bit, Monolithic, Military 12-Bit, μP-Compatible 12-Bit, Monolithic 12-Bit, MiL Temp 12-Bit, MiLary 12-Bit, CMOS 16-Bit, Digital Audio	DAC700-703BL DAC703L DAC811U DAC850L DAC851L DAC870L DAC7541AU PCM55	LCC-28 LCC-28 LCC-28 LCC-28 LCC-28 LCC-28 SOIC-18 SOIC-24	$\begin{array}{c} 11.4 \times 11.4 \\ 11.6 \times 7.5 \\ 15.8 \times 9.0 \end{array}$	PDS-494 PDS-751 PDS-503 PDS-453 PDS-453 PDS-511 PDS-639 PDS-619
Instrumentation Amplifiers	Precision, Monolithic Low Power Unity Gain, Differential Fast, FET Input Precision, Military	INA101L INA101U INA102L INA105L INA105U INA110L INA110U INA258L	LCC-20 SOIC-16 LCC-20 LCC-20 SOIC-8 LCC-20 SOIC-16 LCC-20	9.0×9.0 10.4×7.5 9.0×9.0 9.0×9.0 4.9×3.9 9.0×9.0 10.4×7.5 8.9×8.9	LCC Short Form PDS-730 LCC Short Form PDS-693 LCC Short Form PDS-733 PDS-501
Operational Amplifiers	Electrometer Ultra-Low Noise Precision, <i>Difet</i> ® Low Cost, <i>Difet</i> Electrometer Grade High Speed, Quad Precision, Dual	AD515L OPA27/37L OPA27/37U OPA111L OPA121L OPA121L OPA128L OPA404L OPA2111L	LCC-20 LCC-20 SOIC-8 LCC-20 LCC-20 SOIC-8 LCC-20 LCC-20 LCC-20	$\begin{array}{c} 9.0 \times 9.0 \\ 9.0 \times 9.0 \\ 4.9 \times 3.9 \\ 9.0 \times 9.0 \\ 9.0 \times 9.0 \\ 4.9 \times 4.9 \\ 9.0 \times 9.0 \\ 9.0 \times 9.0 \\ 9.0 \times 9.0 \\ 9.0 \times 9.0 \end{array}$	LCC Short Form LCC Short Form PDS-691 LCC Short Form LCC Short Form PDS-692 LCC Short Form LCC Short Form LCC Short Form
Precision Analog Multipliers	Low Cost, Monolithic Wide Bandwidth	MPY534L MPY634L	LCC-20 LCC-20	$\begin{array}{c} 9.0 \times 9.0 \\ 9.0 \times 9.0 \end{array}$	LCC Short Form LCC Short Form
Precision Voltage References	Ultra-Stable Low Drift	REF10L REF101L	LCC-20 LCC-20	$\begin{array}{c} 9.0 \times 9.0 \\ 9.0 \times 9.0 \end{array}$	LCC Short Form LCC Short Form
Voltage-to-Frequency and Frequency-to-Voltage Converters	Low Cost, Monolithic Precision, Monolithic Synchronized Precision, Monolithic	VFC32L VFC62L VFC100L VFC320L	LCC-20 LCC-20 LCC-20 LCC-20	9.0×9.0 9.0×9.0 9.0×9.0 9.0×9.0 9.0×9.0	LCC Short Form LCC Short Form LCC Short Form LCC Short Form
Data Acquisition System	12-Bit, 16-Channel	SDM862/863L	LCC-68	24.3×24.3	PDS-686

Difet ® Burr-Brown Corp.

HIGH PERFORMANCE CHIPS

HIGH PERFORMANCE DICE BACKED BY BURR-BROWN'S TRADITION OF QUALITY

Many of Burr-Brown's high-performance monolithic products are available in die form, including D/A converters, precision operational and instrumentation amplifiers, current transmitters, voltage/frequency converters, and many more.

All Burr-Brown dice products are the same as those used in our high quality, high performance monolithic and hybrid devices and are proven in demanding applications throughout the world. The dice are manufactured and tested at our Tucson Microtechnology facility using the most advanced equipment and methods available, assuring total control of quality and reliability for every product. The state-of-the-art performance achieved by these precision monolithic products reflects Burr-Brown's unmatched technical capabilities in low noise processing, high stability nichrome thinfilm resistors, active laser trimming, dielectric isolation, and patented circuit design.

At Burr-Brown concern for quality is a fundamental part of wafer processing. Dice are 100% visually inspected according to MIL-STD-883, Method 2010, Condition B. All wafers are 100% probe tested to specified electrical test limits.

Our newest products are described below. See also our current Integrated Circuits Data Book for additional product information.

HIGH PERFORMANCE CHIPS											
		Die Size		Product Data Sheet							
Description	Model	(mils)	Key Specifications*	Die	Packaged						
Unity-Gain Differential Amplifier	INA105AD	83×63	±0.01% max DC Gain Error	PDS-703	PDS-617						
Precision Instrumentation Amplifier	INA110AD	139 × 89	±0.01%FS max Nonlinearity	PDS-702	PDS-645						
Precision Analog Multiplier	MPY534AD	100 × 92	$V_{OUT} = A \left[\frac{(X_1 - X_2)(Y_1 - Y_2)}{SF} - (Z_1 - Z_2) \right]$	PDS-711	PDS-614						
Difet	OPA128JD	96 × 71	±40pA max Bias Current	PDS-704	PDS-653						
High Speed <i>Difet</i> Operational Amplifier	OPA606KD	65 × 54	±2mV max Offset Voltage	PDS-660	PDS-598						
Precision Two-Wire Transmitter	XTR101AD	150 imes 105	4-20mA Operating Range		PDS-708						
Voltage-to-Current Converter/Transmitter	XTR110AD	109 × 78	$\pm 0.025\%$ of Span max Nonlinearity		PDS-605A						

*These specifications are probed at the wafer level. Consult the product data sheet for the packaged device for complete characterization. *Difet* [®] Burr-Brown Corp. . .

OPA404

NEW PACKAGE NOW AVAILABLE

Quad High-Speed Precision *Difet*[®] OPERATIONAL AMPLIFIER

FEATURES

- ◎ WIDE BANDWIDTH: 6.4MHz
- HIGH SLEW RATE: 35V/μs
- LOW OFFSET: ±750µV max
- LOW BIAS CURRENT: ±4pA max
- FAST SETTLING: 1.5µs to 0.01%
- STANDARD QUAD PINOUT

APPLICATIONS

- PRECISION INSTRUMENTATION
- OPTOELECTRONICS
- SONAR, ULTRASOUND
- MEDICAL EQUIPMENT
- DETECTOR ARRAYS

DESCRIPTION

The OPA404 is a high performance monolithic **Difet**[®] (dielectrically-isolated FET) quad operational amplifier. It offers an unusual combination of very-low bias current together with wide bandwidth and fast slew rate.

Noise, bias current, voltage offset, drift, and speed are superior to BIFET[®] amplifiers.

Laser trimming of thin-film resistors gives very-low offset and drift—the best available in a quad FET op amp.

The OPA404's input cascode design allows high precision input specifications and uncompromised high-speed performance.

Standard quad op amp pin configuration allows upgrading of existing designs to higher performance levels. The OPA404 is unity-gain stable.

Difet ® Burr-Brown Corp., BIFET® National Semiconductor Corp.

OPA404 Simplified Circuit (Each Amplifier)

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

PDS-677A (Abbreviated)

1

SPECIFICATIONS

ELECTRICAL

At $V_{cc} = \pm 15$ VDC and $T_A = +25$ °C unless otherwise noted.

		0	PA404AG,	KP		OPA404BC	ì -		OPA404SG	1	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
INPUT											
$\begin{array}{l} \label{eq:VOISE}^{(1)} \\ \mbox{Voltage:} f_{0} = 100 \text{Hz} \\ f_{0} = 100 \text{Hz} \\ f_{0} = 10 \text{Hz} \\ f_{0} = 10 \text{Hz} \\ f_{0} = 0.1 \text{Hz} \\ f_{0} = 0.1 \text{Hz} \\ to 10 \text{Hz} \\ \mbox{Current:} f_{0} = 0.1 \text{Hz} \\ to 10 \text{Hz} \\ f_{0} = 0.1 \text{Hz} \\ to 20 \text{Hz} \\ \end{array}$			32 19 15 12 1.4 0.95 12 0.6			* * * * *			* * * * *		nV/\sqrt{Hz} nV/\sqrt{Hz} nV/\sqrt{Hz} nV/\sqrt{Hz} μV , rms μV , p-p fA, p-p fA/ \sqrt{Hz}
OFFSET VOLTAGE Input Offset Voltage KP Average Drift KP Supply Rejection KP Channel Separation	$V_{CM} = 0VDC$ $T_A = T_{MIN} \text{ to } T_{MAX}$ $\pm V_{CC} = 12V \text{ to } 18V$ $100Hz, R_L = 2k\Omega$	80 76	±260 ±750 ±3 ±5 100 100 10 10 10 125	±1mV ±2.5mV 100 200	86	*	±750	•	*	*	μV μV μV/°C μV/°C dB dB μV/V μV/V dB
BIAS CURRENT Input Bias Current KP	V _{CM} = 0VDC		±1 ±1	±8 ±12		•	±4		*	*	pA pA
OFFSET CURRENT Input Offset Current KP	V _{CM} = 0VDC		0.5 0.5	8 12		*	4		-*	*	рА pA
IMPEDANCE Differential Common-Mode			10 ¹³ 1 10 ¹⁴ 3			*			*		Ω∥pF Ω∥pF
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection KP	$V_{IN} = \pm 10 VDC$	±10.5 88 84	+13, -11 100 100		* 92	*	-	*	*		V dB dB
OPEN-LOOP GAIN, DC	•										
Open-Loop Voltage Gain	$R_L \ge 2k\Omega$	88	100		92	.*		*	*		dB
FREQUENCY RESPONSE											
Gain Bandwidth Full Power Response Slew Rate Settling Time: 0.1% 0.01%	$\label{eq:Gain} \begin{split} & \text{Gain} = 100 \\ & 20V \text{ p-p}, $	4 24	6.4 570 35 0.6 1.5		5 28	*		*.	* * *	•	MHz kHz V/μs μs μs
RATED OUTPUT									• •		
Voltage Output Current Output Output Resistance Load Capacitance Stability Short Circuit Current	$\label{eq:RL} \begin{split} R_L &= 2k\Omega \\ V_0 &= \pm 10 \text{VDC} \\ 1\text{MHz}, \text{ open loop} \\ \text{Gain} &= +1 \end{split}$	±11.5 ±5 ±10	+13.2, -13 ±10 80 1000 ±18	.8 ±20	*	* * *	*	*	* * *	*	V mA Ω pF mA
POWER SUPPLY			,								
Rated Voltage Voltage Range, Derated Performance Current, Quiescent	I _o = 0mADC	±5	±15 9	±18 10		*	*	*	*	*	VDC VDC mA
Cassification	Ambiest		1	105		r			r	1105	
Specification KP KP Storage Ø Junction-Ambient KP	Ambient temp. Ambient temp. Ambient temp.	25 0 55 25 65	100 120	+85 +70 +125 +85 +150	*		*	-55		+125 * *	×,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

*Specification same as OPA404AG. NOTES: (1) Noise testing available—inquire.

ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)

At $V_{cc} = \pm 15$ VDC and $T_A = T_{MIN}$ to T_{MAX} unless otherwise noted.

		OPA404AG, KP		OPA404BG			OPA404SG				
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
TEMPERATURE RANGE											
Specification Range KP	Ambient temp.	25 0		+85 +70	•		•	-55		+125	ာင္ သိ
INPUT											
OFFSET VOLTAGE Input Offset Voltage KP Average Drift KP Supply Rejection	V _{CM} = 0VDC	75	±450 ±1 ±3 ±5 96 16	2mV ±3.5	80	* * *	±1.5mV 100	70	±550 • 93 22	±2.5mV 316	μV mV μV/°C μv/°C dB μV/V
BIAS CURRENT Input Bias Current	V _{CM} = 0VDC		±32	±200		•	±100		±500	±5nA	pА
OFFSET CURRENT Input Offset Current	V _{CM} = 0VDC		17	100		•	50		260	2.5nA	pА
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection KP	$V_{IN} = \pm 10 VDC$	±10.2 82 80	+12.7,-10.6 99 99		* 86	*		±10 80	+12.6,-10.5 88		∨ dB dB
OPEN-LOOP GAIN, DC		•									
Open-Loop Voltage Gain	$R_L \geq 2k\Omega$	82	94		86	•		80	88		dB
RATED OUTPUT											
Voltage Output Current Output Short Circuit Current	$R_{L} = 2k\Omega$ $V_{o} = \pm 10VDC$ $V_{o} = 0VDC$	±11.5 ±5 ±5	+12.9,-13.8 ±9 ±12	±30	* * *	* * *	•	±11 * ±8	+12.7,-13.8 ±8 ±10	*	V mA mA
POWER SUPPLY											
Current, Quiescent	Io = 0mADC		9.3	10.5		*	+		9.4	11	mA

*Specification same as OPA404AG.

ORDERING INFORMATION

Basic model number Performance grade $K = 0^{\circ}C \text{ to } +70^{\circ}C$ $A, B = -25^{\circ}C \text{ to } +85^{\circ}C$ $S = -55^{\circ}C \text{ to } +125^{\circ}C$	
Package code — G = 14-pin ceramic DIP P = 14-pin plastic DIP	

NOTE:

Refer to complete data sheet PDS-677 for complete typical curves and applications information.

ABSOLUTE MAXIMUM RATINGS

Supply $\pm 18VDC$ Internal Power Dissipation ⁽¹⁾ 1000mW Differential Input Voltage ⁽²⁾ $\pm 36VDC$ Input Voltage Range ⁽²⁾ $\pm 18VDC$ Storage Temperature Range $P = -40/+85^{\circ}C$, $G = -65/+150^{\circ}C$ Operating Temperature (soldering, 10 seconds) $+300^{\circ}C$ Contract Store Circuit Post $-300^{\circ}C$	
Cutput Short Circuit Duration ³⁰ Continuous Junction Temperature	

NOTES:

- (1) Packages must be derated based on $\theta_{JC} = 30^{\circ}$ C/W or $\theta_{JA} = 120^{\circ}$ C/W.
- (2) For supply voltages less than ± 18 VDC the absolute maximum input
- voltage is equal to: $18V > V_{HS} V_{CC} 8V$. See Figure 2. (3) Short circuit may be to power supply common only. Rating applies to
- (3) Short circuit may be to power supply common only. Hating applies to +25°C ambient. Observe dissipation limit and T_J.

CONNECTION DIAGRAM

MECHANICAL

TYPICAL PERFORMANCE CURVES

OPA445

ADVANCE INFORMATION Subject to Change

High Voltage FET-Input OPERATIONAL AMPLIFIER

FEATURES

- WIDE POWER SUPPLY RANGE: ±10V to ±50V
- HIGH SLEW RATE: 10V/µs
- LOW INPUT BIAS CURRENT: 50pA max
- STANDARD-PINOUT TO-99 PACKAGE

APPLICATIONS

- HIGH VOLTAGE REGULATORS
- POWER AMPLIFIERS
- DATA ACQUISITION
- SIGNAL CONDITIONING

DESCRIPTION

The OPA445 is a monolithic operational amplifier capable of operation from power supplies up to $\pm 50V$ and output currents of 15mA. It is useful in a wide variety of applications requiring high output voltage or large common-mode voltage swings.

The OPA445's high slew rate provides wide powerbandwidth response, which is often required for high voltage applications. FET input circuitry allows the use of high impedance feedback networks, thus minimizing their output loading effects. Laser trimming of the input circuitry yields low input offset voltage and drift.

The OPA445 is unity-gain stable and requires no external compensation components. It is available in both industrial $(-25^{\circ}C \text{ to } +85^{\circ}C)$ and military $(-55^{\circ}C \text{ to } +125^{\circ}C)$ temperature ranges.

SPECIFICATIONS

ELECTRICAL

At $V_S = \pm 40V$ and $T_A = +25^{\circ}C$ unless otherwise specified.

								ADVAN			
		OPA445SM			OPA445BM			OPA445AP			
PARAMETER		MIN	TYP	MAX	MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
INPUT											
OFFSET VOLTAGE Input Offset Voltage Average Drift Supply Rejection	$\begin{split} V_{CM} &= 0V\\ T_A &= T_{MIN} \text{ to } T_{MAX}\\ V_S &= \pm 10V \text{ to } \pm 50V \end{split}$	*	0.5 * *	. 1.0	80	1.0 10 110	3.0		2.0 15	5.0	mV µV/°C dB
BIAS CURRENT Input Bias Current Over Temperature	$V_{\text{GM}} = 0V$		*,	* 100		20	50 10		50	100 20	pA nA
OFFSET CURRENT Input Offset Current Over Temperature	$V_{CM} = 0V$. •	* 50		4	10 5		20	40 10	pA nA
IMPEDANCE Differential Common-Mode	ı		*			10 ¹³ ∥ 1 10 ¹⁴ ∥ 3			•••		Ω pF Ω pF
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	V _{IN} = ±30V, Over temp.	*,	•		±35 80	95		•	•		V dB
OPEN-LOOP GAIN, DC											
Open-Loop Voltage Gain Over Temperature	$R_L = 5k\Omega$	*	•		100 97	105		•	•		dB dB
FREQUENCY RESPONSE	· · · · ·										
Gain Bandwidth Full Power Response	Small signal 35Vp-p, R∟ = 5kΩ	*	*		45	2 55			:		MHz kHz
DYNAMIC RESPONSE						,					
Slew Rate Rise Time Overshoot	$\label{eq:Vo} \begin{split} V_o &= \pm 35V, \\ R_L &= 5k\Omega \\ V_o &= \pm 200mV \\ A_V &= +1 \\ Z_L &= 5k\Omega \parallel 50pF \end{split}$	*	*		5	10 60 30		ł	•		V/µs ns %
RATED OUTPUT											
Voltage Output, over temp. Current Output Output Resistance Short Circuit Current	$\begin{split} R_L &= 5 k \Omega \\ V_0 &= \pm 28 V \\ DC, \text{ open loop} \end{split}$	* *	*		±35 ±15	220 ±26	-	•	•		V mA Ω mA
POWER SUPPLY											
Rated Voltage, ±Vs Voltage Range, ±Vs Derated Performance Current, Quiescent	Over temp. I _o = 0mA	*	*	*	±10	±40 3.8	±50 4.5		•	:	V V mA
TEMPERATURE RANGE											
Specification Operating ∂ Junction-Ambient	Ambient temp.	-55 *	*	+125 *	25 55	200	+85 +125	-25	90	• +85	°C ℃ ℃/W

*Specification same as OPA445BM.

ORDERING INFORMATION

Decision del municipation d	OPA445 () ()
Basic model number	
Performance grade (blank indicates A grade) – A: -25°C to +85°C B: -25°C to +85°C S: -55°C to +125°C	
Package code M: 8-pin TO-99 P: 8-pin plastic DIP.	

ABSOLUTE MAXIMUM RATINGS

vower Supply
nternal Power Dissipation
Differential Input Voltage ±80V
nput Voltage Range ±Vs - 3V
storage Temperature Range: M65°C to +150°C
P40°C to +85°C
Derating Temperature Range: M
P40°C to +85°C
ead Temperature (soldering, 10 seconds)
Dutput Short-Circuit to Ground (T _A = +25°C) Continuous
unction Temperature

CONNECTION DIAGRAM

TYPICAL PERFORMANCE CURVES $T_A = +25^{\circ}C$, $V_S = \pm 15VDC$ unless otherwise noted.

GAIN BANDWIDTH AND SLEW RATE VS TEMPERATURE -11 2.6 2.4 -10 SR Gain Bandwidth (MHz) 2.2 --9 Rate (V/µs) 2.0 -8 GBW Slew 1.8 -7 1.6 -6 1.4 -5 -75 -50 --25 0 +25 +50 +75 +100 +125 Ambient Temperature (°C)

INPUT BIAS CURRENT VS TEMPERATURE

GAIN BANDWIDTH AND SLEW RATE VS SUPPLY VOLTAGE

Supply Current (mA)

8

ADVANCE INFORMATION Subject to Change

High Power Monolithic OPERATIONAL AMPLIFIER

FEATURES

- POWER SUPPLIES TO ±40V
- OUTPUT CURRENT TO 10A PEAK
- PROGRAMMABLE CURRENT LIMIT
- INDUSTRY-STANDARD PINOUT
- FET INPUT

DESCRIPTION

The OPA541 is a monolithic power amplifier capable of operation from power supplies up to $\pm 40V$ and continuous output currents up to 5A. Internal current limit circuitry can be user-programmed with a single external resistor, protecting the amplifier and load from fault conditions. The OPA541 is fabricated using a proprietary bipolar/FET process.

Pinout is compatible with popular hybrid power amplifiers such as the OPA511, OPA512 and the 3573. The OPA541 uses a single current-limit resistor

APPLICATIONS

- SERVO AMPLIFIER
- SYNCHRO EXCITATION
- AUDIO AMPLIFIER
- PROGRAMMABLE POWER SUPPLY

to set both the positive and negative current limits. Applications currently using hybrid power amplifiers requiring two current-limit resistors need not be modified.

The OPA541 is available in an industry-standard 8pin TO-3 hermetic package. The case is isolated from all circuitry, thus allowing it to be mounted directly to a heat sink without special insulators which degrade thermal performance.

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

PDS-737

SPECIFICATIONS

ELECTRICAL

At $T_c=+25^{\circ}C$ and $V_s=\pm35VDC$ unless otherwise noted.

PARAMETER CONDITIONS MIN TYP MAX MIN			OPA541AM			OPA541BM/SM						
	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	МАХ	UNITS			
Vos vs Temperature vs Supply Voltage Specified temperature range Vs = ±10V to ±V_MAX ± 20 ± 40 ± 40 ± 10 <	INPUT OFFSET VOLTAGE											
vs Experime Parature range vs Specified temperature range vs $\frac{1}{20}$ $\frac{1}{$	Vos			±2	±10		±0.1	±1	mV			
The Provided in Source of the Provere Source of the Provided in Source of the Provided in Source o	vs Temperature	Specified temperature range $V_{e} = \pm 10V$ to $\pm V_{way}$		±20 +2.5	±40 +10		±15 *	±30 *	$\mu V/^{\circ}C$			
$\begin{tabular}{ c c c c c } IPUT BIAS CURRENT & $$$$ UPUT BIAS CURRENT & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	vs Power	TS LIGT TO LYMAX		±20	±60		*	. * 1	μV/W			
	INPUT BIAS CURRENT											
vs Supply Voltage ± 10 ± 10 \bullet ϕ $\rho A/V$ INPUT OFFSET CURRENTINPUT CHARACTERISTICSCommon-Mode Voltage Range Common-Mode RejectionSpecified temperature range $V_{CM} = (\pm V_S - 6V)$ $\pm (V_S - 6)$ $S = 1$ $\pm (V_S - 6)$ $S = 1$ $*$ $*$ V V $d B$ pF Gain-Bandwidth ProductGain-Bandwidth ProductOpen Loop Gain at 10Hz Gain-Bandwidth Product $R_L = 6\Omega$ $I_0 = 2A$ $1(V_S - 6.5)$ $\frac{1}{(V_S - 4.5)}$ $\pm (V_S - 4.5)$ $\pm (V_S - 4.5)$ $\pm (V_S - 4.5)$ $\pm (V_S - 4.5)$ $\pm (V_S - 2.5)$ $*$ $*$ V V V Voltage Swing $I_0 = 5A$, Continuous $I_0 = 2A$ $1(V_S - 4.5)$ $\pm (V_S - 4.5)$ $\pm (V_S - 4.5)$ $\pm (V_S - 2.5)$ $*$ $*$ V V OUTPUTVoltage Swing $I_0 = 5A$, Continuous $I_0 = 2A$ $I_0 = 2A$ $I_0 = 2A$ $\pm (V_S - 4.5)$ 	l _B			4	50		*	*	pА			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	vs Supply Voltage	·	,	±10			*	*	pA/V			
$ \begin{array}{ c c c c c } \hline los & los $	INPUT OFFSET CURRENT											
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	los	Specified temperature range		±1	±30		*	*	pA			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Specified temperature range	L		5							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	INPUT CHARACTERISTICS											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Common-Mode Voltage Range	Specified temperature range $V_{ev} = (1+V_e) - 6V_e$	±(V _S -6)	$\pm(V_{s} -3)$		*	*		d B			
$\begin{array}{ l l l l l l l l l $	Input Capacitance	VCM = (1±VS1 0V)	55	5					pF			
$\begin{array}{ c c c c c } \hline GAIN CHARACTERISTICS \\ \hline Output Loop Gain at 10Hz Gain-Bandwidth Product $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	Input Impedance, DC			1			*		τΩ			
$\begin{array}{ c c c c c c } \hline Open Loop Gain at 10Hz \\ Gain-Bandwidth Product \\\hline Gain-Bandwidth Product \\\hline OUTPUT \\\hline \hline OUTPUT \\\hline \hline OUTPUT \\\hline \hline Outgage Swing \\ I_0 = 5A, Continuous \\I_0 = 2A \\I_0 = 0.5A \\\hline I_0 = 0.5A \\\hline I_$	GAIN CHARACTERISTICS											
Gain-Bandwidth ProductI.6IMHzOUTPUTVoltage Swing $l_0 = 5A$, Continuous $l_0 = 2A$ $l_0 = 0.5A$ $\pm (V_S -4.5)$ $\pm (V_S -3.6)$ $\pm (V_S -3.6)$ $\pm (V_S -3.2)$ IIIVCurrent, Peak $l_0 = 0.5A$ $\pm (V_S -4.5)$ $\pm (V_S -3.6)$ $\pm (V_S -3.2)$ IIVVCurrent, Peak $R_L = 8\Omega, V_0 = 20Vrms$ $2V Step$ 810IIV/ μs Power Bandwidth Power Bandwidth Capacitive Load $R_L = 8\Omega, V_0 = 20Vrms$ $2V Step$ 810IIV/ μs Power Bandwidth Power Bandwidth Specified temperature range, G = 1 Specified temperature range, G > 10 Specified temperature range, R_L = 8\OmegaSOAIIV/ μs Power Supply Voltage, $\pm V_S$ Current, QuiescentSpecified temperature range ± 10 ± 30 ± 35 I ± 35 ± 40 VPower Supply Voltage, $\pm V_S$ Current, QuiescentSpecified temperature range ± 10 ± 30 ± 35 I ± 35 ± 40 VHERMAL RESISTANCE AC output $f > 60H_2$ B_{2c} (junction to ambient)AC output $f > 60H_2$ No heat sink 1.25 1.5 30 III \circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet <	Open Loop Gain at 10Hz	$R_L = 6\Omega$	90	97		*	*		dB			
OUTPUTVoltage Swing $l_0 = 5A, Continuous$ $l_0 = 2A$ $l_0 = 0.5A$ $\pm (V_S -4.5)$ $\pm (V_S -4)$ $\pm (V_S -3.6)$ $\pm (V_S -3.2)$ \star \star \star V V Current, Peak $l_0 = 0.5A$ $\pm (V_S -4)$ $\pm (V_S -4)$ $\pm (V_S -3.2)$ \star \star \star V V AC PERFORMANCESlew Rate Power Bandwidth Specified temperature range, G = 1 Specified temperature range, G > 10 Specified temperature range, G > 10 Specified temperature range, G > 10 Specified temperature range, G > 10 40 \star \star $V/\mu S$ μS Power Supply Voltage, $\pm V_S$ Current, QuiescentSpecified temperature range, G > 10 Specified temperature range, G > 10 20 ± 35 25 \star ± 40 \star V μS Power Supply Voltage, $\pm V_S$ Current, QuiescentSpecified temperature range ± 10 ± 10 20 ± 35 25 \star \star \circ \bullet v mA HERMAL RESISTANCE AC output $f > 60Hz$ B_{2c} (junction to case) B_{2c} (junction to ambient) AC output $f > 60Hz$ $No heat sink1.251.41.51.4\star\bullet\star\bullet\circ\circC/W\circTEMPERATURE RANGETEMPERATURE RANGETemperature RANGE-25-55+85+125\star+125\circ\circ$	Gain-Bandwidth Product			1.6			*		MHz			
Voltage Swing $I_0 = 5A$, Continuous $I_0 = 2A$ $I_0 = 0.5A$ $\pm (V_S - 4.5)$ $\pm (V_S - 4)$ $\pm (V_S - 3.6)$ $\pm (V_S - 3.6)$ $\pm (V_S - 3.6)$ $\pm (V_S - 3.2)$ ***VCurrent, Peak $I_0 = 0.5A$ $\pm (V_S - 4.5)$ $\pm (V_S - 4.5)$ $\pm (V_S - 3.6)$ $\pm (V_S - 3.2)$ ****VAC PERFORMANCESlew Rate Power Bandwidth Specified temperature range, G = 1 Specified temperature range, G > 10 Specified temperature range, G > 10 Specified temperature range, G > 10 A0810 Specified temperature range, G > 10 A0**V/\mus HzPhase MarginSpecified temperature range, G > 10 Specified temperature range, G > 10 2040**DegreesPOWER SUPPLYPower Supply Voltage, $\pm V_S$ Current, QuiescentSpecified temperature range Specified temperature range DC output No heat sink1.25 1.5 1.41.5 1.5 1.5***°C/W °C/W °C/W °C/WHERMAL RESISTANCEAC output $1 > 60Hz$ DC output No heat sink1.25 SM1.5 1.5***°C/W °C/WTemPERATURE RANGETEMPERATURE RANGETEMPERATURE RANGE***°C °C°C	OUTPUT											
$\begin{array}{ c c c c c } & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $	Voltage Swing	$I_0 = 5A$, Continuous	±(Vs -5.5)	±(V _s -4.5)		*	*		V			
Current, Peak $10 - 0.0A$ $1(1 \vee g -4/)$ $1(1 \vee g -$		$l_0 = 2A$	$\pm(V_{s} -4)$	$\pm (V_{\rm S} - 3.6)$		*			V			
AC PERFORMANCESlew Rate Power Bandwidth Setting Time to 0.1% Capacitive Load $R_L = 8\Omega, V_0 = 20Vrms$ 2V Step Specified temperature range, $G = 1$ Specified temperature range, $G = 1$ Specified temperature range, $G > 10$ Specified temperature range, $R_L = 8\Omega$ 8 45 10 55 2 $*$ $*$ $*$ $*$ $V/\mu s$ kHz μs nFPower Supply Power Supply Voltage, $\pm V_S$ Current, QuiescentSpecified temperature range temperature range ± 10 ± 10 ± 30 20 ± 35 25 $*$ $*$ ± 40 $*$ V mAPower Supply Voltage, $\pm V_S$ Current, QuiescentSpecified temperature range ± 10 ± 10 20 ± 35 25 $*$ $*$ ± 40 $*$ V mATHERMAL RESISTANCEAC output $f > 60Hz$ $DC outputNo heat sink1.251.41.51.4***$	Current, Peak	18 - 0.54	9	10		*	*		Å			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AC PERFORMANCE	·										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Slew Rate		8	10		•	•		V/µs			
Setting Time to 0.1% Capacitive Load2V Step Specified temperature range, G = 1 Specified temperature range, R_L = 803.32 A** μ^s NFPhase MarginSpecified temperature range, R_L = 803.340SOA**DegreesPOWER SUPPLYPower Supply Voltage, $\pm V_s$ Current, QuiescentSpecified temperature range ± 10 ± 10 20 ± 35 25 * ± 35 ± 40 \star ± 40 V mATHERMAL RESISTANCE $\theta_{Jc.}$ (junction to case) $\theta_{Ja.}$ (junction to ambient)AC output f > 60Hz DC output No heat sink1.25 1.4 1.5 1.4 **°C/W °C/W °C/WTEMPERATURE RANGETcaseAM, BM SM-25+85 $+125$ * $+125$ * °C	Power Bandwidth	$R_L = 8\Omega$, $V_0 = 20Vrms$	45	55		*	*		kHz			
Capacitive LoadSpecified temperature range, G = 1 Specified temperature range, G = 1 Specified temperature range, R_L = 803.3SOAImage: Solar image: Sola	Settling Time to 0.1%	2V Step		2				*	μs			
Phase MarginSpecified temperature range, RL = 804030A*DegreesPOWER SUPPLYPower Supply Voltage, $\pm V_S$ Current, QuiescentSpecified temperature range ± 10 ± 30 20 ± 35 * ± 35 * ± 40 *V mATHERMAL RESISTANCE θ_{Jc} , (junction to case) θ_{Jc} (junction to ambient)AC output f > 60Hz DC output No heat sink1.25 1.5 1.4 301.5 **** *°C/W °C/W °C/WTEMPERATURE RANGETcaseAM, BM SM -25 $+85$ -55**** *°C *	Capacitive Load	Specified temperature range, $G = 1$	3.3		504			*	n⊦			
POWER SUPPLY Power Supply Voltage, $\pm V_S$ Current, Quiescent Specified temperature range ± 10 ± 30 ± 35 $*$ ± 35 ± 40 V mA THERMAL RESISTANCE θ_{Jc} , (junction to case) AC output $f > 60Hz$ 1.25 1.5 $*$ $*$ $°C/W$ θ_{Jc} , (junction to ambient) AC output $f > 60Hz$ 1.4 1.9 $*$ $*$ $°C/W$ θ_{Jc} , (junction to ambient) No heat sink 30 1.5 $*$ $*$ $°C/W$ TEMPERATURE RANGE Tcase AM, BM -25 $+85$ $*$ $*$ $*$ $°C$	Phase Margin	Specified temperature range, $R_L = 8\Omega$		40	307		*		Degrees			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	POWER SUPPLY											
Current, Quiescent 20 25 * * mA THERMAL RESISTANCE ØJc, (junction to case) AC output f > 60Hz 1.25 1.5 * * * °C/W ØJc, (junction to case) AC output f > 60Hz 1.4 1.9 * * * °C/W ØJc, (junction to ambient) No heat sink 30 1.9 * * * °C/W TEMPERATURE RANGE T Tesse AM, BM -25 +85 * * * °C SM -25 +85 * + * °C	Power Supply Voltage, ±Vs	Specified temperature range	±10	±30	±35	*	±35	±40	v			
THERMAL RESISTANCE $\theta_{Jc.}$ (junction to case) AC output f > 60Hz 1.25 1.5 *	Current, Quiescent			20	25		*	*	mA			
$ \begin{array}{c c} \textbf{AC output f > 60Hz} \\ \textbf{B_{JC}, (junction to case)} \\ \textbf{B_{JC}, (junction to case)} \\ \textbf{B_{JC}, (junction to ambient)} \\ \textbf{DC output} \\ \textbf{No heat sink} \\ \end{array} \begin{array}{c c} 1.25 \\ 1.4 \\ 1.9 \\ 30 \\ \end{array} \begin{array}{c c} 1.5 \\ 1.9 \\ 1.$	THERMAL RESISTANCE											
High DC output 1.4 1.9 *	$\theta_{\rm JC}$, (junction to case)	AC output f > 60Hz		1.25	1.5		*	*	°C/W			
Temperature range AM, BM -25 +85 * * °C SM -55 +125 °C	$\theta_{\rm JC}$	DC output		1.4	1.9		*	*	°C/W °C/W			
Tcase AM, BM -25 +85 * * °C SM -55 +125 °C												
SM -55 +125 °C		AM BM	-25	·······	+85	*		*	<u>°C</u>			
	-UNDE	SM				-55		+125	°Č			

*Specification same as OPA541AM
MECHANICAL

NOTE: Leads in true position within 0.010" (0.25mm) R at MMC at seating plane. Pin numbers shown for reference only. Numbers may not be marked on package.

	INC	LEC	1.001.00	ETEDO			
	INC	163	MILLIN	EIENS			
DIM	MIN	MAX	MIN	MAX			
Α	1.510	1.550	38.35	39.37			
В	.745	.770	18.92	19.56			
С	.240	.290	6.10	7.37			
D	.038	.042	0.97	1.07			
E	.080	.105	2.03	2.67			
F	40° E	ASIC	40° BASIC				
G	.500 E	BASIC	12.7 BASIC				
Н	1.186	BASIC	30.12	BASIC			
J	.593 E	BASIC	15.06	BASIC			
К	.400	.500	10.16	12.70			
Q	.151	.161	3.84	4.09			
R	.980	1.020	24.89 25.9				

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +Vs to -Vs
Input Voltage: Differential
Common-mode ±Vs
Temperature: Pin solder, 10s +300°C
Junction ⁽¹⁾
Temperature Range:
Storage65°C to +150°C
Operating (case)55°C to +125°C
NOTE: (1) Long term operation at the maximum junc- tion temperature will result in reduced product life. Derate internal power dissipation to achieve high MTTE

CONNECTION DIAGRAM

ORDERING INFORMATION

TYPICAL PERFORMANCE CURVES

 $T_A = +25^{\circ}C$, $V_S = \pm 35$ VDC unless otherwise noted.

INPUT BIAS CURRENT VS TEMPERATURE

OPEN-LOOP GAIN AND PHASE VS FREQUENCY

12

DYNAMIC RESPONSE

 $G = 1, C_L = 4.7 nF$

INSTALLATION INSTRUCTIONS

POWER SUPPLIES

The OPA541 is specified for operation from power supplies up to ± 40 V. It can also be operated from unbalanced or single power supply as long as the total power supply voltage does not exceed 80V. The power supplies should be bypassed with low series impedance capacitors such as ceramic or tantalum. These should be located as near as practical to the amplifier's power supply pins. Good power amplifier circuit layout is, in general, like good high frequency layout. Consider the path of large power supply and output currents. Avoid routing these connections near low-level input circuitry to avoid waveform distortion and oscillations.

 R_{CL} (Ω)

CURRENT LIMIT

Internal current limit circuitry is controlled by a single external resistor, R_{CL}. Output load current flows through this external resistor. The current limit is activated when the voltage across this resistor is approximately a baseemitter turn-on voltage. The value of the current limit resistor is approximately:

$$R_{\rm CL} = \frac{0.809}{|\mathbf{l}_{\rm LIM}|} - 0.057$$

The current limit value decreases with increasing temperature due to the temperature coefficient of a baseemitter junction voltage. Similarly, the current limit value increases at low temperatures. Current limit versus resistor value and temperature effects are shown in the Typical Performance Curves.

The adjustable current limit can be set to provide protection from short circuits. The safe short-circuit current depends on power supply voltage. See the discussion on Safe Operating Area to determine the proper current limit value.

Since the full load current flows through R_{cL}, it must be selected for sufficient power dissipation. For a 5A current limit, the dissipation of R_{CL} will be 3.25W for 5A continuous currents. Sinusoidal output will create dissipation according to the rms load current. Thus for the same 5A current limit, AC peaks would be limited to 5A, but the rms current would be 3.5A and a resistor with a lower power rating could be used. Some applications

(such as voice amplification) are assured of signals with much lower duty cycles, allowing a current resistor with a lower power rating. Wire-wound resistors may be used for R_{CL} . Some wire-wound resistors, however, have excessive inductance and may cause loop-stability problems. Be sure to evaluate circuit performance with resistor type planned for production to assure proper circuit operation.

HEAT SINKING

Power amplifiers are rated by case temperature, not ambient temperature as with signal op amps. The maximum allowable power dissipation is a function of the case temperature as shown on the power derating curve. All points on the power derating slope produce a maximum internal junction temperature of $+150^{\circ}$ C. Sufficient heat sinking must be provided to keep the case temperature within safe bounds for the maximum ambient temperature and power dissipation. The thermal resistance of the heat sink required may be calculated by:

$$\theta_{\rm HS} = \frac{T_{\rm CASE} - T_{\rm AMBIENT}}{P_{\rm D} \,({\rm max})}$$

Commercially available heat sinks often specify their thermal resistance. These ratings are often suspect, however, since they depend greatly on the mounting environment and air flow conditions. Actual thermal performance should be verified by measurement of case temperature under the required load and environmental conditions.

No insulating hardware is required when using the TO-3 package. Since mica and other similar insulators typically add approximately $0.7^{\circ}C/W$ thermal resistance, their

elimination significantly improves thermal performance. See Burr-Brown Application Note AN-83 for further details on heat sinking.

SAFE OPERATING AREA

The safe operating area (SOA) plot provides comprehensive information on the power handling abilities of the OPA541. It shows the allowable output current as a function of the voltage across the conducting output transistor (see Figure 1). This voltage is equal to the power supply voltage minus the output voltage. For example, as the amplifier output swings near the positive power supply voltage, the voltage across the output transistor decreases and the device can safely provide large output currents demanded by the load.

Short circuit protection requires evaluation of SOA. When the amplifier output is shorted to ground, the full power supply voltage is impressed across the conducting output transistor. The current limit must be set to a value which is safe for the power supply voltage used. For instance, with $V_S \pm 35V$, a short to ground would force 35V across the conducting power transistor. A current limit of 1.8A would be safe.

Reactive, or EMF-generating, loads such as DC motors can present difficult SOA requirements. With a purely reactive load, output voltage and load current are 90° out of phase. Thus, peak output current occurs when the output voltage is zero and the voltage across the conducting transistor is equal to the full power supply voltage. See Burr-Brown Application Note AN-123 for further information on evaluating SOA.

FIGURE 1. Safe Operating Area.

OPA600

Fast-Settling Wideband OPERATIONAL AMPLIFIER

FEATURES

- GAIN BANDWIDTH PRODUCT: 5GHz
- FAST SETTLING: 80ns to ±0.1% 100ns to ±0.01%
- -25°C to +85°C AND -55°C to +125°C TEMPERATURE RANGES
- ±10V OUTPUT: 200mA

APPLICATIONS

- FAST VCO
- HIGH-SPEED D/A CONVERTER OUTPUT AMPLIFIER
- VIDEO AMPLIFIER
- HIGH-SPEED ADC DRIVER
- LOW-DISTORTION AMPLIFIER
- TRANSMISSION LINE BUFFER

DESCRIPTION

The OPA600 is a wideband operational amplifier specifically designed for fast settling to $\pm 0.01\%$ accuracy. It is stable, easy to use, has good phase margin with minimum overshoot, and it has excellent DC performance. It utilizes an FET input stage to give low input bias current. Its DC stability over temperature is outstanding. The slew rate exceeds $400V/\mu s$. All of this combines to form an outstanding amplifier for large and small signals.

High accuracy with fast settling time is achieved by using a high open-loop gain which provides the accuracy at high frequencies. The thermally balanced design maintains this accuracy without droop or thermal tail. External frequency compensation allows the user to optimize the settling time for various gains and load conditions.

The OPA600 is useful in a broad range of video, high speed test circuits and ECM applications. It is particularly well suited to operate as a voltage controlled oscillator (VCO) driver. It makes an excellent digital-to-analog converter output amplifier. It is a workhorse in test equipment where fast pulses, large signals, and 50Ω drive are important. It is a good choice for sample/holds, integrators, fast waveform generators, and multiplexers.

The OPA600 is specified over the industrial temperature range (OPA600BM, CM) and military temperature range (OPA600SM, TM). The OPA600 is housed in a welded, hermetic metal package.

SPECIFICATIONS

ELECTRICAL

At $V_{cc} = \pm 15 \text{VDC}$ and $T_A = +25^{\circ}\text{C}$ unless otherwise specified.

		OPA	600CM, 1	M ⁽¹⁾	OP	4600BM,	SM	
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	түр	MAX	UNITS
OUTPUT								
Voltage Current Current Pulse Resistance Short-Circuit Current	$ \begin{split} & R_L = 2 k \Omega \\ & R_L = 50 \Omega^{(2)} \\ & R_L = 50 \Omega^{(2)} \\ & R_L = 50 \Omega^{(3)} \\ & Open \; loop \; DC \\ & To \; COMMON \; only, \; t_{MAX} = 1s^{(4)} \end{split} $	±10 ±9 ±180 ±180	±200 ±200 75 250	300	*	* * *	*	V V mA mA Ω mA
DYNAMIC RESPONSE	- <u></u>							
Settling Time ⁽⁵⁾ : to ±0.01% (±1mV) to ±0.1% (±10mV) to ±1% (±100mV)			100 80 70	125 105 95		* * *	* * *	ns ns ns
Gain-Bandwidth Product (open-loop)	$\begin{array}{l} C_c = 0 p F, \ G = 1 V/V \\ C_c = 0 p F, \ G = 10 V/V \\ C_c = 0 p F, \ G = 100 V/V \\ C_c = 0 p F, \ G = 100 V/V \\ C_c = 0 p F, \ G = 10,000 V/V \end{array}$		150 500 1.5 5 10			* * * *		MHz MHz GHz GHz GHz
Bandwidth (-3dB small signal) ⁽⁶⁾	G = +1V/V G = -1V/V G = -10V/V G = -100V/V G = -100V/V		125 90 95 20 6			* * * *		MHz MHz MHz MHz MHz
Full Power Bandwidth	$V_{OUT} = \pm 5V, G = -1V/V, C_C = 3.3 pF, R_L = 100\Omega$		16			*		MHz
Slew Rate	$\label{eq:Vout} \begin{array}{l} V_{OUT}=\pm5V,G=-1000V/V,C_C=0pF,R_L=100\Omega\\ V_{OUT}=\pm5V,G=-1V/V^{(4)} \end{array}$	400	500 440		*	*		V/μs V/μs
Phase Margin	$G = -1V/V, C_c = 3.3pF$		40			*		Degrees
GAIN								
Open-Loop Voltage Gain	$f = DC, R_L = 2k\Omega, T_A = +25^{\circ}C$	86	94		. *	*		dB
INPUT								
Offset Voltage ⁽⁷⁾	$T_A = +25^{\circ}C$ $T_A = -25^{\circ}C \text{ to } +85^{\circ}C$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$		±1	±4 ±5 ±6		±2	±5 ±10 ±15	mV mV mV
Offset Voltage Drift	$T_A = -25^{\circ}C \text{ to } +85^{\circ}C$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$			±20 ±20			±80 ±100	μV/°C μV/°C
Bias Current	$T_A = +25^{\circ}C$ $T_A = -25^{\circ}C$ to $+125^{\circ}C$		20 20	-100 -100		*	*	pA nA
Offset Current	$T_A = +25^{\circ}C$ $T_A = -55^{\circ}C$ to $+125^{\circ}C$		20 20			*		pA nA
Power Supply Rejection Ratio Common-Mode Voltage Range Common-Mode Rejection Ratio Impedance Voltage Noise	V _{cc} = ±15V, ±1V V _{CM} = -5V to +5V Differential and Common-Mode 10kHz Bandwidth	10 60	200 80 10 ¹¹ 2 20	500 +7	*	*	*	μV/V V dB Ω∥pF nV/√Hz
POWER SUPPLY								
- Rated (V _{cc}) Operating Range Quiescent Current		±9	±15 ±30	±16 ±38	*	*	*	VDC VDC mA
TEMPERATURE RANGE (Ambient) ⁽⁸⁾						,		
Operating: BM, CM SM, TM Storage θ_{LC} , (junction to case) θ_{CA} , (case to ambient		25 55 65	3U 35	+85 +125 +150	* *	*	*	နိုဂ်ံဂံ လိုဂံံဂံ

*Specification same as OPA600CM, TM.

NOTES: (1) BM, CM grades: -25° C to $+85^{\circ}$ C. SM, TM grades: -55° C to $+125^{\circ}$ C. (2) Pin 9 connected to $+V_{cc}$, pin 7 connected to $-V_{cc}$. Observe power dissipation ratings. (3) Pin 9 and pin 7 open. Single pulse t = 100ns. Observe power dissipation ratings. (4) Pin 9 and pin 7 open. See section on Current Boost. (5) G = -1VV. Optimum settling time and slew rate achieved by individually compensating each device. Refer to section on Compensation. (6) Frequency compensation as discussed in section on Compensation. (7) Adjustable to zero. (8) Heat Sink (optional): IERC LBOCI-72CB with 2 each DCV-1B Clamps.

MECHANICAL

-20

-30

-40

10k

 $\frac{1}{1}$

+++++

100

1pF

11

1M

OPA600 B М 0 Performance Grade B, C = −25°C to +85°C S. T = -55°C to +125°C Package M = Metal DIP Hi-Reliability Q-Screening (optional)

CONNECTION DIAGRAM

NOTES: (1) Refer to Figure 4 for recommended frequency compensation. (2) Connect pin 9 to pin 12 and connect pin 7 to pin 6 for maximum output current. See Application Information for further information. (3) Bypass each power supply lead as close as possible to the amplifier pins. A 1μ F CS13 tantalum capacitor is recommended. (4) There is no internal connection. An external connection may be made. (5) It is recommended that the amplifier be mounted with the case in contact with a ground plane for good thermal transfer and optimum AC performance.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage, $\pm V_{CC}$ to $-V_{CC}$
Input Voltage: Differential $\pm V_{CC}$
Common-Mode±Vcc
Output Short Circuit Duration to Common
Temperature: Pin (soldering, 20sec) +300°C
Junction ⁽¹⁾ , T _J +175°C
Temperature Range: Storage65°C to +150°C
Operating (case)55°C to +125°C

NOTES: (1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability. (2) Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTTF.

700

600

Rate (V/µsec

400 Slew

300

200

100

COMPENSATION

10

Closed-loop Gain (V/V) = 1 + RF/RIN

TYPICAL PERFORMANCE CURVES

10M

Frequency (Hz)

SLEW RATE

2

100M

-100

150

0

1000M

INSTALLATION AND OPERATION

WIRING PRECAUTIONS

The OPA600 is a wideband, high frequency operational amplifier with a gain-bandwidth product exceeding 5GHz. This capability can be realized by observing a few wiring precautions and using high frequency layout techniques. In general, all printed circuit board conductors should be wide to provide low resistance, low impedance signal paths and should be as short as possible. The entire physical circuit should be as small as is practical. Stray capacitances should be minimized, especially at high impedance nodes, such as the input terminals of the amplifier and compensation pins. Stray signal coupling from the output to the input should be minimized. All circuit element leads should be as short as possible and low values of resistance should be used. This will give the best circuit performance as it will minimize the time constants formed with the circuit capacitances and will eliminate stray, unwanted tuned circuits.

Grounding is the most important application consideration for the OPA600, as it is with all high frequency circuits. Ultra-high frequency transistors are used in the design of the OPA600 and oscillations at frequencies of 500MHz and above can be stimulated if good grounding techniques are not used. A ground plane is highly recommended. It should connect all areas of the pattern side of the printed circuit that are not otherwise used. The ground plane provides a low resistance, low inductance common return path for all signal and power returns. The ground plane also reduces stray signal pickup.

Point-to-point wiring is not recommended. However, if point-to-point wiring is used, a single-point ground should be used. The input signal return, the load signal return and the power supply common should all be connected at the same physical point. This eliminates common current paths or ground loops which can cause unwanted feedback.

Each power supply lead should be bypassed to ground as near as possible to the amplifier pins. A 1μ F CS13 tantalum capacitor is recommended. A parallel 0.01μ F ceramic may be added if desired. This is especially important when driving high current loads. Properly bypassed and modulation-free power supply lines allow full amplifier output and optimum settling time performance.

OPA600 circuit common is connected to pins 1 and 13; these pins should be connected to the ground plane. The input signal return, load return, and power supply commmon should also be connected to the ground plane. The case of the OPA600 is internally connected to circuit common, and as indicated above, pins I and I3 should be connected to the ground plane. Ideally, the case should be mechanically connected to the ground plane for good thermal transfer, but because this is difficult in practice, the OPA600 should be fully inserted into the printed circuit board with the case very close to the ground plane to make the best possible thermal connection. If the case and ground plane are physically connected or are in close thermal proximity, the ground plane will provide heat sinking which will reduce the case temperature rise. The minimum OPA600 pin length will minimize lead inductance, thereby maximizing performance.

COMPENSATION

The OPA600 uses external frequency compensation so that the user may optimize the bandwidth or settling time for his particular application. Several performance curves aid in the selection of the correct compensations capacitance value. The Bode plot shows amplitude and phase versus frequency for several values of compensation. A related curve shows the recommended compensation capacitance versus closed-loop gain.

Figure 1 shows a recommended circuit schematic. Component values and compensation for amplifiers with several different closed-loop gains are shown. This circuit will yield the specified settling time. Because each device is unique and slightly different, as is each user's circuit, optimum settling time will be achieved by individually compensating each device in its own circuit, if desired. A 10% to 20% improvement in settling time has been experienced from the values indicated in the Electrical Specifications table.

FIGURE 1. Recommended Amplifier Circuits and Frequency Compensation.

The primary compensation capacitors are C_1 and C_2 (see Figure 1). They are connected between pins 4 and 5 and between pins 11 and 14. Both C_1 and C_2 should be the same value. As Figure 1 and the performance curves show, larger closed-loop configurations require less capacitance and improved gain-bandwidth product can be realized. Note that no compensation capacitor is required for closed-loop gains equal to or above 100V/V. If upon initial application the user's circuit is unstable, and remains so after checking for proper bypassing, grounding, etc., it may be necessary to increase the compensation slightly to eliminate oscillations. Do not over compensate. It should not be necesary to increase C_1 and C_2 beyond 10pF to 15pF. It may also be necessary to individually optimize C_1 and C_2 for improved performance.

The flat high frequency response of the OPA600 is preserved and high frequency peaking is minimized by connecting a small capacitor in parallel with the feedback resistor (see Figure 1). This capacitor compensates for the closed-loop, high frequency, transfer function zero that results from the time constant formed by the input capacitance of the amplifier, typically 2pF, and the input and feedback resistors. The selected compensation capacitor may be a trimmer, a fixed capacitor or a planned PC board capacitance. The capacitance value is strongly dependent on circuit layout and closed-loop gain. It will typically be 2pF for a clean layout using low resistances $(1k\Omega)$ and up to 10pF for circuits using larger resitances. Using small resistor values will preserve the phase margin and avoid peaking by keeping the break frequency of this zero sufficiently high. When high closed-loop gains are required, a three-resistor attenuator is recommended to avoid using a large value resistor with its long time constant.

CAPACITIVE LOADS

The OPA600 will drive large capacitive loads (up to 100pF) when properly compensated and settling times of under 150ns are achievable. The effect of a capacitive load is to decrease the phase margin of the amplifier, which may cause high frequency peaking or oscillations. A solution is to increase the compensation capacitance, somewhat slowing the amplifier's ability to respond. The recommended compensation capacitance value as a function of load capacitance is shown in Figure 2. (Use two capcitors, each with the value indicated.) Alternately, without increasing the OPA600's compensation capacitance, the capacitive load may be buffered by connecting a small resistance, usually 5Ω to 50Ω , in series with the Output, pin 8.

For very-large capacitive loads, greater than 100pF, it will be necessary to use doublet compensation. Refer to Figure 3 and discussion on slew rate. This places the dominant pole at the input stage. Settling time will be approximately 50% slower; slew rate should increase. Load capacitance should be minimized for optimum high frequency performance.

Because of its large output capability, the OPA600 is particularly well suited for driving loads via coaxial

FIGURE 2. Capacitive Load Compensation and Response.

cables. Note that the capacitance of coaxial cable (29pF/foot of length for RG-58) will not load the amplifier when the coaxial cable or transmission line is terminated in its characteristic impedance.

SETTLING TIME

Settling time is defined as the total time required, from the input signal step, for the output to settle to within the specified error band around the final value. This error band is expressed as a percentage of the magnitude of the output transition, a 10V step.

Settling time is a complete dynamic measure of the OPA600's total performance. It includes the slew rate time, a large signal dynamic parameter, and the time to accurately reach the final value, a small signal parameter that is a function of bandwidth and open-loop gain. Performance curves show the OPA600 settling time to $\pm 1\%$, $\pm 0.1\%$, and $\pm 0.01\%$. The best settling time is achieved in low closed-loop gain circuits.

Settling time is dependent upon compensation. Undercompensation will result in small phase margin, overshoot or instability. Over-compensation will result in poor settling time.

Figure 1 shows the recommended compensation to yield the specified settling time. Improved or optimum settling time may be achieved by individually compensating each device in the user's circuit since individual devices vary slightly from one to another, as do user's circuits.

SLEW RATE

Slew rate is primarly an output, large signal parameter. It has virtually no dependence upon the closed-loop gain or small signal bandwidth. Slew rate is dependent upon compensation and decreasing the compensation capacitor value will increase the available slew rate as shown in the performance curve.

The OPA600 slew rate may be increased by using an alternate compensation as shown in Figure 3. The slew rate will increase between 700 and $800V/\mu s$ typical, with 0.01% settling time increasing to between 175 and 190ns typical, and 0.1% settling time increasing to between 110 and 120ns typical.

FIGURE 3. Amplifier Circuit for Increased Slew Rate.

For alternate doublet compensation refer to Figure 3. For a closed-loop gain equal to -1, delete C_1 and C_2 and add a series RC circuit ($R = 22\Omega$, $C = 0.01\mu$ F) between pins 14 and 4. Make no connections to pins 11 and 5. Absolutely minimze the capacitance to these pins. If a connector is used for the OPA600, it is recommended that sockets for pins 11 and 5 be removed. For a PC board mount, it is recommended that the PC board holes be overdrilled for pins 11 and 5 and adjacent ground plane copper be removed. Effectively this compensation places the dominant pole at the input stage, allowing the output stage to have no compensation and to slew as fast as possible. Bandwidth and settling time are impaired only slightly. For closed-loop gains other than -1, different values of R and C may be required.

OFFSET ADJUSTMENT

The offset voltage of the OPA600 may be adjusted to zero by connecting a $5k\Omega$ resistor in series with a $10k\Omega$ linear potentiometer in series with another $5k\Omega$ resistor between pins 2 and 15, as shown in Figure 4. It is important that one end of each of the two resistors be located very close to pins 2 and 15 to isolate and avoid loading these sensitive terminals. The potentiometer should be a small noninductive type with the wiper connected to the positive supply. The leads connecting these components should be short, no longer than 0.5-inch, to avoid stray capacitance and stray signal pick-up. If the potentiometer must be located away from the immediate vicin-

FIGURE 4. Offset Null Circuit.

ity of the OPA600, extreme care must be observed with the sensitive leads. Locate the two $5k\Omega$ resistors very close to pins 2 and 15.

Never connect $+V_{cc}$ directly to pin 2 or 15. Do not attempt to eliminate the 5k Ω resistors because at extreme rotation, the potentiometer will directly connect $+V_{cc}$ to pin 2 or 15 and permanent damage will result.

Offset voltage adjustment is optional. The potentiometer and two resistors are omitted when the offset voltage is considered sufficiently low for the particular application. For each microvolt of offset voltage adjusted, the offset voltage temperature sensitivity will change by $\pm 0.004 \mu V/^{\circ}C$.

CURRENT BOOST

External ability to bypass the internal current limiting resistors has been provided in the QPA600. This is referred to as current boost. Current boost enables the OPA600 to deliver large currents into heavy loads (± 200 mA at ± 10 V). To bypass the resistors and activate the current boost, connect pin 7 to $-V_{CC}$ at pin 6 with a short lead to minimize lead inductance and connect pin 9 to $+V_{CC}$ at pin 12 with a short lead.

CAUTION—Activating current boost by bypassing the internal current limiting resistors can permanently damage the OPA600 under fault conditions. See section on short circuit protection.

Not activating current boost is especially useful for initial breadboarding. The 50Ω ($\pm 5\%$) current limiting resistor in the collector circuit of each of the output transistors causes the output transistors to saturate; this limits the power dissipation in the output stage in case of a fault. Operating with the current boost not activated may also be desirable with small-signal outputs (i.e., $\pm 1V$) or when the load current is small.

Each resistor is internally capacitively-bypassed (0.01μ F, $\pm 20\%$) to allow the amplifier to deliver large pulses of current, such as to charge diode junctions or circuit capacitance and still respond quickly. The length of time that

the OPA600 can deliver these current pulses is limited by the RC time constant.

The internal voltage drops, output voltage available, power dissipation, and maximum output current can be determined for the user's application by knowing the load resistance and computing:

$$V_{OUT} = 14 \left[R_{LOAD} \div (50 + R_{LOAD}) \right]$$

This applies for R_{LOAD} less than 100 Ω and the current boost not activated. When R_{LOAD} is large, the peak output voltage is typically $\pm 11V$, which is determined by other factors within the OPA600.

SHORT-CIRCUIT PROTECTION

The OPA600 is short-circuit-protected for momentary short to common (<5s), typical of those enountered when probing a circuit during experimental breadboarding or troubleshooting. This is true only if pins 7 and 9 are open (current boost not activated). An internal 50 Ω resistor is in series with the collector of each of the output transistors, which under fault conditions will cause the output transistors to saturate and limit the power dissipation in the output stage. Extended application of an output short can damage the amplifier due to excessive power dissipation.

The OPA600 is not short-circuit-protected when the current boost is activated. The large output current capability of the OPA600 will cause excessive power dissipation and permanent damage will result even for momentary shorts to ground.

Output shorts to either supply will destroy the OPA600 whether the current boost is activated or not.

HEAT SINKING AND POWER DISSIPATION

The OPA600 is intended as a printed circuit board mounted device, and as such does not require a heat sink. It is specified for ambient temperature operation from -55° C to $+125^{\circ}$ C. However, the power dissipation must be kept within safe limits. At extreme temperature and under full load conditions, some form of heat sinking will be necessary. The use of a heat sink, or other heat dissipating means such as proximity to the ground plane, will result in cooler operating temperatures, better temperature performance, and improved reliability.

It may be necessary to physically connect the OPA600 to the printed circuit board ground plane, attach fins, tabs, etc., to dissipate the generated heat. Because of the wide variety of possibilities, this task is left to the user. For all applications it is recommended that the OPA600 be fully inserted into the printed circuit board and that the pin length be short. Heat will be dissipated through the ground plane and the AC performance will be its best.

With a maximum case temperature of $+125^{\circ}$ C and not exceeding the maximum junction of $+175^{\circ}$ C, a maximum power dissipation of 600mW is allowed in either output transistor.

TESTING

For static and low frequency dynamic measurements, the OPA600 may be tested in conventional operational amplifier test circuits, provided proper ground techniques are observed, excessive lead lengths are avoided, and care is maintained to avoid parasitic oscillations. The circuit in Figure 3 is recommended for low frequency functional testing, incoming inspection, etc. This circuit is less susceptible to stray capacitance, excessive lead length, parasitic tuned circuits, changing capacitive loads, etc. It does not yield optimum settling time. We recommend placing a resistor (approximately 300Ω) in series with each piece of test equipment, such as a DVM, to isolate loading effects on the OPA600. To realize the full performance capabilities of the OPA600, high frequency techniques must be employed and the test fixture must not limit the amplifier. Settling time is the most critical dynamic test and Figure 5 shows a recommended OPA600 settling time test circuit schematic. Good grounding, truly square drive signals, minimum stray coupling, and small physical size are important.

The input pulse generator must have a flat topped, fast settling pulse to measure the true settling time of the amplifier. A circuit that generates a $\pm 5V$ flat topped pulse is shown in Figure 6.

FIGURE 5. Settling Time and Slew Rate Test Circuit.

FIGURE 6. Flat Top Pulse Generator.

OPA602

ADVANCE INFORMATION Subject to Change

High-Speed Precision *Difet* [®] OPERATIONAL AMPLIFIER

FEATURES

- WIDE BANDWIDTH: 0.4MHz
- HIGH SLEW RATE: 35V/µs
- LOW OFFSET: ±250µV max
- LOW BIAS CURRENT: ±1pA max
- FAST SETTLING: 1µs to 0.01%
- UNITY-GAIN STABLE

DESCRIPTION

The OPA602 is a precision, wide bandwidth FET operational amplifier. Monolithic *Difet* (dielectrically isolated FET) construction provides an unusual combination of high speed and accuracy.

Its wide bandwidth design minimizes dynamic errors. High slew rate and fast-settling behavior allow accurate signal processing in pulse and data conversion applications. Wide bandwidth and low distortion characteristics provide high performance in frequency-domain circuitry. All dynamic and DC specifications are rated with a $lk\Omega$ resistor in parallel with 500pF load impedance. The OPA602 is unity-gain stable and easily drives capacitive loads up to 1500pF.

Laser-trimmed input circuitry provides offset voltage and drift performance normally associated with precision bipolar op amps. *Diffet* construction achieves extremely low input bias currents (1pA max) without compromising input voltage noise.

The OPA602's unique input cascode circuitry maintains low input bias current and precise input characteristics over its full input common-mode voltage range.

APPLICATIONS

- PRECISION INSTRUMENTATION
- OPTOELECTRONICS
- SONAR, ULTRASOUND
- PROFESSIONAL AUDIO EQUIPMENT
- MEDICAL EQUIPMENT
- DATA CONVERSION

Difet
Burr-Brown Corp.

SPECIFICATIONS

ELECTRICAL

At $V_S=\pm 15VDC$ and $T_A=+25^\circ C$ unless otherwise noted.

		C	PA602A	м	OP	A602BM/	/SM	C			
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
$\label{eq:interm} \begin{array}{l} \textbf{INPUT NOISE} \\ \textbf{Voltage:} \ f_{o} = 10Hz \\ f_{o} = 100Hz \\ f_{o} = 10Hz \\ f_{o} = 10Hz \\ f_{e} = 10Hz \ to \ 10Hz \\ f_{e} = 0.1Hz \ to \ 10Hz \\ Current: \ f_{e} = 0.1Hz \ to \ 10Hz \\ f_{o} = 0.1Hz \ to \ 20Hz \\ \end{array}$			* * * * *			23 19 13 12 1.4 0.95 12 0.6			* * * * * *		nV/\sqrt{Hz} nV/\sqrt{Hz} nV/\sqrt{Hz} nV/\sqrt{Hz} \muVrms $\muVp-p$ fAp-p fA/\sqrt{Hz}
OFFSET VOLTAGE Input Offset Voltage Over Specified Temp. Average Drift Supply Rejection	$V_{CM} = 0VDC$ $T_A = T_{MIN} \text{ to } T_{MAX}$ $\pm V_S = 12V \text{ to } 18V$	70	±300 ±550 *	±1000 ±15	80	±150 ±250 ±3 100	±500 ±1000 ±5	86	±100 ±200 ±1 *	±250 ±500 ±2	μV μV μV/°C dB
BIAS CURRENT Input Bias Current Over Specified Temp. SM Grade	$V_{CM} = 0 V D C$		±2 ±20	±10 ±500		±1 ±20 ±200	±2 ±200 ±2000		±0.5 ±10	±1 ±100	рА рА рА
OFFSET CURRENT Input Offset Current Over Specified Temp. SM Grade	$V_{CM} = 0VDC$	•	1 20	10 500		0.5 20 200	2 200 1000		0.5 10	1 100	рА рА рА
INPUT IMPEDANCE Differential Common-Mode		· · ·	*		,	10 ¹³ 1 10 ¹⁴ 3			*		Ω∥pF Ω∥pF
INPUT VOLTAGE RANGE Common-Mode Input Range		. *	*,		±10.2	+13, 11		* 1	*		v
Common-Mode Rejection	$V_{IN} = \pm 10 VDC$	75	*		88	100		92	*.		dB
OPEN LOOP GAIN, DC Open-Loop Voltage Gain	$R_L \ge 1k\Omega$	75	*		88	100		92	*		dB
FREQUENCY RESPONSE Gain Bandwidth Full Power Response Slew Rate Settling Time: 0.1% 0.01%	$\label{eq:Gain} \begin{array}{l} Gain = 100\\ 20Vp\text{-p}, R_L = 1k\Omega\\ V_0 = \pm 10V, R_L = 1k\Omega\\ Gain = -1, R_L = 1k\Omega\\ C_L = 500p\text{F}, 10V \text{ step} \end{array}$	3.5 20	* * *		4 24	6.5 570 35 0.7 1.0		5 28	* * * *		MHz kHz V/μs μs μs
RATED OUTPUT Voltage Output Current Output Output Resistance Load Capacitance Stability Short Circuit Current	$\label{eq:RL} \begin{split} R_L &= 1 k \Omega \\ V_0 &= \pm 10 VDC \\ 1 MHz, \ open \ loop \\ Gain &= +1 \end{split}$	±11 * ±25	* * *		±11.5 ±15 ±30	+12.9, -13.8 ±20 80 1500 ±50		•	* * * *	*	V mA Ω pF mA
POWER SUPPLY Rated Voltage Voltage Range, • Derated Performance Current, Quiescent Over Specified Temp.	Io = 0mADC	*	* *	* *	±5	±15 3 3.5	±18 4 4.5	*	*	*	VDC VDC mA mA
TEMPERATURE RANGE Specification SM Grade Operating Storage θ Junction-Ambient	Ambient temp. Ambient temp. Ambient temp.	* * *	*	* *	25 55 55 65	200	+85 ±125 +125 +150	*	*	*	လို ဂံ ဂံ ဂံ ∢ ဂံ ဂံ ဂံ

*Specification same as OPA602BM

ORDERING INFORMATION

	OPA602 () ·()
Basic model number	
Performance grade code	
A, B, C: -25°C to +85°C	
S: -55°C to +125°C	
Package Code	L
M: TO-99 Metal Package	

CONNECTION DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Supply ±18VDC
Internal Power Dissipation ($T_J \le +175^{\circ}C$) +1000mW
Differential Input Voltage Total Vs
Input Voltage Range ±Vs
Storage Temperature Range65°C to +150°C
Operating Temperature Range55°C to +125°C
Lead Temperature (soldering 10 seconds) +300°C
Output Short-Circuit to ground (+25°C) Continuous to ground
Junction Temperature +175°C

MECHANICAL

TYPICAL PERFORMANCE CURVES

INPUT VOLTAGE NOISE SPECTRAL DENSITY 1k Voltage Noise (nV/VHz) 100 Ŧ Т 10 1 10 100 1k 10k 100k 1M Frequency (Hz)

TOTAL INPUT VOLTAGE NOISE SPECTRAL DENSITY AT 1kHz vs SOURCE RESISTANCE

TYPICAL PERFORMANCE CURVES (CONT) $T_A = +25^{\circ}C$, $V_S = \pm 15VDC$ unless otherwise noted.

26

APPLICATIONS INFORMATION

FIGURE 1. Settling Time and Slew Rate Test Circuit.

FIGURE 2. Offset Voltage Trim.

OPA633

High Speed BUFFER AMPLIFIER

FEATURES

- WIDE BANDWIDTH: 275MHz
- HIGH SLEW RATE: 2500V/µs
- HIGH OUTPUT CURRENT: 100mA
- LOW OFFSET VOLTAGE: 1.5mV
- REPLACES HA-5033
- IMPROVED PERFORMANCE/PRICE: LH0033, LTC1010, H0S200

DESCRIPTION

The OPA633 is a monolithic unity-gain buffer amplifier featuring very wide bandwidth and high slew rate. A dielectric isolation process incorporating both NPN and PNP high frequency transistors achieves performance unattainable with conventional integrated circuit technology. Laser trimming provides low input offset voltage.

High output current capability allows the OPA633 to drive 50Ω and 75Ω lines, making it ideal for RF, IF and video applications. Low phase shift allows the OPA633 to be used inside amplifier feedback loops thus bringing high current output and ability to drive capacitive loads to many circuit applications.

The OPA633 is available in the 12-pin TO-8 hermetic metal package with -25° C to $+85^{\circ}$ C and -55° C to $+125^{\circ}$ C temperature ranges and a low cost plastic DIP package specified for operation from 0°C to $+75^{\circ}$ C.

APPLICATIONS

- OP AMP CURRENT BOOSTER
- ♥ VIDEO BUFFER
- LINE DRIVER
- A/D CONVERTER INPUT BUFFER

International Airport Industrial Park 🔹 P.O. Box 11400 🔹 Tucson, Arizona 85734 🔹 Tel.: (602) 746-1111 🔹 Twx: 910-952-1111 🔹 Cable: BBRCORP 🔹 Telex: 66-6491

PDS-699

SPECIFICATIONS

ELECTRICAL

At +25°C, $V_S=\pm 12V,\,R_S=50\Omega,\,R_L=100\Omega,\,C_L=10pF$ unless otherwise noted.

		c	PA633A	н	C	DPA633S	н	c	PA633K	P	
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	MIN	түр	MAX	UNITS
FREQUENCY RESPONSE	FREQUENCY RESPONSE										
Small Signal Bandwidth Full Power Bandwidth Slew Rate Rise Time, 10% to 90% Propagation Delay Overshoot Settling Time, 0.1% Differential Phase Error ¹¹⁷ Differential Gain Error ¹¹⁷ Total Harmonic Distortion	$\begin{split} V_{0} &= 1 V rms, R_{L} = 1 k \Omega \\ V_{0} &= 10V, V_{S} = \pm 15V, R_{L} = 1 k \Omega \\ V_{0} &= 500 mV \end{split}$ $\begin{split} V_{0} &= 1 V rms, R_{L} = 1 k \Omega, f = 100 k Hz \\ V_{0} &= 1 V rms, R_{L} = 100\Omega, f = 100 k Hz \end{split}$	1000	275 65 2500 2.5 1 10 50 0.1 0.1 0.005 0.02		*	* * * * * * *		*	260 40 * * * * *		MHz MHz v/µs ns ns begrees % %
OUTPUT CHARACTERISTI	cs										
Voltage Current Resistance	$\label{eq:relation} \begin{split} T_{A} &= T_{MIN} \text{ to } T_{MAX} \\ R_{L} &= 1 k \Omega, \ V_{S} = \pm 15 V \end{split}$	±8.0 ±11 ±80	±10 1±13 ±100 5	•	* * *	* * *		* .* *	* * *		ν ν mA
TRANSFER CHARACTERIS	TRANSFER CHARACTERISTICS										
Gain	$\begin{split} R_L &= 1k\Omega \\ T_A &= T_{MIN} \text{ to } T_{MAX} \end{split}$	0.93 0.92	0.95 0.99 0.95		*	* * *		*	* * *		V/V V/V V/V
INPUT											
Offset Voltage vs Temperature vs Supply Bias Current Noise Voltage Resistance Capacitance	$T_A = +25^{\circ}C$ $T_A = T_{MIN} \text{ to } T_{MAX}$ $T_A = T_{MIN} \text{ to } T_{MAX}$ $T_A = +25^{\circ}C$ $T_A = T_{MIN} \text{ to } T_{MAX}$ $10\text{Hz to } 1\text{MHz}$	54	± 1.5 ± 5 ± 33 72 ± 15 ± 20 20 1.5 1.6	±15 ±25 ±35 ±50	*	* * * * * * * *	*	1 *	±5 ±6 * * * *	*	mV mV μV/°C dB μA μA μVp-p MΩ pF
POWER SUPPLY											
Rated Supply Voltage Operating Supply Voltage Current, Quiescent	Specified performance Derated performance $I_0 = 0$ $I_0 = 0$, $T_A = T_{MIN}$ to T_{MAX}	±5	±12 21 21	±16 25 30	*	* *	* * *	*	* *	*	V V mA mA
TEMPERATURE RANGE			······								
Specification, Ambient Operating, Ambient θ Junction, Ambient ⁽²⁾ θ Junction, Case ⁽²⁾		-25 -55	99 31	+85 +125	55 *	*	+125 *	0 -25	90 27	+75 +85	, ⊃, ⊃, ∿,⊃, &,⊃,

* Specification same as OPA633AH.

NOTES: (1) Differential phase error in video transmission systems is the change in phase of a color subcarrier resulting from a change in picture signal from blanked to white. Differential gain error is the change in amplitude at the color subcarrier frequency resulting from a change in picture signal from blanked to white. (2) Recommended heat sinks for the TO-8 package are: Thermalloy 2204A with $\theta_{SA} = 27^{\circ}$ C/W and IERC Up TO-8-48CB, $\theta_{SA} = 10^{\circ}$ C/W.

CONNECTION DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

	Power Supply, ±Vs ±20V
	Input Voltage V_{IN}
,	Output Current (peak) ±200mA
	Internal Power Dissipation (25°C): TO-8 (H) 1.75W
	DIP (P) 1.95W
	Junction Temperature 200°C
	Storage Temperature Range: TO-865°C to +150°C
	DIP40°C to +85°C
	Lead Temperature (soldering, 60s) 300°C

MECHANICAL

TYPICAL PERFORMANCE CURVES

SMALL SIGNAL BANDWIDTH VS TEMPERATURE

31

TYPICAL PERFORMANCE CURVES (CONT)

0.5 1.5 2.0 1.0 Output Voltage (Vrms) TOTAL HARMONIC DISTORTION VS FREQUENCY

32

TYPICAL PERFORMANCE CURVES (CONT)

100

+125

INSTALLATION AND OPERATION

CIRCUIT LAYOUT

As with any high frequency circuitry, good circuit layout technique must be used to achieve optimum performance. A circuit-board layout is provided which demonstrates the principles of good layout. Most of the applications circuits shown can be evaluated using this circuit board.

Pinout of the TO-8 package version has been designed for maximum compatibility with other buffer amplifiers. Pins I and 12 are internally connected to $+V_s$. Pins 9 and 10 are internally connected to $-V_s$. This allows the OPA633 to be used in applications presently using the LH0033 buffer amplifier. Only one of the power supply connections for $+V_s$ and $-V_s$ must be connected for proper operation.

Power supply connections must be bypassed with high frequency capacitors. Many applications benefit from the use of two capacitors on each power supply—a ceramic capacitor for good high frequency decoupling and a tantalum type for lower frequencies. They should be located as close as possible to the buffer's power supply pins. A large ground plane is used to minimize high frequency ground drops and stray coupling.

The case of the TO-8 package is connected to pin 2, which should be grounded. Pin 6 of the DIP package connects to the substrate of the integrated circuit and should be connected to ground. In principle it could also be connected to $+V_s$ or $-V_s$, but ground is preferable. The additional lead length and capacitance associated with sockets may present problems in applications requiring the highest fidelity of high speed pulses.

Depending on the nature of the input source impedance, a series input resistor may be required for best stability. This behavior is influenced somewhat by the load impedance (including any reactive effects). A value of 50Ω to 200Ω is typical. This resistor should be located close to the OPA633's input pin to avoid stray capacitance at the input which could reduce bandwidth (see Gain and Phase Versus Frequency curve).

OVERLOAD CONDITIONS

The input and output circuitry of the OPA633 are not protected from overload. When the input signal and load characteristics are within the device's capabilities, no protection circuitry is required. Exceeding device limits can result in permanent damage.

The OPA633's small package and high output current capability can lead to overheating. The internal junction temperature should not be allowed to exceed 150°C. Although failure is unlikely to occur until junction temperature exceeds 200°C, reliability of the part will be degraded significantly at such high temperatures. External heat sinks can be used to reduce the temperature rise.

Since significant heat transfer takes place through the package leads, wide printed circuit traces to all leads will improve heat sinking. Sockets can reduce heat sinking significantly and thus are not recommended.

Junction temperature rise is proportional to internal power dissipation. This can be reduced by using the minimum supply voltage necessary to produce the required output voltage swing. For instance, 1V video signals can be easily handled with $\pm 5V$ power supplies thus minimizing the internal power dissipation.

Output overloads or short circuits can result in permanent damage by causing excessive output current. The 50Ω or 75Ω series output resistor used to match line impedance will, in most cases, provide adequate protection. When this resistor is not used, the device can be protected by limiting the power supply current. See "Protection Circuits."

Excessive input levels at high frequency can cause increased internal dissipation and permanent damage. See the safe input voltage versus frequency curves. When used to buffer an op amp's output, the input to the OPA633 is limited, in most cases, by the op amp. When high frequency inputs can exceed safe levels, the device must be protected by limiting the power supply current.

PROTECTION CIRCUITS

The OPA633 can be protected from damage, due to excessive currents, by the simple addition of resistors in series with the power supply pins (Figure 5a). While this limits output current, it also limits voltage swing with low impedance loads. This reduction in voltage swing is minimal for AC or high crest factor signals since only the average current from the power supply causes a voltage drop across the series resistor. Short duration load-current peaks are supplied by the bypass capacitors.

The circuit of Figure 5b overcomes the limitations of the previous circuit with DC loads. It allows nearly full output voltage swing up to its current limit of approximately 140mA. Both circuits require good high frequency capacitors (e.g., tantalum) to bypass the buffer's power supply connections.

CAPACITIVE LOADS

The OPA633 is designed to safely drive capacitive loads up to 0.01μ F. It must be understood, however, that rapidly changing voltages demand large output load currents:

$I_{LOAD} = (C_{LOAD}) dV/dt$

Thus a signal slew rate of $1000V/\mu s$ and load capacitance of $0.01\mu F$ demands a load current of 10A. Clearly maximum slew rates cannot be combined with large capacitive loads. Load current should be kept less than 100mA continuous (200mA peak) by limiting the rate of change of the input signal or reducing the load capacitance.

USE INSIDE A FEEDBACK LOOP

The OPA633 may be used inside the feedback path of an op amp such as the OPA606. Higher output current is achieved without degradation in accuracy. This approach may actually improve performance in precision applications by removing load-dependent dissipation from a precision op amp. All vestiges of load-dependent offset voltage and temperature drift can be eliminated with this technique. Since the buffer is placed within the feedback loop of the op amp, its DC errors will have a negligible effect on overall accuracy. Any DC errors contributed

by the buffer are divided by the loop gain of the op amp.

The low phase shift of the OPA633 allows its use inside the feedback loop of a wide variety of op amps. To assure stability, the buffer must not add significant phase shift to the loop at the gain crossing frequency of the circuit—the frequency at which the open loop gain of the op amp is equal to the closed loop gain of the application. The OPA633 has a typical phase shift of less than 10° up to 70MHz, thus making it useful-even with wideband op amps.

APPLICATIONS CIRCUITS

FIGURE 1. Dynamic Response Test Circuit.

FIGURE 2. Coaxial Cable Driver Circuit.

FIGURE 3. Precision High Current Buffer.

FIGURE 6. Prototype Circuit Board Layout.

OPA2111

NEW PACKAGE NOW AVAILABLE

Dual Low Noise Precision Difet® OPERATIONAL AMPLIFIER

FEATURES

- LOW NOISE: 100% tested: $8nV/\sqrt{Hz}$ max at 10kHz
- LOW BIAS CURRENT: 4pA max
- LOW OFFSET: 500µV max
- LOW DRIFT: 2.8µV/°C
- HIGH OPEN LOOP GAIN: 114dB min
- HIGH COMMON-MODE REJECTION: 96dB min

DESCRIPTION

The OPA2111 is a high precision monolithic **Difet** (dielectrically isolated FET) operational amplifier. Outstanding performance characteristics allow its use in the most critical instrumentation applications.

Noise, bias current, voltage offset, drift, open-loop gain, common-mode rejection, and power supply rejection are superior to BIFET[®] amplifiers.

Very-low bias current is obtained by dielectric isolation with on-chip guarding.

Laser trimming of thin-film resistors gives very-low offset and drift. Extremely-low noise is achieved with new circuit design techniques (patent pending). A new cascode design allows high precision input specifications and reduced susceptibility to flicker noise.

Standard dual op-amp pin configuration allows upgrading of existing designs to higher performance levels.

BIFET® National Semiconductor Corp., Difet ® Burr-Brown Corp.

APPLICATIONS

- PRECISION INSTRUMENTATION
- DATA ACQUISITION
- TEST EQUIPMENT
- PROFESSIONAL AUDIO EQUIPMENT
- MEDICAL EQUIPMENT
- DETECTOR ARRAYS

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

SPECIFICATIONS

ELECTRICAL

At $V_{cc} = \pm 15 \text{VDC}$ and $T_A = +25^{\circ}\text{C}$ unless otherwise noted.

		0	PA2111A	м	0	PA2111B	M	0	PA2111S	м	OP,	A2111KM	/KP	
PARAMETER	CONDITIONS	MIN	ТҮР	МАХ	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
INPUT														
NOISE Voltage, $f_0 = 10Hz$ $f_0 = 100Hz$ $f_0 = 1kHz$ $f_0 = 10kHz$	Max: 100% tested Max: 100% tested Max: 100% tested		40 15 8 6	80 40 15 8		30 11 7 6	60 30 12 8		40 15 8 6	80 40 15 8		40 15 8 6		nV/√Hz nV/√Hz nV/√Hz nV/√Hz
	00 00 00		0.7 1.6 15 0.8	1.2 3.3 24 1.3		0.6 1.2 12 0.6	1.0 2.5 19 1.0		0.7 1.6 15 0.8	1.2 3.3 24 1.0		0.7 1.6 15 0.8		μV, rms μV, p-p fA, p-p fA/√Hz
OFFSET VOLTAGE ¹²¹ Input Offset Voltage Average Drift Match Supply Rejection	$V_{CM} = 0VDC$ $T_A =: T_{MIN}$ to T_{MAX}	90	±0.1 ±2 ±1 110 ±3	±0.75 ±6 ±31	96	$\pm 0.05 \\ \pm 0.5 \\ \pm 0.5 \\ 110 \\ \pm 3 \\ 100$	±0.5 ±2.8 ±16	90	±0.1 ±2 2 110 ±3	±0.75 ±6 ±31	86	±0.3 ±8 2 110 ±3	±2 ±15 ±50	mV μV/°C μV/°C dB μV/V
BIAS CURRENT ⁽²⁾ Initial Bias Current Match	$V_{CM} = 0VDC$		±2 ±1	±8		±1.2 ±0.5	±4		±2 ±1	±8		±3 2	±15	ав pA pA
OFFSET CURRENT ⁽²⁾ Input Offset Current	V _{CM} = 0VDC		±1.2	±6		±0.6	±3		±1.2	±6		±3	±12	рА
IMPEDANCE Differential Common-Mode			10 ¹³ 1 10 ¹⁴ 3			10 ¹³ 1 10 ¹⁴ 3			10 ¹³ 1 10 ¹⁴ 3			10 ¹³ 1 10 ¹⁴ 3		Ω∥pF Ω∥pF
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	$V_{IN} = \pm 10 VDC$	±10 90	±11 110	±10	±11 96	110	±10	±11 90	110		±10 82	±11 110		V dB
OPEN-LOOP GAIN, DC														
Open-Loop Voltage Gain Match	$R_L \ge 2k\Omega$	110	125 3		114	125 2		110	125 3		106	125 3		dB dB
FREQUENCY RESPONSE														
Unity Gain, Small Signal Full Power Response Slew Rate Settling Time, 0.1% 0.01% Overload Recovery, 50% Overdriue ³¹	$20V p-p, R_L = 2k\Omega$ $V_0 = \pm 10V, R_L = 2k\Omega$ $Gain = -1, R_L = 2k\Omega$ $10V step$ $Gain = -1$	16 1	2 32 2 6 10		16 1	2 32 6 10		16 1	2 32 6 10			2 32 2 6 10 5		MHz kHz V/μs μs μs
RATED OUTPUT								L			ا ــــــــــــــــــــــــــــــــــــ			
Voltage Output Current Output Output Resistance Load Capacitance Stability Short Circuit Current	$\label{eq:relation} \begin{split} R_L &= 2k\Omega \\ V_0 &= \pm 10VDC \\ DC, open loop \\ Gain &= +1 \end{split}$	±11 ±5 10	±12 ±10 100 1000 40		±11 ±5 10	±12 ±10 100 1000 40		±11 ±5	±12 ±10 100 1000 40		±11 ±5 10	±12 ±10 100 1000 40		V mA Ω pF mA
POWER SUPPLY														
Rated Voltage Voltage Range, Derated Performance Current, Quiescent	I ₀ = 0mADC	±5	±15 5	±18 7	±5	±15 5	±18 7	±5	±15` 5	±18 7	±5	±15 5	±18 9	VDC VDC mA
TEMPERATURE RANGE														
Specification Operating Storage & Junction-Ambient	Ambient temp. Ambient temp. Ambient temp.	25 55 65	200	+85 +125 +150	-25 -40 -65	200	+85 +85 +150	-55 -55 -65	200	+125 +125 +150	0 -40 -40	200(4)	+70 +85 ·+85	°C °C °C °C/W

.

NOTES: (1) Sample tested—maximum parameters are guaranteed. (2) Offset voltage, offset current, and bias current are measured with the units fully warmed up. (3) Overload recovery is defined as the time required for the output to return from saturation to linear operation following the removal of a 50% input overdrive. (4) Typical $\theta_{J-A} = 150^{\circ}$ C/W for plastic DIP.

ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)

At $V_{cc} = \pm 15$ VDC and $T_A = T_{MIN}$ to T_{MAX} unless otherwise noted.

		0	PA2111A	M	0	PA21118	M	0	PA21115	M	OPA2111KM/KP			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
TEMPERATURE RANGE			•		•					L				
Specification Range	Ambient temp.	-25		+85	-25		+85	-55		+125	0		+70	°C
INPUT										1				
OFFSET VOLTAGE ⁽¹¹⁾ Input Offset Voltage Average Drift Match Supply Rejection	V _{CM} = 0VDC	86	±0.22 ±2 1 100 ±10	±1.2 ±6 ±50	90	±0.08 ±0.5 0.5 100 ±10	±0.75 ±2.8 ±32	86	±0.3 ±2 2 100 ±10	±1.5 ±6 ±50	82	±0.9 ±8 2 100 ±10	±5 ±15 ±80	mV μV/°C μV/°C dB μV/V
BIAS CURRENT ⁽¹⁾ Initial Bias Current Match	V _{CM} = 0VDC		±125 60	±1nA		±75 30	±500		±2.0nA 1nA	±16.3nA		±125	±500	рА pA
OFFSET CURRENT ⁽¹⁾ Input Offset Current	V _{CM} = 0VDC		±75	±750		±38	±375		±1.3nA	±12nA		±75	±375	pА
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	$V_{IN} = \pm 10 VDC$	±10 86	±11 100		±10 90	±11 100		±10 86	±11 100		±10 80	±11 100		V dB
OPEN-LOOP GAIN, DC	·····	•		· · ·										
Open-Loop Voltage Gain Match	$R_L \ge 2k\Omega$	106	120 5		110	120 . 3		106	120 5		100	120 5		dB dB
RATED OUTPUT	**************************************													
Voltage Output Current Output Short Circuit Current	$\label{eq:RL} \begin{array}{l} R_{L} = 2k\Omega \\ V_{O} = \pm 10VDC \\ V_{O} = 0VDC \end{array}$	±10.5 ±5 10	±11 ±10 40		±10.5 ±5 10	±11 ±10 40		±10.5 ±5 10	±11 ±10 40		±10.5 ±5 10	±11 ±10 40		V mA mA
POWER SUPPLY							•							
Current, Quiescent	Io = 0mADC	N	5	8		5	8		5	8		5	10	mA

NOTES: (1) Offset voltage, offset current, and bias current are measured with the units fully warmed up.

CONNECTION DIAGRAMS

ORDERING INFORMATION

Basic model ńumber	<u>OPA2111 () ()</u>
Performance grade A, B = -25° C to $+85^{\circ}$ C S = -55° C to $+125^{\circ}$ C K = 0° C to $+70^{\circ}$ C	
Package Code M = TO-99 metal can P = Plastic DIP	

ABSOLUTE MAXIMUM RATINGS

$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Junction Temperature

MECHANICAL

TYPICAL PERFORMANCE CURVES

VOLTAGE AND CURRENT NOISE SPECTRAL DENSITY vs TEMPERATURE

NOTE:

Refer to complete data sheet PDS-540 for complete typical curves and applications information.

Low Power High Accuracy INSTRUMENTATION AMPLIFIER

FEATURES

- LOW QUIESCENT CURRENT: 750µA, max
- INTERNAL GAINS: X 1, 10, 100, 1000
- LOW GAIN DRIFT: 5ppm/°C, max
- HIGH CMR: 90dB, min
- LOW OFFSET VOLTAGE DRIFT: 2μV/°C, max
- LOW OFFSET VOLTAGE: 100µV, max
- LOW NONLINEARITY: 0.01%, max
- HIGH INPUT IMPEDANCE: 10¹⁰Ω
- LOW COST

DESCRIPTION

The INA102 is a high-accuracy monolithic instrumentation amplifier designed for signal conditioning applications where low quiescent power is desired. On-chip thin-film resistors provide excellent temperature and stability performance. State-of-the-art laser trimming technology insures high gain accuracy and common-mode rejection while avoiding expensive external components. These features make the INA102 ideally suited for battery powered and high volume applications.

The INA102 is also convenient to use. A gain of 1, 10, 100, or 1000 may be selected by simply strapping the appropriate pins together. $Sppm/^{\circ}C$ gain drift in low gains can then be achieved without external adjustment. When higher than specified CMR is required, CMR can be trimmed using the pins provided. In addition, balanced filtering can be accomplished in the output stage.

