A Cryptographic File System for Unix

Matt Blaze

AT&T Bell Laboratories
101 Crawfords Corner Road, Room 4G-634
Holmdel, NJ 07733

mab@research.att.com

Abstract algorithms (such as the Data Encryption Standard (DES)[5] and
Although cryptographic techniqueseaglaying an inceas- the more recent IDEA cipher[4]) are W|dely behevechsm‘ntly
ingly important ple in modern computing system securiser strong to render encrypted data unavailable to virtually any

level tools for encrypting file data erumbersome and suffer ~adversary who cannot supply the correct. keipwever routine
from a number of inhent vulnerabilities. The Cryptographic ~ USe of these algorithms to protect file data is uncommon in cur
File System (CFS) pushes encryption services into the file systefi¢Nt systems.This is partly because file encryption tools, to the
itself. CFSsupports secerdorage at the system level tugh a extent they are available at all, are often poorly integratefi, dif
standad Unix file system interface to encrypted filegsers ~ Ccult to use, and vulnerable to non-cryptoanalytic system |evel
associate a cryptographic key with theediories they wish to ~ attacks. V& telieve that file encryption is better handled by the
protect. Filesin these diectories (as well as their pathname file System itself. This paper investigates the implications of
components) @& transpaently encrypted and decrypted with the CryPtographic protection as a basic feature of the file system
specified key without further user intervention; cleartext is neverinterface.

stored on a disk or sent to @mote file serverCFS can use any

available file system for its underlying storage without modifica- 1-1- UserLevel Cryptography Is Cumbersome

tion, including emote file servers such as NFSystem manage- The simplest approach for file encryption is through a tool,
ment functions, such as file backup, work in a normal mannersuch as the Unigrypt program, that enciphers (or deciphers) a
and without knowledge of the key file or data stream with a specified kegncryption and decryp-

This paper describes the design and implementation oftion are under the userdirect control. Depending on the partic-
CFS under Unix. Encryption techniques for file system-level ular software, the program may or may not automatically delete
encryption ae described, and general issues of cryptographic the cleartext when encrypting, and such programs can usually

system interfaces to suppodutine secte mmputing ae ds- also be used as cryptographic "filters" in a command pipeline.
cussed. Another approach is integrated encryption in application

software, where each program that is to manipulate sensitive data
1. Introduction has built-in cryptographic facilitiesFor example, a text editor

Data security in modern distributed computing systems is acould ask for a key when a file is opened and automatically
difficult problem. Network connections and remote file system €Ncrypt and decrypt the fiethta as they are written and read.
services, while convenient, often make it possible for an intruderAll applications that are to operate on the same data must, of
to gain access to sensitive data by compromising only a singl€ourse, include the same encryption engiAa.encryption filter
component of a lge system.Because of the ditulty of reli- such ascrypt , might also be provided to allow data to be
ably protecting information, sensitive files are often not stored oniMported into and exported out of other software.
networked computers, making access to them by authorized users Unfortunately neither approach is entirely satisfactory in
inconvenient and putting them out of the reach of useful systenterms of security generality or convenience. Theformer
services such as backufOf course, dfline backups are them- approach, while allowing great flexibility in its application,
selves a security risk, since they make ificlift to destroy all invites mistakes; the user could inadvertently fail to encrypt a
copies of confidential data when they are no longer needied.) file, leaving it in the clearmr could forget to delete the cleartext
effect, the (often well founded) fear that computer data are notversion after encryptionThe manual nature of the encryption
terribly private has led to a situation where conventional wisdomand the need to supply the key several times whenever a file is
warns us not to entrust our most important information to ourused make encryption too cumbersome for all but the most sensi-
most modern computers. tive of files. More seriously even when used properlynanual

Cryptographic techniques fef a promising approach for ~€ncryption programs open a window of vulnerability while the
protecting files against unauthorized acces®hen properly file is in clear form.Itis almost impossible to avoid occasionally

implemented and appropriately applied, modern cipher storing cleartext on the disk and, in the case of remote file
servers, sending it over the networBome applications simply

This is a pre-print of a paper to be presented at the First ACM expect to be able to read and write ordinary files.
Conference on Communications and Computing Secufayfax, In the application-based approach, each program must have
VA, November 3-5, 1993. built-in  encryption functionality Although encryption takes

place automaticallythe user still must supply a key to each appli-
cation, typically when it is invoked or when a file is first opened.
Software without encryption capability cannot operate on secure



data without the use of a separate encryption program, making iapproaches may not be adequate for the protection of data in
hard to avoid all the problems outlined in the previous paragraphmodern distributed systemsn particular even though cleartext
Furthermore, rather than being confined to a single programmay never be stored on a disk or sent "over the wire", sensitive
encryption is spread among multiple applications, each of whichdata can be leaked if the file server itself is compromiSed

must be trusted to interoperate securely and correctly with thefile server must maintain, at some point, the keys used to enci-
others. Asingle poorly designed component can introduce a sig-pher both the disk and the networkven if the server can be
nificant and dificult to detect window of vulnerability (For completely trusted, direct media encryption on top of network
example, some versions of the Unix editor can encrypt files  encryption has a number of shortcomings from the point of view

