
Trojan-Downloader.Win32.Small or Win32/PolyCrypt Analysis
Author: Giuseppe 'Evilcry' Bonfa'
E-Mail: evilcry@gmail.com
Website: http://evilcry.altervista.org

Introduction
MD5 Hash Signature: 5f9e38abd1c20ba44ff07903489bac10
Identification: AVG Antivirus -> Win32/PolyCrypt
 Kaspersky -> Trojan-Downloader.Win32.Small.ihj
Format: EXE and Embedded DLLs

The Essay

PolyCrypt is spreaded through infected Websites by using Exploits or every other
form of abusive Download mechanism.
PolyCrypt is weakly Packer Protected, so with VMUnpack we can suddenly obtain
the full working unpacked copy.

Let's trace from the EP:

00401000 mov eax, 104h
00401005 mov edx, offset dword_403033
0040100A push eax
0040100B inc ecx
0040100C push edx
0040100D push offset loc_4013BE ;points to jmp GetSystemDirectoryA
00401012 call sub_4012BD ;Call GetSystemDirectoryA

PolyCrypt uses an basilar method for API call, just to deceit basical fast
analysis, the call sub_4012BD access directly the jump table at the entry
passed as parameter.

0040101B push offset aMsstub_dll ; "\\msstub.dll"
00401020 push offset dword_403033 ;System Directory
00401025 push offset loc_4013E2
0040102A call sub_4012BD ;lstrcat
0040102F pop dword_402027
00401035 pop ebx
00401036 push ebx
00401037 push 80h
0040103C push 2
0040103E push ebx
0040103F push 1
00401041 push 40000000h
00401046 push offset dword_403033 ;Full Path
0040104B push offset CreateFileA
00401050 call sub_4012BD
00401060 mov edx, esp
00401062 push ebx
00401063 push edx
00401064 push 1000h
00401069 push offset dword_402027
0040106E push dword_403027
00401074 push offset WriteFile
00401079 call sub_4012BD
0040107E pop ecx
0040107F push dword_403027

00401085 push offset CloseHandle
0040108A call sub_4012BD

This piece of code builds the a string path c:\windows\system32\msstub.dll and
next creates this DLL (msstub.dll) and fills if it with embedded data.

0040108F push offset aDb5825eaB434C6 ; "{DB5825EA-B434-
C69E-8E2D-81387140521A}"
00401094 push offset aClsid ; "CLSID\\"
00401099 push offset byte_403137
0040109E push offset wsprintfA
004010A3 call sub_4012BD
004010A8 add esp, 0Ch
004010AB push eax
004010AC push esp
004010AD push offset dword_40302F
004010B2 push ebx
004010B3 push 3
004010B5 push 0
004010B7 push ebx
004010B8 push ebx
004010B9 push offset byte_403137 ; “CLSID\\{DB5825EA..”
004010BE push 80000000h
004010C3 push offset RegCreateKeyExA

To overcome basical detecting attemps it's used the CLSID Splitting, the
complete string is CLSID\\{DB5825EA-B434-C69E-8E2D-81387140521A}, obviously next
operation is to create this Registry Key Entry.

004010D6 push eax
004010D7 push esp
004010D8 push offset dword_40302B
004010DD push ebx
004010DE push 2
004010E0 push 0
004010E2 push ebx
004010E3 push ebx
004010E4 push offset aInprocserver32 ; "InprocServer32"
004010E9 push dword_40302F
004010EF push offset RegCreateKeyExA
00401111 inc eax
00401112 push eax
00401113 push offset aApartment ; "Apartment"
00401118 push 1
0040111A push ebx
0040111B push offset aThreadingmodel ; "ThreadingModel"
00401120 push dword_40302B
00401126 push offset RegSetValueExA
0040112B call sub_4012BD
0040113A inc eax
0040113B push eax
0040113C push offset dword_403033
00401141 push 1
00401143 push ebx
00401144 push ebx
00401145 push dword_40302B
0040114B call RegSetValueExA
00401150 push dword_40302B
00401156 call RegCloseKey

This piece of code creates into the previously builded CLSID the following
entry:

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\
{CLSID}\InprocServer32 = iexplorer.exe
\ThreadingModel = Apartment (which is single threaded)
In other words Registers a 32-bit in-process server and specifies the threading
model of the apartment the server can run in, in our case the InprocServer32 is
Internet Explorer.

So the malicious dll (msstub.dll) could be called by IE, indeed the next
operation accomplished by PolyCrypt is to Open IE with ShellExecuteA(), finally
builds a .bat script file, called dmfg.bat to delete the Executable..

PolyCrypt is completly Reversed, let's see now what happens into msstub.dll