APPLICATIONS

 AMPLIFICATION OF SIGNALS FROM SOURCES SUCH AS: Strain Gauges

INA102

- Thermocouples RTDs
- REMOTE TRANSDUCER AMPLIFIER
- LOW LEVEL SIGNAL AMPLIFIER
- MEDICAL INSTRUMENTATION
- MULTICHANNEL SYSTEMS
- BATTERY POWERED EQUIPMENT

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

SPECIFICATIONS

 $\label{eq:Electrical} \begin{array}{l} \textbf{ELECTRICAL}\\ At \ T_A = +25^\circ C \ \text{with } \pm 15 \text{VDC} \ \text{power supply and in circuit of Figure 2 unless otherwise noted.} \end{array}$

MODEL		INA102AG				IN	A102CG	I			
	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
GAIN											
Range of Gain		1		1000	•		• .	•		1000	V/V
Gain Equation			G = 1 +			•			•		V/V
From DC: $G = 1$	T. = +25°C		(40k/R ₆)'''	0.1			0.05			0 15	96
G = 10	$T_A = +25^{\circ}C$			0.1			0.05			0.35	%
G = 100	$T_A = +25^{\circ}C$			0.25			0.15			0.4	%
G = 1000	$T_A = +25^{\circ}C$			0.75			0.5			0.9	%
G = 1 G = 10	$I_A = I_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX}			0.16			0.08			0.21	%
G = 100	$T_A = T_{MIN}$ to T_{MAX}			0.37			0.21			0.52	%
G = 1000	$T_{\text{A}}=T_{\text{MIN}} \text{ to } T_{\text{MAX}}$			0.93			0.62			1.08	%
Gain Temp. Coefficient				10			5			. I	0000/00
G = 10				15			10			•	ppm/°C
G = 100				20			15			•	ppm/°C
G = 1000	T _ 10000			30			20			•	ppm/°C
Nonlinearity, DC: G = 1 G = 10	$I_A = +25^{\circ}C$ $T_A = +25^{\circ}C$			0.03			0.01				% of FS
G = 100	T _A = +25°C			0.05			0.02			•	% of FS
G = 1000	$T_A = +25^{\circ}C$			0.1			0.05			•	% of FS
G = 1	$T_A = T_{MIN}$ to T_{MAX}			0.045			0.015			:	% of FS
G = 10 G = 100	$T_A = T_{MIN}$ to T_{MAX}			0.045			0.015			•	% of FS
G = 1000	$T_A = T_{MIN}$ to T_{MAX}			0.15			0.1			•	% of FS
RATED OUTPUT	Lucano										
Voltage	$R_{L} = 10k\Omega$	±(Vcc - 3.5)			•	•		$\pm(V_{cc} - 2.5)$			v
Current		±1			•			•			mA
Short-Circuit Current			2			•			•		mA
Output Impedance: G = 1000		L	0.1		L	L*	L	l	•		Ω
INPUT		·		U			· · · · · · · · · · · · · · · · · · ·			Г	
OFFSET VOLTAGE	T - 10000			+200 + 200/C			+100 + 000/0			+400 + 700/0	
vs Temperature	$I_A = +25 °C$			±300 ±300/G	1		±100 ±200/G +2 +5/G	1		±400 ±700/G	μν μγ/°C
vs Supply				±40 ±50/G			±10 ±20/G			•	μν/ν
vs Time			±(20 + 30/G)			•			٠		μV/mo
BIAS CURRENT											
Initial Bias Current (each input)	$T_{\text{A}}=T_{\text{MIN}} \text{ to } T_{\text{MAX}}$			50		6	30		•	•	nA
vs Temperature			±0.1			:			:		nA/°C
Initial Offset Current	TA = THIN TO THAT		±0.1 ±2.5	±15		±2.5	±10		•	•	nA
vs Temperature			±0.1			•			٠		nA/°C
IMPEDANCE											
Differential			10 ¹⁰ 2			1:1			:		Ω∥pF
Common-mode			10"" 2						<u> </u>		12 pr
VOLTAGE RANGE	T T to T	+(1)(a) = 2.5)		· ·	۱.			$\pm (V_{ab} - 2.5)$			v
CMR with 1kΩ Source Imbalance	TA - TMIN TO TMAX	±(1vcc) = 3.5)			<u>`</u> ۱			-(1 vcc1 - 2.5)			[*]
G = 1	DC to 60Hz	80	94		90	94		60	84		dB
G = 10	DC to 60Hz	80	100		90	•		·	•		dB
G = 10 to 1000	DC to 60Hz	80	100		90	100		· ·	•		dB
NOISE					1						
$f_{\rm fa} = 0.01 \text{Hz}$ to 10Hz			01						•		μV, D-D
Density, G = 1000								1			
$f_0 = 10Hz$			30			<u> </u>		1	:		nV/√Hz
$f_0 = 100Hz$ $f_0 = 1kHz$			25			:					nV/VHz
Input Current Noise			. 20					1			
$f_{B} = 0.01$ Hz to 10Hz			25			•		1	•		pA, p-p
Density: $f_0 = 10Hz$			0.3			:		1	:		pA/√Hz
$t_0 = 100Hz$ $t_0 = 1kHz$			0.2			:		1			pA/VHZ pA/VHz
			0.10	I	I			L	L	1	1
Stramo Response	V = 0.1V				· · ·			r			
G = 1	VOUT = 0.1VIMS		300						•		kHz
G = 10		· ·	30			•		1	•		kHz
G = 100			3			•		1	1:	· ·	kHz
	V		0.3			•		1	•		^{kHz}
G = 1	VOUT = 0.1VIMS		30					1	•	·	kHz
G = 10		· 1	3			•			•		kHz
G = 100			0.3			•		1	1.	1	kHz
G = 1000	V - 10V D - 10' C		0.03		Ι.	:	,		1:		kHz
Slew Rate, G = 1 to 100	$v_{OUT} = 10V$, $H_L = 10k\Omega$ $V_{OUT} = 10V$, $R_1 = 10k\Omega$	0.1	2.5 0,15		:			1	· ·		V/µsec
Settling Time, 0.1%:	$R_L = 10k\Omega$, $C_L = 100pF$									1	
G = 1	10V step		50			•		· ·	1:	1	µsec
G = 100 G = 1000			360			:		1	:		µsec µsec
Settling Time, 0.01%: G = 1	10V step		60			•			•		µsec
G = 100			500			•			•		µsec
G = 1000			4500		1	•		1	1 *	1	μsec

ELECTRICAL (CONT)

MODEL		INA102AG			INA102CG			INA102KP			
	CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
POWER SUPPLY					•						
Rated Voltage Voltage Range Quiescent Current ⁽³⁾	$V_{o} = 0V,$ T _A = T _{MIN} to T _{MAX}	±3.5	±15 ±500	±18 ±750	•		*	*	•	*	ν ν μΑ
TEMPERATURE RANGE			-								
Specification Operation Storage		25 25 65		+85 +85 +150	:		* * *	0 * 55		+70 * +125	°C °C °C

*Specifications same as for INA102AG.

NOTES: (1) The internal gain set resistors have an absolute tolerance of ±20%; however, their tracking is 50ppm/°C. Ro will add to the gain error if gains other than 1, 10, 100 or 1000 are set externally. (2) Adjustable to zero at any one time.

MECHANICAL

ABSOLUTE MAXIMUM RATINGS

Supply ±	18V
Input Voltage Range	Vcc
Operating Temperature Range25°C to +8	5°C
Storage Temperature Range: Ceramic65°C to +15	0°C
Plastic55°C to +12	5°C
Lead Temperature (soldering 10 seconds)	0°C
Output Short-Circuit Duration Continuous to gro	und

ORDERING INFORMATION

PIN CONFIGURATION

.025 .050

INA106

Precision Fixed-Gain DIFFERENTIAL AMPLIFIER

FEATURES

- FIXED GAIN, A = 10
- CMR 100dB min over temp
- NONLINEARITY 0.001% max
- NO EXTERNAL ADJUSTMENTS REQUIRED
- EASY TO USE
- COMPLETE SOLUTION
- HIGHLY VERSATILE
- LOW COST
- TO-99 HERMETIC METAL AND LOW COST PLASTIC PACKAGES

DESCRIPTION

The INA106 is a precision fixed-gain differential amplifier. As a monolithic circuit, it offers high reliability at low cost. It consists of a premium grade operational amplifier and an on-chip precision resistor network.

The INA106 is completely self-contained and offers the user a highly versatile function. No adjustments to gain, offset, and CMR are necessary. This provides three important advantages: (1) lower initial design engineering time, (2) lower manufacturing assembly time and cost, and (3) easy cost-effective field repair of a precision circuit.

APPLICATIONS

- DIFFERENTIAL AMPLIFIER, A = 10
- BASIC INSTRUMENTATION AMPLIFIER BUILDING BLOCK
- INVERTING AMPLIFIER, A = -10
- NONINVERTING AMPLIFIER, A = 10
- SUMMING AMPLIFIER, WEIGHTED
- ±100V CM `RANGE DIFFERENTIAL AMPLIFIER

International Airport Industrial Park 🔹 P.O. Box 11400 🔹 Tucson, Arizona 85734 🔹 Tel.: (602) 746-1111 🔹 Twx: 910-952-1111 🔹 Cable: BBRCORP 🔹 Telex: 66-6491

PDS-729A

SPECIFICATIONS

ELECTRICAL

At +25°C, $V_{cc} = \pm 15V$ unless otherwise noted.

		INA106AM				INA106BN	1				
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	МАХ	MIN	ТҮР	MAX	UNITS
GAIN Initial ⁽¹⁾ Error vs Temperature Nonlinearity ⁽²⁾			10 0.005 -4 0.0002	0.01 ±10 0.001		*	* *		* 0.01 *	0.025	V/V % ppm/°C %
OUTPUT Rated Voltage Rated Current Impedance Current Limit Capacitive Load	$I_0 = +20$ mA, -5 mA $E_0 = 10V$ To common Stable operation	10 +20, -5	12 0.01 +40/-10 1000		*	* * *		*	* * *		ν mA Ω mA pF
INPUT Impedance Voltage Range Common-mode Rejection ⁽³⁾	Differential Common-mode Differential Common-mode Ta = TMIN to TMAX	±1 ±11 94	10 110 100		* * 100	* * 106	-	* * 86	*		kΩ kΩ V V dB
OFFSET VOLTAGE Initial vs Temperature vs Supply vs Time	$RTI^{(4)}$ $\pm V_{cc} = 6V \text{ to } 18V$		50 0.2 1 10	100 5 10		* * *	* 2 *		*	200	μV μV/°C μV/V μV/mo
$\begin{array}{l} \textbf{OUTPUT NOISE VOLTAGE} \\ F_B = 0.01 Hz \ to \ 10 Hz \\ F_o = 10 kHz \end{array}$	RTI ⁽⁵⁾		1 30			*			*		μV p-p nV/√Hz
DYNAMIC RESPONSE Gain Bandwidth Full Power BW Slew Rate Settling Time: 0.1% 0.01% 0.01%	$-3dB$ $V_{o} = 20V p - p$ $V_{o} = 10V step$ $V_{o} = 10V step$ $V_{CM} = 10V step, V_{DIFF} = 0V$	30 2	5 50 3 5 10 5		*	* * * *		*	* * * *		MHz kHz V/μs μs μs μs
POWER SUPPLY Rated Voltage Range Quiescent Current	Derated performance V _{OUT} = 0V	±5	· ±15 ±1.5	±18 ±2	*	*	*	•	*	*	V V mA
TEMPERATURE RANGE Specification Operation Storage		25 55 65		+85 +125 +150	*		*	0 25 40		+70 +85 +85	ာ သို့

* Specification same as for INA106AM.

NOTES: (1) Connected as difference amplifier (see Figure 4). (2) Nonlinearity is the maximum peak deviation from the best-fit straight line as a percent of full-scale peak-to-peak output. (3) With zero source impedance (see Maintaining CMR section). (4) Includes effects of amplifier's input bias and offset currents. (5) Includes effects of amplifier's input current noise and thermal noise contribution of resistor network.

MECHANICAL

PIN DESIGNATIONS

ORDERING INFORMATION

	<u>INA106 X X</u>
Basic Model Number	
Performance Grade	
A, B: -25°C to +85°C	
K: 0°C to +70°C	
Package Code	
M: TO-99 metal can	
P: 8-pin mini plastic DIP	

PIN DESIGNATIONS

ABSOLUTE MAXIMUM RATINGS

Supply
Input Voltage Range ±Vcc
Operating Temperature Range: M55°C to +125°C
P40°C to +85°C
Storage Temperature Range65°C to +125°C
Lead Temperature (soldering 10 seconds) +300°C
Output Short Circuit to Common Continuous

TYPICAL PERFORMANCE CURVES $T_A = 25^{\circ}C$, $\pm V_{CC} = 15V$ unless otherwise noted.

SMALL SIGNAL RESPONSE

Time (µs)

TOTAL HARMONIC DISTORTION AND NOISE VS FREQUENCY

TYPICAL PERFORMANCE CURVES (CONT)

 $T_{A}=+25^{\circ}C,\,V_{CC}=\pm15VDC$ unless otherwise noted.

DISCUSSION OF PERFORMANCE

BASIC POWER SUPPLY AND SIGNAL CONNECTIONS

Figure 1 shows the proper connections for power supply and signal. Supplies should be decoupled with $l\mu F$ tantalum capacitors as close to the amplifier as possible. To avoid gain and CMR errors introduced by the external circuit, connect grounds as indicated, being sure to minimize ground resistance.

FIGURE 1. Basic Power Supply and Signal Connections.

OFFSET ADJUSTMENT

Figure 2 shows the offset adjustment circuit for the INA106. This circuit will allow ± 3 mV of adjustment and will not affect the gain accuracy or CMR.

FIGURE 2. Offset Adjustment.

MAINTAINING COMMON-MODE REJECTION

Two factors are important in maintaining high CMR: (1) resistor matching and tracking (the internal INA106 circuitry does this for the user) and (2) source impedance including its imbalance.

Referring to Figure 1, the CMR depends upon the match of the internal R_4/R_3 ratio to the R_1/R_2 ratio. A CMR of 106dB requires resistor matching of 0.005%. To maintain 100dB, minimum CMR to +85°C, the resistor TCR tracking must be better than 2ppm/°C. These accuracies are difficult and expensive to reliably achieve with discrete components.

Any source impedance adds directly to the input resistors, R₁ and R₃, and will degrade DC and AC CMR. Likewise any wiring resistance adds directly to any of the precision difference resistors. A resistance of 0.5Ω (0.005% of 10k Ω) will degrade the 106dB CMR of the INA106; 5 Ω will degrade the CMR to 86dB.

When input filters are used preceding an instrumentation amplifier, care should also be taken to match RCs on the two input lines. For example, mismatched input filters for high frequencies will reduce the CMR at lower frequencies, e.g, 60Hz. Differential filters will not degrade AC CMR.

RESISTOR NOISE IN THE INA106

Figure 3 shows the model for calculating resistor noise in the INA106. Resistors have Johnson noise resulting from thermal agitation. The expression for this noise is:

$$E_{RMS} = \sqrt{4KTRB}$$

Where:
$$K = Boltzman's constant (J/°K)$$

- T = Absolute temperature (°K)
 - $\mathbf{R} = \operatorname{Resistance}\left(\Omega\right)$
 - B = Bandwidth (Hz)

FIGURE 3. Resistor Noise Model.

At room temperature, this noise becomes:

$$E_N = 1.3^{-10} \sqrt{R}$$
 (V/ \sqrt{Hz})
The three noise sources in Figure 2 are:
 $E_{N1} = 1.3^{-10} (R_2/R_1) \sqrt{R_1}$

$$\begin{split} E_{N2} &= 1.3^{-10} \sqrt{R_2} \\ E_{N3} &= 1.3^{-10} (1 + R_2/R_1) \sqrt{R_3 ||R_4|} \end{split}$$

Adding as the root of the sums squared,

$$E_{NO} = 193 \text{nV} \sqrt{\text{Hz}}$$

RTI, with
$$A = 10$$

$$E_{\rm NI} = 19.3 \, {\rm nV} / \sqrt{{\rm Hz}}$$

For example,

E_{NO} within a

 $600 kHz \; BW \; = 0.15 mV_{RMS}$

= 0.9mVp-p with a crest factor of 6 (statistically includes 99.7% of all noise peak occurrences)

This is the noise due to the resistors alone. It is included in the noise specification of the INA106.

APPLICATIONS CIRCUITS

The INA106 is ideally suited for a wide range of circuit functions. The following figures show many applications circuits.

FIGURE 4A. Precision Difference Amplifier.

FIGURE 4B. Difference Amplifier With Gain And CMR Adjust.

For the ultimate performance high gain instrumentation amplifier, the INA106 can be combined with state-of-the-art op amps. For low source impedance applications, an input stage using OPA37s will give the best low noise, offset, and temperature drift. At source impedances above about 10kΩ, the bias current noise of the OPA37 reacting with the input impedance begins to dominate the noise. For these applications, using an OPA111 or a dual OPA2111 FET input op amp will provide lower noise. For an electrometer grade IA, use the OPA128. (See table below.)

Using the INA106 for the difference amplifier also extends the input common-mode range of the instrumentation amplifier to \pm 10V. A conventional IA with a unity-gain difference amplifier has an input common-mode range limited to \pm 5V for an output swing of \pm 10V. This is because a unity-gain difference amp needs \pm 5V at the input for 10V at the output, allowing only 5V additional for common mode.

A1, A2	R 1 (Ω)	R₂ (kΩ)	Gain (V/V)	CMRR (dB)	I _b (pA)	Noise at 1kHz (nV/√Hz)
OPA37A	50.5	2.5	1000	128	40000	4
OPA111B	202	10	1000	110	1	10
OPA128LM	202	10	1000	118	0.075	38

FIGURE 5. Precision Instrumentation Amplifier.

FIGURE 6. Precision Inverting Amplifier with Gain of -10.

FIGURE 7. Precision Noninverting Amplifier with Gain of 10.

FIGURE 8. Precision Noninverting Amplifier with Gain of 11.

FIGURE 9. Precision Summing Amplifier with Weighted Inputs.

FIGURE 10. Voltage Follower with Input Protection.

FIGURE 11. Differential-Input, Low-Impedance, Microphone Preamplifier (20dB gain).

The body, body, body, body the body the body the body the body to be body the bo

FIGURE 12. Precision Attenuator.

and gain adjustments interact. See Figure 14. FIGURE 13. ±100V Common-Mode Range Difference Amplifier.

of the INA106, which is specified in a gain of 10. Gain accuracy is set strictly by the R₅, R₆ ratio and the initial gain accuracy of the INA106 (A = 1 + R₆/R₅ ± .01%). CMR can be adjusted by adding a 10Ω resistor in series with R₁ (pin 2) and a 20Ω pot in series with R₃ (pin 2). Gain and CMR adjustments do not interact.

FIGURE 14. $\pm 100V$ Common-Mode Range Difference Amplifier Requiring No Adjustments.

Fast-Settling FET-Input Very High Accuracy INSTRUMENTATION AMPLIFIER

FEATURES

- LOW BIAS CURRENT: 50pA, max
- FAST SETTLING: 4µs to 0.01%
- HIGH CMR: 106dB, min; 90dB at 10kHz
- CONVENIENT INTERNAL GAINS: 1, 10, 100, 200, 500
- VERY-LOW GAIN DRIFT: 10 to 50ppm/°C
- LOW OFFSET DRIFT: 2µV/°C
- LOW COST
- PINOUT COMPATIBLE WITH AD524 AND AD624, allowing upgrading of many existing applications

APPLICATIONS

 Fast scanning rate multiplexed input data acquisition system amplifier

INA110

- Fast differential pulse amplifier
- High speed, low drift gain block
- Amplification of low level signals from high impedance sources and sensors
- Instrumentation amplifier with input low pass filtering using large series resistors
- Instrumentation amplifier with overvoltage input protection using large series resistors
- Amplification of signals from strain gauges, thermocouples, and RTDs

* Connect to R₆ for desired gain.

DESCRIPTION

The INA110 is a monolithic FET input instrumentation amplifier with a maximum bias current of 50pA. The circuit provides fast settling of 4μ s to 0.01%. Laser trimming guarantees exceptionally good DC performance. Voltage noise is low, and current noise is virtually zero. Internal gain set resistors guarantee high gain accuracy and low gain drift. Gains of 1, 10, 100, 200, and 500 are provided.

The inputs are inherently protected by P-channel FETs on each input. Differential and commonmode voltages should be limited to $\pm V_{cc}$. When severe overvoltage exists, use diode clamps as shown in the application section.

The INA110 is ideally suited for applications requiring large input resistors for overvoltage protection or filtering. Input signals from high source impedances can easily be handled without degrading DC performance. Fast settling for rapid scanning data acquisition systems is now achievable with one component, the INA110.

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

PDS-645A 53

SPECIFICATIONS

ELECTRICAL

At +25°C, $\pm V_{CC} = 15$ VDC, $R_L = 2k\Omega$ unless otherwise noted.

			INA110AG			A110BG/S	G	IN	A110KP/K	U	
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
GAIN		·									
Range of Gain		1		800	*		*	* 1	l	•	V/V
Gain Equation ⁽¹⁾					G = 1 +	- [40K/(R _g	+ 50Ω)]				V/V
Gain Error, DC: $G = 1$			0.002	0.04		*	0.02		*		%
G = 10 G = 100			0.07	0.1		0.005	0.05				% %
G = 200			0.04	0.4		0.02	0.2		• •	· •	%
G = 500			0.1	1.0		0.05	0.5		• -	•	%
Gain Temp. Coefficient: G = 1			±3	±20		*	±10		•		ppm/°C
G = 10 G = 100			14 +6	±20 +40		±2 +3	±10 +20				ppm/°C
G = 200			±10	±60		±5	±30		•		ppm/°C
G = 500			±25	±100		±10	±50		•		ppm/°C
Nonlinearity, DC: $G = 1$			±0.001	±0.01		±0.0005	±0.005		*	*	% of FS
G = 10 G = 100			+0.002	+0.02		+0.001	±0.005 +0.01				% of FS
G = 200			±0.004	±0.02		±0.002	±0.01		•	•	% of FS
G = 500			±0.01	±0.04		±0.005	±0.02		•	•	% of FS
OUTPUT											
Voltage, $R_L = 2k\Omega$	Over temp	±10	±12.7		*	*		+	+		v
Current	Over temp	±5	±25		*	*		•	•		mA
Short-Circuit Current			±25			*			•		mA
Capacitive Load	Stability		5000			•					P⊦
INPUT							·				
OFFSET VOLTAGE											
Initial Offset: G, P			±(100 +	±(500 +		±(50 +	±(250 + 3000/G)		•		μv
U			1000/04)	5000/G)		000/CI)	3000/04)		±(200 +	±(1000+	μV
						•			2000/G)	,5000/G)	
vs Temperature			±(2 +	±(5 +		±(1+	±(2+		•		μV/°C
ve Supply	$V_{-} = \pm 6 V_{-} t_{0}$		20/G)	100/G)		10/G)	50/G) +(10 +				
vs Suppry	±18V		±(4 + 60/G)	100/G		30/G)	180/G)				μν/ν
BIAS CURRENT			·			······					
Initial Bias Current	Each input		20	100		10	50				pА
Initial Offset Current			2	50		1	25		•	•	pА
Impedance: Differential	(5×10 ¹² 6			*					Ω∥pF
Common-Mode			22.10 1				•				Ω∥p⊢
VOLTAGE RANGE	V_{IN} Diff. = $0V^{0}$	+10	+12					÷		ļ	v
CMR with 1kΩ Source Imbalance:		110	1 12	, i	,		:				, i
G = 1	DC	70	90		80	100		*	• •		dB
G = 10	DC	87	104		96	112		•			dB
G = 100 G = 200	DC	100	110		106	116					dB
G = 500	DC	100	110	l .	106	116	· ·				dB
NOISE Input ⁽⁴⁾											
Voltage, $f_0 = 10 \text{kHz}$	•		10			•			*		nV/√Hz
$f_B = 0.1Hz$ to $10Hz$	i		1	i.		•			+		µVp-p
Current, $f_0 = 10 \text{kHz}$			1.8			•			•		fA∕√Hz
NOISE, Output "Voltage $f_0 = 10 \text{kHz}$			65						•		
$f_B = 0.1Hz$ to 10Hz			8	- ·		•					μVp-p
DYNAMIC RESPONSE	1					L	I				
Small Signal: G = 1	3dB		2.5			*		·	+		MHz
G = 10			2.5			*			· •		MHz
G = 100			470						•		kHz
G = 200			240					ł		1	KHZ
G = 500	$V_{OUT} = \pm 10V$		100		1	ļ .		1			N174
	$R_L = 2k\Omega$	190	270		•.	•				1	kHz
Slew Rate	G = 1 to 100	12	.17]	*	.*			*		V/µs
Settling Time:	V - 00V-1-							1			
0.1%, G = 1 G = 10	$v_0 = 20V$ step		4			1		1	.	1	µs µs
G = 100		l	3		l	•		l	•	1	μs
G = 200	1		5		•	+	1	l ·	*	1 .	μs
G = 500	1		11	1	1	1 *	1	í (1 *	1	μs

ELECTRICAL (CONT)

			INA110AG			NA110BG/S	G	11	A110KP/K	U	
PARAMETER	CONDITIONS	MIN	ТҮР	МАХ	MIN	ТҮР	МАХ	MIN	ТҮР	MAX	UNITS
Settling Time:											
0.01%, G = 1	Vo = 20V step		5	12.5		*	*		*		μs
G = 10			3	7.5		*	*		*		μs
G = 100			4	7.5		*	*		*		μs
G = 200 ·			7	12.5		*	*		*		μs
G = 500			16	25		*	*		*		μs
Overload Recovery ⁽⁵⁾	50% overdrive		1						*		μs
POWER SUPPLY											
Rated Voltage			±15			*			*		V
Voltage Range		±6		±18	*		*	+		*	v
Quiescent Current	$V_0 = 0V$		±3.0	±4.5		*	*		*	*	mA
TEMPERATURE RANGE											
Specification: A, B, K		-25		+85	*		*	0		+70	°C
S					-55		+125				°C
Operation		-55		+125	•		*	-25		+85	°C
Storage		-65		+150	*		*	-40		+85	°C
θ _{JA}			100			•			*		°C/W

* Same as INA110AG.

NOTES: (1) Gains other than 1, 10, 100, 200, and 500 can be set by adding an external resistor, R_G, between pin 3 and pins 11, 12, and 16. Gain accuracy is a function of R_G and the internal resistors which have a ±20% tolerance with 20ppm/°C drift. (2) Adjustable to zero. (3) For differential input voltage other than zero, see Typical Performance Curves. (4) V_{NOISE RT1} = $\sqrt{V_{N INPUT}^2 + (V_{N OUTPUT}/Gain)^2}$. (5). Time required for output to return from saturation to linear operation following the removal of an input overdrive voltage.

ORDERING INFORMATION

PIN CONFIGURATION

−In	1	16	×200
+In	2	15	Output Offset Adjust
RG	3	14	Output Offset Adjust
Input Offset Adjust	4	13	×10
Input Offset Adjust	5	12	×500
Reference	6	11	Output Sense
-Vcc	7	10	Output Sense
+V _{cc}	8	9	Output

ABSOLUTE MAXIMUM RATINGS

Supply ±18V Input voltage Range ±Vcc
Operating Temperature Range: G55°C to +125°C
P, U −25°C to +85°C
Storage Temperature Range: G65°C to +150°C
P, U40°C to +85°C
Lead Temperature (soldering 10s): G, P +300°C
(soldering 3s): U +260°C
Output Short-Circuit Duration Continuous to Common

MECHANICAL

INA117

ADVANCE INFORMATION Subject to Change

Precision High Common-Mode Voltage Unity-Gain DIFFERENTIAL AMPLIFIER

FEATURES

- HIGH COMMON-MODE RANGE: ±200VDC OR AC PEAK, continuous
- UNITY GAIN: 0.02% GAIN ERROR, max
- EXCELLENT NONLINEARITY: 0.001% max
- HIGH CMR: 86dB, min
- 8-PIN TO-99 OR PLASTIC DIP
- LOW COST

APPLICATIONS

- AC OR DC POWER LINE MONITORING
- TEST EQUIPMENT
- INDUSTRIAL PROCESS CONTROL
- GROUND BREAKER
- INDUSTRIAL DATA ACQUISITION SYSTEMS—INPUT Buffer with over-voltage protection

DESCRIPTION

The INA117 is a precision unity-gain differential amplifier offering an extremely high common-mode input voltage range. As a monolithic circuit, it offers high reliability at low cost. The INA117 consists of a premium grade operational amplifier with an onchip precision resistor network. In instances where an isolation amplifier is used for its inherent high common-mode capabilities and not for galvanic isolation, the INA117 may be substituted at substantially lower cost, especially since no costly isolation power supply is needed.

The INA117 is completely self-contained and offers the user a highly versatile function. No adjustments to gain, offset or CMR are needed. This provides three important advantages: lower initial design engineering time, lower manufacturing assembly time and cost, and easy, cost-effective field repair of a precision circuit.

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

PDS-748

SPECIFICATIONS

ELECTRICAL

At +25°C, $V_{cc} = \pm 15V$ unless otherwise noted.

		INA117AM		INA117BM			INA117P				
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
GAIN Initial ⁽¹¹⁾ Error vs Temperature Nonlinearity ⁽²⁾			1 0.01 2 0.0002	0.05 10 0.001		*	0.02 * *		* * *	* *	V/V % ppm/°C %
OUTPUT Rated Voltage Rated Current Impedance Current Limit Capacitive Load	$I_0 = +20mA, -5mA$ $E_0 = 10V$ To common Stable operation	10.0 +20, -5	12 0.01 +49, -13 1000		* *	* * * *		*	*		V mA Ω mA pF
INPUT Impedance Voltage Range Common-mode Rejection ⁽³⁾ vs Temperature: DC AC, 60Hz	Differential Common-mode Differential Common-mode, continuous T _A = T _{MIN} to T _{MAX}	±10 ±200 74 66 66	800 400 80 75 80		* 86 80 *	* * 94 90 94		*	* * * *		kΩ kΩ V VDC, ACpk dB dB dB
OFFSET VOLTAGE Initial vs Temperature vs Supply vs Time	$RTO^{(4)}$ $T_{A} = T_{MIN} \text{ to } T_{MAX}$ $\pm V_{CC} = 5V \text{ to } 18V$	74	120 8.5 90 200	1000 40	80	*	500 20		* * *	*	μV μV/°C μV/V μV/No
$\begin{array}{l} \textbf{OUTPUT NOISE VOLTAGE} \\ F_B = 0.01 Hz \ to \ 10 Hz \\ F_0 = 10 kHz \end{array}$	RTO ⁽⁵⁾		25 550			*			*		μV p-p nV/√Hz
DYNAMIC RESPONSE Gain Bandwidth Full Power Bandwidth Slew Rate Settling Time: 0.1% 0.01% 0.01%	$-3dB$ $V_0 = 20Vp-p$ $V_0 = 10V \text{ step}$ $V_0 = 10V \text{ step}$ $V_{CM} = 10V \text{ step}, V_{DIFF} = 0V$	30 2	200 2.6 6.5 10 4.5		*	*	-	**	* * * *		kHz kHz V/μs μs μs μs
POWER SUPPLY Rated Voltage Range Quiescent Current	Derated performance Vour = 0V	±5	±15 1.5	±18 2.0	*	*	*	•	*	*	V V mA
TEMPERATURE RANGE Specification Operation Storage		-25 -55 -65		+85 +125 +150	*		*	0 25 40		+70 +85 +85	ဝံ ဝံ ဝံ

*Specification same as for INA117AM.

NOTES: (1) Connected as difference amplifier. (2) Nonlinearity is the maximum peak deviation from the best-fit straight line as a percent of full-scale peak-topeak output. (3) With zero source impedance (see Offset and CMR section). (4) Includes effects of amplifier's input bias and offset currents. (5) Includes effects of amplifier's input current noise and thermal noise contribution of resistor network.

MECHANICAL

PIN DESIGNATIONS

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS

Supply ±22V
Input Voltage Range, Continuous ±200V
Common and Differential, Momentary, 10s ±500V
Operating Temperature Range: M55°C to +125°C
P40°C to +85°C
Storage Temperature Range65°C to +125°C
Lead Temperature (soldering 10s) +300°C
Output Short Circuit to Common Continuous

TYPICAL PERFORMANCE CURVES

 $T_{\text{A}}=+25^{\circ}\text{C},\,\pm\text{V}_{\text{CC}}=15\text{V}$ unless otherwise noted.

DISCUSSION OF SPECIFICATIONS

Refer to Figure 1. Resistor networks at the amplifier input divide the input voltages down to levels suitable for the operational amplifier's common-mode and differential signal capabilities. Feedback around the operational amplifier then restores overall circuit gain to unity for differential signals, while preserving high common-mode rejection.

BASIC POWER SUPPLY AND SIGNAL CONNECTIONS

Figure 1 also shows the proper connections for power supply and signal. Supplies should be decoupled with $l\mu F$ tantalum capacitors as close to the amplifier as possible. To avoid gain and CMR errors introduced by the external circuit, connect grounds as indicated, being sure to minimize ground resistance.

OFFSET AND COMMON-MODE REJECTION

Two factors are important in maintaining high CMR: resistor matching and tracking (already trimmed in the INA117 for the user) and source impedance.

CMR depends on the accurate matching of several resistor ratios. High accuracies needed to maintain the specified CMR and CMR temperature coefficient are difficult and expensive to reliably achieve with discrete components.

FIGURE 1. Basic Power Supply and Signal Connections.

Any external resistance imbalance adds directly to these resistor ratios. These imbalances can occur either directly in series with R_1 or R_3 or in series with R_4 or R_5 . For example, 4Ω added in series with pin 1 or 76Ω in series with pin 2 will degrade CMR from 86dB to 72dB.

When input filters are used preceding an instrumentation amplifier, care should also be taken to match RCs on the two input lines. For example, mismatched input filters for high frequencies will reduce the CMR at lower frequencies, e.g., 60Hz. Differential filters will not degrade AC CMR.

Figures 2a, b, and c show circuitry to allow trim of both CMR and DC offset. Use of these circuits will affect gain accuracy slightly.

FIGURE 2. CMR and Vos Adjustment.

RESISTOR NOISE IN THE INA117

Figure 3 shows the model for calculating resistor noise in the INA117. Resistors have Johnson noise resulting from thermal agitation. The expression for this noise is:

$$E_{RMS} = \sqrt{2\pi KTRB}$$

Where: K = Boltzman's constant (J/°K) T = Absolute temperature (°K) $R = Resistance (\Omega)$ B = Bandwidth (Hz)

At room temperature, this noise becomes:

$$E_N = 1.3 \times 10^{-10} \sqrt{R}$$
 (V/ \sqrt{Hz})

The two noise sources in Figure 3 are:

$$\begin{split} E_{N1} &= 1.3 \times 10^{-10} \sqrt{R_5} & (V/\sqrt{Hz}) \\ E_{N2} &= 1.3 \times 10^{-10} \sqrt{R_4} & (V/\sqrt{Hz}) \end{split}$$

Referred to output,

$$E_{NO1} = E_{N1} (R_2/R_5)$$

$$E_{NO2} = E_{N2} [(R_2/R_1 || R_5) + 1]$$

Adding as the root of the sums squared:

$$E_{NO} = \sqrt{E_{NO1}^2 + E_{NO2}^2}$$
 (V/ \sqrt{Hz})

 E_{NO} at a 200kHz bandwidth

= 0.27mVrms

= 1.6mVp-p with a crest factor of 6 (statistically includes 99.7% of all noise peak occurrences)

FIGURE 3. Resistor Noise Model.

USE OF THE COMPENSATION TERMINAL (Pin 8)

The design of the INA117 involves use of large-area resistors, resulting in relatively large distributed capacitances between the resistors and the underlying epitaxial layer. To preserve circuit stability, it is necessary to minimize this capacitive effect on R₂. Figure 4 shows a simplified equivalent circuit diagram. Careful layout of the epitaxial layer matches the voltage gradients across R_2 and the epitaxial layer when pin 8 is grounded, minimizing the distributed capacitive effects. The epitaxial bulk resistance represents a DC load of about $15k\Omega$ on the amplifier output when pin 8 is grounded. If pin 8 is left ungrounded, distributed capacitance to AC ground is still reduced, but a net shunt capacitance remains. This effect can be used to advantage in some circuits; the bandwidth of the INA117 in the unity-gain differential amplifier configuration is reduced from 200kHz to 80kHz typically, and results in an output noise voltage reduction by a factor of 1.6. If the INA117 is used in other circuit configurations, the effects of the shunt capacitance should be carefully evaluated.

FIGURE 4. Simplified Equivalent Circuit Diagram.

APPLICATIONS CIRCUITS

The INA117 is ideally suited for a wide range of circuit functions. The following figures show many applications circuits.

BATTERY CELL MONITOR

Batteries are often charged in series. The INA117 is ideal for directly monitoring the condition of each cell. Operating range is up to $\pm 200V$, and differential fault conditions in this range will not damage the amplifier. Since the INA117 requires no isolated front-end power, cost per cell is very low.

FIGURE 5. Battery Cell Monitor.

FIGURE 6. 4-20mA Current Receiver.

LEAKAGE CURRENT TEST MONITOR

When the return path is not independently available, leakage current must be measured in series with the input. When the 400k Ω input impedance of the INA117 is too low, a buffer amplifier may be added to the front end. In this example, an OPA128 electrometer-grade operational amplifier is used. The 1k Ω and 9k Ω feedback resistors set a noninverting gain of 10. Bias current of the amplifier is less than 75fA. The diodes and 100k Ω resistor protect the amplifier from 200V short circuit fault conditions.

Since common-mode rejection is the ratio of commonmode gain to differential gain, CMR is boosted. The 20dB gain of the OPA128 added to the 86dB CMR of the INA117 results in a total CMR of 106dB minimum.

FIGURE 7. Leakage Current Monitor.

BRIDGE AMPLIFIER LOAD CURRENT MONITOR

Bridge amplifiers are popular because they double the voltage swing possible across the load with any given power supply. In this circuit A_1 and A_2 form a bridge amplifier driving a load. A_1 is connected as a follower and A_2 as an inverter.

At low frequencies, a sense resistor could be inserted in series with the load and an instrumentation amplifier used to directly monitor the load current. Under high frequency or transient conditions, CMR errors limit the accuracy of this approach. An alternate approach is to measure the power amplifier supply currents. To understand how it works, notice that since essentially no current flows in the amplifier inputs, $I_{LOAD} = I_1 - I_2$.

A₃ and A₄ are INA117s used to monitor A₁ supply

currents I₁ and I₂ across sense resistors R₁ and R₂. Since the INA117 has a $\pm 200V$ CMV range, the inputs (pins 2 and 3) can be tied to $\pm V_{CC}$ as long as the differential input is less than 10V.

If
$$R_1 = R_2 = R$$

then $e_1 = I_1 \times R$
 $e_2 = -I_2 \times R$
and $e_1 + e_2 = I_{LOAD} \times$

 A_5 is an INA105 difference amplifier connected as a noninverting summing amplifier with a gain of 5. The accurate matching of the two 25k Ω input resistors makes a very accurate summing amplifier.

 $\begin{array}{l} e_{O} = 5 \; (e_{1} + e_{2}) = 5 \; (I_{LOAD} \times R) \\ \text{since } R = 0.2\Omega \\ e_{O} = I_{LOAD} \; (IV/A) \end{array}$

R

FIGURE 8. Bridge Amplifier Load Current Monitor.

FIGURE 9. Power Supply Current Monitor.

FIGURE 10. Inverting Amplifier, Gain = 18.

FIGURE 11. Three-Phase Current Monitor.

Precision, Low Drift 4mA to 20mA TWO-WIRE TRANSMITTER

FEATURES

- INSTRUMENTATION AMPLIFIER INPUT Low Offset Voltage, 30µV max Low Voltage Drift, 0.75µV/°C max Low Nonlinearity, 0.01% max
- TRUE TWO-WIRE OPERATION Power and Signal on One Wire Pair Current Mode Signal Transmission High Noise Immunity
- DUAL MATCHED CURRENT SOURCES
- WIDE SUPPLY RANGE, 11.6V to 40V
- -40°C to +85°C SPECIFICATION RANGE
- SMALL 14-PIN DIP PACKAGE, CERAMIC AND PLASTIC

DESCRIPTION

The XTR101 is a microcircuit, 4mA to 20mA, twowire transmitter containing a high accuracy instrumentation amplifier (IA), a voltage-controlled output current source, and dual-matched precision current reference. This combination is ideally suited for remote signal conditioning of a wide variety of transducers such as thermocouples, RTDs, thermistors, and strain gauge bridges. State-of-the-art design and laser-trimming, wide temperature range operation and small size make it very suitable for industrial process control applications. In addition the optional external transistor allows even higher precision.

The two-wire transmitter allows signal and power to be supplied on a single wire-pair by modulating the power supply current with the input signal source. The transmitter is immune to voltage drops from long runs and noise from motors, relays, actuators, switches, transformers, and industrial equipment. It

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL Pressure Transmitters Temperature Transmitters Millivolt Transmitters
- RESISTANCE BRIDGE INPUTS
- THERMOCOUPLE INPUTS
- RTD INPUTS
- CURRENT SHUNT (mV) INPUTS
- PRECISION DUAL CURRENT SOURCES
- AUTOMATED MANUFACTURING
- POWER PLANT/ENERGY SYSTEM MONITORING

XTR101

can be used by OEMs producing transmitter modules or by data acquisition system manufacturers. Also, the XTR101 is generally very useful for low-noise, current-mode signal transmission.

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

PDS-627B

SPECIFICATIONS

ELECTRICAL

At $T_A = +25^{\circ}C$, $+V_{CC} = 24VDC$, $R_L = 100\Omega$ with external transistor connected unless otherwise noted.

		XTR101AG		XTR101BG		XTR101AP		,			
PARAMETER	CONDITIONS/DESIGNATION	MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
OUTPUT AND LOAD CHARACT	ERISTICS						Lanna				
Current	Linear Operating Region Derated Performance	4 3.8		20 22	*		*	*		*	mA mA
Current Limit Offset Current Error vs Temperature	$l_{os}, l_o = 4mA$ $\Delta l_{os}/\Delta T$		28 ±3.9 ±10.5	38 ±10 ±20		* ±2.5 ±8	* ±6 ±15		31 ±8.5 ±10.5	* ±19 ±20	mA μA ppm, FS/°C
Full Scale Output Current Error Power Supply Rejection Power Supply Voltage	Full Scale = $20mA$	110 +11.6	±20 125	±40	*	±15 •	`±30		±30 122	±60 •	μA dB
Load Resistance	At $V_{cc} = +24V$, $I_0 = 20mA$ At $V_{cc} = +40V$, $I_0 = 20mA$			600 1400			*	-		600 1400	Ω Ω
SPAN											
Output Current Equation Span Equation vs Temperature Untrimmed Error ⁽²⁾ Nonlinearity	R ₅ in Ω, e₁ and e₂ in V Rs in Ω Excluding TCR of Rs Espan €NONLINEARITY	-5	±30 2.5	i _o = 4 ±100 0 0.01	mA + [0.1 S = [0 *	016 U + (4 .016 U + (4	0/R _s)] (e 40/R _s)] * *	2 — e1) *	*	• • •	A/V ppm/°C %
Dead Band	,		0			-					%
INPUT CHARACTERISTICS							· · · · · · · · · · · · · · · · · · ·	h			
Impedance: Differential Common-Mode	$\Delta e = (e_1 - e_1)^{(3)}$	ò	0.4∥3 10∥3	1.		*			*	•	GΩ pF GΩ pF
Offset Voltage vs Temperature	Vos ΔVos/ΔT	Ū	±30 ±0.75	±60 ±1.5		±20 ±0.35	±30 ±0.75		*	±100	μν μν/°C
vs Temperature Offset Current vs Temperature	ι _Β ΔΙ _Β /ΔΤ Ι _{οςι} ΔΙοςι/ΔΤ		0.30	1 ±30 0.3		*	* ±20		*	•	nA/°C nA nA/°C
Common-Mode Rejection ⁽⁴⁾ Common-Mode Range	DC e1 and e2 with respect to pin 7	90 4	100	6	*	•	•	*	•	*	dB V
CURRENT SOURCES	· · · · · · · · · · · · · · · · · · ·										
Magnitude Accuracy	Vcc = 24V, VPIN 8 - VPIN 10, 11 =		1			•			*		mA
vs Temperature vs V _{cc} vs Time Compliance Voltage	19V, R ₂ = 5kΩ, Figure 5 With respect to pin 7	0	±0.06 ±50 ±3 ±8	±0.17 ±80		±0.025 ±30 *	±0.075 ±50		±0.2 * *	±0.37	% ppm/°C ppm/V ppm/month V
Ratio Match Accuracy	Tracking 1 - IREF 1/IREF 2	Ū	±0.014	±0.06		±0.009	±0.04		±0.031	±0.088	% 2007/20
vs Temperature vs V _{cc} vs Time Output Impedance		10	±10 ±1 20	713		*	10	•	* * 15		ppm/V ppm/wonth MΩ
TEMPERATURE RANGE	· · · · · · · · · · · · · · · · · · ·								L		L
Specification Operating Storage		40 55 55		+85 +125 +165	* * *		* * *	-40 -40 -55		+85 +85 +125	ဝံ ဝံ ဝံ

*Same as XTR101AG.

NOTES: (1) See Typical Performance Curves. (2) Span error shown is untrimmed and may be adjusted to zero. (3) e1 and e2 are signals on the -IN and +IN terminals with respect to the output, pin 7. While the maximum permissible Δe is 1V, it is primarily intended for much lower input signal levels, e.g., 10mV or 50mV full scale for the XTR101A and XTR101B grades respectively. 2mV FS is also possible with the B grade, but accuracy will degrade due to possible errors in the low value span resistance and very high amplification of offset, drift, and noise. (4) Offset voltage is trimmed with the application of a 5V common-mode voltage. Thus the associated common-mode error is removed. See Application Information section in PDS627.

ABSOLUTE MAXIMUM RATINGS

Power Supply, Vcc	40V
Input Voltage, e1 or e2	$\dots \ge V_{OUT}, \le +V_{CC}$
Storage Temperature Range: Ceram Lead Temperature	nic55°C to +165°C c55 to +125°C
(soldering 10 seconds)	+300°C
Output Short-Circuit Duration 0	Continuous +Vcc to lour
Junction Temperature	+165°C

MECHANICAL

"G" Package—Ceramic DIP 14 Ŕ NOTE: Leads in true position within 0.01" (0.25mm) R at MMC at seating plane. Pin numbers shown for reference only. Numbers may not be marked on package. F MILLIMETERS MIN MAX 17.02 18.03 INCHES MIN MAX DIM .670 .710 . A CD .065 .170 1.65 4.32 .015 0.38 0.53 .021 ۰F .045 .060 1.14 1.52 G .100 B ASIC 2.54 BASIC н .025 .070 0.64 1.78 .008 J .012 0.20 0.30 ĸ к .240 3.05 6.10 7.62 BASIC L .300 BASIC 10° D . Seating Plane N .009 .060 0.23 1.52 G "P" Package-Plastic DIP ኅ ሰ ሰ ሰ ח, ~ NOTE: Leads in true position within .010" (.25mm) R at MMC at seating plane. B₁ в INCHES | MILLIMETERS ÷ $\nabla \nabla \nabla \nabla \nabla \nabla$ 7 Pin 1 С к

PIN DESIGNATIONS

67

-l- J

м Seating Plane

DIM	MIN	MAX	MIN	MAX
Α	.700	.800	17.78	20.32
A1	.685	.785	17.40	19.94
В	.230	.290	5.85	7.38
B ₁	.200	.250	5.09	6.36
С	.120	.200	3.05	5.09
D.	.015	.023	0.38	0.59
F	.030	.070	0.76	1.78
G	.100 E	BASIC	2.54	BASIC
н	.050 .100		1.27	2.54
J	.008	.015	0.20	0.38
К	.070	.150	1.78	3.82
L	.300	BASIC	7.63	BASIC
М	0°	15°	0°	15°
N	.010	.030	0.25	0.76
Ρ	.025	.050	0.64	1.27

ISO102 ISO106

Low Cost, High Voltage, Wide Bandwidth Standard Hermetic DIP SIGNAL ISOLATION BUFFER AMPLIFIERS

FEATURES

- INDUSTRY'S FIRST HERMETIC ISOLATION AMPLIFIERS AT LOW COST
- EASY-TO-USE COMPLETE CIRCUIT
- RUGGED BARRIER, HV CERAMIC CAPACITORS
- 100% TESTED FOR HIGH VOLTAGE BREAKDOWN IS0102: 4000Vrms/10s, 1500Vrms/1min IS0106: 8000Vpk/10s, 3500Vrms/1min
- ULTRA HIGH IMR: 125dB min at 60Hz, IS0106
- WIDE INPUT RANGE: -10V to +10V
- WIDE BANDWIDTH: 70kHz
- VOLTAGE REFERENCE OUTPUT: 5VDC

DESCRIPTION

The ISO102 and ISO106 isolation buffer amplifiers are two members of a new series of low cost isolation products from Burr-Brown. They have the same electrical performance and differ only in continuous isolation voltage rating and package length. The ISO102 is rated for 1500Vrms in a 24-pin DIP. The ISO106 is rated for 3500Vrms in a 40-pin DIP. Both side-braze DIPs are 600 mil wide and have industry standard package dimensions with the exception of missing pins between input and output stages. This permits utilization of automatic insertion techniques in production. The three-chip hybrid with its generous high voltage spacing is easy to use (no external components are required).

Each buffer accurately isolates $\pm 10V$ analog signals by digitally encoding the input voltage and uniquely coupling across a differential ceramic capacitive barrier. This design is nearly immune to variations in the barrier voltage. All elements necessary for operation are contained within the DIP. This provides low cost compact signal isolation in a hermetic package.

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL Transducer channel isolator for thermocouples, RTDs, pressure bridges, flow meters
- 4mA TO 20mA LOOP ISOLATION
- MOTOR AND SCR CONTROL
- GROUND LOOP ELIMINATION
- BIOMEDICAL/ANALYTICAL MEASUREMENTS
- POWER PLANT MONITORING
- DATA ACQUISITION/TEST EQUIPMENT ISOLATION
- MILITARY EQUIPMENT

International Airport Industrial Park

P.O. Box 11400

Tucson, Arizona 85734

Tel.: (602) 746-1111

Twx: 910-952-1111

Cable: BBRCORP

Telex: 66-6491

SPECIFICATIONS

ELECTRICAL

At $T_A \to \pm 25^{o}C$ and $V_{CC1} = V_{CC2} = \pm 15V$ unless otherwise noted.

		150	ISO102, ISO106		ISO	102B, ISO1		
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
ISOLATION Voltage Rated Continuous ⁽¹⁾ ISO102: AC, 60Hz DC ISO106: AC, 60Hz	Tmin to Tmax Tmin to Tmax Tmin to Tmax Tmin to Tmax	1500 2121 3500			* * *		-	Vrms VDC Vrms
Test Breakdown, AC, 60Hz ISO102 ISO106 Isolation-Mode Rejection ¹²¹ AC: ISO102	10 seconds 10 seconds 10 seconds V _{ISO} Rated Continuous, 60Hz	4950 4000 8000 115	120		*	*	.	Vrms Vpk dB
ISO106 DC Barrier Resistance Barrier Capacitance		125 140	1 130 0.3 160 0.01 10 ¹⁴ 6	2 0.6 0.10	•	* * * *	*	μVrms/V dB μVrms/V dB μVDC/V Ω pF
Leakage Current GAIN Nominal Gain Initial Error ^{ra} Gain vs Temperature Nonlinearity ⁴⁴	V _{ISO} = 240Vrms, 60Hz V _O = 10V to +10V		0.5 1 ±0.1 ±20 ±0.04	1.0 ±0.25 ±50 ±0.075		* * ±12 ±0.02	* ±25 ±0.025	µArms V/V % FSR ppm FSR/°C % FSR
INPUT OFFSET VOLTAGE Initial Offset vs Temperature vs Power Supplies ⁽⁵⁾	$V_{1N}=0V$ Input Stage, $V_{CC1}=\pm10V$ to $\pm20V$ Output Stage, $V_{CC2}=\pm10V$ to $\pm20V$		±20 ±250 3.7 -3.7	±70 ±500		* ±150 *	* ±250	mV μV/°C mV/V mV/V
INPUT Voltage Range Resistance Capacitive	Rated Operation	-10 75	100 5	+10	*	*	*	V kΩ pF
OUTPUT Voltage Range Current Drive Short Circuit Current Ripple Voltage ⁽⁸⁾ Resistance Capacitive Load Drive Capability Overload Recovery Time, 0.1%	Rated Operation Derated Operation f = 0.5MHz to 1.5MHz Vo > 12V	-10 -12 ±5 9	20 3 0.3 30	+10 +12 50 1	* * * *	* *	* * *	V MA mVp-p Ω pF μs
$\begin{array}{l} \label{eq:output} \textbf{OUTPUT VOLTAGE NOISE} \\ \text{Voltage: } f = 0.1\text{Hz to 10\text{Hz}} \\ f = 0.1\text{Hz to 70\text{kHz}} \\ \text{Dynamic Range}^{\text{T}}: f = 0.1\text{Hz to 70\text{kHz}} \\ f = 0.1\text{Hz to 280\text{Hz}} \end{array}$	12-bit resolution, 1LSB, 20VFS 16-bit resolution, 1LSB, 20VFS		50 16 74 96			* * *		μVp-p μV/√Hz dB dB
FREQUENCY RESPONSE Small Signal Bandwidth Full Power Bandwidth, 0.1% THD Slew Rate Settling Time, 0.1% Overshoot, Small Signal ⁽⁶⁾	$V_{o} = \pm 10V \\ V_{o} = \pm 10V \\ V_{o} = -10V to + 10V \\ C_{1} = C_{2} = 0$		70 5 0.5 100 40			* * *		kHz kHz V/μs %
VOLTAGE REFERENCES Voltage Output, Ref1, Ref2 vs Temperature vs Supplies vs Load Current Output Short Circuit Current	No Load .	+4.995 -0.1 6	+5.00 ±5 10 400 14	+5.005 20 1000 +5 30	*	* * *	* * *	VDC ppm/°C μV/V μV/mA mA mA

ELECTRICAL (CONT)

,		IS	0102, ISO	106	ISO	102B, ISO1	06B	
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
POWER SUPPLIES								
Rated Voltage, ±Vcc1, ±Vcc2	Rated Performance		±15		•			· v
Voltage Range		±10		±20	*		•	v
Quiescent Current: +Vcc1	No Load		+11	+15		. *		· mA
-Vcc1			. —9	-12		*	*	mA
+V _{CC2}		•	+25	+33		*	*	mA
-V _{CC2}			-15	-20		*	•	mA
Power Dissipation: ±Vcc1			300	400		*	•	.mW
±V _{CC2}			600	800		*	*	mW
TEMPERATURE RANGE								
Specification		25		+85	*		*	°C
Operating ⁽⁹⁾		-55		+125	*		· •	°C
Storage		-65		+150	*		*	°C
Thermal Resistance, θ_{JA}			40			*		°C/W

* Same as ISO102, ISO106.

NOTES: (1) 100% tested at rated continuous for 1 minute. (2) Isolation-mode rejection is the ratio of the change in output voltage to a change in isolation barrier voltage. It is a function of frequency as shown in the Typical Performance Curves. This is specified for barrier voltage skew rates not exceeding 100/ μ s. (3) Adjustable to zero. FSR = Full Scale Range = 20V. (4) Nonlinearity is the peak deviation of the output voltage from the best fit straight line. It is expressed as the ratio of deviation to FSR. (5) Power Supply Rejection = change in V₀₅/20V supply change. (6) Ripple is the residual component of the barrier carrier frequency generated internally. (7) Dynamic Range = FSR/Voltage Spectral Noise Density \times square root of User Bandwidth). (8) Overshoot can be eliminated by band-limiting. (9) See Typical Performance Curve E for limitations.

ABSOLUTE MAXIMUM RATINGS

Supply Without Damage ±20V
Input Voltage Range ±50V
Continuous Isolation Voltage Across Barrier
ISO102 1500Vrms
ISO106 3500Vrms
Junction Temperature+160°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering 10 seconds) +300°C
Amplifier and Reference Output
Short Circuit Duration Continuous to Common

MECHANICAL

ORDERING INFORMATION

PIN CONFIGURATION

		ISC	102	_					
	-Vcc1	1	24	+V _{cc1}		-Vcc1	1	40	+V _{CC1}
	Vin	2	23	Offset Adjust		Vin	2	39	Offset Adjust
	Gain Adjust	3	22	Offset		Gain Adjust	3	38	Offset
Isolation	Common	4	21	Reference	Isolation	Common	4	37	Reference ₁
Barrier		Ē. –			Barrier	;	F.,-]	Digital Common
	U 1		10	Digital Common		01	l ''	24	Digital Common
	Common ₂	10	15	C₂		Common₂	18	23	C₂
	Reference ₂	11	14	Vout		Reference ₂	19	22	Vout
	+Vcc2	12	13	-Vcc2		+Vcc2	20	21	-Vcc2

PIN DESCRIPTIONS

±V _{cc1} , Common₁	Positive and negative power supply voltages and common (or ground) for the input stage. Common, is the analog reference voltage for input signals.
±V _{cc2} , Common₂	Positive and negative power supply voltages and common (or ground) for the ouptut stage. Common ₂ is the analog reference voltage for output signals. The voltage between Common ₁ and Common ₂ is the isolation voltage and appears across the internal high voltage barrier.
Vin	Signal input pin. Input impedance is typically 100k Ω . The input range is rated for ±10V. The input level can actually exceed the input stage supplies. Output signal swing is limited only by the output supply voltages.
Gain Adjust	This pin is an optional signal input. A series 5k Ω potentiometer between this pin and the input signal allows a guaranteed ±1.5% gain adjustment range. When gain adjustment is not required, the Gain Adjust should be left open. Figure 4 illustrates the gain adjustment connection.
Reference	+5V reference output. This low drift zener voltage reference is necessary for setting the bipolar offset point of the input stage. This pin must be strapped to either Offset or Offset Adjust to allow the isolation amplifier to function. The reference is often useful for input signal conditioning circuits. See Typical Performance Curve K for the effect of offset voltage change with reference loading. Reference, is identical to, but independent of, Referencez. This output is short circuit protected.
Reference ₂	+5V reference output. This reference circuit is identical to, but independent of, Reference1. It controls the bipolar offset of the output stage through an internal connection. This output is short circuit protected.
Offset	Offset input. This input must be strapped to Reference, unless user adjustment of bipolar offset is required.
Offset Adjust	This pin is for optional offset control. When connected to the Reference₁ pin through a 1kΩ potentiometer, ±150mV of adjustment range is guaranteed. Under this condition, the Offset pin should be connected to the Offset Adjust pin. When offset adjustment is not required, the Offset Adjust pin is left open. See Figure 4.
Digital Common	Digital common or ground. This separate ground carries currents from the digital portions of the output stage circuit. The best grounding practices require that digital common current does not flow in analog common connections. In most systems the physical connection between analog and digital commons must be at the system power supplies terminal to insure digital noise is kept out of the analog signal. Difference in potentials between the Common ₂ and Digital Common pins can be ±1V. See Figure 2.
Vout	Signal output. Because the isolation amplifier has unity gain, the output signal is ideally identical to the input signal. The output is low impedance and is short-circuit-protected.
C1, C2	Capacitors for small signal bandwidth control. These pins connect to the internal rolloff frequency controlling nodes of the output low- pass filter. Additional capacitance added to these pins will modify the bandwidth of the buffer. C_2 is always twice the value of C_1 . See Typical Performance Curve B for the relationship between bandwidth and C_1 and C_2 . When no connections are made to these pins, the full small signal bandwidth is maintained. Be sure to shield C_1 and C_2 pins from high electric fields on the PC board. This preserves AC Isolation Mode Rejection by reducing capacitive coupling effects.

TYPICAL PERFORMANCE CURVES

 $T_A = +25^{\circ}C$, $V_{CC} = \pm 15VDC$ unless otherwise noted.

72

TYPICAL PERFORMANCE CURVES (CONT)

 $T_{\text{A}}=+25^{\circ}\text{C},$ $V_{\text{CC}}=\pm15\text{VDC}$ unless otherwise noted.

THEORY OF OPERATION

The ISO102 and ISO106 have no galvanic connection between the input and output. The analog input signal referenced to the input common is accurately duplicated at the output referenced to the output common. Because the barrier information is digital, potentials between the two commons can assume a wide range of voltages and frequencies without influencing the output signal. Signal information remains undisturbed until the slew rate of the barrier voltage exceeds $100V/\mu s$. The amplifier is protected from damage for slew rates up to $100,000V/\mu s$.

FIGURE 1. Simplified Diagram of ISO102 and ISO106.

A simplified diagram of the ISO102 and ISO106 is shown in Figure 1. The design consists of an input voltagecontrolled oscillator (VCO) also known as a voltage-tofrequency converter (VFC), differential capacitors, and output phase lock loop (PLL). The input VCO drives digital levels directly into the two 3pF barrier capacitors. The digital signal is frequency modulated and appears differentially across the barrier while the externally applied isolation voltage appears common-mode.

A sense amplifier detects only the differential information. The output stage decodes the frequency modulated signal by the means of a PLL. The feedback of the PLL employs a second VCO that is identical to the encoder VCO. The PLL forces the second VCO to operate at the same frequency (and phase) as the encoder VCO; therefore, the two VCOs have the same input voltage. The input voltage of the decoder VCO serves as the isolation buffer's output signal after passing through a 100kHz second order active filter.

ABOUT THE BARRIER

For any isolation product, barrier composition is of paramount importance in achieving high reliability. Both the ISO102 and ISO106 utilize two 3pF high voltage ceramic coupling capacitors. They are constructed of tungsten thick film deposited in a spiral pattern on a ceramic substrate. Capacitor plates are buried in the package, making the barrier very rugged and hermetically sealed. Capacitance results from the fringing electric fields of adjacent metal runs. Dielectric strength exceeds 10kV and resistance is typically 10¹⁴ Ω . Input and output circuitry are contained in separate solder-sealed cavities, resulting in the industry's first fully hermetic hybrid isolation amplifier.

The ISO102 and ISO106 are free from partial discharge at rated voltages. Partial discharge is a form of localized breakdown that degrades the barrier over time. Since it does not bridge the space across the barrier, it is difficult to detect. Both isolation amplifiers have been extensively evaluated at high temperature and high voltage.

POWER SUPPLY AND SIGNAL CONNECTIONS

Figure 2 shows the proper power supply and signal connections. Each supply should be AC-bypassed to Analog Common with 0.1μ F ceramic capacitors as close to the amplifier as possible. Short leads will minimize lead inductance. A ground plane will also reduce noise problems. Signal common lines should tie directly to the common pin if a low impedance ground plane is not used. Refer to Digital Common in the Pin Descriptions table.

To avoid gain and isolation-mode rejection (IMR) errors introduced by the external circuit, connect grounds as indicated, being sure to minimize ground resistance. Any capacitance across the barrier will increase AC leakage current and may degrade high frequency IMR. The schematic in Figure 3 shows the proper technique for wiring analog and digital commons together.

FIGURE 2. Power Supply and Signal Connection for ISO102 and ISO106.

FIGURE 3. Technique for Wiring Analog and Digital Commons Together in the ISO102 and ISO106.

DISCUSSION OF SPECIFICATIONS

The ISO102 and ISO106 are unity gain buffer isolation amplifiers primarily intended for high level input voltages on the order of IV to 10V. They may be preceded by operational, differential, or instrumentation amplifiers that precondition a low level signal on the order of millivolts and translate it to a high level.

ISOLATION-MODE REJECTION

The ISO102 and ISO106 provide exceptionally high isolation-mode rejection over a wide range of isolation-mode voltages and frequencies. The typical performance curves should be used to insure operation within the recommended range. The maximum barrier voltage allowed decreases as the frequency of the voltage increases. As with all isolation amplifiers, a change of voltage across the barrier will induce leakage current across the barrier. In the case of the ISO102 and ISO106, there exists a threshold of leakage current through the signal capacitors that can cause over-drive of the slew rate of the isolation voltage reaches $100V/\mu$ s. The output will recover in about 50 μ s from transients exceeding $100V/\mu$ s.

Typical Performance Curve C indicates the expected isolation-mode rejection over a wide range of isolation voltage frequencies. Also plotted is the typical leakage current across the barrier at 240Vrms. The majority of the leakage current is between the input common pin and the output digital ground pin.

The ISO102 and ISO106 are intended to be continuously operated with fully rated isolation voltage and temperature without significant drift of gain and offset. See performance curve D for changes in gain and offset with isolation voltage.

SUPPLY AND TEMPERATURE RANGE

The ISO102 and ISO106 are rated for $\pm 15V$ supplies; however, they are guaranteed to operate from $\pm 10V$ to $\pm 20V$. Performance is also rated for an ambient temperature range of -25° C to $+85^{\circ}$ C. For operation outside this temperature range, refer to performance curve E to establish the maximum allowed supply voltage. Supply currents are fairly insensitive to changes in supply voltage or temperature. Therefore, the maximum current limits can be used in computing the maximum junction temperature under nonrated conditions.

OPTIONAL BANDWIDTH CONTROL

The following discussion relates optimum dynamic range performance to bandwidth, noise, and settling time.

The outputs of the ISO102 and ISO106 are the outputs of a second order low-pass Butterworth filter. Its low impedance output is rated for \pm 5mA drive and \pm 12V range with 10,000pF loads. The closed-loop bandwidth of the PLL is 70kHz, while the output filter is internally set at 100kHz. The output filter lowers the residual voltage of the barrier FM signal to below the noise floor of the output signal.

Two pins are available for optional modification of the filter's bandwidth. Only two capacitors are required. Performance curve B gives the value of C_1 (C_2 is equal to twice C_1) for the desired bandwidth. Figure 4 illustrates the optional connection of both capacitors.

A tradeoff can be achieved between the required signal bandwidth and system dynamic range. The noise floor of the output limits the dynamic range of the output signal. The noise power varies with the square root of the bandwidth of the buffer. It is recommended that the bandwidth be reduced to about twice the maximum signal bandwidth for optimum dynamic range as shown in performance curve F. The output spectral noise density measurement is displayed in performance curve G. The noise is flat to within $5dB\sqrt{Hz}$ between 0.1Hz to 70kHz.

The overall small signal gain of the buffer amplifiers is shown in performance curve H. This assumes no external band-limiting capacitors. The total harmonic distortion for large signal sine wave outputs is plotted in performance curve I. The phase-lock-loop displays slightly nonuniform rise and fall edges under maximum slew conditions. Reducing the output filter bandwidth to below 70kHz smoothes the output signal and eliminates any overshoot. See the settling time performance curve J.

OPTIONAL OFFSET AND GAIN ADJUSTMENT

In many applications the factory-trimmed offset is adequate. For situations where reduced or modified gain and offset are required, adjustment of each is easy. The addition of two potentiometers as shown in Figure 4 provides for a two step calibration.

FIGURE 4. Optional Gain Adjust, Offset Adjust, and Bandwidth Control.

Offset should be adjusted first. Gain adjustment does not interfere with offset. The potentiometer's TCR adds only 2% to overall temperature drift.

The offset and gain adjustment procedures are as follows:

- 1. Set V_{1N} to 0V and adjust R_1 to desired offset at the output.
- 2. Set V_{1N} to full scale (not zero). Adjust R_2 for desired gain.

PRINTED CIRCUIT BOARD LAYOUT

The distance across the isolation barrier, between external components, and conductor patterns, should be maximized to reduce leakage and arcing at high voltages. Good layout techniques that reduce stray capacitance will assure low leakage current and high AC IMR. For some applications, applying conformal coating compound such as urethane is useful in maintaining good performance. This is especially true where dirt, grease or moisture can collect on the PC board surface, component surface, or component pins. Following this industryaccepted practice will give best results, particularly when circuits are operated or tested in a moisture-condensing environment. Optimum coating can be achieved by administering urethane under vacuum conditions. This allows complete coverage of all areas.

Figure 5 shows the recommended layout of the DEM102 demonstration board. This board contains the ISO102 and PWS725. The PWS725 is a DC-to-DC converter with a rated barrier voltage of 1500Vrms. It provides isolated power for the ISO102's input stage and other input circuitry that may be used. The DEM102 board illustrates the ease of use of these components. Notice that the ISO102's external high voltage spacing is maintained on both sides of the PC board layout. The placement of bypass capacitors, gain and offset potentiometers, and the PWS725's input ripple filter components are shown. The DEM106 layout in Figure 6 is similar to the DEM102. It contains the ISO106 and PWS726, which is rated for 3500Vrms. The schematic of both demonstration boards appears in Figure 7. Boards are available from Burr-Brown to facilitate fast, easy evaluation of electrical and isolation performance.

Isolation-mode rejection can be affected by the PC board layout. The most critical pins for obtaining maximum IMR are C_1 and C_2 . These are the only high impedance nodes under normal operation and can be influenced by the barrier's voltage if not shielded. Grounded rings around the C_1 and C_2 contacts on the board greatly reduce high voltage electric fields at these pins. Maximum IMR is achieved when a ground plane is provided on both sides of the C_1 , C_2 interconnect.

FIGURE 5. Recommended Layout for ISO102 and PWS725 (Demonstration Board DEM102).

FIGURE 6. Recommended Layout for ISO106 and PWS726 (Demonstration Board DEM106).

FIGURE 7. Schematic for Layout in Figures 5 and 6.

APPLICATIONS

The ISO102 and ISO106 isolation amplifiers are used in three categories of applications:

- 1. accurate isolation of signals from high voltage ground potentials,
- 2. accurate isolation of signals from severe ground noise, and
- fault protection from high voltages in analog measurement systems.

Figures 8 through 18 show a variety of application circuits.

FIGURE 8. Isolated Power Current Monitor for Motor Circuit. (The ISO102 allows reliable safe measurement at high voltages.)

FIGURE 9. Isolated Power Line Monitor (0.5µA leakage current at 120Vrms.)

FIGURE 10. Battery Monitor for High Voltage Charging Circuit.

FIGURE 11. Isolated RTD Temperature Amplifier.

FIGURE 12. Programmable-Gain Isolation Channel with Gains of I, 10, and 100.

FIGURE 13. Isolation Amplifier with Isolated Bipolar Input Reference.

FIGURE 14. Low Cost Eight-Channel Isolation Amplifier Block with Channel-to-Channel Isolation.

FIGURE 15. Thermocouple Amplifier with Ground Loop Elimination, Cold Junction Compensation, and Upscale Burn-out

FIGURE 16. Remote Isolated Thermocouple Transmitter with Cold Junction Compensation.

FIGURE 17. Isolated Instrumentation Amplifier for 300Ω Bridge. (Reference voltage from isolation amplifier is used to excite bridge.)

FIGURE 18. Right-Leg Driven ECG Amplifier (with defibrillator protection and calibrator).

AN ERROR ANALYSIS OF THE ISO102 IN A SMALL SIGNAL MEASURING APPLICATION

High accuracy measurements of low-level signals in the presence of high isolation mode voltages can be difficult due to the errors of the isolation amplifiers themselves.

This error analysis shows that when a low drift operational amplifier is used to preamplify the low-level source signal, a low cost, simple and accurate solution is possible.

In the circuit shown in Figure 1, a 50mV shunt is used to measure the current in a 500VDC motor. The OPA27 amplifies the 50mV by $200 \times to 10V$ full scale. The output of the OPA27 is fed to the input of the ISO102, which is a unity-gain isolation amplifier. The 5k Ω and 1k Ω potentiometers connected to the ISO102 are used to adjust the gain and offset errors to zero as described in the ISO102 data sheet.

SOME OBSERVATIONS

The total errors of the op amp and the iso amp combined are approximately 0.6% of full-scale range. If the op amp had not been used to preamplify the signal, the errors would have been 74.4% of FSR. Clearly, the small cost of adding the op amp buys a large performance improvement.

After gain and offset nulling, the dominant errors of the iso amp are gain nonlinearity and power supply rejection. Thus, well regulated supplies will reduce the errors even further.

The RMS noise of the ISO102 with a 120Hz bandwidth is only 0.18mVrms, which is only 0.0018% of the 10V full-scale output. Therefore, even though the $16\mu V/\sqrt{\text{Hz}}$ noise spectral density specification may appear large compared to other isolation amplifiers, it does not turn out to be a significant error term. It is worth noting that even if the bandwidth is increased to 10kHz, the noise of the iso amp would only contribute 0.016%FSR error.

FIGURE 1. 50mV Shunt Measures Current In A 500VDC Motor.

The Errors Of The Op Amp At 25°C (Referred To Input, RTI)

$$V_{E,OPAV} = V_{D} \left[1 - \frac{1}{1 + \frac{1}{\beta A_{VOL}}} \right] + V_{OS} \left[1 + \frac{R_1}{R_F} \right] + I_B R_1 + P.S.R. + Noise$$

VE (OPA) = Total Op Amp Error (RTI)

V_D = Differential Voltage (Full Scale) Across Shunt

 $\left[1 - \frac{1}{1 + \frac{1}{\beta A_{VOL}}}\right] = \text{Gain Error Due to Finite Open Loop Gain}$

 β = Feedback Factor

 $A_{VOL} = Open \ Loop \ Gain \ at \ Signal \ Frequency$

Vos = Input Offset Voltage

IB = Input Bias Current

P.S.R. = Power Supply Rejection (μ V/V) [Assuming a 20% change with ±15V supplies. Total error is twice that due to one supply]

Noise = $5nV\sqrt{Hz}$ (for 1k Ω source resistance and 1kHz bandwidth)

ERROR _{(ONU} (RTI)		GAIN ERROR		OFFSET	_	P.S.R.		NOISE
V _{E (OPA)}	= 50mV	$\int 1 - \frac{1}{1 + \frac{1}{10^6/200}}$	-]	$0,025mV\left(1+\frac{1}{200}\right)+40\times10^{-9}\times10^{3}$		[20μ V/V $ imes$ 3V $ imes$ 2]		[5nV√ 120 (nVrms)]
	· ·	0.01mV		{ 0,0251mV + 0,04mV }	+	0.12mV	+	$0,055 imes 10^{-3} mVrms$
Error as % of FSR	22	0.02%	+	[0.05% + 0.08%]	+	0.24%	+	0.00011%
After Nulling								
	=	0.01mV	+	[0mV + 0mV]	+	0.12mV	+	0.055 × 10 ⁻³ mVrms
	=	0.13mV						
Error as % of FSR*	=	0.02%	+	[0% + 0%]	+	0.24%	+	0.00011%
	=	0.26% of 50mV						•
ECD - Full-Soulo D		I at input to on amp	or 101/	at input (and output) of ISO amp				

*FSR = Full-Scale Range. 50mV at input to op amp, or 10V at input (and output) of ISO amp.

The Errors Of The ISO Amp At 25°C (RTI)

$$V_{E \text{ (ISO)}} = \frac{1}{200} \left[\frac{V_{ISO}}{IMR} + V_{OS} + G.E. + \text{Nonlinearity} + P.S.R. + \text{Noise} \right]$$

VE (ISO) = Total ISO Amp Error

IMR = Isolation Mode Rejection

Vos = Input Offset Voltage

VISO = VIMV = Isolation Voltage = Isolation Mode Voltage

G.E. = Gain Error (% of FSR)

Nonlinearity = Peak-to-peak deviation of output voltage from best-fit straight line. It is expressed as ratio based on full-scale range.

P.S.R. = Change in $V_{os}/10V \times Supply Change$

Noise = Spectral noise density × $\sqrt{\text{bandwidth}}$. It is recommended that bandwidth be limited to twice maximum signal bandwidth for optimum dynamic range.

			IMR		Vos		G.E.		NONLINEARITY		P.S.R.		NOISE
V _{E (ISO)}	=	1 200	500VDC 140dB	+	70mV	+	$20V imes rac{0.25}{100}$	+	$\frac{0.75}{100}$ $ imes$ 20V	+	3.7 mV imes 3 V imes 2	+	16µV√120 (rms)
	=	$\frac{1}{200}$	[0.05mV	+	70mV	+	50mV	+	15mV	+	22.2mV	+	0.175mVrms]
Error as % of FSR	=		0.0005%	+	0.7%	+	0.5%	+	0.15%	+	0.22%	+	0.00175%
After Nulling Ve (ISO)	=	1 200	[0.05mV	+	0mV	+	0mV	+	15mV	+	22.2mV	+	0.175mVrms]
	=	1 200	[37.2mV]										
	=		0.19mV										
Error as % of FSR	-		0.0005%	+	0%	+	0%	+	0.15%	+	0.22%	+	0.00175%
	=	0	.37% of 50mV										
Total Error	=		VE (OPA)	+	VE (ISO)								
	=		0.13mV	+	0.19mV								
	=		0.32mV										
	=	0	.64% of 50mV										

Isolated, Unregulated DC/DC CONVERTERS

FEATURES

- \bullet ISOLATED ± 7 to ± 18 VDC output from single 7 to 18VDC supply
- ±15mA OUTPUT AT RATED VOLTAGE ACCURACY
- HIGH ISOLATION VOLTAGE PWS725: 1500Vrms PWS726: 3500Vrms
- LOW LEAKAGE CAPACITANCE: 9pF
- LOW LEAKAGE CURRENT: 2µA, max, at 240VAC 50/60Hz
- HIGH RELIABILITY DESIGN

DESCRIPTION

The PWS725 and PWS726 convert a single 7 to 18VDC input to bipolar voltages of the same value as the input voltage. The converters are capable of providing ± 15 mA at rated voltage accuracy and up to ± 40 mA without damage. (See Output Current Rating.)

The PWS725 and PWS726 converters provide reliable, engineered solutions where isolated power is required in critical applications. The high isolation voltage rating is achieved through use of a specially-designed transformer and physical spacing. An additional high dielectric-strength, low leakage transformer coating increases the isolation rating of the PWS726.

Reliability and performance are designed in. The bifilar wound, wirebonded transformer simultaneously provides lower output ripple than competing

- COMPACT
- LOW COST
- EASY TO APPLY—FEW EXTERNAL PARTS

APPLICATIONS

- MEDICAL EQUIPMENT
- INDUSTRIAL PROCESS EQUIPMENT
- TEST EQUIPMENT
- DATA ACQUISITION

designs, and a higher performance/cost ratio. The soft-start oscillator/driver design assures full operation of the oscillator before either MOSFET driver turns on, protects the switches, and eliminates high inrush currents during turn-on. Input current sensing protects both the converter and the load from possible thermal damage during a fault condition.

Special design features make these converters especially easy to apply. The compact size allows dense circuit layout while maintaining critical isolation requirements. The Sync connection allows frequency synchronization of up to eight converters. The Enable input allows control over output power in instances where shutdown is desired to conserve power, such as in battery-powered equipment, or where sequencing of power turn-on/turn-off is desired.

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491
SPECIFICATIONS

ELECTRICAL

 $T_{A} = +25^{\circ}C, C_{L} = 1.0\mu F \text{ ceramic}, V_{IN} = 15 \text{VDC}, \text{ operating frequency} = 400 \text{ Hz}, V_{OUT} = \pm 15 \text{VDC}, C_{IN} = 1.0\mu F \text{ ceramic}, I_{OUT} = \pm 15 \text{Mz}, \text{ unless otherwise noted}.$

					ADVAN	CE INFOR	MATION	
		PWS725			3233			
PARAMETERS	MIN	ТҮР	MAX	MIN	түр	MAX	UNITS	
INPUT					S. A. S.			
Rated Voltage Input Voltage Range		7	15	18		1995 - 1995 1995 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 -		
Input Current Input Current Ripple	$I_0 = \pm 15 \text{mA}$ No external filtering $I_0 = 100 \text{mB}$ Cm = 100mB Cm = 100mB		82 150 5			•		mA mAp-p mAp-p
1	C only, $C_{IN} = 1\mu F$	1	60					mAp-p
ISOLATION								
Test Voltages Rated Voltage	Input to output, 10 seconds Input to output, 60 seconds, minimum Input to output, continuous, AC 60Hz	4000 1500		1500	8000 3500		3500	VDC Vrms Vrms
Isolation Impedance Leakage Current	Input to output, continuous DC Input to output Input to output, 240Vrms, 60Hz		10 ¹² 9 1.2	2121 2.0		•	4949	VDC Ω∥pF μA
OUTPUT			1					
Rated Output Voltage Output Current	Balanced loads Single-ended	14.25	15.00 15.0	15.75 40 80	•	•	:	VDC mA mA
Load Regulation Ripple Voltage (400kHz)	Balanced loads, ± 10 mA $< l_{out} < \pm 40$ mA No external capacitor L _o = 10 μ H, C _o = 1 μ F (Figure 1)		60 10	0.4		•	•	%/mA mVp-p mVp-p
Output Quitable - Nata	$L_0 = 0\mu$ H, C ₀ filter only	}	. See	Perform	ance Cu	rves		
Output Capacitive Load	$L_0 = 10\mu$ H, $C_0 = 1.0\mu$ F $L_0 = 100\mu$ H, C filter C filter only		'	10 1			•	mvp-p μF μF
Voltage Balance, V+, V− Sensitivity to ΔV _{IN} Output Voltage Temp. Coefficient			0.04 1.15 10					∽% V/V mV/°C
TEMPERATURE								
Specification Operating Storage		-25 -25 -25		+85 +85 +125	*		÷	သံ သံ သံ

*Specification same as PWS725. NOTE: (1) See Figure 1.

MECHANICAL

PIN CONFIGURATION

TYPICAL PERFORMANCE CURVES

 $T_A = +25^{\circ}$ C, $V_{CC} = \pm 15$ VDC unless otherwise noted.

THEORY OF OPERATION

The PWS725 and the PWS726 DC-to-DC converters consist of a free-running oscillator, control and switch driver circuitry, MOSFET switches, a transformer, a bridge rectifier, and filter capacitors together in a 32-pin DIP (0.900 inches nominal) package. The control circuitry consists of current limiting, soft start, frequency adjust, enable, and synchronization features. In instances where several converters are used in a system, beat frequencies developed between the converters are a potential source of low frequency noise in the supply and ground paths. This noise may couple into signal paths. By connecting the SYNC pins together, up to eight converters can be synchronized and these beat frequencies avoided. The unit with the highest natural frequency will determine the synchronized running frequency. To avoid excess stray capacitance, the SYNC pin should not be loaded with more than 50pF. If unused, the SYNC pin must be left open.

Soft start circuitry protects the MOSFET switches during start up. This is accomplished by holding the gate-tosource voltage of both MOSFET switches low until the free-running oscillator is fully operational. In addition to the soft start circuitry, input current sensing also protects the MOSFET switches. This current limiting keeps the FET switches operating in their safe operating area under fault conditions or excessive loads. When either of these conditions occur, the peak input current exceeds a safe limit. The result is an approximate 5% duty cycle, 300µs drive period to the MOSFET switches. This protects the internal MOSFET switches as well as the external load from any thermal damage. When the fault or excessive load is removed, the converter resumes normal operation. A delay period of approximately 50µs incorporated in the current sensing circuitry allows the output filter capacitors to fully charge after a fault is removed. This delay period corresponds to a filter capacitance of no more than 1μ F at either of the output pins. This provides full protection of the MOSFET switches and also sufficiently filters the output ripple voltage (see specification table). The current sensing circuitry is designed to provide thermal protection for the MOSFET switches over the operating temperature range as well. The low thermal resistance of the package $(\theta_{\rm JC} = 10^{\circ}{\rm C/W})$ ensures safe operation under rated conditions. When these rated conditions are exceeded, the unit will go into its shutdown mode.

An optional potentiometer can be connected between the two FREQUENCY ADJUST pins to trim the oscillator operating frequency $\pm 10\%$ (see Figure 1). Care should be taken when trimming the frequency near the low frequency range. If the frequency is trimmed too low, the peak inductive currents in the primary will trip the input current sensing circuitry to protect the MOSFET switches from these peak inductive currents. The ENABLE pin allows external control of output power. When this pin is pulled low, output power is disabled. Logic thresholds are TTL compatible. When not used, the Enable input may be left open or tied to V_{IN} (pin 16).

OUTPUT CURRENT RATING

The total current which can be drawn from the PWS725 or PWS726 is a function of total power being drawn from both outputs (see Functional Diagram). If one output is not used, then maximum current can be drawn from the other output. If both outputs are loaded, the total current must be limited such that:

$$|I_L+| + |I_L-| \le 80 \text{mA}$$

It should be noted that many analog circuit functions do not simultaneously draw full rated current from both the positive and negative supplies. For example, an operational amplifier may draw 13mA from the positive supply under full load while drawing only 3mA from the negative supply. Under these conditions, the PWS725/726 could supply power for up to five devices (80mA \div 16mA \approx 5). Thus, the PWS725/726 can power more circuits than is at first apparent.

ISOLATION VOLTAGE RATINGS

Because a long-term test is impractical in a manufacturing situation, the generally accepted practice is to perform a production test at a higher voltage for some shorter period of time. The relationship between actual test conditions and the continuous derated maximum specification is an important one. Burr-Brown has chosen a deliberately conservative one: $VDC_{TEST} = (2 \times VACrms_{CONTINUOUS RATING}) + 1000V$ for ten seconds. This choice is appropriate for conditions where system transient voltages are not well defined.* Where the real voltages are well-defined or where the isolation voltage is not continuous, the user may choose a less conservative derating to establish a specification from the test voltage.

FIGURE I. FWS/25/720 Functional Diagram.

*Reference National Electrical Manufacturers Association (NEMA) Standards Parts ICS I-109 and ICS I-111.

THIS PAGE INTENTIONALLY LEFT BLANK

ADC80MAH-12

Monolithic 12-Bit ANALOG-TO-DIGITAL CONVERTER

FEATURES

- INDUSTRY-STANDARD 12-BIT ADC
- MONOLITHIC CONSTRUCTION
- LOW COST
- ±0.012% LINEARITY
- $\pm 12V$ or $\pm 15V$ OPERATION
- NO MISSING CODES -25°C to +85°C
- HERMETIC 32-PIN PACKAGE
- PARALLEL OR SERIAL OUTPUTS
- 705mW MAX DISSIPATION

DESCRIPTION

The ADC80MAH-12 is a 12-bit single-chip successiveapproximation analog-to-digital converter for low cost converter applications. It is complete with a comparator, a 12-bit DAC which includes a 6.3V reference laser-trimmed for minimum temperature coefficient, a successive approximation register (SAR), clock, and all other associated logic functions.

Internal scaling resistors are provided for the selection of analog input signal ranges of ± 2.5 V, ± 5 V, ± 10 V, 0 to ± 5 V, or 0 to ± 10 V. Gain and offset errors may be externally trimmed to zero, enabling initial end-point accuracies of better than $\pm 0.12\%$ ($\pm 1/2$ LSB).

The maximum conversion time of 25μ s makes the ADC80MAH-12 ideal for a wide range of 12-bit applications requiring system throughput sampling rates up to 40kHz. In addition, this A/D converter may be short-cycled for faster conversion speed with

reduced resolution, and an external clock may be used to synchronize the converter to the system clock or to obtain higher-speed operation. The convert command circuits have been redesigned to allow simplified free-running operation with internal or external clock.

Data is available in parallel and serial form with corresponding clock and status signals. All digital input and output signals are TTL/LSTTL-compatible, with internal pull-up resistors included on all digital inputs to eliminate the need for external pull-up resistors on digital inputs not requiring connection. The ADC80MAH-12 operates equally well with either $\pm 15V$ or $\pm 12V$ analog power supplies, and also requires use of a $\pm 5V$ logic power supply. However, unlike many ADC80-type products, a $\pm 5V$ analog power supply is not required. It is packaged in a hermetic 32-pin side-brazed ceramic dual-in-line package.

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

PDS-694

SPECIFICATIONS

ELECTRICAL

At $T_A = +25^{\circ}C$, $\pm V_{CC} = 12V$ or 15V, $V_{DD} = +5V$ unless otherwise specified.

MODEL				
	MiŃ	ТҮР	MAX	UNITS
RESOLUTION			12	Bits
INPUT		••••••••••••••••••••••••••••••••••••••		
ANALOG Voltage Ranges: Unipolar Bipolar Impedance: 0 to +5V, ±2.5V 0 to +10V, ±5V ±10V	2.45 4.9 9.8	$0 to +5, 0 to +10 \pm 2.5, \pm 5, \pm 10 2.5 5 10$	2.55 5.1 10.2	ν ν κΩ κΩ
$\begin{array}{l} \textbf{DigitAL} \\ \text{Logic Characteristics (Over specification temperature range)} \\ V_{\text{H}} \ (\text{Logic "1"}) \\ V_{\text{L}} \ (\text{Logic "0"}) \\ \text{I}_{\text{H}} \ (V_{\text{H}} = +2.7 \text{V}) \\ \text{I}_{\text{H}} \ (V_{\text{H}} = +0.4 \text{V}) \\ \text{Convert Command Pulse Width"} \end{array}$	2.0 0.3 20 100ns		5.5 +0.8 20 20	ν ν μΑ μΑ μs
TRANSFER CHARACTERISTICS		· · · · ·		
ACCURACY Gain Error ⁽²⁾ Offset Error ⁽²⁾ : Unipolar Bipolar Linearity Error Differentia Linearity Error Inherent Quantization Error		± 0.1 ± 0.05 ± 0.1 $\pm 1/2$ $\pm 1/2$	±0.3 ±0.2 ±0.3 ±0.012 ±3/4	% of FSR ⁽³⁾ % of FSR % of FSR LSB LSB
POWER SUPPLY SENSITIVITY $11.4V \le \pm V_{CC} \le 16.5V$ $+4.5V \le V_{DD} \le +5.5V$		±0.003 ±0.002	±0.009 ±0.005	% of FSR/%Vcc % of FSR/%Vpp
DRIFT Total Accuracy, Bipolar ⁴⁹ Gain Offset: Unipolar Bipolar Linearity Error Drift Differential Linearity over Temperature Range No Missing Code Temperature Range Monotonicity Over Temperature Range	-25	±10 ±15 ±3 ±7 ±1 Guaranteed	±23 ±30 ±15 ±3 ±3/4 +85	ppm/°C ppm/°C ppm of FSR/°C ppm of FSR/°C ppm of FSR/°C LSB °C
CONVERSION TIME ⁽⁵⁾	,	22	25	μs
OUTPUT			·	
DIGITAL (Bits 1-12, Clock Out, Status, Serial Out) Output Codes ⁶⁰ Parallel: Unipolar Bipolar Serial (NRZ) ¹⁷⁷ Logic Levels: Logic 0 (I _{BNIK} ≤ 3.2mA) Logic 1 (I _{SOURCE} ≤ 80µA) Internal Clock Frequency	+2.4	CSB COB, CTC CSB, COB 520	+0.4	V V kHz
INTERNAL REFERENCE VOLTAGE Voltage Source Current Available for External Loads ⁽⁶⁾ Temperature Coefficient	+6.28 200	+6.3 ±10	+6.32 ±30	V µA ppm/°C
POWER SUPPLY REQUIREMENTS Rated Supply Voltages Supply Ranges: $\pm V_{cc}$ V_{DD} Supply Drain: $\pm I_{cc}$ ($\pm V_{cc} = 15V$) $-I_{cc}$ ($-V_{cc} = 15V$) I_{DD} ($V_{cc} = 5V$) Power Dissipation ($\pm V_{cc} = 15V$, $V_{DD} = 5V$) Thermal Resistance, θ_{JA}	±11.4 +4.5	+5, ±12 or ±15 8.5 21 30 593 50	±16.5 +5.5 11 24 36 705	∨ ∨ mA mA mW °C/W
TEMPERATURE RANGE (Ambient) Specification Operating (derated specs) Storage	25 55 65		+85 +125 +150	ວະ ວະ ວະ

NOTES: (1) Accurate conversion will be obtained with any convert command pulse width of greater than 100ns; however, it must be limited to 20 μ s (max) to assure the specified conversion time. (2) Gain and offset errors are adjustable to zero. See "Optional External Gain and Offset Adjustment" section. (3) FSR means Full-Scale Range and is 20V for ±10V range, 10V for ±5V and 0 to +10V ranges, etc. (4) Includes drift due to linearity, gain, and offset drifts. (5) Conversion time is specified using internal clock. For operation with an external clock see "Clock Options" section. This converter may also be short-cycled to less than 12-bit resolution for shorter conversion time; see "Short Cycle Feature" section. (6) CSB means Complementary Straight Binary, COB means Complementary Offset Binary, and CTC means Complementary Two's Complement coding. See Table 1 for additional information. (7) NRZ means Non-Return-to-Zero coding. (8) External loading must be constant during conversion, and must not exceed 200 μ A for guaranteed specification.

CONNECTION DIAGRAM

Pin 1	Bit 6	Pin 32	Bit 7
Pin 2	Bit 5	Pin 31	Bit 8
Pin 3	Bit 4	Pin 30	Bit 9
Pin 4	Bit 3	Pin 29	Bit 10 (LSB-10 Bits)
Pin 5	Bit 2	Pin 28	Bit 11
Pin 6	Bit 1 (MSB)	Pin 27	Bit 12 (LSB12 Bits)
Pin 7	N/C*	Pin 26	Serial Out
Pin 8	Bit 1 (MSB)	Pin 25	-Vcc
Pin 9	+5V Digital Supply	Pin 24	Reference Out (+6.3V)
Pin 10	Digital Common	Pin 23	Clock Out
Pin 11	Comparator In	Pin 22	Status
Pin 12	Bipolar Offset	Pin 21	Short Cycle
Pin 13	R1 10V Range	Pin 20	Clock Inhibit
Pin 14	R2 20V Range	Pin 19	External Clock
Pin 15	Analog Common	Pin 18	Convert Command
Pin 16	Gain Adjust	Pin 17	+Vcc

MECHANICAL

ABSOLUTE MAXIMUM RATINGS

$+V_{CC}$ to Analog Common $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 0$ to $+16.5V$
-V _{cc} to Analog Common 0 to -16.5V
V _{DD} to Digital Common 0 to +7V
Analog Common to Digital Common ±0.5V
Logic Inputs (Convert Command, Clock In)
to Digital Common0.3V to +Vcc
Analog Inputs (Analog In, Bipolar Offset)
to Analog Common ±16.5V
Reference Output Indefinite Short to Common,
Momentary Short to Vcc.
Lead Temperature, Soldering +300°C, 10s
Maximum Junction Temperature +160°C
CAUTION: These devices are sensitive to electrostatic discharge. Appropriate I.C. handling procedures should be followed.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

TYPICAL PERFORMANCE CURVES

0	RI	DE	RI	NG	INF	ORN	IAT	ION

Model	Resolution (bits)
ADC80MAH-12	12
ADC80MAH-12/QM ⁽¹⁾	12

NOTE: (1) /QM suffix indicates Environmental Screening; see Table IV for details.

DISCUSSION OF SPECIFICATIONS

LINEARITY ERROR

Linearity error is defined as the deviation of actual code transition values from the ideal transition values. Under this definition of linearity (sometimes referred to as integral linearity), ideal transition values lie on a line drawn through zero (or minus full scale for bipolar operation) and plus full scale, providing a significantly better definition of converter accuracy than the beststraight-line-fit definition of linearity employed by some manufacturers.

The zero or minus full-scale value is located at an analog input value 1/2LSB before the first code transition (FFF_H to FFE_H). The plus full-scale value is located at an analog value 3/2LSB beyond the last code transition (001_H to 000_H). See Figure 1 which illustrates these relationships. A linearity specification which guarantees $\pm 1/2$ LSB maximum linearity error assures the user that no code transition will differ from the ideal transition value by more than $\pm 1/2$ LSB.

Thus, for a converter connected for bipolar operation and with a full-scale range (or span) of 20V (\pm 10V operation), the minus full-scale value of -10V is 2.44mV below the first code transition (FFF_H to FFE_H at -9.99756V) and the plus full-scale value of +10V is 7.32mV above the last code transition (001_H to 000_H at

FIGURE 1. Transfer Characteristic Terminology.

+9.99268V). Ideal transitions occur ILSB (4.88mV) apart, and the $\pm 1/2$ LSB linearity specification guarantees that no actual transition will vary from the ideal by more than 2.44mV. The LSB weights, transition values, and code definitions for each possible ADC80 analog input signal range are described in Table I.