but still leave temporary data in the clga€hanginghe encryp- of efficient distributed system desigrObserve that each file
tion algorithm entails modification of every program that uses it, access requires two cryptographic operations by the senar
creating many opportunities for implementation errdrinally, for the network and once for the disk, even though the server
multiple copies of usdevel cryptographic code can introduce a itself never makes use of cleartext daguch a design violates
significant performance penalty the principle that work should be shifted from the (shared, heav-
ily loaded) file server to the (unshared, lightly loaded) client
1.2. System-LeveCryptography Is Often Insufficient machine whenever possible[1Even if the cryptographic opera-
One way to avoid many of the pitfalls of udevel encryp- tions are themselves implemented in hardware, additional server
tion is to make cryptographic services a basic part of the underlySoftware complexity is still required to support them.
ing system.In designing such a system, it is important to identify Several commercial and research systems incorporate cryp-

exactly what is to be trusted with cleartext and what requirestographic techniques for protecting file data against various kinds
cryptographic protectionIn other words, we must understand of attack. In the personal computer (e.g., MS-DOS, Macintosh)
what components of the system are vulnerable to compromise. world, there are file encryption systems that can create an
In general, the user has little choice but to teashecom- "encrypted area” on a diskchese packages generally require the
ponents of the system, since the whole point of storing data on &réallocation of storage space to a given, keg often support
computer is to perform various operations on the clearteet: ~ ONly @ particular kind of storage media (such as a local hard

ally, howevey required trust should be limited to those parts of a diSk). Encryptediles typically appear outside the system as a
system that are under the usedirect control. single lage file and therefore cannot be readily managed by con-
i . . . . ventional administration tools or moved to arbitrary storage

For files, we are usually interested in protecting the physi- je\ices  Inlargerscale systems, cryptographic techniques are
qal m_edla on which sensitive da_ta are _StOI’éUlS mclu_des on- even less widely used, although a few systems do use encryption
line disks as well as backup copies (which may persist long aftek, nrotecting certain vulnerable interfaceShe Truffles sys-

Lhe og-llnetver5|o_rt1s_ ha\;te beeln d‘zletqdﬁ'a{'buw? flltetiervert %em[?], for example, uses a combination of cryptographic authen-
ased systems, 1t IS often also desirable 10 protect the networeation angd secret-key encryption to protect network access to

Py o ! 9videly distributed shared filesThe files themselves, howeyer
very easy for an eavesdropper to monitBinally, it is possible are stored at the server in clear form.

that the user may not trust the file server itself, especially when it . . ) )
In the following sections, we describe the alternative

is physically or administratively remote. h taken by the Grvnt hic File Svet (CRSS
) ) . approach taken by the Cryptographic File System
Disk Phys'cﬁ" media can be prptﬁcted b3|/ ;Fec'a.“ﬁed hgr%"(‘j’aaepushes file encryption entirely into the client file system interface,
sk controllers ‘are commercially available with embedded 5, therefore does not gif from many of the diiculties inher

encryption hardware that can be used to encipher entire disks Of,.; : : ) :
individual file blocks with a specified keyOnce the key is pro- téigtnln usedevel and disk and network based system-level encryp

vided to the controller hardware, encryption is completely trans-
parent. Thisapproach has a number of disadvantages for general,
use, however The granularity of encryption keys must be com- y : ) i
patible with the hardware; often, the entire disk must be thought . CFS investigates the question of where in a system respon-
of as a single protected entityt is dfficult to share resources SiPility for file encryption properly belongsAs discussed in the
among users who are not willing to trust one another with thePrevious section, if encryption is performed at too low a level, we
same key Obviously this approach is only applicable when the introduce vulnerability by requiring trust in components that may
required hardware is availabl&ackups remain a di€ult prob- be far removed from the usercontrol. Onthe other hand, if
lem. If the backups are taken of the ramdecrypted disk, it ~ €ncryption is too close to the usée high degree of human
may be dificult to restore files reliably should the disk controller intéraction required invites errors as well as the perception that
hardware become unavailable, even when the keys are kribwn. Cryptographic protection is not worth the trouble for practical,
the backup is taken of the cleartext data the backup itself willday-to-day useCFS is designed on the principle that the trusted
require separate cryptographic protectidfinally, this approach ~ components of a system should encrypt immediately before send-
does not protect data going into and out of the disk controllerind data to untrusted components.
itself, and therefore may not be fcient for protecting data in )
remote file servers. 2.1. DesigrGoals

Network connections between client machines and file CFS occupies something of a middle ground between low-
servers can be protected with end-to-end encryption and cryptol€vel and usetevel cryptography It aims to protect exactly those
graphic authentication.Again, specialized hardware may be aSPects of file storage that are vulnerable to attack in a way that is
employed for this purpose, depending on the particular networkonvenient enough to use routinely particular we ae guided

CFS:Cryptographic Services in the File System

involved, or it may be implemented in softwarBot all net- by the following specific goals:

works support encryption, howeyend among those that do, not Rational key managementCryptographic systems restrict

all system vendors supply working implementations of encryp- access to sensitive information through knowledge of the

tion as a standard product. keys used to encrypt the dat@learly, to be o any use at
Even when the various problems with media and network all, a system must have some way of obtaining the key

level encryption are ignored, the combination of the two from the user But this need not be intrusive; encryption

keys should not have to be supplied more than once per



session. Onca key has been entered and authenticated, ¢
the user should not be asked to supply it again on subse-
quent operations that can be reliably associated with it
(e.g., originating from the same keyboard)f course,
there should also be some way to manually destroy or
remove from the system a supplied key when it is not in
active use.

