
Ghiribizzo’s Cracking Tutorial

A Christmas Digression

Presents for All!

I was introduced to a nice piece of software by a friend of mine
recently. It’s called Virtual CD-ROM and is basically ‘fakecd
for Windows 95’. But this isn’t really a tutorial for cracking it
(although I will give a crack), it’s more of a moan by me. :-)

PGP and Signed Tutorials

My tutorials and programs should be signed electronically using
PGP. PGP 5 supports DSS/Diffie-Hellman keys. These keys are
not supported by previous versions of PGP.
You should check the signature to make sure that the tutorial
and especially its program files have not been tampered with. All
cracks, tutorials and zip files I release will be signed. This will
prevent tampering and will hopefully reduce the chances of viral
infection.
My signature will also be the only way you can identify me as
my email address will often change.

My Web Site: http://Ghiribizzo.home.ml.org
My Email: Ghiribizzo@geocities.com
My Backup Email: Ghiribizzo@hotmail.com

This document is Copyright © 1997 by Ghiribizzo. This document may be distributed non-commercially, provided that
is it not modified in any way (including change of format). This publication may not be sold or packaged, in whole or in part, as
a service, or with a product for sale in any form without the prior written permission of the author. This document is presented
with no warranties or guarantees of any kind including fitness for any particular purpose. If you use the information contained
herein, you do so at your own risk.

Virtual CD-ROM 1.0

A friend gave me a copy of this along with a ready made key generator. When I installed the program
and ran it I almost fell off my chair laughing: our good friend the TimeLOCK trial remaining dialogue popped
up. VCD uses TimeLOCK version 1. I assumed that it was pretty much the same as version 2 which I have
already cracked so I decided to use HIEW and take a look through TLOCK32.DLL. What I was trying to do
was look for the tell-tale blocks of code which generate the key (see my previous TimeLOCK tutorial).
However, it took me a little longer than expected because this version of TimeLOCK doesn’t generate the
key in the same way (i.e. a call to a digit generating function) however I still found the code. What I did was
to look at the right hand side of the HIEW screen for the jump references. I was looking for regularly spaced
references and found them close to the beginning (17 pages down a 50 line screen):

.0000126F: 8B15C0F90010 mov edx,[01000F9C0]

.00001275: 8A0D56FB0010 mov cl,[01000FB56]

.0000127B: 8A4201 mov al,[edx][00001]

.0000127E: 3AC1 cmp al,cl

.00001280: 7C02 jl .000001284 ---------- (1)

.00001282: 8AC1 mov al,cl

.00001284: 8B15C0F90010 mov edx,[01000F9C0]

.0000128A: 8A0D59FB0010 mov cl,[01000FB59]

.00001290: 88442400 mov [esp][00000],al

.00001294: 8A4205 mov al,[edx][00005]

.00001297: 3AC1 cmp al,cl

.00001299: 7F02 jg .00000129D ---------- (2)

.0000129B: 8AC1 mov al,cl

.0000129D: 8B15C0F90010 mov edx,[01000F9C0]

.000012A3: 8A0D5AFB0010 mov cl,[01000FB5A]

.000012A9: 88442401 mov [esp][00001],al

.000012AD: A052FB0010 mov al,[01000FB52]

.000012B2: 88442402 mov [esp][00002],al

.000012B6: 8A4202 mov al,[edx][00002]

.000012B9: 3AC1 cmp al,cl

.000012BB: 7F02 jg .0000012BF ---------- (3)

.000012BD: 8AC1 mov al,cl

.000012BF: 8B15C0F90010 mov edx,[01000F9C0]

.000012C5: 8A0D58FB0010 mov cl,[01000FB58]

.000012CB: 88442403 mov [esp][00003],al

.000012CF: A055FB0010 mov al,[01000FB55]

.000012D4: 88442404 mov [esp][00004],al

.000012D8: 8A4203 mov al,[edx][00003]

.000012DB: 3AC1 cmp al,cl

.000012DD: 7C02 jl .0000012E1 ---------- (4)