TABLE I.	Input	Voltages.	Transition	Values.	LSB	Values.	and	Code	Definitions.
	Inp at	· onugoo,	11 anoition	· urues,	LOD	· araco,	unu	0040	L'onniciono.

Binary Output	Input Voltage Range and LSB Values							
Analog Input Voltage Range	Defined As:	±10V	±5V	±2.5V	0 to +10V	0 to +5V		
Code Designation		COB ⁽¹⁾ or CTC ⁽²⁾	COB or CTC	COB or CTC	CSB ⁽³⁾	CSB		
One Least Significant Bit (LSB)	$FSR/2^{n}$ n = 8 n = 10 n = 12	20V/2 ⁿ 78.13mV 19.53mV 4.88mV	10V/2 ⁿ 39.06mV 9.77mV 2.44mV	5V/2 ⁿ 19.53mV 4.88mV 1.22mV	10V/2 ⁿ 39.06mV 9.77mV 2.44mV	5V/2 ⁿ 19.53mV 4.88mV 1.22mV		
Transition Values MSB LSB 001 _H to 000 _H 800 _H to 7FF _H FFF _H to FFE _H	+ Full Scale Midscale – Full Scale	+10V - 3/2LSB 0 -10V + 1/2LSB	+5V - 3/2LSB , 0 -5V + 1/2LSB	+2.5V 3/2LSB 0 -2.5V + 1/2LSB	+10V - 3/2LSB +5V 0 + 1/2LSB	+5V - 3/2LSB +2.5V 0 + 1/2LSB		

NOTES: (1) COB = Complementary Offset Binary. (2) CTC = Complementary Two's Complement—obtained by using the complement of the most significant bit (MSB). MSB is available on pin 8. (3) CSB = Complementary Straight Binary.

CODE WIDTH (QUANTUM)

Code width (or quantum) is defined as the range of analog input values for which a given output code will occur. The ideal code width is ILSB, which for 12-bit operation with a 20V span is equal to 4.88mV. Refer to Table I for LSB values for other ADC80 input ranges.

DIFFERENTIAL LINEARITY ERROR AND NO MISSING CODES

Differential linearity error is the difference between an ideal ILSB code width (quantum) and the actual code width. A specification which guarantees no missing codes requires that every code combination appear in a monotonically increasing sequence as the analog input is increased throughout the range, requiring that every input quantum must have a finite width. If an input quantum has a value of zero (a differential linearity error of -1LSB), a missing code will occur but the converter may still be monotonic. Thus, no missing codes represent a more stringent definition of performance than does monotonicity. ADC80 is guaranteed to have no missing codes to 12-bit resolution over its full specification temperature range.

QUANTIZATION UNCERTAINTY

Analog-to-digital converters have an inherent quantization error of $\pm 1/2$ LSB. This error is a fundamental property of the quantization process and cannot be eliminated.

UNIPOLAR OFFSET ERROR

An ADC80 connected for unipolar operation has an analog input range of 0V to plus full scale. The first output code transition should occur at an analog input value 1/2LSB above 0V. Unipolar offset error is defined as the deviation of the actual transition value from the ideal value, and is applicable only to converters operating in the unipolar mode.

BIPOLAR OFFSET ERROR

A/D converter specifications have historically defined bipolar offset at the first transition value above the minus full-scale value. The ADC80 follows this convention. Thus, bipolar offset error for the ADC80 is defined as the deviation of the actual transition value from the ideal transition value located 1/2LSB above minus full scale.

GAIN ERROR

The last output code transition $(001_{\rm H}$ to $000_{\rm H})$ occurs for an analog input value 3/2LSB below the nominal plus full-scale value. Gain error is the deviation of the actual analog value at the last transition point from the ideal value.

ACCURACY DRIFT VS TEMPERATURE

The temperature coefficients for gain, unipolar offset, and bipolar offset specify the maximum change from the actual 25°C value to the value at the extremes of the Specification temperature range. The temperature coefficient applies independently to the two halves of the temperature range above and below $+25^{\circ}$ C.

POWER SUPPLY SENSITIVITY

Electrical specifications for the ADC80 assume the application of the rated power supply voltages of +5V and $\pm 12V$ or $\pm 15V$. The major effect of power supply voltage deviations from the rated values will be a small change in the plus full-scale value. This change, of course, results in a proportional change in all code transition values (i.e., a gain error). The specification describes the maximum change in the plus full-scale value from the initial value for independent changes in each power supply voltage.

TIMING CONSIDERATIONS

Timing relationships of the ADC80 are shown in Figure 2.

During conversion, the decision as to the proper state of any bit (bit "n") is made on the rising edge of clock pulse "n + 1". Thus, a complete conversion requires 13 clock pulses with the status output dropping from logic "1" to logic "0" shortly after the falling edge of the 13th clock pulse, and with valid output data ready to be read at that time.

Additional convert commands applied during conversion will be ignored.

Status remains high until after the falling edge of the 13th clock pulse. This allows direct use of status for latching parallel data.

FIGURE 2. Timing Diagram (nominal values at +25°C with internal clock).

DEFINITION OF DIGITAL CODES

Parallel Data

Three binary codes are available on the ADC80 parallel output; all three are complementary codes, meaning that logic "0" is true. The available codes are complementary straight binary (CSB) for unipolar input signal ranges, and complementary offset binary (COB) and complementary two's complement (CTC) for bipolar input signal ranges. CTC coding is obtained by complementing bit 1 (the MSB) relative to its normal state for CSB or COB coding; the complement of bit 1 is available on pin 8.

Serial Data

Two (complementary) straight binary codes are available on the serial output of the ADC80; as in the parallel case, they are CSB and COB. The serial data is available only during conversion and appears with the most significant bit (MSB) occurring first. The serial data is synchronous with the internal clock as shown in the timing diagram of Figure 2. The LSB and transition values of Table I also apply to the serial data output, except that the CTC code is not available. All clock pulses available from the ADC80 have equal pulse widths to facilitate transfer of the serial data into external logic devices without external shaping.

LAYOUT AND OPERATING INSTRUCTIONS

LAYOUT PRECAUTIONS

Analog and digital commons are not connected together internally in the ADC80, but should be connected together as close to the unit as possible, preferably to an analog common ground plane beneath the converter. If these common lines must be run separately, use wide conductor pattern and a 0.01μ F to 0.1μ F nonpolarized bypass capacitor between analog and digital commons at the unit. Low impedance analog and digital common returns are essential for low noise performance. Coupling between analog input lines and digital lines should be minimized by careful layout. For instance, if the lines must cross, they should do so at right angles. Parallel analog and digital lines should be separated from each other by a pattern connected to common. If external gain and offset potentiometers are used, the potentiometers and associated resistors should be located as close to the ADC80 as possible. Capacitive loading on comparator and input pins should be kept to a minimum to maintain converter performance.

POWER SUPPLY DECOUPLING

The power supplies should be bypassed with 1μ F to 10μ F tantalum bypass capacitors located close to the converter to obtain noise-free operation. Noise on the power supply lines can degrade the converter's performance. Noise and spikes from a switching power supply are especially troublesome.

ANALOG SIGNAL SOURCE IMPEDANCE

The signal source supplying the analog input signal to the ADC80 will be driving into a nominal DC input impedance of $2.3k\Omega$ to $9.2k\Omega$ depending upon the range selected. However, the output impedance of the driving source should be very low, such as the output impedance provided by a wideband, fast-settling operational amplifier. Transients in A/D input current are caused by the changes in output current of the internal D/A converter as it tests the various bits. The output voltage of the driving source must remain constant while furnishing these fast current changes. If the application requires a sample/hold, select a sample/hold with sufficient bandwidth to preserve the accuracy or use a separate wideband buffer amplifier to lower the output impedance.

INPUT SCALING

The ADC80 offers five standard input ranges: 0V to +5V, 0V to +10V, $\pm 2.5V$, $\pm 5V$, and $\pm 10V$. The input range should be scaled as close to the maximum input signal range as possible in order to utilize the maximum signal resolution of the converter. Select the appropriate input range as indicated by Table II. The input circuit architecture is illustrated in Figure 3. External padding resistors can be added to modify the factory-set input ranges (such as addition of a small external input resistor to change the 10V range to a 10.24V range). Alternatively, the gain range of the converter may easily be increased a small amount by use of a low temperature coefficient potentiometer in series with the analog input signal or by decreasing the value of the gain adjust series resistor in Figure 5.

TABLE II. Input Scaling Connections.

Input Signal Range	Output Code	Connect Pin 12 To Pin	Connect Pin 14 To	Connect Input Signal To
±10V	COB or CTC	11	Input Signal	14
±54V	COB or CTC	11	Open	13
±2.5V	COB or CTC	11	Pin 11	13
0 to +5V	CSB	15	Pin 11	13
0 to +10V	CSB	15	Open	13

CALIBRATION

Optional External Gain And Offset Adjustments

Gain and offset errors may be trimmed to zero using external offset and gain trim potentiometers connected to the ADC80 as shown in Figures 4 and 5 for both unipolar and bipolar operation. Multiturn potentiometers with 100ppm/°C or better TCR are recommended for minimum drift over temperature and time. These pots may be of any value between $10k\Omega$ and $100k\Omega$. All fixed resistors should be 20% carbon or better. Although not necessary in some applications, pin 16 (Gain Adjust) should be preferably bypassed with a 0.01μ F nonpolarized capacitor to analog common to minimize noise pickup at this high impedance point, even if no external adjustment is required.

FIGURE 4. Two Methods of Connecting Optional Offset Adjust.

FIGURE 5. Two Methods of Connecting Optional Gain Adjust.

Adjustment Procedure

OFFSET—Connect the offset potentiometer as shown in Figure 4. Set the input voltage to the nominal zero or minus full-scale voltage plus 1/2LSB. For example, referring to Table I, this value is -10V + 2.44mV or -9.99756V for the -10V to +10V range.

With the input voltage set as above, adjust the offset potentiometer until an output code is obtained which is alternating between FFE_H and FFF_H with approximately 50% occurrence of each of the two codes. In other words, the potentiometer is adjusted until bit 12 (the LSB) indicates a true (logic "0") condition approximately half the time.

GAIN—Connect the gain adjust potentiometer as shown in Figure 5. Set the input voltage to the nominal plus full-scale value minus 3/2LSB. Once again referring to Table I, this value is +10V - 7.32mV or +9.99268V for the -10V to +10V range. Adjust the gain potentiometer until the output code is alternating between $000_{\rm H}$ and $001_{\rm H}$ with an approximate 50% duty cycle. As in the case of offset adjustment, this procedure sets the converter end-point transitions to a precisely known value.

CLOCK OPTIONS AND SHORT CYCLE FEATURE

The ADC80 is extremely versatile in that it can be operated in several different modes with either internal or external clock. Most of these options can be implemented with inexpensive TTL logic as shown in Figures 6 through 9. Pin 20 (clock inhibit) must be grounded for use with an external clock, which is applied to pin 19.

A short-cycle input (pin 21) permits the conversion to be terminated after any number of desired bits has been converted, allowing shorter conversion times in applications not requiring full 12-bit resolution. In these situations, the short-cycle pin should be connected to the bit output pin of the next bit after the desired resolution. For example, when 10-bit resolution is desired, pin 21 is connected to pin 28 (bit 11). In this example, the conversion cycle terminates and status is reset after the bit 10 decision. Short-cycle pin connections and associated maximum 12-, 10-, and 8-bit conversion times (with internal clock) are shown in Table III. Shorter conversion times are possible with an external clock applied to pin 19. With increasing clock speed, linearity performance will begin to degrade as indicated in the Typical Performance Curves. These curves should be used only as guidelines because guaranteed performance is specified and tested only with the internal clock.

TABLE III. Short-Cycle Connections and Conversion Times for 8-, 10-, and 12-Bit Resolutions— ADC80MAH-12.

Resolution (Bits)	12	10	8
Connect pin 21 to	Pin 9 or NC	Pin 28	Pin 30
Maximum Conversion Time ⁽¹⁾ Internal Clock (μs)	25	22	18
Maximum Linearity Error at +25°C (% of FSR)	Ū.012	0.048	0.20

NOTE: (1) Conversion time to maintain $\pm 1/2$ LSB linearity error.

FIGURE 7. Continuous Conversion.

onvert command. The convert command must be synchronized with clock.)

ENVIRONMENTAL SCREENING

The inherent reliability of a semiconductor device is controlled by the design, materials, and fabrication of the device-it cannot be improved by testing. However, the use of environmental screening can eliminate the majority of those units which would fail early in their lifetimes (infant mortality) through the application of carefully selected accelerated stress levels. Burr-Brown Q models are environmentally screened versions of our standard industrial products, designed to provide enhanced reliability. The screening illustrated in Table IV is performed to selected methods of MIL-STD-883. Reference to these methods provides a convenient way of communicating the screening levels and basic procedures employed; it does not imply conformance to any other military standards or to any methods of MIL-STD-883 other than those specified. Burr-Brown's detailed procedures may vary slightly, model-to-model, from those in MIL-STD-883.

Screen	MIL-STD-883 Method, Condition	Screening Level
Internal Visual	2010	
High Temperature Storage (Stabilization Bake)	1008, C	24 hour, +150°C
Temperature Cycling	1010, C	10 cycles, -65°C to +150°C
Constant Acceleration	2001, A	5000 G
Electrical Test	Burr-Brown test procedure	
Burn-in	1015, B	160 hour, +125°C, steady state
Hermeticity: Fine Leak Gross Leak	1014, A1 or A2 1014, C	5 × 10 ⁻⁷ atm cc/s bubble test only, pre-conditioning omitted
Final Electrical	Burr-Brown test procedure	
Final Drift	Burr-Brown test procedure	· .
External Visual	2009	

TABLE IV. Screening Flow for ADC80MAH-12/QM.

DESCRIPTION

The ADC85H Series of analog-to-digital converters utilize state-of-the-art IC and laser-trimmed thinfilm components, and are packaged in a 32-pin hermetic side-brazed package.

Complete with internal reference and input buffer amplifier, they offer versatility and performance formerly offered only in larger modular or rackmount packages.

Thin-film internal scaling resistors are provided for the selection of analog input signal ranges of $\pm 2.5V$, $\pm 5V$, $\pm 10V$, 0 to +5V or 0 to +10V. Gain and offset errors may be externally trimmed to zero, offering initial accuracies of better than $\pm 0.012\%$ ($\pm 1/2$ LSB). The fast 10μ s conversion speed for 12-bit resolution makes these ADCs excellent for a wide range of applications where system throughput sampling rates of 100kHz are required. In addition, they may be short cycled and the clock rate control may be used to obtain faster conversion speeds at lower resolutions.

Data is available in parallel and serial form with corresponding clock and status signals. All digital input and output signals are CMOS/TTL-compatible. Power supply voltages are ± 12 VDC or ± 15 VDC and ± 5 VDC.

PDS-714 95

SPECIFICATIONS

ELECTRICAL

Specified at +25°C and rated supplies unless otherwise noted.

MODEL	ADC84KG-12(1)		(1)	ADC85H-12		ADC87H-12				
	MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
RESOLUTION			12			*			*	Bits
INPUTS	,									
ANALOG Voltage Ranges: Bipolar Unipolar Impedance (Direct Input): 0 to +5V, ±2.5V	2.45	±2.5, ±5, ±1 to +5, 0 to + 2.5	0 -10 2.55		* * *	*	*	*	•	V V kΩ
0 to +10V, ±5V	4.9	5	5.1	*	*	*	*	*	•	kΩ
±10V Buffer Amplifier: Impedance Bias Current Settling Time to 0.01% for 20V step ⁽²⁾	9.8 100	10 50 2	10.2	*	*	*	*	*	· *	kΩ MΩ nA μs
DIGITAL ⁽³⁾ Convert Command Logic Loading		Pc 1 I	ositive puls	e 50ns (mir	h), trailing e	 edge initiate 	s conversi	l on I *		TTL Load
TRANSFER CHARACTERISTICS										
ACCURACY Gain Error ⁴⁴ : Unipolar Bipolar Linearity Error ⁶⁶ Inherent Quantization Error Differential Linearity Error No Missing Codes Temperature Range	0	± 0.1 ± 0.05 ± 0.1 ± 0.5 ± 0.5	± 0.25 ± 0.2 ± 0.25 ± 0.012 +70	-25	* * *	* * * +85	55	* * *	* * * +125	% % of FSR % of FSR LSB LSB °C
POWER SUPPLY SENSITIVITY Gain and Offset: ±15V +5V		±0.004 ±0.001			*			*		% of FSR/%Vs % of FSR/%Vs
DRIFT Gain Offset: Unipolar Bipolar Linearity Monotonicity		±3 Guaranteed	±30 ±15 ±3		±3 *	±15 ±7 ±2			±15 ±5 ±10 ±2	ppm/°C ppm of FSR/°C ppm of FSR/°C ppm of FSR/°C
CONVERSION TIME			10			*			*	μs
DIGITAL OUTPUT ⁽³⁾							•			
(All Codes Complementary) Parallel Output Codes: Unipolar Bipolar Output Drive Serial Data Codes (NRZ) Output Drive Status Output Drive Internal Clock: Output Drive Frequency ⁽⁷⁾	Logic "	CSB COB, CTC 2 CSB, COB 2 " during co 2 2 1.35	nversion		* * * * * *			* * * *		TTL Loads TTL Loads TTL Loads TTL Loads TTL Loads MHz
INTERNAL REFERENCE VOLTAGE										
Reference Output Max. External Current With No Degradation Tempco of Drift	+6.2	+6.3	+6.4 200 ±20	*	* ±5	* * ±10	*	* ±5	* * ±10	V µA ppm/°C
POWER SUPPLY REQUIREMENTS						I		· · · · · · · · · · · · · · · · · · ·	·	
Hated Supply Voltages Supply Ranges: Voc ±Vcc Supply Drain: +Icc -Icc Iop Total Power Dissipation	+4.75 ±11.4	-5, ±12 or ± 450	15 +5.25 ±16.5 20 25 10 725	*	*	* *	*	*	* * * *	V V MA MA MW
TEMPERATURE RANGE						• • • • • • • • • • • • • • • • • • •		•	-	
Specification Operating (with Derated Specs) Storage PACKAGE	0 25 65 He	rmetic Cera	+70 +85 +150	25 55 *	*	+85 +125 *	-55		+125	ပံ ပံ

*Specification is the same as ADC84KG-12.

NOTES: (1) Model ADC84KG-10 is the same as model ADC84KG-12 except for the following: (a) Resolution: 10 bits (max), (b) Linearity Error: $\pm 0.048\%$ of FSR (max), (c) Conversion Time: 6μ s (max), (d) Internal Clock Frequency: 1.9MHz (typ). (2) If the buffer is used, delay Convert Command until amplifier settles. (3) DTL/TTL compatible. For digital inputs Logic "0" = 0.8V (max) and Logic "1" = 2.0V min. For digital outputs Logic "0" = 0.4V (max) and Logic "1" = 2.4V (min). (4) Adjustable to zero. (5) FSR means Full Scale Range. (6) The error shown is the same as $\pm 1/2$ LSB max linearity error in % of FSR. (7) Internal clock is externally adjustable.

CONNECTION DIAGRAM—ADC85H SERIES

MECHANICAL

ORDERING INFORMATION

Model	Resolution (Bits)	Temp Range (°C)
ADC84KG-10	10	0 to +70
ADC84KG-12	12	0 to +70
ADC85H-12	12	-25 to +85
ADC85HQ-12*	12	-25 to +85
ADC87H-12	12	-55 to +125
ADC87HQ-12*	12	-55 to +125

* Q suffix indicates environmental screening; see Table II for details.

THEORY OF OPERATION

The accuracy of a successive approximation A/D converter is described by the transfer function shown in Figure 1. All successive approximation A/D converters have an inherent Quantization Error of $\pm 1/2$ LSB. The remaining errors in the A/D converter are combinations of analog errors due to the linear circuitry, matching and tracking properties of the ladder and scaling networks, power supply rejection, and reference errors. In summary, these errors consist of initial errors including Gain, Offset, Linearity, Differential Linearity and Power Supply Sensitivity. Initial Gain and Offset errors may be adjusted to zero. Gain drift over temperature rotates the line (Figure 1) about the zero or minus full scale point (all bits OFF) and Offset drift shifts the line left or right over the operating temperature range. Linearity error is unadjustable and is the most meaningful indicator of A/D converter accuracy. Linearity error is the deviation of an actual bit transition from the ideal transition value at any level over the range of the A/D converter. A Differential Linearity error of $\pm 1/2$ LSB means that the width of each bit step over the range of the A/D converter is 1LSB $\pm 1/2$ LSB.

The ADC84, ADC85H and ADC87H are also monotonic, assuring that the output digital code either increases or remains the same for increasing analog input signals. Burr-Brown also guarantees that these converters will have no missing codes over a specified temperature range. Figure 2 is the timing diagram.

FIGURE 1. Input vs Output for an Ideal Bipolar A/D Converter.

FIGURE 2. Timing Diagram.

DIGITAL CODES

Parallel Data

Three binary codes are available on the ADC85H series parallel output:

- complementary (logic "0" is true) straight binary (CSB) for unipolar input signal ranges;
- complementary two's complement (CTC) for bipolar input signal ranges;
- complementary offset binary (COB) for bipolar input signal ranges.

Table I describes the LSB, transition values and code

definitions for each possible analog input signal range for 8-, 10-, and 12-bit resolutions.

Serial Data

Two straight binary (complementary) codes are available on the serial output line; they are CSB and COB. The serial data is available only during conversion and appears with the most significant bit (MSB) occurring first. The serial data is synchronous with the internal clock as shown in the timing diagram of Figure 2. The LSB and transition values shown in Table I also apply to the serial data output except for the CTC code.

	TABLE 1.	Input	Voltages,	Transition	Values,	LSB	Values,	and	Code	Definitions
--	----------	-------	-----------	------------	---------	-----	---------	-----	------	-------------

Binary Output	Input Voltage Range and LSB Values							
Analog Input Voltage Ranges	Defined As	±10V	±5V	±2.5V	0 to +10V	0 to +5V		
Code Designation		COB ⁽¹⁾ or CTC ⁽²⁾	COB ⁽¹⁾ or CTC ⁽²⁾	COB ⁽¹⁾ or CTC ⁽²⁾	CSB ⁽³⁾	CSB ⁽³⁾		
One Least Significant Bit (LSB)	FSR/2 ⁿ n = 8 n = 10 n = 12	20V/2" 78.13mV 19.53mV 4.88mV	10V/2" 39.06mV 9.77mV 2.44mV	5V/2" 19.53mV 4.88mV 1.22mV	10V/2" 39.06mV 9.77mV 2.44mV	5V/2" 19.53mV 4.88mV 1.22mV		
Transition Values MSB LSB 000000 ⁽⁴⁾ 011111 111110	+Full Scale Mid Scale -Full Scale	+10V - 3/2LSB 0 -10V + 1/2LSB	+5V - 3/2LSB 0 -5V + 1/2LSB	+2.5V 3/2LSB 0 2.5V + 1/2LSB	+10V - 3/2LSB +5V 0 + 1/2LSB	+5V - 3/2LSB +2.5V 0 + 1/2LSB		

NOTES: (1) COB = Complementary Offset Binary. (2) CTC = Complementary Two's Complement—obtained by using the complement of the most-significant bit (MSB). MSB is available on pin 13. (3) Complementary Straight Binary. (4) Voltages given are the nominal value for transition to the code specified.

ENVIRONMENTAL SCREENING

The inherent reliability of a semiconductor device is controlled by the design, materials, and fabrication of the device—it cannot be improved by testing. However, the use of environmental screening can eliminate the majority of those units which would fail early in their

Screen	MIL-STD-883 Method, Condition	Screening Level
Internal Visual	Burr-Brown QC4118*	
High Temperature Storage (Stabilization Bake)	1008, C	24 hour, +150°C
Temperature Cycling	1010, C	10 cycles, -65°C to +150°C
Constant Acceleration	2001, A	5000 G
Burn-in	` 1015, B	160 hour, +125°C steady-state
Electrical Test	Burr-Brown test procedure	
Hermeticity: Fine Leak Gross Leak	1014, A1 or A2 1014, C	5×10^{-7} atm cc/s bubble test only, preconditioning omitted
Final Electrical	Burr-Brown test procedure	
Final Drift	Burr-Brown test procedure	
External Visual	QC5150*	

TABLE	П.	Screening for ADC85HQ-12 and
		ADC87HQ-12.

* Available upon request.

lifetimes. Burr-Brown Q models are environmentally screened versions of our standard industrial products, designed to provide enhanced reliability. The screening illustrated in Table II is performed to selected methods of MIL-STD-883. Reference to these methods provides a convenient way of communicating the screening levels and basic procedures employed; it does not imply conformance to any other military standards or to any methods of MIL-STD-883 other than those specified. Burr-Brown's detailed procedures may vary slightly, model-to-model, from those in MIL-STD-883.

DISCUSSION OF SPECIFICATIONS

The ADC85H series is specified to provide critical performance criteria for a wide variety of applications. The most critical specifications for an A/D converter are linearity, drift, gain and offset errors, and conversion speed effects on accuracy. These ADCs are factory-trimmed and tested for all critical key specifications.

GAIN AND OFFSET ERROR

Initial Gain and Offset errors are factory-trimmed to $\pm 0.1\%$ of FSR ($\pm 0.05\%$ for unipolar offset) at 25°C. These errors may be trimmed to zero by connecting external trim potentiometers as shown in Figures 6 and 7.

ACCURACY DRIFT VS TEMPERATURE

Three major drift parameters degrade A/D converter accuracy over temperature: gain, offset and linearity drift. The worst-case accuracy drift is the summation of all three drift errors over temperature. Statistically, these errors do not add algebraically, but are random variables which behave as root-sum-squared (RSS) or $I\sigma$ errors as follows:

$$\begin{split} RSS &= \sqrt{\epsilon g^2 + \epsilon o^2 + \epsilon e^2} \\ \text{where } \epsilon g &= \text{gain drift error (ppm / °C)} \\ \epsilon o &= \text{offset drift error (ppm of FSR/°C)} \\ \epsilon e &= \text{linearity error (ppm of FSR/°C)} \end{split}$$

For the ADC85H-12 operating in the unipolar mode, the total RSS drift is ± 15.42 ppm/°C and for bipolar operation the total RSS drift is ± 16.7 ppm/°C.

ACCURACY VS SPEED

In successive approximation A/D converters, the conversion speed affects linearity and differential linearity errors. The power supply sensitivity specification is a measure of how much the plus full-scale value will change from the initial value for independent changes in each power supply. This change results in a proportional change in all code transition values (i.e., a gain error).

The conversion speeds are specified for a maximum linearity error of $\pm 1/2$ LSB with the internal clock. Faster conversion speeds are possible but at a sacrifice in linearity (see Clock Rate Control Alternate Connections).

POWER SUPPLY SENSITIVITY

Changes in the DC power supplies will affect accuracy. Normally, regulated power supplies with 1% or less ripple are recommended for use with these ADCs. See Layout Precautions and Power Supply Decoupling.

FIGURE 3. Power Supply Rejection vs Power Supply Ripple Frequency.

LAYOUT AND OPERATING INSTRUCTIONS

LAYOUT PRECAUTIONS

Analog and digital commons are not connected internally in the ADC85H series, but should be connected together as close to the unit as possible, preferably to a large ground plane under the ADC. If these grounds must be run separately, use a wide conductor pattern and a 0.01μ F to 0.1μ F nonpolarizaed bypass capacitor between analog and digital commons at the unit. Low impedance analog and digital common returns are essential for low noise performance. Coupling between analog inputs and digital lines should be minimized by careful layout.

POWER SUPPLY DECOUPLING

The power supplies should be bypassed with tantalum or electrolytic type capacitors as shown in Figure 4 to reduce noise during operation. These capacitors should be located close to the ADC. 1μ F electrolytic type capacitors should by bypassed with 0.01μ F ceramic capacitors for improved high frequency performance.

FIGURE 4. Recommended Power Supply Decoupling.

INPUT SCALING

The analog input should be scaled as close to the maximum input signal range as possible in order to utilize the maximum signal resolution of the A/D converter. Connect the input signal as shown in Table III. See Figure 5 for circuit details.

FIGURE 5. Input Scaling Circuit.

TABLE III. Input Scaling Connections.

Input Signal Range	Output Code	Connect Pin 23 To Pin	Connect Pin 25 To	For Buffered Input ⁽¹⁾ Connect Pin 29 To Pin	For Direct Input ⁽²⁾ Connect Input Signal To Pin
±10V	COB or CTC	22	Input Signal ⁽³⁾	25	25
±5V	COB or CTC	-22	Open	24	24
±2.5V	COB or CTC	22	Pin 22	24	24
0 to +5V	CSB	26	Pin 22	24	24
0 to +10V	CSB	26	Open	24	24

NOTES: (1) Connect to pin 29 or input signal as shown in next two columns. (2) If the buffer amplifier is not used, pin 30 must be connected to ground (pin 26). (3) The input signal is connected to pin 30 if the buffer amplifier is used.

OPTIONAL EXTERNAL GAIN AND OFFSET ADJUSTMENTS

Gain and Offset errors may be trimmed to zero using external gain and offset trim potentiometers connected to the ADC as shown in Figures 6 and 7. Multiturn potentiometers with 100ppm/°C or better TCRs are recommended for minimum drift over temperature and time. These pots may be any value from $10k\Omega$ to $100k\Omega$. All resistors should be 20% carbon or better. Pin 27 (Gain Adjust) should be bypassed with 0.01μ F to reduce noise pickup and Pin 22 (Offset Adjust) may be left open if no external adjustment is required.

Adjustment Procedure

OFFSET—Connect the Offset potentiometer as shown in Figure 6. Sweep the input through the end point transition voltage that should cause an output transition to all bits off (E_{0}^{OFF}) .

Adjust the Offset potentiometer until the actual end point transition voltage occurs at E_{1F}^{OFF} . The ideal transition voltage values of the input are given in Table I.

FIGURE 6. Two Methods of Connecting Optional Offset Adjust.

GAIN—Connect the Gain adjust potentiometers as shown in Figure 7. Sweep the input through the end point transition voltage that should cause an output transition voltage to all bits on (E_{N}^{ON}) . Adjust the Gain potentiometer until the actual end point transition voltage occurs at E_{N}^{ON} .

Table I details the transition voltage levels required.

FIGURE 7. Two Methods of Connecting Optional Gain Adjust.

Clock Rate Control Alternate Connections

If adjustment of the Clock Rate is desired for faster conversion speeds, the Clock Rate Control may be connected to an external multiturn trim potentiometer with TCR of ± 100 ppm/°C or less as shown in Figure 8. If the potentiometer is connected to -15VDC, conversion time can be increased as shown in Figure 8. If these adjustments are used, delete the connections shown in Table IV for pin 17. See Typical Performance Curves for nonlinearity error vs. clock frequency, and Figure 9 for the effect of the control voltage on clock speed. Operation with clock rate control voltage of less than -1VDC is not recommended.

FIGURE 8. 12-Bit Clock Rate Control Optional Fine Adjust.

FIGURE 9. Conversion Time vs Clock Speed Control.

Additional Connections Required

The ADC85H series may be operated at faster speeds for resolutions less than 12 bits by connecting the Short Cycle input, pin 14, as shown in Table IV. Conversion speeds, linearity and resolution are shown for reference. Specifications for 10-bit units assume connections as shown below.

TABLE	IV.	Short Cycle Connections and Specification	ons	6
	•	for 8- to 12-Bit Resolution.		1

Resolution (Bits)	12	10	8
Connect Pin 17 to (1)	Pin 15	Pin 16	Pin 28
Connect Pin 14 to	Pin 16	Pin 2	Pin 4
Maximum Conversion Speed (µs) ⁽²⁾	10	6	4
Maximum Nonlinearity at 25°C (% of FSR)	0.012 ⁽³⁾	0.048 ⁽⁴⁾	0.20(4)

NOTES: (1) Connect only if clock rate control is not used. (2) Maximum conversion speeds to maintain $\pm 1/2$ LSB nonlinearity error. (3) 12-bit models only. (4) 10- or 12-bit models.

Converter Initialization

On power-up, the state of the ADC internal circuitry is indeterminate. One conversion cycle is required to initialize the converter after power is applied.

Output Drive

Normally all ADC84, ADC85H, and ADC87H logic outputs will drive two standard TTL loads; however, if long digital lines must be driven, external logic buffers are recommended.

- COMPLETE SUBSYSTEM: Contains Sample/Hold and Reference
- LOW DISSIPATION: 8.5W
- 0°C TO +70°C AND -40°C TO +85°C

DESCRIPTION

The ADC600 is an ultra-high speed analog-to-digital converter capable of digitizing signals at any rate from DC to 10 megasamples per second. Outstanding dynamic range has been achieved by minimizing noise and distortion.

- SIGINT, ECM, AND EW SYSTEMS
- DIGITAL COMMUNICATIONS
- DIGITAL OSCILLOSCOPES

The ADC600 is a two-step subranging ADC subsystem containing an ADC, sample/hold amplifier, voltage reference, timing, and error-correction circuitry. Laser-trimmed ceramic submodules are mounted on a 17-square-inch multilayer PC motherboard. Logic is ECL.

SPECIFICATIONS

ELECTRICAL

 $T_A = +25^{\circ}C$, 10MHz sampling rate, $R_S = 50\Omega$, $\pm V_{CC} = 15V$, $V_{DD1} = +5V$, $V_{DD2} = -5.2V$, and 15-minute warmup in normal convection environment, unless otherwise noted.

			ADC600K			ADC600B		
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
RESOLUTION				12			•	Bits
INPUTS		I						
ANALOG								
Input Range	Full scale	-1.25		+1.25	*		· •	v
Input Impedance			1.5			•		MΩ
Input Capacitance			5			•		pF
DIGITAL	· · · · · ·	50		- 416 1 -				
Convert Command			onative Ed	atible				
Pulse Width		10		ge				ns
TRANSFER CHARACTERISTICS	L				L	·		
ACCURACY								
Gain Error	F = 200Hz		±0.1	±0.5		•	•	% FSR
Input Offset	DC		±0.1	±0.5		•	•	% FSR ⁽¹⁾
Integral Linearity Error	F = 200Hz			1.25		· ·	*	LSB
Differential Linearity Error	F = 200Hz: 68.3% of all codes			0.25			:	LSB
	100% of all codes			+1.00				
				-1.00		·		LSB
Missing Codes	<i>4</i>			none			*	,
CONVERSION CHARACTERISTICS								
Sample Rate		DC		10M	*		*	Samples/s
Conversion Time	First conversion		140	150		*	*	ns
DYNAMIC CHARACTERISTICS							'	
Differential Linearity Error	F = 4.9MHz: 68.3% of all codes.			0.5			*	LSB
	99.7% of all codes			1.5			*	LSB
Total I larmania Distantia (2)	100% of all codes	ł		2.0			•	LSB
F = 4.8 MHz (0 dB)	$F_s = 10 MHz$		-71			•		dBC ⁽³⁾
F = 0.58MHz (0dB)		, î	74					dBC
F = 2.4MHz (0dB)	$F_s = 5MHz$		-73			•		dBC
F = 0.58 MHz (0 dB)			-74.5			• .		dBC
Two-Tone Intermodulation Distortion ²⁰⁴⁷		1 - N	70 5					400
F = 4.88 MHz (-60B)	Fs = 10MHZ		-70.5			÷		OBC
F = 2.40 MHz (-6 dB)	$F_s = 5MHz$		-74.5	1.1		•		dBC
2.25MHz (-6dB)								
Signal-to-Noise and Distortion (SINAD)								
Ratio	F (0) ()							
F = 4.8 MHZ (00B) F = 0.58 MHZ (00B)	$F_{S} = 10MHz$		69.6	•				dB dB
F = 2.4 MHz (0 dB)	$F_s = 5MHz$		67.2			•		dB
F = 0.58MHz (OdB)			69			•		dB
Aperture Time			6			•		ns
Aperture Jitter			±5			•		ps
Analog Input Bandwidth			70					MH7
Full Power	0dB input		40			•		MHz
OUTPUTS		L				L		
Logic Family		[ECL with	pull-dowr		(see text)		
Logic Coding			Offset	Binary, Tv	vos Comp	lement		
Logic Levels	Logic "LO"		-1.7			*		· V
	Logic "HI"	_	-0.9					v
EOC Delay Time		5	35					ns
Data Valid Pulse Width	50%	5	8		-	•		ns
POWER SUPPLY REQUIREMENTS	L				L		L	L
Supply Voltages: +Vcc	Operating	+14 25	+15	+15.75	•		*	v ·
-V _{cc}	y	-14.25	-15	-15.75	+	•	*	v
VDD1		+4.75	+5	+5.25	•	•	•	' v
V _{DD2}		-4.95	-5.2	-5.46	•	*	.*	V I
Supply Currents: +V _{cc}	Operating	· ·	75			:		mA mA
			45			1 .		mA m∆
			900) ì	•		mA
Power Consumption	Operating		8.5			•		. w

ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)

 $\pm V_{CC} = 15V$, $V_{DD1} = +5V$, $V_{DD2} = -5.2V$, $R_s = 50\Omega$, 15-minute warmup, and $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.

· ,			ADC600K	:		ADC600B		
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
TEMPERATURE RANGE								
Specification Storage	T _{case} max T _{ambient}	0 -40		+70 +100	-40 *		+85	℃ ℃
ACCURACY	·							
Gain Error Input Offset Integral Linearity Error Differential Linearity Error	F = 200Hz DC F = 200Hz F = 200Hz 63% of all codes 98% of all codes 100% of all codes		±30 ±50	1.5 0.5 1.25 1.5		*	*	ppm/°C µV/°C LSB LSB LSB LSB
Sample Rate		DC		10	*		•	MHz

*Same as ADC600K

NOTE: (1) FSR: full-scale range = 2.5Vp-p. (2) Units with tested and guaranteed distortion specifications are available on special order—inquire. (3) dBC = level referred to carrier (input signal \approx 0dB); F = input signal frequency; F_s = sampling frequency. (4) IMD is referred to the larger of the two input test signals. If referred to the peak envelope signal (\approx 0dB), the intermodulation products will be 6dB lower.

MECHANICAL

ABSOLUTE MAXIMUM RATINGS

±Vcc
V _{DD1}
V _{DD2}
Analog Input
Logic Input VDD2 to +0.5V
Case Temperature 100°C
Junction Temperature ⁽¹⁾ 150°C
Storage Temperature40°C to +100°C
Stresses above these ratings may cause permanent damage to the
device.

(1). See Table I for thermal resistance data.

ORDERING INFORMATION

PIN ASSIGNMENTS

1	Common	21	Common
2	-Vcc (-15V)	22	Data Valid
. 3	V _{DD2} (-5.2V)	23	Bit 12 (LSB)
4	V _{DD1} (+5V)	24	Bit 11
5	+Vcc (+15V)	25	Bit 10
6	Common	26	Bit 9
7	V _{DD2} (-5.2V)	27	Bit 8
8	VDD1 (+5V)	28	Bit 7
9	Common	29	Bit 6
10	V _{DD2} (-5.2V)	30	Bit 5
11	Common	31	Bit 4
12	Common	32	Bit 3
13	+V _{cc} (+15V)	33	Bit 2
. 14	-V _{cc} (-15V)	34	Bit 1 (MSB)
15	V _{DD2} (-5.2V)	35	Bit 1 (MSB)
16	V _{DD1} (+5V)	36	V _{DD2} (~5.2V)
17	Common	37	Common
18	V _{DD2} (-5.2V)	38	Convert Command
19	V _{DD1} (+5V)	39	Analog Input
20	Vpp2 (-5.2V)	40	Analog Input Return

TYPICAL PERFORMANCE CURVE

THEORY OF OPERATION

The ADC600 is a two-step subranging analog-to-digital converter. This architecture is shown in Figure 1. The major system building blocks are: Sample/Hold Amplifier, MSB Flash encoder, DAC and Error Amplifier, LSB Flash Encoder, Digital Error Corrector, and Timing Circuits. The ADC600 uses individually tested and lasertrimmed submodules mounted on a four-layer motherboard to integrate this complex circuit into a complete analog-to-digital converter subsystem with state-of-theart performance.

Conceptually, the subranging technique is simple: sample and hold the input signal, convert to digital with a coarse ADC, convert back to analog with a coarse-resolution (but high-accuracy) DAC, subtract this voltage from the S/H output, amplify this "remainder," convert to digital with a second coarse ADC, and combine the digital output from the first ADC (MSB) with the digital output from the second ADC (LSB). In practice, however, achieving high conversion speed without sacrificing accuracy is a difficult task.

The analog input signal is sampled by a high-speed sample/hold amplifier with low distortion, fast acquisition time and very low aperture uncertainty (jitter). A diode bridge sampling switch is used to achieve an acceptable compromise between speed and accuracy. The diode bridge switching transients are buffered from the analog input by a high input impedance buffer amplifier. Since the hold capacitor does not appear in the feedback of the diode bridge output buffer the capacitor can acquire the signal in 25ns. The low-biascurrent output buffer is then required to settle to only the resolution (7 bits) of the first (MSB) flash encoder in 25ns while an additional 60ns is allowed for settling to the resolution (12 bits) of the second (LSB) flash encoder. Sample/hold droop appears as only an offset error and does not affect linearity.

Both the MSB and the LSB flash encoder (ADC) are high-speed 7-bit resolution converters formed by parallelconnecting two 6-bit flash ADCs as shown in Figure 2. The DAC +10V reference is also used to generate reference voltages for the MSB and LSB encoders to compensate drift errors. Buffering and scaling are performed by I_{c1} and I_{c2} . Laser-trimming is used to minimize voltage offset errors and optimize gain (input full-scale range) symmetry.

The subtraction DAC is an ECL 7-bit resolution DAC with 14-bit accuracy. Laser-trimmed thin-film nichrome resistors on sapphire and high-speed bipolar circuitry allow the DAC output to settle to 14-bit accuracy in only 25ns.

A "remainder" or coarse conversion-error voltage is generated by resistively subtracting the DAC output from the output of the sample/hold amplifier. Before the second (LSB) conversion, the "remainder" is amplified by a wideband fast-settling amplifier with a gain of 32V/V. To prevent overload on large amplitude transients, a high-speed FET switch blanks the amplifier input from the beginning of the S/H acquisition time to end of the MSB encoder update time.

The timing circuits shown in Figure 3 supply all the critical timing signals necessary for proper operation of the ADC600. Some noncritical timing signals are also generated in the digital error correction circuitry. Timing signals are laser-trimmed for both pulse width and delay. The ECL logic timing delay is stable over a wide range of temperatures and power supply voltages. Basic timing is derived from the output of a three-stage shift register driven by a synchronized 20MHz oscillator.

The convert command pulse is differentiated by IC_1 to allow triggering by pulses from as narrow as 5ns to as wide as 75% duty cycle. This differentiated signal sets flip-flop IC₂, placing the S/H back into its sample mode.

The output of the third stage of the shift register is also differentiated by IC_8 and used to generate a strobe for the LSB flash encoder. R_1 is laser-trimmed to generate a precise 8ns pulse while the oscillator frequency is adjusted to trim the strobe pulse delay. IC_4 and IC_5 comprise the

FIGURE 1. Block Diagram of 12-Bit 10MHz ADC600.

FIGURE 2. 7-Bit Flash Encoder.

FIGURE 3. Schematic of Timing Module.

principal elements of a 20MHz ring oscillator. R_2 and C_2 add additional delay and allow laser-trimming for the LSB delay. A blanking pulse to prevent error amplifier overload is generated by the second stage of the shift register. Proper timing is generated by laser-trimming R_3 which, along with C_3 forms a delay element along with two gates of IC₆.

A strobe pulse of the MSB flash encoder is generated and trimmed in a similar circuit using IC₇. This technique generates a variable width S/H gate pulse which is determined by the conversion command pulse period minus the fixed 67ns ADC conversion time ADC600 conversion rates are therefore possible above the 10MHz specification but S/H acquisition time is sacrificed and accuracy is rapidly degraded.

The output of the MSB encoder is read into a separate 7-bit latch at the same time the LSB encoder is being strobed. The latched MSB data, along with the LSB data, is then read into a 14-bit latch 30ns after the leading edge of the LSB strobe and before being applied to the adder, where the actual error correction takes place. This latch eliminates any critical timing problems that would result when the converter is operated at the maximum conversion rate.

The function of the digital error correction circuitry (Figure 4) is to assemble the 7-bit words from the two flash encoders into a 12-bit output word. In addition, the circuit uses the LSB flash encoder strobe to generate timing strobes for both data registers. A data valid (DV) pulse is also generated which is used to indicate when output data can be latched into an external register. This DV pulse is delayed 5ns after the output data has settled to allow a sufficient set-up time for an external ECL data latch.

The 14-bit register output is then sent to a 12-bit adder where the final data output word is created. The MSB data forms the most significant seven bits of a 12-bit word, with the last five bits being assigned zeros. In a similar fashion, the LSB data from the least significant bits form the other input to the adder with the first five bits being assigned zeros. As two 12-bit words are being added, the output of the adder could exceed 12 bits in range; however, the final data output is only a 12-bit word, so a means of detecting an overrange is included.

To prevent reading erroneous data, the converter data output reads all ones for a full-scale positive input or overrange and reads all zeros for a negative full-scale input or overrange. The data output does not "roll-over" if the converter input exceeds its specified full-scale range of $\pm 1.25V$.

DISCUSSION OF PERFORMANCE

DYNAMIC PERFORMANCE TESTING

The ADC600 is a very high performance converter and careful attention to test techniques is necessary to achieve accurate results. Spectral analysis by application of a Fast Fourier Transform (FFT) to the ADC digitial output will provide data on all important dynamic performance parameters: total harmonic distortion (THD), signal-to-noise raito (SNR) or the more severe signal-tonoise-and-distortion ratio (SINAD), total noise and distortion (TND), and intermodulation distortion (IMD).

FIGURE 4. Block Diagram of Digital Error Corrector.

A test setup for performing high-speed FFT testing of analog-to-digital converters is shown in Figure 5. This was used to generate the typical FFT performance curves shown on pages 112 through 115.

To preserve measurement accuracy, a very low side-lobe window must be applied to the digital data before executing an FFT. A commonly used window such as the Hanning window is not appropriate for testing high performance converters; a minimum four-sample Blackman-Harris window is strongly recommended.⁽¹⁾ To assure that the majority of codes are exercised in the ADC600 (12 bits), a ten-sample average of 512-point FFTs is taken.

Dynamic Performance Definitions

1. Signal-to-Noise-and-Distortion⁽²⁾ Ratio (SINAD): 10 log <u>sine wave signal power</u> noise + harmonic power

2. Total Harmonic Distortion (THD): 10 log harmonic power (first nine harmonics) sinewave signal power

3. Total Noise Distortion (TND):

noise power 10 log <u>sinewave signal power</u>

4. Intermodulation Distortion (IMD): 10 log <u>IMD product power</u> sinewave signal power

IMD is referenced⁽³⁾ to the larger of the test signals f_1 or f_2 . Five "bins" either side of peak are used for calculation of fundamental and harmonic power. The "0" frequency bin (DC) is not included in these calculations as it is of little importance in dynamic signal processing applications. Attention to test set-up details can prevent errors that contribute to poor test results. Important points to remember when testing high performance converters are:

- 1. The ADC analog input must not be overdriven. Using a signal amplitude slightly lower than FSR will allow a small amount of "headroom" so that noise will not overrange the ADC and "hard limit" on signal peaks.
- 2. Two-tone tests can produce signal envelopes that exceed FSR. Set each test signal to slightly less than -6dB to prevent "hard limiting" on peaks.
- 3. Low-pass filtering (or bandpass filtering) of test signal generators is absolutely necessary for THD and IMD tests. An easily built LC low-pass filter (Figure 6) will eliminate harmonics from the test signal generator.
- 4. Test signal generators must have exceptional noise performance (better than -155dBC) to achieve accurate SNR measurements⁽⁴⁾. Good generators together with fifth-order elliptical bandpass filters are recommended for SNR and SINAD tests.
- 5. The analog input of the ADC600 should be terminated directly at the input pin sockets with the correct filter terminating impedance (50 Ω or 75 Ω) or it should be driven by an OPA600 buffer. Short leads are necessary to prevent digital noise pickup.
- 6. A low-noise (jitter) clock signal (convert command) generator is required for good ADC dynamic performance. A recommended interface circuit is shown in Figure 7. Short leads are necessary to preserve fast ECL rise times.
- 7. Two-tone testing will require isolation between test signal generators to prevent IMD generation in the test generator output circuits. An active summing amplifier using an OPA600 is shown in Figure 8. This circuit will provide excellent performance from DC to

FIGURE 5. Test Setup for High Speed FFT Testing.

5MHz with harmonic and intermodulation distortion products typically better than -70dBC. A passive hybrid transformer signal combiner can also be used (Figure 9) over a range of about 1MHz to 30MHz. The port-to-port isolation will be ≈ 45 dB between signal generators and the input-output insertion loss will be ≈ 6 dB.

- 8. A very low side-lobe window must be used for FFT calculation. A minimum four-sample Blackman-Harris window function is recommended.⁽¹⁾
- 9. Digital data must be latched into an external ECL 12-bit register only by the Data Valid output pulse. Due to the possibility of improper timing, output data cannot be latched by using the convert command!
- 10. Do not overload the data output logic. These outputs are already provided with internal 68Ω pull-down resistors tied to -5.2V.
- 11. A well-designed, clean PC board layout will assure proper operation and clean spectral response⁽⁵⁾⁽⁶⁾. Proper grounding and bypassing, short lead lengths and separation of analog and digital signals and ground returns are particularly important for high frequency circuits. Multilayer PC boards are recommended for best performance, but a two-sided PC board with large, heavy (2oz-foil) ground planes can give excellent results, if carefully designed.

Prototyping "plug-boards" or wire-wrap boards will not be satisfactory.

NOTES:

- On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform, Fredric J. Harris. Proceedings of the IEEE, Vol. 66, No. 1, January 1978, pp 51-83.
- SINAD test includes harmonics whereas SNR does not include these important spurious products.
- 3. If IMD is referenced to peak envelope power, an improvement of 6dB.
- 4. Test Report: FFT Characterization of Burr-Brown ADC600K, Signal Conversion Ltd., Swansea, Wales, U.K.
- 5. MECL System Design Handbook, 3rd Edition, Motorola Corp.
- 6. Motorola MECL, Motorola Corp.

 $\label{eq:cutoff} \begin{array}{l} \mbox{Cutoff frequency} = -3 \mbox{dB frequency; to convert cutoff frequency to} \\ -0.5 \mbox{dB frequency, multiply all LC values by 0.9897.} \end{array}$

Cutoff Freq. (MHz)	C1 (pF)	C ₃ (pF)	C₅ (pF)	C7 (pF)	C₀ (pF)	L₂ (μΗ)	L₄ (µH)	L ₆ (μΗ)	Lа (µН)
5.0	1134.6	1729.2	1765.6	1729.2	1134.6	2.056	2.216	2.216	2.056
2.5	2269	3458	3531	3458	2269	4.11	4.43	4.43	4.11
1.25	4538	6917	7062	6917	4538	8.23	8.86	8.86	8.23
0.625	9077	13,833	14,125	13,833	9077	16.45	17.73	17.73	16.45

FIGURE 6. Ninth-Order Harmonic Filter.

FIGURE 8. Active Signal Combiner.

FIGURE 9. Passive Signal Combiner.

TYPICAL FFT SPECTRAL PERFORMANCE

All FFT data: 512-point FFT, 10-sample average; minimum 4-sample Blackman-Harris Window.

TYPICAL FFT SPECTRAL PERFORMANCE (CONT)

All FFT data: 512-point FFT, 10-sample average; minimum 4-sample Blackman-Harris Window.

113

TYPICAL FFT SPECTRAL PERFORMANCE (CONT)

All FFT data: 512-point FFT, 10-sample average; minimum 4-sample Blackman-Harris Window.

114

.

TYPICAL FFT SPECTRAL PERFORMANCE (CONT)

All FFT data: 512-point FFT, 10-sample average; minimum 4-sample Blackman-Harris Window.

DIGITIZING INPUT WAVEFORMS

The response of the ADC600 is illustrated by the digitized waveforms of Figure 10. The 4.99MHz sine wave near the Nyquist limit is virtually identical to much lower frequency sine wave input. The under-sampled 19.999MHz sine wave illustrates the ADC600's excellent analog input full-power bandwidth. Figure 11 shows a block diagram of this high-speed digitizer.

HISTOGRAM TESTING

Histogram testing is used to test differential nonlinearity of the ADC600. This system block diagram is shown in Figure 12 and histogram test results for a typical converter are shown in Figure 13. Note that differential nonlinearity is 1/2LSB at 200Hz and it shows virtually no degradation near the Nyquist limit of 5MHz; there are no missing codes present and the peak nonlinearity does not exceed 1LSB. Histogram testing is a useful performance indicator as the width of all codes can be determined.

SPECTRUM ANALYZER TESTING

A beat-frequency technique (Figure 14) can be used to view digitized waveforms on an oscilloscope and, with care, this technique can also be used for testing highspeed ADC dynamic characteristics with an analog spectrum analyzer.

In this method a test signal is digitized by the ADC600 and the output digital data is latched into an external ECL latch by the converter Data Valid output pulse driving a divide-by-N counter. The holding register drives a 12-bit video-speed DAC which reconstructs the digital signal back into an analog replica of the ADC600 input. This analog signal also includes distortion products and noise resulting from the digitization, which can be viewed on an ordinary RF spectrum analyzer. Typical results are shown in Figures 15 and 16.

It is important to realize that the distortion and noise measured by this technique include not only that from the ADC600, but also the entire analog-to-analog test

FIGURE 10. Digitized Waveforms (512 points).

FIGURE 11. High-Speed Digitizer.

FIGURE 12. Block Diagram of Histogram Test.

system. Nonlinearity of the reconstruction circuit must be very low to measure a high performance ADC, and this places severe requirements on the DAC, deglitcher, and buffer amplifiers.

Using the high-speed video DAC63 in the analog reconstruction circuit allows excellent test circuit linearity to be achieved. Clocking the DAC (demodulating) at f_c/N allows a longer settling time and keeps linearity high in the digital-to-analog portion of the test circuit. Spectrum analyzer dynamic range can be a limiting factor in this method and a sharp notch filter can be used to attenuate the high-level fundamental frequency. Attenuating the fundamental allows the spectrum analyzer to be used on a more sensitive range without generating distortion products within the input of the analyzer.

Note that even though the signal is demodulated at a frequency of sample rate/N (here N = 2 or 4), the distortion products still maintain a correct frequency relationship to the fundamental. While this analog technique shows excellent performance, it cannot exclude some distortion products unavoidably generated within the analog reconstruction portion of the test system. For this reason, the digital FFT technique is capable of more accurate high-speed analog/digital converter dynamic performance measurements.

TIMING

The ADC600 generates all necessary timing signals in laser-trimmed submodules. Only the timing between Convert Command, Output Data, and Data Valid must

FIGURE 14. Analog-to-Analog Spectral Analysis by Beat-Frequency Techniques.

be considered. Proper timing is shown in Figure 17. The output data **cannot** be timed by the conversion clock, since the data from the 12-bit adder is not guaranteed until the Data Valid pulse is generated.

Data should be latched into an external 12-bit ECL register that can operate reliably with a set-up time of 5ns minimum (Figure 18).

Logic conversion to TTL can be accomplished by logic level translator ICs (such as 10125 or 10124), but care must be exercised, since TTL is very noisy and maintaining a clean analog signal can be difficult. To preserve the low noise of ECL logic, any conversion to TTL should be done on a separate circuit board which is driven by differential ECL drivers.

- 1. FASTTM Applications Handbook, 1987. Fairchild Semiconductor Corp.
- 2. Fairchild Advanced CMOS Technology, Technology Seminar Notes, 1985.
- 3. Impedance Matching Tweaks Advance CMOS IC Testing, Gerald C. Cox, Electronic Design, April, 1987.
- Grounding for Electromagnetic Compatibility, Jerry H. Bogar, Design News, 23 February, 1987.

THERMAL REQUIREMENTS

The ADC600 is tested and specified over a temperature range of 0°C to +70°C (K grade) and -40°C to +85°C (B grade). The converters are tested in a forced-air environment with a 10 SCFM air flow. The ADC600 can be operated in a normal convection ambient-air environment if submodule case temperature does not exceed the upper limit of its specification.⁽¹⁾

High junction temperature can be avoided by using forced-air cooling, but it is not required at moderate ambient temperatures. Worst-case junction temperature (θ_{IC}) and top-surface submodule (θ_{CA}) are presented in Table I to aid the designer in determining cooling requirements.

^{1.} Maximizing Heat Transfer from PCBs, Machine Design, March 26, 1987, Jeilong Chung.

FIGURE 16. Analog-to-Analog Two-Tone IMD.

TABLE I. Cooling Requirement Factors.

FIGURE 17. ADC600 Timing Diagram.

ENVIRONMENTAL SCREENING

The inherent reliability of a semiconductor device is controlled by the design, materials, and fabrication of the device—it cannot be improved by testing. However, the use of environmental screening can eliminate the majority of those units which would fail early in their lifetimes (infant mortality) through the application of carefully selected accelerated stress levels. Burr-Brown Q models are environmentally-screened versions of our standard industrial products, designed to provide enhanced reliability. The screening illustrated in Table II is performed to selected methods of MIL-STD-883. Reference to these methods provides a convenient way of communicating the screening levels and basic procedures employed; it does not imply conformance to any other military standards or to any methods of MIL-STD-883 other than those specified. Burr-Brown's detailed procedures may vary slightly, model-to-model, from those in MIL-STD-883. Table III shows the board-level screening flow for ADC600Q.

TABLE II. Screening Flow for ADC600Q (active components).

Screen	MIL-STD-883, Method, Condition	Screening Level
Internal Visual	Burr-Brown QC4118	
Electrical Test	Burr-Brown test procedure	
High Temperature Storage (Stabilization Bake)	1008	24 hour, +125°C
Temperature Cycling	1010	10 cycles, -55°C to -125°C
Constant Acceleration	2001, A	2000 G; Y Axis only
Burn-In	1015, D	160 hour, +85 or +70°C, steady-state
Hermeticity: Fine Leak Gross Leak	1014, C	bubble test only, preconditioning omitted
Final Electrical	Burr-Brown test procedure	
External Visual	Burr-Brown QC5150	

TABLE III. Screening Flow for ADC600Q (board level).

Screen	MIL-STD-883, Method, Condition	Screening Level
External Visual	Burr-Brown QC Specification	
Electrical Test	Burr-Brown Data Sheet	
Stablilization Bake	1008	24 hour, +125°C
Burn-In	1015, D	160 hour, +85°C or +70°C steady-state
Final Electrical	Burr-Brown Data Sheet	
Final External Visual	Burr-Brown QC Specification	·

FIGURE 18. ECL/TTL Logic Interface.

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

FEATURES

- INDUSTRY STANDARD PINOUT
- LOW POWER DISSIPATION: 345mW
- FULL $\pm 10V$ SWING WITH V_{cc} = $\pm 12VDC$
- DIGITAL INPUTS ARE TTL- AND CMOS-COMPATIBLE
- \bullet GUARANTEED SPECIFICATIONS WITH $\pm 12V$ and $\pm 15V$ supplies
- SINGLE-CHIP DESIGN
- $\pm 1/2$ LSB MAXIMUM NONLINEARITY, 0°C to +70°C
- GUARANTEED MONOTONICITY, 0°C to +70°C
- TWO PACKAGE OPTIONS: Hermetic side-brazed ceramic and low-cost molded plastic
- \bullet SETTLING TIME: 4µs max to ±0.01% of Full Scale

DESCRIPTION

This monolithic digital-to-analog converter is pinfor-pin equivalent to the industry standard DAC80, first introduced by Burr-Brown. Its single-chip design includes the output amplifier and provides a highly stable reference capable of supplying up to 2.5mA to an external load without degradation of D/Aperformance.

This converter uses proven circuit techniques to provide accurate and reliable performance over temperature and power supply variations. The use of a buried zener diode as the basis for the internal reference contributes to the high stability and low noise of the device. Advanced methods of laser trimming result in precision output current and output amplifier feedback resistors, as well as low integral and differential linearity errors. Innovative circuit design enables the DAC80 to operate at supply voltages as low as $\pm 11.4V$ with no loss in performance or accuracy over any range of output voltage. The lower power dissipation of this 118-mil by 121-mil chip results in higher reliability and greater long term stability.

Burr-Brown has further enhanced the reliability of the monolithic DAC80 by offering a hermetic, sidebrazed, ceramic package. In addition, ease of use has been enhanced by eliminating the need for a +5V logic power supply.

For applications requiring both reliability and low cost, the DAC80P in a molded plastic package offers the same electrical performance over temperature as the ceramic model. The DAC80P is available with either voltage or current output.

For designs that require a wider temperature range, see Burr-Brown models DAC85H and DAC87H. For designs that require complementary coded decimal inputs, see Burr-Brown model DAC80-CCD-V (-I).

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

PDS-643

SPECIFICATIONS

ELECTRICAL

Typical at $\pm 25^{\circ}$ C and $\pm V_{cc} = 12$ V or 15V unless otherwise noted.

MECHANICAL

NOTES: (1) Refer to "Logic Input Compatibility" section. (2) Adjustable to zero with external trim potentiometer. (3) FSR means full scale range and is 20V for $\pm 10V$ range, 10V for $\pm 5V$ range for V_{out} models; 2mA for l_{out} models. (4) To maintain drift spec, internal feedback resistors must be used. (5) Includes the effects of gain, offset and linearity drift. Gain and offset errors externally adjusted to zero at $\pm 25^{\circ}$ C. (6) For $\pm V_{cc}$ less than $\pm 12VDC$, limit output current load to ± 2.5 mA to maintain $\pm 10V$ full scale output voltage swing. For output range of $\pm 5V$ or less, the output current is ± 5 mA over entire $\pm V_{cc}$ range. (7) Short circuit current is 40mA, max.

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
A	1.238	1.283	31.32	32.69
8	.538	.675	13.67	14.61
С	.169	.224	4.29	6.70
P	.016	.023	0.38	0.58
F	.043	.082	1.09	1.67
G	.100	BASIC	2.54	BASIC
н	.030	.090	0.76	2.29
J	.008	.015	0.20	0.38
ĸ	.100	.132	2.54	3.35
۴.	.600	BASIC	15.24	BASIC
M	0.	16*	0.	16*
N	.018	.022	0.46	0.56

Leads in true position within 0.010" (0.25mm) R at MMC at seating plane

PIN: Pin material and plating composition conform to method 2003 (solderability) of MIL-STD-883 (except paragraph 3.2).

CASE: Plastic

MATING CONNECTOR: 0245MC WEIGHT: 3.7 grams (0.13 oz.)

FUNCTIONAL DIAGRAM AND PIN ASSIGNMENTS

DISCUSSION OF SPECIFICATIONS

DIGITAL INPUT CODES

The DAC80 accepts complementary binary digital input codes. The CBI model may be connected by the user for any one of three complementary codes: CSB, COB, or CTC (see Table I).

ACCURACY

Linearity of a D/A converter is the true measure of its performance. The linearity error of the DAC80 is specified over its entire temperature range. This means that the

ΤÆ	Ľ	B	L	E	I.	Digit	al l	lnj	put	Codes.	
----	---	---	---	---	----	-------	------	-----	-----	--------	--

DIGITAL INPUT	ANALOG OUTPUT						
MSB LSB ↓ ↓ 0000000000000000000000000000000000	CSB Compl. Straight Binary	COB Compl. Offset Binary	CTC* Compl. Two's Compl.				
000000000000 0111111111 1000000000000 111111	+Full Scale +1/2 Full Scale 1/2 Full Scale -1LSB Zero	+Full Scale Zero -1LSB -Full Scale	-1LSB -Full Scale -Full Scale Zero				
• Invert the MSB of the COB code with an external inverter to obtain CTC code.							

ORDERING INFORMATION

Model	Output	Package
DAC80-CBI-I	Current	Ceramic
DAC80-CBI-V	Voltage	Ceramic
DAC80P-CBI-I	Current	Plastic
DAC80P-CBI-V	Voltage	Plastic
DAC80Z-CBI-I*	Current	Ceramic
DAC80Z-CBI-V*	Voltage	Ceramic

*DAC80Z is not recommended for new designs; both standard DAC80 and DAC80P now operate over extended power supply range.

ABSOLUTE MAXIMUM RATINGS

+V _{cc} to Common 0V to +18V
-V _{cc} to Common 0V to -18V
Digital Data Inputs to Common1V to +18V
Reference Output to Common ±Vcc
Reference Input to Common ±Vcc
Bipolar Offset to Common ±Vcc
10V Range R to Common ±Vcc
20V Range R to Common ±Vcc
External Voltage to DAC Output5V to +5V
Lead Temperature, Soldering +300°C, 10s
Max Junction Temperature 165°C
Thermal Resistance, θ_{JA} : Plastic DIP 100°C/W
Ceramic DIP 65°C/W

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability. analog output will not vary by more than $\pm 1/2$ LSB, maximum, from an ideal straight line drawn between the end points (inputs all "1"s and all "0"s) over the specified temperature range of 0°C to +70°C.

Differential linearity error of a D/A converter is the deviation from an ideal ILSB voltage change from one adjacent output state to the next. A differential linearity error specification of $\pm 1/2$ LSB means that the output voltage step sizes can range from 1/2LSB to 3/2LSB when the input changes from one adjacent input state to the next.

Monotonicity over a 0° C to $+70^{\circ}$ C range is guaranteed in the DAC80 to insure that the analog output will increase or remain the same for increasing input digital codes.

DRIFT

Gain Drift is a measure of the change in the full scale range output over temperature expressed in parts per million per °C (ppm/°C). Gain drift is established by: 1) testing the end point differences for each DAC80 model at 0°C, +25°C and +70°C; 2) calculating the gain error with respect to the 25°C value and; 3) dividing by the temperature change. This figure is expressed in ppm/°C and is given in the electrical specifications both with and without internal reference.

Offset Drift is a measure of the actual change in output with all "1"s on the input over the specified temperature range. The offset is measured at 0°C, +25°C and +70°C. The maximum change in Offset is referenced to the Offset at 25°C and is divided by the temperature range. This drift is expressed in parts per million of full scale range per °C (ppm of FSR/°C).

SETTLING TIME

Settling time for each DAC80 model is the total time (including slew time) required for the output to settle within an error band around its final value after a change in input (see Figure 1).

FIGURE 1. Full Scale Range Settling Time vs Accuracy.

Voltage Output Models

Three settling times are specified to $\pm 0.01\%$ of full scale range (FSR); two for maximum full scale range changes of 20V, 10V and one for a 1LSB change. The 1LSB change is measured at the major carry (0111...11 to 1000...00), the point at which the worst case settling time occurs.

Current Output Models

Two settling times are specified to $\pm 0.01\%$ of FSR. Each is given for current models connected with two different resistive loads: 10Ω to 100Ω and 1000Ω to 1875Ω . Internal resistors are provided for connecting nominal load resistances of approximately 1000Ω to 1800Ω for output voltage range of $\pm 1V$ and 0 to -2V (see Figures 11 and 12).

COMPLIANCE

Compliance voltage is the maximum voltage swing allowed on the current output node in order to maintain specified accuracy. The maximum compliance voltage of all current output models is $\pm 2.5V$. Maximum safe voltage range of $\pm 1V$ and 0 to -2V. (See Figures 11 and 12).

POWER SUPPLY SENSITIVITY

Power supply sensitivity is a measure of the effect of a power supply change on the D/A converter output. It is defined as a percent of FSR per percent of change in either the positive or negative supplies about the nominal power supply voltages (see Figure 2).

FIGURE 2. Power Supply Rejection vs Power Supply Ripple.

REFERENCE SUPPLY

All DAC80 models are supplied with an internal 6.3V reference voltage supply. This voltage (pin 24) has a tolerance of $\pm 1\%$ and must be connected to the Reference Input (pin 16) for specified operation. This reference may be used externally also, but external current drain is limited to 2.5mA.

If a varying load is to be driven, an external buffer amplifier is recommended to drive the load in order to isolate bipolar offset from load variations. Gain and bipolar offset adjustments should be made under constant load conditions.

LOGIC INPUT COMPATIBILITY

DAC80 digital inputs are TTL, LSTTL and 4000B, 54/74HC CMOS compatible. The input switching threshold remains at the TTL threshold over the entire supply range.

Logic "0" input current over temperature is low enough to permit driving DAC80 directly from outputs of 4000B and 54/74C CMOS devices.

OPERATING INSTRUCTIONS

POWER SUPPLY CONNECTIONS

Connect power supply voltages as shown in Figure 3. For optimum performance and noise rejection, power supply decoupling capacitors should be added as shown. These capacitors (1μ F tantalum) should be located close to the DAC80.

±12V OPERATION

All DAC80 models can operate over the entire power supply range of $\pm 11.4V$ to $\pm 16.5V$. Even with supply levels dropping to $\pm 11.4V$, the DAC80 can swing a full $\pm 10V$ range, provided the load current is limited to ± 2.5 mA. With power supplies greater than $\pm 12V$, the DAC80 output can be loaded up to ± 5 mA. For output swing of $\pm 5V$ or less, the output current is ± 5 mA, min. over the entire V_{CC} range. No bleed resistor is needed from $+V_{cc}$ to pin 24, as was needed with prior hybrid Z versions of DAC80. Existing $\pm 12V$ applications that are being converted to the monolithic DAC80 must omit the resistor to pin 24 to insure proper operation.

EXTERNAL OFFSET AND GAIN ADJUSTMENT

Offset and gain may be trimmed by installing external Offset and Gain potentiometers. Connect these potentiometers as shown in Figure 3 and adjust as described below. TCR of the potentiometers should be $100ppm/^{\circ}C$ or less. The 3.9M Ω and $10M\Omega$ resistors (20% carbon or better) should be located close to the DAC80 to prevent noise pickup. If it is not convenient to use these high value resistors, an equivalent "T" network, as shown in Figure 4, may be substituted.

FIGURE 4. Equivalent Resistances.

Existing applications that are converting to the monolithic DAC80 must change the gain trim resistor on pin 23 from $33M\Omega$ to $10M\Omega$ to insure sufficient adjustment range. Pin 23 is a high impedance point and a 0.001μ 1F to 0.01μ F ceramic capacitor should be connected from this pin to Common (pin 21) to prevent noise pickup. Refer to Figure 5 for relationship of Offset and Gain adjustments to unipolar and bipolar D/A operation.

FIGURE 3. Power Supply and External Adjustment Connection Diagrams

FIGURE 5. Relationship of Offset and Gain Adjustments for a Unipolar and Bipolar D/A Converter.

Offset Adjustment

For unipolar (CSB) configurations, apply the digital input code that should produce zero potential output and adjust the Offset potentiometer for zero output.

For bipolar (COB, CTC) configurations, apply the digital input code that should produce the maximum negative output. Example: If the Full Scale Range is connected for 20V, the maximum negative output voltage is -10V. See Table II for corresponding codes.

TABLE II. Digital Input/Analog Output.

	ANALOG OUTPUT					
DIGITAL INPUT	VOLT	AGE *	CUR	RENT		
MSB LSB	0 to +10V	±10V	0 to -2mA	±1mA		
000000000000 01111111111 100000000000 111111	+9.9976V +5.0000V +4.9976V 0.0000V 2.44mV	+9.9951V 0.0000V -0.0049V -10.0000V 4.88mV	-1.9995mA -1.0000mA -0.9995mA 0.0000mA 0.488µA	-0.9995mA 0.0000mA +0.0005mA +1.000mA 0.488µA		
*To obtain values for other binary ranges: 0 to +5V range divide 0 to +10V range values by 2. ±5V range: divide ±10V range values by 2. ±2.5V range: divide ±10V range values by 4.						

Gain Adjustment

For either unipolar or bipolar configurations, apply the digital input that should give the maximum positive output. Adjust the Gain potentiometer for this positive full scale output. See Table II for positive full scale voltages and currents.

VOLTAGE OUTPUT MODELS

Output Range Connections

Internal scaling resistors provided in the DAC80 may be connected to produce bipolar output voltage ranges of $\pm 10V$, $\pm 5V$ or $\pm 2.5V$ or unipolar output voltage ranges of 0 to $\pm 5V$ or 0 to $\pm 10V$. See Figure 6.

FIGURE 6. Output Amplifier Voltage Range Scaling Circuit.

Gain and offset drift are minimized because of the thermal tracking of the scaling resistors with other internal device components. Connections for various output voltage ranges are shown in Table III. Settling time for a full-scale range change is specified as 4μ s for the 20V range and 3μ s for the 10V range.

TABLE	III.	Output	Voltage	Range	Connections	for
		Voltage	Models			

Output Range	Digital Input Codes	Connect Pin 15 to	Connect Pin 17 to	Connect Pin 19 to	Connect Pin 16 to
±10	COB or CTC	19	20	15	24
±5	COB or CTC	18	20	NC .	24
±2.5V	COB or CTC	18	20	20	24
0 to +10V	CSB	18	21	NC	24
0 to +5V	CSB	18	21	20	24

CURRENT OUTPUT MODELS

The resistive scaling network and equivalent output circuit of the current model differ from the voltage model and are shown in Figures 7 and 8.

FIGURE 8. Current Output Model Equivalent Output Circuit.

Internal scaling resistors (Figure 7) are provided to scale an external op amp or to configure load resistors for a voltage output. These connections are described in the following sections.

If the internal resistors are not used for voltage scaling, external R_L (or R_F) resistors should have a TCR of $\pm 25ppm$, °C or less to minimize drift. This will typically add $\pm 50ppm$ /°C plus the TCR of R_L (or R_F) to the total drift.

Driving An External Op Amp

The current output model DAC80 will drive the summing junction of an op amp used as a current-to-voltage converter to produce an output voltage. See Figure 9.

FIGURE 9. External Op-Amp—Using Internal Feedback Resistors.

$V_{OUT} = I_{OUT} \times R_F$

where I_{OUT} is the DAC80 output current and R_F is the feedback resistor. Using the internal feedback resistors of the current output model DAC80 provides output voltage ranges the same as the voltage model DAC80. To obtain the desired output voltage range when connecting an external op amp, refer to Table IV.

TABLE IV.	Voltage Range of	Current Output
-----------	------------------	----------------

Output	Digital	Connect	Connect	Connect	Connect
Range	Input Codes	A to	Pin 17 to	Pin 19 to	Pin 16 to
±10V ±5V ±2.5V 0 to +10V 0 to +5V	COB or CTC COB or CTC COB or CTC CSB CSB	19 18 18 18 18 18	15 15 15 21 21	(A) NC 15 NC 15	24 24 24 24 24 24

Output Larger Than 20V Range

For output voltage ranges larger than $\pm 10V$, a high voltage op amp may be employed with an external feedback resistor. Use I_{OUT} values of ± 1 mA for bipolar voltage ranges and -2mA for unipolar voltage ranges. See Figure 10. Use protection diodes when a high voltage op amp is used.

The feedback resistor, R_F , should have a temperature coefficient as low as possible. Using an external feedback resistor, overall drift of the circuit increases due to the lack of temperature tracking between R_F and the internal scaling resistor network. This will typically add 50ppm/°C plus R_F drift to total drift.

FIGURE 10. External Op-Amp—Using External Feedback Resistors.

Driving a Resistive Load Unipolar

A load resistance, $R_L = R_{L1} + R_{LS}$, connected as shown in Figure 11 will generate a voltage range, V_{OUT} , determined by:

 $V_{OUT} = -2mA \left[\left(R_L \times R_0 \right) \div \left(R_L + R_0 \right) \right]$

FIGURE 11. Current Output Model Equivalent Circuit Connected for Unipolar Voltage Output with Resistive Load.

The unipolar output impedance R_0 equals $6.6k\Omega$ (typ) and R_{L1} is the internal load resistance of 968Ω (derived by connecting pin 15 to pin 20 and pin 18 to 19). By choosing $R_{LS} = 210\Omega$, $R_L = 1178\Omega$. R_L in parallel with R_0 yields $lk\Omega$ total load. This gives an output range of 0 to -2V. Since R_0 is not exact, initial trimming per Figure 3 may be necessary; also R_{LS} may be trimmed.

Driving a Resistive Load Bipolar

The equivalent output circuit for a bipolar output voltage range is shown in Figure 12, $R_L = R_{L1} + R_{LS}$. V_{OUT} is determined by:

 $V_{OUT} = \pm 1 \text{mA} \left[(R_0 \times R_L) \div (R_0 + R_L) \right]$

By connecting pin 17 to 15, the output current becomes bipolar (\pm 1mA) and the output impedance R_o becomes 3.2k Ω (6.6k Ω in parallel with 6.3k Ω). R_{L1} is 1200 Ω (derived by connecting pin 15 to 18 and pin 18 to 19). By choosing R_{LS} = 255 Ω , R_L = 1455 Ω . R_L in parallel with R_o yields 1k Ω total load. This gives an output range of \pm 1V. As indicated above, trimming may be necessary.

DAC705/706/707 DAC708/709

Microprocessor-Compatible 16-BIT DIGITAL-TO-ANALOG CONVERTERS

FEATURES

- TWO-CHIP CONSTRUCTION
- HIGH-SPEED 16-BIT PARALLEL, 8-BIT (BYTE) Parallel, and serial input modes
- DOUBLE-BUFFERED INPUT REGISTER CONFIGURATION
- VOUT AND IOUT MODELS

DESCRIPTION

The DAC708 and DAC709 are 16-bit converters designed to interface to an 8-bit microprocessor bus. 16-bit data is loaded in two successive 8-bit bytes into parallel 8-bit latches before being transferred into the D/A latch. The DAC708 and DAC709 are current and voltage output models respectively and are in 24-pin hermetic DIPs. Input coding is Binary Two's Complement (bipolar) or Unipolar Straight Binary (unipolar, when an external logic inverter is used to invert the MSB). In addition, the DAC708/-709 can be loaded serially (MSB first).

The DAC705, DAC706, and DAC707 are designed to interface to a 16-bit bus. Data is written into a

- \bullet HIGH ACCURACY: Linearity Error $\pm 0.003\%$ of FSR max Differential Linearity Error $\pm 0.006\%$ of FSR max
- MONOTONIC (TO 14 BITS) OVER SPECIFIED Temperature range
- HERMETICALLY SEALED
- LOW COST PLASTIC VERSIONS AVAILABLE (DAC707JP/KP)

16-bit latch and subsequently the D/A latch. The DAC705 and DAC707 are voltage output models. DAC706 is a current output model. Outputs are bipolar only (current or voltage) and input coding is Binary Two's Complement (BTC).

All models have Write and Clear control lines as well as input latch enable lines. In addition, DAC708 and DAC709 have Chip Select control lines. In the bipolar mode, the Clear input sets the D/A latch to give zero voltage or current output. They are all 14-bit accurate and are complete with reference, and, for the DAC705, DAC707, and DAC709, a voltage output amplifier.

SPECIFICATIONS

ELECTRICAL At $T_A = +25^{\circ}C$, $V_{CC} = \pm 15V$, $V_{DD} = +5V$, and after a 10-minute warm-up unless otherwise noted.

MODEL		DAC707JP		DAC705	/706/707/70 DAC707KP	8/709KH,	DAC	705/706/70 709BH, SH	7/708/	
	MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
INPUT										
DIGITAL INPUT Resolution Bipolar Input Code (all models) Unipolar Input Code ⁽¹¹⁾ (DAC708/709 only) Logic Levels ⁽²¹⁾ : V _{IH} V _{IL} V _{IL} U _{IL} (V _I = +2.7V) I _{IL} (V _I = +0.4V)	Binary +2.0 −1.0	Two's Com	16 plement +5.5 +0.8 1 1	Unipo * *	* Ilar Straight	* Binary * * *	*	*	* * * *	Bits V ν μΑ
TRANSFER CHARACTERISTICS	:									
ACCURACY ⁽³⁾ Linearity Error Differential Linearity Error ⁽⁵⁾ at Bipolar Zero ^(5, 6) Gain Error ⁽⁷⁾ Zero Error ⁽⁷⁾ Monotonicity Over Spec Temp Range Power Supply Sensitivity: +V _{CC1} , -V _{CC} V _{DD}	13	$\begin{array}{c} \pm 0.003 \\ \pm 0.0045 \\ \pm 0.07 \\ \pm 0.05 \\ \pm 0.0015 \\ \pm 0.0011 \end{array}$	± 0.006 ± 0.012 ± 0.30 ± 0.1 ± 0.006 ± 0.001	14	±0.0015 ±0.003 ±0.003 * *	±0.003 ±0.006 ±0.006 ±0.15 *	14	* ±0.0015 ±0.05 * *	* ±0.003 ±0.10 * ±0.003	% of FSR ⁽⁴⁾ % of FSR % % of FSR Bits % of FSR/%V _{CC} % of FSR/%V _{CD}
DRIFT (over Spec Temp range ⁽³⁾) Total Error over Temp Range ⁽⁸⁾ Total Full Scale Drift Gain Drift Zero Drift: Unipolar (DAC708/709 only) Bipolar (all models) Differential Linearity Over Temp ⁽⁵⁾ Linearity Error Over Temp ⁽⁶⁾		±0.08 ±10 ±10 ±5	±30 , ±15 ±0.012 ±0.012		* * ±2.5 *	± 0.15 ± 25 ± 25 ± 5 ± 12 +0.009, -0.006 ± 0.006		* ±7 ±1.5 ±4	± 0.10 ± 15 ± 15 ± 3 ± 10 *	% of FSR ppm of FSR/°C ppm/°C ppm of FSR/°C ppm of FSR/°C % of FSR % of FSR
SETTLING TIME (to ±0.003% of FSR) ^(θ) Voltage Output Models Full Scale Step (2kΩ load) 1LSB Step at Worst Case Code ⁽¹⁰⁾ Slew Rate Current Output Models Full Scale Step (2mA): 10 to 100Ω load 1kΩ load		4 2.5 10			* * 350 1	8 4		* * * *	8 4	μs μs V/μs ns μs
ОИТРИТ										
VOLTAGE OUTPUT MODELS Output Voltage Range DAC709: Unipolar (USB Code) Bipolar (BTC Code) DAC707 Bipolar (BTC Code) DAC705 Bipolar (BTC Code) Output Current Output Impedance Short Circuit to Common Duration CURRENT OUTPUT MODELS Output Current Range (±30% typ) DAC708: Unipolar (USB Code) Bipolar (BTC Code) DAC706 Bipolar (BTC Code) Unipolar Output Impedance (±30% typ) Bipolar Output Impedance (±30% typ) Compliance Voltage	±5	±10 0.15 Indefinite		•	$\begin{array}{c} 0 \text{ to } +10 \\ \pm 5, \pm 10 \\ * \\ \pm 5 \\ * \\ 0 \text{ to } -2 \\ \pm 1 \\ \pm 1 \\ 4.0 \\ 2.45 \\ \pm 2.5 \end{array}$					ν ν ν mA mA mA κΩ κΩ ν
POWER SUPPLY REQUIREMENTS	L	I				I	L			
Voltage (all models): +V _{cc} -V _{cc} V _{cc} Current (No load, +15V supplies) Current Output Models: +V _{cc}	+13.5 -13.5 +4.5	+15 -15 +5	+16.5 16.5 +5.5	* *	* * +10	* * +25	*	* * *	* * *	V V V mA
−V _{CC} V _{DD} Voltage Ouptut Models: +V _{CC} −V _{CC} V _{DD}		+16 -18 +5	+30 -30 +10		-13 +5 * *	-25 +10 * *		* * * *	* * * *	mA mA mA mA

ELECTRICAL (CONT)

MODEL		DAC707JP		DAC705	DAC705/706/707/708/709KH, DAC707KP			705/706/70 709BH, SI		
	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
POWER SUPPLY REQUIREMENTS (CONT)										
Power Dissipation (±15V supplies) Current Output Models Voltage Output Models 535			370 *	800 950		*	*	mW mW		
TEMPERATURE RANGE										
Specification: BH grades JP, KP, KH grades SH grades Storage: Ceramic Plastic	0 60		+70 +100	* 65 *		* +150 *	-25 -55 -65		+85 +125 +150	ဝံ ဝံ ဝံ ဝံ

*Specification same as for models in column to the left.

NOTES: (1) MSB must be inverted externally prior to DAC708/709 input. (2) Digital inputs are TTL, LSTTL, 54/74C, 54/74HC and 54/74HTC compatible over the specified temperature range. (3) DAC706 and DAC708 (current-output models) are specified and tested with an external output operational amplifier connected using the internal feedback resistor in all tests. (4) FSR means Full Scale Range. For example, for ±10V output, FSR = 20V. (5) ±0.0015% of Full Scale Range is equal to 1 LSB in 16-bit resolution. ±0.003% of Full Scale Range is equal to 1 LSB in 16-bit resolution. ±0.003% of Full Scale Range is equal to 1 LSB in 16-bit resolution. ±0.003% of Full Scale Range is equal to 1 LSB in 16-bit resolution. (6) Error at input code 0000_H. (For unipolar connection on DAC708/709, the MSB must be inverted externally prior to D/A input.) (7) Adjustable to zero with external trim potentiometer. Adjusting the gain potentiometer rotates the transfer function around the bipolar zero point. (8) With gain and zero errors adjusted to zero at +25°C. (9) Maximum represents the 3*a* limit. Not 100% tested for this parameter. (10) The bipolar worst-case code change is FFF_H to 0000_H and 8000_H to 7FF_H.

CONNECTION DIAGRAMS

DESCRIPTION OF PIN FUNCTIONS

	DAC705/706/707	Pin	DAC708/709				
Designator	Description	#	Designator	Description			
V _{ουτ} (DAC707 and DAC705) R _F (DAC706)	Voltage output for DAC707 (\pm 10V) and DAC705 (\pm 5V) or an internal feedback resistor for use with an external output op amp for the DAC706.	1	A ₂	Latch enable for D/A latch (Active low)			
V _{dd}	Logic supply (+5V)	2	Ao	Latch enable for "low byte" input (Active low). When both A_0 and A_1 are logic "0", the serial input mode is selected and the serial input is enabled.			
DCOM	Digital common	3	Aı	Latch enable for "high byte" input (Active low). When both A₀ and A₁ are logic "0", the serial input mode is selected and the serial input is enabled.			
АСОМ	Analog common	4	.D7 (D15)	Input for data bit 7 if enabling low byte (LB) latch or data bit 15 if enabling the high byte (HB) latch.			
SJ (DAC705 and DAC707) Iour (DAC706)	Summing junction of the internal output op amp for the DAC705 and DAC707, or the current output for the DAC706. Offset adjust circuit is connected to the summing junction of the output amplifier. Refer to Block Diagram.	5	D6 (D14)	Input for data bit 6 if enabling LB latch or data bit 14 if enabling the HB latch.			
GA	Gain adjust pin. Refer to Connection Diagram for gain adjust circuit.	6	D5 (D13)	Data bit 5 (LB) or data bit 13 (HB)			
+Vcc	Positive supply voltage (+15V)	7	. D4 (D12)	Data bit 4 (LB) or data bit 12 (HB)			
-Vcc	Negative supply voltage (-15V)	8	D3 (D11)	Data bit 3 (LB) or data bit 11 (HB)			
CLR	Clear line. Sets the input latch to zero and sets the D/A latch to the input code that gives bipolar zero on the D/A output (Active low)	9	D2 (D10)	Data bit 2 (LB) or data bit 10 (HB)			
WR	Write control line (Active low)	10	D1 (D9)	Data bit 1 (LB) or data bit 9 (HB)			
A1	Enable for D/A converter latch (Active low)	11	D0 (D8)/SI	Data bit 0 (LB) or data bit 8 (HB). Serial input when serial mode is selected.			
Ao	Enable for input latch (Active low)	12	DCOM	Digital common			
D15 (MSB)	Data bit 15 (Most Significant Bit)	13 '	R _{F2}	Feedback resistor for internal or external operational amplifier. Connect to pin 14 when a 10V output range is desired. Leave open for a 20V output range.			
D14	Data bit 14	14	V _{о∪т} R _{F1} (DAC708)	Voltage output for DAC709 or feedback resistor for use with an external output op amp for the DAC708. Refer to Connection Diagram for connection of external op amp to DAC708.			
D13	Data bit 13	15	АСОМ	Analog common			
D12	Data bit 12	16	SJ (DAC709) І _{оит} (DAC708)	Summing junction of the internal output op amp for the DAC709, or the current output for the DAC708. Refer to			
, ,				Connection Diagram for connection of external op amp to DAC708.			
D11	Data bit 11	17	BPO	Bipolar offset. Connect to pin 16 when operating in the bipolar mode. Leave open for unipolar mode.			
D10	Data bit 10	18	GA	Gain adjust pin			
D9	Data bit 9	19-	+V _{cc}	Positive supply voltage (+15V)			
D8 .	Data bit 8	20	-Vcc	Negative supply voltage (-15V)			
D7	Data bit 7	21	CLR	Clear line. Sets the high and low byte input registers to zero and, for bipolar operation, sets the D/A register to the input code that gives bipolar zero on the D/A output. (In the unipolar mode, invert the MSB prior to the D/A.)			
D6	Data bit 6	22	WR	Write control line			
D5	Data bit 5	23	cs	Chip select control line			
D4	Data bit 4	24	VDD ·	Logic supply (+5V)			
D3	Data bit 3	25	No pin				
D2	Data bit 2	26	No pin	(The DAC708 and DAC709 are in 24-pin packages)			
D1 .	Data bit 1	27	No pin				
D0 (LSB)	Data bit 0 (Least Significant Bit)	28	No pin	· · · · · · · · · · · · · · · · · · ·			

MECHANICAL

ABSOLUTE MAXIMUM RATINGS

VDD to COMMON	0V, +15V
+V _{cc} to COMMON	0V, +18V
-Vcc to COMMON	0V, -18V
Digital Data Inputs to COMMON0.5V	, V _{DD} +0.5
DC Current any Input	. ±10mA
Reference Out to COMMON Indefinite Short to C	COMMON
Vour (DAC707, DAC709) Indefinite Short to C	COMMON

 External Voltage Applied to Rr (pin 1, DAC706; pin 13 or 14, DAC708)
 ±18V

 External Voltage Applied to D/A Output (pin 1, DAC707; pin 14, DAC708)
 ±5V

 Power Dissipation
 1000mW

 Storage Temperature
 -60°C to +150°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

ORDERING INFORMATION

Model	Temperature Range	Input Configuration	Output Configuration
DAC705KH BH BH/QM SH	0 to +70°C -25 to +85°C -25 to +85°C -55 to +125°C -55 to +125°C	16-bit port 16-bit port 16-bit port 16-bit port	±5V output ±5V output ±5V output ±5V output ±5V output
DAC706KH BH BH/QM SH SH/QM	0 to +70°C -25 to +85°C -25 to +85°C -55 to +125°C -55 to +125°C	16-bit port 16-bit port 16-bit port 16-bit port 16-bit port 16-bit port	±1mA output ±1mA output ±1mA output ±1mA output ±1mA output
DAC707JP KP KH BH BH/QM SH SH/QM	0 to +70°C 0 to +70°C 0 to +70°C -25 to +85°C -55 to +85°C -55 to +125°C -55 to +125°C	16-bit port 16-bit port 16-bit port 16-bit port 16-bit port 16-bit port 16-bit port	±10V output ±10V output ±10V output ±10V output ±10V output ±10V output ±10V output
DAC708KH BH BH/QM SH SH/QM	0 to +70°C -25 to +85°C -25 to +85°C -55 to +125°C -55 to +125°C	8-bit port 8-bit port 8-bit port 8-bit port 8-bit port 8-bit port	±1mA output ±1mA output ±1mA output ±1mA output ±1mA output
DAC709KH BH BH/QM SH SH/QM	0 to +70°C -25 to +85°C -25 to +85°C -55 to +125°C -55 to +125°C	8-bit port 8-bit port 8-bit port 8-bit port 8-bit port 8-bit port	±10V output ±10V output ±10V output ±10V output ±10V output

DISCUSSION OF SPECIFICATIONS

DIGITAL INPUT CODES

For bipolar operation, the DAC705/706/707/708/709 accept positive-true binary two's complement input code. For unipolar operation (DAC708/709 only) the input code is positive-true straight-binary provided that the MSB input is inverted with an external inverter. See Table 1.

TA	BL.	E	I.	Dig	ital	In	nut	Codes.
----	-----	---	----	-----	------	----	-----	--------

	Analog Output							
Digital	Unipolar Straight Binary ⁽¹⁾	Binary Two's Complement						
Input	(DAC708/709 only; connec-	(Bipolar operation;						
Codes	ted for Unipolar operation)	all models)						
7FFFн	+1/2 Full Scale –1 LSB ⁽²⁾	+Full Scale						
0000н	Zero	Zero						
FFFFн	+Full Scale	–1LSB						
8000н	+1/2 Full Scale	–Full Scale						

(1) MSB must be inverted externally. (2) Assumes MSB is inverted externally.

ACCURACY

Linearity

This specification describes one of the most important measures of performance of a D/A converter. Linearity error is the deviation of the analog output from a straight line drawn through the end points (-Full Scale point and +Full Scale point).

Differential Linearity Error

Differential Linearity Error (DLE) of a D/A converter is the deviation from an ideal ILSB change in the output when the input changes from one adjacent code to the next. A differential linearity error specification of $\pm 1/2$ LSB means that the output step size can be between 1/2LSB and 3/2LSB when the input changes between adjacent codes. A negative DLE specification of -1LSB maximum (-0.0006% for 14-bit resolution) insures monotonicity.

Monotonicity

Monotonicity assures that the analog output will increase or remain the same for increasing input digital codes. The DAC705/706/707/708/709 are specified to be monotonic to 14 bits over the entire specification temperature range.

DRIFT

Gain Drift

Gain drift is a measure of the change in the full-scale range output over temperature expressed in parts per million per degree centigrade (ppm/°C). Gain drift is established by: (1) testing the end point differences at t_{min} , +25°C and t_{max} ; (2) calculating the gain error with respect to the +25°C value; and (3) dividing by the temperature change.

Zero Drift

Zero drift is a measure of the change in the output with $0000_{\rm H}$ applied to the D/A converter inputs over the specified temperature range. (For the DAC708/709 in unipo-

lar mode, the MSB must be inverted.) This code corresponds to zero volts (DAC705/707 and DAC709) or zero milliamps (DAC706 and DAC708) at the analog output. The maximum change in offset at t_{min} or t_{max} is referenced to the zero error at $+25^{\circ}$ C and is divided by the temperature change. This drift is expressed in FSR/°C.