Transparent access semanticEncrypted files should
behave no dférently from other files, except in that they
are useless without the kekgncrypted files should support
the same access methods available on the underlying stor
age systemAll system calls should work normallgnd it
should be possible to compile and execute in a completely
encrypted environment.

Transparent performanceAlthough cryptographic algo-
rithms are often somewhat computationally intensive, the

Limited trust. In general, the user should be required to
trust only those components under his or her direct control
and whose integrity can be independently verifidtl.
should not, for example, be necessarily to trust the file
servers from which storage services are obtairigds is
especially important in lge-scale environments where
administrative control is spread among several entities.

Compatibility with future technology Several emeging
technologies have potential applicability for protecting
data. Inparticulay keys could be contained in or managed
by "smart cards" that would remain in the physical posses-
sion of authorized usersAn encryption system should
support, but not require, novel hardware of this sort.

2.2. CFSFunctionality and User Interface

An important goal of CFS is to present the user with a

performance penalty associated with encrypted files shouldsecure file service that works in a seamless maniiout any

not be so high that it discourages their ube particular

notion that encrypted files are somehow "special”, and without

interactive response time should not be noticeably the need to type in the same key several times in a single session.

degraded.
Protection of file contentsClearly, the data in files should

Most interaction with CFS is through standard file system calls,
with no prominent distinction between files that happen to be

be protected, as should structural data related to a file’ Under CFS and those that are not.

contents. Foexample, it should not be possible to deter

CFS provides a transparent Unix file system interface to

mine that a particular sequence of bytes occurs severatlirectory hierarchies that are automatically encrypted with user

times within a file, or how two encrypted filesfdif

Protection of sensitive meta-dat&onsiderable informa-
tion can often be derived from a file systemgructural
data; these should be protected to the extent posdible.

supplied keys.Users issue a simple command to "attach" a cryp-
tographic key to a directaryAttached directories are then avail-
able to the user with all the usual system calls and tools, but the
files are automatically encrypted as they are written and

particular file names should not be discernible without the decrypted as they are realo modifications of the file systems
key. on which the encrypted files are stored are requiFglé. system

Protection of network connectionsDistributed file sys-
tems make the network an attractivegarfor obtaining
sensitive file data; no information that is encrypted in the
file system itself should be discernible by observation of
network trafic.

Natural key granularity The grouping of what is protected
under a particular key should mirror the structural con-
structs presented to the user by the underlying system.

should be easy to protect related files under the same keya

and it should be easy to create new keys for other files
The Unix directory structure is a flexible, natural way to
group files.

Compatibility with underlying system serviceEncrypted

machine, typically mounted ofcrypt,
access their encrypted file$he attach command creates entries
in CFS (which appear ifcrypt
keys with directories elsewhere in the system name sples

re stored in encrypted form and with encrypted path names in

‘the associated standard directories, although they appear to the
user who issued the attach command in clear form under

[crypt
accessible file system, including remote file servers such as Sun

services such as backup, restore, usaage accounting, and archival
work normally on encrypted files and directories without the key
CFS ensures that cleartext file contents and name data are never
stored on a disk or transmitted over a network.

CFS presents a "virtual" file system on the clent’
through which users

) that associate cryptographic

. The underlying encrypted directories can reside on any

files and directories should be stored and managed in theNFS[8] and AFS[1].No space needs to be preallocated to CFS

same manner as other filem particular administrators

directories. Usersontrol CFS through a small suite of tools that

should be able to backup and restore individual encryptedcreate, attach, detach, and otherwise administer encrypted direc-
files without the use of special tools and without knowing tories.

the key In general, untrusted parts of the system should
not require modification.

Each directory is protected by set of cryptographic keys.

These keys can be supplied by user entry via the keybaaifd or

_Portability. The encryption system should exploit existing hardware is available, through removable "smart cards" con-
interfaces wherever possible and should not rely onnected to the client computeWhen entered from the keyboard,

unusual or special-purpose system featufasithermore,

keys take the form of arbitrary-length "passphrases” which are

encrypted files should be portable between implementa-used to generate the set of internal cryptographic keys used by
tions; files should be usable wherever the key is supplied. CFSs encryption routines. Passphrases must be of faiént

Scale. Theencryption engine should not place an unusual length to allow the creation of several independent keys; the cur

load on any shared component of the systé&ite servers

rent implementation requires at least 16 charactehlsases may

in particular should not be required to perform any special include any printable ASCII characters, and ideally consist of
additional processing for clients who require cryptographic €asily remembered nonsense sentences with unusual punctuation,

protection.

Concurrent accesslt should be possible for several users
(or processes) to have access to the same encrypted fil
simultaneously Sharing semantics should be similar to

those of the underlying storage system.

capitalization and spelling (e.dif you have nothing 2
hide you Have nothing too fear!" ).
ecard-based system, the keys are copied directly from the card
iRterface to the client computer after user entry of a card access
password that is checked on the card its8éction 3 describes

the algorithms used to encrypt file contents and file names with

In the smart

the keys.



