
Worm.Win32.Zhelatin.pk Reverse Engineering
Author: Giuseppe 'Evilcry' Bonfa'
E-Mail: evilcry {AT} gmail {DOT} com
Website: http://evilcry.altervista.org

 http://evilcodecave.wordpress.com

Informations about the Malware
Filename: happy-2008.exe
MD5: 0aa965b068625e8344f839c1ddc4a299
Packer: -

The Analysis
happy-2008.exe is a classical E-Card Malware spreaded through fake mails.
The Executable gets the Current System Directory and next sets up as working
directory /system32.

Next with GetFullPathNameA retrives "C:\WINDOWS\System32\init_sys.config", if
file exists it attempts to determine its attributes, else creates a file

0040126A PUSH EBX ; /hTemplateFile => NULL
0040126B PUSH 80 ; |Attributes = NORMAL
00401270 PUSH 2 ; |Mode = CREATE_ALWAYS
00401272 PUSH EBX ; |pSecurity => NULL
00401273 PUSH 7 ; |ShareMode = FILE_SHARE_READ|
FILE_SHARE_WRITE
00401275 PUSH 40000000 ; |Access = GENERIC_WRITE
0040127A LEA EAX,DWORD PTR SS:[EBP-114] ; |
00401280 PUSH EAX ; |FileName =
"C:\WINDOWS\System32\init_sys.config"
00401281 CALL DWORD PTR DS:[<&KERNEL32.CreateFile>; \CreateFileA
00401293 PUSH ESI ;Points to an Embedded Executable
00401294 PUSH EDI
00401295 MOV EDI,DWORD PTR DS:[<&KERNEL32.WriteFile>
0040129B PUSH 0
0040129D LEA EAX,DWORD PTR SS:[EBP-C] ;System Path
004012A0 PUSH EAX
004012A1 LEA ESI,DWORD PTR DS:[EBX+422A98] ; [config] String
004012A7 PUSH DWORD PTR DS:[ESI]
A file "init_sys.config" is created and filled with three entries:
[config]
[local]
[peers]
Successively, a series of values are attached into this config file, immediately
after [peers] and have this form:
00003D6C8F338A3FDD3DF3648666F55C=0CCFC042170F00

and this is the piece of code after "init_sys.config"

0040132D CALL happy-20.0040122D ;Builds init_sys.config and fill

http://evilcry.altervista.org/
http://evilcodecave.wordpress.com/

it
00401332 LEA ECX,DWORD PTR SS:[EBP-8]
00401335 CALL happy-20.004016E8
...
00401351 CALL happy-20.00401634 ;EAX = String obtained from
GetSystemTime Output
...

After some calls, EAX points to a new string "init_1a30-12f1"

00401391 PUSH EAX ; /pFilenameInPath
00401392 PUSH DWORD PTR SS:[EBP-8]; |Path
00401395 PUSH EBX ; |MaxPathSize
00401396 PUSH DWORD PTR SS:[EBP-4]; |FileName
00401399 CALL DWORD PTR DS:
[<&KERNEL32.GetFullPat>; \GetFullPathNameA
0040139F PUSH happy-20.004020D4 ; ASCII ".sys"
004013A4 LEA ECX,DWORD PTR SS:[EBP-8]
004013A7 CALL happy-20.00401108
Inside call 00401108 a new string is assembled "init_1a30-12f1.sys" please note
that the numerical part of the Sys file changes at every run because it depends
from GetSystemTime output.

004013B1 PUSH ESI
004013B2 PUSH ESI ;NULL
004013B3 CALL OpenSCManagerA
004013B9 CMP EAX,ESI
004013BB MOV DWORD PTR SS:[EBP-C],EAX
004013BE JE happy-20.004014D9

After opening ServiceManager for LocalHost, Service Status is enumerated and:

00401407 PUSH DWORD PTR SS:[EBP-18] ; /Arg3
0040140A PUSH EDI ; |Arg2
0040140B PUSH DWORD PTR DS:[EBX] ; |Arg1 = 0012FE62 ASCII
"Abiosdsk"
0040140D CALL happy-20.00401579 ; \happy-20.00401579

This Call compares the Services Name (abp480n5,ACPI,adpu16, etc..) present in
the system with 'init_' string.

After this check a GetLastError is called:

0040142E JNZ SHORT happy-20.0040143D
00401430 CALL GetLastError
00401436 CMP EAX,0EA
0040143B JE SHORT happy-20.004013D1

If the Service exists and is running, the task of happy_2008 ends here, else, a
copy of a Device Driver is extracted from the executable and runned as System
Service.
I've extracted that device driver with an HexEditor, it starts at 00403018 and
ends at 00424FF8.

The Driver Part
First traces can be seen into Registers (as for every Service)

[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\init_xxxx-xxx]
[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet002\Services\init_xxxx-xxx]
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\init_xxxx-xxx]
DisplayName is the effective name of the Service, the phisical Driver Executable
is hidden in \??\C:\WINDOWS\System32\init_1056-4270.sys so the .sys file is
phisically invisible.
Now we will go to disassemble the Rootkit, the copy of SYS file that I've
exctracted is not packed, but a friend of mine, ZaiRoN, signaled me that exists
also packed versions of the driver.

In a first time is checked the NtBuildNumber, and if different from 3790
(Windows 2003) jumps out, the device is created with the name
"\\Device\\DRV_MODULE_DRV" and SymbolicLinkName
"\\DosDevices\\DRV_MODULE_DRV" and next by using PsCreateSystemThread is created
a MultiThreaded structure. The most rapid way to localize the MultiThread
routines is to watch the StartRoutine parameter that represents the entry point
for a driver thread.

1. StartRoutine: 00010526
2. StartRoutine: 00010EF2

[FirstThread]

00010532 push offset SourceString ;
"\\BaseNamedObjects\\unrjeuurut"
00010537 lea eax, [ebp+EventName]
0001053A push eax ; DestinationString
0001053B mov dword ptr [ebp+Timeout], 0FD050F80h
00010542 call ds:RtlInitUnicodeString
00010548 lea eax, [ebp+Handle]
0001054B push eax ; EventHandle
0001054C lea eax, [ebp+EventName]
0001054F push eax ; EventName
00010550 call ds:IoCreateNotificationEvent

Creates a notification event called \\BaseNamedObjects\\unrjeuurut

00010566 call sub_106B0
0001056B call sub_10BB4
00010570 call sub_108BC
Inside call sub_106B0, Memory Write Protection is toggled by using

push eax
mov eax, CR0
and eax, 0FFFEFFFFh
mov CR0, eax
pop eax

In the other calls, System Service Dispatch Table (SSDT) is hooked, and various
routines are attached as SSDT Entries.

The most intersting procedure is accomplished in sub_10C08(wchar_t *,int)
placed at 00010C08, where is retrieved by using PsLookupThreadByThreadId thread
ID relative to
"Services.exe"
After locating Thread ID, PsLookupProcessByProcessId is used to find PID of
Services.exe, and finally PID is passed to KeAttachProcess() so the Rootkit can
execute its code in the Context of Service.exe.