SETTLING TIME

Settling time of the D/A is the total time required for the analog output to settle within an error band around its final value after a change in digital input. Refer to Figure 1 for typical values for this family of products.

FIGURE 1. Final-Value Error Band Versus Full-Scale Range Settling Time.

Voltage Output

Settling times are specified to $\pm 0.003\%$ of FSR ($\pm 1/2$ LSB for 14 bits) for two input conditions: a full-scale range change of 20V ($\pm 10V$) or 10V ($\pm 5V$ or 0 to 10V) and a ILSB change at the "major carry", the point at which the worst-case settling time occurs. (This is the worst-case point since all of the input bits change when going from one code to the next.)

Current Output

Settling times are specified to $\pm 0.003\%$ of FSR for a fullscale range change for two output load conditions: one for 10 Ω to 100 Ω and one for 1000 Ω . It is specified this way because the output RC time constant becomes the dominant factor in determining settling time for large resistive loads.

COMPLIANCE VOLTAGE

Compliance voltage applies only to current output models. It is the maximum voltage swing allowed on the output current pin while still being able to maintain specified accuracy.

POWER SUPPLY SENSITIVITY

Power supply sensitivity is a measure of the effect of a change in a power supply voltage on the D/A converter output. It is defined as a percent of FSR change in the output per percent of change in either the positive supply ($+V_{cc}$), negative supply ($-V_{cc}$) or logic supply (V_{DD}) about the nominal power supply voltages (see Figure 2). It is specified for DC or low frequency changes. The typical performance curve in Figure 2 shows the effect of high frequency changes in power supply voltages.

FIGURE 2. Power Supply Rejection Versus Power Supply Ripple Frequency.

OPERATING INSTRUCTIONS

POWER SUPPLY CONNECTIONS

For optimum performance and noise rejection, power supply decoupling capacitors should be added as shown in the Connection Diagram. $l\mu F$ tantalum capacitors should be located close to the D/A converter.

EXTERNAL ZERO AND GAIN ADJUSTMENT

Zero and gain may be trimmed by installing external zero and gain potentiometers. Connect these potentiometers as shown in the Connection Diagram and adjust as described below. TCR of the potentiometers should be 100ppm/°C or less. The 3.9M Ω and 270k Ω resistors (±20% carbon or better) should be located close to the D/A converter to prevent noise pickup. If it is not convenient to use these high-value resistors, an equivalent "T" network, as shown in Figure 3, may be substituted in place of the 3.9M Ω resistor. A 0.001µF to 0.01µF ceramic capacitor should be connected from GAIN ADJUST to ANALOG COMMON to prevent noise pickup. Refer to Figures 4 and 5 for the relationship of zero and gain adjustments to unipolar D/A converters.

FIGURE 3. Equivalent Resistances.

Zero Adjustment

- For unipolar (USB) configurations, apply the digital input code that produces zero voltage or zero current output and adjust the zero potentiometer for zero output.
- For bipolar (BTC) configurations, apply the digital input code that produces zero output voltage or current. See Table II for corresponding codes and connection diagrams for zero adjustment circuit connections. Zero calibration should be made before gain calibration.

FIGURE 4. Relationship of Zero and Gain Adjustments for Unipolar D/A Converters, DAC708 and DAC709.

FIGURE 5. Relationship of Zero and Gain Adjustments for Bipolar D/A Converters, DAC705/706/707 and DAC708/709.

TABLE II. Digital Input And Analog Output Voltage/Current Relationships.

VOLTAGE OUTPUT MODELS														
		Analog Out	put				Analog Output							
Digital	1	Inipolar, 0 to	+10V]	Digital Input	Bipolar, ±10V				I	,			
Code	16-Bit	15-Bit	14-Bit	Units	Code	16-E	Bit	15-Bit	14-Bit	16-Bit	15-Bit	14-Bit	Units	
One LSB FFFF _H 0000 _H	153 +9.9998 0	305 +9.99969 0	610 +9.99939 0	μV V V	One LSB 7FFF _H 8000 _H	LSB 305 F _H +9.99960 D _H -10.0000		610 +9.99939 -10.0000	1224 +9.99878 10.0000	153 · +4.99980 -5.0000	305 +4.99970 -5.0000	610 +4.99939 -5.0000	μV V V	
					CURREN	т оџті	PUT	NODELS						
		Ar	alog Output							Analog Ou	tput			
Digital		*Unip	olar, 0 to2n	nA			Di	gital out		Bipolar, ±1	1mA			
Code		16-Bit	15-Bit	14-Bit	Unit	s	Co	ode	16-Bit	15-Bit	14-1	Bit	Units ·	
One LSE FFFFн 0000н	3 _	0.031 1.99997 0	0.061 -1.99994 0	0.122 1.99988 0	μA 3 mA mA		01 7F 80	ne LSB FFн 00н	0.031 -0.99997 +1.00000	0.061 0.9999 +1.0000	0.12 04 -0.99 00 +1.00	22 9988 0000	μA mA mA	

*MSB assumed to be inverted externally.

Gain Adjustment

Apply the digital input that gives the maximum positive output voltage. Adjust the gain potentiometer for this positive full-scale voltage. See Table II for positive fullscale voltages and the Connection Diagrams for gain adjustment circuit connections.

INTERFACE LOGIC AND TIMING DAC708/709

The signals CHIP SELECT (\overline{CS}), WRITE (\overline{WR}), register enables ($\overline{A_0}$, $\overline{A_1}$, and $\overline{A_2}$) and CLEAR (\overline{CLR}), provide the control functions for the microprocessor interface. They are all active in the "low" or logic "0" state. \overline{CS} must be low to access any of the registers. $\overline{A_0}$ and $\overline{A_1}$ steer the input 8-bit data byte to the low- or high-byte input latch respectively. $\overline{A_2}$ gates the contents of the two input latches through to the D/A latch in parallel. The contents are then applied to the input of the D/A converter. When WR goes low, data is strobed into the latch or latches which have been enabled.

The serial input mode is activated when both $\overline{A_0}$ and $\overline{A_1}$ are logic "0" simultaneously. The D0 (D8)/SI input data line accepts the serial data MSB first. Each bit is clocked in by a \overline{WR} pulse. Data is strobed through to the D/A latch by $\overline{A_2}$ going to logic "0" the same as in the parallel input mode.

Each of the latches can be made "transparent" by maintaining its enable signal at logic "0". However, as stated above, when both $\overline{A_0}$ and $\overline{A_1}$ are logic "0" at the same time, the serial mode is selected.

The $\overline{\text{CLR}}$ line resets both input latches to all zeros and sets the D/A latch to 0000_H. This is the binary code that gives a null, or zero, at the output of the D/A in the bipolar mode. In the unipolar mode, activating $\overline{\text{CLR}}$ will cause the output to go to one-half of full scale.

The maximum clock rate of the latches is 10MHz. The minimum time between write (WR) pulses for successive enables is 20ns. In the serial input mode (DAC708 and DAC709), the maximum rate at which data can be clocked into the input shift register is 10MHz.

The timing of the control signals is given in Figure 6.

FIGURE 6. Logic Timing Diagram.

DAC706/707

The DAC705/706/707 interface timing is the same as that described above except instead of two 8-bit separately-enabled input latches, it has a single 16-bit input latch enabled by \overline{A}_0 . The D/A latch is enabled by \overline{A}_1 . Also, there is no serial-input mode and no \overline{CHIP} SELECT (\overline{CS}) line.

INSTALLATION CONSIDERATIONS

Due to the extremely-high accuracy of the D/A converter, system design problems such as grounding and contact resistance become very important. For a 16-bit converter with a +10V full-scale range, ILSB is 153μ V. With a load current of 5mA, series wiring and connector resistance of only $30m\Omega$ will cause the output to be in error by ILSB. To understand what this means in terms of a system layout, the resistance of typical 1 ounce copper-clad printed circuit board material is approximately $1/2m\Omega$ per square. In the example above, a 10 milliinch-wide conductor 60 milliinches long would cause a 1LSB error.

In Figures 7 and 8, lead and contact resistances are represented by R_1 through R_5 . As long as the load resistance R_L is constant, R_2 simply introduces a gain error

FIGURE 7. DAC705/707/709 Bipolar Output Circuit (Voltage Out).

FIGURE 8. DAC706/708 Bipolar Output Circuit (with External Op Amp).

and can be removed with gain calibration. R_3 is part of R_L if the output voltage is sensed at ANALOG COM-MON.

Figures 8 and 9 show two methods of connecting the currrent output model with an external precision output op amp. By sensing the output voltage at the load resistor (connecting R_F to the output of the amplifier at R_L) the effect of R_1 and R_2 is greatly reduced. R_1 will cause a gain error but is independent of the value of R_L and can be eliminated by initial calibration adjustments. The effect of R_2 is negligible because it is inside the feedback loop of the output op amp and is therefore greatly reduced by the loop gain.

FIGURE 9. Alternate Connection for Ground Sensing at the Load (Current Output Models).

In many applications it is impractical to sense the output voltage at ANALOG COMMON. Sensing the output voltage at the system ground point is permissible because these converters have separate analog and digital common lines and the analog return current is a near-constant 2mA and varies by only 10μ A to 20μ A over the entire input code range. R₄ can be as large as 3Ω without adversely affecting the linearity of the D/A converter. The voltage drop across R₄ is constant and appears as a zero error that can be nulled with the zero calibration adjustment.

Another approach senses the output at the load as shown in Figure 9. In this circuit the output voltage is sensed at the load common and not at the D/A converter common as in the previous circuits. The value of R_6 and R_7 must be adjusted for maximum common-mode rejection across R_L . The effect of R_4 is negligible as explained previously.

The D/A converter and the wiring to its connectors should be located to provide optimum isolation from sources of RFI and EMI. The key to elimination of RF radiation or pickup is small loop area. Signal leads and their return conductors should be kept close together such that they present a small flux-capture cross section for any external field.

ENVIRONMENTAL SCREENING

/QM Screening

All BH and SH models are available with Burr-Brown's /QM environmental screening for enhanced reliability. The screening, tabulated below, is performed to selected methods of MIL-STD-883. Reference to these methods provides a convenient method of communicating the

screening levels and basic procedures employed; it does not imply conformance to any other military standards or to any methods of MIL-STD-883 other than those specified below. Burr-Brown's detailed procedures may vary slightly, model-to-model, from those in MIL-STD-883.

Screen	MIL-STD-883 Method	Condition	Comments
Internal Visual	2017	В	
High Temperature Storage (Stabili- zation Bake)	1008	с	+150°C, 24hrs
Temperature Cycling	1010	с	-65 to +150°C, 10 cycles
Burn-in	1015	В	+125°C, 160hrs
Constant Acceleration 28-pin pkg. 24-pin pkg.	2001	BE	10,000G 30,000G
Hermeticity Fine Leak 28-pin pkg. 24-pin pkg. Gross Leak	1014 1014	A1 or A2 C	2×10^{-7} atmcc/sec 5×10^{-8} atmcc/sec 60psig, 2hr
External Visual	2009		

SCREENING FLOW FOR /QM MODELS

APPLICATIONS

LOADING THE DAC709 SERIALLY ACROSS AN ISOLATION BARRIER

A very useful application of the DAC709 is in achieving low-cost isolation that preserves high accuracy. Using the serial input feature of the input register pair, only three signal lines need to be isolated. The data is applied to pin 11 in a serial bit stream, MSB first. The WR input is used as a data strobe, clocking in each data bit. A RESET signal is provided for system startup and reset. These three signals are each optically isolated. Once the 16 bits of serial data have been strobed into the input register pair, the data is strobed through to the D/A register by the "carry" signal out of a 4-bit binary synchronous counter that has counted the 16 WR pulses used to clock in the data. The circuit diagram is given in Figure 10.

CONNECTING MULTIPLE DAC707s TO A 16-BIT MICROPROCESSOR BUS

Figure 11 illustrates the method of connecting multiple DAC707s to a 16-bit microprocessor bus. The circuit shown has two DAC707s and uses only one address line to select either the input register or the D/A register. An external address decoder selects the desired converter.

FIGURE 10. Serial Loading of Electrically Isolated DAC708/709.

FIGURE 11. Connecting Multiple DAC707s to a 16-Bit Microprocessor.

DAC729

ADVANCE INFORMATION Subject to Change

Ultra-High Resolution 18-Bit DIGITAL-TO-ANALOG CONVERTER

FEATURES

- 16-BIT LINEARITY GUARANTEED (K GRADE)
- USER ADJUSTABLE TO 18-BIT LINEARITY (K GRADE)
- PRECISION INTERNAL REFERENCE NOT DEDICATED
- FAST SETTLING, LOW NOISE INTERNAL OP AMP NOT DEDICATED
- LOW TEMPERATURE DRIFT
- HERMETIC 40-PIN CERAMIC PACKAGE
- IOUT OR VOUT OPERATION

DESCRIPTION

The DAC729 sets the standard in very high accuracy digital-to-analog conversion. It is supplied from the factory at a guaranteed linearity of 16 bits, and is useradjustable to 18-bit linearity (1LSB = FSR/262144).

To attain this high level of accuracy, the design takes advantage of Burr-Brown's thin-film monolithic DAC process, dielectric op amp process, hybrid capabilities, and advanced test and laser-trim techniques.

The DAC729 hybrid layout is specifically partitioned to minimize the effect of external load-currentinduced thermal errors. The op amp design consists of a fast settling precision op amp with a current buffer within the feedback loop. This architecture isolates the load from the op amp, which results in a fast settling (15μ s to 18 bits) op amp that boasts an open-loop gain of over 500k. The standard 40-pin package offers full hermeticity, contributing to the excellent reliability of the DAC729.

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

PDS-749

141

SPECIFICATIONS

ELECTRICAL

Typical at 25°C, $\pm V_{CC} = 15VDC$.

MODEL		DAC729JH			DAC729KH		
PARAMETER	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
INPUT							
Resolution		18			· * ·		Bits
Digital Inputs ⁽¹⁾ : V _{IH}	+2.4		+VL	· *		*	V
VIL	0		+0.8	*		*	v
$I_{\rm IH}, V_{\rm IN} = 2.7 V$			+5.0			*	μA
$I_{IL}, V_{IN} = 0.4V$			-300			*	μA
TRANSFER CHARACTERISTICS							
ACCURACY							
Linearity Error ¹³⁷			±0.0015			±0.0007	% of FSR**
Differential Linearity Error		+0.05	±0.003			±0.0015	% OFFSR
Offeet Error ⁽⁵⁾ , Voltage, COP ⁽⁶⁾		±0.05	±0.10 +10			*	% m\/
CSB ⁽⁶⁾		+0.5	+0.8			*	mV
Current, COB		10.0	±5			*	μA
CSB			±1			*	μA
Monotonicity (0°C to 70°C)	15	16			17		Bits
Differential Linearity Adjustment Resolution ⁽⁷⁾		17			18		Bits
DRIFT (Over Specification Temperature Range)							
Total Voltage Error Over Temperature (0°C to +70°C) ⁽⁸⁾		±0.050	±0.100		•	· . •	% of FSR
Total Full-Scale Drift		±9	±0.18		±7	±15	ppm of FSR/°C
Gain Drift (Excluding Reference Drift)		±1	±3.0		*	*	ppm/°C
Offset Drift (Excluding Reference Drift): COB		±2.0	±5.0		*	*	ppm of FSR/°C
CSB		±0.5	±2.0			*	ppm of FSR/°C
Linearity Error Over Temperature		±0.5	±1.0		±0.25	±0.50	ppm of FSR/°C
Differential Linearity Error Over Temperature		±0.5	±1.0		±0.25	±0.50	ppm of FSR/°C
OUTPUT	·						
VOLTAGE OUTPUT MODE							
Ranges: COB	=	±2.5, ±5, ±10)		*		· V
CSB	1) to 10, 0 to t			Ŧ		V
Output Current	±5	0.15		, i			ma.
Short Circuit Duration	Indef	inite to Com	mon	Indef	inite to Con	l, mon	52
	maci			mac		Г	
		+10					
Output Impedance		2 96			*		kO
CSB Bannes		0 to -2			*		mA
Output Impedance		40			*		kO
Output Current Tolerance			±0.1			*	% of FSR
Compliance Voltage		-1 to +5			*		·ν
SETTLING TIME (To ±0.00038% of FSR) ⁽⁹⁾							
Voltage (Load = $2k\Omega \parallel 100 \text{pF}$);			N				
Full-Scale Step		5	8		. •	*	μs
1LSB Step (Major Carry) ⁽¹⁰⁾		4	7		*	*	μs
Slew Rate		20			*		V/µs
Switching Transient Peak		500			•		mV
Switching Transient Energy		0.45			*		V-µs
Current Full-Scale Step ($2mA \times 10\Omega$)		300			*		ns
REFERENCE							
Output (pin 32): Voltage	+9.990	10.000	10.010	*	*	.*	· V
Source Current"			+4.0			*	mA
Temperature Coefficient		1 ±1.0	±2.5		*	*	ppm/°C
Short-Circuit Duration	Inde	inite to Con	1000	Inde	inite to Con	nmon	
Reference Load: Uninolar Modo	79.990	10	10	[•]	· ·		
Bipolar Mode			-2.0			* .	mA

ELECTRICAL (CONT)

MODEL		DAC729JH			DAC729KH		
PARAMETER	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
POWER SUPPLY REQUIREMENTS							
Voltage: +Vcc	+13.5	+15	+16.5	*	*	*	v
-V _{cc}	-16.5	-15	-13.5	*	*	*	v
+VL	+4.75	+5	+5.25	*	*	*	v
Current: +Vcc		+30	+40		• -	*,	mA
-Vcc		-40	-55		*	*	• mA
+VL /		+18	+25		*	*	mA
Power Dissipation (Typical Supplies)		1.14	1.55		*	*	w
Power Supply Sensitivity, Unipolar: ±15VDC		±0.0001	±0.0005		*	*	% of FSR/%Vs
+5VDC		±0.0001	±0.0005		•	•	% of FSR/%Vs
Bipolar: ±15VDC		±0.0004	±0.0015		*	*	% of FSR/%Vs
+5VDC		±0.0001	±0.0005		*	*	% of FSR/%Vs
Gain: ±15VDC		±0.0005	±0.0015			*	% of FSR/%Vs
+5VDC		±0.0001	±0.0005		*	*	% of FSR/%Vs
ENVIRONMENTAL SPECIFICATIONS							
Temperature Range: Specification	0		+70	*		*	°C
Storage	-60		+150	*		*	°C

*Specification same as DAC729JH.

NOTES: (1) TTL and CMOS compatible. (2) Specified for V_{OUT} mode using the internal op amp. (3) ±0.00076% of full-scale range is 1/2LSB of 16-bit resolution. (4) FSR means full-scale range, 20V for ±10V range, etc. (5) Adjustable to zero error with an external potentiometer. (6) COB is complementary offset binary (bipolar); CSB is complementary straight binary (unipolar). (7) Using the MSB adjustment circuit, the user may improve the DAC linearity to 1/2LSB of this specification. (8) With gain and offset errors adjusted to zero at 25°C. (9) Maximum represents 3 sigma limit, not 100% production tested. (10) At the major carry; 20000 to 1FFFF Hex and from 1FFFF to 20000 Hex. (11) Maximum with no degradation in specifications. External loads must be constant.

MECHANICAL

ABSOLUTE MAXIMUM RATINGS

+V _{DD} to Common 0V to +7V
+V _{cc} to Common 0V to +18V
-V _{cc} to Common 0V to -18V
Digital Data Inputs (pins 1-18) to Common +0.5V to +18V
Reference out (pin 32) to Common Indefinite Short to Common
External Voltage Applied to D/A Output (pin 29)5V to +5V
Vour (pin 23) Indefinite Short to Common
Power Dissipation
Storage Temperature
NOTE: Stresses above those listed under "Absolute Maximum Ratings"

NO LE: Stresses above those listed under "Absolute Maximum Hatings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

PIN CONNECTIONS

	DAC729		
Bit 1	1	40	VPOT
Bit 2	2	39	Bit 1 Adjust
Bit 3	3	38	Bit 2 Adjust
Bit 4	4	37	Bit 3 Adjust
Bit 5	5	36	Bit 4 Adjust
Bit 6	6	35	Reference Adjust
Bit 7	7	34	Gain Adjust
Bit 8	8	33	Reference Common
Bit 9	9	32	Reference Out
Bit 10	10	31	Reference In
Bit 11	11 -	30	Analog Common
Bit 12	12	29	lout
Bit 13	13	28	5kΩ Feedback
Bit 14	14	27	5kΩ Feedback
Bit 15	15	26	10kΩ Feedback
Bit 16	16	25	10kΩ Feedback
Bit 17	17	24	Summing Junction
Bit 18	18	23	Vout
+V _L (5V)	19	22	+V _{cc} (15V)
Power Ground	20	21	-V _{cc} (15V)

THEORY OF OPERATION

The DAC729 is an 18-bit digital-to-analog converter system, including a precision reference, low noise, fast settling operational amplifier, and the 18-bit current source/DAC chip contained in a hermetic 40-pin ceramic dual-in-line package.

THE INTERNAL REFERENCE

The reference consists of a very low temperature coefficient closed-loop reference zener circuit that has been slope-compensated by laser-trimming current-setting resistors to a zener current to achieve less than $1ppm/^{\circ}C$ temperature drift of V_{REF} .

By strapping pin 32 (Reference Out) to pin 31 (Reference In), the DAC will be properly biased from the internal reference. The internal reference may be fine adjusted using pin 35 as shown in Figure 7. The reference has an output buffer that will supply 4mA for use external to the DAC729. This load must remain constant because changing load on the reference may change the reference current to the DAC.

In systems where several components need to track the same system reference, the DAC729 may be used with an external 10V reference, however, the internal reference has lower noise (6μ Vp-p) and better stability than other references available.

THE OPERATIONAL AMPLIFIER

To support a DAC of this accuracy, the operational amplifier must have a maximum gain-induced error of less than 1/3LSB, independent of output swing (the op amp must be linear!). To support 15 bits (1/2-bit linearity) the op amp must have a gain of 130,000V/V. For 18 bits, the minimum gain is well over 500,000V/V. Since thermal feedback is the major limitation of gain for mono op amps, the amplifier was designed as a high gain, fast settling mono op amp, followed by a monolithic, unity gain current buffer to isolate the thermal effects of external loads from the input stages of the gain transistors. The op amp and buffer are separated from the DAC chip, minimizing thermally-induced linearity errors in the DAC circuit. The op amp, like the reference, is not dedicated to the DAC729. The user may want to add a network, or select a different amplifier. The DAC729 internal op amp is intended to be the best choice for settling, speed, and noise.

THE DAC CHIP

The heart of the DAC729 is a monolithic current source and switch integrated circuit. The absolute linearity, differential linearity, and the temperature performance of the DAC729 are the result of the design, which utilizes the excellent element matching of the current sources and switch transistors to each other, and the tracking of the current setting resistors to the feedback resistors. Older, more discrete designs cannot achieve the performance of this monolithic DAC design. The two most significant bits are binarily weighted inner-digitized current sources. The currents for bits 3 through 18 are scaled with both current sources weighting and an R-2R ladder. The circuit design is optimized for low noise and low superposition error, with the current sources arranged to minimize both code-dependent thermal errors and IR drop errors. As a result, the superposition errors are typically less than $20\mu V$.

The DAC chip is biased from a servo amplifier feeding into the base line of the current sources. This servo amplifier sets the collector current to be mirrored and scaled in the DAC chip current sources. The reference current for the servo is established by the reference voltage applied to pin 31 feeding an internal resistor $(10k\Omega)$ to the virtual ground of the servo amplifier.

DISCUSSION OF SPECIFICATIONS

DIGITAL INPUT CODES

The DAC729 accepts complementary digital input codes in either binary format (CSB, Unipolar or COB, Bipolar; see Table I).

TABLE I. Digital Input Coding.

	DAC Analog Output					
Digital Input	COB	20V FSR	V FSR CSB			
00 0000 0000 0000 0000 11 1111 1111 111	+ Full Scale – Full Scale	9.999924V -10V	+ Full Scale – Full Scale	9.999962V 0V		

ACCURACY

Linearity

This specification describes one of the most important measures of performance of a D/A converter. Linearity error is the deviation of the analog output from a straight line drawn through the end points (all bits ON point and all bits OFF point).

Differential Linearity Error

Differential Linearity Error (DLE) of a D/A converter is the deviation from an ideal 1LSB change in the output from one adjacent output state to the next. A differential linearity error specification of $\pm 1/2$ LSB means that the output step sizes can be between 1/2LSB and 3/2LSB when the input changes from one adjacent input state to the next. A negative DLE specification of no more than -1LSB (-0.0015% for 16-bit resolution) insures monotonicity

Monotonicity

Monotonicity assures that the analog output will increase or remain the same for increasing input digital codes. The DAC729 is specified to be monotonic to 16 bits over the entire specification temperature range.

DRIFT

Gain Drift

Gain drift is a measure of the change in the full-scale

range output over temperature expressed in parts per million per degree centigrade (ppm/°C). Gain drift is measured by: (1) testing the end point differences for each D/A at t_{MIN} , +25°C and t_{MAX} ; (2) calculating the gain error with respect to the +25°C value; and (3) dividing by the temperature change.

Offset Drift

Offset drift is a measure of the change in the output with $3FFFF_H$ applied to the digital inputs over the specified temperature range. The maximum change in offset at t_{MIN} or t_{MAX} is referenced to the offset error at $+25^{\circ}C$ and is divided by the temperature change. This drift is expressed in parts per million of full-scale range per degree centigrade (ppm of FSR/°C).

SETTLING TIME

Settling time of the D/A is the total time required for the analog output to settle within an error band around its final value after a change in digital input.

Voltage Output

Settling times are specified to $\pm 0.00075\%$ of FSR ($\pm 1/2$ LSB for 16 bits) for two input conditions: a fullscale range change of 20V (COB) or 10V (CSB) and a 1LSB change at the "major carry," the point at which the worst-case settling time occurs. (This is the worst-case point since all of the input bits change when going from one code to the next.)

Current Output

Settling times are specified to $\pm 0.00075\%$ of FSR for a full-scale range change with an output load resistance of 10Ω . It is specified this way because the output RC time constant becomes the dominant factor in determining settling time for large resistive loads.

COMPLIANCE VOLTAGE

Compliance voltage applies only to current output models. It is the maximum voltage swing allowed on the output current pin while still being able to maintain specified linearity.

POWER SUPPLY SENSITIVITY

Power supply sensitivity is a measure of the effect of a change in a power supply voltage on the D/A converter output. It is defined as a percent of FSR change in the output per percent of change in either the positive supply $(+V_{cc})$, negative supply $(-V_{cc})$ or logic supply (V_L) about the nominal power supply voltages (see Figure 1). It is specified for DC or low frequency changes. The typical performance curve in Figure 1 shows the effect of high frequency changes in power supply voltages using internal reference, DAC, and op amp.

OPERATING INSTRUCTIONS

POWER SUPPLY CONNECTIONS

For optimum performance and noise rejection, power supply decoupling capacitors should be added as shown in

FIGURE 1. Power Supply Rejection vs Frequency Using Internal Reference and Op Amp.

Figure 2. These capacitors $(1\mu F \text{ to } 10\mu F \text{ tantalum})$ recommended) should be located close to the DAC729. Electrolytic capacitors, if used, should be paralleled with $0.01\mu F$ ceramic capacitors for best high frequency performance.

FIGURE 2. Ground Connections and Supply Bypass.

EXTERNAL OFFSET AND GAIN ADJUSTMENT

Offset and gain may be trimmed by installing external offset and gain potentiometers. Connect these potentiometers as shown in Figure 3 and adjust as described below. TCR of the potentiometers should be $100ppm/^{\circ}C$ or less. The 3.9M Ω and 510k Ω resistors (20% carbon or better) should be located close to the DAC729 to prevent noise pickup. If it is not convenient to use these high-value resistors, an equivalent "T" network, as shown in Figure 4, may be substituted in place of the 3.9M Ω . A 0.001 μ F to 0.01 μ F ceramic capacitor should be connected from Gain Adjust (pin 34) to common to shunt noise pickup. Refer

FIGURE 3. Typical Gain and Offset Adjust Hook-Up.

FIGURE 4. Equivalent Resistances.

to Figures 5 and 6 for relationship of offset and gain adjustments to unipolar and bipolar D/A converters.

OFFSET ADJUSTMENT

For unipolar (CSB) configurations, apply the digital input code that should produce zero potential output and adjust the offset potentiometer for zero output.

FIGURE 5. Relationship of Offset and Gain Adjustments for a Unipolar D/A Converter.

For bipolar (COB) configurations, apply the digital input code that should produce the maximum negative output voltage. See Table II for corresponding codes and Figures 2 and 3 for offset adjustment connections. Offset adjust

FIGURE 6. Relationship of Offset and Gain Adjustments for a Bipolar D/A Converter.

should be made prior to gain adjust.

GAIN ADJUSTMENT

For either unipolar or bipolar configurations, apply the digital input that should give the maximum positive output voltage. Adjust the gain potentiometer for this positive full-scale voltage. See Table II for positive full-scale voltages and Figure 3 for gain adjustment connections.

TABLE II. Output Range Connections.

Output Range	Code	Connect Pin 23	Connect Pin 31	Connect Pin 24
±10V	COB	to Pin 25	to Pin 26	to Pin 29
±5V	СОВ	to Pin 27	to Pin 26	to Pin 29
±2.5V	СОВ	to Pin 27	to Pin 26	to Pins 29 & 25
0 to 10V	CSB	to Pin 27	N/C	to Pin 29
0 to 5V	CSB	to Pins 27 & 28	N/C	to Pin 29

REFERENCE ADJUSTMENT

The internal reference may be fine adjusted using pin 35 as shown in Figure 7. Adjusting the reference has a similar effect on the DAC as gain adjust, except the transfer function rotates around bipolar zero for a bipolar hookup. The transfer function is shown in Figure 8.

The value of the setting resistor may be selected from the graph. The range of adjustment should be minimized to limit the effects of drift and noise from the external resistor and potentiometer.

LAYOUT/APPLICATIONS SUGGESTIONS

Obviously, the management of IR drops, power supply noise, thermal stability, and environmental noise becomes much more critical as the accuracy of the system increases. The DAC729 has been designed to minimize these applications problems to a large degree. The basics of "Kelvin sensing" and "holy point" grounding will be the most important considerations in optimizing the absolute accuracy of the system. Figure 9 shows the proper connection of the DAC with the holy-point ground and

FIGURE 7. VREF Adjust.

FIGURE 8. Effect of V_{REF} Adjust on a COB Connected Device.

the Kelvin-voltage-output connection at the load.

The DAC729 has three separate supply common (ground) pins. Reference common (pin 33) carries the return current from the internal reference and the output I/V converter common. The current in pin 33 is stable and independent of code or load. Power common (pin 20) carries the variable currents of the biasing circuits. Analog common (pin 30) is the termination of the R-2R ladder and also carries the "waste current" from the off side of the current switches. These three ground pins must be star connected to system ground for the DAC to bias properly and accurately. Good ground connections are essential,

FIGURE 9. Typical Hook-Up Diagram with "Holy Point" Ground and Kelvin Sense Load, Using Internal Op Amp and Reference.

because an IR drop of just $39\mu V$ completely swamps out a 10V FSR 18-bit LSB.

Temperature variations of the part may cause accuracy errors. Careful attention must be paid to the effects of the load that the DAC is driving. Although the internal current buffer will drive substantial loads (25mA or more typically), the thermals produced internally will affect the individual current sources of the DAC. The package has a thermal resistance of about 25° C/W. This thermal resistance will show up as a thermal gradient across the DAC chip and could cause linearity problems. These problems may appear as a code dependent error for DC or slow data rates. To overcome the problems of a heavy load, it is suggested that an external current buffer be used (Figure 10), and located so as not to affect the DAC temperature.

TRUE 18-BIT PERFORMANCE (LINEARITY ADJUSTMENT)

To take full advantage of the DAC729's accuracy, the four MSBs have adjustment capabilities. A simplified schematic (Figure 11) shows the internal structure of the DAC current source and the adjustment input terminal. The suggested network for adjusting the linearity is shown in Figure 12. This circuit has nearly twice the range that is required for the DAC729JH. The range is intentionally narrow so as to minimize the effect of temperature drift or stability problems in the potentiometers. The potentiometers are biased in an identical fashion to the internal DAC current sources to minimize power supply rejection problems and temperature drift problems.

The linearity adjustment requires a digital voltmeter with 7 digits of resolution on the 10V range (1 μ V resolution) and excellent linearity. For the DAC, ILSB of the 0V to 10V scale (10 FSR) is 38 μ V. To be 1/2LSB linear, the

FIGURE 10. Using an External Op Amp with Buffer and External Reference for $\pm 10V$ Output.

measurement must resolve $19\mu V$. The meter must be properly calibrated and linear to 1ppm of range.

With the DAC connected for 0 to 10V output (Figure 13), the adjustment procedure is to set the DAC code and measure as follows.

FOURTH MSB ADJUSTMENT 1. Code = 11 1100 0000 0000 0000

- 2. Measure
- 3. Code = 11 1011 1111 1111 1111
- 4. Measure and difference.
- 5. Adjust 4th MSB potentiometer to make difference $+38\mu$ V.
- 6. Repeat steps 1 through 5 to confirm.
- THIRD MSB ADJUSTMENT
- 1. $Code = 11\ 1000\ 0000\ 0000\ 0000$
- 2. Measure
- 3. Code = 11 0111 1111 1111 1111
- 4. Measure and difference.
- 5. Adjust 3rd MSB potentiometer to make difference $+38\mu$ V.
- 6. Repeat steps 1 through 5 to confirm.

SECOND MSB ADJUSTMENT

- 1. $Code = 11\ 0000\ 0000\ 0000\ 0000$
- 2. Measure
- 3. Code = 10 1111 1111 1111 1111
- 4. Measure and difference.
- 5. Adjust 2nd MSB potentiometer to make difference $+38\mu V$.
- 6. Repeat steps 1 through 5 to confirm.

MSB ADJUSTMENT

- 1. Code = 10 0000 0000 0000 0000
- 2. Measure
- 3. Code = 01 1111 1111 1111 1111
- 4. Measure and difference.
- 5. Adjust the MSB potentiometer to make difference $+38\mu V$.
- 6. Repeat steps 1 through 5 to confirm.

FIGURE 11. DAC729 Simplified Schematic.

FIGURE 12. Differential Linearity Adjustment Circuit for the 4MSBs.

FIGURE 13. 0 to 10V FSR.

APPLICATIONS

The DAC729 is the DAC of choice for applications requiring very high resolution, accuracy, and wide dynamic range.

DIGITAL AUDIO

The excellent linearity and differential linearity are ideal for PCM professional audio and waveform generation applications.

The DAC729 offers superb dynamic range. Dynamic range is a measure of the ratio of the smallest signals the converter can produce to the full-scale range, usually expressed in decibels (dB). The theoretical dynamic range of a converter is approximately 6dB per bit. For the DAC729 the theoretical range is 108dB! The actual dynamic range is limited by noise (signal-to-noise) and linearity errors. The DAC729's 6μ V typical noise floor,

fast settling op amp, and adjustable 18-bit linearity minimize the limitation.

Total harmonic distortion (THD) is the measure of the magnitude and distribution of the linearity error, differential linearity error, noise, and quantization error. The THD is defined as the ratio of the square root of the sum of the squares of the harmonics to the values of the input fundamental frequency. The RMS value of a DAC error can be shown to be

$$\epsilon_{\rm rms} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} [E_{\rm L}(i) + E_{\rm Q}(i)]^2}$$

where n is the number of samples in one cycle of any given sine wave, $E_L(i)$ is the linearity error of the DAC729 at each sampling point, and $E_Q(i)$ is the quantization error at each sampling point. The THD can then be expressed as

THD =
$$\frac{\epsilon_{\rm rms}}{E_{\rm rms}} = \frac{\sqrt{\frac{1}{n}} \frac{n}{i \sum_{i=1}^{n}} \left[E_{\rm L}(i) + E_{\rm Q}(i)\right]^2}{E_{\rm rms}} \times 100\%$$
 (2)

where E rms is the rms signal-voltage level.

This expression indicates that, in general, there is a correlation between the THD and the square root of the sum of the squares of the linearity errors at each digital word of interest. However, this expression does not mean that the worst-case linearity error of the D/A is directly correlated to the THD.

The DAC729 has demonstrated THD of better than 0.0009% of full scale (at 1kHz). This is the level of distortion that is desired to test other professional audio products, making the DAC729 ideal for professional audio test equipment.

The ability to adjust the linearity of the 4MSBs, the 18-bit resolution, fast settling and low noise give the DAC729 unmatched performance.

AUTOMATIC TEST EQUIPMENT

The ability to adjust the absolute linearity and the ability to run several DACs from the same reference make the DAC729 ideal as the reference DAC for an entire data conversion system. Since the feedback resistors are absolute value ($\pm 0.1\%$), the addition of a 240 Ω resistor makes the output 10.24V. This feature makes discrete 10mV steps easy to create with a resolution of 39 μ V for 10.24V FSR. Figure 14 shows the DAC729 connected for 0V to 10.24V operation and using an external reference.

The two 240Ω resistors are in series with the parallel $10k\Omega$ internal resistors, resulting in 10.24V out. This hook-up minimizes the thermal coefficient of resistance problems associated with this accuracy.

The low superposition error of the DAC729 makes the system calibration routines become much less complicated. There is seldom a need to iterate through the calibration routine. Repeatability of the DAC output voltage is many times better than competitive products. This feature cuts system overhead time, improves accuracy, and cuts guardbands for the user. The entire set of test head DACs could be upgraded from 16 bits to 18 bits by replacing the existing 16-bit DACs.

THE HEART OF AN 18-BIT ADC

The DAC729 makes a good building block in ADC applications. The key to ADC accuracy is differential linearity of the DAC. The ability to adjust to 18-bit linearity, coupled with the fast settling time of the DAC729 makes the design cycle for an 18-bit successive approximation ADC much faster, and the production more consistent. Figure 15 shows the DAC as the heart of a successive approximation ADC. The clock and successive approximation register could be implemented in 7400 series TTL, as a simple gate-array or standard cell, or part of a local processor.

With the DAC out of the way, the comparator is the toughest part of the ADC design. To resolve an 18-bit LSB, and interface to a TTL logic device, the comparator must have a gain of 500kV/V (5X actual) as well as low hysteresis, low noise, and low thermally induced offsets. With this much gain, a slow comparator may be desired to reduce the risk of instability.

The feedback resistors of the DAC are the input scaling resistors of the ADC. An OPA404 and an OPA633 make an excellent buffer for the input signal, giving a very high input impedance to the signal (minimizing IR drop) while maintaining the linearity.

FIGURE 14. 0V to 10.24V Using Internal Op Amp and Internal References.

FIGURE 15. Block Diagram of an 18-Bit $\pm 10V_{IN}$ ADC.

DAC811JU DAC811KU

Microprocessor-Compatible 12-BIT DIGITAL-TO-ANALOG CONVERTER (Small-Outline Surface-Mount Package)

FEATURES

- SINGLE INTEGRATED CIRCUIT CHIP
- MICROCOMPUTER INTERFACE: DOUBLE-BUFFERED LATCH
- VOLTAGE OUTPUT: $\pm 10V$, $\pm 5V$, $\pm 10V$
- MONOTONICITY GUARANTEED OVER TEMPERATURE
- DESCRIPTION

The DAC811U is a complete single-chip integratedcircuit microcomputer-compatible 12-bit digital-toanalog converter packaged in a 28-lead plastic SOIC. The chip includes a precision voltage reference, microcomputer interface logic, double-buffered latch, and a 12-bit D/A converter with a voltage output amplifier. Fast current switches with laser-trimmed thin-film resistors provide a highly accurate and fast D/A converter.

Microcomputer interfacing is facilitated by a doublebuffered latch. The input latch is divided into three 4-bit nybbles to permit interfacing to 4-, 8-, 12- or 16-bit buses and to handle right- or left-justified data. The 12-bit data in the input latches is transferred to the D/A latch to hold the output value.

Input gating logic is designed so that loading the last byte of data can be accomplished simultaneously with the transfer of data (previously stored in adjacent latches) from adjacent input latches to the D/Alatch. This feature avoids spurious analog output values and saves computer instructions.

- ±3/4LSB MAXIMUM NONLINEARITY OVER TEMPERATURE
- \bullet Guaranteed specifications at $\pm 12V$ and $\pm 15V$ supplies
- TTL/5V CMOS-COMPATIBLE LOGIC INPUTS

The DAC811 is laser trimmed at the wafer level and is specified to $\pm 1/4$ LSB maximum linearity error (K grade) at 25°C and $\pm 3/4$ LSB maximum over the temperature range. All grades are guaranteed monotonic over the specification temperature range.

DAC811JU and KU are specified over the temperature range of 0° C to $+70^{\circ}$ C.

international Airport Industrial Park • P.O. Box 11400 • Tucson, Arizona 85734 • Tel.: (602) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 66-6491

SPECIFICATIONS

ELECTRICAL

 $T_A = +25^{\circ}C. \pm V_{CC} = 12V \text{ or } 15V \text{ unless otherwise noted.}$

MODEL	[DAC811JL	J .	DAC811KU			
PARAMETER	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
DIGITAL INPUT Resolution Codes ⁽¹⁾	ι	JSB, BOE	12		*	*	Bits
Digital Inputs Over Temperature Range ⁽²⁾ V _{IH} V _{IL} I _{HL} , V ₁ = +2.7V I _{HL} , V ₁ = +0.4V	+2.0 0.0		+15 +0.8 +10 ±20	*		* * *	VDC VDC μA μA
Digital Interface Timing Over Temperature Range ³⁰ twp, WR pulse width twu, N, wand LDAC valid to end of WR tow, data valid to end of WR t _{DH} , data valid hold time	50 50 80 0			*			ns ns ns ns
TRANSFER CHARACTERISTICS							
ACCURACY Linearity Error Differential Linearity Error Gain Error ¹⁴¹ Offset Error ¹⁴³ Monotonicity Power Supply Sensitivity: +Vcc -Vcc 'Vcc	G	$\pm 1/4$ $\pm 1/2$ ± 0.1 ± 0.05 uarantee ± 0.001 ± 0.002 ± 0.005	$\pm 1/2$ $\pm 3/4$ ± 0.2 ± 0.15 d ± 0.003 ± 0.006 ± 0.0015		±1/8 ±1/4 * * *	±1/4 ±1/2 * *	LSB LSB % 6 of FSR/ ⁽⁶⁾ % of FSR/%Vcc % of FSR/%Vcc
BRIFT (0°C to +70°C) Gain Unipolar Offset Bipolar Zero Linearity Error Over Temperature Range Monotonicity Over Temperature Range	G	±10 ±5 ±5 ±1/2	±30 ±10 ±10 ±3/4 d		* * ±1/4	* * *	ppm/°C ppm of FSR/°C ppm of FSR/°C LSB
CONVERSION SPEED							
SETTLING TIME ⁽⁷⁾ (to within ±0.01% of FSR of final value, 2kΩ load) For Full-Scale Range Change: 20V Range 10V Range For 1LSB Change at Major Carry ⁽⁸⁾ Slew Rate ⁽⁷⁾	8	3 3 1 12	4 4	*	* * *	*	μs μs μs V/μs
OUTPUT							
ANALOG OUTPUT Voltage Range (±Vcc = 15V) ⁽⁹⁾ . Unipolar Bipolar Output Current Output Impedance (at DC) Short Circuit to Common Duration	±5	0 to +10 ±5, ±10 0.2 Indefinite		*	*		V V mA Ω
REFERENCE VOLTAGE Voltage Source Current Available for External Loads Temperature Coefficient Short Circuit to Common Duration	+6.2 +2.0	+6.3 ±10 Indefinite	+6.4 ±30	*	* *	*	V mA ppm/°C
POWER SUPPLY REQUIREMENTS							
Voltage: +Vcc -Vcc Voc Current (no load): +Vcc -Vcc Voo Potential at DCOM with Respect to ACOM ⁽¹⁰⁾ Power Dissipation	+11.4 -11.4 +4.5	+15 -15 +5 +16 -23 +8 625	+16.5 -16.5 +5.5 +25 -35 +15 ±0.5 800	*	* * * *	* * * * * *	VDC VDC WDC mA mA MA V mW
TEMPERATURE RANGE							
Specification Storage	0 60		+70 +100	*		*	ວ° ວ°

*Same as DAC811JU.

NOTES: (1) USB = Unipolar Straight Binary, BOB = Bipolar Offset Binary. (2) TTL-, LSTTL-, 74HC CMOS-compatible. (3) Refer to Figures 6 and 7. (4) Adjustable to zero with external trim potentiometer. (5) Error at input code 000₁₆ for both unipolar and bipolar ranges. (6) FSR means Full Scale Range and is 20V for the $\pm 10V$ range. (7) Maximum represents the 3σ limit. Not 100% tested for this parameter. (8) At the major carry, 7F₁₆ to 800₁₆ and 800₁₆ to 7F₁₆. (9) Minimum supply voltage required for $\pm 10V$ output swing is $\pm 13.5V$. Output swing for $\pm 11.4V$ supplies is at least -8V to +8V with no external load. (10) The maximum voltage at which ACOM and DCOM may be separated without affecting accuracy specifications.

ORDERING INFORMATION

	DAC811 X II
Basic Model	
Grade	
Package Type	
a a a a a a a a a a a a a a a a a a a	

ABSOLUTE MAXIMUM RATINGS

$\pm V_{CC}$ to ACOM $\ldots \ldots $ ' 0 to $\pm 18V$
V _{DD} to DCOM 0 to +7V
Input Voltage Range ±Vcc
Digital Inputs0.4V to Vcc
Lead Temp, Wave Soldering
(3 seconds max) +260°C
Output Short Circuit
to Common Continuous
Power Dissipation 1W
NOTE: Stresses above those listed may cause permanent damage to the device. Exposures to absolute maximum condi- tions for extended periods may effect device reliability.

MECHANICAL

NOTE: Leads in true position within 0.010" (.25mm) R at MMC at seating plane.

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	.700	.716	17.78	18.19
В	.286	· .302	7.26	7.67
С	.093	.109	2.36	2.77
D	.015	.019	0.38	0.48
G	.050 BASIC		1.27 BASIC	
н	.022	.038	0.56	0.97
J	.008	.012	0.20	0.30
L	.281	.309	7.14	7.85
М	5° TYP		5° 1	YP
N	.007 .011		0.18	0.28

PIN NOMENCLATURE

PIN	NAME	FUNCTION	PIN	NAME	FUNCTION
1	VDD	Logic Supply, +5V	15	DCOM	DIGITAL COMMON, Vod supply return
2	WR	WRITE, command signal to load latches, Logic	16	Do	DATA, Bit 1, LSB
		low loads latches.	17	D1	DATA, Bit 2
3	LDAC	LOAD D/A CONVERTER, enables WR to load	18	D ₂	DATA, Bit 3
		the D/A latch. Logic low enables.	19	D3	DATA, Bit 4
4	Na	NYBBLE A, enables WR to load input latch A	20	+Vcc	Analog Supply Input, +15V or +12V
-		(the most significant hybble). Logic low enables.	21	-Vcc	Analog Supply Input, -15V or -12V
5	Ne	NYBBLE B, enables WR to load input latch B.	22	GAIN ADJ	To externally adjust gain
6	N	NYBBLE C enables WB to load input latch C	23	ACOM	ANALOG COMMON, ±Vcc supply return
0	INC.	(the least significant nybble). Logic low enables.	24	Vout	D/A converter voltage output
7	D11	DATA, Bit 12, MSB, positive true.	25	10V RANGE	Connect to pin 24 for 10V Range
8	Dw	DATA, Bit 11	26	SJ	SUMMING JUNCTION of output amplifier
9	D,	DATA, Bit 10	27	BPO	BIPOLAR OFFSET. Connect to pin 26 for
10	D ₈	DATA, Bit 9			Bipolar Operation
11	D,	DATA, Bit 8	28	REF OUT	6.3V reference output
12	De	DATA, Bit 7			· · · · ·
13	_ o D₅	DATA, Bit 6			
14	_ J D₄	DATA. Bit 5			

CONNECTION DIAGRAM

DISCUSSION OF SPECIFICATIONS

INPUT CODES

The DAC811 accepts positive true binary input codes. It may be connected by the user for any one of the following codes: USB (unipolar straight binary), BOB (bipolar offset binary) or, using an external inverter on the MSB line, BTC (binary two's complement). See Table I.

TABLE I. Digital Input Codes.

DIGITAL	. INPUT	ANALOG OUTPUT				
		USB	BOB	BTC*		
		Unipolar -	Bipolar	Binary		
MSB	LSB	Straight	Offset	Two's		
1 1		Binary	Binary	Complement		
111111111111		+Full Scale	+Full Scale	-1LSB		
100000000000		+1/2 Full Scale	Zero	-Full Scale		
011111111111		1/2 Full Scale -1LSB	-1LSB	+Full Scale		
000000	000000	Zero	-Full Scale	Zero		
*Invert the MSB of the BOB code with external inverter to obatin BTC code.						

LINEARITY ERROR

Linearity error as used in D/A converter specifications by Burr-Brown is the deviation of the analog output from a straight line drawn between the end points (inputs all "1's" and all "0's"). The DAC811 linearity error is specified at $\pm 1/4$ LSB (max) at $\pm 25^{\circ}$ C for the K grade and $\pm 1/2$ LSB (max) for the J grade.

DIFERENTIAL LINEARITY ERROR

Differential linearity error (DLE) is the deviation from a 1LSB output change from one adjacent state to the next. A DLE specification of 1/2LSB means that the output step size can range from 1/2LSB to 3/2LSB when the input changes from one state to the next. Monotonicity requires that DLE be less than 1LSB over the temperature range of interest.

MONOTONICITY

A D/A converter is monotonic if the output either increases or remains the same for increasing digital inputs. The DAC811 is monotonic over the entire specification temperature range.

DRIFT

Gain drift is a measure of the change of the full-scale range output over the specification temperature range. Drift is expressed in parts per million per degree centigrade (ppm/°C). Gain drift is established by testing the full-scale range value (e.g., +FS minus -FS) at high temperature, +25°C, and low temperature; calculating the error with respect to the +25°C value and dividing by the temperature change.

Unipolar offset drift is a measure of the change in output with all 0's on the input over the specification temperature range. Offset is measured at high temperature, $+25^{\circ}$ C, and low temperature. The maximum change in offset referred to the $+25^{\circ}$ C value divided by the temperature change is the offset drift. It is expressed in parts per million of full-scale range per degree centigrade (ppm of FSR/°C).

Bipolar zero drift is measured at a digital input of 800₁₆, the code that gives zero volts output for bipolar operation.

SETTLING TIME

Settling time is the total time (including slew time) for the output to settle within an error band around its final value after a change in input. Three settling times are specified to $\pm 0.01\%$ of full-scale range (FSR): two for maximum full-scale range changes of 20V and 10V, and one for a 1LSB change. The 1LSB change is measured at the major carry (7FF₁₆ to 800₁₆ and 800₁₆ to 7FF₁₆), the input transition at which worst-case settling time occurs.

REFERENCE SUPPLY

DAC811 contains an on-chip 6.3V reference. This voltage (pin 28) has a tolerance of $\pm 0.1V$. The reference output may be used to drive external loads, sourcing at least 2.0mA. This current should be constant for best performance of the D/A converter.

POWER SUPPLY SENSITIVITY

Power supply sensitivity is a measure of the effect of a power supply change on the D/A coonverter output. It is defined as a percent of FSR output change per percent of change in either the positive, negative, or logic supply voltages about the nominal voltages. Figure 1 shows typical power supply rejection versus power supply ripple frequency.

OFFSET AND GAIN ADJUSTMENTS

Figures 2 and 3 illustrate the relationship of offset and gain adjustments to unipolar and bipolar D/A converter output.

FIGURE 1. Power Supply Rejection versus Power Supply Ripple Frequency.

FIGURE 4. DAC811 Block Diagram.

OPERATION

DAC811 is a complete single IC chip 12-bit D/A converter. The chip contains a 12-bit D/A converter, voltage reference, output amplifier, and microcomputer-compatible input logic as shown in Figure 4.

±12V OPERATION

The DAC811 is fully specified for operation on $\pm 12V$ power supplies. However, in order for the output to swing to ± 10 , the power supplies must be $\pm 13.5V$ or greater. When operating with $\pm 12V$ supplies, the output swing is restricted to approximately $\pm 8V$.

LOGIC INPUT COMPATIBILITY

The DAC811 digital inputs are TTL, LSTTL, and 54/74HC CMOS-compatible over the operating range of V_{DD}. The input switching threshold remains at the TTL threshold over the supply range.

INTERFACE LUGIC

Input latches A, B, and C hold data temporarily while a complete 12-bit word is assembled before loading into the D/A register. This double-buffered organization prevents the generation of spurious analog output values. Each register is independently addressable.

These input latches are controlled by \overline{N}_A , \overline{N}_B , \overline{N}_C and \overline{WR} . \overline{N}_A , \overline{N}_B , and \overline{N}_C are internally NORed with \overline{WR} so that the input latches transmit data when both \overline{N}_A (or \overline{N}_B , \overline{N}_C) and \overline{WR} are at logic "0." When either \overline{N}_A (or \overline{N}_B , \overline{N}_C) and \overline{WR} go to logic "1," the input data is latched into the input registers and held until both \overline{N}_A (or \overline{N}_B , \overline{N}_C) and \overline{WR} go to logic "0."

The D/A latch is controlled by \overline{LDAC} and \overline{WR} . \overline{LDAC} and \overline{WR} are internally NORed so that the latches

transmit data to the D/A switches when both \overline{LDAC} and \overline{WR} are at logic "0." When either \overline{LDAC} or \overline{WR} are at logic "1," the data is latched in the D/A latch and held until \overline{LDAC} and \overline{WR} go to logic "0."

All latches are level-triggered. Data present when the control signals are logic "0" will enter the latch. When any one of the control signals returns to logic "1," the data is latched. A truth table for all latches is given in Table II and Relatative Timing Diagrams are shown in Figures 5 and 6.

TABLE II. DAC811 Interface Logic Truth Table.

WR	N _A	Na	Nc	LDAC	OPERATION
1	х	х	х	х	No Operation
0	0	1	1	1	Enables Input Latch 4MSBs
0	1	0	1	1	Enables Input Latch 4 Middle Bits
0	1	1	0	1	Enables Input Latch 4LSBs
0	1	1	1	0	Loads D/A Latch From Input Latches
0	0	0	0	0	All Latches Transparent

"X" = Don't Care

FIGURE 5. Write Cycle #1 (Data Latched from Data Bus).

FIGURE 6. Write Cycle #2 (Data Transferred to DAC).

EXTERNAL OFFSET AND GAIN ADJUSTMENT

Offset and gain may be trimmed by installing external offset and gain potentiometers. Connect these potentiometers as shown in the Connection Diagram. TCR of the potentiometers should be 100ppmm/°C or less. The 1.0M Ω and 3.9M Ω resistors (20% carbon or better) should be located close to the DAC811 to prevent noise pickup. If it is not convenient to use these high value resistors, an equivalent "T" network, as shown in Figure 7, may be substituted in each case. The Gain Adjust (pin 22) is a high impedance point and a 0.0022 μ F ceramic capacitor should be connected from this pin to analog common to reduce noise pickup in all applications, including those not employing external gain adjustment.

FIGURE 7. Equivalent Resistances.

Offset Adjustment

For unipolar (USB) configurations, apply the digital input code that should produce zero voltage output and adjust the offset potentiometer for zero output. For bipolar (BOB, BTC) configurations, apply the digital input code that should produce the maximum negative output voltage and adjust the offset potentiometer for minus full-scale voltage. Example: If the full-scale range is connected for 20V, the maximum negative output voltage is -10V. See Table III for corresponding codes.

Gain Adjustment

For either unipolar or bipolar configurations, apply the digital input that should give the maximum positive voltage output. Adjust the gain potentiometer for this positive full-scale voltage. See Table III for positive full-scale voltages.

TABLE III. Digital Input/Analog Output, $\pm V_{CC} = \pm 15V$.

	ANA	LOG OUTPUT V	OLTAGE
DIGITAL INPUT	0 to 10V	±5V	±10V
12-Bit Resolution MSB LSB			
11111111111 100000000000 01111111111 000000	+9.9976V +5.0000V +4.9976V 0.0000V	+4.9976V 0.0000V -0.0024V -5.0000V	+9.9951V 0.0000V -0.0049V -10.0000V

OUTPUT RANGE CONNECTIONS

Internal scaling resistors provided in the DAC811 may be connected to produce bipolar output voltage ranges of $\pm 10V$ and $\pm 5V$ or unipolar output voltage range of 0 to $\pm 10V$. The 20V range ($\pm 10V$ bipolar range) is internally connected. Refer to Figure 8. Connections for the output ranges are listed in Table IV.

FIGURE 8. Output Amplifier Voltage Range Scaling Circuit.

TABLE IV. (Output Range	Connections
-------------	--------------	-------------

Output Range	Digital Input Codes	Connect Pin 25 To	Connect Pin 27 To
0 to +10V	USB	24	23
±5V	BOB or BTC	24	26
` ±10V	BOB or BTC	NC	26

INSTALLATION POWER SUPPLY CONECTIONS

Decoupling: For optimum performance and noise rejection, power supply decoupling capacitors should be added as shown in the Connection Diagram.

These capacitors $(1\mu F \text{ tantalum recommended})$ should be located close to the DAC811.

The DAC811 features separate digital and analog power supply returns to permit optimum connections for low noise and high speed performance. The analog common (pin 23) and digital common (pin 15) should be connected together at one point. Separate returns minimize current flow in low level signal paths if properly connected. Logic return currents are not added into the analog signal return path. A $\pm 0.5V$ difference between ACOM and DCOM is permitted for specified operation. High frequency noise on DCOM with respect to ACOM may cause noise to be coupled through to the analog output, therefore, some caution is requried in applying these common connections.

The analog common is the high quality return for the D/A converter and should be connected directly to the analog reference point of the system. The load driven by the output amplifier should be returned to the analog common.

APPLICATIONS

MICROCOMPUTER BUS INTERFACING

The DAC811 interface logic allows easy interface to microcomputer bus structures. The control signal \overline{WR} is derived from external device select logic and the I/O Write or Memory Write (depending upon the system design) signals from the microcomputer.

The latch enable lines $\overline{N_s}_A$, $\overline{N_B}$, $\overline{N_c}$, and \overline{LDAC} determine which of the latches are enabled. It is permissible to enable two or more latches simultaneously as shown in some of the following examples.

The double-buffered latch permits data to be loaded into the input latches of several DAC811s and later strobed into the D/A latch of all D/As, simultaneously updating all analog outputs. All the interface schemes shown below use a base address decoder. If blocks of memory are unused, the base address decoder can be simplified or eliminated altogether. For instance if half the memory space is unused, address line A_{15} of the microcomputer can be used as the chip select control.

4-BIT INTERFACE

An interface to a 4-bit microcomputer is shown in Figure 9. Each DAC811 occupies four address locations. A 74LS139 provides the two to four decoder and selects these with the base address. Memory Write (\overline{WR}) of the microcomputer is connected directly to the \overline{WR} pin of the DAC811. An 8205 decoder is an alternative device to use instead of the 74LS139.

8-BIT INTERFACE

The control logic of DAC811 permits interfacing to right- or left-justified data formats illustrated in Figure 10. When a 12-bit D/A converter is loaded from an 8-bit bus, two bytes of data are required. Figures 11 and 12 show an addressing scheme for right-justified and left-justified data respectively. The base address is decoded from the high-order address bits. A_0 and A_1 address the appropriate latches. Note that adjacent addresses are used. For the right-justified format X10₁₆ loads the 8LSBs and X01₁₆ loads the 4MSBs and simultaneously transfers input latch data to the D/A latch. Addresses X00₁₆ and X11₁₆ are not used.

FIGURE 9. Addressing and Control for 4-Bit Microcomputer Interface.

FIGURE 10. 12-Bit Data Formats for 8-Bit Systems.

FIGURE 11. Right-Justified Data Bus Interface.

Left-justified data is handled in a similar manner, shown in Figure 12. The DAC811 still occupies two adjacent locations in the microcomputer's memory map.

INTERFACING MULTIPLE DAC811s IN 8-BIT SYSTEMS

Many applications require that the outputs of several D/A converters be updated simultaneously such as automatic test systems. The interface shown in Figure 13 uses a 74LS138 decoder to decode a set of eight adjacent addresses to load the input latches of four DAC811s. The example shows a right-justified data format.

A ninth address using A₃ causes all DAC811s to be updated simultaneously. If a particular DAC811 is always loaded last, for instance, D/A #4, A₃ is not needed, thus saving eight address spaces for other uses. Incorporate A₃ into the Base Address Decoder, remove the inverter, connect the common LDAC line to N_c of D/A #4, and connect G₁ of the 74LS138 to +5.

12- AND 16-BIT MICROCOMPUTER INTERFACE

For this application the input latch enable lines, \overline{N}_A , \overline{N}_B , and \overline{N}_c are tied low, causing the latches to be transparent. The D/A latch, and therefore DAC811, is selected by the address decoder and strobed by \overline{WR} .

FIGURE 13. Interfacing Multiple DAC811s to an 8-Bit Bus.

The DAC7541A is a direct, improved pin-for-pin replacement for 7521, 7541, and 7541A industry standard parts. In addition to standard 18-pin plastic and hermetic ceramic packages, the DAC7541A is also available in a surface-mount plastic 18-pin SOIC.

FUNCTIONAL DIAGRAM

SINGLE +5V TO +15V SUPPLY

7521/7541/7541A REPLACEMENT

• PACKAGES: HERMETIC DIP, PLASTIC DIP, PLASTIC SOIC

LATCH-UP RESISTANT

LOW COST

International Airport Industrial Park 🔹 P.O. Box 11400 🔹 Tucson, Arizona 85734 🔹 Tel.: (602) 746-1111 🛎 Twx: 910-952-1111 🛎 Cable: BBRCORP 🛎 Telex: 66-6491

PDS-639

SPECIFICATIONS

ELECTRICAL

At +25°C, +V_{DD} = +12V or +15V, V_{REF} = +10V, $V_{PIN 1}$ = $V_{PIN 2}$ = 0V unless otherwise specified.

MODEL		C	DAC7541A		
PARAMETER	GRADE	$T_A = +25^{\circ}C$	$T_A = T_{MIN}, T_{MAX}^{(1)}$	UNITS	TEST CONDITIONS/COMMENTS
ACCURACY					
Resolution	All	12	12	Bits	
Relative Accuracy	J, A, S	±1 .	±1 -	LSB max	$\pm 1LSB = \pm 0.024\%$ of FSR.
	К, В, Т	±1/2	±1/2	LSB max	$\pm 1/2LSB = \pm 0.012\%$ of FSR.
Differential Non-linearity	[.] J, A, S	±1	±1	LSB max	All grades guaranteed monotonic to
	К, В, Т	±1/2	±1/2	LSB max	12 bits, T _{MIN} to T _{MAX} .
Gain Error	J, A, S	±6	±8	LSB max	Measured using internal RFB and includes
	К, В, Т	±1	±3	LSB max	effect of leakage current and gain T.C.
			1		Gain error can be trimmed to zero.
Gain Temperature Coefficient					
(∆Gain/∆Temperature)	All		5	ppm/°C max	Typical value is 2ppm/°C.
Output Leakage Current: Out ₁ (Pin 1)	J, K	±5 .	±10	nA max	All digital inputs = 0V.
· · · ·	A, B	±5	±10	nA max	
	S, T	±5	±200	nA max	
Out₂ (Pin 2)	J, K	±5	±10	nA max	All digital inputs = V _{DD} .
	A, B	±5	±10	nA max	
	S, T	±5	±200	nA max	
REFERENCE INPUT					
Voltage (Pin 17 to GND)	All	-10/+10	-10/+10	V.min/max	
Input Resistance (Pin 17 to GND)	All	7-18	7-18	kΩ min/max	Typical input resistance = $11k\Omega$.
					Typical input resistance temperature
					coefficient is -50ppm/°C.
					· · · · · · · · · · · · · · · · · · ·
V., (Input High Voltage)	41	24	24	Vmin	
V _{ii} (input i ow Voltage)		0.8	0.8	Vmax	
In (Input Current)	All	+1	+1	uA max	Logic inputs are MOS gates
IN (input Garrent)			+ '	µ/3 max	$l_{\rm m}$ typ (25°C) = 1nA
CIN (Input Capacitance) ⁽²⁾	All	. 8	8 .	pF max	$V_{\rm IN} = 0V$
POWER SUPPLY REJECTION					
ΔGain/ΔV _{DD}	All	±0.01	±0.02	% per % max	$V_{DD} = +11.4V \text{ to } +16V$
POWER SUPPLY					
V _{DD} Range	All	+5 to +16	+5 to +16	V min to	Accuracy is not guaranteed over this range.
				V max	
Ισο	All	2	2	mA max	All digital inputs VIL or VIH.
		100	500	μA max	All digital inputs 0V or VDD.

AC PERFORMANCE CHARACTERISTICS

These characteristics are included for design guidance only and are not production tested. $V_{DD} = +15V$, $V_{REF} = +10V$ except where stated, $V_{PIN 1} = V_{PIN 2} = 0V$, output amp is OPA606 except where stated.

PROPAGATION DELAY (from Digital Input change to 90% of Final Analog Output)	All	100	· -	ns typ	Out ₁ Load = 100Ω, C _{EXT} = 13pF. Digital Inputs = 0V to V _{DD} or V _{DD} to 0V.
DIGITAL-TO-ANALOG GLITCH IMPULSE	All	1000	. 	nV-s typ	$V_{\text{REF}} = 0V$, all digital inputs 0V to V_{DD} or V_{DD} to 0V. Measured using OPA606 as output amplifier.
MULTIPLYING FEEDTHROUGH ERROR (V _{REF} to Out1)	Ali	1.0	· _ ,	mVp-p max	$V_{REF} = \pm 10V$, 10kHz sine wave.
OUTPUT CURRENT SETTLING	All	0.6	. –	μs typ	To 0.01% of Full Scale Range.
	Ali	1.0	-	µs max	Digital inputs: 0V to VDD or VDD to 0V.
OUTPUT CAPACITANCE			1.5		1
Соцт 1 (Pin 1)	All	100	100	pF max	Digital Inputs = VIH
С _{оит 2} (Pin 2)	All	60	60	pF max	Digital Inputs = VIH
Cout 1 (Pin 1)	All	70	70	pF max	Digital Inputs = Vil
Cout 2 (Pin 2)	All	100	100	pF max	Digital Inputs = VIL

NOTES: (1) Temperature ranges are: 0 to +70°C for JP, KP, JU and KU versions; -25°C to +85°C for AH, BH versions; -55°C to +125°C for SH, TH versions. (2) Guaranteed by design but not production tested.

MECHANICAL

ABSOLUTE MAXIMUM RATINGS*

V _{DD} (pin 16) to Ground +17V V _{REF} (pin 17) to Ground ±25V V _{RP6} (pin 18) to Ground ±25V Digital Input Voltage (pins 4–15) to Ground -0.4V, V _{DD} V _{PIN 1} , V _{PIN 2} to Ground -0.4V, V _{DD} Power Dissipation (any package): -0.4V, V _{DD}
To +75°C

* Stresses above those listed above may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONNECTIONS

CAUTION

The DAC7541A is an ESD (electrostatic discharge) sensitive device. The digital control inputs have a special FET structure, which turns on when the input exceeds the supply by 18V, to minimize ESD damage. However,

permanent damage may occur on unconnected devices subject to high energy electrostatic fields. When not in use, devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

ENVIRONMENTAL SCREENING (QM SCREENING)

Burr-Brown /QM models are environmentally screened versions of our standard industrial products, designed to provide enhanced reliability. The screening is performed to selected methods of MIL-STD-883. Reference to these methods provides a convenient method of communicating the screening levels and procedures employed; it does not imply conformance to any other military standards or to any methods of MIL-STD-883 other than those specified. All of the DAC7541xH grades are available with /QM screening.

/QM Screening (hermetic packages only)

Screen	MIL-STD-883 Method, Condition	Comments
Internal Visual	2010, B	
High Temperature Storage	1008, C	150°C, 24hrs
Temperature Cycle	1010, C	-65 to +150°C, 10 cycles
Burn-in	1015, B	+125°C
Constant Acceleration	2001, E	30,000G
Hermeticity: Fine Leak Gross Leak	1014, A1 or A2 1014, C	5 × 10 ⁻⁸ atm cc/s 60psig, 2hrs
External Visual	2009	

ORDERING INFORMATION

Model	Relative Accuracy (LSB)	Gain Error (LSB)	Package	Temperature Range (°C)
DAC7541AJP	±1	±6	Plastic DIP	0 to +70
DAC7541AKP	±1/2	±1	Plastic DIP	0 to +70
DAC7541AJU	±1	±6	Plastic SOIC	0 to +70
DAC7541AKU	±1/2	±1	Plastic SOIC	0 to +70
DAC7541AAH	±1	±6	Hermetic DIP	-25 to +85
DAC7541ABH	±1/2	±1	Hermetic DIP	-25 to +85
DAC7541ASH	±1	±6	Hermetic DIP	-55 to +125
DAC7541ATH	±1/2	±1	Hermetic DIP	-55 to +125

TYPICAL PERFORMANCE CURVES

 $T_A = +25^{\circ}C$, $V_{DD} = +15V$ unless otherwise noted.

GAIN ERROR VS SUPPLY VOLTAGE

LINEARITY VS SUPPLY VOLTAGE

FEEDTHROUGH ERROR VS FREQUENCY

SUPPLY CURRENT VS SUPPLY VOLTAGE

DISCUSSION OF SPECIFICATIONS

Relative Accuracy

This term (also known as linearity) describes the transfer function of analog output to digital input code. The linearity error describes the deviation from a straight line between zero and full scale.

Differential Nonlinearity

Differential Nonlinearity is the deviation from an ideal ILSB change in the output, from one adjacent output state to the next. A differential nonlinearity specification of ± 1.0 LSB guarantees monotonicity.

Gain Error

Gain error is the difference in measure of full-scale output versus the ideal DAC output. The ideal output for the DAC7541A is $-(4095/4096) \times (V_{REF})$. Gain error may be adjusted to zero using external trims.

Output Leakage Current

The measure of current which appears at Out_1 with the DAC loaded with all zeros, or at Out_2 with the DAC loaded to all ones.

Multiplying Feedthrough Error

This is the AC error output due to capacitive feedthrough from $V_{REFERENCE}$ to Out₁ with the DAC loaded to all zeros. This test is performed at 10kHz.

Output Current Settling Time

This is the time required for the output to settle to a tolerance of ± 0.5 LSB of final value from a change in code of all zeros to all ones, or all ones to all zeros.

Propagation Delay

This is the measure of the delay of the internal circuitry and is measured as the time from a digital code change to the point at which the output reaches 90% of final value.

Digital-to-Analog Glitch Impulse

This is the measure of the area of the glitch energy measured in nV-seconds. Key contributions to glitch energy are digital word-bit timing differences, internal circuitry timing differences, and charge injected from digital logic. The measurement is performed with $V_{REFERENCE} =$ Ground, an OPA606 as the output op amp, and C₁ (phase compensation) = 0pF.

Monotonicity

Monotonicity assures that the analog output will increase or stay the same for increasing digital input codes. The DAC7541A is guaranteed monotonic to 12 bits.

Power Supply Rejection

Power supply rejection is the measure of the sensitivity of the output (full scale) to a change in the power supply voltage.

CIRCUIT DESCRIPTION

The DAC7541A is a 12-bit multiplying D/A converter consisting of a highly stable thin-film R-2R ladder network and 12 pairs of current steering switches on a monolithic chip. Most applications require the addition of a voltage or current reference and an output operational amplifer.

A simplified circuit of the DAC7541A is shown in Figure 1. The R-2R inverted ladder binarily divides the input currents that are switched between $I_{OUT 1}$ and $I_{OUT 2}$ bus lines. This switching allows a constant current to be maintained in each ladder leg independent of the input code.

The input resistance at $V_{REFERENCE}$ (Figure 1) is always equal to R_{LDR} (R_{LDR} is the R/2R ladder characteristic resistance and is equal to value "R"). Since R_{IN} at the $V_{REFERENCE}$ pin is constant, the reference terminal can be driven by a reference voltage or a reference current, AC or DC, of positive or negative polarity.

EQUIVALENT CIRCUIT ANALYSIS

Figures 2 and 3 show the equivalent circuits for all digital inputs low and high respectively. The reference current is switched to $I_{OUT 2}$ when all inputs are low and $I_{OUT 1}$ when inputs are high. The $I_{LEAKAGE}$ current source is the combination of surface and junction leakages to the substrate; the 1/4096 current source represents the constant one-bit current drain through the ladder termi-

nating resistor. The output capacitance is dependent upon the digital input code, and is therefore modulated between the low and high values.

FIGURE 3. DAC7541A Equivalent Circuit (All Inputs High).

DYNAMIC PERFORMANCE

Output Impedance

The output resistance, as in the case of the output capacitance, is also modulated by the digital input code. The resistance looking back into the IOUT 1 terminal may be anywhere between $10k\Omega$ (the feedback resistor alone when all digital inputs are low) and 7.5k Ω (the feedback resistor in parallel with approximately $30k\Omega$ of the R-2R ladder network resistance when any single bit logic is high). The static accuracy and dynamic performance will be affected by this modulation. The gain and phase stability of the output amplifier, board layout, and power supply decoupling will all affect the dynamic performance of the DAC7541A. The use of a compensation capacitor may be required when high-speed operational amplifiers are used. It may be connected across the amplifier's feedback resistor to provide the necessary phase compensation to critically dampen the output. See Figures 4 and 6.

APPLICATIONS

OP AMP CONSIDERATIONS

The input bias current of the op amp flows through the feedback resistor, creating an error voltage at the output of the op amp. This will show up as an offset through all codes of the transfer characteristics. A low bias current op amp such as the OPA606 is recommended.

Low offset voltage and V_{OS} drift are also important. The output impedance of the DAC is modulated with the digital code. This impedance change (approximately $10k\Omega$ to $30k\Omega$) is a change in closed-loop gain to the op amp. The result is that V_{OS} will be multiplied by a factor of one to two depending on the code. This shows up as a linearity error. Offset can be adjusted out using Figure 4. Gain may be adjusted using Figure 5.

FIGURE 4. Basic Connection With Op Amp Vos Adjust: Unipolar (two-quadrant) Multiplying Configuration.

FIGURE 5. Basic Connection with Gain Adjust (allows adjustment up or down).

UNIPOLAR BINARY OPERATION (TWO-QUADRANT MULTIPLICATION)

Figure 4 shows the analog circuit connections required for unipolar binary (two-quadrant multiplication) operation. With a DC reference voltage or current (positive or negative polarity) applied at pin 17, the circuit is a unipolar D/A converter. With an AC reference voltage or current, the circuit provides two-quadrant multiplication (digitally controlled attenuation). The input/output relationship is shown in Table I.

 C_1 phase compensation (10 to 25pF) in Figure 4 may be required for stability when using high speed amplifiers. C_1 is used to cancel the pole formed by the DAC internal feedback resistance and output capacitance at Out₁.

TABLE I. Unipolar Codes.

Binary Input	Analog Output
MSB LSB 1111 1111 1111 1000 0000 0000 0000 0000 0001 0000 0000 0000	V _{REF} (4095/4096) V _{REF} (2048/4096) V _{REF} (1/4096) 0 Volts

 R_1 in Figure 5 provides full scale trim capability—load the DAC register to 1111 1111 1111, adjust R_1 for $V_{OUT} = -V_{REF}$ (4095/4096). Alternatively, full scale can be ajdusted by omitting R_1 and R_2 and trimming the reference voltage magnitude.

BIPOLAR FOUR-QUADRANT OPERATION

Figure 6 shows the connections for bipolar four-quadrant operation. Offset can be adjusted with the A_1 to A_2 summing resistor, with the input code set to 1000 0000 0000. Gain may be adjusted by varying the feedback resistor of A_2 . The input/output relationship is shown in Table II.

FIGURE 6. Bipolar Four-Quadrant Multiplier.

TABLE II. Bipolar Codes.

Binary Input	Analog Output				
MSB LSB 1111 1111 1111 1000 0000 0000 0111 1111 1111 0000 0000 0000	+V _{REF} (2047/2048) 0 Volts V _{REF} (1/2048) V _{REF} (2048/2048)				

DIGITALLY CONTROLLED GAIN BLOCK

The 7541A may be used in a digitally controlled gain block as shown in Figure 7. This circuit gives a range of gain from one (all bits = one) to 4096 (LSB = one). The transfer function is:

$$V_{OUT} = \frac{-V_{IN}}{\left(\frac{B_1}{2} + \frac{B_2}{4} + \frac{B_3}{8} + \cdots + \frac{B_{12}}{4096}\right)}$$

All bits off is an illegal state, as division by zero is impossible (no op amp feedback). Also, errors increase as gain increases, and errors are minimized at major carries (only one bit on at a time).

DAC7545

ADVANCE INFORMATION Subject to Change

Low-Cost 12-Bit CMOS Buffered Multiplying DIGITAL-TO-ANALOG CONVERTER

FEATURES

- FOUR-OUADRANT MULTIPLICATION
- MONOTONICITY GUARANTEED OVER TEMPERATURE
- SINGLE 5V TO 15V SUPPLY
- TTL/CMOS LOGIC COMPATIBLE

- VERY LOW OUTPUT LEAKAGE: 10nA max
- VERY LOW OUTPUT CAPACITANCE: 70pF max
- VERY LOW GLITCH ENERGY: 250nV-s typ
- PROTECTION SCHOTTKY NOT REQUIRED
- DIRECT REPLACEMENT FOR AD7545, PM7545A

DESCRIPTION

The DAC7545 is a low-cost CMOS, 12-bit fourquadrant multiplying, digital-to-analog converter with input data latches. The input data is loaded into the DAC as a 12-bit data word. The data flows through to the DAC when both the chip select (\overline{CS}) and the write (WR) pins are at a logic low.

Laser-trimmmed thin-film resistors and excellent CMOS current switches provide true 12-bit integral and differential linearity. The device operates on a single +5V to +15V supply and is available in 20-pin side-brazed DIP, 20-pin plastic DIP or a 20-lead plastic SOIC package. Devices are specified over the commercial, industrial, and military temperature ranges and are available with additional reliability screening.

The DAC7545 is well suited for battery or other low power applications because the power dissipation is less than 0.5mW when used with CMOS logic inputs and $V_{DD} = 5V$.

PDS-747 167

SPECIFICATIONS

ELECTRICAL

 $V_{REF} = +10V$, $V_{OUT 1} = 0V$, ACOM = DCOM unless otherwise specified.

MODEL		DAC7545					
		V _{D0} = +5V		V _{DD} = +15V		LINITE	
PARAMETER	GRADE	T _A = +25°C	T _{MIN} -T _{MAX} ⁽¹⁾	T _A = +25°C	TMIN-TMAX ⁽¹⁾	(max)	TEST CONDITIONS/COMMENTS
STATIC PERFORMANCE					4		
Resolution	All	12	12	12	12	Bits	
Relative Accuracy	J, A, S	±2	±2	±2	±2	LSB	
	К, В, Т	±1	±1	±1	±1	LSB	
	L, C, U	±1/2	±1/2	±1/2	±1/2	LSB	
Differential blacklasselle	GL, GC, GU	±1/2	±1/2	±1/2	±1/2	LSB	
Differential Nonlinearity	J, A, S	±4	±4	. ±4	±4	LSB	10-bit monotonic, IMIN to IMAX.
		±1	王 I 上 1	±1	±1	LSB	12-bit monotonic, I _{MIN} to I _{MAX} .
			피	±1	±1	LOD	12 bit monotonic, TMIN to TMAX.
Gain Error (with internal B) ⁽²⁾		+20	+20	+25	+25	LSB	D/A register loaded with EEE.
Gam Enor (with memaintes)	K B T	+10	+10	+15	+15	LSB	Gain error is adjustable using the
		+5	+6	+10	+10	LSB	circuits in Figures 4 and 5 Typical
	GL GC GU	+1	+2	+6	+7	LSB	value is $2ppm/^{\circ}C$ for $V_{pp} = +5V$.
Gain Temperature Coefficient ⁽³⁾		-					
(ΔGain/ΔTemperature)	All	±5	±5	±10	±10	ppm/°C	
		0.015	0.02	0.01	0.00	0/ /0/	
Output Leakage Current at Out 1		0.015	0.03	10	0.02	90/90 DA	$\Delta V_{DD} \rightarrow \pm 5\%$.
Output Leakage Current at Out 1		+10	50	10	50	n A	$BB_0 - BB_{11} = 00, 00, 00, 00.$
×		+10	200	10	200	nA	
	0, 1, 0, 00	10	200		200		
							T 1/0100 0 1 1 1000
Current Settling Time**	All	2	2 .	2	2	μs	10 1/2LSB. Out ₁ load = 100Ω .
		· · ·					odge of WP CS = 0V
Propagation Dolay ⁽³⁾ (from							edge of WR. CS - OV.
digital input change to 90% of				х. Х.			
final analog output)	AII	300		250		ns	Out, load = 1000 Cerr = $13pF^{(4)}$
Glitch Energy	All	400		250		nV-s ⁽⁵⁾	$V_{\text{REF}} = ACOM.$
AC Feedthrough at lour 1 (6)	All	5	5	5	5	mVp-p ⁽⁵⁾	$V_{REF} = \pm 10V$, 10kHz sine wave.
Input Besistance (pin 19 to ACOM)	All	7	7	7	7	k0 ⁽⁷⁾	Input resistance TC = 300 ppm/°C ⁽⁵⁾
····Fer · · · · · · · · · · · · · · · · · · ·		25	25	25	25	kΩ	
Output Capacitance ⁽³⁾ : Care		70	70	70	70		
Courte Capacitance . Courte		200	200	200	200	pr pE	$DB_0 = DB_{11} = V_{02}$; WR , $CS = 0V$.
00012		200	200	200	200	рі. —	$BB_{0}-BB_{1}=V_{BB}, WH, C3=0V.$
DIGITAL INPUTS							
VIH (Input High Voltage)		2.4	2.4	13.5	13.5	V	
ViL (Input Low Voltage)	All	0.8	0.8	1.5	1.5	. v	
Input Current)		±1	±10	±1	±10	μΑ	$V_{\rm IN} = 0$ or $V_{\rm DD}$.
Input Capacitance DB0-DB11		5	5	5	5	pr pF	$v_{\rm N} = 0 v$.
WR. US	A	20	20	20	20	<u>рг</u>	VIN - UV.
SWITCHING							
CHARACTERISTICS"				100		(7)	
Chip Select to write Setup 1 ime	All	280	380	180	200	ns ⁽⁵⁾	See Figure 1.
Ics Chin Select to Write Hold Time to	A11	200	270	120	150		
Write Pulse Width two		250	400	160	240	ns ⁽⁷⁾	$t_{nn} \ge t_{nn}$ $t_{nn} \ge 0$
WITTE I UISE WILLII, IWR		175	280	100	170	ns ⁽⁵⁾	CS = WR, CH = U.
Data Setup Time, tos	All	140	210	90	120	DS(7)	
	1	100	150	60	80	ns ⁽⁵⁾	
Data Hold Time, t _{DH}	All	10	10	10	10	ns ⁽⁷⁾	
POWER SUPPLY, IDD	All	2	• 2	2	2	mA	All digital inputs VIL or VIH.
	All	100	500	100	100	μA	All digital inputs 0V or Vpp.
	All	10	10	10	10	μΑ'"	All digital inputs 0V or VDD.

NOTES: (1) Temperature ranges—JP, KP, LP, GLP: 0°C to 70°C. AH, BH, CH, GCH: -25°C to +85°C. SH, TH, UH, GUH: -55°C to +125°C. (2) This includes the effect of 5ppm max gain TC. (3) Guaranteed but not tested. (4) DB₀-DB₁ = 0V to V₀₀ or V₀₀ to 0V. (5) Typical. (6) Feedthrough can be further reduced by connecting the metal lid on the ceramic package (suffix H) to DCOM. (7) Minimum. (8) Logic inputs are MOS gates. Typical input current (+25°C) is less than 1nA. (9) Sample tested at +25°C to ensure compliance.

MECHANICAL

MAX

13.16

13.16

7.67

7.24

0.48

0.86

0.30

10.72

10

0.30

PIN DESIGNATIONS

ABSOLUTE MAXIMUM RATINGS*

$T_A = +25$ °C unless otherwise noted.
V _{DD} to DCOM
Digital Input to DCOM0.3V, VDD
$V_{\text{RFB}},V_{\text{REF}},toDCOM\ldots$
V _{PIN 1} to DCOM
ACOM to DCOM0.3V, V _{DD}
Power Dissipation: Any Package to +75°C 450mW
Derates above +75°C by 6mW/°C
Operating Temperature:
Commercial—JP, KP, LP, GLP 0°C to +70°C
Industrial—AH, BH, CH, GCH –25°C to +85°C
Military—SH, TH, UH, GUH55°C to +125°C
Storage Temperature65°C to +150°C
Lead Temperature (soldering, 10s) +300°C
*NOTE: Stresses above those listed above may cause
permanent damage to the device. This is a stress rating
only and functional operation of the device at these or
any other condition above those indicated in the opera-
tional sections of this specification is not implied. Expo-
sure to absolute maximum rating conditions for extended
periods may affect device reliability.

Mode Selection

All input signal rise and fall times measured from

Timing measurement reference is VIH + VII 2

Hold Mode

Either CS or WR high, data bus

 (DB_0-DB_{11}) is locked out; DAC holds last data present when \overline{CS} or \overline{WR} assumed high state.

WRITE CYCLE TIMING DIAGRAM

ENVIRONMENTAL SCREENING (QM SCREENING)

Burr-Brown / QM models are environmentally screened versions of our standard industrial products, designed to provide enhanced reliability. The screening is performed to selected methods of MIL-STD-883. Reference to these methods provides a convenient method of communicating the screening levels and procedures employed; it does not imply conformance to any other military standards or to any methods of MIL-STD-883 other than those specified.

	MIL-S	TD-883	· · · ·
Screen	Method	Condition	Comments
Internal Visual	2010	В	
High Temperature Storage	1008	С	+150°C, 24hrs
Temperature Cycle	1010	C	65 to +150°C, 10 Cycles
Burn-In	1015	В	+125°C, Figure 1
Constant Acceleration.	2001	E	30,000G
Hermeticity: Fine Leak Gross Leak	1014 1014	A1 or A2 C	5 × 10 ⁻⁸ atm cc/s 60psig, 2hrs
External Visual	2009		

DISCUSSION OF SPECIFICATIONS

10% to 90% of Vpp.

Write Mode

CS and WR low, DAC responds

NOTES: $V_{DD} = 5V$; $t_R = t_F = 20ns$. $V_{DD} = 15V$; $t_R = t_F = 40ns$.

to data bus (DB0-DB11) inputs

Relative Accuracy

This term (also known as linearity) describes the transfer function of analog output to digital input code. The linearity error describes the deviation from a straight line from zero to full scale (zero- and full-scale adjusted).

Differential Nonlinearity

Differential nonlinearity is the deviation from an ideal ILSB change in the output, for adjacent input code changes. A differential nonlinearity specification of ± 1.0 LSB guarantees monotonicity.

Gain Error

Gain error is the difference in measure of full-scale output versus the ideal DAC output. The ideal output for the DAC7545 is -(4095/4096) (V_{REF}). Gain error may be adjusted to zero using external trims as shown in the applications section.

Output Leakage Current

The measure of current which appears at OUT 1 with the DAC loaded with all zeros.

Multiplying Feedthrough Error

This is the AC error output due to capacitive feedthrough from V_{REF} to OUT 1 with the DAC loaded to all zeros. This test is performed at 10kHz.

Output Current Settling Time

This is the time required for the output to settle to a tolerance of ± 0.5 LSB of final value from a change in code of all zeros to all ones, or all ones to all zeros.

Propagation Delay

This is the measure of the delay of the internal circuitry and is measured as the time from a digital code change to the point at which the output reaches 90% of final value.

Digital-To-Analog Glitch Impulse

This is the measure of the area of the glitch energy measured in nanovolt-seconds. Key contributions to glitch energy are internal circuitry timing differences and charge injected from digital logic. The measurement is performed with $V_{REF} = GND$ and an OPA600 as the output op amp and C_1 (phase compensation) = 0pF.

Monotonicity

Monotonicity assures that the analog output will increase or stay the same for increasing digital input codes. The DAC7545 is guaranteed monotonic to 12-bit accuracy, except the J, A, S grades are specified to be 10-bit monotonic.

Power Supply Rejection

Power supply rejection is the measure of the sensitivity of the output (full scale) to a change in the power supply voltage.

FIGURE 1. Burn-In Circuit.

Propogation Delay

This is the measure of the time that is required for the analog output to reach 90% of its final value for a change in digital input code.

CIRCUIT DESCRIPTION

Figure 2 shows a simplified schematic of the digital-toanalog converter portion of the DAC7545. The current from the V_{REF} pin is switched from I_{OUT 1} to AGND by the FET switch. This circuit architecture keeps the resistance at the reference pin constant and equal to R_{LDR}, so the reference could be provided by either a voltage or current, AC or DC, positive or negative polarity, and have a voltage range up to $\pm 20V$ even with V_{DD} = 5V. The R_{LDR} is equal to "R" and is typically 11k Ω . The output capacitance of the DAC7545 is code dependent and varies from a minimum value (70pF) at code 000_H to a maximum (200pF) at code FFF_H.

FIGURE 2. Simplified DAC Circuit of the DAC 7545.

The input buffers are CMOS inverters, designed so that when the DAC7545 is operated from a 5V supply (V_{DD}), the logic threshold is TTL-compatible. Being simple CMOS inverters, there is a range of operation where the inverters operate in the linear region and thus draw more supply current than normal. Minimizing this transition time and insuring that the digital inputs are operated as close to the rails as possible will minimize the supply drain current.

APPLICATIONS

Figure 3 shows the DAC7545 connected for unipolar operation. The high-grade DAC7545 is specified for a ILSB gain error, so gain adjust is typically not needed. However, the resistors shown are for adjusting full-scale errors. The value of R_1 should be minimized to reduce the effects of mismatching temperature coefficients between the internal and external resistors. A range of adjustment of 1.5 times the desired range will be adequate. For example, for a DAC7545JP, the gain error is specified to be ± 25 LSB. A range of adjustment of

 \pm 37LSB will be adequate. The equation below results in a value of 458 Ω for the potentiometer (use 500 Ω).

 $R_1 = \frac{R_{LADDER}}{4096}$ (3 × Gain Error)

FIGURE 3. Unipolar Binary Operation.

The addition of R_1 will cause a negative gain error. To compensate for this error, R_2 must be added. The value of R_2 should be one-third the value of R_1 .

The capacitor across the feedback resistor is used to compensate for the phase shift due to stray capacitances of the circuit board, the DAC output capacitance, and op amp input capacitance. Eliminating this capacitor will result in excessive ringing and an increase in glitch energy. This capacitor should be as small as possible to minimize settling time.

The circuit of Figure 3 may be used with input voltages up to $\pm 20V$ as long as the output amplifier is biased to handle the excursions. Table I represents the analog output for four codes into the DAC for Figure 3.

TABLE I. Unipolar Codes.

Binary Code	Analog Output
MSB LSB 1111 1111 1111 1000 0000 0000 0000 0000 0001 0000 0000 0000	-V _{IN} (4095/4096) -V _{IN} (2048/4096) = 1/2V _{IN} -V _{IN} (1/4096) 0 Volts

Figure 4 shows the connections for bipolar four-quadrant operation. Offset can be adjusted with the A_1 to A_2 summing resistor, with the input code set to 1000 0000 0000. Gain may be adjusted by varying the feedback

FIGURE 4. Bipolar Four-Quadrant Multiplier.

resistor of A_2 . The input/output relationship is shown in Table II.

TABLE II. Bi	polar Codes.
--------------	--------------

Binary Code	Analog Output
MSB LSB	
1111 1111 1111	+V _{REF} (2047/2048)
1000 0000 0000	0 Volts
0111 1111 1111	V _{REF} (1/2048)
0000 0000 0000	-V _{REF} (2048/2048)

Figure 5 shows a hook-up for a digitally-controlled gain block. The feedback for the op amp is made up of the FET switch and the R-2R ladder. The input resistor to the gain block is the R_{FB} of the DAC7545. Since the FET switch is in the feedback loop, a "zero code" into the DAC will result in the op amp having no feedback, and a saturated op amp output.

FIGURE 5. Digitally-Controlled Gain Block.

APPLICATIONS HINTS

CMOS DACS such as the DAC7545 exhibit a codedependent output resistance. This resistance and the V_{OS} of the op amp cause error currents to flow that look like linearity and superposition errors. To minimize these errors, an op amp with a V_{OS} of less than 0.1LSB should be selected. Also, the op amp should have a gain that is sufficient to keep V_{OS} below 0.1LSB for the desired swing and load at the op amp output.

As with all analog circuits, the care in designing the ground system is critical to system accuracy. Static (DC) errors should be held to less than 0.1LSB for any point in the analog ground path. Holy point sensing is encouraged, so that all analog circuits are referenced to the same potential.

THIS PAGE INTENTIONALLY LEFT BLANK

DAC8012

ADVANCE INFORMATION Subject to Change

Low Cost 12-Bit CMOS Latched-Readback Multiplying DIGITAL-TO-ANALOG CONVERTER

FEATURES

- DATA READBACK CAPABILITY
- FOUR-QUADRANT MULTIPLICATION
- LOW-GAIN TC: 2PPM/°C typ
- MONOTONICITY GUARANTEED OVER TEMPERATURE
- SINGLE 5V TO 15V SUPPLY
- VERY LOW OUTPUT LEAKAGE (10nA max)
- VERY LOW OUTPUT CAPACITANCE (70pF max)
- VERY LOW GLITCH ENERGY (400nVs max)
- PROTECTION SCHOTTKY NOT REQUIRED
- DIRECT REPLACEMENT FOR PMI DAC8012

DESCRIPTION

The DAC8012 is a low-cost CMOS, 12-bit, fourquadrant multiplying, digital-to-analog converter with input data latches and readback capabilities. The input data is loaded into the DAC as a 12-bit data word. The data is loaded into the DAC from the bus when both the data strobe (\overline{DS}) and the read/write (RD/\overline{WR}) pins are held low. Data may be read back from the DAC by holding \overline{DS} low and (RD/\overline{WR}) high. This readback feature enables the user to monitor the state of multiple DACs on a single bi-directional bus.