Thecmkdir command is used to create encrypted directo- Otherwise, encrypted files place no special requirements on the
ries and assign their keyséts operation is similar to that of the underlying file system.

Unix mkdir -command with the addition that it asks for a.key Encrypted directories can be backed up along with the rest
the examples that follgwve show dialogs for the "passphrase” f the file systemThe cname program translates back and forth
version; the smart card version is similar but with prompts to thepetween cleartext names and their encrypted counterparts for a
user to insert a card and enter its passwaite following dialog particular key alowing the appropriate file name to be located

creates an encrypted directory callasr/mab/secrets : from backups if neededf the system on which CFS is running

$ cmkdir /usr/mab/secrets should become unavailable, encrypted files can be decrypted
Key: (user enters passphrase, which does not echo) individually, given a key using theccat program. Neither
Again:  (same phrase ented again to pevent erors) cname nor ccat require that the rest of CFS be running or be
$ installed, and both run without modification under most Unix

platforms. Thishelps ensure that encrypted file contents will
To use an encrypted directongs key must be supplied to always be recoverable, even if no machine is available on which
CFS with thecattach command. cattach  takes three  to run the full CFS system.
parameters: an encryption key (which is prompted for), the name
of a directory previously created witmkdir , and a name that 2.3. Securityand Trust Model

will be used to access the directory under the CFS mount point. Most security mechanisms in computer systems are aimed
For example, to attach the directory created above to the namg; 5ythenticating the users and clients of services and resources.
[erypt/matt: Servers typically mistrust those who request services from them,
$ cattach /usr/mab/secets matt and the protocols for obtaining access typically reflect the secu-
Key: (same key used in the cmkdir command) rity needs of the servetn the case of a file system, the converse
$ relationship is true as well; the user must be sure that the file sys-

tem will not reveal private data without authorizatioRile
If the key is supplied correctlythe user "sees" encryption can be viewed as a mechanism for enforcing mistrust

/crypt/matt as a normal directory; all standard operations of servers by their clients.
(creating, reading, writing, compiling, executingd, mkdir , CFS protects file contents and file names by guaranteeing
etc.) work as expectedThe actual files are stored under ihat they are never sent in clear form to the file systéthen
lusr/mab/secrets » which would not ordinarily be used ryn on a client machine in a distributed file system, this protec-
directly. Consider the following dialog, which creates a single {jon extends to file system tfiafsent over the networkn effect,
encrypted file: it provides end-to-end encryption between the client and the
$ Is -l /erypt server without any actual encryption required at the server side.
total 1 The server need only be trusted to actually store (and eventually
ArWXemmmmm 2 mab 512 Apr 1 15:56 matt return) the bits that were originally sent to @f course, the user
$ echo "murder” > fcrypt/matt/crimes must still trust the client system on which CFS is running, since
$ Is - /crypt/matt that system manages the keys and cleartext for the currently
total 1 attached encrypted directories.
-rw-rw-r-- 1 mab 7 Apr 1 15:57 crimes Some data are not protected, howeviete sizes, access
$ cat /crypt/matt/crimes times, and the structure of the directory hierarchy are all kept in
murder the clear (Symbolic link pointers are, howevencrypted.) This
$ Is -l /usr/mab/secets makes CFS vulnerable to ffiaf analysis from both real-time
total 1 observation and snapshots of the underlying files; whether this is
-rw-rw-r-- 1 mab 15 Apr 1 15:57 8b06e85b87091124 acceptable must be evaluated for each application.

$ cat -v /usr/mab/secets/8b06e85b870924 It is important to emphasize that CFS protects data only in
M-Z KTBVM-VM-6A"UM-LM-_M-DM-[ the context of the file systenit is not, in itself, a complete, gen-

$ eral purpose cryptographic security systebnce bits have been
returned to a user program, they are beyond the reach of CFS’
protection. Thigmeans that even with CFS, sensitive data might
be written to a paging device when a program is swapped out or
revealed in a trace of a progranatidress spaceSystems where

the paging device is on a remote file system are especially vulner

When the user is finished with an encrypted directigsy
entry under/crypt  can be deleted with thedetach com-
mand. Ofcourse, the underlying encrypted directory remains and
may be attached again at some future time.

$ cdetach matt able to this sort of attack(lt is theoretically possible to use CFS

$ Is -l ferypt as a paging file system, although the current implementation does
total 0 not readily support this in practiceNote also that CFS does not

$ Is -l /usr/mab/secets protect the links between users and the client machines on which
total 1 CFS runs; users connected via networked terminals remain vul-
-rw-rw-r-- 1 mab 15 Apr 1 15:57 8b06e85b87091124 nerable if these links are not otherwise secured.

