
Ghiribizzo’s Cracking Tutorial

NuMega’s BoundsChecker 5.xx

NuMega’s BoundsChecker 5.xx

NuMega’s BoundsChecker is a tool for software development
but is also useful for crackers. NuMega have been nice enough
to distribute their software for free (14 day trial) so go to their
site and download their stuff (you can get SoftIce too!).

PGP and Signed Tutorials

My tutorials and programs should be signed electronically using
PGP. PGP 5 supports DSS/Diffie-Hellman keys. These keys are
not supported by previous versions of PGP.
You should check the signature to make sure that the tutorial
and especially its program files have not been tampered with. All
cracks, tutorials and zip files I release will be signed. This will
prevent tampering and will hopefully reduce the chances of viral
infection.
My signature will also be the only way you can identify me as
my email address will often change.

My Web Site: http://www.geocities.com/Athens/3407
My Email: Ghiribizzo@geocities.com
My Backup Email: Ghiribizzo@hotmail.com

This document is Copyright © 1997 by Ghiribizzo. This document may be distributed non-commercially, provided that
is it not modified in any way. This publication may not be sold or packaged, in whole or in part, as a service, or with a product
for sale in any form without the prior written permission of the author. This document is presented with no warranties or
guarantees of any kind including fitness for any particular purpose. If you use the information contained herein, you do so at
your own risk.

When I download the program (BoundsChecker 5.01 C++ Builder version), I installed it and went
directly to cracking! (a sad affliction of crackers - cracking the software is so much more fun than using it). I
ran BoundsChecker and when you load a program into it, you’re presented with a screen and an option to
purchase. A 16 digit serial number is also displayed. It looks like a standard serial/key combination. It turns
out that the key depends entirely upon the 16 digit serial number and not on your name/company.

In my hurry to crack the program, I registered it instantly so I couldn’t go back to looking at the key
generator routine. The crack itself is trivial - a by the book serial/key generation. I can’t remember exactly
how I did it but I’ll try to give an accurate description. I placed a bpx on hmemcpy and (if I remember
correctly) followed the stack backwards. I then scanned the code under SoftIce looking around until I saw
the following code:

push eax
push ecx
call some function
...
followed by compare routines and a conditional jump to a messagebeep (I think)

This couldn’t be more suspicious. I dumped the contents of eax and ecx and then found that they
contained my guessed key and the correct key. So leaving SoftIce, I typed in the correct serial and that was it.
Luckily, I ran C++ and the C++ version of BoundsChecker hadn’t been registered yet so I get to go through
it again! This time I did a bpx getwindowtext and placed breakpoints on the serial code (search though
memory for it). Looking around you can quickly find the following pieces of code (even easier if you bpr on
the serial locations) anyway the following code listings are taken from Shadows tutorial on cracking the
Visual C++ version of BoundsChecker. The comments are by him the code is pretty self-explanatory.

Processing and storing the serial:

014F:014F28C6 PUSH 1501070
 LEA EAX,[EBP-04]
 PUSH EAX
 INC ESI
 CALL 14F4E80
 ADD ESP,08
 LEA ECX,[ESP-04]
014F:014F28BD MOVSX EAX, BYTE PTR [ESI:015044DF]
 PUSH EAX
 PUSH 015014B8
 PUSH ECX
 CALL 14F4E10
 ADD ESP,0C
 LEA ECX,[EBP-04]
 PUSH ECX
 CALL 14F4E00
 ADD ESP,04
 MOV [ESI*4+EBP-48],EAX ; Store Number
 CMP ESI,10 ; Ox10=16 Digits
014F:014F2904 JB 014F28C6
 PUSH DWORD PTR [EBP-34]
014F:014F2904 JB 014F28C6

Notice that there are 16 blocks of code similar to the one below. Five numbers are passed as
parameters and a call is made to a function which generates one digit of the key from the 5 numbers.

 PUSH DWORD PTR [EBP-34] ;P1
 PUSH DWORD PTR [EBP-08] ;P2
 PUSH DWORD PTR [EBP-5C] ;P3
 PUSH DWORD PTR [EBP-28] ;P4

 PUSH DWORD PTR [EBP-44] ;P5
 CALL 014F257B
 ADD ESP,14
 MOV [EBP-009C],EAX

The following function is the generator itself. It’s pretty easy to understand.

014F:014F257B PUSH EBP
 MOV EAX,[ESP+08] ;EAX=P5
 MOV EBP,ESP
 ADD EAX,[ESP+0C] ;EAX=P4+P5
 CMP EAX,9 ;if (EAX>9) EAX-=0A
 JLE BR1
 SUB EAX,0A
BR1: SUB EAX,[EBP+10] ;EAX-=P3
 JNS BR2 ;if (EAX<0) EAX+=0A
 ADD EAX,0A
BR2: ADD EAX,[EBP+14] ;EAX+=P2
 CMP EAX,9 ;if (EAX>9) EAX-=0A
 JLE BR3
 SUB EAX,0A
BR3: SUB EAX,[EBP+18] ;EAX-=P1
 JNS BR4 ;if (EAX<0) EAX+=0A
 ADD EAX,0A
BR4: POP EBP
 RET

There are 6 numbers in memory before the serial number. This is the version of the program and the
build number.