Laser-trimmed thin-film resistors and excellent CMOS current switches provide true 12-bit integral and differential linearity. The device operates on a single +5V to +15V supply and is available in 20-pin side-brazed DIP, 20-pin plastic DIP or a 20-lead plastic SOIC package. Devices are specified over the commercial, industrial, and military temperature ranges and are available with additional reliability screening.

The DAC8012 is well suited for battery or other lowpower applications because the power dissipation is less than 0.5mW when used with CMOS logic inputs and $V_{DD} = 5$ V.

PDS-750 174

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

 $V_{REF} = +10V$, $V_{OUT 1} = 0V$, AGND = DGND = 0V unless otherwise noted.

	DAC8012B, K, T ⁽¹⁾		T ⁽¹⁾	DAC8012A, J, S ⁽¹⁾				
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
	$V_{DD} = +5V \text{ or } +15V$							
STATIC ACCURACY Resolution Relative Accuracy Differential Nonlinearity ⁽²⁾ Gain Error ⁽³⁾⁽⁴⁾	$T_A = Full temperature range$ $T_A = Full temperature range$ $T_A = +25^{\circ}C$ $T_A = Full temperature Range$	12	-	$\pm 1/2$ ± 1 ± 1 ± 2	12		±1 ±1 ±3 ±4	Bits LSB LSB LSB LSB
Gain Temperature Coefficient ΔGain/ΔTemperature ^(Site) DC Supply Rejection ΔGain/ΔVop ⁽⁵⁾ Output Leakage Current at OUT 1	$\begin{split} T_A &= +25^\circ C \; (\Delta \; V_{DD} = \pm 5\%) \\ T_A &= Full temperature range \\ & (\Delta \; V_{DD} = \pm 5\%) \\ T_A &= +25^\circ C, \; RD/WR = \overline{DS} = 0V, \\ & \text{all digital inputs} = 0V \\ T_A &= Full temperature range \\ & S, \; T versions \\ & J, \; K, \; A, \; B \; versions \end{split}$	-		±5 0.002 0.004 10 200 25			±5 0.002 0.004 10 200 25	ppm/°C %/% nA nA nA
DYNAMIC PERFORMANCE Propagation Delay ⁽⁵⁾⁽⁷⁾⁽⁸⁾ Current Settling Time ⁽⁵⁾⁽⁸⁾ Glitch Energy ⁽⁵⁾ , Vess = AGND AC Feedthrough at lour 1 ⁽⁵⁾⁽¹¹⁾	$T_{A} = +25^{\circ}C$ (OUT 1 Load = 100Ω, C _{EXT} = 13pF) $T_{A} = Full temperature range$ (to 1/2 LSB) lout 1 Load = 100Ω $T_{A} = Full temperature range$ $T_{A} = Full temperature range$ $T_{A} = Full temperature range$ $V_{REF} = \pm10V, f = 10kHz$			300 1 400 500 5			300 1 400 500 5	ns µs nVs nVs mVp-p
REFERENCE INPUT Input Resistance (Pin 19 to GND) ⁽¹²⁾ ANALOG OUTPUTS	T _A = Full temperature range	7	11	15	7	11	15	kΩ
Output Capacitance ⁽⁵⁾ Cout 2 Cout 1	$T_A = Full temperature rangeDB0-DB11 = 0V, RD/WR = \overline{DS} = 0VDB0-DB11 = V_{DD}, RD/WR = \overline{DS} = 0VV_{DD} = \pm 5V$: 		70 150			70 150	pF pF
Input High Voltage Input Low Voltage Input Current ^{®)} Input Capacitance ^(S) : DB0-DB11 RD/WR, DS	$\begin{array}{l} T_{A}=Full \mbox{ temperature range}\\ T_{A}=Full \mbox{ temperature range}\\ T_{A}=+25^{\circ}C\\ T_{A}=Full \mbox{ temperature range}\\ T_{A}=Full \mbox{ temperature range}\\ T_{A}=Full \mbox{ temperature range}\\ \end{array}$	2:4	-	0.8 1 10 12 6	2.4	-	0.8 1 10 12 6	V V μΑ μΑ pF
DIGITAL OUTPUTS Output High Voltage Output Low Voltage Three-State Output Leakage Current	I _o = 400μΑ I _o = -1.6mA	4.0		0.4 10	4.0		0.4 10	۷ ۷ µA
SWITCHING CHARACTERISTICS ⁽¹⁰⁾ Write to Data Stobe Setup Time Data Strobe to Write Hold Time Read to Data Strobe Setup Time Data Strobe to Read Hold Time Write Mode Data Strobe Width Read Mode Data Strobe Width Data Setup Time Data Hold Time Data Strobe to Output Valid Time ⁽¹³⁾ Output Active Time from Deselection POWER SUPPLY	See timing diagram T _A = +25°C T _A =Full temperature range T _A = Full temperature range T _A = +25°C T _A = Full temperature range T _A = Full temperature range T _A = Full temperature range T _A = Full temperature range	0 0 0 0 180 250 290 210 250 0 0		300 400 215 375	0 0 0 0 0 180 250 280 210 250 250 0 0		300 400 215 375	ns ns ns ns ns ns ns ns ns ns ns ns ns n
Supply Current	(all digital inputs V_{INL} or V_{INH}) $T_A = Full temperature range (all digital inputs OV as V_{INH})$		10	2		10	2	mA
	(all digital inputs UV or Voo)	1	10	100		10	100	μΑ

ELECTRICAL CHARACTERISTICS (CONT)

		DA	C8012B, K,	T ⁽¹⁾	DA	C8012A, J,	S ⁽¹⁾	; .
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
V _{DD} = +15V								1.1
DIGITAL INPUTS Input High Voltage Input Low Voltage Input Current [®] Input Capacitance ⁽⁵⁾ : DB0-DB11 RD/WR, DS	$ \begin{array}{l} T_A = Full \mbox{ temperature range} \\ T_A = Full \mbox{ temperature range} \\ T_A = +25^{\circ} C \\ T_A = Full \mbox{ temperature range} \\ T_A = Full \mbox{ temperature range} \\ T_A = Full \mbox{ temperature range} \\ \end{array} $	13.5		1.5 1 10 12 10	13.5		1.5 1 10 12 10	ν ν μΑ μΑ ρF pF
DIGITAL OUTPUTS Output High Voltage Output Low Voltage Three-State Output Leakage Current	l₀ = 3mA l₀ = −3mA	13.5		1.5 10	13.5		1.5 10	ν ν μΑ
SWITCHING CHARACTERISTICS ⁽¹⁰⁾ Write to Data Strobe Setup Time Data Strobe to Write Hold Time Read to Data Strobe Setup Time Data Strobe to Read Hold Time Write Mode Data Strobe Width Read Mode Data Strobe Width Data Setup Time Data Hold Time Data Strobe to Output Valid Time	See Timing Diagram $T_A = +25^{\circ}C$ $T_A = Full temperature range T_A = Full temperature rangeT_A = Full temperature rangeT_A = Full temperature rangeT_A = +25^{\circ}CT_A = Full temperature rangeT_A = Full temperature rangeT_A = Full temperature range$	0 0 0 0 0 0 0 0 0 0 0 120 120 150 90 120 0 0 0		180 220	0 0 0 0 0 0 0 0 0 0 120 120 150 90 120 0 0		180 220	ns ns ns ns ns ns ns ns ns ns ns ns ns n
POWER SUPPLY Supply Current	$T_{A} = Full temperature range$ $T_{A} = Full temperature range$ (all digital inputs V _{NL} or V _{inH}) $T_{A} = Full temperature range$ (all digital inputs 0V or V _{DD})		10	250 2 100		10	250 2 100	mA μA

NOTES: (1) $T_A = -55^{\circ}C$ to $+125^{\circ}C$ for S, T grades. $T_A = -25^{\circ}C$ to $+85^{\circ}C$ for A, B grades. $T_A = 0^{\circ}C$ to $+70^{\circ}C$ for J, K grades. (2) 12-bit monotonic over full temperature range. (3) Includes the effects of 5ppm max gain T.C. (4) Using internal R_{FB}. DAC register loaded with 1111 1111 1111. (5) **Guaranteed** but **not tested**. (6) Typical value is 2ppm/°C for V_{bD} = +5V. (7) From digital input change to 90% of final analog output. (8) All digital inputs = 0V to V_{bD}; or V_{bD} to 0V. (9) Logic inputs are MOS gates, typical input current (at +25°C) is less than 1nA. (10) Sample tested at +25°C to ensure compliance. (11) Feedthrough can further be reduced by connecting the metal lid on the sidebraze package (Suffix H) to DGND. (12) Resistor T.C. = +100ppm/°C

MECHANICAL

NOTE: Leads in true position within .010" (.25mm) R at MMC at seating plane.

Pin numbers shown for reference only. Numbers may not be marked on package.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	.502	.518	12.75	13.16
A1	.495	.518	12.57	13.16
В	.286	.302	7.26	7.67
B ₁	.270	.285	6.86	7.24
С	.093	.108	2.36	2.74
D	.015	.019	0.38	0.48
G	.050 E	.050 BASIC		IASIC
н	.026	.034	0.66	0.86
J	.008	.012	0.20	0.30
L	.390	.422	9.91	10.72
М	0°	10°	0°	10°
Ν	.000	.012	. 0.00	0.30

PIN DESIGNATIONS

ABSOLUTE MAXIMUM RATINGS

$(T_{\rm c} = \pm 25^{\circ} C_{\rm c})$ upless otherwise noted)					
V_{res} to DGND $-0.3V + 17V$					
Digital Input Voltage to DGND -0.3V. Vpp					
AGND to DGND					
VREB. VREF to DGND ±25V					
V _{PIN 1} to DGND					
Power Dissipation (any package) to +75°C 450mW					
Derates Above +75°C by 6mW/°C					
Operating Temperature Range					
Military Grades					
Industrial Grades					
Commercial Grades 0°C to +70°C					
Storage Temperature					
Lead Temperature (soldering, 60s) +300°C					
CAUTION					
1. Stresses above those listed under "Absolute Maximum Ratings"					
may cause permanent damage to the device. This is a stress rating					
only and functional operation at or above this specification is not					
implied. Exposure to above maximum rating conditions for extended					
periods may affect device reliability.					
2. Do not apply voltages higher than V_{DD} or less than GND potential on					
2 The digital inputs are zener protected however, permanent demage					
5. The digital inputs are zener protected, nowever, permanent damage					
fields. Keep units in conductive form at all times until ready to use					
Lico propor antistatio bandling procedures					
4. Remove never before inserting or removing units from their sockets					
4. Remove power before inserting of removing units from their sockets.					

TIMING DIAGRAM

ENVIRONMENTAL SCREENING (QM SCREENING)

Burr-Brown / QM models are environmentally-screened versions of our standard industrial products, designed to provide enhanced reliability. The screening is performed to selected methods of MIL-STD-883. Reference to these methods provides a convenient method of communicating the screening levels and procedures employed; it does not imply conformance to any other military standards or to any method of MIL-STD-883 other than those specified.

Screen	MIL-STD-883 Method, Condition	Comments
Internal Visual	2010, B	
High Temperature Storage	1008, C	150°C, 24hrs
Temperature Cycle	1010, C	-65°C to +150°C, 10 Cycles
Burn-In	1015, B	+125°C, Figure 1
Constant Acceleration	2001, E	30,000G
Hermeticity: Fine Leak	1014, A1 or A2	5×10^{-8} atm cc/s
Gross Leak	1014, C	60psig, 2hrs
External Visual	2009	

DISCUSSION OF SPECIFICATIONS

Relative Accuracy

This term (also known as linearity) describes the transfer function of analog output to digital input code. The linearity error describes the deviation from a straight line from zero to full scale (zero and full scale adjusted).

Differential Nonlinearity

Differential nonlinearity is the deviation from an ideal ILSB change in the output, for adjacent input code changes. A differential nonlinearity specification of \pm 1LSB guarantees monotonicity.

Gain Error

Gain error is the difference in measure of full-scale output versus the ideal DAC output. The ideal output for the DAC8012 is -(4095/4096) (V_{REF}). Gain error may be adjusted to zero using external trims as shown in the applications section.

Output Leakage Current

The measure of current which appears at OUT_1 with the DAC loaded with all zeros.

Multiplying Feedthrough Error

This is the AC error output due to capacitive feedthrough from V_{REF} to OUT_1 with the DAC loaded to all zeros. This test is performed at 10kHz.

Output Current Settling Time

This is the time required for the output to settle a tolerance of $\pm 1/2$ LSB of final value from a change in code of all zeros to all ones, or all ones to all zeros.

Propagation Delay

This is the measure of the delay of the internal circuitry and is measured as the time from a digital code change to the point at which the output reaches 90% of final value.

Digital-To-Analog Glitch Impulse

This is the measure of the area of the glitch energy measured in nanovolt-seconds. Key contributions to glitch energy are internal circuitry timing differences and charge injected from digital logic. The measurement is performed with $V_{REF} = GND$.

Monotonicity

Monotonicity assures that the analog output will increase or stay the same for increasing digital input codes. The DAC8012 is guaranteed monotonic to 12-bit accuracy except the J, A, S grades are specified 10-bit monotonic.

Power Supply Rejection

Power supply rejection is the measure of the sensitivity of the output (full scale) to a change in the power supply voltage.

Propogation Delay

This is the measure of the time that is required for the analog output to reach 90% of its final value for a change in digital input code.

FIGURE 1. Burn-In Circuit.

CIRCUIT DESCRIPTION

DIGITAL-TO-ANALOG SECTION

Figure 2 shows a simplified schematic of the digital-toanalog portion of the DAC8012. The current from the V_{REF} pin is switched from $I_{OUT 1}$ to AGND by the FET switch for that bit. This circuit architecture keeps the resistance at the reference pin constant and equal to R_{LDR} , so the reference could be provided by either a voltage or

FIGURE 2. Simplified Circuit of the DAC8012.

current, AC or DC, positive or negative polarity, and have a voltage range up to $\pm 20V$ even with $V_{DD} = 5V$. The R_{LDR} is equal to "R" and is typically 11k Ω .

The output capacitance of the DAC8012 is code dependent and varies from a minimum value (70pF) at code $000_{\rm H}$ to a maximum (200pF) at code FFF_H.

The input buffers are CMOS inverters, designed so that when the DAC8012 is operated from a 5V supply (V_{DD}), the logic threshold is TTL compatible. Being simple CMOS inverters, there is a range of operation where the inverters operated in the linear region and thus draw more supply current than normal. Minimizing the transition time and insuring that the digital inputs are operated as close to the rails as possible will minimize the supply drain current.

DIGITAL SECTION

Figure 3 shows the basic current switch. Figure 4 shows the schematic of the input/output buffers. When the \overline{DS} and the RD/\overline{WR} are held low the latches are transparent and pass data from the data bus to the DAC. When the \overline{DS} is held low and the RD/\overline{WR} line is held high, the three-state buffer becomes active and the data at the DAC is presented to the digital input/output lines for data readback.

FIGURE 3. N-Channel Current Steering Switch.

FIGURE 4. Digital Input/Output Structure.

APPLICATIONS

Figure 5 shows the DAC8012 connected for unipolar operation. The high-grade DAC8012 is specified for a ILSB gain error, so gain adjust is typically not needed. However, the resistors shown are for adjusting full-scale errors. The value of R_1 should be minimized to reduce the effects of mismatching temperature coefficients

FIGURE 5. Unipolar Binary Operation.

between the internal and external resistors. A range of adjustment of 1.5 times the desired range will be adequate. For example, for a DAC8012JP, the gain error is specified to be ± 3 LSB. A range of adjustment of ± 4.5 LSB will be adequate. The equation shows a minimum value of 33 Ω for the pot.

 $R_1 = (R_{LADDER}/4096) \times (3 \times Gain Error)$

The addition of R_1 will cause a negative gain error. To compensate for this error, R_2 must be added. The value of R_2 should be one third the value of R_1 .

The capacitor across the feedback resistor is used to compensate for the phase shift due to stray capacitances of the circuit board, the DAC output capacitance, and op amp input capacitance. Eliminating this capacitor will result in excessive ringing and an increase in glitch energy in higher speed applications. This capacitor should be as small as possible to minimize settling time.

The circuit of Figure 5 may be used with input voltages of up to $\pm 20V$ as long as the output amplifier is biased to handle the excursions. Table I presents the analog ouput for four codes into the DAC for Figure 5.

TABLE I. Unipolar Output Code for Figure 5.

Binary Code	Analog Output
MSBI ILSB	
1111 1111 1111	-V _{IN} (4095/4096)
1000 0000 0000	$-V_{IN}$ (2048/4096) = 1/2V_{IN}
0000 0000 0001	-V _{IN} (1/4096)
0000 0000 0000	0 Volts

BIPOLAR FOUR-QUADRANT OPERATION

Figure 6 shows the connections for bipolar four-quadrant operation. Offset can be adjusted with the A_1 to A_2 summing resistor, with the input code set to 1000 0000 0000. Gain may be adjusted by varying the feedback resistor of A_2 . The input/output relationship is shown in Table II.

FIGURE 6. Bipolar Four-Quadrant Mulitplier.

 TABLE II. Bipolar Codes and Analog Output for Figure 6.

Binary		Analog Output
MSB↓	↓ LSB	
1111 11	11 1111	+V _{REF} (2047/2048)
1000 00	00 0000	0 Volts
0111 11	11 1111	-V _{REF} (1/2048)
0000 0000 0000		V _{REF} (2048/2048)

Figure 7 shows a hook-up for a digitally-controlled gain block. The feedback for the op amp is made up of the FET switch and the R-2R ladder. The input resistor to the gain block is the R_{FB} of the DAC8012. Since the FET switch is in the feedback loop, a "zero code" into the DAC will result in the op amp having no feedback and a saturated op amp output. The DAC8012 readback feature makes the DAC8012 especially good for this configuration

FIGURE 7. Digitally-Controlled Gain Block.

when an automatic gain or automatic calibration routine is used. If the logic were set up to calibrate a value via logic external to the processor (successive approximation register), then when the calibration is done, the processor could read the DAC8012 to store away the calibration code.

Figure 8 shows the DAC8012 interfaced to a 16-bit

IGURE 8. 16-Bit Microprocessor to DAC8012 Interface.

microprocessor. The interface requires only address decoding to select the DAC to be written to or read from.

Figure 9 shows an interface scheme for using the DAC8012 with an 8-bit microprocessor. The data for the first 4 bits are written and latched into the external write

latch and the next 8 bits are presented on the bus. The DAC8012 is then instructed to pass the data through the internal DAC latch ($\overline{WR} + \overline{DS}$) and all 8 bits are transferred into the DAC. Reading data back is done in the same manner.

FIGURE 9. 8-Bit Processor to DAC8012 Interface.

DESIGNED FOR AUDIO

Serial Input 16-Bit Monolithic DIGITAL-TO-ANALOG CONVERTER

FEATURES

- SERIAL INPUT
- LOW COST
- NO EXTERNAL COMPONENTS REQUIRED.
- 16-BIT RESOLUTION
- 15-BIT MONOTONICITY, TYP
- 0.001% OF FSR TYP DIFFERENTIAL LINEARITY ERROR
- 0.0025% MAX THD (FS Input, K Grade, 16 Bits)
- 0.02% MAX THD (-20dB Input, K Grade, 16 Bits)
- 1.5µs SETTLING TIME, TYP (Voltage Out)
- 96dB DYNAMIC RANGE
- ±3V or ±1mA AUDIO OUTPUT
- EIAJ STC-007-COMPATIBLE
- OPERATES ON ±5V to ±12V SUPPLIES
- PINOUT ALLOWS IOUT OPTION
- PLASTIC DIP PACKAGE

DESCRIPTION

The PCM56P is a state-of-the-art, fully monotonic, digital-to-analog converter that is designed and specified for digital audio applications. This device employs ultra-stable nichrome (NiCr) thin-film resistors to provide monotonicity, low distortion, and low differential linearity error (especially around bipolar zero) over long periods of time and over the full operating temperature.

This converter is completely self-contained with a stable, low noise, internal zener voltage reference; high speed current switches; a resistor ladder network; and a fast settling, low noise output operational amplifier all on a single monolithic chip. The converters are operated using two power supplies that can range from $\pm 5V$ to $\pm 12V$. Power dissipation with $\pm 5V$ supplies is typically less than 200mW. Also included is a provision for external adjustment of the MSB error (differential linearity error at bipolar zero) to further improve total harmonic distortion (THD) specifications if desired. Few external components are necessary for operation, and all critical specifications are 100% tested. This helps assure the user of high system reliability and outstanding overall system performance.

The PCM56P is packaged in a high-quality 16-pin molded plastic DIP package and has passed operating life tests under simultaneous high-pressure, high-temperature, and high-humidity conditions.

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

SPECIFICATIONS

VIL

TRANSFER CHARACTERISTICS

TOTAL HARMONIC DISTORTION $V_0 = \pm FS$ at f = 991Hz; PCM56P-K

Vo = -20dB at f = 991Hz: PCM56P-K

Vo = -60dB at f = 991Hz: PCM56P-K

SETTLING TIME (to ±0.006% of FSR) Voltage Output: 6V Step

1LSB

Slew Rate

Current Output, 1mA Step: 10Ω to 100Ω load

Voltage Output Configuration: Bipolar Range

Supply Drain (No Load): $+V (+V_s \text{ and } +V_L = +5V)$

 V_s and $V_L = \pm 12V$

Current Output Configuration:

Output Impedance (±30%)

–V_s and –V_L

POWER SUPPLY REQUIREMENTS⁽⁵⁾

Power Dissipation: V_s and $V_L = \pm 5V$

Bipolar Range (±30%)

Voltage: +Vs and +VL

TEMPERATURE RANGE Specification

Operation

 $I_{\rm IH},\,V_{\rm IN}=+2.7V$

 $I_{1L}, V_{1N} = +0.4V$

Noise (rms, 20Hz to 20kHz) at Bipolar Zero (Vour models)

PCM56P-J

PCM56P-J

PCM56P-J

1kΩ load⁽⁴⁾

Output Current

 $-V(-V_s \text{ and } -V_L = -5V)$

 $+V(+V_{s} \text{ and } +V_{L} = +12V)$

-V ($-V_s$ and $-V_L = -12V$)

Output Impedance

Short Circuit Duration

PCM56P

POMSOP

PCM56P

ELECTRICAL

Digital Inputs⁽¹⁾. VIH

Input Clock Frequency

ACCURACY Gain Error

Bipolar Zero Error

MONOTONICITY

Bipolar Zero Drift

WARM-UP TIME

OUTPUT

Total Drift

DRIFT (0°C to +70°C)

Differential Linearity Error

MODEL

INPUT DIGITAL INPUT Resolution

Typical at +25°C and nominal power supply voltages of ±5V unless otherwise noted.

PCM56P/-J/-K

түр

16

±2.0

±30

±0.001

6

0.002

0.002

0.002

0.018

0.018

0.018

1.8

1.8

18

15

+25

±4

1.5

1.0

12

350

350

±3.0

0.10

Indefinite to Common

+10

1.2

+5.00

-5.00

+10.0

-25.0

+12.0

-27.0

175

468

+13.2

-13.2

+17.0

-35.0

260

+70

+70

1

±8.0

+4.75

-4.75

0

-25

мах

+Vι

+0.8

+1.0

-50

0.0025

0.004

0.008

n n2n

0.040

0.040

2.0

4.0

40

UNITS

Bits

v

v

μA

μA

. MHz

٥/

m٧

% of FSR⁽²⁾

μV

%

%

%

%

%

%

%

%

%

Bits

ppm of FSR/°C

ppm of FSR/°C

μs

μs

. V/μs

ns

ns

Min

v

mΔ

0

mA

kO

v

v

mΑ

mΑ

mΑ

mA

mW

mW

°C

°C

MIN

+2.4

0

10.0

MECHANICAL

NOTE: Leads in true position within .010" (.25mm) R at MMC at seating plane.

PINS: Pin material and plating composition conform to method 2003 (solderability) of MIL-STD-. 883 (except paragrah 3.2).

CASE: Plastic

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	.740	.800	18.80	20.32
A1	.725	.785	18.42	19.94
В	.230	.290	5.85	7.38
B1	.200	.250	5.09	6.36
С	.120	.200	3.05	5.09
D	.015	.023	0.38	0.59
F	.030	.070	0.76	1.78
G	.100 BASIC		2.54 BASIC	
н	0.02	0.05	0.51	1.27
J	.008	.015	0.20	0.38
K	.070	.150	1.78	3.82
L	300 BASIC		7.63 BASIC	
М	0°	15°	0°	15°
N	.010	.030	0.25	0.76
Ρ	.025	.050	0.64	1.27

 Storage
 -60 +100 °C

 NOTES:
 (1) Logic input levels are TTL/CMOS-compatible.
 (2) FSR means full-scale range and is equivalent to 6V ($\pm 3V$) for PCM56 in the V_{OUT} mode.
 (3) This is the combined drift error due to gain, offset, and linearity over temperature.
 (4) Measured with an active clamp to provide a low impedance for approximately 200ns.
 (5) All specifications assume +Vs connected to +VL and -Vs connected to -VL. If supplies are connected separately, -VL must not be more negative than $-V_s$ supply voltage to assure proper operation. No similar restriction applies to the value of +VL with respect to +Vs.

ORDERING INFORMATION

Model	THD at FS (%)		
PCM56P	0.008 Max		
PCM56P-J	0.004		
PCM56P-K	0.0025		

PIN ASSIGNMENTS

1	-Vs	Analog Negative Supply
2	LOG COM	Logic Common
3	+VL	Logic Positive Supply
4	NC	No Connection
5	CLK	Clock Input
6	LE	Latch Enable Input
. 7	DATA	Serial Data Input
8	-VL	Logic Negative Supply
9	Vout	Voltage Output
10	RF	Feedback Resistor
11	SJ	Summing Junction
12	ANA COM	Analog Common
13	lout	Current Output
14	MSB ADJ	MSB Adjustment Terminal
15	TRIM	MSB Trim-pot Terminal
16	+Vs	Analog Positive Supply

ABSOLUTE MAXIMUM RATINGS

DISCUSSION OF SPECIFICATIONS

The PCM56P is specified to provide critical performance criteria for a wide variety of applications. The most critical specifications for a D/A converter in audio applications are Total Harmonic Distortion, Differential Linearity Error, Bipolar Zero Error, parameter shifts with time and temperature, and settling time effects on accuracy.

The PCM56P is factory-trimmed and tested for all critical key specifications.

The accuracy of a D/A converter is described by the transfer function shown in Figure I. Digital input to analog output relationship is shown in Table I. The errors in the D/A converter are combinations of analog errors due to the linear circuitry, matching and tracking properties of the ladder and scaling networks, power supply rejection, and reference errors. In summary, these errors consist of initial errors including Gain, Offset, Linearity, Differential Linearity, and Power Supply Sensitivity. Gain drift over temperature rotates the line (Figure I) about the bipolar zero point and Offset drift shifts the line left or right over the operating temperature range. Most of the Offset and Gain drift with temperature

CONNECTION DIAGRAM

or time is due to the drift of the internal reference zener diode. The converter is designed so that these drifts are in opposite directions. This way the Bipolar Zero voltage is virtually unaffected by variations in the reference voltage.

TABLE I. Digital Input to Analog Output Relationship.

Digital Input	Analog Output		
Binary Twos	DAC Output	Voltage (V),	Current (mA),
Complement (BTC)		V _{out} Mode	Iout Mode
7FFF Hex	+ Full Scale	+2.999908	-0.999970
8000 Hex	- Full Scale	-3.000000	+1.000000
0000 Hex	Bipolar Zero	0.000000	0.000000
FFFF Hex	Zero - 1LSB	-0.000092	+0.030500µA

DIGITAL INPUT CODES

The PCM56P accepts serial input data (MSB first) in the Binary Twos Complement (BTC) form. Refer to Table I for input/output relationships.

BIPOLAR ZERO ERROR

Initial Bipolar Zero Error (Bit 1 "on" and all other bits "off") is the deviation from 0V out and is factory-trimmed to typically ± 30 mV at ± 25 °C.

DIFFERENTIAL LINEARITY ERROR

Differential Linearity Error (DLE) is the deviation from an ideal ILSB change from one adjacent output state to the next. DLE is important in audio applications because excessive DLE at Bipolar Zero (at the "major carry") can result in audible crossover distortion for low level output signals. Initial DLE on the PCM56P is factory trimmed to typically $\pm 0.001\%$ of FSR. The MSB DLE is adjustable to zero using the circuit shown in Figure 6.

POWER SUPPLY SENSITIVITY

Changes in the DC power supplies will affect accuracy.

The PCM56P power supply sensitivity is shown by Figure 2. Normally, regulated power supplies with 1% or less ripple are recommended for use with the DAC. See also Power Supply Connections paragraph in the Installation and Operating Instructions section.

FIGURE 2. Power Supply Sensitivity.

SETTLING TIME

Settling time is the total time (including slew time) required for the output to settle within an error band around its final value after a change in input (see Figure 3).

Settling times are specified to $\pm 0.006\%$ of FSR: one for a large output voltage change of 6V and one for a 1LSB change. The 1LSB change is measured at the major carry (0000 hex to ffff hex), the point at which the worst-case settling time occurs.

FIGURE 3. Full Scale Range Settling Time vs Accuracy.

STABILITY WITH TIME AND TEMPERATURE

The parameters of a D/A converter designed for audio applications should be stable over a relatively wide temperature range and over long periods of time to avoid undesirable periodic readjustment. The most important parameters are Bipolar Zero Error, Differential Linearity Error, and Total Harmonic Distortion. Most of the Offset and Gain drift with temperature or time is due to the drift of the internal reference zener diode. The PCM56P is designed so that these drifts are in opposite directions so that the Bipolar Zero voltage is virtually unaffected by variations in the reference voltage. Both DLE and THD are dependent upon the matching and tracking of resistor ratios and upon VBE and hFE of the current-source transistors. The PCM56P was designed. so that any absolute shift in these components has virtually no effect on DLE or THD. The resistors are made of identical links of ultra-stable nichrome thinfilm. The current density in these resistors is very low to further enhance their stability.

DYNAMIC RANGE

The Dynamic Range is a measure of the ratio of the smallest signals the converter can produce to the fullscale range and is usually expressed in decibels (dB). The theoretical dynamic range of a converter is approximately $6 \times n$, or about 96dB of a 16-bit converter. The actual, or useful, dynamic range is limited by noise and linearity errors and is therefore somewhat less than the theoretical limit. However, this does point out that a resolution of at least 16 bits is required to obtain a 90dB minimum dynamic range, regardless of the accuracy of the converter. Another specification that is useful for audio applications is Total Harmonic Distortion.

TOTAL HARMONIC DISTORTION

THD is useful in audio applications and is a measure of the magnitude and distribution of the Linearity Error, Differential Linearity Error, and Noise, as well as Quantization Error. To be useful, THD should be specified for both high level and low level input signals. This error is unadjustable and is the most meaningful indicator of D/A converter accuracy for audio applications.

The THD is defined as the ratio of the square root of the sum of the squares of the values of the harmonics to the value of the fundamental input frequency and is expressed in percent or dB. The rms value of the PCM56P error referred to the input can be shown to be

$$\epsilon_{\rm rms} = \sqrt{1/n} \sum_{i=1}^{n} \left[E_{\rm L}(i) + E_{\rm Q}(i) \right]^2 \qquad (1)$$

where n is the number of samples in one cycle of any given sine wave, $E_L(i)$ is the linearity error of the PCM56P at each sampling point, and $E_Q(i)$ is the quantization error at each sampling point. The THD can then be expressed as

$$THD = \epsilon_{rms}/E_{rms}$$
(2)
=
$$\frac{\sqrt{1/n \sum_{i=1}^{n} [E_L(i) + E_Q(i)]^2}}{E_{rms}} \times 100\%$$

where E_{rms} is the rms signal-voltage level.

This expression indicates that, in general, there is a correlation between the THD and the square root of the sum of the squares of the linearity errors at each digital word of interest. However, this expression does not mean that the worst-case linearity error of the D/A is directly correlated to the THD.

For the PCM56P the test period was chosen to be 22.7μ s (44.1kHz), which is compatible with the EIAJ STC-007 specification for PCM audio. The test frequency is 991Hz and the amplitude of the input signal is 0dB, -20dB, and -60dB down from full scale.

Figure 4 shows the typical THD as a function of output voltage.

FIGURE 4. Total Harmonic Distortion (THD) vs Vour.

Figure 5 shows typical THD as a function of frequency.

FIGURE 5. Total Harmonic Distortion (THD) vs Frequency.

INSTALLATION AND OPERATING INSTRUCTIONS

POWER SUPPLY CONNECTIONS

For optimum performance and noise rejection, power supply decoupling capacitors should be added as shown in the Connection Diagram. These capacitors (1μ F tantalum or electrolytic recommended) should be located close to the converter.

MSB ERROR ADJUSTMENT PROCEDURE (OPTIONAL)

The MSB error of the PCM56P can be adjusted to make the differential linearity error (DLE) at BPZ essentially zero. This is important when the signal output levels are very low, because zero crossing noise (DLE at BPZ) becomes very significant when compared to the small code changes occurring in the LSB portion of the converter.

Differential linearity error at bipolar zero and THD are guaranteed to meet data sheet specifications without any external adjustment. However, a provision has been made for an optional adjustment of the MSB linearity point which makes it possible to eliminate DLE error at BPZ. Two procedures are given to allow either static or dynamic adjustment. The dynamic procedure is preferred because of the difficulty associated with the static method (accurately measuring 16-bit LSB steps).

To statically adjust DLE at BPZ, refer to the circuit shown in Figure 6 or the PCM56 connection diagram.

FIGURE 6. MSB Adjustment Circuit.

After allowing ample warm-up time (5-10 minutes) to assure stable operation of the PCM56, select input code FFFF hexadecimal (all bits on except the MSB). Measure the audio output voltage using a 6-1/2 digit voltmeter and record it. Change the digital input code to 0000 hexadecimal (all bits off except the MSB). Adjust the 100k Ω potentiometer to make the audio output read 92 μ V more than the voltage reading of the previous code (a 1LSB step = 92 μ V).

A much simpler method is to dynamically adjust the DLE at BPZ. Again, refer to Figure 6 for circuitry and component values. Assuming the device has been installed in a digital audio application circuit, send the appropriate digital input to produce a -80dB level sinusoidal output. While measuring the THD of the audio circuit output, adjust the 100k Ω potentiometer until a minimum level of distortion is observed.

INPUT TIMING CONSIDERATIONS

Figures 7 and 8 refer to the input timing required to interface the inputs of PCM56P to a serial input data stream. Serial data is accepted in Binary Twos Complement (BTC) with the MSB being loaded first. Data is clocked in on positive going clock (CLK) edges and is latched into the DAC input register on negative going latch enable (LE) edges.

The latch enable input must be high for at least one clock cycle before going low, and then must be held low for at least one clock cycle. The last 16 data bits clocked into the serial input register are the ones that are transferred to the DAC input register when latch enable goes low. In other words, when more than 16 clock cycles occur between a latch enable, only the data present during the last 16 clocks will be transferred to the DAC input register.

One requirement for clocking in all 16 bits is the necessity for a "17th" clock pulse. This automatically occurs when the clock is continuous (last bit shifts in on the first bit of the next data word). When the clock is

stopped before the "17th" clock cycle occurs, however, the last serial input shift will not occur (the MSB will be in the bit 2 position). In any application where clock is noncontinuous, attention must be given to providing enough clocks to fully input the data word.

Figure 7 refers to the general input format required for the PCM56P. Figure 8 shows the specific relationships between the various signals and their timing constraints.

FIGURE 8. Input Timing Relationships.

INSTALLATION CONSIDERATIONS

If the optional external MSB error circuitry is used, a potentiometer with adequate resolution and a TCR of $100ppm/^{\circ}C$ or less is required. Also, extra care must be taken to insure that no leakage path (either AC or DC) exists to pin 14. If the circuit is not used, pins 14 and 15 should be left open.

The PCM converter and the wiring to its connectors should be located to provide the optimum isolation from sources of RFI and EMI. The important consideration in the elimination of RF radiation or pickup is loop area;

FIGURE 7. Input Timing Diagram.

therefore, signal leads and their return conductors should be kept close together. This reduces the external magnetic field along with any radiation. Also, if a signal lead and its return conductor are wired close together, they represent a small flux-capture cross section for any external field. This reduces radiation pickup in the circuit.

APPLICATIONS

Figures 9 and 10 show a circuit and timing diagram for a single PCM56P used to obtain both left- and rightchannel output in a typical digital audio system. The audio output of the PCM56P is alternately time-shared between the left and right channels. The design is greatly simplified because the PCM56P is a complete D/A converter requiring no external reference or output op amp.

A sample/hold (S/H) amplifier, or "deglitcher" is required at the output of the D/A for both the left and right channel, as shown in Figure 9. The S/H amplifier for the left channel is composed of A₁, SW₁, and associated circuitry. A₁ is used as an integrator to hold the analog voltage in C₁. Since the source and drain of the FET swtich operate at a virtual ground when "C" and "B" are connected in the sample mode, there is no increase in distortion caused by the modulation effect of R_{ON} by the audio signal.

FIGURE 9. A Sample/Hold Amplifier (Deglitcher) is Required at the Digital-to-Analog Output for Both Left and Right Channels.

FIGURE 10. Timing Diagram for the Deglitcher Control Signals.

Figure 10 shows the deglitcher controls for both left and right channels which are produced by timing control logic. A delay of 1.5μ s (t ω) is provided to allow the output of the PCM56P to settle within a small error band around its final value before connecting it to the channel output. Due to the fast settling time of the PCM56P it is possible to minimize the delay between the left- and right-channel outputs when using a single D/A converter for both channels. This is important because the right- and left-channel data are recorded in-phase and the use of a slower D/A converter would result in significant phase error at higher frequencies.

The obvious solution to the phase shift problem in a two-channel system would be to use two D/A converters (one per channel) and time the outputs to change simultaneously. Figure 11 shows a block diagram of the final test circuitry used for PCM56P. It should be noted that no deglitching circuitry is required on the DAC output to meet specified THD performance. This means that when one PCM56P is used per channel, the need for all the sample/hold and controls circuitry associated with a single DAC (two-channel) design is effectively eliminated. The PCM56P is tested to meet its THD specifications without the need for output deglitching.

A low-pass filter is required after the PCM56P to remove all unwanted frequency components caused by the sampling frequency as well as those resulting from the discrete nature of the D/A output. This filter must have a flat frequency response over the entire audio band (0-20kHz) and a very high attenuation above 20kHz. Most previous digital audio circuits used a higher order (9–13 pole) analog filter. However, the phase response of an analog filter with these amplitude characteristics is nonlinear and can disturb the pulse-shaped characteristic transients contained in music.

SECOND GENERATION SYSTEMS

One method of avoiding the problems associated with a higher order analog filter would be to use digital filter oversampling techniques. Oversampling by a factor of two would move the sampling frequency (88.2kHz) out to a point where only a simple low-order phase-linear analog filter is required after the deglitcher output to remove unwanted intermodulation products. In a digital compact disc application, various VLSI chips perform the functions of error detection/correction, digital filtering, and formatting of the digital information to provide the clock, latch enable, and serial input to the PCM56P. These VLSI chips are available from several sources (Sony, Yamaha, Signetics, etc.) and are specifically optimized for digital audio applications.

Oversampled circuitry requires a very fast D/A converter since the sampling freuqency is multiplied by a factor of two or more (for each output channel). A single PCM56P can provide two-channel oversampling at a 4X rate (176.4kHz/channel) and still remain well within the settling time requirements for maintaining specified THD performance. This would reduce the complexities of the analog filter even further from that used in 2X oversampling circuitry.

FIGURE 11. Block Diagram of Distortion Test Circuit.

THIS PAGE INTENTIONALLY LEFT BLANK

DAC703/883B SERIES DAC703VG/883B DAC703VG

DAC703VL/883B DAC703VL

REVISION NONE APRIL, 1987

Monolithic 16-Bit Military DIGITAL-TO-ANALOG CONVERTER

FEATURES

- FULLY COMPLIANT MIL-STD-883 PROCESSING
- MONOLITHIC CONSTRUCTION
- HIGH ACCURACY: Linearity Error $\pm 0.003\%$ of FSR max Differential Linearity Error $\pm 0.006\%$ of FSR max
- MONOTONIC (at 14 bits) OVER FULL MILITARY **TEMPERATURE RANGE**
- PIN-COMPATIBLE WITH DAC72 (COB model)
- DUAL-IN-LINE AND LCC PACKAGES

DESCRIPTION

This is a complete 16-bit bipolar output $(\pm 10V)$ digital-to-analog converter that includes a precision buried-zener voltage reference and a low-noise, fastsettling output operational amplifier, all on one small monolithic chip. A combination of currentswitch design techniques accomplishes not only 14bit monotonicity over the military operating temperature range but also a maximum end-point linearity error of $\pm 0.003\%$ of full-scale range (at $\pm 25^{\circ}$ C). Differential linearity at +25°C is 0.006% of FSR.

Digital inputs are complementary binary coded and are TTL-, LSTTL-, 54/74C- and 54/74HCcompatible over the entire temperature range.

Two product assurance levels are available: Standard and /883B. The Standard product assurance level offers Hi-Rel manufacturing where many MIL-STD-883 screens are performed routinely. The /883B product assurance level, /883B suffix, offers Hi-Rel manufacturing, 100% screening per MIL-STD-883 method 5004 and 5% PDA. Quality assurance further processes /883B devices, by performing group A and B inspections on each inspection lot and group C and D inspections as required by MIL-STD-883. A report containing the most recent group A, B, C, and D tests is available for a nominal charge.

International Airport Industrial Park 🔹 P.O. Box 11400 🔹 Tucson, Arizona 85734 🔹 Tel.: (602) 746-1111 🔹 Twx: 910-952-1111 🔹 Cable: BBRCORP 🗢 Telex: 66-6491

PDS-751

DETAILED SPECIFICATION **MICROCIRCUITS. LINEAR DIGITAL-TO-ANALOG CONVERTER** MONOLITHIC, SILICON

1. SCOPE

1.1 Scope. This specification covers the detail requirements for a 16-bit, voltage output, digital-to-analog converter monolithic microcircuit.

1.2 Part number. The complete part number is as shown below.

1.2.1 Device type. The device is a single 16-bit bipolar voltage output digital-to-analog converter. The input coding is complementary offset binary (COB). There is one electrical performance grade (V grade). This grade features specifications and testing over the Military temperature range (-55° C to $+125^{\circ}$ C). Electrical specifications and tests are shown in Tables I and II.

1.2.2 Device class. The device class is similar to the class B product assurance level as defined in MIL-M-38510. The Hi-Rel product designator portion of the part number distinguishes the product assurance levels available as follows:

Hi-Rel product designator	Requirements
/883B	Standard model plus 100% MIL-STD-883B class B screening, with 5% PDA, plus Quality
	lot, plus Groups C and D performed as required by MIL-STD-883.
(none)	Standard model including 100% electrical testing.

Standard model including 100% electrical testing.

1.2.3 Case outline. Two case outlines are available.

1.2.3.1 24-pin ceramic side-brazed (DIP). The "G" package identifier is utilized to specify the 24-pin ceramic side-brazed package, which is MIL-M-38510, Appendix C, designator D-3, configuration 3. Figure 1 depicts the case outline for this package type.

1.2.3.2 28-terminal leadless chip carrier (LCC). The "L" package identifier is utilized to specify the 28-terminal square leadless chip carrier package, which is MIL-M-38510, Appendix C, designator C-4. Figure 1 depicts the case outline for this package type.

1.2.4 Absolute maximum ratings.

	Supply voltage, V _{cc} to common	± 18 VDC
	Supply voltage, V _{DD} to common	0VDC to +18VDC
	Digital data input voltage to common	-1VDC to +7VDC
	Short circuit duration:	
	Reference output to common	Continuous
	D/A voltage out to common	Continuous
	External voltage applied to D/A output	-5V to $+5V$
	Storage temperature range	-65°C to +165°C
	Temperature (soldering 10s)	+300°C
	Junction temperature	$t_J = +175^{\circ}C$
pei	rating conditions.	

1.2.5 Recommended o

Supply voltage, $\pm V_{CC}$ Supply voltage, $\pm V_{DD}$ Ambient temperature range $\pm 15 VDC$ +5VDC -55°C to +125°C

1.2.6 Power and thermal characteristics.

Package	Case outline	Maximum allowable power dissipation	Maximum θJ-C
24-lead DIP	Figure 1	1000mW	25°C/W
28-terminal LCC	Figure 1	1000mW	48°C/W

NOTE: Leads in true position within 0.01" (0.25mm) R at MMC at seating plane.

Pin numbers shown for reference only. Numbers may not be marked on package.

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
A	1.185	1.215	30.10	30.86
В	.600	.620	15.24	15.75
С	.125	.171	3.18	4.34
D	.015	.021	0.38	0.53
F	.035	.060	0.89	1.52
4 · · · · · · · · · · · · · · · · · · ·	.100 BASIC		2.54 BASIC	
G	.100 E	BASIC	2.54 B	ASIC
G H	.100 E	ASIC .070	2.54 B 0.76	ASIC 1.78
G H J	.100 E .030 .008	ASIC .070 .012	2.54 B 0.76 0.20	ASIC 1.78 0.30
G H J K	.100 E .030 .008 .120	.070 .012 .240	2.54 B 0.76 0.20 2.05	ASIC 1.78 0.30 6.10
G H J K L	.100 E .030 .008 .120 .600 E	.070 .012 .240 BASIC	2.54 B 0.76 0.20 2.05 15.24 E	ASIC 1.78 0.30 6.10 BASIC
GHJKLX	.100 E .030 .008 .120 .600 E	ASIC .070 .012 .240 ASIC 10°	2.54 B 0.76 0.20 2.05 15.24 E	ASIC 1.78 0.30 6.10 3ASIC 10°

(a) 24-pin side braze; package ID: "G".

FIGURE 1. Case Outlines.

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specifications and standards form a part of this specification to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510-Microcircuits, general specification for.

STANDARD

MILITARY

MIL-STD-883-Test methods and procedures for microcircuits.

2.2 Order of precedence. In the event of a conflict between the text of this specification and the references cited herein, the text of this specification shall take precedence.

3. REQUIREMENTS

3.1 General. Burr-Brown used production and test facilities and a quality and reliability assurance program adequate to assure successful compliance with this specification.

3.1.1 Detail specifications. The individual item requirements are specified herein. In the event of conflicting requirements, the order of precedence will be the purchase order, this specification, and then the reference documents.

3.2 Design, construction, and physical dimensions.

3.2.1 Package, metals, and other materials. The packages, metal surfaces, and other materials are in accordance with MIL-M-38510.

3.2.2 Design documentation. The design documentation is in accordance with MIL-M-38510.

3.2.3 Internal conductors and internal wires. The internal conductors and internal lead wires are in accordance with MIL-M-38510.

3.2.4 Lead material and finish. The lead material and finish is in accordance with MIL-M-38510 and is solderable per MIL-STD-883, method 2003.

C

MAX

11.63

11.63

2.54

0.71

(b) 28-terminal LCC; package ID: "L"

3.2.5 Die thickness. The die thickness is in accordance with MIL-M-38510.

3.2.6 <u>Physical dimensions</u>. The physical dimensions are in accordance with paragraph 1.2.3 herein and are shown in Figure 1.

3.2.7 Circuit diagram and terminal connections. The circuit diagram and terminal connections are shown in Figures 2 and 3.

3.2.8 Glassivation. The microcircuit dice are glassivated.

3.3 Electrical performance characteristics. The electrical performance characteristics are specified in Table I and apply over the full operating ambient temperature range of -55° C to $+125^{\circ}$ C unless otherwise specified.

3.4 <u>Electrical test requirements</u>. Electrical test requirements are shown in Table II. The subgroups of Table I, which constitute the minimum electrical test requirements for screening, qualification, and quality conformance inspection, are specified in Table II.

FIGURE 2. "G" Package Circuit Diagram and Terminal Connections.

FIGURE 3. "L" Package Circuit Diagram and Terminal Connections.

TABLE I. Electrical Performance Characteristics.

($T_{A} = -55^{\circ}C \text{ to } +125$	°C. Supply Voltages	$\pm V_{cc} = \pm 15 VDC$	$V_{pp} = +5VDC$
٠.		o, oupping vontagoo	- TIC - TICIDO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

		GROUP A	DA	C703 "V" GRA	DE	
CHARACTERISTICS	CONDITIONS	SUBGROUPS	MIN	TYP	MAX	UNITS
INPUT						
DIGITAL INPUT Resolution 1/					16	Bits
Ugnarinipusz/ Viн Vit Iiн	$V_1 = +2.7V$	1 1	+2.4 -1.0		+V _{cc} +0.8 +40	ν ν μΑ
1 _{1L}	V1 = +0.4V	1			-0.5	<u>ma</u>
TRANSFER CHARACTERISTICS	·				T	
ACCURACY Linearity Error Differential Linearity Error	$T_{A} = +25^{\circ}C$ -55^{\circ}C $\leq T_{A} \leq +125^{\circ}C$ $T_{A} = +25^{\circ}C$ -55^{\circ}C $\leq T_{A} \leq +125^{\circ}C$ $T_{a} = -25^{\circ}C$	1 2, 3 1 2, 3	-0.003 -0.006 -0.006 -0.006		+0.003 +0.006 +0.006 +0.009	% of FSR 3/ % of FSR % of FSR % of FSR % of FSR
Zero Error 4/ Monotonicity over Temp. Range 1/	$T_{A} = +25^{\circ}C$	1 1, 2, 3	-0.1 14		+0.1	% of FSR Bits
DRIFT Gain Drift Zero Drift Total Error over Temperature		2, 3 2, 3	-20 -15 -0.1		+20 +15 +0.1	ppm/°C ppm/°C % of FSR
DYNAMIC CHARACTERISTICS					•	
Settling Time	to $\pm 0.003\%$, R _L = 2k Ω Full-Scale Output Step	9		4	8	μs
Slew Hate	$R_1 = 2k\Omega$	9	10			V/μs
OUTPUT Output Voltage Output Current Output Impedance		1	±5	±10 0.15		V mA Ω
Reference Voltage Source Current	For external loads	1, 2, 3	+6.0	+6.3 +2.5	+6.6	V mA
Temperature Coefficient	·	1, 2, 3	-15		+15	ppm/°C
POWER SUPPLY REQUIREMENTS						
Suply Voltage, +Vcc -Vcc Voo Supply Currents, -Icc -Icc Ioo		1 1 1	+13.5 13.5 +4.5	+15 15 +5	+16.5 -16.5 +16.5 +30 -30 +8	V V MA MA MA
Power Supply Rejection	$\begin{array}{l} \text{Delta} + V_{\text{CC}} = \pm 1 \text{V} \ \text{T}_{\text{A}} = 25^{\circ}\text{C} \\ \text{Delta} - V_{\text{CC}} = \pm 1 \text{V} \ \text{T}_{\text{A}} = 25^{\circ}\text{C} \\ \text{Delta} \ V_{\text{DD}} = \pm 1 \text{V} \ \text{T}_{\text{A}} = 25^{\circ}\text{C} \end{array}$	1 1 1			4 4 4	mV/V mV/V mV/V

NOTES:

1/ 1LSB = 0.305mV. 2/ Digital Inputs are TTL-, LSTTL-, 54/74C-, 54/74HC-, and 54/74HTC-compatible over the operating voltage range of V_{DD} = +5V to +15V and over the 2/ Digital Inputs are TTL-, LSTTL-, 54/74C-, 54/74HC-, and 54/74HTC-compatible over the operating voltage range of V_{DD} = +5V to +15V. As logic operating temperature range. The input switching threshold remains at the TTL threshold of 1.4V over the supply range of Vob = +5V to +15V. As logic "0" and "1" Inputs vary over 0V to +0.8V and +2.4V to +10V respectively, the change in the D/A converter output voltage will not exceed ±0.003% of FSR.

3/ FSR = full-scale range = 20V.

4/ Adjustable to zero.

TABLE II. Electrical Test Requirements.

(The individual tests within the subgroups appear in Table I)

	MODELS	DAC703VG/883B DAC703VL/883B	DAC703GL DAC703VL
MIL-STD-883 TEST REQUIREMENTS		Subgroups (se	e table I)
Interim electrical parameters (preburn-in) (method 5005)		1	1
Final electrical test parameters (method 5005)		1*, 2, 3	1, 2, 3
Group A test requirements (method 5005)		1, 2, 3	N/A
Group C and D end point electrical parameters (method 5005)		1 and Table III	N/A
Additional electrical subgroups performed in addition to Group C inspection		9**	N/A

**PDA applies to subgroup 1. **Performed to an LTPD of 5.

PARAMETER	LIMIT
Gain Error	±0.2% of FSR*
Linearity Error	±5LSB**
Differential Linearity Error	±8LSB

TABLE III. Additional End-Point Limits (after 1000Hr Life Test).

*FSR = full-scale range. **1LSB = 0.305mV

3.5 <u>Marking</u>. Marking is in accordance with MIL-M-38510. The following marking is placed on each microcircuit as a minimum:

- a. Part number (see paragraph 1.2)
- b. Inspection lot identification code 1/

c. Manufacturer's identification (

- d. Manufacturer's designating symbol (CEBS)
- e. Country of origin
- f. Electrostatic sensitivity identifier(Δ)

3.6 <u>Workmanship</u>. These microcircuits are manufactured, processed, and tested in a workmanlike manner. Workmanship is in accordance with good engineering practices, workmanlike instructions, inspection and test procedures and training, prepared in fulfillment of Burr-Brown's product assurance program.

3.6.1 <u>Rework provisions</u>. Rework provisions, including rebonding for the "/883B" product designation, are in accordance with MIL-M-38510.

3.7 Traceability. Traceability for the "/883B" product designation is in accordance with MIL-M-38510. Each microcircuit is traceable to the production lot and to the component vendor's component lot.

3.8 <u>Product and process change</u>. Burr-Brown will not implement any major change to the design, materials, construction, or manufacturing process which may affect the performance, quality or interchangeability of the microcircuit without full or partial requalification.

3.9 Screening. Screening for the "/833B" Hi-Rel product designation is in accordance with MIL-STD-883B, method 5004, class B, and as specified herein.

Screening for the standard model includes Burr-Brown QC4118 internal visual inspection, stabilization bake, fine leak, gross leak, constant acceleration (condition A), temperature cycle (condition C), and external visual per MIL-STD-883B method 2009.

For the "/883B" product designation, all microcircuits will have passed the screening requirements prior to qualification or quality conformance inspection.

3.10 Qualification. Qualification is not required. See paragraph 4.2 herein.

3.11 <u>Quality conformance inspection</u>. Quality conformance inspection (QCI), for the "/883B" product designation, is in accordance with MIL-STD-883, and as specified in paragraph 4.4 herein. The microcircuit inpsection lot will have passed quality conformance inspection prior to microcircuit delivery.

4. PRODUCT ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures are in accordance with MIL-M-38510 and MIL-STD-883, method 5005.

4.2 Qualification. Qualification is not required unless specifically required by contract or purchase order. When so required, qualification will be in accordance with the inspection routine of MIL-M-38510. The inspections to be performed are those specified herein for Groups A, B, C, and D inspections (see paragraphs 4.4.1, 4.4.2, 4.4.3, and 4.4.4 herein.).

4.3 <u>Screening</u>. Screening for the "/883B" Hi-Rel product designation is in accordance with MIL-STD-883, method 5004, class B, and is conducted on all devices. The following criteria apply:

a. Interim and final test parameters are specified in Table II.

- b. Burn-in test (MIL-STD-883, method 1015) conditions:
 - (1) Test condition B.
 - (2) Test circuit is Figure 4.
 - (3) $T_A = +125^{\circ}C$.
 - (4) Test duration is 160 hours minimum.

1/A 4-digit code, indicating year and week of seal, and a 4- or 5-digit lot identifier are marked on each unit.

196

- c. Percent defective allowable (PDA). The PDA, for "/883B" product designation only, is five percent and includes both parametric and catastrophic failures from Group A, Subgroub 1 test, after cool-down as final electrical test in accordance with MIL-STD-883, method 5005, and with no intervening electrical measurements. If interim electrical parameter tests are performed prior to burn-in, failures resulting from preburn-in screening failures may be excluded from the PDA. If interim electrical parameter tests are omitted, all screening failures shall be included in the PDA. The verified failures of Group A, Subgroup 1, after burn-in are used to determine the Percent Defective for each manufacturing lot, and the lot is accepted or rejected based on PDA.
- d. External visual inspection need not include measurement of case and lead dimensions.

4.4 Quality conformance inspection. Groups A and B inspections of MIL-STD-883, method 5005, class B, are performed on each inspection lot. Groups C and D inspections of MIL-STD-883, method 5005, class B are performed as required by MIL-STD-883.

A report of the most recent Group C and D inspections is available from Burr-Brown.

4.4.1 Group A inspection. Group A inspection consists of the test subgroups and LTPD values shown in MIL-STD-883, method 5005, and as specified in Table II herein.

4.4.2 Group B inspection. Group B inspection consists of the test subgroups and LTPD values shown in MIL-STD-883, method 5005, class B.

4.4.3 <u>Group C inspection</u>. Group C inspection consists of the subgroups and LTPD values shown in MIL-STD-883, method 5005, class B, and as follows:

- a. Operating life test (MIL-STD-883, method 1005) conditions:
 - (1) Test condition B.
 - (2) Test circuit is Figure 4.
 - (3) $T_A = +125^{\circ}C$ minimum.
 - (4) Test duration is 1000 hours minimum.

b. End point electrical parameters are specified in Table II herein.

4.4.4 <u>Group D inspection</u>. Group D inspection consists of the test subgroups and LTPD values shown in MIL-STD-883, method 5005. End point electrical parameters are specified in Table II herein.

4.4.5 Inspection of packaging. Inspection of packaging shall be in accordance with MIL-M-38510.

4.5 <u>Methods of examination and test</u>. Methods of examination and test are specified in the appropriate tables. Electrical test circuits are as prescribed herein or in the referenced test methods of MIL-STD-883.

4.5.1 Voltage and current. All voltage values given, except the input offset voltage (or differential voltage) are referenced to the external zero reference level of the supply voltage. Currents given are conventional current and positive when flowing into the referenced terminal.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

(a) 24-Pin Side-Brazed "G" Package

(b) 28-Terminal LCC "L" Package

FIGURE 4. Test Circuit for Burn-In and Operating Life Test.

6. NOTES

6.1 Notes. The notes specified in MIL-M-38510 are applicable to this specification.

6.2 Intended use. Microcircuits conforming to this specification are intended for use in applications where the use of screened parts is required or desirable.

6.3 Ordering Data. The contract or purchase order should specify the following:

a. Complete part number (see paragraph 1.2).

b. Requirement for certificate of compliance, if desired.

6.4 <u>Microcircuit group assignment</u>. These microcircuits are assigned to technology group D with a microcircuit group number of 56 as defined in MIL-M-38510, Appendix E.

6.5 <u>Electrostatic sensitivity</u>. Caution—these microcircuits may be damaged by electrostatic discharge. Precautions should be observed at all times.

6.6 Definitions.

6.6.1 Linearity. This specification describes one of the most important measures of performance of a D/A converter. Linearity error is the deviation of the analog output from a straight line drawn through the end points (all bits ON point and all bits OFF point).

6.6.2 <u>Differential linearity error</u>. Differential linearity error (DLE) of a D/A converter is the deviation from its ideal 1LSB change in the output from one adjacent output state to the next. A differential linearity error specification of $\pm 1/2$ LSB means that the output step sizes can be between 1/2LSB and 3/2LSB when the input changes from one adjacent input state to the next. A negative DLE specification of no more than -1LSB (-0.006%FSR for 14-bit resolution) insures monotonicity.

6.6.3 <u>Monotonicity</u>. Monotonicity assures that the analog output will increase or remain the same for increasing input digital codes. The DAC703 is specified to be monotonic to 14 bits over the entire specification temperature range.

6.6.4 <u>Gain error</u>. Gain error is the difference between the ideal full-scale output and the actual output of the D/A converter. For the DAC703 this is at 0000H and FFFFH.

6.6.5 Zero error. Zero error is the difference between zero volts and the actual D/A converter output at the zero output code (7FFFH).

7. APPLICATION INFORMATION.

7.1 <u>Power supply decoupling</u>. For optimum performance and noise rejection, each power supply should be decoupled by connecting a 1μ F tantalum or electrolytic capacitors, is used, should be paralleled with 0.01μ F ceramic capacitors for best high-frequency performance.

7.2 <u>Power-supply sensitivity</u>. Power-supply sensitivity is specified in Table I. Power-supply sensitivity versus ripple frequency is shown in Figure 5.

7.3 External zero and gain error adjustment. The untrimmed accuracy of the DAC can be adjusted using the circuitry shown in Figures 2 and 3.

7.3.1 Zero adjustment. Apply the digital input code 7FFFH, which should produce zero volts output. Adjust the offset potentiometer until the output is zero volts.

7.3.2 Gain adjustment. Apply the digital input code 0000H, which should produce 9.99969 volts output. Adjust the gain potentiometer to produce 9.99969 volts.

7.4 Further information. Further application information can be found in Burr-Brown's commercial data sheet for the DAC700/702, DAC701/703.

FIGURE 5. Power Supply Rejection Versus Power Supply Ripple Frequency.

INA101/883B SERIES

INA101VM/883B INA101VM INA101VG/883B INA101VG

APRIL, 1987

Very High Accuracy Military INSTRUMENTATION AMPLIFIER

FEATURES

- FULLY COMPLIANT MIL-STD-883 PROCESSING
- ULTRA-LOW VOLTAGE DRIFT: 1.75μ V/°C (A = 1000)
- LOW OFFSET VOLTAGE: 50µV
- LOW NONLINEARITY: 0.005%
- LOW NOISE: $13nV/\sqrt{Hz}$ at $f_0 = 1kHz$
- HIGH CMR: 106dB at 60Hz
- HIGH INPUT IMPEDANCE: 10¹⁰Ω

DESCRIPTION

The INA101 is a high-accuracy, multistage, militarygrade, integrated-circuit instrumentation amplifier designed for signal conditioning requirements where very high performance is desired. All circuits, including the interconnected laser-trimmed thin-film resistors, are integrated on a single monolithic substrate.

A multiamplifier design is used to provide the highest performance and maximum versatility with monolithic construction for low cost. The input stage uses Burr-Brown's ultra-low drift, low-noise technology to provide exceptional input characteristics.

APPLICATIONS

- AMPLIFICATION OF SIGNALS FROM SOURCES SUCH AS: Strain Gauges
 - Thermocouples RTDs
- REMOTE TRANSDUCERS
- LOW LEVEL SIGNALS

Two product assurance levels are available: Standard and /883B. The Standard product assurance level offers Hi-Rel manufacturing where many MIL-STD-883 screens are performed routinely. The /883B product assurace level, /883B suffix, offers Hi-Rel manufacturing, 100% screening per MIL-STD-883 method 5004 and 5% PDA. Quality assurance further processes /883 devices, by performing lot and group C and D inspections as required by MIL-STD-883. A report containing the most recent group A, B, C, and D tests is available for a nominal charge.

International Airport Industrial Park 🔹 P.O. Box 11400 🔹 Tucson, Arizona 85734 🔹 Tel.: (602) 746-1111 🔍 Twx: 910-952-1111 🖷 Cable: BBRCORP 🗨 Telex: 66-6491

PDS-752

DETAILED SPECIFICATION MICROCIRCUITS, LINEAR INSTRUMENTATION AMPLIFIER MONOLITHIC, SILICON

1. SCOPE

1.1 <u>Scope</u>. This specification covers the detail requirements for a very high accuracy instrumentation amplifier. For description of operation see paragraph 8.

1.2 Part Number. The complete part number is as shown below.

1.2.1 Device type. The device is a single instrumentation amplifier. One electrical performance grade ("V") is provided. The "V" grade offers specifications and operation over the Military temperature range (-55°C to +125°C). Electrical performance characteristics are shown in Table I, and Electrical tests are shown in Tables II and III.

1.2.2 Device class. The device class is similar to the product assurance level B, as defined in MIL-M-38510. The Hi-Rel product designator portion of the part number distinguishes the product assurance level as follows:

Hi-Rel product

designator

Requirements Standard model, plus 100% MIL-STD-883 class B screening, with 5% PDA, plus quality conformance inspection (QCI) consisting of Groups A and B performed on

- /883B
 - each inspection lot, plus Groups C and D performed initially and annually thereafter.

(none) Standard model including 100% electrical testing.

1.2.3 Case outline. Two package options are available ("G" and "M").

- a. The "G" package is a 14-terminal ceramic side braze DIP and is case outline D-1, configuration 3, as defined in MIL-M-38510, Appendix C (see Figure 1a).
- b. The "M" package is a 10-lead can, TO-100, and is case outline D-1 as defined in MIL-M-38510, Appendix C (see Figure 1b).
- 1.2.4 Absolute maximum ratings.

Positive supply voltage $(+V_{cc})$	0 to +20VDC
Negative supply voltage (-V _{CC})	0 to -20VDC
Duration output short circuit to ground	Continuous
Lead temperature (soldering, 10s)	+300°C
Junction temperature	+175°C
Storage temperature range	-65°C to +150°C
ng conditions.	

1.2.5 <u>Recommended operating conditions</u>.

Positive supply voltage $(+V_{CC})$ Negative supply voltage $(-V_{CC})$ Ambient temperature range +11VDC to +20VDC -11VDC to -20VDC -55°C to +125°C

1.2.6 Power and thermal characteristics.

Package	Case outline	Maximum allowable power dissipation	Maximum θ_{JC}
10-lead TO-100	Figure 1	600mW	60°C/W
14-lead DIP	Figure 1	600mW	50°C/W

2. APPLICABLE DOCUMENTS

2.1 The following form a part of this specification to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510-Microcircuits, general specification for.

STANDARD

MILITARY

MIL-STD-883-Test methods and procedures for microcircuits.

INA101VM INA101VG/883B INA101VG CHARACTERISTICS SYMBOL CONDITIONS MIN TYP MAX UNITS GAIN Range of Gain $A_v = 1 + (40 k/R_g) 1/$ 1 1000 V/V Av Gain Equation Error EAV $A_V = 1$, $T_A = +25^{\circ}C$ 0.05 % FS $A_V = 10$, $T_A = +25^{\circ}C$ % FS 0.10 $A_V = 100, T_A = +25^{\circ}C$ 0.10 % FS $A_V = 1000, T_A = +25^{\circ}C$ % FS 0.40 Gain Tempco 2/ ppm/°C $\Delta A_v / \Delta T$ $A_{\nu}=1$ 2 ppm/°C 20 $A_{\rm V}=10$ ppm/°C $A_{V} = 100$ 22 $A_{v} = 1000$ 22 ppm/°C DC Nonlinearity NL $A_V = 1, T_A = +25^{\circ}C$ 0.005 % $A_V = 10, T_A = +25^{\circ}C$ 0.005 % $A_v = 100, T_A = +25^{\circ}C$ 0.007 % $A_V = 1000$, $T_A = +25^{\circ}C$ 0.025 % RATED OUTPUT Voltage $R_L = 2k\Omega$, $T_A = +25^{\circ}C$ ±10 v VOP mA Current ±5 lo 0.2 Ω Impedance Zo INPUT OFFSET VOLTAGE Initial 3/ $A_v = 10, T_A = +25^{\circ}C$ ±75 μV Vio Vio $A_V = 1000, T_A = +25^{\circ}C$ ±50 μV vs Temperature $\Delta V_{10} / \Delta T$ $A_v = 10, -55^{\circ}C \le T_A \le +125^{\circ}C$ ±2.5 µV/°C µV/⁰C $A_V = 1000, -55^{\circ}C \le T_A \le +125^{\circ}C$ ±1.75 PSRR $A_V = 1$, $\Delta V_{CC} = \pm 5 VDC$, $T_A = +25^{\circ}C$. μV/V vs Supply 35 $A_V = 1000, \Delta V_{CC} = \pm 5 VDC, T_A = +25^{\circ}C$ 2 . μV/V INPUT BIAS CURRENT Initial $T_A = +25^{\circ}C$ ±30 nA I_{IB} ±0.2 nA/°C Tempco $\Delta I_{1B} / \Delta T$ INPUT OFFSET CURRENT Initial $T_A = +25^{\circ}C$ ±30 nΑ lıo nA/°C $\Delta I_{10} / \Delta T$ ±0.5 Tempco INPUT IMPEDANCE 10¹⁰||3 Differential ZID $T_A = +25^{\circ}C$ $\Omega \parallel pF$ 10¹⁰||3 Common Mode ZICM $T_A = +25^{\circ}C$ $\Omega \parallel pF$ INPUT VOLTAGE V_{IN} CMR +10ν Linear Response Range Common-Mode Rejection DC-60Hz, $A_v = 1k\Omega$ Source Imbalance $T_A = +25^{\circ}C$ 80 dB DC-60Hz, $A_v = 10$, $1k\Omega$ Source Imbalance $T_A = +25^{\circ}C$ 96 dB DC-60Hz, A_v = 100-1000. $1k\Omega$ Source Imbalance, $T_A = +25^{\circ}C$ 106 dB INPUT NOISE Input Voltage Noise $f_B = 0.01$ to 10Hz, $T_A = +25^{\circ}C$ 0.8 μV, p-p ENPP $A_v = 1000$, $f_0 = 10Hz$, $T_A = +25^{\circ}C$ 18 nV/√Hz EΝ $A_V = 1000$, $f_0 = 100Hz$, $T_A = +25^{\circ}C$ 15 nV/√Hz $A_V = 1000, f_0 = 1 \text{kHz}, T_A = +25^{\circ}\text{C}$ 13 nV/√Hz Input Current Noise $f_B = 0.01$ Hz to 10Hz, $T_A = +25^{\circ}$ C 50 pA, p-p INPP pA/√Hz $f_0 = 10Hz$, $T_A = +25^{\circ}C$ 0.8 l_N $f_0 = 100 Hz$, $T_A = +25^{\circ}C$ 0.46 pA/√Hz pA/√Hz $f_0 = 1 \text{kHz}, T_A = +25^{\circ}\text{C}$ 0.35 DYNAMIC RESPONSE Slew Rate $A_V = 1$ to 100, $B_L = 2k\Omega$, $T_A = +25^{\circ}C$ 0.2 V/µs SR 3dB small signal, $A_V = 1$, $T_A = +25^{\circ}C$ 300 kĤz

TABLE I. Electrical Performance Characteristics. All characteristics at $-55^{\circ}C \le T_A \le +125^{\circ}C$, $\pm V_{CC} = 15VDC$, unless otherwise specified.

INA101VM/883B

NOTES:

Bandwidth

Settling Time

POWER SUPPLY

Quiescent Current

Rated Voltage

lo 1/ Typically the tolerance of R_G will be the major source of gain error.

 $\pm V_{cc}$

вw

BW

 T_{S}

2/ Not including TCR of Rg.

3/ Adjustable to zero at any one gain.

Full power $A_v = 1$ to 1000, $T_A = +25^{\circ}C$

 $A_v = 100, T_A = +25^{\circ}C$

 $A_v = 1000, T_A = +25^{\circ}C$

0.01%, $A_V = 1$, $T_A = +25^{\circ}C$

 $T_A = +25^{\circ}C$

 $A_v = 10, T_A = +25^{\circ}C$ $A_v = 100, T_A = +25^{\circ}C$

 $A_v = 1000, T_A = +25^{\circ}C$

140

25

2.5

6.4

30

50

500

 ± 15

+20

+8.5

±5

kHz

kHz

kH7

kHz

μs

μs

μs

v

mΑ

TABLE II. Electrical Test Requirements.

(The individual tests within the subgroups appear in Table III)

MIL-STD-883 REQUIREMENTS (Class B)	INA101VM/883B INA101VG/883B	INA101VM INA101VG
Interim electrical parameters (preburn-in) (method 5004) Final electrical test parameters (method 5004) Group A test requirements (method 5005) Group C and D end point electrical parameters (method 5005)	1 1*, 2, 3, 4 1, 2, 3, 4 1	1, 2, 3, 4

*PDA applies to subgroup 1 (see 4.3.c).

TABLE III. Group A Inspection.

				LIM INA101V INA101V INA101V	11TS /M/883B /M /G/883B	
		MIL-STD-883 METHOD OR	CONDITIONS (±Vcc = 15VDC	INA101	/G	
SUBGROUP	SYMBOL	EQUIVALENT	unless otherwise specified)	MIN	MAX	UNITS
1 T _A = 25°C	Vio	4001	$\begin{array}{l} A_v = 10 \\ A_v = 1000 \end{array}$		±75 ±50 ±20	μV μV
	lio	4001 4005			±20 ±0.5	nA mA
	PSRR	4003			±35 ±2	μV/V μV/V
	CMR	4003	DC, $A_V = 1$, $1k\Omega$ Source Imbalance DC, $A_V = 10$, $1k\Omega$ Source Imbalance DC, $A_V = 100-1000$, $1k\Omega$ Source Imbalance	80 96 106		dB dB dB
2. T _A = 125°C	ΔV _{IO} /ΔT	4001	$ \begin{split} A_V &= 10 \ \cdot \\ [V_{io} \ (125^\circ C) - V_{io} \ (25^\circ C)] \ \div \ 100 \\ A_V &= 1000 \\ [V_{io} \ (125^\circ C) - V_{io} \ (25^\circ C)] \ \div \ 100 \end{split} $		±2.5 ±1.75	μV/°C μV/ [°] C
3 T _A = -55°C	ΔV _{I0} /ΔΤ	4001			±25 ±1.75	μV/°C μV/°C
4 T _A = 25°C	E _{AV}	4004	Gain Equation Error: $A_v = 1$ $A_v = 10$ $A_v = 100$ $A_v = 1000$ $R_L = 2k\Omega$	±10	0.05 0.10 0.10 0.40	%FS %FS %FS %FS V
	SR NL <u>1</u> /	Figure 4		0.2	0.005 0.005 0.007 0.025	V/µs % % %

NOTES:

 $1/E_1 = 0V$ and E_2 is varied to enable nonlinearity error to be measured by sampling 21 points between $-10V \le E_{out} \le +10V$ and determining worst case deviation from straight line connecting these end points at each gain setting.

NOTE: Leads in true position within 0.01" (0.25mm) R at MMC at seating plane.

Pin numbers shown for reference only. Numbers may not be marked on package.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	.670	.710	17.02	18.03
С	.065	.170	1.65	4.32
D	.015	.021	0.38	0.53
F	.045	.060	1.14	1.52
G	.100 E	BASIC	2.54 BASIC	
н	.025	.070	0.64	1.78
J	.008	.012	0.20	0.30
к	.120	.240	3.05	6.10
L	.300 BASIC		7.62 E	BASIC
М	-	10°	-	10°
N	.009	.060	0.23	1.52

(a) 14-Pin Ceramic Side Braze-Package ID: "G"

NOTE: Leads in true position within 0.01" (0.25mm) R at MMC at seating plane.

Pin numbers shown for reference only. Numbers may not be marked on package.

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	·.335	.370	8.51	9.40
В	.305	.335	7.75	8.51
С	.165	.185	4.19	4.70
D	.016	.021	0.41	0.53
Е	.010	.040	0.25	1.02
F	.010	.040	0.25	1.02
G	.230 E	ASIC	5.84 E	ASIC
н	.028	.034	0.71	0.86
J	.029	.045	0.74	1.14
К	.500		12.70	
L	.120	.160	3.05	4.06
М	36° BASIC		· 36° B	ASIC
N	.110	.120	2.79	3.05

(b) TO-100 Metal Can-Package ID: "M"

FIGURE 1. Case Outlines.

3. REQUIREMENTS

3.1 <u>General</u>. Burr-Brown uses production and test facilities and a quality and reliability assurance program adequate to assure successful compliance with this specification.

3.1.1 <u>Detail specifications</u>. The individual item requirements are specified herein. In the event of conflicting requirements, the order of precedence will be the purchase order, this specification, and then the reference documents.

3.2 Design, construction and physical dimensions.

3.2.1 <u>Package, metals, and other materials</u>. The package, metal surfaces, and other materials are in accordance with MIL-M-38510.

3.2.2 Design documentation. The design documentation is in accordance with MIL-M-38510.

3.2.3. Internal conductors and internal lead wires. The internal conductors and internal lead wires are in accordance with MIL-M-38510.

3.2.4. <u>Lead material and finish</u>. The lead material and finish (gold plate) are in accordance with MIL-M-38510 and is solderable per MIL-STD-883, method 2003.

3.2.5 Die thickness. The die thickness is in accordance with MIL-M-38510.

3.2.6 Physical dimensions. The physical dimensions are in accordance with paragraph 1.2.3 herein.

3.2.7 Circuit diagram and terminal connections. The circuit diagram and terminal connections are shown in Figure 2.

FIGURE 2. Circuit Diagram and Terminal Connections.

3.2.8 Glassivation. The microcircuit die is glassivated.

3.3 <u>Electrical performance characteristics</u>. The electrical performance characteristics are specified in Table I and apply over the full operating ambient temperature range of -55° C to $+125^{\circ}$ C unless otherwise specified.

3.4 <u>Electrical test requirements</u>. Electrical test requirements are shown in Table II. The subgroups of Table III which constitute the minimum electrical test requirements for screening, qualification, and quality conformance, are specified in Table II.

3.5 Marking is in accordance with MIL-M-38510. The following marking is placed on each microcircuit as a minimum:

- a. Part number (see paragraph 1.2)
- b. Inspection lot identification code 1/
- c. Manufacturer's identification (
- d. Manufacturer's designating symbol (CEBS)
- e. Country of origin
- f. Electrostatic sensitivity identifier(Δ)

3.6 Workmanship. These microcircuits are manufactured, processed, and tested in a workmanlike manner. Workmanship is in accordance with good engineering practices, workmanlike instructions, inspection and test procedures, and training prepared in fulfillment of Burr-Brown's product assurance program.

3.6.1. <u>Rework provisions</u>. Rework provisions, including rebonding for the "/883B" Hi-Rel product designation are in accordance with MIL-M-38510.

3.7 <u>Traceability</u>. Traceability for the "/883B" Hi-Rel product designation is in accordance with MIL-M-38510. Each microcircuit is traceable to the production lot and to the component vendor's component lot.

3.8 <u>Product and process change</u>. Burr-Brown will not implement any major change to the design, materials, construction, or manufacturing process which may affect the performance, quality, or interchangeability of the microcircuit without full or partial requalification.

3.9 Screening.

- a. Screening for the "/883B" Hi-Rel product designation is in accordance with MIL-STD-883, method 5004, class B, except as modified in paragraph 4.3 herein. All microcircuits will have passed the screening requirements prior to qualification or quality conformance inspection.
- b. Screening for the standard model (no Hi-Rel product designation) includes Burr-Brown QC4118 internal visual inspection, stabilization bake, fine leak, gross leak, constant acceleration (condition E), temperature cycle (condition C), and external visual per MIL-STD-883, method 2009.

3.10 Qualification. Qualification is not required. See paragraph 4.2 herein.

3.11 Quality conformance inspection. Quality conformance inspection, for the "/883B" Hi-Rel product designation is in accordance with MIL-STD-883 and MIL-M-38510, except as modified in paragraph 4.4 herein. The microcircuit inspection lot will have passed quality conformance inspection prior to microcircuit delivery.

4. PRODUCT ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures are in accordance with MIL-M-38510 and MIL-STD-883, method 5005, except as modified herein.

4.2 <u>Qualification</u>. Qualification is not required unless specifically required by contract or purchase order. When so required, <u>qualification</u> will be in accordance with the inspection routine of MIL-M-38510, paragraph 4.4.2.1. The inspections to be performed are those specified herein for Groups A, B, C, and D inspections (see paragraphs 4.4.1, 4.4.2, 4.4.3, and 4.4.4). Burr-Brown has performed and successfully completed qualification inspection as described above. The most recent report is available from Burr-Brown.

4.3 <u>Screening</u>. Screening for the "/883B" Hi-Rel product designation is in accordance with MIL-STD-883, method 5004, class B, and is conducted on all devices. The following criteria apply:

a. Interim and final test parameters are specified in Table II.

b. Burn-In test (MIL-STD-883, method 1015) conditions:

- (1) Test condition B.
- (2) Test circuit is shown in Figure 3.
- (3) $T_A = +125^{\circ}C$ minimum.
- (4) Test duration 160 hours minimum.
- c. Percent defective allowable (PDA). The PDA, for the "/883B" Hi-Rel product designation only, is 5% based on failures from Group A, subgroup 1 test after cool-down as final electrical in accordance with MIL-STD-883, method 5004, and with no intervening electrical measurements. If interim electrical parameter tests performed prior to burn-in are omitted, all screening failures shall be included in the PDA calculation. The verified failures of group A, subgroup 1 after burn-in for each manufacturing lot are used to determine the percent defective for that lot. Each lot is accepted or rejected based on the PDA.
- d. External visual inspection does not include measurement of case and lead dimensions.

1/A 4-digit code, indicating year and week of seal, and a 4- or 5-digit lot identifier are marked on each unit.

"M" Package (b)

4.4 Quality conformance inspection. Groups A and B inspection of MIL-STD-883, method 5005, class B, are performed on each inspection lot. Group C and D inspections of MIL-STD-883, method 5005, class B are performed as required by MIL-STD-883. A report of the most recent group C and D inspections is available from Burr-Brown.

4.4.1 Group A inspection. Group A inspection consists of the test subgroups and LTPD values shown in MIL-STD-883, method 5005, and as specified in Table II herein.

4.4.2 Group B inspection. Group B inspection consists of the test subgroups and LTPD values shown in MIL-STD-883, method 5005, class B.

4.4.3 Group C inspection. Group C inspection consists of the test subgroups and LTPD values shown in MIL-STD-883, method 5005, and as follows:

a. Operating life test (MIL-STD-883, method 1005) conditions:

- (1) Test condition B.
- (2) Test circuit is shown in Figure 3.

(3) $T_A = +125^{\circ}C$ minimum.

(4) Test duration is 1000 hours minimum.

b. End point electrical parameters are specified in Table II.

4.4.4 Group D. Group D inspection consists of the test subgroups and LTPD values shown in MIL-STD-883, method 5005, end point electrical parameters.

4.4.5 Inspection of packaging. Inspection of packaging shall be in accordance with MIL-M-38510.

4.5 Methods of examination and test. Methods of examination and test are specified in the appropriate tables. Electrical test circuits are as prescribed herein or in the referenced test methods of MIL-STD-883.

4.5.1 Voltage and current. All voltage values given are referenced to the external zero reference level of the supply voltage. Currents given are conventional current and positive when flowing into the referenced terminal.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

6.1 Notes. The notes specified in MIL-M-38510 are applicable to this specification.

6.2 Intended use. Microcircuits conforming are intended for use in applications where the use of screened parts is required or desirable.

6.3 Ordering Data. The contract or purchase order should specify the following:

a. Complete part number (see paragraph 1.2).

b. Requirement for certificate of compliance, if desired.

6.4 Microcircuit group assignment. These microcircuits are assigned to Technology Group D as defined in MIL-M-38510, Appendix E.

6.5 Electrostatic sensitivity, CAUTION-these microcircuits may be damaged by electrostatic discharge. Precautions should be observed at all times.

7.0 ELECTRICAL PERFORMANCE CURVES

(Typical at +25°C unless otherwise specified.)

8. APPLICATION INFORMATION

8.1 <u>Description</u>. The INA101 is a three-amplifier device which provides all the desirable characteristics of a premium performance instrumentation amplifier. In addition, it has features not normally found in integrated circuit instrumentation amplifiers. See simplified schematics in Figure 2.

The input section (A₁ and A₂) incorporates high performance, low drift amplifier circuitry. The amplifiers are connected in the noninverting configuration to provide the high input impedance $(10^{10}\Omega)$ desirable in the instrumentation amplifier function. The offset voltage and offset voltage versus temperature are low due to the monolithic design, and are improved even further by state-of-the-art laser-trimming techniques.

The output section (A₃) is connected in a unity-gain difference amplifier configuration. A critical part of this stage is the matching of the four $10k\Omega$ resistors which provide the difference. These resistors must be initially well matched and the matching must be maintained over temperature and time in order to retain excellent common-mode rejection.

8.2 Using the INA101. Figure 4 shows the simplest configuration of the INA101. The gain is set by the external resistor, R_G , with a gain equation of $G = 1 + (40k/R_G)$. The reference and TCR of R_G contribute directly to the gain accuracy and drift.

For gains greater than unity, resistor R_G is connected externally. At high gains, where the value of R_G becomes small, additional resistance (i.e., relays, sockets) in the R_G circuit will contribute to a gain error. Care should be taken to minimize this effect.

8.3 <u>Typical applications</u>. Many applications of instrumentation amplifiers involve the amplification of low-level differential signals from bridges and transducers such as strain gauges, thermocouples, and RTD's. Some of the important parameters include common-mode rejection (differential cancellation of common-mode offset and noise), input impedance, offset voltage and drift, gain accuracy, linearity, and noise. The INA101 accomplishes all these with high precision.

OPA111/883B SERIES

OPA111VM/883B

OPA111VM

REVISION NONE APRIL, 1987

Low Noise Precision *Difet* [®] Military OPERATIONAL AMPLIFIER

FEATURES

- FULLY COMPLIANT MIL-STD-883 PROCESSING
- LOW NOISE: 100% tested, $8nV/\sqrt{Hz}$ max at 10kHz
- LOW BIAS CURRENT: 2pA max
- LOW OFFSET: 500µV max
- LOW DRIFT: 10µV/°C max
- HIGH OPEN-LOOP GAIN: 114dB min
- HIGH COMMON-MODE REJECTION: 90dB min

DESCRIPTION

The OPA111/883B is a precision monolithic dielectrically-isolated FET (**Difet**) operational amplifier. Outstanding performance characteristics allow its use in the most critical instrumentation applications. The /883B versions are fully compliant to the requirements of MIL-STD-883.

Noise, bias current, voltage offset, drift, open-loop gain, common-mode rejection, and power supply rejection are superior to BIFET® amplifiers.

Difet ® Burr-Brown Corp., BIFET® National Semiconductor Corp.

APPLICATIONS

- PRECISION INSTRUMENTATION
- DATA ACOUISITION
- TEST EQUIPMENT
- OPTOELECTRONICS
- RADIATION-HARD EQUIPMENT

Very low bias current is obtained by dielectric isolation with on-chip guarding.

Laser-trimming of thin-film resistors gives very low offset and drift. Extremely low noise is achieved with new circuit design techniques (patented). A new cascode design allows high precision input specifications and reduced susceptibility to flicker noise.

Standard 741 pin configuration allows upgrading of existing designs to higher performance levels.

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

PDS-735 210

DETAILED SPECIFICATION MICROCIRCUITS, LINEAR LOW NOISE PRECISION *Difet*® OPERATIONAL AMPLIFIER MONOLITHIC, SILICON

1. SCOPE

1.1 <u>Scope</u>. This specification covers the detail requirements for a precision low noise dielectrically-isolated (*Difet*) operational amplifier

1.2 Part Number. The complete part number is as shown below.

1.2.1 Device type. The device is a single precision dielectrically-isolated (**Diffet**) low noise operational amplifier. One electrical performance grade (V) is provided. The V grade offers specifications and operation over the "MIL" temperature range (-55° C to $+125^{\circ}$ C). Electrical specifications are shown in Table I, and electrical tests are shown in Tables II and III.

1.2.2 Device class. The device class is similar to the class B product assurance level as defined in MIL-M-38510. The Hi-Rel product designator portion of the part number distinguishes the product assurance level as follows:

Hi-Rel product

designator /883B

Requirements

Standard model, plus 100% MIL-STD-883 class B screening, with 5% PDA, plus quality conformance inspection (QCI) consisting of groups A and B performed on each inspection lot, plus groups C and D performed as required by MIL-STD-883.

(none)

Standard model including 100% electrical testing.

1.2.3 Case outline. The case outline is A-1 (8-lead, TO-99) as defined in MIL-M-38510, Appendix C and is shown in Figure 1. The case is metal and is conductive.

NOTE: Leads in true position within .010" (.25mm) R at MMC at seating plane.

	INC	HES	MILLIN	IETERS
DIM	MIN	·MAX	MIN	MAX
A	.335	.370	8.51	9.40
В	.305	.335	7.75	8.51
С	.165	.185	4.19	4.70
D	.016	.021	0.41	0.53
E	.010	.040	0.25	1.02
F	.010	.040	0.25	1.02
G	.200 E	BASIC	5.08 E	BASIC
н	.028	.034	0.71	0.86
J	.029	.045	0.74	1.14
к	.500	-	12.7	-
L	.110	.160	2.79	4.06
М	45° BASIC		45° B	ASIC
N	.095	.105	2 4 1	2.67

FIGURE 1. Case Outline (TO-99) Package Configuration.

1.2.4	Absolute maximum ratings:	•
	Supply voltage $+V_{CC}$	± 18 VDC
	Input voltage range	±18VDC 1/
	Differential input voltage	±36VDC 1/
	Internal power dissipation	500mW
	Output short circuit duration	continuous to power supply common only
	Storage temperature range	-65°C to +165°C
	Temperature (soldering 10s)	+300°C
	Junction temperature	$T_J = +175^{\circ}C$
1.2.5	Recommended operating conditions.	
	Supply voltage	±15VDC
	Ambient temperature range	-55°C to +125°C

]/For supply voltages less than ± 18 VDC the absolute maximum input voltage is equal to +18V > V_{IN} > $-V_{CC}$ -6V.

1.2.6 Power and thermal characteristics

Package	Case outline	Maximum allowable power dissipation	Maximum
8-lead can	Figure 1	500mW	60°C/W

2. APPLICABLE DOCUMENTS

2.1 The following form a part of this specification to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510-Microcircuits, general specification for.

STANDARD

MILITARY

MIL-STD-883-Test methods and procedures for microcircuits.

3. REQUIREMENTS

3.1 General. Burr-Brown uses production and test facilities and a quality and reliability assurance program adequate to ensure successful compliance with this specification.

3.1.1 Detail specifications. The individual item requirements are specified herein. In the event of conflicting requirements, the order of precedence will be the purchase order, this specification, and then the reference documents.

3.2 Design, construction and physical dimensions.

3.2.1 Package, metals, and other materials. The package, metal surfaces, and other materials are in accordance with MIL-M-38510.

3.2.2 Design documentation. The design documentation is in accordance with MIL-M-38510.

3.2.3. Internal conductors and internal lead wires. The internal conductors and internal lead wires are in accordance with MIL-M-38510.

3.2.4. Lead material and finish. The lead material and finish is in accordance with MIL-M-38510 and is solderable per MIL-STD-883, method 2003.

3.2.5 Die thickness. The die thickness is in accordance with MIL-M-38510.

3.2.6 Physical dimensions. The physical dimensions are in accordance with paragraph 1.2.3 herein and are shown in Figure 1.

3.2.7 Circuit diagram and terminal connections. The circuit diagram and terminal connections are shown in Figure 2.

 $\theta_{\rm JC}$

(a) Circuit Diagram

3.2.8 Glassivation. The microcircuit dice are glassivated.

3.3 <u>Electrical performance characteristics</u>. The electrical performance characteristics are specified in Table I and apply over the full operating ambient temperature range of -55° C to $+125^{\circ}$ C unless otherwise specified.

TABLE I. Electrical Performance Characteristics.

All characteristics at $-55^{\circ}C \le T_{A} \le +125^{\circ}C, \pm V_{CC} = 15VDC$, pin 8 connected to ground unless otherwise specified.

				IO IO	PA111VM/88 PA111VM	33B	
CHARACTERISTICS	SYMBOL	CONDITI	ONS 1/	MIN	TYP	MAX	UNITS
GAIN							
Open-Loop		$B_1 = 2k\Omega$	$T_A = +25^{\circ}C$	114			dB
Voltage Gain	Avs	$V_0 = \pm 10V, F = 0Hz$	$-55^{\circ}C \le T_A \le +125^{\circ}C$	110			dB
RATED OUTPUT							
Voltage	Vop	$R_L = 2k\Omega$		±10			V
Output Resistance	lo Ba		T. = +25°C	±5	100		mA O
Load Capacitance Stability	CL	Gain = +1	$T_{A} = +25^{\circ}C$		1000		pF
Short Circuit Current	los	To Ground		±10			mA
DYNAMIC RESPONSE							
Bandwidth	BW	Unity Gain-Small Signal	$T_A = +25^{\circ}C$		2		MHz
Bandwidth	BW	Full Power	$T_A = +25^{\circ}C$	16			kHz
Stew Hate Settling Time (0.1%)		G = -1 B ₁ = 2kO 10V step	$T_{1} = \pm 25^{\circ}C$	1 '	6	ĺ	ν/μ5 //s
Settling Time (0.01%)	Ts	$G = -1$, $R_L = 2k\Omega$, 10V step	$T_A = +25^{\circ}C$		10		μs
Overload Recovery 2/	T _R	Gain = -1	$T_A = +25^{\circ}C$		5		μs
INPUT OFFSET VOLTAGE 3/							
Initial Offset	Vio	V _{CM} = 0VDC	$T_A = +25^{\circ}C$	-500		+500	μV
Temperature Sensitivity	DVio	$\frac{V_{IO}(T_A) - V_{IO}(+25^{\circ}C)}{V_{IO}(+25^{\circ}C)}$					
ue Bewer Supply	DODD		$-55 \le T_A \le +125^{\circ}C$	-10		+10	μV/°C
vs Fower Supply	Fonn		$-55 \le T_A \le +125^{\circ}C$	-50		+50	μV/V μV/V
INPUT BIAS CURRENT 3/	L					I	
Initial Bias	1/18	V _{CM} = 0	T _A = ⊣·25°C	-2		+2	рА
vs Supply Voltage			$-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$	-4100		+4100	pА
INPUT OFFSET CURRENT 3		1					
Initial Offset	lio	V _{CM} = 0	$T_A = +25^{\circ}C$	-1.5		+1.5	pА
	L	l	$-55^{\circ}C \le T_A \le +125^{\circ}C$	-3100		+3100	pА
INPUT IMPEDANCE		••••••••••••••••••••••••••••••••••••••					
Differential	ZID		$T_A = +25^{\circ}C$	10 ¹³ 1			Ω∥pF
Common-Mode	ZICM	<u> </u>	$T_A = +25^{\circ}C$	10'* 3	L	l	Ω∥pF
INPUT NOISE			••••••••••••••••••••••••••••••••••••••				
Voltage	en	$f_0 = 10Hz$	$T_A = +25^{\circ}C$	1		80	nV/√Hz
		$f_0 = 100Hz$	$T_A = +25^{\circ}C$			40	nV/√Hz
		$f_0 = 10 \text{ kHz}$	$T_A = +25^{\circ}C$			1.5	NV/VHZ
		$f_{B} = 10Hz$ to 10kHz	$T_{A} = +25^{\circ}C$			1.2	<i>u</i> Vrms
Current	İN	$f_B = 0.1Hz$ to 10Hz	$T_A = +25^{\circ}C$		7.5		fA, p-p
,		f _o = 0.1Hz thru 20kHz	$T_A = +25^{\circ}C$		0.4		fA/√Hz
INPUT VOLTAGE RANGE							
Common-Mode	VICM		$T_A = +25^{\circ}C$	±10			V
Common-Mode Rejection	CMRR	$V_{IN} = \pm 10V$	$T_A = +25^{\circ}C$	90			dB
	L		$-55^{\circ}C \leq T_A \leq +125^{\circ}C$	86	I		l ar
				T	145	· · · · · ·	VDO
Noltage Range	Vcc			+5	±15	+18	
Quiescent Current	la					±3.5	mA
TEMPERATURE RANGE (am	bient)	L		- L			
Operating	· · · · · ·			-55		+125	°C
Storage	· ·			-65	1	+150	l °C

1/ Optimum device performance is characterized in a reduced ambient light environment.