$ Access to attached directories is controlled by restricting

the virtual directories created underypt using the standard
sentation of their binary encrypted value padded out to the ciphepn'x file protection r_nechan!smOnIy the user who issued th_e
cattach command is permitted to see or use the cleartext files.

block size of eight bytesNote that this reduces by approxi- — . - -
mately half the maximum path component and file name size,Th'S is based on theid of the user; an attacker who can obtain

since names stored on the disk are twice as long as their cletccess to a cllent’machlne and compromise a user account can
counterparts. Encryptefiles may themselves be expanded to use any of that usercurrently attached directoriedf this is a

accommodate cipher block boundaries, and therefore can occup nce_rn% the attachgd n_amel_ca_m b:jrmamvﬁ' which pre-h
up to one eight byte encryption block of extra storage. ents it from appearing in a listing arypt . en an attac

File names are encrypted and encoded in an ASCII repre



is made obscure, the attacker must guess its current name, whidbES keys. The first key is used to pre-compute a long (half
can be randomly chosen by the real ugef course, attackers  megabyte) pseudo-random bit mask with DESFB (output
who can become the "superuser” on the client machine can thwafeed backimode. Thismask is stored for the life of the attach.
any protection scheme, including this; such an intruder has acces#/hen a file block is to be written, it is first exclusivedafXOR)
to the entire address space of the kernel and can read (or modifyyith the part of the mask corresponding to its byfsetfin the
any data anywhere in the system. file modulo the precomputed mask lengthhe result is then
The security of the system is d¢aly dependent on the €ncrypted with the second key using standard ECB mddeen
secrecy of the encryption keys and the inability of an attacker to'€@ding, the cipher is reversed in the obvious manner: first
guess themAlthough an exhaustive search of the key space isdecrypt in ECB mode, then XOR with the positional mask.
probably computationally infeasible to all but the most deter Observe that this allows uniform random access time across the
mined and well funded adversapporly chosen keys can make entire size of the pre-computed mask (but not insertion or dele-
the attackes job much easierThis risk is especially great when tion of text). File block boundaries are preserved as long as the
keys are chosen directly by the us&o reduce the risk of dictio- ~ CiPher block size is a multiple of the block size, as it is in most
nary-based attacks, and to provide enough entropy to genera@srems- Appllcatlonleh_at optlmlze_ their file 1/0 to fall on file _
several independent subkeys, passphrase-based keys must B¥¢Stém block boundaries (including programs using the Unix
fairly lengthy The cmkdir program can be easily modified to stdio Ilt_Jra_ry) therefore melnteln their expected performance
enforce passphrase selection rules, such as minimum length arfgharacteristics without modification.
alphabetical variety that promote the use of good keys. This combination of DES modes guarantees that identical
Passphrase-based keys also carry a risk of compromise througblocks will encrypt to dferent ciphertext depending upon their
user carelessness or "social engineering”; these risks can bgositions in a file.lt does admit some kinds of structural analysis
reduced somewhat with user training. across files, howeverlt is possible to determine which blocks

The smart card based system uses the cards themselves %€ identical (and in the same pla_lce) in twp files encrypted under
generate and store the actual encryption keys; here the usdp€ same key (e.g., in the same directory hierarchy).
passphrase is used only to control access to the bt that it The strength of the ECB+OFB scheme is not well analyzed
is theoretically possible to design a system in which the keysin the literature (it may be new — there appear to be no previous
never leave the smart card and all cryptographic operations areeferences to this technique), and such an analysis is beyond the
performed on the card itsellCFS, howevertransfers the keys scope of this papeHowever a a minimum, it is clear that the
from the card to the client machine and performs file encryptionprotection against attack is at least as strong as a single DES pass
there, since the bandwidth to generally available card interfaces isn ECB mode and may be as strong as two passes with DES
too low for file system use. stream mode cipherdt is likely that the scheme is weakened, in

We dscuss possible attacks against our prototype imple-that the attacker might be able to search for the two DES subkeys
mentation in Section 4, below independentlyif there are several known plaintext files encrypted

under the same keys.

3. File Encryption To thwart analysis of identical blocks in the same positions
CFS uses DES to encrypt file da@ES has a number of of different files, each file encrypted under the same key can be
standard modes of operation[6], none of which is completely suit-Perturbed with a unique "initial vector” (IV)Standard block-
able for encrypting files on-line in a file systein. the simplest ~ chaining encryption modes (such as CBC) prepend the IV to the
DES modeECB (electonic code book)each 8 byte block of a data stream (e.g.. the beginning of the file) and XOR successive
file is independently encrypted with the given kdncryption blocks with the ciphertext of the previous block, starting with the
and decryption can be performed randomly on any block bound!V- AS long as each file has afeifent I\ identical blocks will
ary. Although this protects the data itself, it can reveal a great€ncrypt diferently Unfortunately the chaining modes do not
deal about a file dructure — a given block of cleartext always Permit random update within a file, so an encrypting file system
encrypts to the same ciphertext, and so repeated blocks can H@nnot use them directlynstead, CFS simply XORs each cipher
easily identified as suchOther modes of DES operation include Plock with the same IV throughout the file prior to the final ECB
various chaining ciphers that base the encryption of a block on Mmode encryption or after the ECB decryption, just as with the
the data that preceded iThese defeat the kinds of structural OFB mask.
analysis possible with ECB mode, but make ificlift to ran- File IVs are generated from the inode number of the under
domly read or write in constant tim&or example, a write to the lying file at creation time, which generally remains unique for a
middle of a file could require reading the data that preceded it andile’s lifetime. Sincethe IV is required for decryption, it must be

reenciphering and rewriting the data that followlix file sys- stored along with the filelnode numbers may not be preserved
tem semantics, howeverequire approximately uniform access after a file system backup/restore operation, so it is ntitisuf
time for random blocks of the file. to rely on the inode number remaining constant over tifitee