Also, if you enter the wrong code and step through the code afterwards you’ll see that a conditional
jump which makes a call to a function which overwrites the correct key in memory with a false one! This is
quite interesting. I assume that the code has been put in to thwart attempts to ‘hear the echo’. The false key is
placed in memory directly before the key you entered. Anyone who runs the program once through and then
tries to do a memory dump will fall for this trap. I don’t know what entering this key will do, and I can’t test
it as I’ve already registered the C++ builder version. But it could do anything from falsely ‘registering’ you or
something more sinister...

That was the only special thing in the protection scheme. It is otherwise quite boring and very easy to
break. Let me finish by giving the build numbers of some of the versions you can download from NuMega’s
website.

BoundsChecker 5.01 Standard Edition: 510597 (help screen claims version 5.02 build 419)
BoundsChecker 5.02 Visual C++ Edition: 502597 ** Not Checked
BoundsChecker 5.01 C++ Builder Edition: 501697
BoundsChecker 5.01 Delphi Edition: 510597

(see a pattern? If none of the above work, try varying the numbers, you should be able to stumble
across a correct one - if not, use WinIce)

Well a cracker’s work is never finished. Having registered both the standard version and the Builder
edition, I couldn’t look at the protection further (never be too quick to register!). So I downloaded the Delphi
edition. There was an initial fiasco of pressing ‘cancel’ on the trial screen - this altered things so that
BoundsChecker no longer loaded when starting Delphi. I tried to sift through the registry and put in
‘IntegratedDebugging=1’ as it appeared in the Builder version, but this didn’t help. In the end I had to
uninstall BoundsChecker, restore an earlier copy of the registry (these are VERY useful!) and then reinstall

BoundsChecker. When I loaded Delphi, BoundsChecker popped up, but it said that my 14 day trial had
ended. Though it kindly offered me the chance to purchase it so I could look at the protection scheme again.

Looking through the code again, I noticed some things that I missed first time round. In the earlier
WinIce sessions, I had jotted down some search strings to locate some sections of the protection code.
Searching the main executable for this yielded nothing. Probably a .dll then. There are many ways you could
find this. I chose to use WinIce because there were other things I wanted to check (e.g. the build number for
Delphi version etc.). Once I landed in the protection code, I looked at the stack and was amazed by what I
saw: TL32V20! NuMega is using TimeLock to protect it’s code! Now I haven’t looked at TimeLock
protections before (not knowingly anyway!) but I vaguely remember seeing some tutorials written about it
before. Strange that no one has spotted this yet as the key generator is quite distinguishable! Anyway it
happens that version A of TimeLock is used TL32V20.DLL is 91,648 bytes long.

Let’s use Hiew and dump some of the code:

This is where the Version/Build number is fetched and stored and straight after that the serial number
is fetched and stored.

.000025CB: 6870100110 push 010011070

..

.. snip

..
*.00002602: 8944B5A0 mov [ebp][esi]*4[-0060],eax
*.00002606: 83FE06 cmp esi,006
*.00002609: 72C0 jb .0000025CB ---------- (4)
.0000260B: 33F6 xor esi,esi
.0000260D: 6870100110 push 010011070
..
.. snip
..
*.00002644: 8944B5B8 mov [ebp][esi]*4[-0048],eax
*.00002648: 83FE10 cmp esi,010
*.0000264B: 72C0 jb .00000260D ---------- (8)

This is where I got my serial for the standard version of BoundsChecker. It is an obvious compare,
test, jump sequence.

.00003ED0: FF15DC630110 call GetWindowTextA ;USER32.dll

.00003ED6: 8D45D8 lea eax,[ebp][-0028]

.00003ED9: 50 push eax

.00003EDA: E885E9FFFF call .000002864 ---------- (3)

.00003EDF: 83C404 add esp,004

.00003EE2: 8D45EC lea eax,[ebp][-0014]

.00003EE5: 8D4DD8 lea ecx,[ebp][-0028]
*.00003EE8: 50 push eax <-key you entered
*.00003EE9: 51 push ecx <-real key
*.00003EEA: E891170000 call .000005680 ---------- (4)
*.00003EEF: 83C408 add esp,008
*.00003EF2: 85C0 test eax,eax
*.00003EF4: 7553 jne .000003F49 ---------- (5)

Now let’s take a look at what happens when we enter the wrong code:

.00003F49: 8D45D8 lea eax,[ebp][-0028]

.00003F4C: 50 push eax
*1.00003F4D: E859E6FFFF call .0000025AB ---------- (1)

*1 Routine to overwrite key with hardwired key

.00003F52: 83C404 add esp,004

.00003F55: 8D45EC lea eax,[ebp][-0014]

.00003F58: 8D4DD8 lea ecx,[ebp][-0028]
*2.00003F5B: 50 push eax
*.00003F5C: 51 push ecx
*.00003F5D: E81E170000 call .000005680 ---------- (2)
*.00003F62: 83C408 add esp,008
*.00003F65: 85C0 test eax,eax
*.00003F67: 753E jne .000003FA7 ---------- (3)

*2 Your key is compared with the hardwired key

*3.00003F69: 6A6B push 06B
*.00003F6B: E8CAD1FFFF call .00000113A ---------- (4)
*.00003F70: 83C404 add esp,004
*.00003F73: 85C0 test eax,eax
.00003F75: 7420 je .000003F97 ---------- (5)

*3 What does this call do? Does it really restore you trial period?