2/ Overload recovery is defined as the time required for the output to return from saturation to linear operation following the removal of a 50% input overdrive signal.

3/ Offset voltage, offset current, and bias current are measured with units fully warmed up.

3.4 <u>Electrical test requirements</u>. Electrical test requirements are shown in Table II. The subgroups of Table III which constitute the minimum electrical test requirements for screening, qualification, and quality conformance inspection, are specified in Table II.

·	MODELS	
MIL-STD-883 REQUIREMENTS	OPA111VM/883B	OPA111VM
Interim electrical parameters (pre burn-in, method 5004)	1*	1
Final electrical test parameters (method 5004)	1, 2, 3, 4, 5, 6, 7	1, 2, 3, 4, 5, 6, 7
Group A test requirements (method 5005)	1, 2, 3, 4, 5, 6, 7	-
Group C and D end point electrical parameters (method 5005)	. 1	· · -

TABLE II. Electrical Test Requirements. The individual tests within the subgroups appear in Table III.

				LIMITS		
		MIL-STD-883	CONDITIONS	OPA111V	/M/883B	
		METHOD OR	$\pm V_{cc} = \pm 15 VDC$	OPA111V	OPA111VM	
SUBGROUP	SYMBOL	EQUIVALENT	unless otherwise specified	MIN	MAX	UNITS
1	Vio	4001	V _{CM} = 0VDC	-500	+500	μV
$T_A = +25^{\circ}C$	lıв	4001		-2	+2	pА
	lio	4001		-1.5	+1.5	рA
	PSRR		$V_{cc} = \pm 10 VDC$ to $\pm 18 VDC$	-31	+31	μV/V
	CMRR	4003	$V_{IN} = \pm 10V$	90		dB
	±1cc		$I_0 = UMA$	110	±3.5	mA mA
	los			±10		MA
2	DV _{io}	4001	V _{CM} = 0VDC	-10	+10	, μV/°C
$I_{A} = +125^{\circ}C$	48 .	4001		-4100	+4100	pА
		4001		-3100	+3100	PA
	CMPP	4003		-50	+50	μν/ν dP
		4005	$v_{\rm IN} = \pm 10V$	00	+35	uB mA
	los			±10	10.0	mA
3	DV.e	4001			+10	W//PC
T ₄ = -55°C		4001	VCM - UVDE	-4100	+4100	μν/ C
	lio	4001	· · · · · ·	-3100	+3100	pA
	PSRR		$V_{cc} = \pm 10 VDC$ to $\pm 18 VDC$		±50	$\mu V/V$
	CMRR	4003	$V_{IN} = \pm 10V$	86		dB
	±lcc		$I_0 = 0 m A$		±3.5	mA.
	los			±10		mA
4	±Vор	1. Sec. 1.	$R_L = 2k\Omega$	1.1	±10	v
$T_A = +25^{\circ}C$	Avs	4004	$R_L \ge 2k\Omega$	114		dB
5	±Vop		$R_L = 2k\Omega$		±10	v
$T_A = +125^{\circ}C$	Avs	4004	$R_L \ge 2k\Omega$	110		dB
6	±Vop		$R_L = 2k\Omega$		+10	v
T _A = −55°C	Avs	4004	$R_L \ge 2k\Omega$	110		dB
7	SR	4002	$V_0 = \pm 10V$, $R_L = 2k\Omega$	1		V/µs
$T_A = +25^{\circ}C$	e _N		$f_0 = 10Hz$		80	nV√Hz
			$f_0 = 100Hz$		40	nV√Hz
			$f_0 = 1 kHz$		15	nV√Hz
	-		$f_0 = 10 kHz$		8	nV√Hz
	DW		$f_B = 10HZ$ to 10KHZ	10	1.2	µVrms
	DVVFP			0	1	кнz

TABLE III. Group A Inspection.

*PDA applies to subgroup 1 (see 4.3d).

3.5 <u>Marking</u>. Marking is in accordance with MIL-M-38510. The following marking is placed on each microcircuit as a minimum:

a. Part number (see paragraph 1.2)

b. Inspection lot identification code 1/

c. Manufacturer's identification (

I/A 4-digit code, indicating year and week of seal, and a 4- or 5-digit lot identifier are marked on each unit.

- d. Manufacturer's designating symbol (CEBS)
- e. Country of origin
- f. Electrostatic sensitivity identifier (Δ)

3.6 <u>Workmanship</u>. These microcircuits are manufactured, processed, and tested in a workmanlike manner. Workmanship is in accordance with good engineering practices, workmanlike instructions, inspection and test procedures and training, prepared in fulfillment of Burr-Brown's product assurance program.

3.6.1 <u>Rework provisions</u>. Rework provisions, including rebonding for the "/883B" product designation, are in accordance with MIL-M-38510.

3.7 <u>Traceability</u>. Traceability for the "/883B" product designation is in accordance with MIL-M-38510. Each microcircuit is traceable to the production lot and to the component vendor's component lot.

3.8 <u>Product and process change</u>. Burr-Brown will not implement any major change to the design, materials, construction, or manufacturing process which may affect the performance, quality, or interchangeability of the microcircuit without full or partial requalification.

3.9 <u>Screening</u>. Screening for the "/883B" Hi-Rel product designation is in accordance with MIL-STD-883, method 5004, class B, except as modified herein.

Screening for the standard model includes Burr-Brown QC4118 internal visual inspection, stabilization bake, fine leak, gross leak, constant acceleration (condition A), temperature cycle (condition C), and external visual per MIL-STD-883, method 2009.

For the "/883B" product designation, all microcircuits will have passed the screening requirements prior to qualification or quality conformance inspection.

3.10 Qualification. Qualification is not required. See paragraph 4.2 herein.

3.11 Quality conformance inspection. Quality conformance inspection, for the "/883B" product designation, is in accordance with MIL-M-38510, except as modified in paragraph 4.4 herein. The microcircuit inspection lot will have passed quality conformance inspection prior to microcircuit delivery.

4. PRODUCT ASSURANCE PROVISIONS

4.1 Sampling and inspection. Sampling and inspection procedures are in accordance with MIL-M-38510 and MIL-STD-883, method 5005, except as modified herein.

4.2 <u>Qualification</u>. Qualification is not required unless specifically required by contract or purchase order. When so required, qualification will be in accordance with the inspection routine of M1L-M-38510, paragraph 4.4.2.1. The inspections to be performed are those specified herein for groups A, B, C, and D inspections (see paragraphs 4.4.1, 4.4.2, 4.4.3, and 4.4.4).

Burr-Brown has performed and successfully completed qualification inspections as described above. The most recent report is available from Burr-Brown.

4.3 <u>Screening</u>. Screening for the "/883B" Hi-Rel product designation is in accordance with MIL-STD-883, method 5004, class B, and is conducted on all devices. The following criteria apply:

- a. Interim and final test parameters are specified in Table II.
- b. Burn-in test (MIL-STD-883, method 1015) conditions:
 - (1) Test condition B.
 - (2) Test circuit is Figure 3.
 - (3) $T_A = +125^{\circ}C$ minimum.
 - (4) Test duration is 160 hours minimum.
- c. Percent defective allowable (PDA). The PDA, for "/883B" product designation only, is five percent and includes both parametric and catastrophic failures from group A, subgroup 1 test, after cool-down as final electrical test in accordance with MIL-STD-883, method 5005, and with no intervening electrical measurements. If interim electrical parameter tests are performed prior to burn-in, failures resulting from preburn-in screening failures may be excluded from the PDA. If interim electrical parameter tests are omitted, all screening failures shall be included in the PDA. The verified failures of group A, subgroup 1, after burn-in are used to determine the percent defective for each manufacturing lot, and the lot is accepted or rejected based on PDA.

d. External visual inspection need not include measurement of case and lead dimensions.

4.4 <u>Quality conformance inspection</u>. Groups A and B inspections of MIL-STD-883, method 5005, class B, are performed on each inspection lot. Groups C and D inspections of MIL-STD-883, method 5005, class B are performed as required by MIL-STD-883.

A report of the most recent group C and D inspections is available from Burr-Brown.

4.4.1 Group A inspection. Group A inspection consists of the test subgroups and LTPD values shown in MIL-STD-883, method 5005, and as specified in Table II herein.

4.4.2 Group B inspection. Group B inspection consists of the test subgroups and LTPD values shown in MIL-STD-883, method 5005, class B.

4.4.3 Group C inspection. Group C inspection consists of the subgroups and LTPD values shown in MIL-STD-883, method 1005, class B, and as follows:

- a. Operating life test (MIL-STD-883, method 1005) conditions:
 - (1) Test condition B.
 - (b) Test circuit is Figure 3.
 - (3) $T_A = +125^{\circ}C$ minimum.
 - (4) Test duration is 1000 hours minimum.
- b. End point electrical parameters are specified in Table II herein.

FIGURE 3. Test Circuit, Burn-In and Operating Life Test.

4.4.4 <u>Group D inspection</u>. Group D inspection consists of the test subgroups and LTPD values shown in MIL-STD-883, method 5005.

4.4.5 Inspection of packaging. Inspection of packaging shall be in accordance with MIL-M-38510.

4.5 Methods of examination and test. Methods of examination and test are specified in the appropriate tables. Electrical test circuits are as prescribed herein or in the referenced test methods of MIL-STD-883.

4.5.1 Voltage and current. All voltage values given, except the input offset voltage (or differential voltage) are referenced to the external zero reference level of the supply voltage. Currents given are conventional current and positive when flowing into the referenced terminal.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

6.1 Notes. The notes specified in MIL-M-38510 are applicable to this specification.

6.2 <u>Intended use</u>. Microcircuits conforming to this specification are intended for use in applications where the use of screened parts is required or desirable.

6.3 Ordering data. The contract or purchase order should specify the following:

- a. Complete part number (see paragraph 1.2).
- b. Requirement for certificate of compliance, if desired.

6.4 <u>Microcircuit group assignment</u>. These microcircuits are assigned to Technology Group E with a microcircuit group number of 61 as defined in MIL-M-38510, Appendix E.

6.5 <u>Electrostatic sensitivity</u>. CAUTION—these microcircuits may be damaged by electrostatic discharge. Precautions should be observed at all times.

7. ELECTRICAL PERFORMANCE CURVES.

 $T_{\text{A}}=+25^{\circ}\text{C},\,V_{\text{CC}}=\pm15\text{VDC}$ unless otherwise noted.

TOTAL[•] INPUT VOLTAGE NOISE (PEAK-TO-PEAK) vs SOURCE RESISTANCE

VOLTAGE AND CURRENT NOISE SPECTRAL DENSITY VS TEMPERATURE 12 100 $f_o = 1 kHz$ Current Noise (fA/√Hz) 10 1 0. Voltage Noise (nV/\Hz) 10 8 6 4 0.01 +100 -75 -50 +25 +125 -25 0 +50 +75Temperature (°C)

TOTAL INPUT VOLTAGE NOISE SPECTRAL DENSITY AT 1kHz vs SOURCE RESISTANCE

Ambient Temperature (°C)

8. APPLICATION INFORMATION

8.1 Offset voltage adjustment. Although the OPA111/883B Series has a low initial offset voltage (500μ V), some applications may require external nulling of this small offset. Figure 4 shows the recommended circuit for adjustment of the offset voltage. External offset voltage adjustment changes the laser-adjusted offset-voltage temperature drift slightly. The drift will change approximately 0.3μ V/°C for every 100μ V of offset adjustment.

FIGURE 4. Offset Voltage Trim.

8.2 <u>Guarding and shielding</u>. The ultra-low bias current and high input impedance of the OPA111/883B Series are well-suited to a number of stringent applications; however, careless signal wiring of printed circuit board layout can degrade circuit performance several orders of magnitude below the capability of the OPA111/883B Series.

As in any situation where high impedances are involved, careful shielding is required to reduce "hum" pickup in input leads. If large feedback resistors are used, they should also be shielded along with the external input circuitry.

Leakage currents across printed circuit boards can easily exceed the amplifier's bias current of the OPA111/883B Series. To avoid leakage problems, it is recommended that the signal input lead of the OPA111/883B Series be wired to a Teflon™ standoff. If the OPA111/883B Series is to be soldered directly into a printed circuit board, utmost care must be used in planning the board layout. A "guard" pattern should completely surround the two amplifier input leads and should be connected to a low input impedance point which is at the signal input potential.

The amplifier case should be connected to any input shield or guard via pin 8. This insures that the amplifier itself is fully surrounded by guard potential, minimizing both leakage and noise pickup. Figure 5 illustrates the use of the guard. The resistor R_3 shown in Figure 5 is optional. It may be used to compensate effects of very large source resistances. However, note that its use would also increase the noise due to the thermal noise of R_3 .

8.3 Additional application information. Additional application information is presented in the commercial OPAIII data sheet.

*R₃ may be used to compensate for very large source resistances. $(R_1 \times R_2) \div (R_1 + R_2)$ must be low impedance.

Board layout for input guarding with TO-99 package.

Teflon[™] E.I. du Pont de Nemours and Company.

OPA501/883B SERIES

OPA501VM/883B OPA501VM OPA501UM/883B OPA501UM

High Current, High Power Military OPERATIONAL AMPLIFIER

FEATURES

- WIDE SUPPLY RANGE, $\pm 10V$ to $\pm 40V$
- HIGH OUTPUT CURRENT, ±10A Peak
- HIGH OUTPUT POWER, 260W Peak
- LOW DC THERMAL IMPEDANCE: 2.2°C/W
- MIL-STD-883 SCREENING

DESCRIPTION

The OPA501 is a high power operational amplifier. Its high current output stage delivers $\pm 10A$, yet the amplifier is unity-gain stable and it can be used in any operational amplifier configuration. The 260W peak output capability allows the OPA501 to drive loads (such as motors) with a greater safety margin.

Safe operating area is fully specified and output current limiting is provided to protect both the amplifier and the load from excessive current.

This hybrid IC is housed in an 8-pin hermetic TO-3 package. The electrically-isolated package allows direct mounting to chassis or heat sink without an insulating washer or spacer which would increase thermal resistance.

Two electrical performance grades are available. The premium grade operates from -55° C to $+125^{\circ}$ C and is designed for military, aerospace, and demanding industrial applications. The U grade has specifications for operation from -25° C to $+85^{\circ}$ C and from -55° C to $+125^{\circ}$ C. Applications include test equip-

ment, shipboard, and ground support equipment where operation is normally between -25° C and $+85^{\circ}$ C and full temperature range operation must be assured.

The OPA501/883B Series is manufactured on a separate Hi-Rel manufacturing line with impeccable clean room conditions, which assures inherent quality and provides for long product life.

Two product assurance levels are available: Standard and /883B. The Standard product assurance level offers Hi-Rel manufacturing where many MIL-STD-883 screens are performed routinely. The /883B product assurance level, /883B suffix, offers Hi-Rel manufacturing, 100% screening per MIL-STD-883 method 5008 and 10% PDA. Quality assurance further processes /883B devices, by performing group A and B inspections on each inspection lot and group C and D inspections as required by MIL-STD-883. A report containing the most recent group A, B, C, and D tests is available for a nominal charge.

NOTE: This device was previously identified as OPA8785/883B Series.

International Airport Industrial Park 🔹 P.O. Box 11400 🔹 Tucson, Arizona 85734 🔹 Tel.: (602) 746-1111 🔹 Twx: 910-952-1111 🔹 Cable: BBRCORP 🔹 Telex: 66-6491

PDS-707

DETAILED SPECIFICATION MICROCIRCUITS, LINEAR HIGH CURRENT, HIGH POWER OPERATIONAL AMPLIFIER HYBRID, SILICON

I. SCOPE

1.1 Scope. This specification covers the detail requirements for a high current, high power operational amplifier.

1.2 Part Number. The complete part number is as shown below.

1.2.1 <u>Device type</u>. The device is a single operational amplifier. Two electrical performance grades are provided. The V grade offers performance specifications over the MIL temperature range (-55° C to $+125^{\circ}$ C) and the U grade is specified over the industrial temperature range (-25° C to $+85^{\circ}$ C). Electrical specifications are shown in Table I and electrical tests are shown in Tables II and III.

1.2.2 <u>Device class</u>. The device class is similar to the class B product assurance level as defined in MIL-M-38510. The Hi-Rel product designator portion of the part number distinguishes the product assurance levels available as follows:

Hi-Rel Product

Designator

Requirements

/883B Standard model plus 100% MIL-STD-883 class B screening, with 10% PDA, plus quality conformance inspection (QCI) consisting of Groups A and B performed on each inspection lot, plus Groups C and D performed as required by MIL-STD-883.

(none) Standard model including 100% electrical testing.

1.2.3 Case Outline. The case outline is an 8-pin TO-3 package and is depicted in Figure 1.

NOTE: Leads in true position within .010" (.25mm) R at MMC at seating plane.

Pin numbers shown for reference only. Numbers may not be marked on package.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	1.510	1.550	38.35	39.37
В	.745	.770	18.92	19.56
С	.260	.340	6.60	8.64
D	.038	.042	0.97	1.07
Е	.080	.105	2.03	2.67
F	40° B	40° BASIC 40° BASIC		
G	.500 E	ASIC	12.7 B	ASIC
н	1.186	BASIC	30.12	BASIC
J	.593 E	ASIC	15.06	BASIC
К	.400	.500	10.16	12.70
Q	.151	.161	3.84	4.09
R	.980	1.020	24.89	25.91

FIGURE 1. Case Outline (TO-3) Package Configuration.

1.2.4 Absolute maximum ratings.

Supply Voltage V _{cc}	±40VDC
Differential input voltage	$\pm V_{cc} - 3$
DC internal power dissipation	80W 1/
AC internal power dissipation (10kHz, 50% duty cycle)	160W IJ
Output short circuit duration	Continuous to ground
Storage temperature range	65°C to +165°C
Lead temperature (soldering, 60sec)	300°C
Junction temperature	$T_j = 200^{\circ}C$
Common-mode input voltage	$\dots \dots \pm V_{cc}$

1.2.5 Recommended operating conditions.

Supply voltage Range ± 34	VDC (see Table I)
Ambient temperature range	-55°C to +125°C

1.2.6 Power and thermal characteristics.

	Case	Maximum allowable	Maximum
Package	outline	power dissipation	<u> 0J-C</u>
8-lead TO-3	Figure 1	80W .	2.2°C/W
	•	with heat sink	with heat sink

2. APPLICABLE DOCUMENTS

2.1 The following documents form a part of this specification to the extent specified herein.

- SPECIFICATION
 - MILITARY

MIL-M-38510-Microcircuits, general specifications for.

STANDARD

MILITARY

MIL-STD-883-Test methods and procedures for microcircuits.

3. REQUIREMENTS

3.1 <u>General</u>. Burr-Brown uses production and test facilities and a quality and reliability assurance program adequate to assure successful compliance with this specification.

3.1.1 <u>Detail specifications.</u> The individual item requirements are specified herein. In the event of conflicting requirements the order of precedence will be the purchase order, this specification, and then the reference documents.

3.2 Design, construction, and physical dimensions.

3.2.1 <u>Package, metals, and other materials</u>. The packages, metal surfaces, and other materials are in accordance with MIL-M-38510.

3.2.2 Design Documentation. The design documentation is in accordance with MIL-M-38510.

3.2.3 <u>Internal conductors and internal lead wires</u>. The internal conductors and internal lead wires are in accordance with MIL-M-38510.

3.2.4 Lead material and finish. The lead material and finish is in accordance with MIL-M-38510 and is solderable per MIL-STD-883, method 2003.

3.2.5 Die thickness. The die thickness is in accordance with MIL-M-38510.

3.2.6 Physical dimensions. The physical dimensions are in accordance with paragraph 1.2.3 herein.

3.2.7 Circuit diagram and terminal connections. The circuit diagram and terminal connections are shown in Figure 2.

3.2.8 Glassivation. The microcircuit dice are glassivated.

3.3 <u>Electrical performance characteristics</u>. The electrical performance characteristics are specified in Table I and apply over the full operating ambient temperature range of -55° C to $+125^{\circ}$ C unless otherwise specified.

 $I/T_A \leq +25^{\circ}C.$

FIGURE 2.	Circuit I	Diagram and	ł Terminal	Connections.
-----------	-----------	-------------	------------	--------------

·····									
1			OPA501VM/883B OPA501VM			OPA501UM/883B OPA501UM			
CHARACTERISTICS	SYMBOL	CONDITIONS	MIN	TYP	МАХ	MIN	TYP	MAX	UNITS
RATED OUTPUT 1/ 2/									
Output Current	IOP	$R_{L} = 2.6\Omega, T_{A} = +25^{\circ}C$	-10		+10	*		*	A
Continuous 3/	V _{OP}	$H_{L} = 10k\Omega$	-30		+30	*		*	v
	VOP	$T_A = +25^{\circ}C$	-26		+26	-20		+20	v
DYNAMIC RESPONSE									
Bandwidth	BW	Unity Gain, Small Signal $T_A = +25^{\circ}C$		1			*		MHz
Banowioth	BW	Full Power $V_0 = 40Vp-p$, $H_L = 8\Omega$, $T_1 = \pm 25^{\circ}C$	10			*			kH2
Slew Rate	SR	$R_L = 6.5\Omega$	1.35			*			V/µs
INPUT OFFSET VOLTAGE									
Initial Offset	Vio	$T_A = +25^{\circ}C$	5		+5	-10		+10	mV
Tempco	DV _{io}	$[V_{10}(T_A) - V_{10}(+25^{\circ}C)] \div \Delta T$	- 10	l	1 40				
		$-25^{\circ}C \le T_{A} \le +125^{\circ}C$	-40		T40	-65		+65	μV/°C μV/°C
Vs Supply Voltage	PSRR	$V_{CC} = \pm 10$, $V_{CC} = \pm 40$, $T_A = +25^{\circ}C$	-100		+100			*	μV/V
		$-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$	-200		+200	*		*	μV/V
INPUT BIAS CURRENT						1			
Initial	hв	$T_A = +25^{\circ}C$			±20			±40	nA nA
		$-25^{\circ}C \le T_{A} \le +125^{\circ}C$			100			±50	nA
Vs Supply				±0.02			±0.02		nA/V
INPUT DIFFERENCE									
CURRENT		T - 10580]]		110	
initiai	los	$ 1_A = \pm 25^{\circ} \text{C}$ $-55^{\circ} \text{C} < T_A < \pm 125^{\circ} \text{C}$			±3 +7			±10	nA
		$-25^{\circ}C \leq T_{A} \leq +85^{\circ}C$						±7	nA
OPEN LOOP GAIN, DC	Avs	$R_L = 10k\Omega$	94			90			dB
INPUT IMPEDANCE	Zio			10			*		ΜΩ
	ZICM			250			*		ΜΩ

TABLE I. Electrical Performance Characteristics. All characteristics at $-55^{\circ}C \le T_A \le +125^{\circ}C, \pm V_{cc} = 34VDC$ unless otherwise specified.

			OPA501VM/883B OPA501VM		OPA501UM/883B OPA501UM				
CHARACTERISTICS	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT NOISE									
Voltage Noise	en	$f_n = 0.3Hz$ to 10Hz		3			*		μV, p-p
		$f_n = 10Hz$ to $10kHz$		5			*		μV, rms
Current Noise	in	f _n == 0.3Hz to 10Hz	[20			*、	· .	pA, p-p
		$f_n = 10$ Hz to 10kHz		4.5			*		pA, rms •
INPUT VOLTAGE RANGE									
Common-mode	VICM	Linear Operation ±	(Vcc - 6	5)		*			v
Common-mode Rejection	CMRR	$F = DC$, $V_{ICM} = \pm 22V$	76	ľ.		70			dB
-	*	$T_A = +25^{\circ}C$	80			70			dB
POWER SUPPLY									
Rated Voltage	Vcc			±34			*		v
Operating Voltage Range			±10		±40	*		*	v
Current, Quiescent	la				±10			*	mA
TEMPERATURE RANGE									
Specification			-55		+125	-25		+85	°C
Storage			-65		+150	- *		*	°C

TABLE I. Electrical Performance Characteristics (cont).

*Specification same as OPA501 "V" grade.

NOTES:

1/ Package must be derated based on a junction-to-case thermal resistance of 2.2°C/W or a junction-to-ambient thermal resistance of 30°C/W.

2/ Safe Operating Area and Power Derating Curves must be observed.

3/ With ±Rsc = 0. Peak output current is typically greater than 10A if duty cycle and pulse width limitations are observed. Output current greater than 10A is not guaranteed.

3.4 <u>Electrical test requirements</u>. Electrical test requirements are shown in Table II. The subgroups of Table III which constitute the minimum electrical test requirements for screening, qualification, and quality conformance are specified in Table II.

TABLE II. Electrical Test Requirements.

	MODELS						
MIL-STD-883 REQUIREMENTS (HYBRID CLASS)	OPA501VM/883B	OPA501VM	OPA501UM/883B	OPA501UM			
Interim electrical parameters (Preburn-in) (method 5008)	1 -	1	1	1			
Final electrical test parameters (method 5008)	1*, 2, 3, 4, 5, 6, 7	1, 2, 3, 4, 5, 6, 7	1*, 2, 3, 4, 5, 6, 7	1, 2, 3, 4, 5, 6, 7			
Group A test requirements (method 5008)	1, 2, 3, 4, 5, 6, 7	-	1, 2, 3, 4, 5, 6, 7	-			
Group C end point electrical parameters (method 5008)	1	-	1	-			

*PDA applies to subgroup 1 for /883B Hi-Rel designator (see 4.3c).

TABLE III. Group A Inspection.

i .			LIMITS					
		MIL-STD-883 METHOD OR	CONDITIONS $\pm V_{CC} = \pm 34 VDC$	OPA501VM/883B OPA501VM		OPA501UM/883B OPA501UM		
SUBGROUP	SYMBOL	EQUIVALENT	unless otherwise specified	MIN	MAX	MIN	MAX	UNITS
i	Vio	4001	· · · · · · · · · · · · · · · · · · ·	-5	+5	-10	+10	mV
$T_A = +25^{\circ}C$	I _{IB+}	4001		-20	+20	-40	+40	nA
	1 ₁₈₋	4001		-20	+20	-40	+40	n A
	lio	4001		-3	+3	10	+10	nA
	+PSRR	4003	$-V_{cc} = 34VDC$, $+V_{cc} = 10$ to $40VDC$	-100	+100	•	*	μV/V
	-PSRR	4003	$+V_{cc} = 34VDC, -V_{cc} = 10 \text{ to } 40VDC$	-100	+100	+	. *	μV/V
	CMRR	4003	$V_{CM} = \pm 22V, F = DC$	80		70		dB
	Icc+	4005	$V_{CM} = 0$, no load condition		+10		*	mA
	Icc-	4005	$V_{CM} = 0$, no load condition	-10		*	•	mA
					LIM	ITS		
-----------------------------	--------------------	--------------------------	---	------------------	---------------	--------------------	---------------	-------
		MIL-STD-883 METHOD OB	CONDITIONS $+V_{cc} = +34VDC$	OPA501 OPA501	VM/883B VM	OPA5011 OPA5011	JM/883B JM	
SUBGROUP	SYMBOL	EQUIVALENT	unless otherwise specified	MIN	MAX	MIN	МАХ	UNITS
2	DVio	4001	$[V_{I0}(+125^{\circ}C) - V_{I0}(+25^{\circ}C)] \div 100$	-40	.+40	-65	+65	μV/°C
$T_{A} = +125^{\circ}C$	18+	4001		-35	+35	-60	+60	nA
	l ₁₈₋	4001		-35	+35	-60	+60	nA
	lio	4001		-7	+7	-20	+20	nA
	+PSRR	4003	$-V_{cc} = 34VDC$, $+V_{cc} = 10$ to $40VDC$	-200	+200	*	*	μV/V
	-PSRR	4003	$+V_{cc} = 34VDC, -V_{cc} = 10 \text{ to } 40VDC$	-200	+200	*	*	μV/V
	CMRR	4003	$V_{CM} = \pm 22V, F = DC$	76		70		dB
	lcc+	4005	$V_{CM} = 0$, no load condition	·	+10		*	mA
	Icc-	4005	$V_{CM} = 0$, no load condition	-10		*		mA
3	DVio	4001 ·	[V _{i0} (+25°C) − V _{i0} (−55°C)] ÷ 80	-40	+40	-65	+65	μV/°C
$T_A = -55^{\circ}C$	I _{IB+}	4001		-35	+35	-60	+60	nA
	I18-	4001		-35	+35	-60	+60	nA
	lio	4001		-7	+7	-20	+20	nA
	+PSRR	4003	$-V_{cc} = 34VDC$, $+V_{cc} = 10$ to $+40VDC$	-200	+200	*	*	μV/V
	-PSRR	4003	$+V_{cc} = 34VDC, -V_{cc} = 10 \text{ to } 40VDC$	-200	+200	*	*	μV/V
	CMRR	4003	$V_{CM} = \pm 22V$, $F = DC$	76		70		dB
	lcc+	4005	V _{CM} = 0, no load condition	ļ	+10		*	mA
	lcc-	4005	$V_{CM} = 0$, no load condition	-10		*		mA
4	V _{OP} **	4004	I _o = 10A peak, 10kHz sine wave	-26	+2ô	-20	+20	v
$T_A = +25^{\circ}C$	IOP**	4004	$R_L = 2.6\Omega$, 10kHz sine wave	-10	+10	*	•	A
	Avs	4004	$R_L = 10k\Omega$	94		90		dB
5	Vor	4004	$B_{\rm I} = 10 k \Omega$	-30	+30	*	*	v
$T_A = +125$ °C	Avs	4004	$R_{L} = 10k\Omega$	94		90		dB
6	VOP	4004	$R_{L} = 10k\Omega$	-30	+30	*	*	v
$T_A = -55^{\circ}C$	Avs	4004	$R_L = 10k\Omega$	94		90		dB
7 T _A = +25°C	SR	4002	$R_L = 6.5\Omega$	1.35		*		V/µs

TABLE III. Group A Inspection (cont).

* Specification same as OPA501 "V" grade.

** Performed in final electrical only.

3.5 <u>Marking</u>. Marking is in accordance with MIL-M-38510. The following marking is placed on each microcircuit as a minimum:

- a. Part number (see paragraph 1.2)
- b. Inspection lot identification code 1/
- c. Manufacturer's identification (
- d. Manufacturer's designating symbol (CEBS)
- e. Country of origin
- f. Electrostatic sensitivity identifier (Δ)

3.6 <u>Workmanship</u>. These microcircuits are manufactured, processed, and tested in a workmanlike manner. Workmanship is in accordance with good engineering practices, workmanlike instructions, inspection and test procedures and training, prepared in fulfillment of Burr-Brown's product assurance program.

3.6.1 <u>Rework provisions</u>. Rework provisions, including rebonding for the /883B product designation, are in accordance with MIL-M-38510.

3.7 <u>Traceability.</u> Traceability for the /883B product designation is in accordance with MIL-M-38510. Each microcircuit is traceable to the production lot and to the component vendor's component lot.

3.8 <u>Product and process change</u>. Burr-Brown will not implement any major change to the design, materials, construction, or manufacturing process which may affect the performance, quality or interchangeability of the microcircuit without full or partial requalification.

3.9 <u>Screening</u>. Screening for /883B Hi-Rel product designation is in accordance with MIL-STD-883, method 5008, class B, except as modified in paragraph 4.3 herein.

Screening for the standard model includes Burr-Brown QC4118 internal visual inspection, stabilization bake, fine leak, gross leak, constant acceleration (condition A), temperature cycle (condition C), and external visual per MIL-STD-883, method 2009.

1/ A 4-digit code, indicating year and week of seal, and a 4- or 5-digit lot identifier are marked on each unit.

For the /883B product designation, all microcircuits will have passed the screening requirements prior to qualification or quality conformance inspection.

3.10 <u>Qualification</u>. Qualification is not required. See paragraph 4.2 herein.

3.11 <u>Quality conformance inspection</u>. Quality conformance inspection, for the /883B product designation, is in accordance with MIL-M-38510, except as modified in paragraph 4.4 herein. The microcircuit inspection lot will have passed quality conformance inspection prior to microcircuit delivery.

4. PRODUCT ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures are in accordance with MIL-M-38510 and MIL-STD-883, method 5008, except as modified herein.

4.2 <u>Qualification</u>. Qualification is not required unless specifically required by contract or purchase order. When so required, qualification will be in accordance with the inspection routine of MIL-M-38510, paragraph 4.4.2.1. The inspections to be performed are those specified herein for groups A, B, C and D inspections (see paragraphs 4.4.1, 4.4.2, 4.4.3, and 4.4.4).

Burr-Brown has performed and successfully completed qualification inspection as described above. The most recent report is available from Burr-Brown.

4.3 <u>Screening</u>. Screening for the /883B Hi-Rel product designation is in accordance with MIL-STD-883, method 5008, class B, and is conducted on all devices. The following criteria apply:

- a. Interim and final test parameters are specified in Table II.
- b. Burn-in test (MIL-STD-883, method 1015) conditions:
 - (1) Test condition B or D
 - (2) Test circuit is Figure 3 herein for condition B
 - (3) $T_A = +125^{\circ}C$ minimum
 - (4) Test duration is 160 hours minimum
- c. Percent defective allowable (PDA). The PDA, for /883B product designation only, is 10 percent and includes both parametric and catastrophic failures. It is based on failures from group A, subgroup 1 test, after cool-down as final electrical test in accordance with MIL-STD-883, method 5008, and with no intervening electrical measurements. If interim electrical parameter tests are performed prior to burn-in, failures resulting from preburn-in screening failures may be excluded from the PDA. If interim electrical parameter tests are omitted, all screening failures shall be included in the PDA. The verified failures of group A, subgroup 1, after burn-in are used to determine the percent defective for each manufacturing lot, and the lot is accepted or rejected based on the PDA.
- d. External visual inspection need not include measurement of case and lead dimensions.

FIGURE 3. Test Circuit—Burn-in and Operating Life Test (Condition B).

4.4 <u>Quality conformance inspection</u>. Groups A and B inspections of MIL-STD-883, method 5008, class B, are performed on each inspection lot. Groups C and D inspections of MIL-STD-883, method 5008, class B are performed as required by MIL-STD-883. A report of the most recent group C and D inspections is available from Burr-Brown.

4.4.1 <u>Group A inspection</u>. Group A inspection consists of the test subgroups and LTPD values shown in MIL-STD-883, method 5008, and as specified in Table II herein.

4.4.2 <u>Group B inspection</u>. Group B inspection consists of the test subgroups and LTPD values shown in MIL-STD-883, method 5008, class B.

4.4.3 <u>Group C inspection</u>. Group C inspection consists of the test subgroups and LTPD values shown in MIL-STD-883, method 5008, class B and as follows:

a. Operating life test (MIL-STD-883, method 1005) conditions:

- (1) Test condition B or D
- (2) Test circuit is Figure 3 herein for condition B
- (3) $T_A = +125^{\circ}C$ minimum
- (4) Test condition is 1000 hours minimum
- b. End point electrical parameters are specified in Table II herein.

4.4.4 <u>Group D inspection</u>. Group D inspection consists of the test subgroups and LTPD values shown in MIL-STD-883, method 5008 and as follows:

a. End point electrical parameters are specified in Table II herein.

4.4.5 Inspection of packaging, Inspection of packaging shall be in accordance with MIL-M-38510.

4.5 <u>Methods of examination and test.</u> Methods of examination and test are specified in the appropriate tables. Electrical test circuits are as prescribed herein or in the referenced test methods of MIL-STD-883.

4.5.1 <u>Voltage and current</u>. All voltage values given, except the input offset voltage (or differential voltage) are referenced to the external zero reference level of the supply voltage. Currents given are conventional current and positive when flowing into the referenced terminal.

5. PÁCKAGING

5.1 Packaging requirements. The requirments for packaging shall be in accordance with MIL-M-38510.

6. NOTES

6.1 Notes. The notes specified in MIL-M-38510 are applicable to this specification.

6.2 <u>Intended use</u>. Microcircuits conforming to this specification are intended for use in applications where the use of screened parts is required or desirable.

6.3 Ordering data. The contract or purchase order should specify the following:

a. Complete part number (see paragraph 1.2).

b. Requirement for certificate of compliance, if desired.

6.4 <u>Microcircuit group assignment.</u> These microcircuits are assigned to Technology Group I as defined in MIL-M-38510, Appendix E.

6.5 <u>Electrostatic sensitivity.</u> CAUTION—these microcircuits may be damaged by electrostatic discharge. Precautions should be observed at all times.

7. ELECTRICAL PERFORMANCE CURVES

Typical at $\pm 25^{\circ}$ C case and $\pm V_{CC} = 28$ VDC unless otherwise noted.

230

8. APPLICATION INFORMATION

8.1 <u>Grounding</u>. Because of the high output current capability of the OPA501/883B Series, the user is cautioned to observe proper grounding techniques. Figure 4 illustrates a recommended technique.

Note that the connections are such that the load current does not flow through the wire connecting the signal ground point to the power supply common. Also, power supply and load leads should be run physically separated from the amplifier input and signal leads.

FIGURE 4. Proper Power Supply Connections.

8.2 <u>Supply bypassing</u>. The OPA501 power supplies should be bypassed with 50μ F tantalum capacitors connected as close as possible to pins 3 and 6. These bypass capacitors should be connected to the load ground rather than the signal ground.

8.3 <u>Current limits</u>. OPA501 amplifier is designed so that both positive and negative load current limits can be set independently with external resistors $+R_{sc}$ and $-R_{sc}$ respectively. The approximate value of these resistors is given by the equation:

$$R_{SC} = [(0.65 \div I_{LIMIT}) - 0.0437]$$
 ohms

ILIMIT is the desired maximum current in amperes. The power dissipation of the current limit resistor is:

$$P_{max} = R_{SC} (I_{LIMIT})^2$$
 watts

R_{SC} is in ohms and I_{LIMIT} is in amperes.

Current limit resistors carry the full amplifier output current so lead lengths should be minimized. Highly inductive resistors can cause loop instability. Variation in limit with case temperature is shown in the Typical Performance Curves, paragraph 7.

The amplifier should be used with as low a current limit as possible for its particular application. This will minimize the chance of damaging the amplifier under abnormal load conditions and will increase reliability by limiting internal power dissipation.

The current limits may be used to generate other functions such as constant current supplies and torque or stall current limits for servomotor applications.

8.4 <u>Heat sinking</u>. The OPA501 requires a heat sink to limit output transistor junction temperature (T_1) to an absolute maximum of +200°C. The steady-state thermal circuit is illustrated in Figure 5.

FIGURE 5. Simplified Steady-State Heat Flow Model.

Junction temperature (T_J) is found from the equation:

 $T_{I} = P_{D} \left(\theta_{IC} + \theta_{CS} + \theta_{SA} \right) + T_{A}$

where P_D = average amplifier power dissipation (W) $\theta_{\rm JC}$ = junction-to-case thermal resistance (°C/W) $\theta_{\rm CS}$ = case-to-sink thermal resistance (°C/W) $\theta_{SA} = \text{sink-to-ambient thermal resistance (°C/W)}$ T_A = ambient temperature (°C)

For most heat sink calculations the quiescent power dissipation is very low (<1W) and can be disregarded with only a small error.

The maximum size heat sink can be found as follows:

Example: Find the maximum thermal resistance (smallest heat sink) that can be used for an OPA501 with $\pm V_{CC} = 28$ VDC. Output voltage is ± 10 VDC across a 10 Ω resistor and ambient temperature is $\pm 50^{\circ}$ C:

$$\theta_{SA} = [(T_J - T_A) \div PD] - \theta_{CS} - \theta_{JC}$$

As large a heat sink as possible should be used. θ_{cs} depends on the flatness of the heat sink, the thermal compound used, and the roughness of the mating surfaces. Typical values are between $0.1^{\circ}C/W$ and $0.3^{\circ}C/W$ for TO-3 package properly mounted on a heat sink.

The OPA501 mounting flange is electrically-isolated and can be mounted directly to a heat sink without insulating washers or spacers.

The output transistor thermal resistance (θ_{JC}) is a function of the output current pulse width, pulse shape, and duty cycle. Long duration pulses allow the junction temperature to approach its steady state value while shorter pulses cause a lower peak junction temperature due to the junction's thermal time constant. Heat is conducted away from the junction rapidly so that as the duty cycle decreases, junction temperature decreases.

Steady state θ_{JC} is rated at 2.2°C/W maximum. In applications where the amplifier's output current alternates between output transistors—for example, an AC amplifier—the transistor θ_{1C} will depend on frequency as shown in Figure 6.

Duty Cycle = 0.5 for Each Transistor

1.2 1.0 Normalized θ_{JC} 0.8 11 П 0.6 П П 0.4 П 11 Ħ 0.2 Ħ 0 100 0.1 1 10 1k 10k Frequency (Hz)

8.5 <u>Safe operating area (SOA)</u>. In addition to the limits imposed by power dissipation, the amplifier's output transistors are also limited by a second breakdown region. This occurs because of increased emitter current density due to current crowding at higher operating voltages. Both the dissipation and second breakdown limits depend on time and temperature. Figure 7 shows each output transistor's SOA at a case temperature of $+25^{\circ}$ C.

FIGURE 7. Transistor Safe Operating Area at +25°C Case Temperature.

Limits for short pulse widths are substantially greater than for steady state (DC). At a case temperature of $\pm 125^{\circ}$ C the SOA limits are reduced (see Figure 8). The SOA shown in these curves is based on a conservative linear derating of both the power dissipation and the second breakdown region.

FIGURE 8. Transistor Safe Operating Area at +125°C Case Temperature.

Resistive loads are easy to analyze by simply plotting load lines on the SOA curve. If the curve representing the load line stays within the OPA501 output transistor's SOA curve and all other parameters are observed, such as case temperature, etc., the amplifier will be safe. The load line can swing through the larger SOA limits if their time duration constraints are strictly observed.

Reactive loads present a more complex problem since the output voltage and current are not in phase. This results in the reactive load line becoming elliptical (when plotted on linear axes) which requires a larger SOA for safe operation.

Although detailed analysis is beyond the scope of this data sheet, the load line can be viewed on an oscilloscope as shown in Figure 9. The X-Y display is driven by the voltage across the load and by the current into the load. This setup can also display voltage and current stress across the OPA501 output transistors as shown in Figure 10. This data can then be compared to the SOA limits.

The amplifier is designed to operate with electromotive force generating loads such as servomotors, relays, and actuators. Careful attention must be paid to both the load characteristics and the amplifier's SOA to ensure safe operation.

FIGURE 10. Output Transistor Safe Operating Area Stress Display.

Figure 11 shows the OPA501 configured as a DC permanent magnet motor driver. The armature current (I_A) and motor voltage (V_M) are monitored by an oscilloscope in the X-Y mode. Slewing the motor with a 4Hz sine wave results in the motor power ellipse of Figure 12. The input level has been adjusted to give $\pm 20V$, peak across the motor. An examination of the power ellipse indicates that the instantaneous power delivered to the motor exceeds the amplifier's output transistors safe operating area at a case temperature of $\pm 25^{\circ}$ C. The point at which the motor shows 0V at -6.9Ais a problem. The voltage across the output is 28V - 0V = 28V. Checking the SOA curve shows that the amplifier can safely withstand this condition for slightly under 5msec. At 4Hz this transient swing outside the DC SOA region is exceeded for much longer than 5msec. Continued operation under these conditions will result in device failure. Peak junction temperatures should not exceed $\pm 200^{\circ}$ C. Perhaps a motor with a higher impedance winding should be considered for this application. Current limiting and lower supply voltage can also reduce dissipation.

FIGURE 11. Servomotor Amplifier.

Motors used in servo applications often require a surprisingly large current to accelerate quickly. Worst-case conditions occur when the motor is operating at full speed and is suddenly slammed into reverse ("plugging"). This condition is illustrated in Figure 13 when a DC servomotor is driven by a bipolar square wave. As the motor reverses direction, a large surge current flows, causing very-high peak power dissipation in the amplifier. After several time constants (determined by the inertia moment) the current drops to a lower steady-state value. Loading the motor increases the motor average power and amplifier dissipation. SOA curves should be checked for safe operation under these surge conditions.

The OPA501 current limits may be set to clip the high surge currents to a safe level. This is shown in Figure 14. Note that the current limit does limit the servomotor peak acceleration.

Inductive loads should be investigated for high peak transients generated by a collapsing magnetic field. Resistive damping can reduce this problem and although the amplifier has a substrate as part of the Darlington output transistor structure, external diodes are recommended for heavy clamping.

Fast diodes such as those normally used as rectifiers in switching power supplies are suitable.

FIGURE 13. Servomotor Drive—"Plugging".

FIGURE 14. Servomotor Drive With Current Limit.

PWR7XX Series

5W Rated Output Power REGULATED DC/DC CONVERTER SERIES

FEATURES

- Isolation Voltage Tested per UL544, VDE750, and CSAC22.2 Dielectric Withstand Requirement
- Barrier Leakage Current 100% Tested at 240VAC
- Single Channel
- Single or Dual Regulated Outputs

DESCRIPTION

The PWR7XX Series offers a large selection of regulated 5W DC/DC converters for use in such diverse applications as process control, telecommunications, portable equipment, medical systems, airborne and shipboard electronic circuits, and automatic test equipment.

Thirty-six models allow the user to select input voltages ranging from +5VDC to +48VDC and output voltages of +5, +12, +15, ±5 , ±12 , or ±15 V.

- Linear Output Regulation
- Wide Operating Temperature Range: -40°C to +100°C
- Input and Output Filtering
- Six-Sided Shielding

Surface-mounted devices and manufacturing processes are used in the PWR7XX Series to give the user a device which is more environmentally rugged than most DC/DC converters. The use of surfacemount technologies also gives the PWR7XX Series superior isolation voltage. Each PWR7XX Series unit is tested in compliance with the dielectric withstand voltage requirements of UL544, VDC750, and CSAC22.2.

PDS-662 237

SPECIFICATIONS

ELECTRICAL SPECIFICATIONS⁽¹⁾

	Nominal	Rated	Rated	Input Current		Reflected Regulation			
Model	Input Voltage (VDC)	Output Voltage (VDC)	Output Current (mA)	No Load, typ (mA)	Rated Load, typ (mA)	Ripple Current, typ (mA) p-p	Line, typ (%)	Load, typ (%)	Efficiency, min (%)
PWR700 PWR701 PWR702 PWR703 PWR704	5	5 12 15 ±5 ±12	1000 417 334 ±500 ±209	168 168 168 168 168 168	1600 1535 1490 1560 1490	30 30 30 30 30 30	.02 .02 .02 .02 .02	.04 .04 .04 .04 .04	61 63 65 62 65
PWR705		±15	±167	168	1450	30	.02	.04	67
PWR706 PWR707 PWR708 PWR709 PWR710 PWR711	12	5 12 15 ±5 ±12 ±15	1000 417 334 ±500 ±209 ±167	38 38 38 38 38 38 38 38	620 550 535 640 550 535	10 10 10 10 10 10	.02 .02 .02 .02 .02 .02	.04 .04 .04 .04 .04	61 63 65 62 65 67
PWR712 PWR713 PWR714 PWR715 PWR716 PWR717	15	5 12 15 ±5 ±12 ±15	1000 417 334 ±500 ±209 ±167	35 35 35 35 35 35 35	510 490 470 520 480 455	10 10 10 10 10 10	.02 .02 .02 .02 .02 .02	.04 .04 .04 .04 .04 .04	61 63 65 62 65 67
PWR718 PWR719 PWR720 PWR721 PWR722 PWR723	24	5 12 15 ±5 ±12 ±15	1000 417 334 ±500 ±209 ±167	33 33 33 33 33 33 33 33	320 305 300 330 310 305	20 20 20 20 20 20 20	.02 .02 .02 .02 .02 .02 .02	.04 .04 .04 .04 .04 .04	61 63 65 62 65 67
PWR724 PWR725 PWR726 PWR727 PWR728 PWR729	28	5 12 15 ±5 ±12 ±15	1000 417 334 ±500 ±209 ±167	33 33 33 33 33 33 33	280 270 260 280 270 260	20 20 20 20 20 20 20	.02 .02 .02 .02 .02 .02	.04 .04 .04 .04 .04 .04	61 63 65 62 65 67
PWR730 PWR731 PWR732 PWR733 PWR734 PWR735	48	5 12 15 ±5 ±12 ±15	1000 417 334 ±500 ±209 ±167	31 31 31 31 31 31 31	165 160 155 165 155 155	10 10 10 10 10 10	.02 .02 .02 .02 .02 .02	.04 .04 .04 .04 .04 .04	61 63 65 62 65 67

COMMON SPECIFICATIONS⁽¹⁾

Parameter	Conditions	Min	Тур	Max	Units
INPUT Voltage Range	$\begin{array}{l} V_{\text{IN}} = 5V \text{ Models} \\ V_{\text{IN}} = 12V \text{ Models} \\ V_{\text{IN}} = 15V \text{ Models} \\ V_{\text{IN}} = 24V \text{ Models} \\ V_{\text{IN}} = 28V \text{ Models} \\ V_{\text{IN}} = 48V \text{ Models} \end{array}$	4.65 11.00 13.70 21.00 25.00 44.50		6 15 17 27 31 53	VDC VDC VDC VDC VDC VDC
ISOLATION Rated Voltage Test Voltage Resistance Capacitance Leakage Current	60 Seconds, 60Hz 240V rms, 60Hz	1000 3000	10 170	25	VDC V _{PK} GΩ pF μA, rms
OUTPUT Voltage Accuracy Voltage Balance Temperature Coefficient Ripple and Noise	Dual Output Units Only −25°C ≤ T _A ≤ +85°C BW = DC to 10MHz		±0.5 ±0.3 ±0.01 30	±1	% % %/°C mV, p-p
TEMPERATURE Specification Operation Storage		25 40 55		+85 +100 +125	ဂံဂံဂံ

NOTE: (1) Specifications typical at $T_A = +25^{\circ}$ C, nominal input voltage, and rated output current unless otherwise noted.

MECHANICAL

ABSOLUTE MAXIMUM RATINGS

Input Voltage	120% of nominal
Output Short-Circuit Duration	5 seconds
Internal Power Dissipation	3.5W
Lead Temperature (soldering, 10 seconds)	+300°C
Junction Temperature	+150°C
Package Thermal Resistance, Junction-to-Ambien	t, θ _{JA} 15°C/W

APPLICATION NOTES

TESTING ISOLATION BARRIER CHARACTERISTICS

The insulation and spacings of the PWR7XX Series are 100% tested to meet the dielectric withstand requirements of UL544, paragraph 31. A 60Hz essentially sinusoidal potential is applied between the primary and secondary for a period of one minute. The potential used for this test is twice the maximum rated voltage plus 1000V. For the PWR7XX Series the test voltage is 3000V peak.

Dielectric withstand testing is intended to be done at the manufacturer's site only. This test will not be repeated. Exposing the dielectric material of the isolation barrier to repeated testing causes microscopic carbonizing of the dielectric, resulting in a weakened barrier. A low resistance path will eventually be created across the barrier.

PRESERVING ISOLATION CHARACTERISTICS

If intrinsic safety is required, care should be taken in the layout and assembly of the printed wiring board (PWB) to avoid degrading the isolation barrier of the PWR7XX. Precautionary measures include cleaning the PWB prior to installing the PWR7XX to prevent trapping contaminates under the unit. Use nonconductive spacers to keep the PWR7XX off the PWB. Use epoxy solder mask to isolate PWB conductive traces which must run under or close to the PWR7XX. In the layout of the PWB, avoid placing PWB traces under the unit. Do not use conductive inks on the PWB under the unit, e.g., inks used in inspection stamps or component identification marking.

OUTPUT POWER DISTRIBUTION

Figure 1 shows the recommended method of connecting multiple loads to the PWR7XX. Single-point power distribution prevents ground loops and interaction between parallel load circuits.

FIGURE 1. Recommended Power Distribution.

MEASURING NOISE

Measuring the input and output noise performance of a DC/DC converter is a very difficult task that should be attempted only in a controlled laboratory test environment due to extraneous noise sources.

Figure 2 illustrates two recommended methods for testing output voltage ripple and noise. Reflected input current ripple and noise should be measured with a high performance current probe. Measuring input current and noise into a "known" impedance with a voltage probe should be avoided.

FIGURE 2. Recommended Noise Measurement Methods.

PWR1017

Four-Channel, Dual-Output, Synchronizable UNREGULATED DC/DC CONVERTER

FEATURES

- Synchronizable
- All Outputs Isolated
- Output Power to 3W
- High Isolation Voltage—1000Vpk
- Six-Sided Shielding
- Input and Output Filtering
- Low Profile Package—0.4" High

DESCRIPTION

The PWR1017 is a four-channel, dual-output unregulated DC/DC converter designed for low noise applications where high efficiency and switching synchronization are required.

Any unit whose slave pin is connected to another unit's master pin will cause the oscillators to lock together. The PWR1017 may also be driven from a system master clock. The free running switching frequency is 250kHz.

The PWR1017 has four isolated plus and minus output voltages approximately equal to the magnitude of the input voltage. It operates over an input voltage range of 10VDC to 18VDC. Rated output current for the PWR1017 is 25mA for all outputs.

APPLICATIONS

- Power for High Resolution Data Acquisition
- Precision Test Equipment
- Spot Regulator
- Process Control
- Portable Equipment
- Multiple Power Supplies

Isolation voltage between the input and any of the four output circuits is 1000Vpk continuous. The same isolation specification applies between any of the four dual outputs.

Six-sided shielding suppresses electromagnetic radiation which could disturb sensitive analog measurements or interfere with system timing signals. Filtering the PWR1017 input and outputs minimizes the effects of electrical noise on the source and loads of the converter.

Each PWR1017 is tested in compliance with UL544, VDE750, and CSA C22.2 dielectric withstand specifications. In addition, barrier leakage current is 100% tested.

SPECIFICATIONS

ELECTRICAL

At $T_A = 25^{\circ}$ C, $V_{IN} = 15$ VDC, $I_{LOAD} = \pm 25$ mA and in free running mode unless otherwise noted.

			PWR1017		
PARAMETER	CONDITIONS	MIN	NORM	MAX	UNITS
INPUT Rated Voltage ⁽¹⁾ Voltage Range Input Current Ripple Current	ILOAD = 0 ILOAD = Rated Load ILOAD = Rated Load	10	15 70 285 80	18 350	VDC VDC mA mA mA, p-p
ISOLATION Rated Voltage Resistance Capacitance Leakage Current	Ratings apply input-to-output and channel-to-channel Test: 60sec, 60Hz, 3000V, pk V _{ISO} = 240VAC, 60Hz	1000	10 15 0.9	3	VDC GΩ pF μA
OUTPUT Rated Voltage Voltage Range Rated Current Current Range Line Regulation Load Regulation Ripple Voltage	$\begin{split} l_{LOAD} &= 0 \text{mA} \\ l_{LOAD} &= \text{Rated Load} \\ \text{Each output} \\ \text{Total of all outputs} \\ \text{Each output} \\ \text{Total of all outputs} \\ 10VDC < V_{IN} < 18VDC \\ 0 > l_{LOAD} = 25\text{mA} \\ l_{LOAD} = 0 \end{split}$	±16 ±14.25 ±25 200 0 0	±15 ±16.5 1.16 12.5 ±10	±18 ±15.75 ±40 500 ±100	VDC VDC WA MA MA MA W/mV MV/mA mV/pk mV, pk
SYNCHRONIZATION ⁽²⁾ f _{SYNC} Range Oscillator Output Fanout V _{SYNC} max V _{SYNC} Duty Cycle TEMPERATURE Specification Operating Storage	V _{SYNC} > 6.4Vp-p 400kHz < I _{SYNC} < 700kHz Max deviation from -V _{IN}	400 6.4 5 -25 -40 -55	50	700 36 2 50 60 +85 +100 +125	kHz V, p-p Synch Inputs V % °C °C °C

NOTE: (1) Other voltages available on request. (2) Operating frequency (in sync mode) = $f_{SYNC}/2$. Oscillator frequency (pin 4, free running) = 2 (f operation). Oscillator frequency (pin 4, sync mode) = f_{SYNC} .

TYPICAL PERFORMANCE CURVES

ABSOLUTE MAXIMUM RATINGS

ORDERING INFORMATION

Control Circuitry Block Diagram

NOTE: Care should be taken when the synchronization input pin is not used, in order to avoid the possibility of noise pick-up and false PLL locking. This could destroy the unit and/or any other units that are coupled to its synchronization output (pin 4). This protection may be accomplished by either tying the synchronization pin to $-V_{in}$, or clipping pin 1 off flush with the module surface. Tying pin 1 of $-V_{in}$ is preferred.

INPUT CURRENT VS

TYPICAL PERFORMANCE CURVES (CONT)

APPLICATIONS TYPICAL OUTPUT CONNECTIONS

TYPICAL INPUT CONNECTIONS

Single Rail Input Supply

The PWR1017 can be hooked up in a number of configurations for single input voltages. Each unit may become either a master or a slave. The most common configuration is with a single master and multiple slave units.

The PWR1017 may also be connected in series where the first unit can either be a master or a slave driven by the system clock.

Any combination of serial or parallel may be used.

APPLICATION NOTES

TESTING ISOLATION BARRIER CHARACTERISTICS

The insulation and spacings of the PWR1017 are 100% tested to meet the dielectric withstand requirements of UL544, paragraph 31. A 60Hz essentially sinusoidal potential is applied between the primary and secondary for a period of one minute. The potential used for this test is twice the maximum rated voltage plus 1000V. For the PWR1017 the test voltage is 3000V peak.

Dielectric withstand testing is intended to be done at the manufacturer's site only. This test will not be repeated. Exposing the dielectric material of the isolation barrier to repeated testing causes mciroscopic carbonizing of the dielectric, resulting in a weakened barrier. A low resistance path will eventually be created across the barrier.

Split Rail Input Supply

PWR1017s may be driven by a differential supply and still be synchronized together. Care should be taken not to exceed the 50V maximum deviation from any $-V_{IN}$.

Tha master pin is a buffered output designed to drive other slave inputs. In split rail applications it is recommended that the external oscillator drive only one unit and all others be driven from the master outputs of other PWR1017s.

PRESERVING ISOLATION CHARACTERISTICS

If intrinsic safety is required, care should be taken in the layout and assembly of the printed wiring board (PWB) to avoid degrading the isolation barrier of the PWR1017. Precautionary measures include cleaning the PWB prior to installing the PWR1017 to prevent trapping contaminates under the unit. Use nonconductive spacers to keep the PWR1017 off the PWB. Use epoxy solder mask to isolate PWB conductive traces which must run under or close to the PWR1017. In the layout of the PWB, avoid placing PWB traces under the unit. Do not use conductive inks on the PWB under the unit; e.g., inks used in inspection stamps or component identification marking.

PWR5038

2.75 Watts—Triple-Output DC/DC CONVERTER

FEATURES

- Isolation Voltage 500 VDC
- Barrier Leakage Current 100% Tested at 240VAC
- Low Cost
- Wide Operating Temperature Range
- Input and Output Filtering
- Six-Sided Shielding

DESCRIPTION

The PWR5038 offers a triple output 2.75W DC to DC converter for use in such diverse applications as process control, telecommunications, portable equipment medical systems, airborne and shipboard electronic circuits, and automatic test equipment.

This model gives the user an output voltage of +5 and ± 15 VDC with an input voltage of +5VDC.

Surface-mounted devices and manufacturing processes are used in the PWR5038 to give the user a device which is more environmentally rugged than most DC to DC converters. The use of surface-mount technology also gives the PWR5038 a low cost reflected in our low prices.

245

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

Specifications Typical at Ta = +25 deg C., nominal input voltage and rated output current unless otherwise noted.

PARAMETER	CONDITION	MIN	ТҮР	MSX	UNT
INPUT VOLTAGE RANGE CURRENT RIPPLE CURRENT	NO LOAD FULL LOAD FULL LOAD	4.75	5.00 150 60	5.25 1.0	VDC VDC mA A mA p-p
OUTPUT 1 VOLTAGE CURRENT ACCURACY	-25 to + 85 DEG C		5	150	VDC mA
RIPPLE	INPUT VOLTAGE 4.75 to 5.25 V DC to 10 MHz	4.75	, 20	5.25	mV p-p
OUTPUT 2 VOLTAGE CURRENT ACCURACY	-25 to +85 DEG C I LOAD 33 mA to 67 mA		±15	67	VDC mA
RIPPLE	INPUT VOLTAGE 4.75 to 5.25 V DC to 10 MHz	13.5	300	16.5	mV p-p
ISOLATION VOLTAGE RESISTANCE CAPACITANCE LEAKAGE CURRENT	Viso = 240 VAC	500	10 45	5	VDC MΩ pF μA
TEMPERATURE SPECIFICATION OPERATION STORAGE		-25 -40 -55		+85 +100 +125	ငံ ငံ ငံ

ABSOLUTE MAXIMUM RATINGS

Input Voltage	120% × rated voltage
Output Short-Circuit Duration .	Momentary
Internal Power Dissipation	4W
Junction Temperature	
Package Thermal Resistance	+150°C
Lead Temperature	
(soldering, 10 seconds)	+300°C

MECHANICAL

brass with a hot-solder-dipped surface to allow ease of solderability.

PWR5104 PWR5105

9W Rated Output Power REGULATED DC-TO-DC CONVERTER

FEATURES

- LOW COST
- LOW NOISE
- LINEAR OUTPUT REGULATION
- WIDE OPERATING TEMPERATURE RANGE: -40°C TO +100°C

DESCRIPTION

The PWR5104 and PWR5105 offer respectively ± 12 VDC and ± 15 VDC ouputs of regulated 9W power driven from your +5V system bus. These units are designed for use in such diverse applications as process control, telecommunications, portable equipment, medical systems, airborne and shipboard electronic circuits, and automatic test equipment.

The PWR5104 and PWR5105 offer a low cost alternative to the models currently in the market. In addition these models utilize high frequency switching in order to maintain a low EMI and RFI environment. Both models incorporate input and

- ± 12 VDC AND ± 15 VDC OUTPUTS
- INPUT AND OUTPUT FILTERING
- SIX-SIDED SHIELDING
- BARRIER LEAKAGE CURRENT 100% TESTED AT 240VAC

output filtering along with six-sided shielding to keep unwanted noise from your circuit.

Surface-mounted devices and manufacturing processes are used in the PWR5104 and PWR5105 to give you a device which is more environmentally rugged than most DC-to-DC converters. These manufacturing and design technologies also give superior isolation voltage. The PWR5104 and PWR5105 are tested in compliance with the dielectric withstand voltage requirements of UL544, VDC750, and CSAC22.2.

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

PDS-713 247

SPECIFICATIONS ELECTRICAL

Specifications typical at $T_A = +25^{\circ}$ C, nominal input voltage and rated output current unless otherwise noted.

ν.		P۷	VR5104/5	105	
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT Nominal Voltage Voltage Range ⁽¹¹⁾ Input Current Input Current Ripple Current	No load Rated load At rated load	4.75	5.00 60 2400 5	5.25 2570	VDC VDC mA mA mA,p-p
OUTPUT PWR5104 Rated Voltage PWR5105 Rated Voltage Accuracy Voltage Balance Temperature Coefficient PWR5104 Rated Current Ripple and Noise Line Regualtion Load Regulation	-25°C to +85°C BW = DC to 10MHz	±375 ±300 70	± 12 ± 15 ± 0.5 ± 0.3 ± 0.01 6 0.02 0.04 75	±1.0 35	VDC VDC % % mA mA mV,p-p % %
ISOLATION Rated Voltage Resistance Capacitance Leakage Current GENERAL	240Vrms, 60Hz	750	10 50	15	VDC GΩ pF μA, rms
Switching Frequency			50		kHz
TEMPERATURE Specification Operation Storage		-25 -40 -55	-	+85 +100 +125	ວ ວຸ ວຸ

NOTE: (1) Other voltage ranges available. Contact factory.

ABSOLUTE MAXIMUM RATINGS

Input Voltage
Internal Power Dissipation
Lead Temperature (soldering, 10 seconds) +300°C
Junction Temperature
Supervised the second state of the second sta

MECHANICAL

TYPICAL PERFORMANCE CURVES

RELIABILITY

All Burr-Brown DC/DC converters are manufactured using stringent in-process controls and quality inspections. The customer may also choose one of two additional levels of screening to meet specific requirements. The advanced reliability program is designed to reduce infant mortality, system rework, field failures, and equipment downtime.

Standard Manufacturing Process	/G-Level I Screening	/T—Level II Screening			
Incoming Material Inspection	Standard Manufacturing Process	Standard Manufacturing Process			
Per MIL-S-19500	Burn-in, MIL-STD-883,	Stabilization Bake, MIL-STD-883,			
Component Attachment	method 1015, 160 hours, $T_{A} = + 125^{\circ}C$	method 1008, 24 hours, $T_A = +125^{\circ}C$			
100% Internal Visual Inspection	Final Electrical Test	Temperature Cycling, MIL-STD-883,			
100% Electrical Test	QA Lot Acceptance Testing, AQL = 0.5	$\frac{\text{method 1010, Condition B}(-55^{\circ}\text{C to} + 125^{\circ}\text{C})}{ }$			
Seal		Burn-in, MIL-STD-883, method 1015, 160 hours, $T_A = +125^{\circ}C$			
100% Final Electrical Test		Final Electrical Test			
External Visual		QA Lot Acceptance Testing, $AQL = 0.25$			
QA Lot Acceptance Testing, AQL = 1.0					

APPLICATION NOTES PRESERVING ISOLATION CHARACTERISTICS

If intrinsic safety is required, care should be taken in the layout and assembly of the printed wiring board (PWB) to avoid degrading the isolation barrier of the PWR510X. Precautionary measures include cleaning the 510X prior to installing the PWR510X to prevent trapping contaminates under the unit. Use nonconductive spacers to keep the PWR510X off the PWB. Use epoxy solder mask to isolate PWB conductive traces which must run under or close to the PWR510X. In the layout of the PWB, avoid placing PWB traces under the unit. Do not use conductive inks on the PWB under the unit; e.g., inks used in inspection stamps or component identification marking.

OUTPUT POWER DISTRIBUTION

Figure 1 shows the recommended method of connecting multiple loads to the PWR510X. Single-point power distribution prevents ground loops and interaction between parallel load circuits.

FIGURE 1. Recommended Power Distribution.

MEASURING NOISE

Measuring the input and output noise performance of a DC/DC converter is a very difficult task that should be attempted only in a controlled laboratory test environment due to extraneous noise sources.

Figure 2 illustrates two recommended methods for testing output voltage ripple and noise. Reflected input current ripple and noise should be measured with a high performance current probe. Measuring input current and noise into a "known" impedance with a voltage probe should be avoided.

FIGURE 2. Recommended Noise Measurement Methods.

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

 $\label{eq:spectruc} \begin{array}{l} \textbf{SPECIFICATIONS} \\ \textbf{ELECTRICAL} \quad \textbf{At 25 °C, } V_{CC} = \pm 15V, V_{DD} = 5V, external sample/hold capacitor of 4700 pF. \end{array}$

MODEL SDM		62/SDM863 J, A, R		SDM862/SDM863		K, B, S	
	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
RESOLUTION			12			*	BITS
INPUT							
ANALOG VOLTAGE RANGES — Bipolar — Unipolar INPUT IMPEDANCE — On Channel — Off Channel INPUT CAPACITANCE — On Channel — Off Channel CMRR (20V, DC to 1KH2) CROSSTALK (20V-p., 1KH2) [1] FEED THROUGH (AT 1KH2) [1] OFFSET (channel to channel) G=1 [2] INPUT BLAS CURRENT/CHANNEL INPUT VOLTAGE RANGE [3]	80 + 10 - 10	10 ¹⁰ 10 ¹⁰ 20 85 - 85 - 85 30 1 + 11 - 15	±5, 0- - 80 - 80 100 5	± 10 10 *	* * * * * * * * *	* * *	V V Ω PF dB dB dB dB V nA V V V
			26				
MULTIPLEXENTINFUT CHAINNEL SELECT — LOGIC 1 (2V) — Logic '0' (0.8V) S/H COMMAND — Logic '1' (2V) — Logic '1' (0.8V)		5 0.2 5	30 30 30		*	*	μΑ μΑ nA μΑ
ADC SECTION — Logic 11 (2.4V) — Logic 10 (0.8V)		Ĵ	10 10		Ŷ	*	μΑ μΑ μΑ
TRANSFER CHARACTERISTICS							
ACCURACY INTEGRAL LINEARITY [4] DIFFERENTIAL LINEARITY [4] GAIN ERROR $[5] \rightarrow G = 1$ $\rightarrow G = 100$ UNIPOLAR OFFSET ERROR $[5]$ BIPOLAR OFFSET ERROR $[5]$ NOISE ERROR (MEASURED AT S/H OUTPUT) G=1 DROOP RATE		0.7 0.9 16 50 0.5 50	± 0.024 ± 0.024		* * *	±0.012 ±0.012	% of FSR % of FSR % mV mV mV p-p uV/mS
IEMPERATURE COEFFICIENTS — Unipolar Offset — Bipolar Offset — Full-scale Calibration			20 30 60			15 25 35	ppm of FSR/°C ppm of FSR/°C ppm of FSR/°C
SYSTEM TIMINGS							
ADC CONVERSION TIME S/H APERTURE DELAY S/H APERTURE UNCERTAINTY		20 50 2	25		* * *	*	μS nS nS
TIMING							
ACQUISITION TIME (to 0.01% of final value for full scale step) THROUGHPUT (SERIAL MODE) (OVERLAP MODE)		5	45 30		*	*	μS μS μS
ОИТРИТ			·				
DIGITAL DATA OUTPUT CODES — Unipolar — Bipolar		1	I UNIPOI BIPO	I _AR STRAIO LAR OFFSE I	I GHT BINAR' ET BINARY (I	Y (USB) BOB)	
LOGIC LEVELS — Logic 0 (sink = 1.6mA) — Logic 1 (source = 500uA) L EAKAGE (DATA BITS ONI Y) Hinty-Z State	+ 2.4	0.1	+0.4	*	+	*	V V
POWER SUPPLY REQUIREMENTS				1	1		
RATED VOLTAGE, Analog (± Vcc)	14.25	15	15.75	*	*	*	VDC
Digital (VDD)	4.75	5 28	5.25 40	*	*	*	VDC mA
-15V +5V		36	45		Ť	÷.	mA mA
POWER DISSIPATION		i	1.4	l	×	*	WATTS
TEMPERATURE RANGE							
OPERATING TEMPERATURE RANGE JH, KHJJL, KL AH, BH/AL, BL RH, SH/RL, BL STORAGE TEMPERATURE RANGE	0 - 25 - 55 - 65		70 + 85 + 125 + 150	* * *		* * *	ဝံ ဝံ ဝံ ဝံ ဝံ ဝံ

NOTES: [1] Measured at the sample and hold output. [2] Measured with all input channels grounded. [3] The range of voltage on any input with respect to common over which accuracy and leakage current is guaranteed. [4] Applicable over full operating temperature range. [5] Adjustable to zero using external potentiometer or select-on-test resistor. * Specification as per SDM862/863 J, A, R. NO MISSING CODES GUARANTEED OVER TEMPERATURE RANGE.

ABSOLUTE MAXIMUM RATINGS

+VCC TO ACOM0.5V TO +16V	ANALOG INPUT SIGNAL RANGE + VCC + 20V TO - VCC - 20V
– VCC TO ACOM +0.5V TO –16V	DIGITAL INPUT SIGNAL 0.5V TO + VDD
+ VDD TO DCOM0.5V TO +5.5V	ACOM TO DCOM

ANALOG TIMING SPECIFICATIONS

PARAMETER	MIN	түр	MAX	UNITS
MULTIPLEXER				
Switching time (between channels)		+1.5		μS
Settling time (10V step to 0.02%)		2.5		μS
Enable time 'ON' 'OFF'		1 0.25	2 0.5	μS μS
INSTRUMENTATION AMPLIFIER				
Settling time to 0.01% G=1 G=10 G=100		5 3 4	12.5 7.5 7.5	μS μS μS
Slew rate	12	17		V/µS
S/H AMPLIFIER				
Acquisition time (10V step to 0.01%) Aperture delay Hold mode settling time Slew rate		5 50 1.5 10		μS nS μS V/μS

Note: Specifications are at +25°C and measured at 50% level of transition.

PIN CONFIGURATIONS

DIGITAL TIMING SPECIFICATIONS

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS
CONVERT MODE Idsc thec tssc thsc tsrc thrc tsac thac tc	Status delay from CE CE Puise width CS to CE setup CS to CE setup R/C to CE setup R/C to widning CE high Byte select to CE setup Byte selected valid during CE high Conversion line. 12 bit cycle 8 bit cycle	50 50 50 50 50 0 50 15 10	100 30 20 20 0 20 0 20 20 13	200 25 17	nS nS nS nS nS nS nS nS μS μS
READ MODE tdd thd tssr tssr tsar thsr thrr thar ths	Access time from CE Data valid after CE Iow Output Itod telay CS to CE setup RV to CE setup Byte select to CE setup CS valid after CE Iow RV thigh after CE Iow Byte select valid after CE Iow Byte select valid after CE Iow Status delay after data valid	25 50 50 0 50 0 50 300	75 35 100 0 25 0 25 0 25 500	150 150 1000	กร กร กร กร กร กร กร กร กร กร กร กร กร ก

PIN DESIGNATION	DEFINITION	COMMENTS
CH0 to CH15 CH0 to CH7 (+,-) (PINS 40 to 47, 54 to 61)	Channel Inputs	Analog Inputs (Total 16) for single-ended and differential operation. Unused inputs must be connected to analog common.
MUX OUT+/AMP IN+ (PIN 65)	MULTIPLEXER "HI" OUTPUT	On the SDM862 this is the multiplexer output. On the SDM 863 it is the output of the positive selected inputs. It is connected internally to the positive input of the instrumentation amplifier.
MUXOUT (PIN 67)	MULTIPLEXER "LO" OUTPUT	This pin is used on the SDM863 only. It should be connected to the negative input of the instrumentation amplifier.
AMPIN (PIN 66)	Negative Input of Instrumentation Amplifier	On the SDM862 this should be connected to analog common. On the SDM863 it should be conencted to Muxout—(Pin 67).
AMPOUT (PIN 1)	Output of instrumentation amplifier	This pin should be connected to the input of the S/H amplifier (Pin 39).
AMP SENSE (PIN 68)	Output sense line of instrumentaiton amplifier	This pin will normally be connected direct to A input (Pin 1)
AMP REF (PIN 2)	Reference for amplifier output	This pin will normally be connected to analog common. Care should be taken to minimise tracking and contact resistance to analog common to optimise system accuracy.
S/H OUT (PINS 35/37)	Output of sample/hold amplifier	Two pins are provided to facilitate a guard ring around the hold capacitor pin. These pins should be connected to either ADC in (20V) or ADC in (10V) depending on the desired range.
HOLD CAP (PIN 36)	Connection for hold capacitor on S/H amplifier	The tracking to the hold capacitor should be as short as possible and a guard ring employed using Pins 35 and 37.
ADC IN (20V) ADC IN (10V) (PINS 21, 22)	Inputs to A/D convertor	Connect to S/H amplifier output. Use appropriate Pin for desired range.
RG, G10, G100 (PINS 62, 63, 64)	Gain setting Pins on instrumentation amplifier	For Gain = 1, no connections For Gain = 10, connect G10 to RG. For Gain = 100, connect G100 to RG.
REF OUT (PIN 26)	10V Reference voltage	This is the reference voltage for the A/D convertor.
REF IN, BIP OFF (PINS 24, 23)	Reference input and offset input to A/D convertor	Connect trim potentiometers (or select-on-test resistors) to these pins for unipolar or biploar operation as shown in figure 4.
S/H IN (PIN 39)	Input to sample/hold amplifier	Connect to amp out (Pin 1).
MUX ENABLE (PIN 48)	Multiplex enable/disable	Logic '1' on this pin will enable a selected channel on the internal multiplexer. Logic '0' de-selects all channels.
MUX ADD0 to MUX ADD3 (PINS 49 to 52)	Address inputs for channel selection	These address lines select a particular channel as specified in figure 2.
S/H CONT (PIN 33)	Track/Hold control on S/H amplifier	Logic '1' holds an analog value for conversion by the A/D convertor. This line may be controlled by the status (Pin 6) of the convertor to simplify external timing control.
S/H COM (PIN 34)	Reference for S/H logic control	Connect to digital common
D0 to D11 (PINS 7 to 18)	3-state digital outputs	The 12 or 8-bit result of a conversion is available as output on these pins (DO- LSB, D11-MSB).
STATUS (PIN 6)	Status of A/D conversion	This output pin is at logic '1' while the internal A/D convertor is carrying out a conversion. This pin may be used to directly control the S/H amplifier.
CE (PIN 28)	Chip enable	This input must be at logic '1' to either initiate a conversion or read output data (see figure 1).
Cର୍ତି (PIN 31)	Chip select	This input must be at logic '0' to either initiate a conversion or read output data (see figure 1).
R/Ĉ (PIN 29)	Read/convert	Data can be read when this Pin is logic '1' or a conversion can be initiated when this Pin is logic '0'. This Pin is typically connected to the R/W control line of a microprocessor—bases system (see figure 1).
DATA MODE (PIN 30)	Select 12 or 8 Bit Data	When data mode is at logic '1' all 12 output data bits are enabled simultaneously. When data mode is at logic '0' MSB's AND LSB's are controlled by byte select (Pin 32).
BYTE SELECT (PIN 32)	Byte address, short cycle	When reading output data, byte select at logic '0' enables the 8 MSB's. Byte select at logic '1' enables the 4 LSB's. The 4 LSB's can therefore be connected to four of the MSB lines for inter-connection to an 8-bit bus. In start convert mode, logic '0' enables a 12-bit conversion while logic '1' will short cycle the conversion to 8-bits (see figure 1).
+15V(1), +15V(2) (PINS 3, 27)	Power Supply	Connect to +15V supply using decoupling as indicated in figure 5.
-15V(1), -15V(2) (PINS, 4, 20)	Power Supply	Connect to -15V supply using decoupling as indicated in figure 5.
A COM (1), A COM (2) (PINS 53, 25)	Analog common	Analog common connection. Note that a common (including digital common) should be connected together at one point close to the device.
+5V (PIN 5)	Logic power supply	Connect to +5V digital supply line with decoupling as indicated in figure 5.
ADC DCOM (PIN 19)	Reference for A/D convertor control lines	Connect to S/H commmon at one point close to device.
NC (PIN 38)	No internal connection	

CE	cs	R/Ĉ	DATA MODE	BYTE SELECT	OPERATION
0	X	X	X	X	None
х	1	x	x	x	None
t	0	0	x	0	Initiate 12-bit conversion
t	0	0	x	1	Initiate 8-bit conversion
1	1	0	x	0	Initiate 12-bit conversion
1	1	0	x	1	Initiate 8-bit conversion
1	0	1	x	0	Initiate 12-bit conversion
1	0	1	x	1	Initiate 8-bit conversion
1	Ø	1	1	X	Enable 12-bit output
1	0	1	0	0	Ebable 8 MSBs only
1	0	1	0	1	Enable 4 LSBs plus 4 trailing zeros

SDM	862					SDN	863			
MUX ADD3	MUX ADD2	MUX ADD1	MUX ADD0	MUX ENABLE	CHANNEL SELECTED	MUX ADD2	MUX ADD1	MUX ADD0	MUX ENABLE	CHANNEL PAIR SELECTED
X	Х	X	х	L	NONE	Х	Х	х	L	NONE
) L	L	L	L	н	0	L	L	L	н	0
L	L	L	н	н	1	L	L	н	н	1
L .	L	Н	L	н	2	L	н	L	н	2
L	L	н	н	н	3	L	н	Н·	н	3
L	н	L	L.	н	4	н	L	L	н	4
L	н	٤	н	н	5	н	L	н	н	5
L	н	н	L	н	6	н	н	L	н	6
L	н	н	н	н	7	н	н	н	н	7
н	L	L	L	н	8.			_		
н	L	L	н	н	9			-		
н	L	н	L	н	10					
н	ι	н	н	н	11					
н	н	L	L	н	12					
н	н	L	н	н	13			-		
н	н	н	L	н	14			-		
н	н	Н	н	· H	15			-		

RANGE	-FS + 1/2 LSB 000 TO 001 TRANSITION)	+FS - 1/2 LSB (FFE TO FFF TRANSITION)	1 LSB EQUALS
0-10/	+ 0.0012V	+9.9963V	2.44 mV
±5V	4.9988V	+4.9963V	2.44 mV
±10/	9.9976V	+9.9927V	4.88 mV

FIGURE 3. CODE TRANSITION RANGES

FIGURE 2. CHANNEL SELECT TRUTH TABLE

FIGURE 4. CALIBRATION

P.G.A. MECHANICAL OUTLINE

L.C.C. MECHANICAL OUTLINE

L PACKAGE

Terminations: Gold plated nickel on refractory metallization. Case: White ceramic with gold plated nickel lid. Hermeticity: Gross leak test. Weight: 4.2 grams (0.15oz)

	INC	HES	MILLIM	IETRES
DIM	MIN	MAX	MIN	MAX
Α	.945	.965	24.003	24.511
В	.945	.965	24.003	24.511
С	.076	.094	1.934	2.388
D	.841	.859	21.361	21.819
E	.841	.859	21.361	21.819
F	.755	.785	19.177	19.939
G	.755	.785	19.177	19.939
Н	.800 BASIC		20.320	BASIC
J	.027	.033	.686	.838
К	.045 BASIC		1.143	BASIC
L	.050 E	BASIC	1.270	BASIC

ORDERING INFORMATION*

	SDM 862 16 SINGLE ENDED INPUTS						. 8 DI	SDM 863 FFERENTIAL INPU	ITS
GRADE	68 PACH LCC	PIN (Age Pga	ACCURACY % FSR	TEMP. RANGE (DEG. C)	GRADE	68 PACI LCC	PIN KAGE PGA	ACCURACY % FSR	TEMP. RANGE (DEG. C)
J	L	н	±0.024	0—70	J	L	н	±0.024	070
	L	н	±0.012	0—70	K	L	н	±0.012	070
A	L	н	±0.024	-25 +85	A	L	н	±0.024	-25 +85
B	L	н	±0.012	-25 +85	B	L	н	±0.012	-25 +85
R	L	н	±0.024	-55 +125	R	L	н	±0.024	-55 +125
S	L	Н	±0.012	-55 +125	S		н	±0.012	-55 +125

NOTES

- J, K, A, B Grades are burned in AT+85°C for a minimum of 48 hrs.
 R.S. Grades are burned in
- AT+125°C for a minimum of 48 hrs.
- All units are supplied serialised and with a printout of their electrical test results (25°C).

SDM 862/863 evaluation board part number: PC 862/863—1 68 Pin L.C.C. Socket Part Number: MC 0068—1

WHY REINVENT AN OPERATOR INTERFACE?

Is your microprocessor-based equipment used or serviced by human beings? If so, you may be interested in a new line of operator interface terminals from Burr-Brown. The operator interface provides the way for an operator to setup and run equipment; it may also provide diagnostic/service access for a repairman.

For most new products, the operator interface is custom designed because no off-the-shelf product has been available which adequately addresses this need. This means that engineering resources are needed, which will place an additional demand on already limited manpower. The availability now of commercial/industrial operator interfaces allows companies to concentrate their resources in the area of their greatest expertise, and therefore, to get the best return on engineering investment.

Operator interfaces arc used in a variety of equipment. There are numerous controller applications such as machine controllers, motor controllers, process controllers, HVAC controllers, programmable controllers, and motion controllers. Other applications include operator interface for instruments, test machines, data acquisition systems, weighing systems, imaging systems, and medical equipment.

Consider these issues when looking for an operator interface:

Display—Is it easily readable in your operating environment?

Keyboard—Is the tactile response appropriate for your needs? Can the keys be clearly marked for your application?

Operation—Will the units operate in a mode that is convenient in your application?

Communications—What interface do you need? RS-232C is a good choice for many applications. RS-422 is useful for distances of greater than 50 feet or for electrically noisy environments.

Package—Will the package fit into your equipment, aesthetically and physically? Is it easy to mount? Does the package need to be sealed? **Environment**—Under what conditions must the unit operate?

Burr-Brown has recently introduced a line of operator interface terminals, the TM2500 and the TM2700, which uses standard ASCII communications. They are low cost, easy-to-use, easy-todesign-in units. In many applications it is no longer necessary to design an expensive longlead-time custom operator interface. These units provide a large liquid-crystal display with a wide viewing angle. The terminals go through an automatic self-test every time power is applied. The keyboard offers excellent tactile response, providing a numeric keypad, six user-programmable function keys, and six control keys. The function keys are back-lighted under host computer control. They can also be programmed to transmit any sequence of up to four characters. Each function key has a label area adjoining it so that the user can easily customize each key.

The terminals operate in one of three modes. In character mode, a character is transmitted as each key is pressed. The character may be echoed to the display as defined. In the block mode, all characters are internally buffered and displayed as keys are pressed. The entire line of data is then transmitted when the enter key is pressed. The polled mode is the third way to operate these units. In the polled mode, data is entered as in the block mode; however, the data is not transmitted until the host processor requests it. Another option in this mode is to assign each terminal an address so that a number of terminals may be committed to the same host interface line.

Other options include baud rate, line termination, turnaround delay, display viewing angle, hand check protocol, local echo, key repeat, and key click. All options are user selectable and stored in nonvolatile EEPROM.

The TM2500 is available with an RS-232C interface, while the TM2700 is provided with an RS-422 interface.

These microterminals provide an easy-to-use, offthe-shelf interface in many new equipment designs.

OEM MICROTERMINALS

BENEFITS/FEATURES

- MINIMIZES DEVELOPMENT TIME AND EXPENSE
- LARGE, HIGH CONTRAST 16-CHARACTER LCD DISPLAY
- 80-CHARACTER DISPLAY BUFFER
- SIX PROGRAMMABLE BACKLIT FUNCTION KEYS
- POSITIVE TACTILE FEEDBACK KEYBOARD
- EASILY CUSTOMIZED LABELS
- ADJUSTABLE VIEWING ANGLE

DESCRIPTION

The TM2500/TM2700 are low cost, compact, industrial data entry and display terminals. They are designed to be used as operator panels, as well as service and diagnostic equipment. The terminals can also be used as a simple keyboard entry data collection terminal. The TM2500 and TM2700 are similar units, differing only in communications interface— RS-232C on the TM2500 and RS-422 on the TM2700.

Both terminals are lightweight, 10.5 ounces, and are enclosed within a $4.102'' \times 7.102'' \times 1.060''$ case. The terminals have six backlit programmable function keys. Space is provided to customize the keyboard

- NONVOLATILE CONFIGURATION STORAGE
- POWERUP SELF-TEST
- ALL OPTIONS USER-SELECTABLE

APPLICATIONS

- OPERATOR PANEL
- SERVICE/DIAGNOSTIC DEVICE
- DATA COLLECTION TERMINAL

and function keys with company logos and function labels. The compact size of the TM2500/TM2700 makes them ideal for applications where space is at a premium.

The TM2700 is recommended for electrically noisy environments, multidrop applications, and where communication distances of more than 50 feet are required. Fifteen command sequences are used by the host to control these terminals. Burr-Brown's 25 years of experience in developing and producing OEM products has ensured that the design of the TM2500/TM2700 is focused on the needs of potential and existing customers.

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

KEYBOARD

A numeric keypad with six programmable function keys is provided for operator input. The keys are widely spaced for ease of entry. The silicon rubber keyboard provides environmental sealing with good tactile feedback. A unique characteristic of the keyboard is that each function key is backlit. The backlighting is under host computer control to give maximum flexibility to the operator. The keyboard also features key click and key repeat functions. If an invalid key is pressed, the terminal responds with an audible tone.

DISPLAY

The display is a 16-character LCD with large, easy to read characters. An 80-character display buffer with scroll keys allows the operator to slide the 16-character window across the 80-character line. The high contrast display on the terminals provides sufficient alphanumeric display capability for most panel-mount applications.

CASE

The case for the TM2500/TM2700 is designed for either surface or recessed mounting. The keyboard and display are sealed in the ABS plastic case so that when properly mounted, the terminal is protected against dust and moisture.

SPECIFICATIONS

Display	16-character alphanumeric LCD
	with adjustable viewing angle
Character Size	0.38" (9.66mm) character height
Display Buffer	
Keyboard	Sealed molded silicon rubber
Scrolling Keys	Two, manual
Keypad	Numeric
Number of Keys	
Operation Life	1,000,000 operations
Function Keys	Six, programmable, backlit
Indicators	Audible tone, flashing display,
	6 LEDs
Communications	TM2500-RS-232C,
, p	oint-to-point; TM2700-RS-422,
	multidrop up to 32 terminals
Power	5VDC or 7.5 to 10VDC at
	250mA max, TM2500
	350mA max, TM2700
Baud Rate	
Modes	Character and block
Operating Temperature	0°C to +50°C (32° F to 122° F)
Storage Temperature	$\dots -20^{\circ}C \text{ to } +70^{\circ}C$
	(-4°F to +158°F)
Dimensions	
Weight	10.5 ounces
Mounting	Flush or surface mounted
Case Dust	and moisture sealed ABS plastic

DSPlay[™]

The *DSPlay* product family is designed to assist those involved in the analysis of real-world signals by simplifying the implementation of digital signal processing (DSP). Typical applications include vibration analysis; process, medical and analytical instrumentation; audio, sonar and voice signal processing; and test or quality control applications.

The DSPlay Software Package transforms the IBM® PC/XT/AT or compatible into an easy-touse DSP workstation, even for the nonexpert. DSPlay Software features a menu-driven interface with pull-up lists to process, analyze, and display real-world signals. Built-in editor functions make program development and modification simple; and, the package utilizes a concept familiar to the user for program development—the block diagram approach. Each block represents a process function such as correlation, signal source, filter or FFT operation. Once the program is developed, *DSPlay* offers three different ways to view the data. The "Windows" display provides an overview of up to six signal windows. The "Active" display allows a concentrated examination of one signal window, and the "Landscape" display offers a comparison of signal frames by presenting a series in 3-D perspective.

DSPlay requires 512k bytes memory, one doublesided floppy drive, and an IBM color graphics board for operation.

The execution time of *DSPlay* Software may be enhanced by implementing *DSPlay* XLTM. Using a powerful accelerator board, the software's performance is improved by two orders of magnitude (typically). Even higher performance improvements can be achieved in operations requiring numerous sequential calculations—for example, where large filters or transforms are processed frequently.

DSPlay XL is slated for introduction in the fourth quarter of 1987.

For more information about *DSPlay* products, contact the factory at 602-741-1155 or write DSP Marketing, Burr-Brown Corporation, 6550 S. Bay Colony, Tucson, AZ 85706.

DSPlay™, DSPlay XL™, Burr-Brown Corp.; IBM® IBM Corp.

STD BUS INDUSTRIAL I/O PRODUCTS

The Burr-Brown STD Bus products provide the most cost-effective tool for solving the application-oriented problems of process control and system integration.

The modularity and simplicity offered by this well-defined standard have led to the development of a complete line of STD Bus products. The line includes a disk controller and operating system, a Z80 CPU with onboard DMA, various memory boards, a 32-channel 12-bit A/D converter, two CRT controllers, an IEEE-488 interface card, and two types of discrete I/O cards.

DATA COMMUNICATIONS PRODUCTS

LOWDORN Internet LOWDORN FIBEROPRIC FIBEROPRIC FIBEROPRIC FIBEROPRIC

Burr-Brown Data Communications products provide the most cost-effective tool for solving the local data communications problems for industrial and institutional facilities.

Limited Distance and Fiber Optic Modems provide extension of RS-232 ports up to several miles. In addition, electrical isolation for wire units is provided by transformers and optical couplers, eliminating ground loops, equipment damage, and noise pickup. Surge suppression devices are internally mounted on all field inputs and outputs. The LDM422 serves as a Limited Distance Modem and as an RS-232-to-RS-422 converter with multipoint capability. It has two complete high speed transmit and receive channels for data and handshake. It features 1000V isolation and surge protection.

Fiber optic modems offer the maximum in isolation and EMI/RFI immunity. The LDM80 is signal powered from RS-232 ports and transmits up to 3.5km at 19.2k bits per second. The LDM85 is a unique multipoint-capable modem with data rates to 5M bits per second.