Compounding this diiculty are concerns that the 56 bit IV could be stored at the beginning of each file, but that would
key size of DES is vulnerable to exhaustive search of the keyShift file contents away from block boundariesibpadded out
space. DESkeys can be made fettively longer by multiple  tO @n entire block, waste spacEhe natural place to store the IV
encryption with independently chosen 56 bit keysnfortu- would be in the inode itself, along with the fether attributes.

nately DES is computationally rather expensive, especially when However because CFS sits above the file system used for actual
implemented in softwarelt is likely that multiple on-line itera-  Storage and uses system calls for all its I/O, it has no direct access

tions of the DES algorithm would be prohibitively slow for file t0 inode fields and cannot therefore add new file attribiifes.
system applications. store the IYCFS must co-opt an existing inode field.

To dlow random access to files but still discourage struc- Since all of the inode fields are used for some purpose and

tural analysis and provide greater protection than a single itera@n be changed outside of CE&ntrol, using an existing field is
tion ECB mode cipheiCFS encrypts file contents in two ways. & father treacherous propositio@FS therefore éérs two modes
Recall that CFS keys are long "passphras@éhen the phrase is of encryption that are selected at the time an encrypted directory

provided at attach time, it is "crunched" into two separate 56 bitlS created.In the standard mode, no IV is used and files are
therefore subject to analysis of identical blocks.the second,



"high security” mode, the IV is stored in the groupgal() field File system operations in the attached directory are sent as regu-
of each files inode. Inthis mode, CFS reports the group owner lar NFS RPCs tafsd via the standard NFS client interface.

ship of the root directory of the encrypted hierarchy as the group For each encrypted file accessed through an attach point,
for each file within it; it is not possible to havefdient files with  ¢fsq generates a uniquile handlethat is used by the client
different group ownership in the same directddpte that a files  NFs interface to refer to the filésor each attach point, the CFS
group could be changed outside CFS, so this mode does carmy @gaemon maintains a table of handles and their corresponding
small risk of unrecoverable data if both the inode number andyngerlying encrypted namedvhen a read or write operation
group of a file changeStandard backup and restore procedures, gccyrs, the handle is used as an index into this table to find the
however do ordinarily preserve the group. underlying file name.cfsd uses regular Unix system calls to
Encryption of pathname components uses a similarread and write the file contents, which are encrypted before writ-
scheme, with the addition that the high order bits of the cleartexing and decrypted after reading, as appropriai®. avoid
name (which are normally zero) are set to a simple checksunrepeatedbpenandclosecalls,cfsd also maintains a small cache
computed over the entire name strinthis frustrates structural  of file descriptors for files on which there have been recent opera-
analysis of long names that féif only in the last few characters. tions. Directoryand symbolic link operations, such esddir,

The same method is used to encrypt symbolic link pointers. readlink, andlookupare similarly translated into appropriate sys-
tem calls and encrypted and decrypted as needed.
4. Prototype Implementation To prevent intruders from issuing RPC calls to CFS

Of considerable practical significance is whether the per directly (and thereby thwarting the protection mechanisfaji
formance penalty of on-line file system encryption is too great foronly accepts RPCs that originate from a privileged port on the
routine use.The prototype CFS implementation is intended to local machine.Responses to the RPCs are also returned only to
help answer this question as well as provide some experiencéhe localhost port, and file handles include a cryptographic com-

with practical applications of secure file storage. ponent selected at attach time to prevent an attacker oferedif
machine from spoofing one side of a transaction with the server
4.1. Architecture It is instructive to compare the flow of data under CFS with
The CFS prototype is implemented entirely at user level, that taken under the standard, unencrypted file system interface.
communicating with the Unix kernel via the NFS interfaBach Figure 1 shows the architecture of the interfaces between an

client machine runs a special NFS sereésd (CFS Daemon), application program and the ordinary Sun "vnode-based" Unix
on itslocalhostinterface, that interprets CFS file system requests.file system[2]. Each arrow between boxes represents data cross-
At boot time, the system invokesfsd and issues an NFS ing a kernel, hardware, or network boundary; the diagram shows
mount of its localhost interface on the CFS directory that data written from an application are first copied to the kernel
(/crypt) to start CFS.(To dlow the client to also work as a and then to the (local or remote) file systeigure 2 shows the
regular NFS servelCFS runs on a diérent port number from  architecture of the uséevel CFS prototype.Data are copied
standard NFS.) several extra times; from the application, to the kernel, to the
The NFS protocol is designed for remote file servers, andCFS daem_on, back to the kernel, and finally to the underlying file
so assumes that the file system is very loosely coupled to th€yStém. SInc€FS uses usdevel system calls to communicate
client (even though, in CFS'case, they are actually the same with the underlying file system, each file is cacheo_l twice, once _by
machine). Theclient kernel communicates with the file system CFS in clear form and once by the underlying system in
through 17remote pocedue alls (RPCs)that implement vari-  €ncrypted form.This efectively reduces the available file berf
ous file system-related primitives (read, write, etGhe server s ¢ache space by a factor of two.
stateless,in that it is not required to maintain any state data
between individual client calls. 4.2. Performance