*4.00003F77: 6800200000 push 000002000
*.00003F7C: 68193B0110 push 010013B19
*.00003F81: 6855410110 push 010014155
*.00003F86: 56 push esi
*.00003F87: FF15A8630110 call MessageBoxA ;USER32.dll

*4 This message box says that your trial period has been restored!

.00003F8D: C7053410011001000000 mov d,[010011034],000000001

.00003F97: 6A01 push 001

.00003F99: 56 push esi

.00003F9A: FF15B8630110 call EndDialog ;USER32.dll

.00003FA0: B801000000 mov eax,000000001

.00003FA5: EB5D jmps .000004004 ---------- (6)

*5.00003FA7: 6800200000 push 000002000
*.00003FAC: 68193B0110 push 010013B19
*.00003FB1: 68EB410110 push 0100141EB
*.00003FB6: 56 push esi
*.00003FB7: FF15A8630110 call MessageBoxA ;USER32.dll
.00003FBD: EB2D jmps .000003FEC ---------- (7)

This is just the ‘incorrect key’ message box.

Now I didn’t execute the code listed in 3. Call it a healthy dose of paranoia! (Have you read my
tutorial - ‘How to Protect Better: A Strategy’?). I’ll leave you to investigate for yourself. Placing the
protection in the TimeLock dll opens a world of opportunity. There is more than enough space within the dll
to place your own routines. Keeping a ‘cracked’ copy of this dll could mean automatic registering of all
TimeLock protected programs... but where’s the fun in that? If you decide to patch the dll itself, I’d
recommend putting in code to display the correct key in a message box rather than have it perform an
automatic registration. Then you can continue to crack the program and also have a check for later. See my
tutorial on cracking HexWorkshop to find out the half-baked way to creating this sort of message box. Also
for those who can’t be bothered, get my keymaker. This will register all the BoundsChecker programs
currently available for trial by NuMega and may also work for TimeLock protections in general - though I
have yet to test it on such a program.

OK. I just can’t help myself. Still curious about TL32V20.DLL, I loaded it into W32DASM and had a
look around. Try it, there’s some quite interesting stuff in there. Remember the key generation scheme? The
block of 16 of these:

PUSH DWORD PTR [EBP-34] ;P1
PUSH DWORD PTR [EBP-08] ;P2
PUSH DWORD PTR [EBP-5C] ;P3
PUSH DWORD PTR [EBP-28] ;P4
PUSH DWORD PTR [EBP-44] ;P5
CALL 014F257B
ADD ESP,14
MOV [EBP-009C],EAX

You can’t fail to miss it really. And you certainly can’t fail to miss 2 blocks of 16. Two blocks?
Taking a closer look, I discover that the same key digit function is called and the same version/build/serial
numbers are called, only the parameters passed into the key digit function are different. I already am thinking
that this is the generator for the ‘fake’ key and that the key isn’t hardcoded into TimeLock nor in
BoundsChecker as I had first thought (I already took a quick look at a few of the files and had found
nothing). I quickly rewrite a new keygenerator for these new parameters and out pops the ‘fake’ key.

I’ve still not tried entering in this key yet, but what I imagine happens is that the trial period is reset
and then the serial must be changed to prevent someone reusing this key. This would give NuMega the option
of restoring a customers installation if it went wrong. I’ll be phoning NuMega soon to ask if my trial can be
reset.

Well, I couldn’t be bothered contacting NuMega. Instead, I went ahead and entered the ‘fake’ key.
My prediction was right. The trial period is reset and then the serial number is changed. I did this while
filemon and regmon were running. Having a quick peek around, I noticed that certain registry entries were
changed and also a file (bcdlphi5.tsf - 2602 bytes) was accessed. Having a quick look through some tutorials
regarding TimeLock protections I found that decrypting the tsf file has already been covered so I wont go
into it here. Also I noticed that Riz la+ had commented in his tutorial: “What about testing your knowledge
on [tlock32.dll], which seems to be TimeLock v1.0? It is used by NuMega’s BoundsChecker”. So it was
already known that early versions of BoundsChecker used TimeLock.

I think that I had better end the tutorial here as it is dragging on. I am astounded that such a poor
protection scheme is used by so many programs. I cracked BoundsChecker standard edition in less than 5
minutes.

If you have further comments on this or want to send me your tutorials, then contact me. Don’t send
me any tutorials without first asking!