Other products include:

• LDM35—Signal-Powered Limited-Distance Modem

• LDM70—High Speed Ruggedized Industrial Modem

• APA120—Personal-Computer-Based Protocol Analyzer.
•

NORTH AMERICAN SALES DIRECTORY

For Component Products

BURR-BROWN OFFICES AND SALES REPRESENTATIVES

ALABAMA Rep, Inc. 205-881-9270 Huntsville, AL

ALASKA Burr-Brown Corporation 206-455-2611 Bellevue, WA

ARIZONA Burr-Brown Corporation 602-746-1111 Tucson, AZ

ARKANSAS Burr-Brown Corporation 214-681-5781 Garland, TX

CALIFORNIA (Northern) Burr-Brown Corporation 408-559-8600 San Jose, CA

CALIFORNIA (Southern) Burr-Brown Corporation 818-991-8544 Agoura, CA 805-496-7581 Agoura, CA 714-835-0712 Santa Ana, CA

CANADA Allan Crawford Associates 416-890-2010 Mississauga, ONT

COLORADO Burr-Brown Corporation 303-663-4440 Loveland, CO

CONNECTICUT Burr-Brown Corporation 914-964-5252 Yonkers, NY

DELAWARE QED Electronics, Inc. 215-643-9200 Spring House, PA

FLORIDA Burr-Brown Corporation 305-740-7900 Orlando, FL 305-586-7162 Palm Beach, FL

GEORGIA Rep, Inc. 404-938-4358 Atlanta, GA

HAWAII Burr-Brown Corporation 818-991-8544 Agoura, CA

IDAHO Burr-Brown Corporation 206-455-2611 Bellevue, WA

ILLINOIS Burr-Brown Corporation 312-832-6520 Addison, IL

INDIANA

Burr-Brown Corporation 513-891-4711 Cincinnati, OH

IOWA Rep Associates Corporation

319-373-0152 Marion, IA KANSAS BC Electronic Sales, Inc.

913-342-1211 Kansas City, KS 316-722-0104 Wichita, KS

KENTUCKY Burr-Brown Corporation 513-891-4711 Cincinnati, OH

LOUISIANA (Northern) Burr-Brown Corporation 214-681-5781 Garland, TX

LOUISIANA (Southern) Burr-Brown Corporation 713-988-6546 Houston, TX

MAINE Burr-Brown Corporation 617-273-9022 Burlington, MA

MARYLAND Marktron, Inc. 301-628-1111 Hunt Valley, MD 301-251-8990 Rockville, MD

MASSACHUSETTS Burr-Brown Corporation 617-273-9022 Burlington, MA

MICHIGAN Burr-Brown Corporation 313-474-6533 Farmington, MI

MINNESOTA Electronic Sales Agency, Inc. 612-884-8291 Bloomington, MN

MISSISSIPPI Rep, Inc. 404-938-4358 Atlanta, GA

MISSOURI BC Electronic Sales, Inc. 314-521-6683 St. Louis, MO

MONTANA Aspen Sales, Inc. 801-467-2401 Salt Lake City, UT

NEBRASKA BC Electronic Sales, Inc. 913-342-1211 Kansas City, KS

NEVADA (Northern) Burr-Brown Corporation 408-559-8600 San Jose, CA NEVADA (Southern) Burr-Brown Corporation 818-991-8544 Agoura, CA

NEW HAMPSHIRE Burr-Brown Corporation 617-273-9022 Burlington, MA

NEW JERSEY Burr-Brown Corporation 914-964-5252 Yonkers, NY

NEW MEXICO Thorson Desert States, Inc.* 505-293-8555 Albuaueraue, NM

NEW YORK (Metro Area) Burr-Brown Corporation 914-964-5252 Yonkers, NY

NEW YORK Advanced Components Corp. 315-853-6438 Clinton, NY 607-785-3191 Endicott, NY 315-699-2671 N. Syracuse, NY 716-544-7017 Rochester, NY 716-889-1429 Scottsville, NY

NORTH CAROLINA Murcota Corporation 919-722-9445 Winston-Salem, NC

NORTH DAKOTA Electronic Sales Agency, Inc. 612-884-8291 Bloomington, MN

OHIO Burr-Brown Corporation 513-891-4711 Cincinnati, OH

OHIO (Northeastern) K-T/DEPCO Marketing, Inc. 216-442-6200 Cleveland, OH

OKLAHOMA Burr-Brown Corporation 214-681-5781 Garland, TX

OREGON Burr-Brown Corporation 206-455-2611 Bellevue, WA

PENNSYLVANIA (Eastern) QED Electronics, Inc. 215-643-9200 Spring House, PA

PENNSYLVANIA (Western) K-T/DEPCO Marketing, Inc. 412-367-1011 Pittsburgh, PA

RHODE ISLAND Burr-Brown Corporation 617-273-9022 Burlington, MA SOUTH CAROLINA Murcota Corporation 919-722-9445 Winston-

Salem, NC

Electronic Sales Agency, Inc. 612-884-8291 Bloomington, MN

TENNESSEE Rep, Inc. 615-475-4105 Jefferson City, TN

TEXAS (Northern) Burr-Brown Corporation 214-681-5781 Garland, TX

TEXAS (Southern) Burr-Brown Corporation 713-988-6546 Houston, TX

TEXAS (El Paso) Thorson Desert States, Inc.* 505-293-8555 Albuquerque, NM

UTAH Aspen Sales, Inc. 801-467-2401 Salt Lake City, UT

VERMONT Burr-Brown Corporation 617-273-9022 Burlington, MA

VIRGINIA Marktron, Inc. 301-251-8990 Rockville, MD

WASHINGTON Burr-Brown Corporation 206-455-2611 Bellevue, WA

WASHINGTON, D.C. Marktron, Inc. 301-251-8990 Rockville, MD

WEST VIRGINIA Burr-Brown Corporation 513-891-4711 Cincinnati, OH

WISCONSIN (Eastern) Burr-Brown Corporation 312-832-6520 Addison, IL

WISCONSIN (Western) Electronic Sales Agency, Inc. 612-884-8291 Bloomington, MN

WYOMING Aspen Sales, Inc. 801-467-2401 Salt Lake City, UT

* Microcircuits only.

BURR-BROWN®

BURR-BROWN CORPORATION

P.O. BOX 11400 • Tucson, Arizona 85734 Telephone: (602) 746-1111 • TWX: 910-952-1111 • Telex: 66-6491

CUSTOMER PRICE LIST-COMPONENT PRODUCTS

Pri	ces in U.S. dollars		F.O.B. T	ucson, A	rizona	Quantity discounts	s available).	Effective	e June 1, 198
	MODEL	FOOT NOTE	1-24	25-99	100-249	MODEL	FOOT Note	1-24	25-99	100-249
	0100MS		14.98	12.74	10.34	3500U/883B	+	30.00	26.00	24.00
	0145MC		5.21	4.43	3.78	35015		28.56	22.41	17.80
	0546		104.00	99.00	96.00	3507J		13.05	10.42	8.72
	0548MC		28.00	27.00	26.00	3507JQ		19.43	15.07	12.97
	0700		50.00	48.00	46.00	3508J		11.48	8.91	7.77
	0700M		53.00	51.00	49.00	3510AM		10.47	8.10	6.25
	0700U		44.00	43.00	41.00	3510BM		13.27	10.15	7.82
	0700UM		60.00	58.00	56.00	3510CM		20.44	15.39	12.18
	0710		121.00	117.00	112.00	3510SM		20.44	15.39	12.18
	0722		52.96	40.77	36.23	3510VM/883B	+	70.00	60.00	50.00
	0722BG		67.59	53.14	47.09	3521H		27.65	21.65	16.49
	0722MG		60.87	47.03	40.74	3521J		39.50	28.80	22.31
	0724		73.85	56.86	50.98	352130		52.00	38.55	30.87
	0803HS		4.20	3.24	2.84	3521K		59.30	43.20	35.96
	0803MC		5.75	4.43	4.04	3521L		83.50	61.45	49.35
	0804HS		5.61	4.32	3.94	3521R		97.00	76.50	58.49
	0805HS		25.25	19.44		3521RQ		137.75	105.65	86.78
	0807HS		1.54	1.19	1.00	3522J		20.60	16.00	12.34
	2014MC		17.00	14.00	11.00	3522К		27.00	21.55	16.80
	2020MC		9.00	7.00	6.00	3522L		37.78	28.10	22.16
	2026MC		39.00	32.00	26.00	35225		53.40	41.50	31.34
	2302MC		9.00	8.60	8.20	352250		71.15	57.80	45.83
	2350MC		14.00	13.50	13.00	3523J		38.50	29.20	22.73
	2525MC		28.00	23.00	19.00	3523JQ		50.75	41.20	33.08
	3291/14		125.00	120.00	115.00	3523K		45.80	36.00	28.93
	3292/14		125.00	120.00	115.00	3523L		54.90	42.00	33.39
	3293/14		125.00	120.00	115.00	3523L0		73.85	60.65	51.40
	3329/03		43.23	35.64	25.20	3527AM		18.20	13.72	11.50
	3354/25		165.00	159.00	152.00	3527AM0		24.42	18.52	15.59
	3355/25		133.00	128.00	123.00	3527BM		24.36	17.82	15.38
	3356/25		125.00	120.00	115.00	3527BM0		29.96	23.81	20.21
	3450		280.00	269.00	258.00	3527CM		37.13	28.89	24.47
	3451		228.00	219.00	210.00	3528AM		22.68	17.12	13.60
	3452		240.00	230.00	221.00	3528AM0		30.30	23.27	18.32
	3500A		11.54	8.80	6.72	3528BM		27.83	20.90	18.43
	3500B		19.71	15.61	11.39	3528BM0		36.96	28.03	24.78
	35000		25.14	20.14	14 91	3528CM		33.88	26.08	23.00
	3500F		40.60	30.24	23.36	3528CM0		45.86	36.34	30.45
	3500MP		40.60	30.24	23.36	3550J		34.94	27.00	22.52
	3500R		23.80	17 93	13 13	3550K		44.52	33.75	26.78
	3500R/883B	+	40.00	36.00	34 00	35505		64 74	50.60	37 49
	3500R0	·	32 40	25 00	18 90	355050		87 36	69.66	53 55
	35005		36 06	27 27	22 26	3551.1		35 62	27.27	22.52
	350050		52 49	38 72	31 60	35515		62.89	49.95	37.49
	350030		50 64	44 28	35.28	355150		78.40	64,80	51.45
	350010		82 72	62 97	50.40	3553AM		40 32	31.21	23.57
	220010		02 . / 2	02.0/	30.40			10.02	01.01	20.07

CUSTOMER PRICE LIST--COMPONENT PRODUCTS

Prices in U.S. dollars F.O.B. Tucson, Arizona Quantity discounts available. Effective June 1, 1987 MODEL FOOT 1-24 MODEL FOOT 1-24 25-99 100-249 25-99 100-249 NOTE NOTE 3553AMQ 63.84 54.00 46.20 4127JG 56.84 42.55 36.12 3554AM 77.35 60.00 50.09 4127KG 65.46 53.41 46.10 3554AMO 95.50 76.96 68.25 4203J 43.50 29.15 21.55 3554BM 88.85 73.50 58.96 4203K 59.58 47.90 38.30 3554BMQ 111.30 93.60 80.85 4203S 92.40 66.10 58.30 3554SM 105.00 88.00 73.50 4203SQ 122.40 91.85 81.40 3554SMQ 145.60 118.80 99.23 4204J 76.16 64.75 53.55 3571AM 81.14 58.32 50.40 4204K 99.40 85.91 67.73 3571AMQ 109.76 85.32 72.45 4204S 113.12 101.52 86.10 3572AM 92.96 69.12 57.23 4204SQ 150.08 139.32 121.80 3572AMQ 125.44 99.36 81.90 4205J 35.78 28.08 20.95 3573AM 40.32 28.62 26.25 4205K 52.08 40.88 31.76 3573AMQ 54.88 42.12 36.75 4205S 74.42 56.16 42.00 3580J 65.72 49.40 42.25 420550 98.95 77.60 59.48 3580JQ 94.35 72.30 60.75 4206J 54.26 43.15 31.76 3581J 99.05 72.65 62.85 4206K 77.06 61.18 44.36 3582J 107.60 90.90 73.15 4213AL 34.20 27.10 21.95 3582JQ 143.00 123.75 107.15 4213AL-BS 34.20 27.10 21.95 3583AM 106.00 88.40 72.10 4213AL-BSS1 112.86 89.43 72.44 3583AMQ 148.40 122.75 106.10 4213AL-BSS2 44.46 35.23 28.54 3 3583JM 97.85 83.20 66.95 4213AL-BSS3 39.33 31.17 25.24 3584JM 100.00 75.40 67.45 4213AL-BSS4 37.62 29.81 24.15 3584JM0 136.75 113.35 100.95 4213AM 31.15 24.40 19.50 3606AG 117.60 102.60 91.35 4213AM-BS 31.15 24.40 19.50 3606BG 153.44 136.62 119.54 4213AM-BSS1 104.61 81.18 64.19 3627AM 14.00 10.64 9.61 4213AM-BSS2 40.50 31.72 25.35 3627AMQ 28.00 17.55 14.18 4213AM-BSS3 35.82 28.06 22.43 3627BM 18.76 13.61 11.81 4213AM-BSS4 34.27 26.84 21.45 3627BMQ 36.40 21.60 17.59 4213AMQ 38.90 31.85 26.25 3650HG 63.00 46.22 35.44 4213BL 48.40 37.50 31.65 3650JG 81.93 59,56 49.04 4213BL-BS 48.40 37.50 31.65 3650KG 99.57 81.38 68.25 4213BL-BSS1 159.72 123.75 104.45 3650MG 56.45 39.53 33.60 4213BL-BSS2 62.92 48.75 41.15 3652HG 81.93 61.94 49.04 4213BL-BSS3 55.66 43.13 36.40 3652JG 99.57 75.28 67.20 4213BL-BSS4 53.24 41.25 34.82 3652MG 64.12 51.03 44.94 4213BM 45.05 34.75 29.15 3656AG 74.52 96.71 60.74 4213BM-BS 45.05 34.75 29.15 3656BG 119.56 92.18 81.74 4213BM-BSS1 151.47 115.50 96.20 3656HG 85.40 65.88 53.55 4213BM-BSS2 58.57 45.18 37.90 3656JG 91.06 70.20 57.23 4213BM-BSS3 51.81 39.96 33.52 3656KG 111.94 86.35 70.30 4213BM-BSS4 49.56 38.23 32.07 4025MC 39.00 32,00 26.00 4213SL 61.90 51.75 41.40 4085BM 91.84 79.38 61.95 4213SL-BS 61.90 51.75 41.40 4085KG 79.52 65.50 51.98 4213SL-BSS1 204.27 170.78 136.62 4085SM 115.36 102.06 79.28 4213SL-BSS2 80.47 67.28 53.82 4115/04 74.26 56.70 51.19 4213SL-BSS3 71.19 59.51 47.61

Prices in U.S. dollars F.O.B. Tucson, Arizona Quantity discounts available. Effective June 1, 1987 MODEL FOOT 1-24 25-99 MODEL 1-24 100-249 FOOT 25-99 100-249 NOTE NOTE 4213SL-BSS4 68.09 56.93 45.54 ADC76BM 330.75 264.60 226.80 4213SM 58.30 48.80 38.90 156.45 135.45 103.95 ADC76JG 4213SM-BS 58.30 48.80 38.90 ADC76JM 193.20 154.35 132.30 4213SM-BSS1 196.02 162.53 128.37 179.55 153.30 124.95 ADC76KG 4213SM-BSS2 75.79 63.44 50.57 ADC76KM 242.55 194.25 165.90 4213SM-BSS3 62.04 56.12 44.74 239.00 ADC803BM 199.00 162.00 4213SM-BSS4 64.13 53.68 42.79 321.00 256.00 205.00 ADC803BM0 4213UM 31.00 26.00 23.00 ADC803CM 292.00 225.00 180.00 4213UM/883B 4 43.00 37.00 29.00 ADC803CMQ 369.00 293.00 234.00 4213VM 45.00 39.00 31.00 ADC803SM 382.00 304.00 243.00 4213VM/883B 60.49 38.00 35.00 502.00 399.00 319.00 ADC803SMQ 4 4213WM 60.00 60.00 49.00 ADC804BH 66.15 47.25 40.95 4213WM/883B 75.00 62.00 48.00 ADC804BH0 102,90 72.45 57.75 4214AP 28.28 22.95 17.64 ADC804SH 124.95 87.15 69.30 4214BP 41.94 33.70 28.35 ADC804SHQ 156.45 109.20 87.15 4214RM 34.16 26.95 24.52 ADC80AG-10 83.48 66.15 46.20 4214SM 55.33 45.36 38.59 ADC80AG-12 85.05 67.20 46.73 4302 58.86 42.88 33.76 ADC80AG-120 110.25 88.20 60.90 4340 108.90 79.95 70.65 ADC80AGZ-12 85.05 46.73 67.20 4341 32.70 25.97 18.85 ADC80H-AH-12 85.05 67.20 46.73 4423 27.10 21.06 17.48 ADC80H-AH-120 60.90 110.25 88.20 8300201XC 170.00 163.00 155.00 ADC80KD E.0 33.00 33.00 AD515JH 19.04 14.31 9.98 ADC80MAH-12 52.00 42.00 35.00 AD515JL 19.50 15.75 12.00 67.00 ADC80MAH-12/QM 54.00 45.00 19.71 AD515KH 25.48 14.54 ADC82AG 78.75 54.60 46.20 AD515KL 25.25 20.75 16.35 ADC82AM 113.40 78.75 66.15 AD515LH 31.36 24.30 18.90 ADC82AMQ 153.30 105.00 115.50 30.50 25.00 20.50 AD51511 ADC84KG-10 92.40 73.50 61.95 ADC10HT 577.50 477.75 414.75 ADC84KG-12 97.65 77.70 65.10 ADC574AJH 45.00 36.00 30.00 ADC85-10 158.55 143.85 103.95 ADC574AKH 59.00 47.20 39.50 ADC85-12 179.55 144.90 110.25 ADC574ASH 124.00 99.00 91.35 ADC85H-12 131.25 105.00 88.20 ADC574ATH 177.00 141.00 118.50 ADC85H0-12 163.80 131.25 110.25 С ADC600B 2375.00 2090.00 ADC87 119.00 102.00 94.00 С ADC600K 1695.00 1495.00 ADC87/883B 130.00 113.00 105.00 ADC674AJH 58.50 46.75 39.25 ADC87H-12 173.25 138.60 115.50 ADC674AKH 75.00 60.00 50.25 ADC87HQ-12 216.30 173.25 143.85 ADC674ASH 158.00 106.00 126.00 ADC87U 110.00 94.00 91.00 ADC674ATH 228.00 182.00 153.00 ADC87U/883B 121.00 104.00 96.00 ADC71JG 98.70 86.10 66.15 119.00 ADC87V 102.00 94.00 ADC71KG 122.85 81.90 107.10 ADC87V/883B 130.00 113.00 105.00 ADC72AM 239.40 203.70 156.45 DAC10HT 355.95 241.50 178.50 ADC72BM 298.20 254.10 195.30 DAC1200KP-V 9.50 9.50 5.95 199.50 ADC72JM 170.10 131.25 DAC1201KP-V 11.20 11.20 6.95 ADC72KM 249.90 212.10 162.75 DAC1600JP-V 15.10 14.35 8.95 ADC76AM 281.40 224.70 193.20 9.95 DAC1600KP-V 16.70 15.95

CUSTOMER PRICE LIST-COMPONENT PRODUCTS

Pri	ces in U.S. do	llars	. F.(Э.В. ⁻	Fucson, A	rizona	Quantity discounts	Effective June 1, 198			
	MODEL	FO	OT 1 Fe	-24	25-99	100-249	MODEL	FOOT NOTE	1-24	25-99	100-249
	DAC60-10		15	5.00	149.00	143.00	DAC703BL/QM		109.20	82.95	71.40
	DAC60-12		16	5.00	159.00	152.00	DAC703CH		88.20	67.20	56.70
	DAC63BG		12	1.80	97.65	91.35	DAC703JP		23.10	19.58	17.85
	DAC63BM		14	1.75	117.60	107.10	DAC703KH		48.30	36.75	30.45
	DAC63CG		13	7.55	109.20	101.85	DAC703KP		25.20	22.03	19.95
	DAC63CM		16	0.65	131.25	117.60	DAC703LH		71.40	54.60	46.20
	DAC63SM		25	2.00	210.00	192.15	DAC703SH		92.40	70.35	58.80
	DAC63TM		27	6.15	234.15	212.10	DAC703SH/QM		107.10	80.85	68.25
	DAC700BH		6	0.90	48.30	40.95	DAC703SL		154.35	122.85	103.95
	DAC700BH/QM		7	3.50	55.65	47.25	DAC703SL/QM		177.45	140.70	119.70
	DAC700BL		- 9	5.55	72.45	61.95	DAC703VG	I	102.00	77.00	64.50
	DAC700BL/QM		10	9.20	82.95	71.40	DAC703VG/883B	I	118.50	89.00	75.00
	DAC700CH		8	8.20	67.20	56.70	DAC703VL	I	143.50	108.00	90.00
	DAC700KH		4	B.30	36.75	30.45	DAC703VL/883B	I	165.50	125.00	105.00
	DAC700LH		7	1.40	54.60	46.20	DAC705BH		76.65	72.45	56.70
	DAC700SH		9	2.40	70.35	58.80	DAC705BH/QM		88.20	82.95	65.10
	DAC700SH/QM		10	7.10	80.85	68.25	DAC705KH		66.15	53.55	46.20
	DAC700SL		15	4.35	122.85	103.95	DAC705SH		99.75	97.65	77.17
	DAC700SL/QM		17	7.45	140.70	119.70	DAC705SH/QM		114.45	108.15	89.30
	DAC701BH		, 6	0.90	48.30	40.95	DAC706BH		76.65	72.45	59.54
	DAC701BH/QM		7	3.50	55.65	47.25	DAC706BH/QM		88.20	82.95	68.36
	DAC701BL		9	5.55	72.45	61.95	DAC706KH		66.15	53.55	48.51
	DAC701BL/QM		10	9.20	82.95	71.40	DAC706SH		99.75	93.45	77.17
	DAC701CH		8	8.20	67.20	56.70	DAC706SH/OM		114.45	108.15	89.30
	DAC701KH		4	8.30	36.75	30.45	DAC707BH		76.65	72.45	59.54
	DAC701LH		7	1.40	54.60	46.20	DAC707BH/OM		88.20	82.95	65.10
	DAC701SH		9	2.40	70.35	58.80	DAC707JP		27.30	21.53	18.37
	DAC701SH/OM		10	7.10	80.85	68.25	DAC707KH		66.15	53.55	46.20
	DAC701SL		15	4.35	122.85	103.95	DAC707KP		32.55	25.73	22.05
	DAC701SL/OM	1	17	7.45	140.70	119.70	DAC707SH		99.75	93.45	73.50
	DAC702BH		6	0.90	48.30	40.95	DAC707SH/OM		114.45	108.15	85.05
	DAC702BH/QM		7	3.50	55.65	47.25	DAC708BH		76.65	72.45	56.70
	DAC702BL		9	5.55	72.45	61.95	DAC708BH/OM		88.20	82.95	65.10
	DAC702BL/OM		10	9.20	82.95	71.40	DAC708KH		66.15	53.55	46 20
	DAC702CH		8	8.20	67.20	56.70	DAC708SH		99.75	93.45	73.50
	DAC702JP		2	3.10	19.58	17.85	DAC708SH/OM		114.45	108.15	85.05
	DAC702KH		4	8.30	36.75	30.45	DAC709BH		76.65	72 45	56 70
	DAC702KP		2	5.20	21.95	19.95	DAC709BH/OM		88.20	82 95	65 10
	DAC702LH		7	1.40	54.60	46.20	DAC709KH		66.15	53.55	46.20
	DAC702SH		, Q	2.40	70.35	58.80	DAC709SH		99.75	Q3 45	73 50
	DAC702SH/OM		10	7.10	80.85	68.25	DACZO9SH/OM		114.45	108 15	85.05
	DAC702SL		15	4.35	122.85	103.95	DACZOBH-COB-1		150.15	113 40	94 50
	DAC702SL/OM		17	7.45	140.70	119.70	DAC70BH_CSB_1		150.15	113 /0	04 50
	DAC703BH		6	0.90	48 30	40 95			67 10	52 20	46 20
	DAC703BH/OM		7	3 50	55 65	47.25	DAC71_CCD_V		70 40	57 20	52 80
	DAC703BI		. 0	5 55	72 /5	61 95	DAC71_COB_T		56 70	37.20	39.95

CUSTOMER PRICE LIST—COMPONENT PRODUCTS Page No. 5

MODEL FOOT NOTE 1-24 25-99 100-249 MODEL FOOT NOTE 1-24 25-99 100-249 DxC71-C0B-V 59.85 47.25 40.95 DxC811BH/(M 35.75 28.25 23.75 DxC71-C0B-V 59.85 47.25 40.95 DxC811BL/(M 46.50 37.00 31.00 DxC71-C0B-V 59.85 47.25 40.95 DxC811BL/(M 46.50 37.00 31.00 DxC72BH-C0B-1 87.15 66.15 53.55 DxC811BV 24.75 19.86 14.90 11.90 DxC72BH-C0B-V 90.30 57.05 30.45 DxC811BV 24.75 19.80 15.85 DxC72BH-C0B-V 90.30 56.56 DxC811BV 26.90 53.00 DxC811BV 26.90 53.00 DxC811BV/(M 19.00 95.00 69.00 DxC72BH-C0B-V 375.00 365.00 344.00 DxC811BW/(M 19.00 95.00 69.00 DxC7341AAH 13.10 10.75 7.93 DxC811SW/(M <th>Prices in U.S. dollars</th> <th>;</th> <th>F.O.B. 1</th> <th>Tucson, A</th> <th>rizona</th> <th>Quantity discounts</th> <th>availab</th> <th>le.</th> <th>Effective</th> <th>e June 1, 1987</th>	Prices in U.S. dollars	;	F.O.B. 1	Tucson, A	rizona	Quantity discounts	availab	le.	Effective	e June 1, 1987
DAC71-C0B-V 59.85 47.25 40.95 DAC811BH/QH 35.75 28.25 23.75 DAC71-CSB-I 56.70 44.10 38.85 DAC811BL 37.00 29.25 24.60 DAC71-CSB-V 59.85 47.25 40.95 DAC811BL/QH 46.50 37.00 31.00 DAC710KH 42.00 35.70 30.45 DAC811JD E 15.25 9.60 DAC712KH 42.00 35.70 30.45 DAC811JD E 15.25 9.60 DAC72BH-C0B-L 87.15 56.61 53.55 DAC811NU 26.50 16.40 13.50 DAC72BH-CSB-L 90.30 70.14 55.65 DAC811NU 26.50 20.00 13.00 12.00 13.00 12.00 15.05 DAC7313 373.00 382.00 DAC811NL/QH 19.00 95.00 80.00 22.00 96.60 22.00 96.61 22.00 96.65 22.00 96.65 22.00 96.65 22.00 96.65 20.02.	MODEL	FOOT NOTE	1-24	25-99	100-249	MODEL	FOOT NOTE	1-24	25-99	100-249
DAC21-CSB-I 55.70 44.10 38.65 DAC8118L 37.00 29.25 24.60 DAC71-CSB-V 59.65 47.25 40.95 DAC8118L/QM 46.50 37.00 31.00 DAC710KH 42.00 35.70 30.45 DAC8118L/QM 46.50 37.00 31.00 DAC72BH-COB-I 97.15 66.15 53.55 DAC811VU 26.50 21.20 17.20 DAC72BH-CSB-I 97.15 66.15 53.55 DAC811VU 26.50 21.20 17.20 DAC72BH-CSB-V 90.30 69.30 55.65 DAC811RU 13.00 85.00 50.00 53.00 DAC73GK 415.00 399.00 32.00 DAC811RU 10.00 15.00 12.00 95.00 80.00 DAC73HAAH 13.10 10.75 7.95 DAC811SU/QM 190.00 130.00 12.00 DAC7541AAH 13.00 10.75 7.95 DAC81SV/QM 190.00 130.00 12.00 DAC7541AAH 13.20 </td <td>DAC71-COB-V</td> <td></td> <td>59.85</td> <td>47.25</td> <td>40.95</td> <td>DAC811BH/QM</td> <td></td> <td>35.75</td> <td>28.25</td> <td>23.75</td>	DAC71-COB-V		59.85	47.25	40.95	DAC811BH/QM		35.75	28.25	23.75
DAC/1-CSP-V 59,85 47,25 40,95 DAC811BL/QM 46,50 37,00 31,00 DAC710KH 42,00 35,70 30,45 DAC811JD E 15,25 9,60 DAC71RH 42,00 35,70 30,45 DAC811JP 18,60 14,90 11,90 DAC72RH-C0B-L 87,15 66,15 53,55 DAC811KP 24,75 15,80 15,85 DAC72RH-CSB-L 87,15 66,15 33,50 DAC811HH 79,00 63,00 55,65 DAC811H-CSB-L 9,30 55,65 DAC811HH 19,00 73,00 61,00 DAC736K 415,00 399,00 382,00 DAC811RL/QM 11,00 73,00 61,00 DAC731K 412,00 320,00 DAC811RL/QM 19,00 150,00 12,00 DAC741AAH 13,10 10,75 7,95 DAC611SL/QM 195,00 190,00 12,00 DAC7541AAH 14,45 11,85 8,75 DAC61SLM/M 195,00 12,00	DAC71-CSB-I		56.70	44.10	38.85	DAC811BL		37.00	29.25	24.60
DAC710KH 42.00 35.70 30.45 DAC811JD E 15.25 9.60 DAC710KH 42.00 35.70 30.45 DAC811JD 28.60 11.90 DAC72BH-C0B-1 87.15 55.55 DAC811KP 24.75 19.80 15.85 DAC72BH-C3B-V 90.30 66.15 55.35 DAC811KP 24.75 19.80 15.85 DAC72BH-C3B-V 90.30 66.15 55.35 DAC811RH 79.00 63.00 53.00 DAC73GK 415.00 399.00 345.00 DAC811RH 103.00 62.00 69.00 DAC73K 412.00 356.00 344.00 DAC811RH/QM 150.00 122.00 99.00 DAC7541AAH 13.10 10.75 7.95 DAC811SL/QM 150.00 122.00 99.00 DAC7541ABH/QM 17.90 14.10 10.20 DAC812CH 183.75 136.60 122.00 99.00 DAC7541ABH/QM 17.90 9.70 7.15 DAC812CH 183.75 </td <td>DAC71-CSB-V</td> <td></td> <td>59.85</td> <td>47.25</td> <td>40.95</td> <td>DAC811BL/QM</td> <td></td> <td>46.50</td> <td>37.00</td> <td>31.00</td>	DAC71-CSB-V		59.85	47.25	40.95	DAC811BL/QM		46.50	37.00	31.00
DAC711KH 42.00 35.70 30.45 DAC811P 18.60 14.90 11.90 DAC728H-C0B-L B7.15 66.15 53.55 DAC811P 24.57 19.80 13.50 DAC728H-C3B-L B7.15 66.15 53.55 DAC811RV 24.55 21.20 17.20 DAC728H-C3B-L B7.15 66.15 53.55 DAC811RV 79.00 63.00 53.00 DAC728H-C3B-V 90.30 365.00 344.00 DAC811RL 10.00 62.00 69.00 DAC73K 412.00 326.00 362.00 DAC811RL 10.00 62.00 69.00 DAC73HAR 13.00 10.75 7.95 DAC811RL 10.00 122.00 90.00 DAC7541AAH 14.45 11.80 9.70 7.15 DAC811SL 169.00 122.00 90.60 DAC7541ABH/QH 14.00 9.70 7.15 DAC812CH 133.55 127.05 129.00 129.00 129.00 129.00 120.00 122.00	DAC710KH		42.00	35.70	30.45	DAC811JD	Ε		15.25	9.60
DAC228H-C08-V 90.30 70.14 55.65 DAC81.JU 20.50 16.40 13.50 DAC228H-C08-V 90.30 69.30 55.65 DAC811KP 24.75 19.80 15.85 DAC728H-CS8-V 90.30 69.30 55.65 DAC811RH 79.00 63.00 53.00 DAC736K 415.00 399.00 382.00 DAC811RH 190.00 82.00 69.00 69.00 69.00 0.00 0.00 0.00 0.00 82.00 DAC731K 132.00 160.00 82.00 DAC811RL 103.00 82.00 69.00 0.00 0.02751K 122.00 99.00 0.02751K 122.00 99.00 0.02751K 120.00 <	DAC711KH		42.00	35.70	30.45	DAC811JP		18.60	14.90	11.90
DAC/28H-C0B-V 90.30 70.14 55.65 DACR11kP 24.75 19.80 15.85 DAC728H-CSB-I 87.15 66.15 53.55 DAC811kW 26.50 21.20 17.20 DAC73BJ 375.00 360.00 345.00 DAC811RH 79.00 63.00 69.00 DAC73BJ 373.00 358.00 344.00 DAC811RH/QM 19.00 73.00 60.00 DAC73BA 137.00 356.00 300.00 DAC811RL/QM 190.00 73.00 60.00 DAC7541AAH 13.10 10.75 7.95 DAC811SL/QM 150.00 122.00 99.00 DAC7541ABH 14.45 11.85 8.75 DAC811SL/QM 150.00 129.00 D42.54 DAC7541ABH 14.45 11.85 8.55 DAC812KL/QM 130.0 129.00 D42.55 DAC7541ABH 14.45 11.85 8.55 DAC82CG 40.95 28.35 24.15 DAC7541ABH 14.10 10.75 7.95 DAC8	DAC72BH-COB-I		87.15	66.15	53.55	DAC811JU		20.50	16.40	13.50
DAC/28H-CSB-I 87,15 66,15 53,55 DAC811RU 26,50 21,20 17,20 DAC72BH-CSB-V 90,30 69,30 55,66 DAC811RH 79,00 63,00 53,00 DAC73GK 415,00 399,00 382,00 DAC811RH/QH 91,00 73,00 66,00 DAC73K 412,00 399,00 382,00 DAC811RL/QH 119,00 95,00 80,00 DAC73HAAH 13,10 10,75 7,95 DAC811SL/QH 19,00 126,00 99,00 DAC7541AAH/QH 16,20 12,20 99,00 122,00 99,00 122,00 99,00 122,00 99,00 122,00 129,00 129,00 129,00 122,00 129,00 122,00 120,00 122,00 120,00 122,00 120,00 122,00 120,00 122,00 122,00 122,00 122,00 122,00 122,00 122,00 122,00 122,00 122,00 122,00 122,00 122,00 122,00 122,00 122,00	DAC72BH-COB-V		90.30	70.14	55.65	DAC811KP		24.75	19.80	15.85
DAC72BH-CSB-V 90.30 69.30 55.65 DAC811RH 79.00 63.00 53.00 DAC73GJ 375.00 360.00 345.00 DAC811RH 19.00 73.00 61.00 DAC73GX 415.00 399.00 382.00 DAC811RL 19.00 95.00 80.00 DAC73H 412.00 396.00 306.00 DAC811RL/QM 119.00 95.00 80.00 DAC75HARH 13.10 10.75 7.95 DAC811SL/QM 150.00 122.00 99.00 DAC75HARH/QM 16.20 12.70 9.30 DAC811SL/QM 159.00 129.00 DAC75HARH/QM 14.10 10.20 DAC812EH 137.55 126.00 96.60 DAC75HARP/QM 14.10 10.75 7.95 DAC812CH 137.55 126.00 129.00 DAC75HARP/QM 13.10 17.05 24.68 24.15 27.05 24.68 DAC75HARP/QH 13.10 17.07 7.95 DAC82CG 40.43 29.40 24	DAC72BH-CSB-I		87.15	66.15	53.55	DAC811KU		26.50	21.20	17.20
DAC736J 375.00 345.00 945.00 DAC811RH/QH 91.00 73.00 61.00 DAC736K 415.00 399.00 382.00 DAC811RL 103.00 82.00 69.00 DAC73K 412.00 358.00 306.00 DAC811RL/QH 119.00 95.00 80.00 DAC73K 412.00 358.00 300.00 DAC811RL/QH 159.00 122.00 99.00 DAC7541AAH/QH 16.20 12.70 9.30 DAC811SL/QH 195.00 159.00 122.00 DAC7541ABH 14.45 11.85 8.75 DAC812BH 133.5 139.65 127.05 DAC7541ABH 14.15 11.65 8.55 DAC82KG 40.95 28.35 24.15 DAC7541AFW 13.15 23.26 DAC850-CB1-1 38.12 27.30 23.10 DAC7541AFH 38.35 31.35 23.26 DAC850-CB1-VQH 50.82 36.75 30.98 DAC7541AFH 38.35 31.35 23.20 DAC850-CB1-V	DAC72BH-CSB-V		90.30	69.30	55.65	DAC811RH		79.00	63.00	53.00
DAC736K 415.00 392.00 382.00 DAC811RL 103.00 82.00 69.00 DAC73J 373.00 356.00 344.00 DAC811RL 119.00 95.00 80.00 DAC73J 412.00 356.00 356.00 DAC911SL 119.00 95.00 80.00 DAC7541AAH 13.10 10.75 7.95 DAC811SL 169.00 122.00 99.00 DAC7541AAH/QM 16.20 12.70 9.30 DAC811SL 169.00 128.00 122.00 DAC7541ABH/QM 17.90 14.10 10.20 DAC812CH 183.75 126.00 96.60 DAC7541ABH/QM 17.90 7.15 DAC812CH 183.75 124.00 94.60 DAC7541ABH 13.10 10.75 7.95 DAC800-CB1-1 38.12 28.35 24.15 DAC7541ASH 33.135 23.25 DAC80-CB1-V 40.43 29.40 24.68 DAC7541ASH/QM 57.00 44.70 32.60 DAC800-CB1-V 40.43	DAC736J		375.00	360.00	345.00	DAC811RH/QM		91.00	73.00	61.00
DAC73J 373.00 384.00 344.00 DAC811RL/QH 119.00 95.00 80.00 DAC73K 412.00 395.00 300.00 DAC811RL/QH 119.00 95.00 80.00 DAC7541AAH 13.10 10.75 7.95 DAC811SL/QH 150.00 122.00 99.00 DAC7541AAH 14.45 11.85 8.75 DAC811SL/QH 195.00 159.00 122.00 DAC7541ABH 14.45 11.85 8.75 DAC811SL 169.00 138.00 112.00 DAC7541ABH 14.15 11.65 8.55 DAC82KG 40.95 28.35 24.15 DAC7541AFU 13.10 17.7 7.95 DAC850-CB1-1 38.12 27.00 23.10 DAC7541AKU 15.70 12.90 9.55 DAC850-CB1-1 38.12 28.87 30.41 28.87 DAC7541AFH 38.35 31.35 23.26 DAC850-CB1-V 40.43 29.40 24.68 DAC7541AFH 44.75 36.60 27.	DAC736K		415.00	399.00	382.00	DAC811RL		103.00	82.00	69.00
DAC73K 412.00 396.00 300.00 DAC911SH 130.00 196.00 96.00 DAC7541AAH 13.10 10.75 7.95 DAC811SH/QM 150.00 122.00 99.00 DAC7541AAH/QM 16.20 12.70 9.30 DAC811SL/QM 195.00 159.00 129.00 DAC7541ABH 14.45 11.85 8.75 DAC811SL/QM 195.00 159.00 129.00 DAC7541ABH/AM 17.90 14.10 10.20 DAC812BH 137.55 126.00 96.60 DAC7541ABH 11.65 8.55 DAC82KG 40.95 28.35 24.15 DAC7541AKU 15.70 12.90 9.55 DAC850-CB1-1/QM 47.12 28.07 DAC7541AKU 13.10 10.75 7.95 DAC850-CB1-1/QM 53.70 30.45 DAC7541AKH 38.35 31.35 23.25 DAC850-CB1-1/QM 50.82 36.75 30.98 DAC7541ASH/QM 57.00 44.70 32.60 DAC850BL-1/QM 50.23 <td< td=""><td>DAC73J</td><td></td><td>373.00</td><td>358.00</td><td>344.00</td><td>DAC811RL/QM</td><td></td><td>119.00</td><td>95.00</td><td>80.00</td></td<>	DAC73J		373.00	358.00	344.00	DAC811RL/QM		119.00	95.00	80.00
DAC7541AAH 13.10 10.75 7.95 DAC811SH/QM 150.00 122.00 99.00 DAC7541AAH/QM 16.20 12.70 9.30 DAC611SL 169.00 138.00 112.00 DAC7541ABH 14.45 11.85 8.75 DAC611SL 169.00 129.00 DAC7541ABH 14.45 11.86 8.75 DAC612CH 133.02 122.00 DAC7541AJU 11.80 9.70 7.15 DAC812CH 183.75 139.65 127.05 DAC7541AKU 15.70 12.90 9.55 DAC850-CBI-1 38.12 27.30 23.10 DAC7541AKU 15.70 12.90 9.55 DAC850-CBI-V/M 47.36 34.12 28.67 DAC7541ASH 38.35 31.35 23.267 DAC850-CBI-V/M 40.43 29.40 24.68 DAC7541ASH/QM 66.50 52.20 38.00 DAC850BL-1/QM 65.31 37.80 32.02 DAC7501AC 2 25.20 18.37 DAC850BL-1/QM 66.59	DAC73K		412.00	395.00	380.00	DAC811SH		130.00	106.00	86.00
DAC7541AAH/QM 16.20 12.70 9.30 DAC811SL 169.00 138.00 112.00 DAC7541ABH 14.45 11.85 8.75 DACB1LSL/QM 195.00 159.00 129.00 DAC7541ABH/QM 17.90 14.10 10.20 DACB1LSL/QM 183.75 126.00 96.60 DAC7541ABP 11.80 9.70 7.15 DACB2CKS 40.95 28.35 24.15 DAC7541AKP 13.10 10.75 7.95 DAC80C-CB1-I/QM 47.33 24.15 DAC7541AKU 15.70 12.90 9.55 DAC850-CB1-V 40.43 29.40 24.68 DAC7541ASH 38.35 31.35 23.25 DAC850-CB1-V 40.43 29.40 24.68 DAC7541ATH/QM 65.50 52.20 38.00 DAC850-CB1-V 40.43 29.40 24.68 DAC7541ATH/QM 65.50 52.20 38.00 DAC850E-CB1-V 49.35 35.70 30.45 DAC750LAC 25.20 18.37 DAC850EL-V/QM <td< td=""><td>DAC7541AAH</td><td></td><td>13.10</td><td>10.75</td><td>7.95</td><td>DAC811SH/QM</td><td></td><td>150.00</td><td>122.00</td><td>99.00</td></td<>	DAC7541AAH		13.10	10.75	7.95	DAC811SH/QM		150.00	122.00	99.00
DAC7541A8H 14.45 11.85 8.75 DAC811SL/QH 195.00 159.00 129.00 DAC7541ABH/QH 17.90 14.10 10.20 DAC3212BH 137.55 126.00 96.60 DAC7541AJU 14.15 11.65 8.55 DAC812CH 183.75 139.65 127.05 DAC7541AKU 15.70 12.90 9.55 DAC80-CB1-1 38.12 27.30 23.10 DAC7541AKU 15.70 12.90 9.55 DAC850-CB1-V 40.43 29.40 24.68 DAC7541ASH 38.35 31.35 23.25 DAC850-CB1-V/QH 50.82 36.75 30.98 DAC7541ATH 44.75 36.60 27.10 DAC850BL-1/QH 50.82 36.75 30.98 DAC7541ATH/QH 66.50 52.20 18.37 DAC850BL-1/QH 66.39 37.80 32.02 DAC770KD E 25.20 18.37 DAC850BL-1/QH 66.59 40.95 34.65 DAC80-CD1-V 24.00 19.00 16.00	DAC7541AAH/QM		16.20	12.70	9.30	DAC811SL		169.00	138.00	112.00
DAC7541ABH/QM 17.90 14.10 10.20 DAC812BM 137.55 126.00 96.60 DAC7541AJP 11.80 9.70 7.15 DAC812CM 183.75 139.65 127.05 DAC7541AJP 13.10 10.75 7.95 DAC82G 40.95 28.35 24.15 DAC7541AKP 13.10 10.75 7.95 DAC850-CB1-I 38.12 27.30 23.10 DAC7541AKH 18.35 31.35 23.25 DAC850-CB1-V 40.43 29.40 24.68 DAC7541ASH/QM 57.00 44.70 32.60 DAC850-CB1-V 40.43 29.40 24.68 DAC7541ATH/QM 66.50 52.20 38.00 DAC850BL-I/QM 66.99 47.25 30.45 DAC7701KD E 25.20 18.37 DAC850BL-V 53.03 37.80 32.02 DAC80-CB1-I 23.00 18.25 15.25 DAC851-CB1-I 66.99 47.25 40.43 DAC80-CB1-I 24.00 19.00 16.00 <td< td=""><td>DAC7541ABH</td><td></td><td>14.45</td><td>11.85</td><td>8.75</td><td>DAC811SL/QM</td><td></td><td>195.00</td><td>159.00</td><td>129.00</td></td<>	DAC7541ABH		14.45	11.85	8.75	DAC811SL/QM		195.00	159.00	129.00
DAC7541AJP 11.80 9.70 7.15 DAC812CM 183.75 139.65 127.05 DAC7541AJU 14.15 11.65 8.55 DAC82KG 40.95 28.35 24.15 DAC7541AKU 15.70 12.90 9.55 DAC850-CB1-1 38.12 27.30 23.10 DAC7541AKU 15.70 12.90 9.55 DAC850-CB1-V 40.43 29.40 24.68 DAC7541ASH 38.35 31.35 23.25 DAC850-CB1-V 40.43 29.40 24.68 DAC7541ASH/QM 66.50 52.20 38.00 DAC8508L-1 49.35 35.70 30.45 DAC7541ATH/QM 66.50 52.20 18.37 DAC8508L-VQM 66.99 47.25 40.43 DAC700K0 E 25.20 18.37 DAC8508L-V 53.03 37.80 32.02 DAC80-CB1-I 23.00 18.25 15.25 DAC851-CB1-V 66.99 47.25 40.43 DAC80-CB1-I 23.00 17.05 25.00 DAC8	DAC7541ABH/QM		17.90	14.10	10.20	DAC812BM		137.55	126.00	96.60
DAC7541AJU 14.15 11.65 8.55 DAC82KG 40.95 28.35 24.15 DAC7541AKP 13.10 10.75 7.95 DAC850-CB1-I 38.12 27.30 23.10 DAC7541AKP 15.70 12.90 9.55 DAC850-CB1-I/ 47.36 34.12 28.87 DAC7541ASH 33.5 23.25 DAC850-CB1-V 40.43 29.40 24.68 DAC7541ASH 44.70 32.60 DAC850-CB1-V 40.43 29.40 24.68 DAC7541ATH 44.75 36.60 27.10 DAC850BL-1/QM 50.82 36.75 30.98 DAC7541ATH 44.75 36.60 27.10 DAC850BL-1/QM 62.37 45.15 38.30 DAC770KD E 25.20 18.37 DAC850BL-V 53.03 37.80 32.02 DAC80-CB1-V 24.00 19.00 16.00 DAC851-CB1-V 61.21 44.62 37.27 DAC80-CB1-V 24.55 38.00 26.00 DAC851SL-1/QM 75.86	DAC7541AJP		11.80	9.70	7.15	DAC812CM		183.75	139.65	127.05
DAC7541AKP 13.10 10.75 7.95 DAC850-CB1-I 38.12 27.30 23.10 DAC7541AKU 15.70 12.90 9.55 DAC850-CB1-I/0H 47.36 34.12 28.87 DAC7541ASH 38.35 31.35 23.25 DAC850-CB1-V 40.43 29.40 24.68 DAC7541ASH/QM 57.00 44.70 32.60 DAC850-CB1-V 40.43 29.40 24.68 DAC7541ATH 44.75 36.60 27.10 DAC850-CB1-V 40.43 29.40 24.68 DAC7541ATH 44.75 36.60 27.10 DAC850BL-1/QM 62.37 45.15 38.33 DAC7701KD E 25.20 18.37 DAC850BL-V/QM 66.99 47.25 39.90 DAC80-CB1-V 24.00 19.00 16.00 DAC851-CB1-I/QM 65.20 47.25 39.90 DAC80-CB1-V 24.05 38.00 26.00 DAC851-CB1-V 61.21 44.62 37.27 DAC80-CB1-V 28.87 24.15 18.90 </td <td>DAC7541AJU</td> <td></td> <td>14.15</td> <td>11.65</td> <td>8.55</td> <td>DAC82KG</td> <td></td> <td>40.95</td> <td>28.35</td> <td>24.15</td>	DAC7541AJU		14.15	11.65	8.55	DAC82KG		40.95	28.35	24.15
DAC7541AKU 15,70 12.90 9,55 DAC850-CB1-I/QH 47.36 34.12 28.87 DAC7541ASH 38.35 31.35 23.25 DAC850-CB1-V 40.43 29.40 24.66 DAC7541ASH/QM 57.00 44.70 32.60 DAC850-CB1-V/QM 50.82 36.75 30.98 DAC7541ATH 44.75 35.60 27.10 DAC850BL-1 49.35 35.70 30.45 DAC7501KD E 25.20 18.37 DAC850BL-V/QM 66.99 47.25 40.43 DAC80-CB1-V 24.00 19.00 16.00 DAC850BL-V/QM 66.99 47.25 40.43 DAC80-CB1-V 24.00 19.00 16.00 DAC851-CB1-1 65.20 47.25 39.90 DAC80-CB1-V 24.00 37.50 25.00 DAC851-CB1-V/QM 61.21 44.62 37.27 DAC80-CB1-1 24.15 19.95 15.75 DAC851SL-1/QM 79.35 51.55 51.95 DAC800-CB1-V 28.87 24.15 1	DAC7541AKP		13.10	10.75	7.95	DAC850-CBI-I		38.12	27.30	23.10
DAC7541ASH 38.35 31.35 23.25 DAC850-CBI-V 40.43 29.40 24.68 DAC7541ASH/QM 57.00 44.70 32.60 DAC850-CBI-V/QM 50.82 36.75 30.98 DAC7541ATH/QM 66.50 52.20 38.00 DAC850BL-1 49.35 35.70 30.45 DAC7500KD E 25.20 18.37 DAC850BL-V 53.03 37.80 32.02 DAC701KD E 25.20 18.37 DAC850BL-VQM 66.99 47.25 40.43 DAC80-CB1-V 24.00 19.00 16.00 DAC851-CB1-I 56.59 40.95 34.65 DAC80-CD-I 42.00 37.50 25.00 DAC851-CB1-V 61.21 44.62 37.27 DAC80-CD-V 42.50 38.00 26.00 DAC851SL-1 74.03 53.55 45.15 DAC800-CB1-V 28.87 24.15 18.90 DAC851SL-1/QM 85.58 61.95 51.98 DAC800P-CB1-V 26.25 2.05 16.80	DAC7541AKU		15.70	12.90	9.55	DAC850-CBI-I/QM		47.36	34.12	28.87
DAC7541ASH/QM 57.00 44.70 32.60 DAC850-CBI-V/QM 50.82 36.75 30.98 DAC7541ATH 44.75 36.60 27.10 DAC850BL-I 49.35 35.70 30.45 DAC7541ATH/QM 66.50 52.20 38.00 DAC850BL-I/QM 62.37 45.15 38.33 DAC7701KD E 25.20 18.37 DAC850BL-V 53.03 37.80 32.02 DAC80-CB1-I 23.00 18.25 15.25 DAC851-CB1-1 56.59 40.43 DAC80-CB1-V 24.00 19.00 16.00 DAC851-CB1-1/QM 65.20 47.25 39.90 DAC80-CCD-I 42.00 37.50 25.00 DAC851-CB1-V 61.21 44.62 37.27 DAC80-CCD-V 42.50 38.00 26.00 DAC851SL-1 74.03 53.55 51.45 DAC800-CB1-I 24.15 18.90 DAC851SL-1/QM 70.36 51.45 43.05 DAC800-CB1-I 26.25 22.05 16.80 DAC851SL-V/QM	DAC7541ASH		38.35	31.35	23.25	DAC850-CBI-V		40.43	29.40	24.68
DAC7541ATH 44.75 36.60 27.10 DAC850BL-1 49.35 35.70 30.45 DAC7541ATH/QM 66.50 52.20 38.00 DAC850BL-1/QM 62.37 45.15 38.33 DAC7700KD E 25.20 18.37 DAC850BL-V 53.03 37.80 32.02 DAC7701KD E 25.20 18.37 DAC850BL-VQM 66.99 47.25 40.43 DAC80-CB1-V 24.00 19.00 16.00 DAC851-CB1-1 56.59 40.95 34.65 DAC80-CD-I 42.00 37.50 25.00 DAC851-CB1-V 61.21 44.62 37.27 DAC80-CD-V 42.50 38.00 26.00 DAC851SL-1/QM 70.36 51.45 43.05 DAC800-CB1-I 24.15 19.95 15.75 DAC851SL-1/QM 85.58 61.95 51.98 DAC800P-CBI-I 21.26 17.01 14.33 DAC851SL-V 79.80 58.80 48.30 DAC800P-CBI-V 26.25 22.05 16.80	DAC7541ASH/QM		57.00	44.70	32.60	DAC850-CBI-V/QM		50.82	36.75	30.98
DAC7541ATH/QM 66.50 52.20 38.00 DAC850BL-1/QM 62.37 45.15 38.33 DAC7700KD E 25.20 18.37 DAC850BL-V 53.03 37.80 32.02 DAC7701KD E 25.20 18.37 DAC850BL-V 53.03 37.80 32.02 DAC80-CB1-I 23.00 18.25 15.25 DAC851-CB1-I 56.59 40.95 34.65 DAC80-CD1-I 42.00 37.50 25.00 DAC851-CB1-V 61.21 44.62 37.27 DAC80-CD2-V 42.50 38.00 26.00 DAC851-CB1-V/QM 70.36 51.45 43.05 DAC80-CB1-V 28.87 24.15 18.90 DAC851SL-1 74.03 53.55 45.15 DAC800P-CB1-V 28.87 24.15 18.90 DAC851SL-1/QM 85.58 61.95 51.98 DAC800P-CB1-V 26.25 22.05 16.80 DAC851SL-V/QM 91.35 67.20 55.65 DAC80KD-V E 15.25 9.60	DAC7541ATH		44.75	36.60	27.10	DAC850BL-I		49.35	35.70	30.45
DAC7700KD E 25.20 18.37 DAC850BL-V 53.03 37.80 32.02 DAC7701KD E 25.20 18.37 DAC850BL-V/QH 66.99 47.25 40.43 DAC80-CBI-I 23.00 18.25 15.25 DAC851-CBI-I 56.59 40.95 34.65 DAC80-CBI-V 24.00 19.00 16.00 DAC851-CBI-I/QM 65.20 47.25 39.90 DAC80-CCD-V 42.00 37.50 25.00 DAC851-CBI-V/QM 70.36 51.45 43.05 DAC80-CBI-I 24.15 19.95 15.75 DAC851SL-1 74.03 53.55 45.15 DAC800-CBI-V 28.87 24.15 18.90 DAC851SL-1/QM 85.58 61.95 51.98 DAC800P-CBI-I 21.26 17.01 14.33 DAC851SL-V/QM 91.35 67.20 55.65 DAC80P-CBI-V 26.25 22.05 16.80 DAC851SL-V/QM 91.35 67.20 55.65 DAC80KD-V E 15.25 9.60	DAC7541ATH/QM		66.50	52.20	38.00	DAC850BL-1/QM		62.37	45.15	38.33
DAC7701KD E 25.20 18.37 DAC850BL-V/QM 66.99 47.25 40.43 DAC80-CBI-I 23.00 18.25 15.25 DAC851-CBI-I 56.59 40.95 34.65 DAC80-CBI-V 24.00 19.00 16.00 DAC851-CBI-I/QM 65.20 47.25 39.90 DAC80-CCD-I 42.00 37.50 25.00 DAC851-CBI-V 61.21 44.62 37.27 DAC80-CD-V 42.50 38.00 26.00 DAC851-CBI-V/QM 70.36 51.45 43.05 DAC800-CBI-I 24.15 19.95 15.75 DAC851SL-I 74.03 53.55 45.15 DAC800-CBI-V 28.87 24.15 18.90 DAC851SL-I 79.80 58.80 48.30 DAC800P-CBI-I 21.26 17.01 14.33 DAC851SL-V/QM 91.35 67.20 55.65 DAC80KD-V E 15.25 9.60 DAC85H-CBI-I 36.23 28.87 25.20 DAC80P-CBI-I 20.00 16.00 13.25 <td>DAC7700KD</td> <td>E</td> <td></td> <td>25.20</td> <td>18.37</td> <td>DAC850BL-V</td> <td></td> <td>53.03</td> <td>37.80</td> <td>32.02</td>	DAC7700KD	E		25.20	18.37	DAC850BL-V		53.03	37.80	32.02
DAC80-CBI-I 23.00 18.25 15.25 DAC851-CBI-I 56.59 40.95 34.65 DAC80-CBI-V 24.00 19.00 16.00 DAC851-CBI-I/QM 65.20 47.25 39.90 DAC80-CCD-I 42.00 37.50 25.00 DAC851-CBI-V 61.21 44.62 37.27 DAC80-CCD-V 42.50 38.00 26.00 DAC851-CBI-V/QM 70.36 51.45 43.05 DAC80-CBI-I 24.15 19.95 15.75 DAC851SL-I 74.03 53.55 45.15 DAC800-CBI-I 21.26 17.01 14.33 DAC851SL-V 79.80 58.80 48.30 DAC800P-CBI-I 21.26 17.01 14.33 DAC851SL-V/QM 91.35 67.20 55.65 DAC80ND-CBI-V 26.25 22.05 16.80 DAC85H-CBI-I 36.23 28.87 25.20 DAC80ND-CBI-V 21.00 16.00 13.25 DAC85H-CBI-I 36.23 28.87 25.20 DAC80P-CBI-I 20.00 16.00	DAC7701KD	E		25.20	18.37	DAC850BL-V/QM		66.99	47.25	40.43
DAC80-CBI-V 24.00 19.00 16.00 DAC851-CBI-I/QM 65.20 47.25 39.90 DAC80-CCD-I 42.00 37.50 25.00 DAC851-CBI-V 61.21 44.62 37.27 DAC80-CCD-V 42.50 38.00 26.00 DAC851-CBI-V/QM 70.36 51.45 43.05 DAC80-CBI-I 24.15 19.95 15.75 DAC851SL-I 74.03 53.55 45.15 DAC800-CBI-V 28.87 24.15 18.90 DAC851SL-I/QM 85.58 61.95 51.98 DAC800P-CBI-V 26.25 22.05 16.80 DAC851SL-V/QM 91.35 67.20 55.65 DAC80KD-I E 15.25 9.60 DAC85H-CBI-I 36.23 28.87 25.20 DAC80KD-V E 15.25 9.60 DAC85H-CBI-I 36.23 28.87 25.20 DAC80KD-V E 15.25 9.60 DAC85H-CBI-I 36.23 28.87 25.20 DAC80P-CBI-V 21.00 16.37 14.00	DAC80-CBI-I		23.00	18.25	15.25	DAC851-CBI-I		56.59	40.95	34.65
DAC80-CCD-I 42.00 37.50 25.00 DAC851-CBI-V 61.21 44.62 37.27 DAC80-CCD-V 42.50 38.00 26.00 DAC851-CBI-V/QM 70.36 51.45 43.05 DAC800-CBI-1 24.15 19.95 15.75 DAC851SL-I 74.03 53.55 45.15 DAC800-CBI-V 28.87 24.15 18.90 DAC851SL-I 74.03 53.55 45.15 DAC800P-CBI-I 21.26 17.01 14.33 DAC851SL-V 79.80 58.80 48.30 DAC80KD-I E 15.25 9.60 DAC85H-CBI-I 36.23 28.87 25.20 DAC80KD-V E 15.25 9.60 DAC85H-CBI-I 36.23 28.87 25.20 DAC80KD-V E 15.25 9.60 DAC85H-CBI-I 36.23 28.87 25.20 DAC80KD-V E 15.25 9.60 DAC85H-CBI-V/QM 44.10 35.18 30.98 DAC80P-CBI-I 20.00 16.07 14.00 DAC8	DAC80-CBI-V		24.00	19.00	16.00	DAC851-CBI-I/QM		65.20	47.25	39.90
DAC80-CCD-V 42.50 38.00 26.00 DAC851-CBI-V/QH 70.36 51.45 43.05 DAC800-CBI-I 24.15 19.95 15.75 DAC851SL-I 74.03 53.55 45.15 DAC800-CBI-V 28.87 24.15 18.90 DAC851SL-I/QM 85.58 61.95 51.98 DAC800P-CBI-I 21.26 17.01 14.33 DAC851SL-V 79.80 58.80 48.30 DAC80NP-CBI-V 26.25 22.05 16.80 DAC851SL-V/QM 91.35 67.20 55.65 DAC80KD-1 E 15.25 9.60 DAC85H-CBI-I 36.23 28.87 25.20 DAC80KD-V E 15.25 9.60 DAC85H-CBI-I/QM 44.10 35.18 30.98 DAC80KD-V E 15.25 9.60 DAC85H-CBI-V 37.80 30.45 26.25 DAC80P-CBI-I 20.00 16.00 13.25 DAC85H-CBI-V 37.80 30.45 26.25 DAC80P-CBI-V 21.00 16.37 14.00	DAC80-CCD-I		42.00	37.50	25.00	DAC851-CBI-V		61.21	44.62	37.27
DAC800-CBI-I 24.15 19.95 15.75 DAC851SL-I 74.03 53.55 45.15 DAC800-CBI-V 28.87 24.15 18.90 DAC851SL-I/QM 85.58 61.95 51.98 DAC800P-CBI-I 21.26 17.01 14.33 DAC851SL-V 79.80 58.80 48.30 DAC800P-CBI-V 26.25 22.05 16.80 DAC851SL-V/QM 91.35 67.20 55.65 DAC80KD-I E 15.25 9.60 DAC85H-CBI-I 36.23 28.87 25.20 DAC80KD-V E 15.25 9.60 DAC85H-CBI-I/QM 44.10 35.18 30.98 DAC80P-CBI-I 20.00 16.00 13.25 DAC85H-CBI-V 37.80 30.45 26.25 DAC80P-CBI-V 21.00 16.37 14.00 DAC85H-CBI-V 37.80 30.45 26.25 DAC80P-CBI-V 24.00 19.00 16.00 DAC87-CBI-V 98.00 78.50 70.50 DAC81AH 29.25 18.35 14.90	DAC80-CCD-V		42.50	38.00	26.00	DAC851-CBI-V/QM		70.36	51.45	43.05
DAC800-CBI-V 28.87 24.15 18.90 DAC851SL-I/QM 85.58 61.95 51.98 DAC800P-CBI-I 21.26 17.01 14.33 DAC851SL-V 79.80 58.80 48.30 DAC800P-CBI-V 26.25 22.05 16.80 DAC851SL-V/QM 91.35 67.20 55.65 DAC80KD-I E 15.25 9.60 DAC85H-CBI-I 36.23 28.87 25.20 DAC80P-CBI-I 20.00 16.00 13.25 DAC85H-CBI-I/QM 44.10 35.18 30.98 DAC80P-CBI-V 21.00 16.37 14.00 DAC85H-CBI-V 37.80 30.45 26.25 DAC80Z-CBI-I 23.00 18.25 15.25 DAC87-CBI-I J	DAC800-CB1-I	×	24.15	19.95	15.75	DAC851SL-I		74.03	53.55	45.15
DAC800P-CBI-I 21.26 17.01 14.33 DAC851SL-V 79.80 58.80 48.30 DAC800P-CBI-V 26.25 22.05 16.80 DAC851SL-V/QM 91.35 67.20 55.65 DAC80KD-I E 15.25 9.60 DAC85H-CBI-I 36.23 28.87 25.20 DAC80V-V E 15.25 9.60 DAC85H-CBI-I 36.23 28.87 25.20 DAC80P-CBI-I 20.00 16.00 13.25 DAC85H-CBI-V 37.80 30.45 26.25 DAC80P-CBI-V 21.00 16.37 14.00 DAC85H-CBI-V 37.80 30.45 26.25 DAC80P-CBI-I 23.00 18.25 15.25 DAC87-CBI-I J J J DAC87-CBI-V 46.20 35.18 32.02 DAC87-CBI-V DAC87-CBI-V 24.00 19.00 16.00 DAC87-CBI-V J J J J J DAC811AH 23.25 18.35 14.90 DAC87-CBI-V 98.00 78.50 70.50 DAC811AL/Q	DAC800-CB1-V		28.87	24.15	18.90	DAC851SL-I/QM		85.58	61.95	51.98
DAC800P-CBI-V 26.25 22.05 16.80 DAC851SL-V/QM 91.35 67.20 55.65 DAC80KD-I E 15.25 9.60 DAC85H-CBI-I 36.23 28.87 25.20 DAC80KD-V E 15.25 9.60 DAC85H-CBI-I 36.23 28.87 25.20 DAC80P-CBI-I 20.00 16.00 13.25 DAC85H-CBI-V 37.80 30.45 26.25 DAC80P-CBI-V 21.00 16.37 14.00 DAC85H-CBI-V 37.80 30.45 26.25 DAC80Z-CBI-I 23.00 18.25 15.25 DAC87-CBI-I J V	DAC800P-CBI-I		21.26	17.01	14.33	DAC851SL-V		79.80	58.80	48.30
DAC80KD-I E 15.25 9.60 DAC85H-CBI-I 36.23 28.87 25.20 DAC80KD-V E 15.25 9.60 DAC85H-CBI-I 36.23 28.87 25.20 DAC80KD-V E 15.25 9.60 DAC85H-CBI-I/QM 44.10 35.18 30.98 DAC80P-CBI-I 20.00 16.00 13.25 DAC85H-CBI-V 37.80 30.45 26.25 DAC80P-CBI-V 21.00 16.37 14.00 DAC85H-CBI-V 46.20 35.18 32.02 DAC80Z-CBI-I 23.00 18.25 15.25 DAC87-CBI-I J V DAC80Z-CBI-V 24.00 19.00 16.00 DAC87-CBI-V 98.00 78.50 70.50 DAC811AH 23.25 18.35 14.90 DAC87-CBI-V 98.00 78.50 70.50 DAC811AH/QM 29.15 23.00 18.75 DAC87-CBI-V/B + 105.00 85.00 76.50 DAC811AL/QM 36.75 29.25 24.25 DAC870U/883	DAC800P-CBI-V		26.25	22.05	16.80	DAC851SL-V/QM		91.35	67.20	55.65
DAC80KD-V E 15.25 9.60 DAC85H-CBI-I/QM 44.10 35.18 30.98 DAC80P-CBI-I 20.00 16.00 13.25 DAC85H-CBI-V 37.80 30.45 26.25 DAC80P-CBI-V 21.00 16.37 14.00 DAC85H-CBI-V 37.80 30.45 26.25 DAC80P-CBI-V 21.00 16.37 14.00 DAC85H-CBI-V 46.20 35.18 32.02 DAC80Z-CBI-I 23.00 18.25 15.25 DAC87-CBI-I J	DAC80KD-I	Ε		15.25	9.60	DAC85H-CBI-I		36.23	28.87	25.20
DAC80P-CBI-I 20.00 16.00 13.25 DAC85H-CBI-V 37.80 30.45 26.25 DAC80P-CBI-V 21.00 16.37 14.00 DAC85H-CBI-V/QM 46.20 35.18 32.02 DAC80Z-CBI-I 23.00 18.25 15.25 DAC87-CBI-I J J DAC80Z-CBI-V 24.00 19.00 16.00 DAC87-CBI-I/B J, + J DAC811AH 23.25 18.35 14.90 DAC87-CBI-V 98.00 78.50 70.50 DAC811AH/QM 29.15 23.00 18.75 DAC87-CBI-V/B + 105.00 85.00 76.50 DAC811AL 29.25 23.25 19.40 DAC870U 45.00 40.00 35.00 DAC811AL/QM 36.75 29.25 24.25 DAC870U/883B + 65.00 60.00 55.00 DAC811BH 28.50 22.50 18.90 DAC870UL 50.00 45.00 40.00	DAC80KD-V	Ε		15.25	9.60	DAC85H-CBI-I/QM		44.10	35.18	30.98
DAC80P-CBI-V 21.00 16.37 14.00 DAC85H-CBI-V/QM 46.20 35.18 32.02 DAC80Z-CBI-I 23.00 18.25 15.25 DAC87-CBI-I J J DAC80Z-CBI-V 24.00 19.00 16.00 DAC87-CBI-I/B J, + J DAC811AH 23.25 18.35 14.90 DAC87-CBI-V 98.00 78.50 70.50 DAC811AH/QM 29.15 23.00 18.75 DAC87-CBI-V/B + 105.00 85.00 76.50 DAC811AL 29.25 23.25 19.40 DAC870U 45.00 40.00 35.00 DAC811AL/QM 36.75 29.25 24.25 DAC870U/883B + 65.00 60.00 55.00 DAC811BH 28.50 22.50 18.90 DAC870UL 50.00 45.00 40.00	DAC80P-CBI-I		20.00	16.00	13.25	DAC85H-CBI-V		37.80	30.45	26.25
DAC80Z-CBI-I 23.00 18.25 15.25 DAC87-CBI-I J DAC80Z-CBI-V 24.00 19.00 16.00 DAC87-CBI-I/B J, + DAC811AH 23.25 18.35 14.90 DAC87-CBI-V 98.00 78.50 70.50 DAC811AH/QM 29.15 23.00 18.75 DAC87-CBI-V/B + 105.00 85.00 76.50 DAC811AL 29.25 23.25 19.40 DAC870U 45.00 40.00 35.00 DAC811AL/QM 36.75 29.25 24.25 DAC870U/883B + 65.00 60.00 55.00 DAC811BH 28.50 22.50 18.90 DAC870UL 50.00 45.00 40.00	DAC80P-CBI-V		21.00	16.37	14.00	DAC85H-CBI-V/QM		46.20	35.18	32.02
DAC80Z-CBI-V 24.00 19.00 16.00 DAC87-CBI-I/B J,+ DAC811AH 23.25 18.35 14.90 DAC87-CBI-V 98.00 78.50 70.50 DAC811AH/QM 29.15 23.00 18.75 DAC87-CBI-V/B + 105.00 85.00 76.50 DAC811AL 29.25 23.25 19.40 DAC870U 45.00 40.00 35.00 DAC811AL/QM 36.75 29.25 24.25 DAC870U/883B + 65.00 60.00 55.00 DAC811BH 28.50 22.50 18.90 DAC870UL 50.00 45.00 40.00	DAC80Z-CBI-I		23.00	18.25	15.25	DAC87-CBI-I	J			
DAC811AH 23.25 18.35 14.90 DAC87-CBI-V 98.00 78.50 70.50 DAC811AH/QM 29.15 23.00 18.75 DAC87-CBI-V/B + 105.00 85.00 76.50 DAC811AL 29.25 23.25 19.40 DAC870U 45.00 40.00 35.00 DAC811AL/QM 36.75 29.25 24.25 DAC870U/883B + 65.00 60.00 55.00 DAC811BH 28.50 22.50 18.90 DAC870UL 50.00 45.00 40.00	DAC80Z-CBI-V		24.00	19.00	16.00	DAC87-CBI-I/B	J.+			
DAC811AH/QM 29.15 23.00 18.75 DAC87-CBI-V/B + 105.00 85.00 76.50 DAC811AL 29.25 23.25 19.40 DAC870U 45.00 40.00 35.00 DAC811AL/QM 36.75 29.25 24.25 DAC870U/883B + 65.00 60.00 55.00 DAC811BH 28.50 22.50 18.90 DAC870UL 50.00 45.00 40.00	DAC811AH		23.25	18.35	14.90	DAC87-CBI-V	-	98.00	78.50	70.50
DAC811AL 29.25 23.25 19.40 DAC870U 45.00 40.00 35.00 DAC811AL/QM 36.75 29.25 24.25 DAC870U/883B + 65.00 60.00 55.00 DAC811BH 28.50 22.50 18.90 DAC870UL 50.00 45.00 40.00	DAC811AH/QM		29.15	23.00	18.75	DAC87-CBI-V/B	+	105.00	85.00	76.50
DAC811AL/QM 36.75 29.25 24.25 DAC870U/883B + 65.00 60.00 55.00 DAC811BH 28.50 22.50 18.90 DAC870UL 50.00 45.00 40.00	DAC811AL		29.25	23.25	19.40	DAC870U		45.00	40.00	35.00
DAC811BH 28.50 22.50 18.90 DAC870UL 50.00 45.00 40.00	DAC811AL/QM		36.75	29.25	24.25	DAC870U/883B	+	65.00	60.00	55.00
•	DAC811BH		28.50	22.50	18.90	DAC870UL		50.00	45.00	40.00

Pri	rices in U.S. dollars		F.O.B. Tucson, Arizona			Quantity discounts available.			Effective June 1, 1987		
	MODEL	FOOT NOTE	1-24	25-99	100-249	MODEL	FOOT	1-24	25-99	100-249	
	DAC870UL/883B	+	70.00	65.00	60.00	INA101CL-BSS1		68.97	53.79	50.66	
	DAC870V		80.00	75.00	67.00	INA101CL-BSS2		27.17	21.19	19.96	
	DAC870V/883B	+ '	100.00	95.00	80.00	INA101CL-BSS3		24.04	18.75	17.65	
	DAC870VL		85.00	80.00	72.00	INA101CL-BSS4		22.99	17.93	16.89	
	DAC870VL/883B	+	105.00	100.00	90.00	INA101CM		20.61	14.90	13.49	
	DAC87H-CBI-V		82.95	66.15	57.75	INA101CM-BS		20.61	14.90	13.49	
	DAC87H-CBI-V/QM		100.80	80.85	70.35	INA101CM-BSS1		60.72	45.54	42.14	
	DAC87U-CBI-I	J		ĩ.		INA101CM-BSS2		26.79	19.37	17.54	
	DAC87U-CBI-I/B	J,+				INA101CM-BSS3		23.70	17.14	15.51	
	DAC87U-CBI-V		58.00	48.80	44.00	INA101CM-BSS4		22.67	16.39	14.84	
	DAC87U-CBI-V/B	+	61.00	49.50	47.00	INA101HP		7.37	5.67	5.10	
	DAC90BG		25.30	20.12	16.96	INA101KU		8.29	6.26	5.51	
	DAC90SG		35.07	28.06	23.46	INA101SG		27.72	19.98	18.53	
	DEM102 KIT		75.00	•		INA101SGQ		39.20	29.16	26.25	
	DEM106 KIT		85.00			INA101SL		22.00	17.15	16.45	
	DIV100HP		33.88	26.19	19.06	INA101SL-BS		22.00	17.15	16.45	
	DIV100JP		47.32	39.15	29.14	INA101SL-BSS1		72.60	56.60	54.29	
	D1V100KP		67.59	56.11	41.84	INA101SL-BSS2		28.60	22.30	21.39	
	INA101AD			8.90	4.95	INA101SL-BSS3		25.30	19.72	18.92	
	INA101AG		17.95	13.50	11.00	INA101SL-BSS4		24.20	18.87	18.10	
	INA101AL		16.50	13.00	9.75	INA101SM		21.84	15.82	14.65	
	INA101AL-BS		16.50	13.00	9.75	INA101SM-BS		21.84	15.82	14.65	
	INA101AL-BSS1		54.45	42.90	32.18	INA101SM-BSS1		64.35	48.35	46.04	
	INA101AL-BSS2		21.45	16.90	12.68	` INA101SM-BSS2		28.39	20.57	19.05	
,	INA101AL-BSS3		18.98	14.95	11.21	INA101SM-BSS3		25.12	18.19	16.85	
	INA101AL-BSS4		18.15	14.30	10.73	INA101SM-BSS4		24.02	17.40	16.12	
	INA101AM		14.00	10.50	7.25	INA101SMQ		31.36	22.68	21.00	
	INA101AM-BS		14.00	10.50	7.25	INA101VG	I	46.00	41.60	39.50	
	INA101AM-BSS1		46.20	34.65	23.93	INA101VG/883B	Ι	49.50	44.75	42.50	
	INA101AM-BSS2		18.20	13.65	9.43	INA101VM	. I	43.75	39.50	37.50	
	INA101AM-BSS3		16.10	12.08	8.34	INA101VM/883B	I	47.25	42.50	40.50	
	INA101AM-BSS4		15.40	11.55	7.98	,INA102AD			9.35	5.20	
	INA101BL		19.50	15.25	11.30	INA102AG		13.95	11.15	7.95	
	INA101BL-BS		19.50	15.25	11.30	INA102AL		16.45	13.65	10.45	
	INA101BL-BSS1		64.35	50.33	37.29	INA102CG		20.61	17.12	11.92	
	INA101BL-BSS2		25.35	19.83	14.69	INA102CL		20.90	18.35	13.85	
	INA101BL-BSS3		22.43	17.54	13.00	INA102KP		7.60	5.95	5.40	
	INA101BL-BSS4		21.45	16.78	12.43	INA102SL		26.40	23.10	17.25	
	INA101BM-BS		18.70	17.00	16.15	INA104AM		27.16	20.79	18.85	
	INA101BM-BSS1		56.10	42.08	29.04	INA104BM		32.48	25.11	22.73	
	INA101BM-BSS2		24.31	22.10	21.00	INA104CM		41.94	32.24	29.24	
	INA101BM-BSS3		21.51	19.55	18.57	INA104HP		21.00	16.15	14.65	
	INA101BM-BSS4		20.57	18.70	17.77	INA104JP		25.20	19.39	17.59	
	INA101CG		23.00	17.25	16.35	INA104KP		32.48	25.11	22.73	
	INA101CL		20.90	16.30	15.35	INA104SM		44.80	34.29	31.13	
	INA101CL-BS		20.90	16.30	15.35	INA105AD			4.65	3.50	

CUSTOMER PRICE LIST-COMPONENT PRODUCTS

Prices in U.S. dollars		F.O.B. T	ucson, A	rizona	Quantity discounts	Effective June 1, 198			
MODEL F	FOOT NOTE	1-24	25-99	100-249	MODEL	FOOT NUTE	1-24	25-99	100-249
INA105AL		12.45	9.95	8.45	150106		34.00	26.60	22.00
INA105AM		9.50	7.15	5.75	1S0106B		45.90	35.95	29.75
INA105AM-BS		9.50	7.15	5.75	LOG100JP		48.16	37.80	31.50
INA105AM-BSS1		32.84	24.59	19.64	MA51414				
INA105AM-BSS2		12.35	9.30	7.48	MP22BG		340.20	271.95	227.85
INA105AM-BSS3		10.93	8.22	6.61	MP32BG		340.20	271.95	227.85
INA105AM-BSS4		10.45	7.87	6.33	MP32CG		425.25	340.20	285.60
INA105BL		15.25	12.00	10.15	MPC16S		24.37	21.06	17.85
INA105BM		11.85	8.95	7.20	MPC4D		13.62	11.81	9.97
INA105BM-BS		11.85	8.95	7.20	MPC800KG		29.25	24.21	20.18
INA105BM-BSS1		42.08	31.35	25.25	MPC800SG		58.45	48.37	40.31
INA105BM-BSS2		15.41	11.64	9.36	MPC801KG		15.23	12.60	10.50
INA105BM-BSS3		13.63	10.29	8.28	MPC801SG		31.50	26.07	21.72
INA105BM-BSS4		13.04	9.85	7.92	MPC8D		24.37	21.06	17.85
INA105KP		6.25	4.65	3.50	MPC8S		13.62	11.77	9.97
INA105KU		7.34	5.35	3.99	MPY100AG		15.51	13.94	12.26
INA105SL		19.10	14.85	12.45	MPY100AL		13.85	12.45	10.00
INA106AM		10.00	7.50	6.05	MPY100AL-BS		13.85	12.45	10.00
INA106BM		12.45	9.40	7.55	MPY100AL-BSS1		45.71	41.09	30.00
INA106KP		6.50	4.89	3.65	MPY100AL-BSS2		18.01	16.19	13.00
INA110AD			9.45	5.25	MPY100AL-BSS3		15.93	14.32	11.50
INA110AG		16.85	12.65	8,85	MPY100AL-BSS4		15.24	13.70	11.00
INA110AL		19.35	15.15	11.35	MPY100AM		11.76	10.58	8.40
INA110BG		26.43	19.17	12,97	MPY100AM-BS		11.76	10.58	8.40
INA110BL		26.10	20.25	14.85	MPY100AM-BSS1		37.46	32.84	24.75
INA110KP		7.40	5.80	5.50	MPY100AM-BSS2		15.29	13.75	10.92
INA110KU		8.74	6.59	6.09	MPY100AM-BSS3		13.52	12.17	9.66
INA110SG		28.11	20.36	18.85	MPY100AM-BSS4		12.94	11.64	9.24
INA110SL		27.60	21.35	20.45	MPY100BG		25.14	22.09	17.22
INA258UG		38.15	36.00	26.50	MPY100BL		20.85	18.75	14.15
INA258UG/883B +		42.40	40.30	29.70	MPY100BL-BS		20.85	18.75	14.15
INA258UL		41.35	39.20	28.60	MPY100BL-BSS1		68.81	61.88	46.70
INA258UL/883B +		45.60	43.50	32.86	MPY100BL-BSS2		27.11	24.38	18.40
INA258VG		49.80	43.45	40.30	MPY100BL-BSS3		23.98	21.56	16.27
INA258VG/883B +		65.70	`58.30	56.20	MPY100BL-BSS4		22.94	20.63	15.57
INA258VL		54.00	47.70	44.50	MPY100BM		19.04	16.69	12.23
INA258VL/883B +		74.20	64.65	61.50	MPY100BM-BS		19.04	16.69	12.23
INA258WG		63.60	55.10	51.95	MPY100BM-BSS1		60.56	53.63	38.45
INA258WG/883B +		84.80	74.20	69.95	MPY100BM-BSS2		24.75	21.70	15.90
INA258WL		69.95	60.40	56.20	MPY100BM-BSS3		21.90	19.19	14.06
INA258WL/883B +		93.30	81.60	76.30	MPY100BM-BSS4		20.94	18.36	13.45
I S0100AP		36.40	31.05	26.78	MPY100CG		37.74	33.48	27.56
I S0100BP		39.65	34.13	30.08	MPY100CL		30.50	27.35	23.00
IS0100CP		44.24	39.20	35.28	MPY100CL-BS		30.50	27.35	23.00
I \$0102		25.50	19.50	16.50	MPY100CL-BSS1		100.65	90.26	75.90
I S0102B		34.45	26.95	22.30	MPY100CL-BSS2		39.65	35.56	29.90

CUSTOMER PRICE LIST-COMPONENT PRODUCTS Prices in U.S. dollars F.O.B. Tucson, Arizona Quantity discounts available. Effective June 1, 1987 MODEL FOOT 1-24 25-99 100-249 MODEL FOOT 1-24 25-99 100-249 NOTE NOTE MPY100CL-BSS3 35.08 31.45 26.45 MPY534KL-BSS1 122.10 73.76 98.51 MPY100CL-BSS4 33.55 30.09 25.30 MPY534KL-BSS2 48.10 38.81 29.06 MPY100CM 28.56 25.33 20.95 MPY534KL-BSS3 42.55 34.33 25.70 MPY100CM-BS 28.56 25.30 20.95 MPY534KL-BSS4 40.70 32.84 24.59 MPY100CM-BSS1 92.40 82.01 67.65 MPY534LD 70.45 58.23 43.48 MPY100CM-BSS2 37.13 32.89 27.24 MPY534LH 57.23 47.14 34.81 MPY100CM-BSS3 32.84 29.10 24.09 MPY5341H-BS 57.23 47.14 34.81 MPY100CM-BSS4 31.42 27.83 23.05 MPY534LH-BSS1 168.14 131.84 97.35 MPY100SG 56.62 50.22 33.60 MPY534LH-BSS2 74.40 61.28 45.25 MPY100SGQ 77.28 67.50 48.83 MPY5341 H-BSS3 65.81 54.21 40.03 MPY100SL 44.50 39.45 30.50 MPY534LH-BSS4 62.95 51.85 38.29 MPY100SL-BS 44.50 39.45 30.50 MPY534LL 53.45 42.45 32.00 MPY100SL-BSS1 146.85 130.19 100.65 MPY534LL-BS 53.45 42.45 32.00 MPY100SL-BSS2 57.85 51.29 39.65 MPY534LL-BSS1 176.39 140.09 105.60 MPY100SL-BSS3 51.18 45.37 35.08 MPY534LL-BSS2 69.49 55.19 41.60 MPY100SL-BSS4 48.95 43.40 33.55 MPY534LL-BSS3 61.47 48.82 36.80 MPY100SM 42.84 38.02 28.61 MPY534LL-BSS4 58.80 46.70 35.20 MPY100SM-BS 42.84 38.02 28.61 MPY534SD 89.50 74.28 55.46 MPY100SM-BSS1 138.60 121.94 92.40 MPY534SH 76.41 62.95 47.02 MPY100SM-BSS2 49.43 37.19 55.69 MPY534SH-BS 76.41 62.95 47.02 MPY100SM-BSS3 49.27 43.72 32.90 MPY534SH-BSS1 224.24 176.06 131.51 MPY100SM-BSS4 47.12 41.82 31.47 MPY534SH-BSS2 99.33 81.84 61.13 MPY100SM0 58.24 51.30 43.05 MPY534SH-BSS3 87.87 72.39 54.07 MPY534AD 12.57 9.38 MPY534SH-BSS4 84.05 69.25 51.72 MPY534JD 32,98 27.67 19.77 MPY534SL 70.45 55.85 42.35 MPY534JH 25.37 21.18 15.16 MPY534SL-BS 70.45 55.85 42.35 MPY534JH-BS 25.37 21.18 15.16 MPY534SL-BSS1 232.49 184.31 139.76 MPY534JH-BSS1 74.42 59.23 42.41 MPY534SL-BSS2 91.59 72.61 55.06 MPY534JH-BSS2 32.98 27.53 19.71 MPY534SL-BSS3 81.02 64.23 48.70 MPY534JH-BSS3 29.18 24.36 17.43 MPY534SL-BSS4 77.50 61.44 46.59 MPY534JH-BSS4 27.91 23.30 16.68 MPY534TD 107.40 89.50 64.00 MPY534JL 25.05 20.45 15.35 MPY534TH 91.80 76.50 54.50 MPY534JL-BS 25.05 20.45 15.35 MPY534TH-BS 91.80 76.50 54.50 MPY534JL-BSS1 67.49 82.67 50.66 MPY534TH-BSS1 317.39 252.45 179.85 MPY534JL-BSS2 32.57 26.59 19.96 MPY534TH-BSS2 119.34 99.45 70.85 MPY534JL-BSS3 28.81 23.52 17.65 MPY534TH-BSS3 105.57 62.68 87.98 MPY534JL-BSS4 27.56 22.50 16.89 MPY534TH-BSS4 100.98 84.15 59.95 29.09 MPY534KD 47.14 39.94 MPY534TL 98.68 79.00 57.00 MPY534KH 38.76 32.27 23.42 MPY534TL-BS 98.68 79.00 57.00 MPY534KH-BS 38.76 32.27 23.42 MPY534TL-BSS1 325.64 260.70 188.10 MPY534KH-BSS1 113.85 90,26 65.51 MPY534TL-BSS2 128.28 102.70 74.10 MPY534KH-BSS2 50.39 41.95 30.45 MPY534TL-BSS3 113.48 90.85 65.55 MPY534KH-BSS3 44.57 37.11 26.93 MPY534TL-BSS4 108.55 86.90 62.70 MPY534KH-BSS4 42.64 35.50 25.76 MPY634AL 20.00 16.35 12.45 MPY534KL 37.00 29.85 22.35 MPY634AL-BS 20.00 12.45 16.35 MPY534KL-BS 37.00 29.85 22.35

MPY634AL-BSS1

66.00

53.95

41.09

. ..

Page No. 9

Pri	ces in U.S. dollars		F.O.B. T	ucson, A	rizona	Quantity discounts	availabl	e.	Effective	e June 1, 1987
	MODEL	FOOT NOTE	1-24	25-99	100-249	MODEL	FOOT NOTE	1-24	25-99	100-249
	MPY634AL-BSS2		26.00	21.26	16.19	OPA105UM		27.00	23.50	22.00
	MPY634AL-BSS3		23.00	18.80	14.32	OPA105UM/883B	+	32.00	28.00	25.00
	MPY634AL-BSS4		22.00	17.99	13.70	OPA105VM		37.00	32.00	30.00
	MPY634AM		18.65	14.96	10.45	0PA105VM/883B	+	50.00	44.00	40.00
	MPY634AM-BS		18.65	14.96	10.45	OPA105WM		47.00	42.00	40.25
	MPY634AM-BSS1		57.75	45.71	32.84	OPA105WM/883B	+	68.00	59.00	52.00
	MPY634AM-BSS2		24.25	19.45	13.59	OPA106UM		30.00	25.00	22.00
	MPY634AM-BSS3		21.45	17.20	12.02	0PA106UM/883B	+	36.00	32.00	28.00
	MPY634AM-BSS4		20.52	16.45	11.50	OPA106VM		40.00	35.00	32.00
	MPY634BL		28.45	23.05	17.75	0PA106VM/883B	+	55.00	49.00	44.00
	MPY634BL-BS		28.45	23.05	17.75	OPA106WM		52.00	45.00	42.00
	MPY634BL-BSS1		93.89	76.07	58.58	0PA106WM/883B	+	72.00	63.00	57.00
	MPY634BL-BSS2		36.99	29.97	23.08	OPA111AD			7.29	4.04
	MPY634BL-BSS3		32.72	26.51	20.41	UPA111AL		12.25	10.45	7.95
	MPY634BL-BSS4		31.30	25.36	19.53	OPA111AL-BS		12.25	10.45	7.95
	MPY634BM		27.72	22.19	16.01	OPA111AL-BSS1		40.43	34.49	26.24
	MPY634BM-BS		27.72	22.19	16.01	OPA111AL-BSS2		15.93	13.59	10.34
	MPY634BM-BSS1		85.64	67.82	50.33	OPA111AL-BSS3		14.09	12.02	9.14
	MPY634BM-BSS2		36.04	28.85	20.81	OPA111AL-BSS4		13.48	11.50	8.75
	MPY634BM-BSS3		31.88	25.52	18.41	OPA111AM		10.92	8.59	5.72
	MPY634BM-BSS4		30.49	24.41	17.61	OPA111AM-BS		10.92	8.59	5.72
	MPY634KP		14.39	11.50	8.35	OPA111AM-BSS1		32.18	26.24	17.99
	MPY634SL		65.15	52.35	40.35	OPA111AM-BSS2		14.20	11.17	7.44
	MPY634SL-BS		65.15	52.35	40.35	OPA111AM-BSS3		12.56	9.88	6.58
	MPY634SL-BSS1		214.99	172.76	133.16	OPA111AM-BSS4		12.01	9.45	6.29
	MPY634SL-BSS2		84.70	68.06	52.46	OPA111BL		17.85	14.75	12.45
	MPY634SL-BSS3		74.92	60.20	46.40	OPA111BL-BS		17.85	14.75	12.45
	MPY634SL-BSS4		71.67	57.59	44.39	OPA111BL-BSS1		58.90	48.68	41.09
	MPY634SM		66.81	53.84	39.74	OPA111BL-BSS2		23.21	19.18	16.19
	MPY634SM-BS		66.81	53.84	39.74	OPA111BL-BSS3		20.53	16.96	14.32
	MPY634SM-BSS1		206.75	164.51	124.91	OPA111BL-BSS4		19.64	16.23	13.70
	MPY634SM-BSS2		86.85	69.99	51.66	OPA111BM		17.19	13.23	10.45
	MPY634SM-BSS3		76.83	61.92	45.70	OPA111BM-BS		17.19	13.23	10.45
	MPY634SM-BSS4		73.49	59.22	43.71	OPA111BM-BSS1		50.66	40.43	32.84
	0245MC		6.05	5.05	4.85	OPA111BM-BSS2		22.35	17.20	13.59
	OPA101AM		42.00	33.45	25.60	OPA111BM-BSS3		19.77	15.21	12.02
	OPA101BM		52.20	42.00	36.00	OPA111BM-BSS4		18.91	14.55	11.50
	OPA102AM		44.49	35.56	26.70	OPA111HT		63.30	50.70	40.70
	OPA102BM		54.00	43.30	36.85	OPA111SL		19.35	16.45	14.45
	OPA103AM		11.76	9.29	7.14	OPA111SL-BS		19.35	16.45	14.45
	OPA103BM		15.90	12.37	9.40	OPA111SL-BSS1		63.86	54.29	47.69
	OPA103CM		20.83	16.04	12.13	OPA111SL-BSS2		25.16	21.39	18.79
	OPA103DM		33.43	25.76	19.43	OPA111SL-BSS3		22.25	18.92	16.62
	OPA104AM		19.60	15.07	10.76	OPA111SL-BSS4		21.29	18.10	15.90
	OPA104BM		26.49	20.47	15.23	OPA111SM		20.25	15.65	13.15
	0PA104CM		33.04	25.38	19.95	OPA111SM-BS		20.25	15.65	13.15
						•				

Prices in U.S. dollars

CUSTOMER PRICE LIST-COMPONENT PRODUCTS

F.O.B. Tucson, Arizona

Quantity discounts available.