NFS clients cache file blocks to enhance file system perfor _ cfsd is considerably simpler than a full file systerm
mance (reducing the need to issue requests to the server); a sifj@rticular it knows nothing about the actual storage of files on
ple protocol managed by the client maintains some degree oflisks, relying on the underlying file systems to take care of this.
cache consistencyAll communication is initiated by the client, 1his Simplicity can come at the expense of performance.

and the server can simply process each RPC as it is received arfgfcause it runs at user level, using system calls to store data, and
then wait for the nextMost of the complexity of an NFS imple-  Décause it communicates with its client through an RPC interface,

mentation is in the generic client side of the interface, and it isCFS must perform several extraneous data copies for each client

therefore often possible to implement new file system serviceg®duest. Eachopy carries with it considerable potential copying
entirely by adding a simple NFS server and context switch overhead’he DES encryption code itself,

L which is implemented in software[3], dominates the cost of each
cfsd is implemented as an RPC server for an extended P 31

. . file system request (although it is the fastest software DES imple-
vel(rjsmr;w of the NFS FrotocolA%dg!onal RGF;_C_s”attaﬁh, detatf:h, mentation of which we are awarel:FS access could, based on
and otherwise control encrypted directoriésitially, the root o worst case analysis of its components, take several times as long
the CFS file system appears as an empty directong cat-

: . as the underlying storage.
tach command sends an RPCdisd with aguments contain- ’ ying g .
ing the full path name of a directory (mounted elsewhere), the e measured CFS under a variety of workloagier com-
name of the "attach point’, and the kefthe key is correct (as  Parison, we also ran each workload on the underlying cleartext
verified by a special file in the directory encrypted with a hash offile System and again on the underlying system through a user
the supplied key).cfsd computes the cryptographic mask level encryption filter tool that implements a multimode DES-
(described in the previous section) and creates an entry in its rodt@sed cipher similar to that in CF\ll measurements were
directory under the specified attach point naffiee attach point  t@ken on an unloaded Sun Sparc IPX workstation running SunOS

entry appears as a directory owned by the user who issued th#1-2 with 32 MB of memory and a locally connected SCSI Sea-
attach request, with a protection mode of 700 to prevent otherglate model Elite 16000 disk driv&ach benchmark was also run

from seeing its contents.(Attachs marked asbscue, as a econd time on similar hardware but with the underlying files

described in Section 2, do not appear in the directamyever). on an NFS file system connected over a lightly-loaded network.
In the tables belowCFS-LOCAL and CFS-NFS indicate the



| | | |
| User.-LeyeI Any | | User.-LeyeI Any |
: Application Program : : Application Program :
| | | |
S | S |
System Calls System Calls
r-——~>~"~>"~>"~>"~>"~>"~>">"=7"7"\§{\~~~ — — A | A
| | | |
b Sys. Call Interface | Lo Sys. Call Interface |
I Unix [ I Unix [
| | | |
I Kernel [ I Kernel [
| | | |
| H | | H |
, (local) FS Client | , (local) FS Client (NFS) |
| | | |
S | L e T e |
File System Inteface File System Inteface
Cleartext (.Zleartext
(local or remote) :.......(.'ﬂFﬁff‘.‘?.'.:. localnos) L. .
[t Al a o el /A ak
| | vl I
| FS Svr. Interface | | f NFS Svr. Interface |
| F|Ie | | \
| System : 1 CFS i
Storage {1 Daemon I
' (local or remote) ! i i ¥
| Media | 3 Encryptl.on/ . I
| | 3 Decryption Engine | :
e e e i - H I
- Y | | S 1
Figure 1 - Data Flow in Standard Vnode File System o
i System Calls
CFS measurements for the local and NFS file systems, respec- |
tively, CLEAR-LOCAL and CLEAR-NFS indicate measure- r N
ments of the underlying file systems, asERTOOL-LOCAL . Il Interf \
and USERTOOL-NFS indicate measurements of the ukarel : Unix Sys. Call Interface :
encryption tool under the two file systemAll numbers repre- | Kernel |
sent the mean of three runs; variances between runs were low ! !
enough to be virtually insignificantAll times are given in sec- : (local) FS Client :
onds of elapsed real time used by each of the various bench- | [
marks. e A &
The first benchmark simply copied in and read back a sin- File System Inteface
gle lage (1.6MB) file. This measured the cost of both writing Encrypted
and reading, including thefetts of whatever caching was per local i
formed by the file system®Because CFS is mounted via the NFS - - (,O,C‘i gtrgnjq(i) ,,,,,,,,,,, -
interface, it does not perform any write caching, and this limita- | |
tion was most dramatically reflected in the performance results ‘ ES Svr. Interface ‘
against the underlying local file system: CFS was roughly a factor : File :
of 22 slower The manual encryption tool, howeyéared even ' System \
more poorly since its output is uncached on both reading and 4 Storage !
writing: it was slower than the underlying file system by a factor | (local or remote) _ :
of more than 200With NFS as the underlying storage, CFS per | Media |
formance was much more reasonable, less than a factor of four L J

slower than the underlying systerihe manual tool slowed per
formance by a factor of more that. 1”Thesemeasurements are
summarized in Figure 3.