.000012DF: 8AC1 mov al,cl

.000012E1: 8A0D5BFB0010 mov cl,[01000FB5B]

.000012E7: 88442405 mov [esp][00005],al

.000012EB: A05AFB0010 mov al,[01000FB5A]

.000012F0: 88442406 mov [esp][00006],al

.000012F4: A057FB0010 mov al,[01000FB57]

.000012F9: 3AC1 cmp al,cl

.000012FB: 7F02 jg .0000012FF ---------- (5)

.000012FD: 8AC1 mov al,cl

.000012FF: 8B4C2410 mov ecx,[esp][00010]

.00001303: 88442407 mov [esp][00007],al

.00001307: 8D442400 lea eax,[esp][00000]

.0000130B: 50 push eax

.0000130C: 51 push ecx

.0000130D: FF158C120110 call lstrcmpA ;KERNEL32.dll

.00001313: 83F801 cmp eax,001

.00001316: 1BC0 sbb eax,eax

.00001318: 83C40C add esp,00C

.0000131B: F7D8 neg eax

.0000131D: C3 retn

Not quite the CALLs I were expecting but very suspicious nonetheless. I knew that TimeLOCK 2.0
had a trial reset key which was based on a similar scheme to the main registration key so I searched a bit
further down for a similar set of instructions and found this:

.00001A9B: 8A4203 mov al,[edx][00003]

.00001A9E: 3AC1 cmp al,cl

.00001AA0: 7C02 jl .000001AA4 ---------- (1)

.00001AA2: 8AC1 mov al,cl

.00001AA4: 8B15C0F90010 mov edx,[01000F9C0]

.00001AAA: 8A0D5BFB0010 mov cl,[01000FB5B]

.00001AB0: 88442400 mov [esp][00000],al

.00001AB4: 8A4204 mov al,[edx][00004]

.00001AB7: 3AC1 cmp al,cl

.00001AB9: 7F02 jg .000001ABD ---------- (2)

.00001ABB: 8AC1 mov al,cl

.00001ABD: 8B15C0F90010 mov edx,[01000F9C0]
etc.

This looks very promising. Take another look at the code in blue in the first listing. Does it look
familiar? At least it was improved slightly in version 2: I really don’t believe that they used lstrcmpA to test
the key. Well we can easily sniff the password using an embedded breakpoint and SoftICE. But we haven’t
used the live technique so far so let’s not use it at all.

Taking a look at the code we can easily see that there are 3 locations: the serial we are given, the
product code and the key (see my BoundsChecker tutorial). Looking at the serial generation scheme we can
see that it is a simple mathematical manipulation. I summarise it as:

R1 = Min (V4, S11)
R2 = Max (V5, S12)
R3 = S10
R4 = Max (V2, S7)
R5 = S9
R6 = Min (V6, S8)
R7 = S6
R8 = Max (V3, S12)

I hope the notation is clear. But how do we find the product code (V)? We could fish it out using
SoftICE but we have decided to try without the live technique (sometimes, with such banal protection, you
must make it more difficult yourself!). Let’s cheat a little and use the key generator that we were given:

Virtual CD-ROM (TM) Version 1.0 Unlock Code Generator
Cracked & Coded by MegaByte of -=[PhRoZeN CReW '96]=-
Enter Registration Number: 000000000000
The Unlock Code is: 03050007

Virtual CD-ROM (TM) Version 1.0 Unlock Code Generator
Cracked & Coded by MegaByte of -=[PhRoZeN CReW '96]=-
Enter Registration Number: 999999999999
The Unlock Code is: 39999299

So we can deduce that:

V2 = 5
V3 = 7
V4 = 3
V5 = 3
V6 = 2

We now have all we need to make a key generator, but we also have a rather good search string.
Searching through VCDROM.EXE we find the full product code: 6573322. In fact if we search any
TimeLOCK 1.0 protected EXE file for ‘ini’ we will find the code immediately after it. So instead of
hardwiring this product code into our key generator we can make a generic TimeLOCK 1.0 key generator
and allow the user to enter the relevant product code. Here is my first version (I lost my improved version but
they are identical in functionality):

begin 644 tl1key.com
MZ=X̀ #0I4:6UE3$]#2R!6+C$@0W)A8VME<B̀ H0RD@1VAI<FEB:7IZ;R̀ Q.3DW
M#0Î ?GŶ ?GŶ ?GŶ ?GŶ ?GŶ ?GŶ ?GŶ ?GŶ ?GŶ ?GŶ ?GŶ ?GŶ ?GŶ #0H-
M"D5N=&5R(%9E<G-I;VX@3G5M8F5R(&%N9"!"=6EL9"̀ H-B!D:6=I=',I.B̀ D
M#0I%;G1E<B!397)I86P@3G5M8F5R("@Q,B!D:6=I=',I.B̀ D>'AX>'AX>7EY
M>7EY>7EY>7EY>7EY>0T*"E)E9VES=')A=&EO;B!+97DZ('IZ>GIZ>GIZ#0HD
MN@,!M̀ G-(;0!,_:Y!@#-(2PPB(2K̀ 4;B];J'̀ ;0)S2&T̀ ;D,̀ #/VS2$L,(B$
ML0%&XO6@K0&*#KL!.L%\̀ HK!HM8!H*\!B@Z\̀ 3K!?P**P:+7̀ :"Z̀ :+8̀ :"L
M̀ 8H.MP$ZP7\"BL&BV0&@N0&BV@&@L̀ &*#K@!.L%\̀ HK!HML!H+8!HMP!H*T!
DB@Z\̀ 3K!?P**P:+=̀ ;D(̀ +O6̀ 8̀ ',$/B̂ KK!̀ ;0)S2&T3,TA
`

end

Now for the Moan...

Take a look at my key generator it’s 396 bytes long and that’s for the inefficient first version (you’ll
see later). Why do crackers still insist on writing bloated key generators? The PhRoZeN CReW keygen
(VCDGEN.EXE) is 17530 bytes packed and ~35600 bytes unpacked. That’s 45 times larger than my keygen
(90 times larger if unpacked)!

Come on guys let’s take some pride in our work. Cracks are exactly the type of program suited to
assembly programming. They are very easy to code in assembly. Let’s disassemble my crack:

W32Dasm 8.5 (cracked)

This is such a poor disassembler it didn’t even distinguish between the data and code in this most
basic of configurations.

Bubble Chamber (BETA release)

An old favourite of mine. I learned assembly from the output this program produced. In fact, the
resemblance to the actual source is scary! The data is shown in a very nice way and was detected perfectly
(and could be set manually if needed). Unfortunately, the source doesn’t compile due to the way some of the
instructions are shown.

IDA Pro 3.7 (registered)

Again disassembled nicely, the data output is arranged in a rather clumsy manner. I use to use an
earlier version of IDA along with bubble chamber, and it drove me mad back then. IDA is powerful, but it’s
user interface is still as clumsy as it ever was. The cross-references are good and even show up my inefficient
programming: the keygen is a modified version of my TimeLOCK 2 keygen and there is still 16 bytes
allocated for the serial number. Also, the DOS calls are well documented, though any cracker worth his salt
will know these from memory. However it is useful when skimming through disassembled files.

HIEW 6.65

Not a disassembler, but the perfect tool for analysing files such as my keygen. You can follow the
flow of the program from the beginning to the end executing the instructions in your head. Hiew is the Swiss
army knife of crackers... well, perhaps after DEBUG.EXE :-)

If you’re not an assembly programmer, disassemble my code (it’s not protected) and have a look. You
can learn a lot from dissected code. Next time, make sure your crack is in assembly :-)

Competition

Re-write my keygen to make it as small as possible. There are 2 categories: the first is to leave all the
banners and prompts intact. The second is to make it as small as possible without restrictions. Fame and glory
to the winner!

