Worm.Win32.Zhelatin.pk Reverse Engineering

Author: Giuseppe 'Evilcry' Bonfa'

E-Mail: evilcry {AT} gmail {DOT} com

Website: http://evilcry.altervista.org
http://evilcodecave.wordpress.com

Informations about the Malware

Filename: happy-2008.exe
MD5: 0aa965b068625e8344£839clddc4a299
Packer: -

The Analysis

happy-2008.exe is a classical E-Card Malware spreaded through fake mails.
The Executable gets the Current System Directory and next sets up as working
directory /system32.

Next with GetFullPathNameA retrives "C:\WINDOWS\System32\init sys.config", if
file exists it attempts to determine its attributes, else creates a file

0040126A PUSH EBX ; /hTemplateFile => NULL

0040126B PUSH 80 ; |Attributes = NORMAL

00401270 PUSH 2 ; |Mode = CREATE ALWAYS

00401272 PUSH EBX ; |pSecurity => NULL

00401273 PUSH 7 ; |ShareMode = FILE SHARE READ |
FILE_SHARE WRITE

00401275 PUSH 40000000 ; |Access = GENERIC_ WRITE

0040127A LEA EAX,DWORD PTR SS:[EBP-114] ; |

00401280 PUSH EAX ; |FileName =

"C:\WINDOWS\System32\init sys.config"

00401281 CALL DWORD PTR DS:[<&KERNEL32.CreateFile>; \CreateFileA
00401293 PUSH ESI ;Points to an Embedded Executable

00401294 PUSH EDI

00401295 MOV EDI,DWORD PTR DS: [<&KERNEL32.WriteFile>
0040129B PUSH 0

0040129D LEA EAX,DWORD PTR SS:[EBP-C] ;System Path

004012A0 PUSH EAX

00401221 LEA ESI,DWORD PTR DS: [EBX+422A98] ; [config] String
004012A7 PUSH DWORD PTR DS: [ESI]

A file "init sys.config" is created and filled with three entries:

[config]
[local]
[peers]

Successively, a series of values are attached into this config file,
after [peers] and have this form:

immediately
00003D6C8F338A3FDD3DF3648666F55C=0CCFC042170F00

and this is the piece of code after "init sys.config"

0040132D CALL happy-20.0040122D ;Builds init_sys.config and fill


http://evilcry.altervista.org/
http://evilcodecave.wordpress.com/

it

00401332 LEA ECX,DWORD PTR SS:[EBP-8]
00401335 CALL happy-20.004016ES8
00401351 CALL happy-20.00401634 ;EAX = String obtained from

GetSystemTime Output

After some calls, EAX points to a new string "init_ 1a30-12f1"

00401391 PUSH EAX ; /pFilenameInPath
00401392 PUSH DWORD PTR SS: [EBP-8]; |Path

00401395 PUSH EBX ; |MaxPathSize
00401396 PUSH DWORD PTR SS: [EBP-4]; |FileName
00401399 CALL DWORD PTR DS:

[<&KERNEL32.GetFullPat>; \GetFullPathNameA

0040139F PUSH happy-20.004020D4 ; ASCII ".sys"
00401324 LEA ECX,DWORD PTR SS: [EBP-8]

004013A7 CALL happy-20.00401108

Inside call 00401108 a new string is assembled "init 1a30-12fl.sys" please note
that the numerical part of the Sys file changes at every run because it depends
from GetSystemTime output.

004013B1
004013B2
004013B3
004013BS
004013BB
004013BE

After opening ServiceManager for LocalHost,

00401407

0040140A

0040140B

"Abiosdsk"

0040140D

This Call compares the Services Name
the system with 'init '

PUSH ESI

PUSH ESI ;NULL

CALL OpenSCManagerA

CMP EAX,ESIT

MOV DWORD PTR SS: [EBP-C],EAX
JE happy-20.004014D9

Service Status is enumerated and:

PUSH DWORD PTR SS: [EBP-18] ; /Arg3

PUSH EDI ; |Arg2

PUSH DWORD PTR DS: [EBX] ; |Argl = 0012FE62 ASCII
CALL happy-20.00401579 ; \happy-20.00401579

(abp480n5,ACPI, adpul6, etc..) present in

string.

After this check a GetLastError is called:

0040142E
00401430
00401436
0040143B

JNZ SHORT happy-20.0040143D
CALL GetLastError

CMP EAX, OEA

JE SHORT happy-20.004013D1

If the Service exists and is running, the task of happy 2008 ends here, else, a
copy of a Device Driver is extracted from the executable and runned as System

Service.

I've extracted that device driver with an HexEditor,

it starts at 00403018 and

ends at 00424FF8.



The Driver Part

First traces can be seen into Registers (as for every Service)

[HKEY LOCAL MACHINE\SYSTEM\ControlSet0Ol\Services\init xxxx-xxx]
[HKEY LOCAL MACHINE\SYSTEM\ControlSetO02\Serv1ces\1n1t XXXX-XXX]
[HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Serv1ces\1n1t XXXX-XXX]

DisplayName is the effective name of the Service, the phisical Driver Executable
is hidden in \??\C:\WINDOWS\System32\init 1056-4270.sys so the .sys file is
phisically invisible.

Now we will go to disassemble the Rootkit, the copy of SYS file that I've
exctracted is not packed, but a friend of mine, ZaiRoN, signaled me that exists
also packed versions of the driver.

In a first time is checked the NtBuildNumber, and if different from 3790
(Windows 2003) jumps out, the device is created with the name
"\\Device\\DRV_MODULE DRV" and SymbolicLinkName

"\\DosDev1ces\\DRV MODULE DRV" and next by using PsCreateSystemThread is created
a MultiThreaded structure. The most rapid way to localize the MultiThread
routines is to watch the StartRoutine parameter that represents the entry point
for a driver thread.

1. StartRoutine: 00010526
2. StartRoutine: 00010EF2

[FirstThread]

00010532 push offset SourceString ;
"\\BaseNamedObjects\\unrjeuurut"

00010537 1lea eax, [ebp+EventName]

0001053A push eax ; DestinationString
0001053B mov dword ptr [ebp+Timeout], OFDO50F80h
00010542 call ds:RtlInitUnicodeString
00010548 1lea eax, [ebptHandle]

0001054B push eax ; EventHandle
0001054C 1lea eax, [ebp+EventName]

0001054F push eax ; EventName
00010550 call ds:IoCreateNotificationEvent

Creates a notification event called \\BaseNamedObjects\\unrjeuurut

000105606 call sub_106B0
0001056B call sub_10BB4
00010570 call sub_108BC

Inside call sub_106B0, Memory Write Protection is toggled by using

push eax

mov eax, CRO

and eax, OFFFEFFFFh
mov CRO, eax

pop eax



In the other calls, System Service Dispatch Table (SSDT) is hooked, and various
routines are attached as SSDT Entries.

The most intersting procedure is accomplished in sub_10C08 (wchar t *,int)
placed at 00010C08, where is retrieved by using PsLookupThreadByThreadId thread
ID relative to

"Services.exe"

After locating Thread ID, PsLookupProcessByProcessId is used to find PID of
Services.exe, and finally PID is passed to KeAttachProcess () so the Rootkit can
execute its code in the Context of Service.exe.