Changing the benchmark to magnify read performancemeasured the cost of creating an eight byte file one thousand
under the cache narrows the performance gap between CFS anfnes. Ona local system, both CFS and the ds®el system
the underlying storagefigure 4 gives the results of copying the added about one third to total latencynder NFS, CFS
same file once but then reading it fifty time¢ote the especially  increased latency by roughly a factor of two, while the user

poor performance of uségvel encryption under this workload, encryption tool added only about 13%igure 5 gives the results
since the encrypted results are never cached. of these measurements.

_ The cost of creation of small encrypted files is bound pri- These results suggest that encryption is expensive,
marily to the actual storage system and the system call and conglthough the caching performed by CFS makes it less expensive
text-switch overhead rather than the actual encryptigve

Figure 2 — Data Flow in CFS Piototype



File Elapsedlime

System (seconds)
CLEAR-LOCAL 1
USERTOOL-LOCAL 217
CFS-LOCAL 22
CLEAR-NFS 20
USERTOOL-NFS 234
CFS-NFS 74

Figure 3 — Large File Copy + One Read

File Elapsedlime

System (seconds)
CLEAR-LOCAL 63
USERTOOL-LOCAL 110
CFS-LOCAL 86
CLEAR-NFS 75
USERTOOL-NFS 122
CFS-NFS 106

Figure 6 — Compilation

Application based encryption leaves windows of vulnerability

File Elapsedlime

System (seconds)
CLEAR-LOCAL 4
USERTOOL-LOCAL 5348
CFS-LOCAL 27
CLEAR-NFS 22
USERTOOL-NFS 5371
CFS-NFS 77

while files are in the clear or requires the exclusive use of special-
purpose "crypto-aware" applications on all encrypted filas.
the disk level, the granularity of encryption may not match the
users’ security requirements, especially ifefiént files are to be
encrypted under dirent keys. Encrypting the network in dis-
tributed file systems, while useful in general against network-
based attack, does not protect the actual media and therefore still
requires trust in the server not to disclose file data.

6. Acknowledgments

Figure 4 — Large File Copy + 50 Reads

The author would like to express his thanks to Don

Mitchell and Jack Lacy for their help in using their excellent
CryptoLib software. Steve Bellovin made a number of helpful

File Elapsedlime

System (seconds)
CLEAR-LOCAL 141
USERTOOL-LOCAL 201
CFS-LOCAL 203
CLEAR-NFS 247
USERTOOL-NFS 276
CFS-NFS 496 [1]

Figure 5 — Snall File Creation

than usetevel encryption toolsCFS performance is much better [2]
under practical workloads, howevdnformal benchmarks (such

as compiling itself), with underlying files on both local and
remotely mounted file systems, suggest a fairly consistent factoy3]
of approximately 1.3 using CFS compared with the underlying
file system. In day-to-day operation, where there is a mix of
CPU- and I/0- bound processing, the performance impact of CF%4]
is minimal. For example, Figure 6 gives the results of compila-
tion (make) of the CFS system itself (a mostly 1/0-bound eper
ation) under the various system¥ote that under both local and
remote storage CFS adds about one third to the total Iatency{;5]
userlevel encryption adds about two thirdsurthermore, CFS is
operationally transparent, while udevel encryption requires [6]
manual operation of the encryption software and is therefore
likely to introduce considerable user interface delay in practice.

[7]

5. Conclusions

CFS provides a simple mechanism to protect data written
to disks and sent to networked file servekdthough experience [8]
with CFS and with user interaction is still limited to the research
environment, performance on modern workstations appears to be
within a range that allows its routine use, despite the obvious
shortcomings of a uséevel NFS-servebased implementation.

The client file system interface appears to be the right place
to protect file data.Consider the alternative€Encrypting at the
application layer (the traditional approach) is inconvenient.

suggestions on lines of attack against CHeward Katsefand

Tom Reingold entrusted CFS with real data and cheerfully suf-
fered through each new (and incompatible) reledsen London

is owed a particular debt of gratitude for creating the supportive
environment in which this work was don&Ve dso thank the
anonymous referees for their helpful comments.

7. Refeences

Howard, J.H., Kazar M.L., Menees, S.G., Nichols, D.A.,
Satyanaryanan, M& Sidebotham, R.N."Scale and Per
formance in Distributed File SystemsACM Trans. Com-
puting Systemg/fol. 6, No. 1, (February), 1988.

Kleiman, S.R., "Vnodes: An Architecture for Multiple File
System Vpes in Sun UNIX." Proc. USENIX,Summey
1986.

Lacy, J, Mitchell, D., and Schell, W "CryptoLib: A C
Library of Routines for Cryptosystems.Proc. Fourth
USENIX Security Wkshop,October 1993.

Lai, X. and MasseyJ. "A Proposal for a New Block
Encryption Standard."Proc. EUROCRPT 90,389-404,
1990.

NationalBureau of Standards, "Data Encryption Standard."
FIPS Publication #46, NTIS, Apt977.

National Bureau of Standards, "Data Encryption Standard
Modes of Operation."FIPS Publication #81, NTIS, Dec.
1980.

Reiher P. e. al., "Security Issues in thetifles File Sys-
tem." Proc. PSRG Vftkshop on Network and Distributed
System Securit§993.

Sandbey, R., Goldbey, D., Kleiman, S., Wsh, D., &
Lyon, B. "Design and Implementation of the Sun Network
File System."Proc. USENIXSummey 1985.