Effective June 1, 1987

OPA111SM-BSS1 55.61 46.04 39.44 OPA111SM-BSS2 26.33 20.35 17.10 OPA111SM-BSS2 26.33 20.35 17.10 OPA111SM-BSS3 23.29 18.00 15.12 OPA111SM-BSS4 22.28 17.22 14.47 OPA111SM-BSS4 27.30 21.85 17.55 OPA111SM-BSS4 27.30 21.85 17.55 OPA111VM I 26.00 20.50 17.00 OPA111VM/883B I 35.00 30.00 27.00 OPA11HT 58.80 52.15 43.15 OPA121KL 9.35 7.00 5.90 OPA121KL-BSS1 30.86 23.10 19.47 OPA121KL-BSS1 30.86 23.10 19.47 OPA121KL-BSS1 30.86 23.10 19.47 OPA121KL-BSS1 10.75 8.05 6.79 OPA121KL-BSS3 10.75 8.05 6.79 OPA121KL-BSS1 22.61 14.85 11.22 <t< th=""><th>OPA128KL OPA128KL-BS OPA128KL-BSS1 OPA128KL-BSS2 OPA128KL-BSS3 OPA128KL-BSS4 OPA128KM OPA128KM-BS</th><th>27.50 27.50 90.75 35.75 31.63 30.25 32.80</th><th>22.50 22.50 74.25 29.25 25.88 24 75</th><th>18.00 18.00 59.40 23.40</th></t<>	OPA128KL OPA128KL-BS OPA128KL-BSS1 OPA128KL-BSS2 OPA128KL-BSS3 OPA128KL-BSS4 OPA128KM OPA128KM-BS	27.50 27.50 90.75 35.75 31.63 30.25 32.80	22.50 22.50 74.25 29.25 25.88 24 75	18.00 18.00 59.40 23.40
OPA111SM-BSS2 26.33 20.35 17.10 OPA111SM-BSS3 23.29 18.00 15.12 OPA111SM-BSS4 22.28 17.22 14.47 OPA111SM-BSS4 22.28 17.22 14.47 OPA111SM-BSS4 22.28 17.22 14.47 OPA111SMQ 27.30 21.85 17.55 OPA111VM I 26.00 20.50 17.00 OPA111VM/803B I 35.00 30.00 27.00 OPA121KL 9.35 7.00 5.90 0 OPA121KL-BS 9.35 7.00 5.90 0 OPA121KL-BSS1 30.66 23.10 19.47 OPA121KL-BSS2 12.16 9.10 7.67 OPA121KL-BSS3 10.75 8.05 6.79 OPA121KL-BSS3 10.75 8.05 6.79 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS3 7.88 5.18	OPA128KL-BS OPA128KL-BSS1 OPA128KL-BSS2 OPA128KL-BSS3 OPA128KL-BSS3 OPA128KM-BS OPA128KM-BS	27.50 90.75 35.75 31.63 30.25 32.80	22.50 74.25 29.25 25.88 24.75	18.00 59.40 23.40
OPA111SM-BSS3 23.29 18.00 15.12 OPA111SM-BSS4 22.28 17.22 14.47 OPA111SMQ 27.30 21.85 17.55 OPA111SMQ 27.30 21.85 17.55 OPA111VM I 26.00 20.50 17.00 OPA111VM/883B I 35.00 30.00 27.00 OPA111VM/883B I 35.00 30.00 27.00 OPA111VM/883B I 35.00 30.00 27.00 OPA121KL 9.35 7.00 5.90 OPA121KL-BS 9.35 7.00 5.90 OPA121KL-BSS1 30.86 23.10 19.47 OPA121KL-BSS2 12.16 9.10 7.67 OPA121KL-BSS3 10.75 8.05 6.79 OPA121KL-BSS4 10.29 7.70 6.49 OPA121KM 6.85 4.50 3.40 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS3 7.88 5.18 3.91 <td>0PA128KL-BSS1 0PA128KL-BSS2 0PA128KL-BSS3 0PA128KL-BSS3 0PA128KM-BS 0PA128KM-BS</td> <td>90.75 35.75 31.63 30.25 32.80</td> <td>74.25 29.25 25.88 24.75</td> <td>59.40 23.40</td>	0PA128KL-BSS1 0PA128KL-BSS2 0PA128KL-BSS3 0PA128KL-BSS3 0PA128KM-BS 0PA128KM-BS	90.75 35.75 31.63 30.25 32.80	74.25 29.25 25.88 24.75	59.40 23.40
OPA111SM-BSS4 22.28 17.22 14.47 OPA111SMQ 27.30 21.85 17.55 OPA111VM I 26.00 20.50 17.00 OPA111VM I 26.00 20.50 17.00 OPA111VM/883B I 35.00 30.00 27.00 OPA111VM/883B I 35.00 30.00 27.00 OPA111VM/883B I 35.00 30.00 27.00 OPA121KL 9.35 7.00 5.90 0 OPA121KL-BS 9.35 7.00 5.90 0 OPA121KL-BSS1 30.86 23.10 19.47 OPA121KL-BSS2 12.16 9.10 7.67 OPA121KL-BSS3 10.75 8.05 6.79 OPA121KL-BSS4 10.29 7.70 6.49 OPA121KM 6.85 4.50 3.40 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS3 <td< td=""><td>OPA128KL-BSS2 OPA128KL-BSS3 OPA128KL-BSS4 OPA128KM OPA128KM-BS</td><td>35.75 31.63 30.25 32.80</td><td>29.25 25.88 24.75</td><td>23.40</td></td<>	OPA128KL-BSS2 OPA128KL-BSS3 OPA128KL-BSS4 OPA128KM OPA128KM-BS	35.75 31.63 30.25 32.80	29.25 25.88 24.75	23.40
OPA111SMQ 27.30 21.85 17.55 OPA111VM I 26.00 20.50 17.00 OPA111VM/883B I 35.00 30.00 27.00 OPA111VM/883B I 35.00 30.00 27.00 OPA11HT 58.80 52.15 43.15 OPA121KL 9.35 7.00 5.90 OPA121KL-BS 9.35 7.00 5.90 OPA121KL-BSS1 30.86 23.10 19.47 OPA121KL-BSS1 10.75 8.05 6.79 OPA121KL-BSS3 10.75 8.05 6.79 OPA121KL-BSS4 10.29 7.70 6.49 OPA121KL-BSS4 10.29 7.70 6.49 OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS3 7.88 5.18 3.91	0PA128KL-BSS3 0PA128KL-BSS4 0PA128KM 0PA128KM-BS	31.63 30.25 32.80	25.88	n o
OPA111VM I 26.00 20.50 17.00 OPA111VM/883B I 35.00 30.00 27.00 OPA111VM/883B I 35.00 30.00 27.00 OPA11HT 58.80 52.15 43.15 OPA121KL 9.35 7.00 5.90 OPA121KL-BS 9.35 7.00 5.90 OPA121KL-BS1 30.86 23.10 19.47 OPA121KL-BS2 12.16 9.10 7.67 OPA121KL-BS3 10.75 8.05 6.79 OPA121KL-BS4 10.29 7.70 6.49 OPA121KL-BS54 10.29 7.70 6.49 OPA121KL-BS51 22.61 14.85 11.22 OPA121KM-BS51 22.61 14.85 11.22 OPA121KM-BS53 7.88 5.18 3.91 OPA121KM-BS53 7.88 5.18 3.91 OPA121KM-BS53 7.88 5.18 3.91 OPA121KW-BS53 7.86 3.65 2.75	OPA128KL-BSS4 OPA128KM OPA128KM-BS	30.25 32.80	24 75	20.70
OPA111VM/883B I 35.00 30.00 27.00 OPA11HT 58.80 52.15 43.15 OPA121KL 9.35 7.00 5.90 OPA121KL-BS 9.35 7.00 5.90 OPA121KL-BS 9.35 7.00 5.90 OPA121KL-BS1 30.86 23.10 19.47 OPA121KL-BS2 12.16 9.10 7.67 OPA121KL-BS3 10.75 8.05 6.79 OPA121KL-BSS3 10.75 8.05 6.79 OPA121KL-BSS4 10.29 7.70 6.49 OPA121KL-BSS4 10.29 7.70 6.49 OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS4 7.54 4.95 3.74 OPA121KW 7.78 3.27 3.20 OPA121KU 7.78	OPA128KM OPA128KM-BS	32.80	24.75	19.80
OPA11HT 58.80 52.15 43.15 OPA121KL 9.35 7.00 5.90 OPA121KL-BS 9.35 7.00 5.90 OPA121KL-BSS1 30.86 23.10 19.47 OPA121KL-BSS2 12.16 9.10 7.67 OPA121KL-BSS3 10.75 8.05 6.79 OPA121KL-BSS4 10.29 7.70 6.49 OPA121KM 6.85 4.50 3.40 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS1 7.88 5.18 3.91 OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS3 7.54 4.95 3.74 OPA121KP 5.65 3.65 2.75 OPA121KP 5.65 3.65 2.75 OPA121KU 7.78 4.27	OPA128KM-BS		25.75	19.50
OPA121KL 9.35 7.00 5.90 OPA121KL-BS 9.35 7.00 5.90 OPA121KL-BSS1 30.86 23.10 19.47 OPA121KL-BSS2 12.16 9.10 7.67 OPA121KL-BSS3 10.75 8.05 6.79 OPA121KL-BSS4 10.29 7.70 6.49 OPA121KM 6.85 4.50 3.40 OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS2 8.91 5.85 4.42 OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS4 7.54 4.95 3.74 OPA121KP 5.65 3.65 2.75 OPA121KU 7.78 4.27 <td< td=""><td></td><td>32.80</td><td>25.75</td><td>19.50</td></td<>		32.80	25.75	19.50
OPA121KL-BS 9.35 7.00 5.90 OPA121KL-BSS1 30.86 23.10 19.47 OPA121KL-BSS2 12.16 9.10 7.67 OPA121KL-BSS3 10.75 8.05 6.79 OPA121KL-BSS4 10.29 7.70 6.49 OPA121KM 6.85 4.50 3.40 OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS2 8.91 5.85 4.42 OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS4 7.54 4.95 3.74 OPA121KP 5.65 3.65 2.75 OPA121KU 7.78 4.27 3.20 OPA121KU 7.78 4.27 3.20 OPA121SL-BS 15.05 11.55 <	OPA128KM-BSS1	82.50	66.00	51.15
OPA121KL-BSS1 30.86 23.10 19.47 OPA121KL-BSS2 12.16 9.10 7.67 OPA121KL-BSS3 10.75 8.05 6.79 OPA121KL-BSS4 10.29 7.70 6.49 OPA121KM 6.85 4.50 3.40 OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BS 22.61 14.85 11.22 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS2 8.91 5.85 4.42 OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS4 7.54 4.95 3.74 OPA121KM-BSS4 7.565 3.65 2.75 OPA121KW 7.78 4.27 3.20 OPA121KU 7.78 4.27 3.20 OPA121KU 7.78 4.27 3.20 OPA121SL-BS 15.05 11.55 8.75 OPA121SL-BS 15.05 38.12 28.88	OPA128KM-BSS2	42.64	33.48	25.35
OPA121KL-BSS2 12.16 9.10 7.67 OPA121KL-BSS3 10.75 8.05 6.79 OPA121KL-BSS4 10.29 7.70 6.49 OPA121KM 6.85 4.50 3.40 OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BS 2.61 14.85 11.22 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS2 8.91 5.85 4.42 OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS4 7.54 4.95 3.74 OPA121KU 7.78 4.27 3.20 OPA121KU 7.78 4.27 3.20 OPA121KU 7.78 4.27 3.20 OPA121SL-BS 15.05 11.55 8.75 OPA121SL-BS 15.05 11.55 8.75	OPA128KM-BSS3	37.72	29.61	22.43
OPA121KL-BSS3 10.75 8.05 6.79 OPA121KL-BSS4 10.29 7.70 6.49 OPA121KM 6.85 4.50 3.40 OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS2 8.91 5.85 4.42 OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS4 7.54 4.95 3.74 OPA121KW-BSS4 7.56 3.65 2.75 OPA121KU 7.78 4.27 3.20 OPA121KU 7.78 4.27 3.20 OPA121KU 15.05 11.55 8.75 OPA121SL 15.05 11.55 8.75 OPA121SL-BS 15.05 11.55 8.75	OPA128KM-BSS4	36.08	28.33	21.45
OPA121KL-BSS4 10.29 7.70 6.49 OPA121KM 6.85 4.50 3.40 OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS2 8.91 5.85 4.42 OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS4 7.54 4.95 3.74 OPA121KW-BSS4 7.56 3.65 2.75 OPA121KU 7.78 4.27 3.20 OPA121KU 7.78 4.27 3.20 OPA121SL 15.05 11.55 8.75 OPA121SL-BS 15.05 11.55 8.75	OPA128LL	34.00	27.50	22.50
OPA121KM 6.85 4.50 3.40 OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS2 8.91 5.85 4.42 OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS4 7.54 4.95 3.74 OPA121KM-BSS4 7.55 3.65 2.75 OPA121KU 7.78 4.27 3.20 OPA121SL 15.05 11.55 8.75 OPA121SL-BS 15.05 11.55 8.75 OPA121SL-BSS1 49.67 38.12 28.88	OPA128LL-BS	34.00	27.50	22.50
OPA121KM-BS 6.85 4.50 3.40 OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS2 8.91 5.85 4.42 OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS4 7.54 4.95 3.74 OPA121KM 5.65 3.65 2.75 OPA121KU 7.78 4.27 3.20 OPA121SL 15.05 11.55 8.75 OPA12ISL-BSS1 49.67 38.12 28.88	OPA128LL-BSS1	112.20	90.75	74.25
OPA121KM-BSS1 22.61 14.85 11.22 OPA121KM-BSS2 8.91 5.85 4.42 OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS4 7.54 4.95 3.74 OPA121KM 5.65 3.65 2.75 OPA121KU 7.78 4.27 3.20 OPA121SL 15.05 11.55 8.75 OPA121SL-BS 15.05 11.55 8.75 OPA121SL-BSS1 49.67 38.12 28.88	OPA128LL-BSS2	44.20	35.75	29.25
OPA121KM-BSS2 8.91 5.85 4.42 OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS4 7.54 4.95 3.74 OPA121KM-BSS4 7.54 4.95 3.74 OPA121KP 5.65 3.65 2.75 OPA121KU 7.78 4.27 3.20 OPA121SL 15.05 11.55 8.75 OPA121SL-BS 15.05 11.55 8.75 OPA121SL-BSS1 49.67 38.12 28.88	OPA128LL-BSS3	39.10	31.63	25.88
OPA121KM-BSS3 7.88 5.18 3.91 OPA121KM-BSS4 7.54 4.95 3.74 OPA121KM 5.65 3.65 2.75 OPA121KV 7.78 4.27 3.20 OPA121SL 15.05 11.55 8.75 OPA121SL-BS 15.05 11.55 8.75 OPA121SL-BSS1 49.67 38.12 28.88	OPA128LL-BSS4	37.40	30.25	24.75
OPA121KM-BSS4 7.54 4.95 3.74 OPA121KP 5.65 3.65 2.75 OPA121KU 7.78 4.27 3.20 OPA121SL 15.05 11.55 8.75 OPA121SL-BS 15.05 11.55 8.75 OPA121SL-BSS1 49.67 38.12 28.88	OPA128LM	41.38	32.02	25.15
OPA121KP 5.65 3.65 2.75 OPA121KU 7.78 4.27 3.20 OPA121SL 15.05 11.55 8.75 OPA121SL-BS 15.05 11.55 8.75 OPA121SL-BSS1 49.67 38.12 28.88	OPA128LM-BS	41.38	32.02	25.15
OPA121KU 7.78 4.27 3.20 OPA121SL 15.05 11.55 8.75 OPA121SL-BS 15.05 11.55 8.75 OPA121SL-BSS1 49.67 38.12 28.88	OPA128LM-BSS1	103.95	82.50	66.00
OPA121SL 15.05 11.55 8.75 OPA121SL-BS 15.05 11.55 8.75 OPA121SL-BSS1 49.67 38.12 28.88	OPA128LM-BSS2	53.79	41.63	32.70
OPA121SL-BS 15.05 11.55 8.75 OPA121SL-BSS1 49.67 38.12 28.88	0PA128LM-BSS3	47.59	36.82	28.92
0PA121SL-BSS1 49.67 38.12 28.88	0PA1281M-BSS4	45.52	35.22	27.67
	OPA128SL	56.75	47.45	41.00
0PA121SL-BSS2 19.57 15.02 11.38	OPA128SL-BS	56.75	47.45	41.00
0PA121SL-BSS3 17.31 13.28 10.06	0PA1285L-BSS1	187.28	156.59	135.30
0PA121SL-BSS4 16.56 12.71 9.63	OPA128SL-BSS2	73.78	61.69	53.30
0PA121SM-BS 12.55 9.05 6.25	0PA128SL-BSS3	65.26	54.57	47.15
0PA121SM-BSS1 41.42 29.87 20.63	0PA128SL-BSS4	62.43	52.20	45.10
0PA121SM-BSS2 16.32 11.77 8.13	OPA128SM	60.76	48.55	40.43
0PA121SM-BSS3 14.43 10.41 7.19	OPA128SM-BS	60.76	48 55	40.43
0PA121SM-BSS4 13.81 9.96 6.88	0PA1285M_BSS1	179.03	148 34	127 05
0PA128.ID 14.58 8.66	0PA1285M_BSS2	78.99	63 12	52 56
0PA128.11 20.00 - 16.45 12.75	OPA128SM_BSS3	69.87	55 83	46.49
0PA128.11 - BS 20.00 16.45 12.75	0PA1285M_BSS4	66.84	53.00	40.4J AA A7
0PA128.II_BSS1 66.00 54.20 42.08	0PA156AM	12 60	9 67	7 00
0PA128 U_BSS2 26.00 21.30 16.58	00020100	12.00	6 30	1 35
OPA128 IL_BSS3 23.00 18.02 14.66	00020180	14.00	0.50	6.80
0PA128.11 - BSS4 22.00 18.10 14.03	0000000	14.00	11 70	8 20
OPA128.IM 21.25 16.05 12.50	00020150	10.75	12 05	0.20
OPA128.IM_RS 21.25 16.95 12.50	000211100	10.30	12.05	7 20
0 Δ1.20 10.30 12.30 0 Δ1.20 10.30 12.30 0 Δ1.20 10.30 12.30	000011100	10 15	10.75	12 15
07.75 40.04 33.85 07.75 40.04 33.85	OPA2111AL	10.15	14.45	12.45
07 A12 001-0332 27.03 22.04 10.25	0PA2111AM	10.24	12.42	10.45
ODA120 UN DSSA 22.20 10 65 12.75		29.50	24.20	19.35

Page No.11

Prices in U.S. dollars F.O.B. Tucson, Arizona Quantity discounts available. Effective June 1, 1987 MODEL FOOT 1-24 25-99 100-249 MODEL FOOT 1-24 25-99 100-249 NOTE NOTE OPA2111KM 9.90 7.90 5.25 0PA27CL-BSS1 43.40 33.99 27.89 0PA2111KP 7.90 4.25 5.50 OPA27CL-BSS2 17.10 13.39 10.99 0PA2111SL 31.15 24.50 19.60 OPA27CL-BSS3 15.12 11.84 9.72 0PA2111SM 29.68 22.90 17.59 OPA27CL-BSS4 14.47 11.33 9.30 OPA21EZ 10.02 7.72 6.25 OPA27CZ 9.95 7.50 5.95 OPA21GZ 4.98 3.89 3.10 OPA27CZQ 16.45 12.00 9.25 0PA27AJ 19.95 15.65 12.50 0PA27EJ 11.00 8.35 6.65 OPA27AJ-BS 19.95 15.65 12.50 OPA27EJ-BS 11.00 8.35 6.65 0PA27AJ-BSS1 OPA27EJ-BSS1 38.78 70.46 53.63 41.25 28.71 21.95 0PA27AJ-BSS2 25.94 20.35 16.25 OPA27EJ-BSS2 14.30 10.86 8.65 0PA27AJ-BSS3 OPA27EJ-BSS3 22.94 18.00 14.38 12.65 9.60 7.65 0PA27AJ-BSS4 21.95 17.22 13.75 OPA27EJ-BSS4 12.10 9.19 7.32 OPA27AJQ 32.85 25.00 18.75 OPA27EL 14.25 11.20 9.15 0PA27AL 23.85 18.75 15.00 OPA27EL-BS 14.25 11.20 9.15 OPA27AL-BS 23.85 18.75 15.00 OPA27EL-BSS1 47.03 36.96 30.20 0PA27AL-BSS1 78.71 61.88 49.50 OPA27EL-BSS2 18.53 14.56 11.90 0PA27AL-BSS2 31.01 24.38 19.50 OPA27EL-BSS3 16.39 12.88 10.52 0PA27AL-BSS3 27.43 17.25 OPA27EL-BSS4 15.68 21.56 12.32 10.07 0PA27AL-BSS4 26.24 20.63 16.50 OPA27EZ 11.00 8.35 6.65 0PA27AZ 19.95 15.65 12.50 0PA27FJ 8.55 5.95 4.95 OPA27AZQ 0PA27FJ-BS 32.85 25.00 18.75 8.55 5.95 4.95 0PA27BJ 12.85 9.65 7.65 0PA27FJ-BSS1 30.20 20.46 16.34 0PA27BJ-BS 12.85 9.65 0PA27FJ-BSS2 7.65 11.12 7.74 6.44 0PA27BJ-BSS1 45.38 33.00 25.25 0PA27FJ-BSS3 9.83 6.84 5.69 0PA27BJ-BSS2 16.71 12.55 9.95 0PA27FJ-BSS4 9.41 6.55 5.45 OPA27BJ-BSS3 14.78 8.80 OPA27FL 11.10 11.65 8.70 7.45 OPA27BJ-BSS4 14.14 10.62 8.42 OPA27FL-BS 11.65 8.70 7.45 0PA27BJ0 21.20 15.45 11.85 0PA27FL-BSS1 38.45 28.71 24.59 OPA27BL 16.25 12.50 10.15 0PA27FL-BSS2 15.15 11.31 9.69 OPA27BL-BS 16.25 12.50 10.15 OPA27FL-BSS3 13.40 10.01 8.57 0PA27BL-BSS1 53.63 41.25 33.50 0PA27FL-BSS4 12.82 9.57 8.20 0PA27BL-BSS2 21.13 16.25 13.20 0PA27FZ 8.55 5.95 4.95 0PA27GD OPA27BL-BSS3 18.69 14.38 11.67 4.20 2.80 OPA27BL-BSS4 17.88 13.75 11.17 0PA27GJ 6.00 4.95 4.00 OPA27BZ 12.85 9.65 7.65 OPA27GJ-BS 6.00 4.95 4.00 OPA27BZQ 21.20 15.45 11.85 0PA27GJ-BSS1 21.29 17.00 13.20 0PA27CD 6.30 4.20 0PA27GJ-BSS2 7.80 6.44 5.20 0PA27CJ 9.95 7.50 5.95 0PA27GJ-BSS3 6.90 5.69 4.60 OPA27CJ-BS 9.95 7.50 5.95 0PA27GJ-BSS4 6.60 5.45 4.40 0PA27CJ-BSS1 35.15 25.74 19.64 0PA27GL 8.95 7.65 6.50 0PA27CJ-BSS2 12.94 9.75 7.74 0PA27GL-BS 8.95 7.65 6.50 0PA27CJ-BSS3 11.44 8.63 0PA27GL-BSS1 29.54 6.84 25.25 21.45 OPA27CJ-BSS4 10.95 8.25 6.55 0PA27GL-BSS2 11.64 9.95 8.45 0PA27CJ0 0PA27GL-BSS3 16.45 12.00 9.25 10.29 8.80 7.48 OPA27CL 10.30 OPA27GL-BSS4 13.15 8.45 9.85 8.42 7.15 OPA27CL-BS OPA27GP 13.15 10.30 8.45 5.25 4.15 2.95

CUSTOMER PRICE LIST-COMPONENT PRODUCTS

Prices in U.S. dollars

F.O.B. Tucson, Arizona Quantity discounts available.

Effective June 1, 1987

MODEL	FOOT NOTE	1-24	25-99	100-249	MODEL	FOOT	1-24	25-99	100-249
OPA27GU		5.95	4.45	3.25	OPA37CL-BSS3		15.12	11.84	9.72
OPA27GZ		6.00	4.95	4.00	0PA37CL-BSS4		14.47	11.33	9.30
OPA27HT		67.09	55.46	44.10	0PA37CZ		9.95	7.50	5.95
OPA356AM		8.12	6.43	4.73	OPA37CZQ		16.45	12.00	9.25
OPA37AJ		19.95	15.65	12.50	0PA37EJ		11.00	8.35	6.65
OPA37AJ-BS		19.95	15.65	12.50	0PA37EJ-BS		11.00	8.35	6.65
OPA37AJ-BSS1		70.46	53.63	41.25	0PA37EJ-BSS1		38.78	28.71	21.95
OPA37AJ-BSS2		25.94	20.35	16.25	0PA37EJ-BSS2		14.30	10.86	8.65
DPA37AJ-BSS3		22.94	18.00	14.38	0PA37EJ-BSS3		12.65	9.60	7.65
OPA37AJ-BSS4		21.95	17.22	13.75	0PA37EJ-BSS4		12.10	9.12	7.32
OPA37AJQ		32.85	25.00	18.75	OPA37EL		14.25	11.20	9.15
OPA37AL		23.85	18.75	15.00	OPA37EL-BS		14.25	11.20	9.15
OPA37AL-BS		23.85	18.75	15.00	0PA37EL-BSS1		47.03	36.96	30.20
OPA37AL-BSS1		78.71	61.88	49.50	OPA37EL-BSS2		18.53	14.56	11.90
0PA37AL-BSS2		31.01	24.38	19.50	0PA37EL-BSS3		16.39	12.88	10.52
OPA37AL-BSS3		27.43	21.56	17.25	OPA37EL-BSS4		15.68	12.32	10.07
OPA37AL-BSS4		26.24	20.63	16.50	OPA37EZ		11.00	8.35	6.65
OPA37AZ		19.95	15.65	12.50	0PA37FJ		8.55	5.95	4.95
OPA37AZQ		32.85	25.00	18.75	0PA37FJ-BS		8.55	5.95	4,95
DPA37BJ		12.85	9.65	7.65	0PA37FJ-BSS1		30.20	20.46	16.34
OPA37BJ-BS		12.85	9.65	7.65	0PA37FJ-BSS2		11.12	7.74	6.44
OPA37BJ-BSS1		45.38	33.00	25.25	0PA37FJ-BSS3		9.83	6.84	5.69
OPA37BJ-BSS2		16.71	12.55	9.95	0PA37FJ-BSS4		9.41	6.55	5.45
OPA37BJ-BSS3		14.78	11.10	8.80	0PA37FL		11.65	8.70	7.45
OPA37BJ-BSS4		14.14	10.62	8.42	OPA37FL-BS		11.65	8.70	7.45
DPA37BJQ		21.20	15.45	11.85	OPA37FL-BSS1		38.45	28.71	24.59
OPA37BL		16.25	12.50	10.15	0PA37FL-BSS2		15.15	11.31	9.69
OPA37BL-BS		16.25	12.50	10.15	OPA37FL-BSS3		13.40	10.01	8.57
OPA37BL-BSS1		53.63	41.25	33.50	OPA37FL-BSS4		12.82	9.57	8.20
OPA37BL-BSS2		21.13	16.25	13.20	0PA37FZ		8.55	5.95	4.95
OPA37BL-BSS3		18.69	14.38	11.67	OPA37GD		0100	4 20	2 80
OPA37BL-BSS4		17.88	13.75	11.17	OPA37GJ		6.00	4 95	4 00
DPA37BZ		12.85	9.65	7.65	OPA37GJ-BS		6.00	4.95	4.00
OPA37BZQ		21.20	15.45	11.85	0PA37GJ-BSS1		21.29	17.00	13.20
DPA37CD			6.30	4.20	OPA37GJ-BSS2		7.80	6.44	5.20
DPA37CJ		9.95	7.50	5.95	OPA37GJ-BSS3		6.90	5.69	4.60
DPA37CJ-BS		9,95	7.50	5.95	OPA37GJ-BSS4		6 60	5 45	4 40
DPA37CJ-BSS1		35.15	25.74	19.64	OPA37GI		8 95	7 65	6 50
DPA37CJ-BSS2		12.94	9.75	7.74	OPA37GL-BS		8.95	7 65	6 50
OPA37CJ-BSS3		11.44	8.63	6.84	OPA37GL-BSS1		29.54	25 25	21 45
DPA37CJ-BSS4		10.95	8.25	6.55	0PA37GL-8552		11.64	Q Q5	8 45
DPA37CJO		16.45	12.00	9.25	0PA37GI _8552		10.20	> 8 80	7 /10
OPA37CL		13.15	10.30	8.45	0PA37CI_8554		Q 85	8 12	7 16
DPA37CL-BS		13.15	10.30	8,45	0PA37CP		5 25	3.05	2.05
OPA37CL-BSS1		43.40	33.99	27.89	0243761		5.05	J.95 4 AF	2.90
0042701 0002		17 10	13 30	10.00	00 43707		0.90	4.45	5.25

es in U.S. dollars	5	F.O.B. 1	Fucson, A	rizona	Quantity discounts	Effective June 1, 1987			
MODEL	FOOT NOTE	1-24	25-99	100-249	MODEL	FOOT NOTE	1-24	25-99	100-249
OPA37HT		67.09	55.46	44.10	OPA8780VM	J			
OPA404AD			8.59	6.25	0PA8780VM/883B	J,+			
OPA404AG		16.74	13.50	9.40	PCM53JG-I		50.00	40.63	28.75
OPA404AL		17.45	15.00	11.45	PCM53JG-V		50.00	40.63	28.75
OPA404BG		22.12	17.01	13.49	PCM53JP-I		22.05	20.48	12.76
OPA404BL		22.25	18.25	15.35	PCM53JP-V		22.05	20.48	12.76
OPA404KP		11.85	9.25	6.95	PCM53KP-I		24.68	22.31	13.91
OPA404SG		32.76	25.11	20.95	PCM53KP-V		24.68	22.31	13.91
OPA404SL		31.75	25.75	22.45	PCM54HP		19.43	18.38	11.45
OPA501AM		59.81	43.20	34.13	PCM54JP		22.05	20.48	12.76
OPA501BM		70.56	51.68	39.74	PCM54KP		24.68	22.31	13.91
OPA501RM		76.72	53.19	44.63	PCM55HP		19.43	17.90	11.45
0PA501SM		91.84	64.64	52.45	PCM55JP		22.05	20.56	12.76
0PA501SM0		125.44	93.96	75.60	PCM56P		20.48	19.43	12.60
OPA501UM		86.00	75.75	68.10	PCM56P1		23.10	21.53	13.91
OPA501UM/8838	+	94.75	83.40	74.85	PCM56P-K		25.73	23.36	15.23
OP4501VM		96 00	84 50	76.00	PCM75.1G		137.55	119 70	91 35
004501VM/8838	+	100.00	88 00	70.00	PCM75KG		156 45	135 45	103 95
00 A501 00 00 00 00 00 00 00 00 00 00 00 00 0	•	45 00	38 50	34 50	PGA100AG		72 80	59 40	51 98
00451288		· 63 60	53 05	48 50	PGA100BG		80 64	66 96	56.70
0PA5125M		76 50	66 50	61 50	PGA102AD		00.04	4 43	3 57
00 4512 511		20.50	21 40	16 85	PGA102AC		12 26	0.72	8.03
00 454180		34 75	25.20	10.05	PCA102RC		22 34	17 55	14 44
00050150		10 00	36 30	28.60	PGA102KD		6 66	5 13	14.44
00000000		101 95	95.05	20.00			27 20	21 55	4.15
		124 05	106.05	101.95	PGATUZ SG		67 69	42 15	17.39
00400000		124.95	106.05	101.05	PGAZOUAG		57.00	43.15	30.49
00400030		120.10	100.05	101.05	PGA200BG		64.79	30.49	43.05
OPAGOUIN OPAGOUN		100.45	141./5	103.45	PGA201AG		57.00	43.15	30.49
00400000		143.00	115.00	102.00	PUAZUIDU	v	42.00	37.00	43.05
00460000078838	+	105.00	145.00	13/./5	PWR 70	r v	43.00	57.00	30.10
		1/5.00	155.00	143.00	PWR /1	ĸ	01.00	52.00	42.70
0PA000VM/0038	+	195.00	1/0.00	163.00	PWR 72	ĸ	49.00	42.00	34.30
OPAGUSAM		106.00	01.00	52.80	PWR 74	ĸ	48.00	41.00	33.60
OPAGUSUM		100.80	63.45	/3.45	PWR 1XX	ĸ	33.00	29.00	23.00
OPAGUSHG		01.80	50.40	44.55	PWR ZXX	ĸ	38.00	33.00	27.00
OPADUSKG		91.98	/5.00	03.25	PWR SXX	ĸ	43.00	37.00	30.00
UPA6U6KU		c 20	3.78	2.42	PWR 4XX	Υ κ	49.00	42.00	34.00
UPADUDKM		6.38	4./0	3.68	PWR 5XX	ĸ	59.00	51.00	41.00
UPADUDKP		4.20	3.10	2.60	PWR GXX	ĸ	54.00	46.00	38.00
UPADUDLM		15.51	10./5	8.65		ĸ	81.00	09.00	5/.00
UPADU6SM		15.96	11.07	8.95	PWR 8XX	K	92.00	/9.00	65.00
UPA633AH		10.95	9.10	7.60	PWRI017	ĸ	/6.00	68.00	58./5
UPA633KP		5.80	4.85	4.00	PWR5038	ĸ	65.00	50.00	35.00
UPA633SH		24.50	20.35	16.95	PWR510X	ĸ	65.00	59.00	51.00
UPA8780UM	J				PWS 725	I	36.00	27.70	21.30
0PA8780UM/883B	J.+				PWS 726	I	46.80	36.00	27.70

Page No. 14 Prices in U.S. dollars CUSTOMER PRICE LIST-COMPONENT PRODUCTS

F.O.B. Tucson, Arizona Quantity discounts available. Effective June 1, 1987 MODEL FOOT 1-24 25-99 100-249 MODEL FOOT 1-24 25-99 100-249 NOTE NOTE REF101JL 35.85 31.70 25.65 SDM863KH 145.00 129.00 118.00 REF101JM 34.61 30.02 23.63 SDM863KL L,M 145.00 129.00 118.00 REF101KL 44.10 39.25 32.15 SDM863RH 239.00 204.00 189.00 REF101KM 43.12 37.80 30.24 SDM863RL L,M 239.00 204.00 189.00 REF101RL 38.95 34.75 28.45 SDM863SH 298.00 255.00 235.00 REF101RM 37.80 33.16 26.46 298.00 SDM863SL L,M 255.00 235.00 REF101RMQ 53.20 46.44 36.75 SHC298AM 8.35 5.78 4.73 REF101SL 48,25 43.40 35.85 SHC5320KH 13.40 11.60 9.80 REF101SM 47.43 42.07 34.02 SHC5320SH 61.00 52.75 44.70 REF101SMQ 66.08 58.32 48.30 D SHC600BH 304.50 280.35 REF10JL 21.30 18.95 16.25 99.00 SHC76BM 75.00 63.00 **REF10JM** 19.49 16.90 14.02 SHC76KM 85.05 65.10 54.60 REF10KL 26.10 23.15 19.75 182.70 SHC803BM 141.75 129.15 REF10KM 24.47 21.22 17.59 SHC803BMQ 234.15 177.45 160.65 REF10RL 24.05 21.35 18.30 SHC803CM 212.10 160.65 147.00 REF10RM 22.34 19.39 16.12 SHC803CMQ 265.65 201.60 182.70 **REF10RMQ** 31.36 27.00 22.94 SHC804BM 168.00 127.05 115.50 REF10SL 34.25 30.15 25.70 SHC804BM0 207.90 158.55 143.85 REF10SM 32.93 28.46 23.63 SHC804CM 183.75 138.60 127.05 REF10SM0 45.92 39.42 33.44 SHC804CMQ 229.95 174.30 158.55 RF-500-108 8.95 8.25 SHC80KP 7.65 64.05 43.05 35.70 SDM853 G 346.00 333.00 319.00 SHC85 112.70 78.20 65.55 SDM854AG 241.50 193.20 162.15 SHC85ET 170.20 126.50 121.90 SDM854BG 267.95 215.05 179.40 SHC85ETQ 215.25 186.30 178.25 SDM856JG 208.15 166.75 139.15 SHC85Q 180.55 126.50 105.80 SDM856KG 251.85 201.25 169.05 SHM60 150.00 144.00 138.00 SDM857JG 223.10 178.25 149.50 TM25-300HT 320.00 267.00 226.00 SDM857KG 213.90 178.25 320.00 266.80 TM25-300NT 267.00 226:00 SDM862AH 154.00 129.00 111.00 TM2500 325.00 290.00 195.00 SDM862AL L,M 154.00 129.00 111.00 TM27-12 320.00 267.00 226.00 SDM862BH 178.00 146.00 127.00 TM2700 350.00 315.00 210.00 SDM862BL L,M 178.00 146.00 127.00 TM70 595.00 496.00 402.00 SDM862JH 128.00 117.00 103.00 TM71 675.00 582.00 456.00 L,M SDM862JL 128.00 117.00 103.00 TM71-10 790.00 658.00 533.00 SDM862KH 145.00 129.00 118.00 TM76 595.00 402.00 496.00 SDM862KL L,M 145.00 129.00 118.00 TM76K 705.00 587.00 476.00 SDM862RH 239.00 204.00 189.00 TM77 675.00 562.00 456.00 L,M SDM862RL 239.00 204.00 189.00 TM77-1/0 790.00 658.00 533.00 SDM862 SH 298.00 255.00 235.00 TM77K 805.00 671.00 543.00 L,M SDM862SL 298.00 255.00 235.00 TM77K-10 895.00 746.00 604.00 SDM863AH 154.00 129.00 111.00 UAF11 64.35 45.60 29.05 129.00 SDM863AL L.M 154.00 111.00 UAF21 102.60 88.10 58.69 SDM863BH 178.00 148.00 127.00 UAF41 23.35 15.23 12.08 SDM863BL L,M 178.00 148.00 127.00 VFC100AG 10.45 8.70 6.95 SDM863JH 128.00 117.00 103.00 VFC100AL 12.95 11.20 9.45 SDM863JL L,M 128.00 117.00 103.00 VFC100BG 16.40 13.65 10.95

Page No.15

Prices in U.S. dollars

F.O.B. Tucson, Arizona

Quantity discounts available.

Effective June 1, 1987

VFC100BL 18.90 16.15 13.45 VFC12BL-BSS3 18.00 14.89 12.02 VFC100SC 18.95 15.95 13.65 VFC12BL-BSS4 17.22 14.25 11.50 VFC120BL 21.45 18.45 16.15 VFC32BH-BSS 11.95 9.95 7.95 VFC320BL 19.65 14.45 11.50 VFC32BH-BSS1 43.40 34.48 26.24 VFC320BL-BSS1 64.85 47.69 37.95 VFC32BH-BSS1 13.75 11.49 9.14 VFC320BL-BSS2 22.25 18.79 14.95 VFC32BH-BSS1 13.75 11.49 9.14 VFC320BL-BSS3 22.60 16.62 13.23 VFC32BH-BSS4 15.67 14.35 VFC320BL-BSS4 21.62 15.90 12.65 VFC32SL-BS5 21.45 17.65 14.35 VFC320BL-BSS1 56.69 39.44 29.70 VFC32SL-BS5 21.45 17.65 14.35 VFC320BL-BSS4 17.76 12.55 9.63 VFC32SL-BS5<	MODEL	FOOT Note	1-24	25-99	100-249	MODEL	FOOT NOTE	1-24	25-99	100-249
VFC100SL 18.95 13.65 VFC12BL-BS34 12.22 14.25 11.50 VFC100SL 21.45 18.45 11.50 VFC12BH-BS1 11.95 9.95 7.95 VFC220BL 19.65 14.45 11.50 VFC12BH-BS1 43.40 34.48 26.24 VFC320BL-BSS 19.65 14.45 11.50 VFC12BH-BS23 13.75 11.44 9.14 VFC320BL-BSS1 64.85 47.69 37.95 VFC32BH-BSS3 13.75 11.44 9.14 VFC320BL-BSS3 22.60 16.62 13.23 VFC32BH-BSS3 13.75 14.49 9.14 VFC320BL-BSS3 21.62 15.90 12.65 VFC32BL-BSS3 21.45 17.65 14.35 VFC320BH-BSS 15.60 11.40 8.75 VFC32SL-BSS3 21.45 17.65 14.35 VFC320BH-BSS3 17.94 13.11 10.66 VFC32SL-BSS3 24.67 20.30 16.50 VFC320BH-BSS4 17.76 12.55 9.63 VFC32SL-BS	VFC100BL		18.90	16.15	13.45	VFC32BL-BSS3		18.00	14.89	12.02
VFC100SL 21.45 18.45 16.15 VFC320H 11.95 9.95 7.95 VFC320BC 15.95 11.75 8.95 VFC320H-BS 11.95 9.95 7.95 VFC320BL 19.65 14.45 11.50 VFC320H-BSS1 13.48 26.24 VFC320BL-BSS2 25.25 18.79 14.95 VFC320H-BSS3 13.75 11.4 9.14 VFC320BL-BSS3 22.60 16.62 13.23 VFC320H-BSS4 13.15 10.95 8.75 VFC320BL-BSS4 21.62 15.90 12.65 VFC32SL-BSS4 21.45 17.65 14.35 VFC320BL-BSS1 56.59 39.44 29.70 VFC32SL-BSS1 70.79 58.25 47.36 VFC320BL-BSS3 17.76 12.55 VFC32SL-BSS1 70.79 58.25 47.36 VFC320BL-BSS4 17.76 12.55 VFC32SL-BSS1 70.79 58.25 47.36 VFC320BL-BSS2 20.75 15.50 13.25 VFC32SL-BSS1 26.0 19.49 <td>VFC100SG</td> <td></td> <td>18.95</td> <td>15.95</td> <td>13.65</td> <td>VFC32BL-BSS4</td> <td></td> <td>17.22</td> <td>14.25</td> <td>11.50</td>	VFC100SG		18.95	15.95	13.65	VFC32BL-BSS4		17.22	14.25	11.50
VFC320BG 15.95 11.75 8.95 VFC320BL 11.95 9.95 7.95 VFC320BL 19.65 14.45 11.50 VFC320BL-BSS1 43.40 34.48 26.24 VFC320BL-BSS1 64.85 47.69 37.95 VFC320BL-BSS3 13.15 11.44 9.14 VFC320BL-BSS2 25.25 18.79 14.95 VFC32BH-BSS3 13.15 10.95 8.75 VFC320BL-BSS3 22.60 16.62 13.23 VFC32BH-BSS3 13.15 10.95 8.75 VFC320BL-BSS4 21.62 15.90 12.65 VFC32SL 21.45 17.65 14.35 VFC320BH-BSS1 56.59 39.44 29.70 VFC32SL-BSS 21.45 17.65 14.35 VFC320BH-BSS3 17.94 13.11 10.06 VFC32SL-BSS3 24.67 20.30 16.50 VFC320BH-BSS3 17.94 13.11 10.06 VFC32SL-BSS3 24.67 20.30 16.50 VFC320CL 20.75 15.50 13.25 VFC32SH-BSS1 62.54 50.00 39.11 VFC320L-BSS2	VFC100SL		21.45	18.45	16.15	VFC32BM		11.95	9.95	7.95
yFC320BL 19.65 14.45 11.50 VFC32BH-BSS1 43.48 26.24 VFC320BL-BSS1 64.85 47.69 37.95 VFC32BH-BSS2 15.4 12.94 10.34 VFC320BL-BSS1 64.85 47.69 37.95 VFC32BH-BSS3 13.75 10.95 8.75 VFC320BL-BSS2 25.25 18.79 14.95 VFC32BH-BSS4 13.15 10.95 8.75 VFC320BL-BSS4 21.62 15.90 12.65 VFC32RH 8.95 7.45 5.95 VFC320BH-BSS1 56.69 39.44 29.70 VFC32SL-BSS1 7.079 58.25 47.36 VFC320BH-BSS1 15.60 11.40 8.75 VFC32SL-BSS3 24.67 20.30 16.50 VFC320BH-BSS3 17.94 13.11 10.06 VFC32SL-BSS3 24.67 20.30 16.50 VFC320CL 20.75 15.50 13.25 VFC32SH-BSS1 62.54 50.00 39.11 VFC320L-BSS1 66.46 51.15 43.73 VFC32SH-BSS1 25.04 50.00 39.11 VFC320L-BSS2 20.75	VFC320BG		15.95	11.75	8.95	VFC32BM-BS		11.95	9.95	7.95
VFC320BL-BS 19,65 14,45 11,50 VFC32BL-BSS2 15,54 12,94 10,34 VFC320BL-BSS1 64,85 47,69 37,95 VFC32BL-BSS3 13,75 11,44 9,14 VFC320BL-BSS2 25,25 18,79 14,495 VFC32BL-BSS3 13,75 11,44 9,14 VFC320BL-BSS3 22,60 16,62 13,23 VFC32BL-BSS 11,45 17,65 14,35 VFC320BL-BSS1 21,62 15,00 11,40 8,75 VFC32SL-BSS 21,45 17,65 14,35 VFC320BL-BSS1 56,59 39,44 29,70 VFC32SL-BSS3 24,67 20,30 16,50 VFC320BL-BSS3 17,94 13,11 10,06 VFC32SL-BSS3 24,67 20,30 16,50 VFC320CL 20,75 15,50 13,25 VFC32SL-BSS1 62,54 30,01 49,98 11,65 VFC320L-BSS1 64,86 51,15 13,25 VFC32SH-BSS1 62,54 50,00 39,11 VFC320L-BSS1 <	VFC320BL		19.65	14.45	11.50	VFC32BM-BSS1		43.40	34.48	26.24
VFC320BL-BSS1 64.85 47.69 37.95 VFC32BH-BSS3 13.75 11.44 9.14 VFC320BL-BSS3 22.60 16.62 13.23 VFC32BH-BSS4 13.15 10.95 8.75 VFC320BL-BSS4 21.62 15.90 12.65 VFC32BH 8.95 7.45 5.95 VFC320BH-BS 15.60 11.40 8.75 VFC32BL-BSS1 21.45 17.65 14.35 VFC320BH-BSS3 22.028 14.82 11.38 VFC32BL-BSS1 70.79 58.25 47.36 VFC320BH-BSS3 17.94 13.11 10.06 VFC32SL-BSS3 24.67 20.30 16.50 VFC320BH-BSS3 17.76 12.55 9.63 VFC32SL-BSS3 24.67 20.30 14.98 11.85 VFC320CL 20.72 14.74 12.08 VFC32SH-BSS1 16.30 14.98 11.85 VFC320L-BSS1 26.98 20.15 13.25 VFC32SH-BSS3 21.05 17.23 15.41 VFC320L-BSS1 26.84 17.63 14.95 14.96 14.96 14.98 14.96 14.96 <td< td=""><td>VFC320BL-BS</td><td></td><td>19.65</td><td>14.45</td><td>11.50</td><td>VFC32BM-BSS2</td><td></td><td>15.54</td><td>12.94</td><td>10.34</td></td<>	VFC320BL-BS		19.65	14.45	11.50	VFC32BM-BSS2		15.54	12.94	10.34
VFC320BL-BSS2 25.25 18.79 14.95 VFC32BH-BSS4 13.15 10.95 8.75 VFC320BL-BSS3 22.60 16.62 13.23 VFC32BHQ 18.67 15.07 12.55 VFC320BL-BSS4 21.62 15.00 12.65 VFC32BL 21.45 17.65 14.35 VFC320BH-BS1 15.60 11.40 8.75 VFC32SL-BSS1 70.79 58.25 47.36 VFC320BH-BSS1 56.59 39.44 29.70 VFC32SL-BSS3 22.467 22.95 16.60 VFC320BH-BSS1 17.76 12.55 9.63 VFC32SL-BSS3 23.60 19.42 17.76 VFC320CL 20.72 14.74 12.08 VFC32SH-BSS1 26.467 20.30 16.50 VFC320CL-BS2 20.75 15.50 13.25 VFC32SH-BSS1 26.46 50.03 9.11 VFC320L-BSS1 68.48 51.15 43.73 VFC32SH-BSS3 21.05 17.23 13.64 VFC320CL-BS2 20.99 20.15 17.23 VFC32SH-BSS3 20.13 16.48 14.68 14.58 14.58	VFC320BL-BSS1		64.85	47.69	37.95	VFC32BM-BSS3		13.75	11.44	9.14
VFC320BL-BSS3 22.60 16.62 13.23 VFC32BM 18.67 15.67 12.65 VFC320BL-BSS4 21.62 15.90 12.65 VFC32BL 21.45 17.65 14.35 VFC320BH-BS 15.60 11.40 8.75 VFC32SL-BSS 21.45 17.65 14.35 VFC320BH-BSS1 56.59 39.44 29.70 VFC32SL-BSS1 70.79 58.25 47.36 VFC320BH-BSS3 17.76 12.55 9.63 VFC32SL-BSS3 24.67 20.30 16.50 VFC320BH-BSS3 17.76 12.55 9.63 VFC32SL-BSS3 24.67 20.30 16.50 VFC320CL 20.75 15.50 13.25 VFC32SH-BSS3 21.65 19.42 15.79 VFC320CL-BSS1 68.48 51.15 43.73 VFC32SH-BSS3 21.05 17.23 13.64 VFC320CL-BSS1 26.89 20.15 17.23 VFC32SH-BSS3 21.05 17.23 13.64 VFC320CL-BSS2 26.99 21.51 17.23 VFC32SH-BSS3 21.05 17.23 13.64 VFC320CL-BSS2 <td>VFC320BL-BSS2</td> <td></td> <td>25.25</td> <td>18.79</td> <td>14.95</td> <td>VFC32BM-BSS4</td> <td></td> <td>13.15</td> <td>10.95</td> <td>8.75</td>	VFC320BL-BSS2		25.25	18.79	14.95	VFC32BM-BSS4		13.15	10.95	8.75
VFC320BL-BSS4 21.62 15.00 11.40 8.75 VFC32SL 21.45 17.65 14.35 VFC320BH-BS 15.60 11.40 8.75 VFC32SL 21.45 17.65 14.35 VFC320BH-BS 15.60 11.40 8.75 VFC32SL-BSS1 20.79 58.25 47.36 VFC320BH-BSS3 20.28 14.82 11.38 VFC32SL-BSS3 24.67 20.30 16.50 VFC320BH-BSS3 17.94 13.11 10.60 VFC32SL-BSS3 24.67 20.30 16.50 VFC320BH-BSS4 17.76 12.55 9.63 VFC32SH-BSS3 21.67 10.66 VFC32CBC VFC320CL 20.75 15.50 13.25 VFC32SH-BSS1 62.54 50.00 39.11 VFC320CL-BSS 20.75 15.50 13.25 VFC32SH-BSS3 21.57 17.43 14.54 VFC320CL-BSS1 66.48 51.17 37.37 VFC32SH-BSS3 21.57 17.23 14.54 VFC320CL-BSS3 23.66 17.83 15.24 VFC32SH-BSS3 21.05 17.23 14.56	VFC320BL-BSS3		22.60	16.62	13.23	VFC32BMQ		18.87	15.07	12.55
VFC320BH 15.60 11.40 8.75 VFC32SL 21.45 17.65 14.35 VFC320BH-BSS1 56.59 39.44 29.70 VFC32SL-BSS1 70.79 58.25 47.36 VFC320BH-BSS3 17.94 13.11 10.06 VFC32SL-BSS3 21.45 17.66 14.35 VFC320BH-BSS3 17.76 12.55 9.63 VFC32SL-BSS3 24.67 20.30 16.50 VFC320CL 20.75 15.50 13.25 VFC32SH-BSS1 62.45 50.00 39.11 VFC320CL-BSS1 66.48 51.15 43.73 VFC32SH-BSS1 62.54 50.00 39.11 VFC320CL-BSS1 23.86 17.63 14.58 VFC32SH-BSS1 62.54 50.00 39.11 VFC320CL-BSS1 66.48 51.15 43.73 VFC32SH-BSS1 62.54 50.00 39.11 VFC320CL-BSS3 23.86 17.63 14.58 VFC32SH-BSS1 62.54 50.00 39.11 VFC320CL-BSS3 23.86 17.63 14.58 VFC32SH-BSS1 62.54 50.00 39.11 VFC320CL-BSS	VFC320BL-BSS4		21.62	15.90	12.65	VFC32KP		8.95	7.45	5.95
VFC320BH-BS 15.60 11.40 8.75 VFC32SL-BS 21.45 17.65 14.35 VFC320BH-BSS1 56.95 39.44 29.70 VFC32SL-BSS1 70.79 58.25 47.36 VFC320BH-BSS2 20.28 14.42 11.36 VFC32SL-BSS3 24.67 20.30 16.50 VFC320BH-BSS3 17.94 13.11 10.06 VFC32SL-BSS3 24.67 20.30 16.50 VFC320CC 20.72 14.74 12.65 9.63 VFC32SH-BSS1 18.30 14.98 11.85 VFC320CL 20.75 15.50 13.25 VFC32SM-BSS1 62.54 50.00 39.11 VFC320L-BSS1 68.48 51.15 43.73 VFC32SM-BSS3 21.05 17.23 13.63 VFC320L-BSS2 23.80 17.05 14.58 VFC32SM-BSS4 20.13 16.48 13.04 VFC320L-BSS3 21.85 13.45 10.97 VFC32M/883B 20.00 16.00 15.20 VFC320CL-BSS2 23.42.90 35.48 VFC32VM/883B 20.00 16.00 15.20 VFC320CL-BSS	VFC320BM		15.60	11.40	8.75	VFC32SL		21.45	17.65	14.35
VFC3209M-BSS1 56.59 39.44 29.70 VFC32SL-BSS1 70.79 58.25 47.36 VFC320M-HSS2 20.28 14.82 11.38 VFC32SL-BSS2 27.69 22.95 16.60 VFC320BH-BSS3 17.94 13.11 10.06 VFC32SL-BSS3 24.67 20.30 16.50 VFC320G 20.72 14.74 12.08 VFC32SH-BSS3 18.30 14.98 11.85 VFC320L 20.75 15.50 13.25 VFC32SH-BSS1 62.54 50.00 39.11 VFC320L-BS 20.75 15.50 13.25 VFC32SH-BSS3 21.05 17.23 17.43 VFC320L-BSS1 68.48 51.15 43.73 VFC32SH-BSS3 21.05 17.23 13.61 VFC320L-BSS3 23.86 17.83 15.24 VFC32SH-BSS4 20.13 16.48 13.04 VFC320H-BSS1 60.23 42.90 35.48 VFC32H/83B + 20.00 16.00 15.20 VFC320H-BSS1 61.23 51.79 VFC32UH/83B + 36.00 28.75 27.5 VFC320H-BSS2 24.17 <td>VFC320BM-BS</td> <td></td> <td>15.60</td> <td>11.40</td> <td>8.75</td> <td>VFC32SL-BS</td> <td></td> <td>21.45</td> <td>17.65</td> <td>14.35</td>	VFC320BM-BS		15.60	11.40	8.75	VFC32SL-BS		21.45	17.65	14.35
VFC320BM-BSS2 20.28 14.82 11.38 VFC325L-BSS2 27.69 22.95 16.66 VFC320BM-BSS3 17.94 13.11 10.06 VFC325L-BSS3 24.67 20.30 16.50 VFC320BM-BSS4 17.76 12.55 9.63 VFC325L-BSS4 23.60 19.42 15.79 VFC320CL 20.75 15.50 13.25 VFC325M-BSS1 62.54 50.00 39.11 VFC320CL-BSS1 68.48 51.15 3.73 VFC325M-BSS2 23.79 19.47 15.41 VFC320CL-BSS1 68.48 17.83 15.24 VFC325M-BSS3 21.05 17.23 13.63 VFC320CL-BSS4 22.83 17.05 14.58 VFC32SMQ 24.70 20.25 16.00 VFC320CH-BSS4 22.83 17.05 14.58 VFC32SMQ 24.70 20.25 16.00 VFC320CH-BSS1 60.23 42.90 35.48 VFC32VM 24.00 16.00 15.20 VFC320CH-BSS2 24.17 17.49 14.26 VFC32VM/838 36.00 24.75 27.25 VFC320CH-BSS4 <td>VFC3209M-BSS1</td> <td></td> <td>56.59</td> <td>39.44</td> <td>29.70</td> <td>VFC32SL-BSS1</td> <td></td> <td>70.79</td> <td>58.25</td> <td>47.36</td>	VFC3209M-BSS1		56.59	39.44	29.70	VFC32SL-BSS1		70.79	58.25	47.36
VFC320BH-BSS3 17.94 13.11 10.06 VFC320L-BSS3 24.67 20.30 16.50 VFC320CH 20.72 14.74 12.08 VFC32SL-BSS4 23.60 19.42 15.79 VFC320CL 20.72 14.74 12.08 VFC32SH-BSS 18.30 14.98 11.85 VFC320CL-BS 20.75 15.50 13.25 VFC32SH-BSS1 62.54 50.00 39.11 VFC320CL-BSS2 26.98 20.15 17.23 VFC32SH-BSS1 62.54 50.00 39.11 VFC320CL-BSS3 23.86 17.83 15.24 VFC32SH-BSS4 20.13 16.48 13.63 VFC320CL-BSS4 22.83 17.05 14.58 VFC32SM 24.60 11.00 10.45 VFC320CH-BSS1 60.23 42.90 35.48 VFC32UH 15.00 11.00 10.45 VFC320CH-BSS3 21.45 14.86 12.07 VFC32UH/883B 36.00 28.75 27.25 VFC320CH-BSS4 20.45 14.80 12.07 VFC32UH/883B 34.00 27.50 26.00 VFC320CH-BSS4	VEC320BM-BSS2		20.28	14.82	11.38	VFC32SL-BSS2		27.89	22.95	18.00
VFC320BH-BSS4 17.76 12.55 9.63 VFC32CL-BSS4 23.60 19.42 15.79 VFC320CG 20.72 14.74 12.08 VFC32SM-BSS 18.30 14.98 11.85 VFC320CL 20.75 15.50 13.25 VFC32SM-BSS1 62.54 50.00 39.11 VFC320CL-BS 20.75 15.50 13.25 VFC32SM-BSS1 62.54 50.00 39.11 VFC320CL-BSS1 68.48 51.15 43.73 VFC32SM-BSS1 21.05 17.23 15.41 VFC320CL-BSS3 23.86 17.83 15.24 VFC32SM-BSS3 21.05 17.23 16.48 13.04 VFC320CH-BSS3 23.86 17.45 10.97 VFC32SMQ 24.70 20.25 16.00 VFC320CH-BSS1 60.23 42.90 35.48 VFC32UM 24.00 16.00 15.20 VFC320CH-BSS3 21.38 15.47 12.62 VFC32UM/883B 36.00 28.75 27.25 VFC320CH-BSS3 21.38 15.47 12.62 VFC32WH/883B 30.00 24.00 22.75 <	VFC320BM-BSS3		17.94	13.11	10.06	VFC32SL-BSS3		24.67	20.30	16.50
VFC320CG 20.72 14.74 12.08 VFC32SM 18.30 14.98 11.85 VFC320CL 20.75 15.50 13.25 VFC32SM-BSS1 62.54 50.00 39.11 VFC320CL-BSS1 68.48 51.15 43.73 VFC32SM-BSS2 23.79 19.47 15.41 VFC320CL-BSS1 68.48 51.15 43.73 VFC32SM-BSS3 21.05 17.23 13.63 VFC320CL-BSS2 26.98 20.15 17.23 VFC32SM-BSS3 21.05 17.23 13.63 VFC320CL-BSS4 22.83 17.05 14.58 VFC32GW 24.70 20.25 16.00 VFC320CM-BSS1 60.23 42.90 35.48 VFC32WH 24.00 19.50 18.50 VFC320CM-BSS1 60.23 42.90 35.48 VFC32WH 24.00 19.50 18.50 VFC320CH-BSS3 21.38 15.47 12.62 VFC32WH/883B 36.00 28.75 27.25 VFC320CH-BSS3 21.38 15.47 12.62 VFC32WH/883B 34.00 27.16 23.05 VFC320CH-BSS4	VFC320BM-BSS4		17.76	12.55	9.63	VFC32SL-BSS4		23.60	19.42	15.79
VFC320CL 20.75 15.50 13.25 VFC32SM-BS 18.30 14.98 11.85 VFC320CL-BS 20.75 15.50 13.25 VFC32SM-BSS1 62.54 50.00 39.11 VFC320CL-BSS2 26.98 20.15 17.23 VFC32SM-BSS3 21.05 17.23 13.63 VFC320CL-BSS3 23.86 17.83 15.24 VFC32SM-BSS4 20.13 16.48 13.04 VFC320CL-BSS4 22.83 17.05 14.56 VFC32WM 15.00 11.00 10.45 VFC320CH-BSS4 22.83 17.05 14.56 VFC32WM 20.00 16.00 15.20 VFC320CH-BSS4 22.83 13.45 10.97 VFC32WM/83B 20.00 16.00 15.20 VFC320CH-BSS1 60.23 42.90 35.48 VFC32WM/83B 30.00 28.75 27.25 VFC320CH-BSS2 24.17 17.49 14.26 VFC32WM/83B 36.00 28.75 27.50 VFC320CH-BSS3 21.38 15.47 12.62<	VFC320CG	۰.	20.72	14.74	12.08	VFC32SM		18.30	14.98	11.85
VFC320CL-BS 20,75 15,50 13,25 VFC32SH-BSS1 62.54 50.00 39.11 VFC320CL-BSS1 66.48 51.15 43,73 VFC32SH-BSS2 23.79 19,47 15,41 VFC320CL-BSS3 23.66 17.73 VFC32SH-BSS3 21.05 17.23 13.63 VFC320CL-BSS4 22.83 17.05 14.58 VFC32SH-BSS4 20.13 16.48 13.04 VFC320CL-BSS4 22.83 17.05 14.58 VFC32UM 15.00 11.00 10.45 VFC320CH-BS 18.59 13.45 10.97 VFC32UM/833B 20.00 16.00 15.20 VFC320CH-BSS1 60.23 42.90 35.48 VFC32VM/833B 36.00 28.75 27.25 VFC320CH-BSS2 21.17 17.49 14.26 VFC32VM/833B 36.00 28.75 27.25 VFC320CH-BSS3 21.38 15.47 12.62 VFC32VM/833B 36.00 28.75 27.25 VFC320SU-BSS4 25.20 18.90 16.30	VFC320CL		20.75	15.50	13.25	VFC32SM-BS		18.30	14.98	11.85
VFC320CL-BSS1 68.48 51.15 43.73 VFC32SM-BSS2 23.79 19.47 15.41 VFC320CL-BSS2 26.98 20.15 17.23 VFC32SM-BSS3 21.05 17.23 13.63 VFC320CL-BSS3 23.86 17.83 15.24 VFC32SM-BSS4 20.13 16.48 13.04 VFC320CM 18.59 13.45 10.97 VFC32UM 21.00 16.00 15.20 VFC320CM-BSS1 60.23 42.90 35.48 VFC32UM/883B 20.00 16.00 15.20 VFC320CM-BSS2 24.17 17.49 12.62 VFC32UM/883B 30.00 24.00 22.75 VFC320CM-BSS4 20.45 14.80 12.07 VFC32UM/883B 34.00 27.50 26.00 VFC320SL-BSS1 83.16 62.37 53.73 VFC42BM 33.21 27.16 23.05 VFC320SL-BSS2 25.20 18.90 16.30 VFC42BM 33.21 27.00 23.05 VFC320SL-BSS2 25.26 18.90 16.3	VFC320CL-BS		20.75	15.50	13.25	VFC32SM-BSS1		62.54	50.00	39.11
VFC320CL-BSS2 26.98 20.15 17.23 VFC32SM-BSS3 21.05 17.23 13.63 VFC320CL-BSS3 23.86 17.83 15.24 VFC32SM-BSS4 20.13 16.48 13.04 VFC320CL-BSS4 22.83 17.05 14.58 VFC32CM 24.70 20.25 16.00 VFC320CM-BSS4 22.83 17.05 14.58 VFC32CM 24.70 20.25 16.00 VFC320CM-BS 18.59 13.45 10.97 VFC32UM/883B 20.00 16.00 15.20 VFC320CM-BSS1 60.23 42.90 35.48 VFC32VM 24.00 19.50 18.50 VFC320CM-BSS2 24.17 17.49 14.26 VFC32VM 24.00 28.75 27.25 VFC320CM-BSS4 20.45 14.80 12.07 VFC32MM/883B 36.00 28.75 27.50 VFC320LBS54 25.20 18.90 16.30 VFC42BM 30.21 27.16 23.05 VFC320SL-BSS1 83.16 62.37 53.79 VFC42BM 33.21 27.00 23.05 VFC320SL-BSS2	VFC320CL-BSS1		68.48	51.15	43.73	VFC32SM-BSS2		23.79	19.47	15.41
VFC320CL-BSS3 23.86 17.83 15.24 VFC32SM-BSS4 20.13 16.48 13.04 VFC320CL-BSS4 22.83 17.05 14.58 VFC32SMQ 24.70 20.25 16.00 VFC320CM 18.59 13.45 10.97 VFC32UM 15.00 11.00 10.45 VFC320CM-BSS 18.59 13.45 10.97 VFC32UM/883B 20.00 16.00 15.20 VFC320CM-BSS1 60.23 42.90 35.48 VFC32UM/883B 24.00 19.50 18.50 VFC320CM-BSS2 24.17 17.49 14.26 VFC32UM/883B 36.00 28.75 27.25 VFC320CM-BSS3 21.38 15.47 12.62 VFC32UM/883B 34.00 27.50 26.00 VFC320SL 25.20 18.90 16.30 VFC42BM 33.21 27.16 23.05 VFC320SL-BSS 25.20 18.90 16.30 VFC42BM 33.21 27.00 23.05 VFC320SL-BSS2 22.76 24.57 21.19 VFC42BM 33.21 27.00 23.05 VFC320SL-BSS2 23	VFC320CL-BSS2		26.98	20.15	17.23	VFC32SM-BSS3		21.05	17.23	13.63
VFC320CL-BSS4 22.83 17.05 14.58 VFC32SMQ 24.70 20.25 16.00 VFC320CM 18.59 13.45 10.97 VFC32UM 15.00 11.00 10.45 VFC320CM-BSS 18.59 13.45 10.97 VFC32UM 24.00 16.00 15.20 VFC320CM-BSS1 60.23 42.90 35.48 VFC32WM/83B 20.00 26.00 27.75 VFC320CM-BSS2 24.17 17.49 14.26 VFC32WM/83B 36.00 28.75 27.25 VFC320CM-BSS3 21.38 15.47 12.62 VFC32HM/83B 34.00 27.50 26.00 VFC320SL-BSS1 25.20 18.90 16.30 VFC42BM 33.21 27.16 23.05 VFC320SL-BSS1 83.16 62.37 53.79 VFC42BM 33.21 27.00 23.05 VFC320SL-BSS3 28.98 21.73 18.75 VFC52BP 23.91 18.74 16.49 VFC320SL-BSS3 28.98 21.73 18.75 <td< td=""><td>VFC320CL-BSS3</td><td></td><td>23.86</td><td>17.83</td><td>15.24</td><td>VFC32SM-BSS4</td><td></td><td>20.13</td><td>16.48</td><td>13.04</td></td<>	VFC320CL-BSS3		23.86	17.83	15.24	VFC32SM-BSS4		20.13	16.48	13.04
VFC320CM 18.59 13.45 10.97 VFC32UM 15.00 11.00 10.45 VFC320CM-BS 18.59 13.45 10.97 VFC32UM/883B + 20.00 16.00 15.20 VFC320CM-BSS1 60.23 42.90 35.48 VFC32VM 24.00 19.50 18.50 VFC320CM-BSS2 24.17 17.49 14.26 VFC32VM/883B + 36.00 28.75 27.25 VFC320CM-BSS3 21.38 15.47 12.62 VFC32VM/883B + 30.00 24.00 22.75 VFC320SL 25.20 18.90 16.30 VFC42BM 33.21 27.16 23.05 VFC320SL-BSS 25.20 18.90 16.30 VFC42BP 23.91 18.74 16.49 VFC320SL-BSS 25.20 18.90 16.30 VFC42BP 23.91 18.74 16.49 VFC320SL-BSS 25.20 18.90 16.30 VFC42BM 33.21 27.00 23.05 VFC320SL-BSS 25.20 18.90 16.30 VFC42BM 33.21 27.00 23.05	VFC320CL-BSS4		22.83	17.05	14.58	VFC32SMQ		24.70	20.25	16.00
VFC320CM-BS18.5913.4510.97VFC32UM/883B+20.0016.0015.20VFC320CM-BSS160.2342.9035.48VFC32VM24.0019.5018.50VFC320CM-BSS224.1717.4914.26VFC32VM/883B+36.0028.7527.25VFC320CM-BSS321.3815.4712.62VFC32VM/883B+34.0022.7526.00VFC320CM-BSS420.4514.8012.07VFC32WM/883B+34.0027.5026.00VFC320SL25.2018.9016.30VFC42BH33.2127.1623.05VFC320SL-BSS183.1662.3753.79VFC42BH33.2127.0023.05VFC320SL-BSS232.7624.5721.19VFC52BM33.2127.0023.05VFC320SL-BSS328.9821.7318.75VFC52BP23.9118.7416.49VFC320SM-BSS17.1220.7917.93VFC52BH33.2127.0023.05VFC320SM-BSS17.49154.1245.54VFC62BG17.8612.699.40VFC320SM-BSS17.49154.1245.54VFC62BL19.6514.4511.50VFC320SM-BSS17.49154.1245.54VFC62BL-BSS164.8547.6937.95VFC320SM-BSS126.6019.3816.18VFC62BL-BSS164.8547.6937.95VFC320SM-BSS126.6019.3816.18VFC62BL-BSS322.6016.6213.23 <td< td=""><td>VFC320CM</td><td></td><td>18.59</td><td>13.45</td><td>- 10.97</td><td>VFC32UM</td><td></td><td>15.00</td><td>11.00</td><td>10.45</td></td<>	VFC320CM		18.59	13.45	- 10.97	VFC32UM		15.00	11.00	10.45
VFC320CM-BSS160.2342.9035.48VFC32VM24.0019.5018.50VFC320CM-BSS224.1717.4914.26VFC32VM/883B+36.0028.7527.25VFC320CM-BSS321.3815.4712.62VFC32VM/883B+34.0022.7526.00VFC320CM-BSS420.4514.8012.07VFC32VM/883B+34.0027.5026.00VFC320SL25.2018.9016.30VFC42BM33.2127.1623.05VFC320SL-BS25.2018.9016.30VFC42BM33.2127.0023.05VFC320SL-BSS183.1662.3753.79VFC42SM40.3232.4025.88VFC320SL-BSS232.7624.5721.19VFC52BM33.2127.0023.05VFC320SL-BSS328.9821.7318.75VFC52BP23.9118.7416.49VFC320SL-BSS427.7220.7917.93VFC52BP23.9118.7416.49VFC320SM-BS23.1316.8514.07VFC62BL19.6514.4511.50VFC320SM-BSS174.9154.1245.54VFC62BL-BSS164.8547.6937.95VFC320SM-BSS230.0721.9118.29VFC62BL-BSS164.8547.6937.95VFC320SM-BSS326.6019.3816.18VFC62BL-BSS164.8547.6937.95VFC320SM-BSS326.6019.3816.18VFC62BL-BSS322.6016.6213.23VFC32BL-B	VFC320CM-BS		18.59	13.45	10.97	VFC32UM/883B	+	20.00	16.00	15.20
VFC320CM-BSS224.1717.4914.26VFC32VM/883B+36.0028.7527.25VFC320CM-BSS321.3815.4712.62VFC32WM30.0024.0022.75VFC320CM-BSS420.4514.8012.07VFC32WM/883B+34.0027.5026.00VFC320SL25.2018.9016.30VFC42BM33.2127.1623.05VFC320SL-BS25.2018.9016.30VFC42BP23.9118.7416.49VFC320SL-BSS183.1662.3753.79VFC42SM40.3232.4025.88VFC320SL-BSS232.7624.5721.19VFC52BM33.2127.0023.05VFC320SL-BSS328.9821.7318.75VFC52BP23.9118.7416.49VFC320SL-BSS427.7220.7917.93VFC52BP23.9118.7416.49VFC320SM-BS23.1316.8514.07VFC62BC17.8612.699.40VFC320SM-BS23.1316.8514.07VFC62BL19.6514.4511.50VFC320SM-BSS174.9154.1245.54VFC62BL-BSS164.8547.6937.95VFC320SM-BSS230.0721.9118.29VFC62BL-BSS322.6016.6213.23VFC320SM-BSS326.6019.3816.18VFC62BL-BSS322.6016.6213.23VFC320SM-BSS326.6019.3816.18VFC62BL-BSS322.6016.6213.23VFC32BL-BSS415.65<	VFC320CM-BSS1		60.23	42.90	35.48	VFC32VM		24.00	19.50	18.50
VFC320CM-BSS321.3815.4712.62VFC32WM30.0024.0022.75VFC32OCM-BSS420.4514.8012.07VFC32WM/883B+34.0027.5026.00VFC32OSL25.2018.9016.30VFC42BM33.2127.1623.05VFC32OSL-BS25.2018.9016.30VFC42BP23.9118.7416.49VFC32OSL-BSS183.1662.3753.79VFC42SM40.3232.4025.88VFC32OSL-BSS232.7624.6721.19VFC52BM33.2127.0023.05VFC32OSL-BSS328.9821.7318.75VFC52BP23.9118.7416.49VFC32OSL-BSS427.7220.7917.93VFC52BP23.9118.7416.49VFC32OSM-BSS423.1316.8514.07VFC62BG17.8612.699.40VFC32OSM-BS23.1316.8514.07VFC62BL19.6514.4511.50VFC32OSM-BSS174.9154.1245.54VFC62BL-BSS164.8547.6937.95VFC32OSM-BSS230.0721.9118.29VFC62BL-BSS164.8547.6937.95VFC32OSM-BSS326.6019.3816.18VFC62BL-BSS322.6016.6213.23VFC32BD8.455.55VFC62BL-BSS322.6016.6213.23VFC32BL-BSS415.6512.9510.45VFC62BM-BSS121.6215.9012.65VFC32BL-BSS151.6512.9510.45 <td>VFC320CM-BSS2</td> <td></td> <td>24.17</td> <td>17.49</td> <td>14.26</td> <td>VFC32VM/883B</td> <td>+</td> <td>36.00</td> <td>28.75</td> <td>27.25</td>	VFC320CM-BSS2		24.17	17.49	14.26	VFC32VM/883B	+	36.00	28.75	27.25
VFC320CM-BSS420.4514.8012.07VFC32WM/883B+34.0027.5026.00VFC32OSL25.2018.9016.30VFC42BM33.2127.1623.05VFC32OSL-BS25.2018.9016.30VFC42BP23.9118.7416.49VFC32OSL-BSS183.1662.3753.79VFC42SM40.3232.4025.88VFC32OSL-BSS232.7624.5721.19VFC52BM33.2127.0023.05VFC32OSL-BSS328.9821.7318.75VFC52BP23.9118.7416.49VFC32OSL-BSS427.7220.7917.93VFC52SM40.3232.4025.88VFC32OSM-BS23.1316.8514.07VFC62BG17.8612.699.40VFC32OSM-BSS174.9154.1245.54VFC62BL19.6514.4511.50VFC32OSM-BSS230.0721.9118.29VFC62BL-BSS164.8547.6937.95VFC32OSM-BSS326.6019.3816.18VFC62BL-BSS225.5518.7914.95VFC32OSM-BSS326.6019.3816.18VFC62BL-BSS322.6016.6213.23VFC32BL15.6512.9510.45VFC62BL-BSS322.6016.6213.23VFC32BL-BSS115.6512.9510.45VFC62BM-BS17.4712.319.19VFC32BL-BSS151.6542.7334.49VFC62BM-BSS156.5939.4429.70VFC32BL-BSS220.3516.84<	VFC320CM-BSS3		21.38	15.47	12.62	VFC32WM		30.00	24.00	22.75
VFC320SL25.2018.9016.30VFC42BM33.2127.1623.05VFC320SL-BS25.2018.9016.30VFC42BP23.9118.7416.49VFC320SL-BSS183.1662.3753.79VFC42SM40.3232.4025.88VFC320SL-BSS232.7624.5721.19VFC52BM33.2127.0023.05VFC320SL-BSS328.9821.7318.75VFC52BP23.9118.7416.49VFC320SL-BSS427.7220.7917.93VFC52BP23.9118.7416.49VFC320SM-BS23.1316.8514.07VFC62BG17.8612.699.40VFC320SM-BSS174.9154.1245.54VFC62BL19.6514.4511.50VFC320SM-BSS230.0721.9118.29VFC62BL-BSS164.8547.6937.95VFC320SM-BSS326.6019.3816.18VFC62BL-BSS164.8547.6937.95VFC320SM-BSS425.4418.5415.48VFC62BL-BSS322.6016.6213.23VFC320SM-BSS425.4418.5415.48VFC62BL-BSS322.6016.6213.23VFC320SM-BSS425.6512.9510.45VFC62BL-BSS322.6016.6213.23VFC32BL-BSS115.6512.9510.45VFC62BM-BSS17.4712.319.19VFC32BL-BSS151.6542.7334.49VFC62BM-BSS156.5939.4429.70VFC32BL-BSS220.3516.84 <td>VFC320CM-BSS4</td> <td></td> <td>20.45</td> <td>14.80</td> <td>12.07</td> <td>VFC32WM/883B</td> <td>+</td> <td>34.00</td> <td>27.50</td> <td>26.00</td>	VFC320CM-BSS4		20.45	14.80	12.07	VFC32WM/883B	+	34.00	27.50	26.00
VFC320SL-BS25.2018.9016.30VFC42BP23.9118.7416.49VFC320SL-BSS183.1662.3753.79VFC42SM40.3232.4025.88VFC320SL-BSS232.7624.5721.19VFC52BM33.2127.0023.05VFC320SL-BSS328.9821.7318.75VFC52BP23.9118.7416.49VFC320SL-BSS427.7220.7917.93VFC52BP23.9118.7416.49VFC320SM-BS23.1316.8514.07VFC52B40.3232.4025.88VFC320SM-BS23.1316.8514.07VFC62BG17.8612.699.40VFC320SM-BSS174.9154.1245.54VFC62BL19.6514.4511.50VFC320SM-BSS230.0721.9118.29VFC62BL-BSS164.8547.6937.95VFC320SM-BSS326.6019.3816.18VFC62BL-BSS225.5518.7914.95VFC320SM-BSS326.6019.3816.18VFC62BL-BSS322.6016.6213.23VFC32BL15.6512.9510.45VFC62BH-BSS322.6016.6213.23VFC32BL-BSS151.6512.9510.45VFC62BM-BSS17.4712.319.19VFC32BL-BSS151.6542.7334.49VFC62BM-BSS156.5939.4429.70VFC32BL-BSS220.3516.8413.59VFC62BM-BSS222.7116.0011.95	VFC320SL		25.20	18.90	16.30	VFC42BM		33.21	27.16	23.05
VFC320SL-BSS1 83.16 62.37 53.79 VFC42SM 40.32 32.40 25.88 VFC320SL-BSS2 32.76 24.57 21.19 VFC52BM 33.21 27.00 23.05 VFC320SL-BSS3 28.98 21.73 18.75 VFC52BP 23.91 18.74 16.49 VFC320SL-BSS4 27.72 20.79 17.93 VFC52SM 40.32 32.40 25.88 VFC320SM-BS 23.13 16.85 14.07 VFC62BG 17.86 12.69 9.40 VFC320SM-BSS 23.13 16.85 14.07 VFC62BL 19.65 14.45 11.50 VFC320SM-BSS1 74.91 54.12 45.54 VFC62BL-BSS1 64.85 47.69 37.95 VFC320SM-BSS3 26.60 19.38 16.18 VFC62BL-BSS2 25.55 18.79 14.95 VFC320SM-BSS4 25.44 18.54 15.48 VFC62BL-BSS3 22.60 16.62 13.23 VFC320SM-BSS4 25.44 18.55 VFC62BL-BSS3	VFC320SL-BS		25.20	18.90	16.30	VFC42BP		23.91	18.74	16.49
VFC320SL-BSS232.7624.5721.19VFC52BM33.2127.0023.05VFC320SL-BSS328.9821.7318.75VFC52BP23.9118.7416.49VFC320SL-BSS427.7220.7917.93VFC52SM40.3232.4025.88VFC320SM23.1316.8514.07VFC62BG17.8612.699.40VFC320SM-BS23.1316.8514.07VFC62BL19.6514.4511.50VFC320SM-BSS174.9154.1245.54VFC62BL-BSS19.6514.4511.50VFC320SM-BSS230.0721.9118.29VFC62BL-BSS164.8547.6937.95VFC320SM-BSS326.6019.3816.18VFC62BL-BSS225.5518.7914.95VFC320SM-BSS425.4418.5415.48VFC62BL-BSS322.6016.6213.23VFC32BL15.6512.9510.45VFC62BM17.4712.319.19VFC32BL-BSS151.6542.7334.49VFC62BM-BSS156.5939.4429.70VFC32BL-BSS220.3516.8413.59VFC62BM-BSS222.7116.0011.95	VFC320SL-BSS1		83.16	62.37	53.79	VFC42SM		40.32	32.40	25.88
VFC320SL-BSS328.9821.7318.75VFC52BP23.9118.7416.49VFC320SL-BSS427.7220.7917.93VFC52SM40.3232.4025.88VFC320SM23.1316.8514.07VFC62BG17.8612.699.40VFC320SM-BS23.1316.8514.07VFC62BL19.6514.4511.50VFC320SM-BSS174.9154.1245.54VFC62BL-BSS19.6514.4511.50VFC320SM-BSS230.0721.9118.29VFC62BL-BSS164.8547.6937.95VFC320SM-BSS326.6019.3816.18VFC62BL-BSS225.5518.7914.95VFC320SM-BSS425.4418.5415.48VFC62BL-BSS322.6016.6213.23VFC32BL15.6512.9510.45VFC62BM17.4712.319.19VFC32BL-BSS151.6512.9510.45VFC62BM-BSS17.4712.319.19VFC32BL-BSS151.6542.7334.49VFC62BM-BSS156.5939.4429.70VFC32BL-BSS220.3516.8413.59VFC62BM-BSS222.7116.0011.95	VFC320SL-BSS2		32.76	24.57	21.19	VFC52BM		33.21	27.00	23.05
VFC320SL-BSS427.7220.7917.93VFC52SM40.3232.4025.88VFC320SM23.1316.8514.07VFC62BG17.8612.699.40VFC320SM-BS23.1316.8514.07VFC62BL19.6514.4511.50VFC320SM-BSS174.9154.1245.54VFC62BL-BS19.6514.4511.50VFC320SM-BSS230.0721.9118.29VFC62BL-BSS164.8547.6937.95VFC320SM-BSS326.6019.3816.18VFC62BL-BSS225.5518.7914.95VFC320SM-BSS425.4418.5415.48VFC62BL-BSS322.6016.6213.23VFC32BL15.6512.9510.45VFC62BH-BSS421.6215.9012.65VFC32BL-BSS115.6512.9510.45VFC62BM-BSS17.4712.319.19VFC32BL-BSS151.6542.7334.49VFC62BM-BSS156.5939.4429.70VFC32BL-BSS220.3516.8413.59VFC62BM-BSS222.7116.0011.95	VFC320SL-BSS3		28.98	21.73	18.75	VFC52BP	,	23.91	. 18.74	16.49
VFC320SM 23.13 16.85 14.07 VFC62BG 17.86 12.69 9.40 VFC320SM-BS 23.13 16.85 14.07 VFC62BL 19.65 14.45 11.50 VFC320SM-BSS1 74.91 54.12 45.54 VFC62BL-BS 19.65 14.45 11.50 VFC320SM-BSS2 30.07 21.91 18.29 VFC62BL-BSS1 64.85 47.69 37.95 VFC320SM-BSS3 26.60 19.38 16.18 VFC62BL-BSS2 25.55 18.79 14.95 VFC320SM-BSS4 25.44 18.54 15.48 VFC62BL-BSS3 22.60 16.62 13.23 VFC32BD 8.45 5.55 VFC62BL-BSS4 21.62 15.90 12.65 VFC32BL-BS 15.65 12.95 10.45 VFC62BM-BSS4 21.62 15.90 12.65 VFC32BL-BS 15.65 12.95 10.45 VFC62BM-BSS1 7.47 12.31 9.19 VFC32BL-BSS1 51.65 42.73 34.49 VFC62BM-BSS1	VFC320SL-BSS4		27.72	20.79	17.93	VFC52SM		40.32	32.40	25.88
VFC320SM-BS23.1316.8514.07VFC62BL19.6514.4511.50VFC320SM-BSS174.9154.1245.54VFC62BL-BS19.6514.4511.50VFC320SM-BSS230.0721.9118.29VFC62BL-BSS164.8547.6937.95VFC320SM-BSS326.6019.3816.18VFC62BL-BSS225.5518.7914.95VFC320SM-BSS425.4418.5415.48VFC62BL-BSS322.6016.6213.23VFC32BL8.455.55VFC62BL-BSS421.6215.9012.65VFC32BL-BS15.6512.9510.45VFC62BM17.4712.319.19VFC32BL-BSS151.6542.7334.49VFC62BM-BSS156.5939.4429.70VFC32BL-BSS220.3516.6413.59VFC62BM-BSS222.7116.0011.95	VFC320SM		23.13	16.85	14.07	VFC62BG		17.86	12.69	9.40
VFC320SM-BSS174.9154.1245.54VFC62BL-BS19.6514.4511.50VFC320SM-BSS230.0721.9118.29VFC62BL-BSS164.8547.6937.95VFC320SM-BSS326.6019.3816.18VFC62BL-BSS225.5518.7914.95VFC320SM-BSS425.4418.5415.48VFC62BL-BSS322.6016.6213.23VFC32BD8.455.55VFC62BL-BSS421.6215.9012.65VFC32BL-BS15.6512.9510.45VFC62BM17.4712.319.19VFC32BL-BSS151.6542.7334.49VFC62BM-BSS156.5939.4429.70VFC32BL-BSS220.3516.8413.59VFC62BM-BSS222.7116.0011.95	VFC320SM-BS		23.13	16.85	14.07	VFC62BL		19.65	14.45	11.50
VFC320SM-BSS2 30.07 21.91 18.29 VFC62BL-BSS1 64.85 47.69 37.95 VFC320SM-BSS3 26.60 19.38 16.18 VFC62BL-BSS2 25.55 18.79 14.95 VFC320SM-BSS4 25.44 18.54 15.48 VFC62BL-BSS3 22.60 16.62 13.23 VFC32BD 8.45 5.55 VFC62BL-BSS4 21.62 15.90 12.65 VFC32BL 15.65 12.95 10.45 VFC62BM 17.47 12.31 9.19 VFC32BL-BSS 15.65 12.95 10.45 VFC62BM-BS 17.47 12.31 9.19 VFC32BL-BSS1 51.65 42.73 34.49 VFC62BM-BSS1 56.59 39.44 29.70 VFC32BL-BSS2 20.35 16.84 13.59 VFC62BM-BSS2 22.71 16.00 11.95	VFC320SM-BSS1		74.91	54.12	45.54	VFC62BL-BS		19.65	14.45	11.50
VFC320SM-BSS3 26.60 19.38 16.18 VFC62BL-BSS2 25.55 18.79 14.95 VFC320SM-BSS4 25.44 18.54 15.48 VFC62BL-BSS3 22.60 16.62 13.23 VFC32BD 8.45 5.55 VFC62BL-BSS4 21.62 15.90 12.65 VFC32BL 15.65 12.95 10.45 VFC62BM 17.47 12.31 9.19 VFC32BL-BSS 15.65 12.95 10.45 VFC62BM-BS 17.47 12.31 9.19 VFC32BL-BSS1 51.65 42.73 34.49 VFC62BM-BSS1 56.59 39.44 29.70 VFC32BL-BSS2 20.35 16.84 13.59 VFC62BM-BSS2 22.71 16.00 11.95	VFC320SM-BSS2		30.07	21.91	18.29	VFC62BL-BSS1		64.85	47.69	37.95
VFC320SM-BSS4 25.44 18.54 15.48 VFC62BL-BSS3 22.60 16.62 13.23 VFC32BD 8.45 5.55 VFC62BL-BSS4 21.62 15.90 12.65 VFC32BL 15.65 12.95 10.45 VFC62BM 17.47 12.31 9.19 VFC32BL-BSS 15.65 12.95 10.45 VFC62BM-BS 17.47 12.31 9.19 VFC32BL-BSS1 51.65 42.73 34.49 VFC62BM-BSS1 56.59 39.44 29.70 VFC32BL-BSS2 20.35 16.84 13.59 VFC62BM-BSS2 22.71 16.00 11.95	VFC320SM-BSS3		26.60	19.38	16.18	VFC62BL-BSS2		25.55	18.79	14.95
VFC32BD 8.45 5.55 VFC62BL-BSS4 21.62 15.90 12.65 VFC32BL 15.65 12.95 10.45 VFC62BM 17.47 12.31 9.19 VFC32BL-BSS 15.65 12.95 10.45 VFC62BM-BS 17.47 12.31 9.19 VFC32BL-BSS1 51.65 42.73 34.49 VFC62BM-BSS1 56.59 39.44 29.70 VFC32BL-BSS2 20.35 16.84 13.59 VFC62BM-BSS2 22.71 16.00 11.95	VFC320SM-BSS4		25.44	18.54	15.48	VFC62BL-BSS3		22.60	16.62	13.23
VFC32BL 15.65 12.95 10.45 VFC62BM 17.47 12.31 9.19 VFC32BL-BS 15.65 12.95 10.45 VFC62BM-BS 17.47 12.31 9.19 VFC32BL-BSS1 51.65 42.73 34.49 VFC62BM-BSS1 56.59 39.44 29.70 VFC32BL-BSS2 20.35 16.84 13.59 VFC62BM-BSS2 22.71 16.00 11.95	VFC32BD			8.45	5.55	VFC62BL-BSS4		21.62	15.90	12.65
VFC32BL-BS 15.65 12.95 10.45 VFC62BM-BS 17.47 12.31 9.19 VFC32BL-BSS1 51.65 42.73 34.49 VFC62BM-BSS1 56.59 39.44 29.70 VFC32BL-BSS2 20.35 16.84 13.59 VFC62BM-BSS2 22.71 16.00 11.95	VFC32BL		15.65	12.95	10.45	VFC62BM		17.47	12.31	9.19
VFC32BL-BSS1 51.65 42.73 34.49 VFC62BM-BSS1 56.59 39.44 29.70 VFC32BL-BSS2 20.35 16.84 13.59 VFC62BM-BSS2 22.71 16.00 11.95	VFC32BL-BS		15.65	12.95	10.45	VFC62BM-BS		17.47	12.31	9.19
VFC32BL-BSS2 20.35 16.84 13.59 VFC62BM-BSS2 22.71 16.00 11.95	VFC32BL-BSS1		51.65	42.73	34.49	VFC62BM-BSS1		56.59	39.44	29.70
	VFC32BL-BSS2		20.35	16.84	13.59	VFC62BM-BSS2		22.71	16.00	11.95

CUSTOMER PRICE LIST-COMPONENT PRODUCTS

Prices in U.S. dollars

F.O.B. Tucson, Arizona Quantity discounts available.

Effective June 1, 1987

MODEL	FOOT NOTE	1-24	25-99	100-249	MODEL	FOOT NOTE	1-24	25-99	100-249
VFC62BM-BSS3		20.09	14.16	10.57	VFC62SM-BSS2		32.24	22.75	19.18
VFC62BM-BSS4		19.22	13.54	10.11	VFC62SM-BSS3		28.52	20.13	16.96
VFC62CG		22.20	15.30	12.65	VFC62SM-BSS4		27.28	19.25	16.23
VFC62CL		20.75	15.50	13.25	XTR100AM		42.56	38.50	30.40
VFC62CL-BS		20.75	15.50	13.25	XTR100AP		33.60	30.02	25.04
VFC62CL-BSS1		68.48	51.15	43.73	XTR100BM	1	51.52	46.82	37.75
VFC62CL-BSS2		26.98	20.15	17.23	XTR100BP		40.32	36.67	30.71
VFC62CL-BSS3		23.86	17.83	15.24	XTR101AD			7.30	5.50
VFC62CL-BSS4		22.83	17.05	14.58	XTR101AG		11.75	9.75	8.25
VFC62CM		19.95	13.95	11.45	XTR101AL		14.25	12.25	10.75
VFC62CM-BS		19.95	13.95	11.45	XTR101AP		8.50	7.05	5.95
VFC62CM-BSS1		60.23	42.90	35.48	XTR101AU		8.95	7.40	6.25
VFC62CM-BSS2		25.94	18.14	14.89	XTR101BG		17.35	14.45	12.25
VFC62CM-BSS3		22.94	16.04	13.17	XTR101BL		19.85	16.95	14.75
VFC62CM-BSS4		21.95	15.35	12.60	XTR101SL		25.05	21.30	18.45
VFC62SL		25.20	18.90	16.30	XTR110AD			7.45	4.95
VFC62SL-BS		25.20	18.90	16.30	XTR110AG		10.85	8.75	7.45
VFC62SL-BSS1		83.16	62.37	53.79	XTR110AL		14.25	11.65	10.15
VFC62SL-BSS2		32.76	24.57	21.19	XTR110BG		16.25	13.10	11.10
VFC62SL-BSS3		28.98	21.73	18.75	XTR110BL		20.05	16.15	13.95
VFC62SL-BSS4		27.72	20.79	17.93	XTR110KP		7.45	5.95	4.95
VFC62SM		24.80	17.50	14.75	XTR110KU		8.40	6.55	5.40
VFC62SM-BS		24.80	17.50	14.75	XTR110SL		25.30	20.25	17.40
VFC62SM-BSS1		74.91	54.12	45.54					

A) Not necessarily pin or spec compatible.

B) Expected date of last order 6/30/88.

C) ADC600K pricing: 1-4 \$1995; 5-9 \$1895; 10-24 \$1795; ADC600B; 1-4 \$2790; 5-9 \$2650; 10-24 \$2510.

D) SHC600BH pricing: 1-4 \$329; 5-9 \$321; 10-24 \$314.

E) 25 piece minimum.

F) Minimum order is 10 pieces.

G) Connector supplied with each unit.

H) These products slated to be discontinued June 30, 1987.

I) Prices effective upon introduction.

J) Consult factory.

K) /G level I screening add 25% to pricing above; /T level II screening add 45% to pricing indicated above.

L) Eurocard evaluation PCB part #PC862/863-1 \$16.00 each.

M) 68 pin LCC socket (Note N) part #MC0068-1 \$14.00.

N) Manufacturer and part # for this socket is "Robinson Nugent" part #ICC-503 68-2-G (It is a U.S. part).

O) ADC80KD must be ordered in multiples of 36.

†Qualification reports \$100 each.

Prices subject to change without notice. Minimum order \$75.

©1987 Burr-Brown Corp. MKT-173B Printed in U.S.A. June, 1987

